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Zusammenfassung 
Die landwirtschaftliche Produktion ist einer Vielzahl von Risiken ausgesetzt, welche die 

Volatilität der erzielten Gewinne erhöhen können. Insbesondere die hohe Variabilität von 

Wetterbedingungen in einem sich änderndem Klima setzt Landwirtinnen und Landwirte unter 

Druck. Landwirtschaftliche Versicherungssysteme können hier ein Mittel sein die finanziellen 

Auswirkungen dieser Risiken zu verringern. Innerhalb dieser Versicherungen haben sich 

Wetterversicherungen als innovatives Mittel herausgestellt um Klimarisiken zu minimieren. 

Hier ist die Versicherungsauszahlung nicht abhängig vom Schaden auf dem Feld, sondern wird 

durch einem unabhängig gemessenen Wetterwert bestimmt, zum Beispiel der 

Niederschlagssumme an einer nahegelegenen Wetterstation. 

Diese Arbeit zielt darauf ab Wetterversicherung für Landwirtinnen und Landwirte attraktiver 

zu gestalten, indem Auszahlungen besser an die tatsächliche Risikoexposition abgestimmt und 

auch die Präferenzen der Landwirtinnen und Landwirte berücksichtigt werden. Hierbei liegt der 

Fokus auf zwei Kernbereichen. Erstens, die Anpassung der Wetterversicherungsauszahlungen 

an das Pflanzenwachstum auf dem Feld. Die Diskrepanz zwischen Auszahlung und Schaden 

wir hierbei als Basisrisiko bezeichnet. Nach einer allgemeinen Einleitung in Kapitel 1, zielen 

die Kapitel 2, 3 und 4 darauf ab das Basisrisiko zu verringern. Zweitens, Präferenzen von 

Landwirten bezüglich ihrer Versicherungsentscheidung besser in der Ausgestaltung des 

Versicherungskontraktes zu berücksichtigen. Hierfür wird in Kapitel 5 eine massgeschneiderte 

Versicherung entworfen, die sich den Präferenzen der Landwirtin anpasst.  

Zur Reduktion des Basisrisikos werden in Kapitel 2 verschiedene Ansätze getestet und 

verglichen, die darauf abzielen, den Versicherungszeitraum möglichst präzise zu bestimmen. 

Dafür werden Pflanzenwachstumsphasen definiert, die besonders trockenheitsanfällig sind und 

verschiedene Lösungen gegenübergestellt die das Auftrittsdatum dieser Phasen bestimmen 

können. Die Ergebnisse zeigen, dass frei verfügbare, regionale Beobachternetzwerke dazu 
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beitragen das Basisrisiko zu verringern und somit die Attraktivität von Wetterversicherungen 

erhöhen. In Kapitel 3 werden die monetären Auswirkungen von Spätfrösten während der 

Apfelblüte quantifiziert. Hier wird deutlich, dass nicht nur die Ertragshöhe sondern auch die 

Ertragsqualität durch Wetterereignisse beeinflusst wird, was zur substantiellen Minderung von 

Verkaufspreisen auf Betriebsebene führt. Ein einziger Frosttag führt in dem empirischen 

Beispiel zu Verlusten von Erträgen (-1% bis -5%), von Qualität und somit auch von 

Verkaufspreisen (-4% bis -35%) was schlussendlich zu aggregierten Erlösverlusten 

(- 3% bis - 43%) führt. Die Höhe des Effektes ist abhängig von der Schwere 

(Tagesminimumtemperatur) des Frostereignisses. In Kapitel 4 wird eine ökonometrische 

Strategie skizziert mit der Ertragsdaten von verschiedenen Aggregationsstufen (Betriebserträge 

und regionale Durchschnittserträge) mit Wetterdaten kombiniert werden können, um das 

Basisrisiko zu verringern. Hierbei dient der regionale Durchschnittsertrag als Prior für die 

Schätzung des Einflusses von Wetter auf Betriebserträge innerhalb einer Bayesianischen 

quantilen Regression.  

Zur besseren Berücksichtigung von Präferenzen in der Ausgestaltung des 

Versicherungskontraktes, schlägt eine aktuelle Studie vor, dass die Versicherungsentscheidung 

von Landwirten mit Erkenntnissen aus „Cumulative Prospect Theory“ und „Narrow Framing“ 

besser beschrieben werden kann als mit Hilfe der standardmässig angewandten 

Erwartungsnutzentheorie. Obwohl eine Reihe von weiteren Studien eine Abweichung der 

Versicherungsentscheidung von erwartungsnutzenmaximierendem Verhalten feststellen, 

wurde dies bisher nicht in der Ausgestaltung von Agrarversicherungen berücksichtigt. Hierzu 

werden in Kapitel 5 die Parameter der Wetterversicherung an Cumulative Prospect Theory 

Präferenzen, wie Verlustaversion und Wahrscheinlichkeitsgewichtung, angepasst. Die daraus 

resultierende Versicherung wird als 'Behavioral Weather Insurance' bezeichnet und es wird 

gezeigt, dass insbesondere eine stochastische Mehrjahresprämie eine vielversprechende 
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Erweiterung der aktuellen Versicherungsausgestaltung sein kann. Somit können 

Wetterversicherungen gemäss individueller Präferenzen ausgestaltet werden, um optimal auf 

die Bedürfnisse der Landwirtin zugeschnitten zu sein.  

Zusammenfassend greift diese Arbeit bisherige Erkenntnisse zu Wetterversicherungen auf und 

entwickelt diese in verschiedene Richtungen weiter, sodass Landwirte bei der Absicherung von 

Wetterrisiken besser unterstützt werden können. Die Berücksichtigung von neuartigen und 

bestehenden Datenquellen und deren Kombination in einem flexiblen ökonometrischen 

Rahmen zusammen mit der Quantifizierung von bisher übersehenen Wetterrisiken, zeigt ein 

grosses Potential auf, um das Basisrisiko zu verringern. So wird die Wetterversicherung zu 

einer sinnvollen Ergänzung bestehender Versicherungssysteme, besonders in Ländern mit einer 

Vielzahl ungenutzter Datenquellen. Zudem ist die Berücksichtigung des 

Entscheidungsverhaltens von Landwirtinnen und Landwirten in der Ausgestaltung von 

Versicherungen ein logischer nächster Schritt und die hier präsentierten Ergebnisse bieten einen 

Einstiegspunkt auch weitere Verhaltensweisen zu berücksichtigen.  
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Abstract 
Agricultural production is exposed to a variety of risks that increase the volatility of farm 

profits. In particular, the high variability of weather, especially in context of a changing climate, 

is of relevance for agricultural producers. Agricultural insurances contribute to support farmers 

to cope with these risks. Among these insurances, weather insurances (WI) are an innovative 

tool to cope with climatic risks in agriculture. Using WI, farmers receive an indemnification 

not based on actual yield reductions, but are compensated based on a measured weather index, 

such as rainfall at a nearby weather station. 

This thesis aims at making WI more attractive to farmers through two channels. First, by better 

suiting the weather indexed insurance payout to actual crop performance, i.e. by reducing basis 

risk, a situation in which WI payout mismatches crop losses. After a general introduction into 

the topic within chapter 1, chapters 2, 3 and 4 focus on providing a more detailed explanation 

for farm losses based on weather data. Second, this thesis suggests solutions to adjust insurance 

contract parameters such as the timing of the premium payment to better tailor WI to farmers’ 

preferences, which are presented in chapter 5.  

Chapter 2 tests and compares different approaches to find the occurrence dates of crop growth 

phases that are especially vulnerable against drought and uses this information to reduce basis 

risk of WI. The results show, that spatially explicit, public and open databases of phenology 

reports contribute to reduce basis risk and thus improve the attractiveness of WI. Chapter 3 

quantifies the monetary impact of spring frost events during the flowering phase of apple trees. 

Here it becomes evident that not only crop yields are affected by weather events but also the 

quality of the harvest can drop, which is translated into substantial losses in farm-gate prices. 

With respect to the empirical example of apple production, we find that a frost day induces 

drops in yields (-1% to -5%), quality and thus farm-gate prices (-4% to -35%), and finally leads 

to lower revenues (-3% to -43%), depending on the severity of the frost event (i.e. the daily 
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minimum temperature). In chapter 4, we propose an econometric procedure to combine crop 

yield data on different levels of aggregation with high-resolution weather data to reduce basis 

risk. Here, we suggest using aggregated crop yield data to serve as the prior for farm-level 

estimates in a Bayesian regression framework, and the use of quantile regression (QR) to 

estimate the impact of weather indices on crop yields.  

Regarding the second research goal of better tailoring WI to farmers’ preferences, we build 

upon a recent study which found that Cumulative Prospect Theory and narrow framing can 

offer useful insights to be able to better explain farmers’ insurance choice. Although various 

studies suggest that farmers deviate from standard expected utility maximizing insurance 

behavior, no study so far took up this knowledge and explicitly designed WI to better fit the 

observed insurance decision making. To this end, chapter 5 adjusts insurance contract 

parameters to better tailor farmers’ preferences by introducing what we call ‘Behavioral 

Weather Insurance’. It is shown that a stochastic multiyear premium increases the prospect 

value of weather insurances depending on farmers’ preferences, while a zero deductible design 

does not. Thus, insurance contracts might be tailored to individual preferences to optimally 

serve farmers’ needs, which offers potential benefits for both insurer and insured. 

In conclusion, this thesis builds upon current knowledge and develops WI further in various 

directions to better help farmers manage their weather risk. The combination of open and rich 

data sources and existing information with the help of a flexible econometric framework 

together with the uncovering of so far unquantified weather risks shows massive potential for 

reducing basis risk. This makes WI an attractive supplement to current insurance products, 

especially in countries with rich sources of unused data. Moreover, the incorporation of 

farmers’ decision making behavior provides a useful extensions of the current literature and 

might serve as an entry point for further investigation to make insurance a powerful ally in an 

increasingly instable climate.   
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Chapter 1  

Introduction 
Agricultural production is exposed to a variety of risks that increase the volatility of farm profits 

(Hardaker et al., 2004). In particular, the high variability of weather, especially in context of a 

changing climate, is of relevance for agricultural producers (Schlenker & Roberts, 2009). 

Accordingly, both extreme weather events but also small deviations from optimal conditions at 

vulnerable stages of plant growth diminish agricultural income and threaten food security, 

encouraging the development of efficient risk management tools (IPCC, 2014). These can be 

classified as shown in figure 1.1 (Berg & Schmitz, 2008, Hardaker et al., 2004).  

 

Figure 1.1: Classification of Risk Management Instruments in Agriculture 
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From the toolbox of strategies, farmers chose their whole farm strategy mix that best fits their 

preferences. Simultaneously, farmers face substantial alterations in their environment due to 

e.g. alterations in their risk exposure (e.g. due to climate change) or the increasing availability 

of information communication technology that affect risk and thus likely also farmers’ decision 

making (Coble et al., 2018 Walter et al., 2017, Howden, et al. 2007). Hence it is indispensable 

to dynamically adapt and improve risk management instruments to this changing environment. 

Consequently, it is crucial to best quantify the risk a farmer is exposed to (e.g. by considering 

newly upcoming (big) data sources) but also a state of the art knowledge of farmers’ decision 

making under risk. 

1.1 Crop Insurance 

In the context of market based risk management instruments, crop insurances trade farmers’ 

crop production risk to one, or several, insurance companies, which pool the risk of all insured 

farmers (Chavas, 2004). As summarized in figure 1.2, crop insurance products can be classified 

into two groups: i) those that indemnify farmers for realized losses (indemnity insurance); and, 

ii) those that make payments based on some objective measure that is assumed to be highly 

correlated with realized losses (index insurance).  

On the one hand, indemnity insurances provide compensation in case of observed losses caused 

by predefined perils. Therefore, farmers receive an insurance payout depending on on-farm 

damage assessment. Insurer and insured must have similar information about the likelihood of 

a loss and farming practices to avoid moral hazard1 and adverse selection2, in order to ensure a 

functioning insurance market.  

                                                 

1 Moral hazard indicates the disincentive of farmers to apply good agricultural practice since they are insured 
against low outcomes.  
2 Adverse selection means that farmers for which the insurance company underestimates the actual risk are more 
willing to purchase insurance as the premium is cheaper than an actuarially fair premium.  
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On the other hand, the payout of index insurances does not depend on actual losses but on the 

performance of a predefined index or trigger value. Standard examples of these include area 

yield insurance (Skees et al., 1997) and weather insurance (WI) (Martin et al., 2001, Vedenov 

& Barnett, 2004, Odening et al., 2007).3 More specifically, this implies that a payout occurs if 

a critical strike level of the index is undercut or exceeded4. Index and on-farm results should 

have a strong correlation to cover yield losses efficiently (e.g. Conradt et al., 2015a). The 

rainfall sum within a certain time period is an often used weather index that informs the payout 

of WI and is potentially closely related to a farm’s crop and therefore financial performance. 

Accordingly, WI pays out in the case the sum of rainfall is lower than the strike level. The 

payout is then determined by the difference between the actual rainfall sum and the strike level 

multiplied by a so called ticksize5 or the payout per missing millimeter of rainfall.  

  

                                                 

3 WI is sometimes also called weather derivatives, weather index based insurance, or weather index based risk 
transfer products. In this thesis, the terms weather insurance, weather index based insurance and weather index 
insurance are used synonymously according. 
4 For example, protection against undercutting the index is drought, i.e. payout in case of a lack of rainfall and 
against exceeding the index is flooding, i.e. excessive rainfall.  
5 The terminologies strike level and ticksize are derived from financial options literature and common terms in 
studies focusing on WI 
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Figure 1.2: Classification of Crop Insurances 
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standard expected utility theory, suggesting that current insurance design does not fully take 

into account farmers’ insurance decision making behaviour (Babcock, 2015).  

1.1.1 Basis risk 

Basis risk describes any occurring discrepancy between WI payout and on-farm loss. More 

specifically, it describes the situation in which the farmer experiences a loss while the index 

triggers none or vice versa. Sources of basis risk can be classified into three categories: spatial 

basis risk, temporal basis risk and design basis risk. The spatial basis risk is caused by the 

distance between the point of index measurement (e.g., weather station) and the farm’s location 

(Leblois et al. 2014, Ritter et al. 2014). The temporal basis risk captures the imperfect choice 

of the period for index determination (Deng et al. 2007, Díaz-Nieto et al. 2010). The design 

basis risk describes the fact that the index value does not include all the relevant information 

for predicting the targeted farm-level yield, e.g. through choice of the underlying weather 

variable or estimation strategy.  

Spatial basis risk 

To accurately estimate the impact of weather conditions on yields on a single farm basis, precise 

weather information is essential. If insured weather condition mismatch on-farm weather, 

spatial basis risk occurs. Regarding this, Woodard and Garcia (2008) suggest using weather 

data obtained from a weather station as close as possible to the farm. This is of particular 

relevance for precipitation indices since the correlation between the index and losses quickly 

declines with increasing distance (Odening et al. 2007, Norton et al. 2012). To overcome the 

problem of low weather station density, other authors (Heimfarth and Musshoff 2011, World 

Bank 2013) suggest either interpolating weather station data to on-farm locations or creating a 

portfolio of contracts from different stations in the farm’s region. For instance, kriging 

techniques have been used to estimate on-farm rainfall based on nearby weather stations’ data 
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(Paulson et al. 2010) and to explain the relationship between rainfalls at the two locations 

(Norton et al. 2015). Along these lines, the World Bank (2013) used a model to interpolate 

station data to a grid of 9 km × 9 km resolution covering Guatemala and Honduras. Other studies 

suggest creating a portfolio of several weather options based on the data from different weather 

stations using a geographic cross hedging effect (Berg and Schmitz 2008, Woodard and Garcia 

2008, Ritter et al. 2014). Norton et al. (2012) detected that weighting this portfolio by 

geographical parameters, such as longitude, latitude, altitude, or distance, further decreases 

spatial basis risk. In a case study on German wheat production, Dalhaus & Finger (2016) found 

that using open and transparently produced rainfall grid data potentially decreases transaction 

costs of drought index insurance while holding risk reducing properties constant compared to 

weather station data. In this thesis we build up on findings of Dalhaus & Finger (2016) and use 

weather grid data for WI design because here “it is no longer necessary to find an appropriate 

weather station […] and the time series of grid data weather information is always complete 

and technical failure is less likely”.  

Temporal basis risk 

Temporal basis risk mainly results from choosing index measurement time windows that are 

imperfect for two reasons. First, the chosen time windows that are based on general calendrical 

definitions—that is, choosing the cumulative rainfall in a specific month—are just proxies for 

critical vegetation periods. In reality, these growth phases vary across space and time. Only a 

few studies have incorporated growing seasons explicitly (e.g., Kapphan et al. 2012, Leblois et 

al. 2014b, Conradt et al. 2015b, Kumar et al. 2016). While Kapphan et al. (2012) extracted 

information on vegetation phases from a crop model; Leblois et al. (2014) and Conradt et al. 

(2015b) used growing degree-days (thermal time) to specify vegetation periods. Kumar et al. 

(2016) identified heat-sensitive growth stages from experimental data based on observed 

phenological phases. Second, the start and end dates of these windows of index measurement 
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are usually fixed; that is, they are identical in every year (e.g., start and end dates of months). 

This choice ignores the fact that the timing of single-growth stage periods vary from year to 

year. These fixed time windows are, however, chosen in all previous studies on weather index 

insurances. As an exception, Conradt et al. (2015b) used flexible weather index definitions 

based on vegetation periods defined using growing degree-days (GDD), allowing index 

measurement windows to be specifically suited to the vegetation phase and to vary from year 

to year. This flexible index definition was found to be superior to a fixed index definition 

(Conradt et al. 2015b). However, the definition of vegetation phases based on GDD faces 

several challenges, for example, that assumptions must be made on the occurrence of vegetation 

periods based on GDD across various crops and varieties used, and that precise knowledge of 

sowing dates might be required (Conradt et al. 2015b). Therefore, Dalhaus & Finger (2016) 

find that using observations from a phenological network of farmland in the farms’ region to 

find winter wheat’s occurrence dates of stem elongation, ear emergence and milk ripeness 

flexibly improves WI compared to fixed time periods. So far, no study has compared different 

approaches to consider crop growth phases in WII design. 

Design basis risk 

Besides spatial and temporal basis risk, design basis risk indicates low explanatory power of 

the chosen index for losses due choosing a wrong model design in general. More specifically, 

the influence of the index value on farms’ key performance indicator is biased through one of 

three reasons.  

First, the choice of an index underlying (weather variable) that constitutes a weak predictor for 

losses (e.g. temperature vs. precipitation). Concerning this matter, recent studies found that the 

weather variable should be individually specified according to regional specific weather risks 

(See Leblois & Quirion, 2013 for an overview of different applications). Second, the chosen 

key performance indicator does not include all relevant weather induced losses. In this context, 
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all studies so far concentrated on weather induced yield quantity (as key performance indicator) 

losses, although weather related quality drops result in major price reductions (Kawasaki & 

Uchida, 2016). Consequently, a WI that covers both yield quality and quantity losses is urgently 

needed. Third, the strategy for quantifying the indexes’ influence on farms’ key performance 

indicator is designed inappropriately (e.g. choice of econometric model). Here, two areas have 

been considered recently: i) modelling weather influence on low yield outcomes (losses) rather 

than general influence of weather on yields (e.g. Conradt et al. 2015a); ii) handling of 

aggregation bias and spatially correlated risk exposure for single farm risk assessment and 

insurance pricing (see e.g. Finger, 2012, Heimfarth et al. 2012, Goodwin & Hungerford, 2015, 

Woodard et al., 2016). However, modelling weather influence on yield losses on a single farm 

basis considering spatially correlated risk exposure at higher levels of data aggregation has not 

been considered so far.  

1.1.2 Considering farmers’ behavior in insurance design 

Participation in currently existing crop insurance schemes is generally low without massive 

subsidization, although farmers are risk averse (Glauber, 2013, Du et al. 2017, Pope & Just, 

1991). This empirical reality is not consistent with standard expected utility characterizations 

of risk aversion suggesting that farmers’ risk preferences and insurance decision-making do not 

follow classical assumptions of expected utility (EU) theory. Expected utility suggests that WI 

uptake decreases with basis risk (Clarke, 2016), increases with premium subsidization 

(Glauber, 2013) and increases with farmers’ risk aversion6 (Just et al., 1999). One of the reasons 

for this may be that some farmers do not assign insurance premiums and payouts to fluctuations 

in crop income, but rather experience insurance as a stand-alone investment (Babcock, 2015). 

                                                 

6 In fact, Clarke (2016) finds that an increase in risk aversion can also lead to a decrease in WI demand due to 
basis risk, as WI enables a scenario of exacerbating an unfortunate financial situation (farmer experiences a loss, 
WI does not pay out and farmer still has to pay the premium). 
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Recent evidence suggests here that cumulative prospect theory (CPT) (Tversky & Kahneman, 

1992) may be a better predictor than EU theory of farmers’ insurance decision-making (Du et 

al., 2017, Babcock, 2015, Bulut, 2018, Bougherara & Piet, 2014). CPT extends EU theory in 

three dimensions. First, it distinguishes outcomes into gains and losses with respect to a certain 

reference point. Second, the slope of the value function is steeper in the loss domain compared 

to the gain domain indicating loss aversion. Third, individual outcomes are weighted following 

a weighting function accounting for decision makers’ distortions of probability values. So far, 

no study exists that focuses on developing WI contracts that better fit farmers’ CPT preferences, 

while covering losses effectively.  

1.2 Research objective 

The above drawbacks reveal two overarching entry points for further investigation, which are 

needed to make WI more attractive and agricultural income more robust against meteorological 

threats. Hence, the overall goal of this thesis is to contribute improvements of existing WIs: 

i) by reducing basis risk by including further data sources and uncovering undetected 

weather impacts 

ii) and by designing contracts that consider farmers’ insurance decision making behavior  

1.3 Study outline & major contributions 

The following four main chapters address the two overarching research goals. Regarding the 

reduction of basis risk by incorporating more data, chapter 2 deals with incorporating better 

information on crop phenology and chapter 4 on using a Bayesian quantile regression approach 

that incorporates different aggregation levels of yield data. Concerning the reduction of basis 

risk by uncovering undetected weather impacts, chapter 3 shows that weather not only reduces 

yields but also prices through quality reductions. With respect to considering farmers’ insurance 

decision making behavior, chapter 5 introduces a so called behavioral weather insurance (BWI), 
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which includes a stochastic multiyear payment and a zero deductible design to better fit farmers’ 

preferences.  

1.3.1 Basis Risk  

Regarding crop production, chapter 1.1.1 summarizes that temporal basis risk occurs if WI does 

not reflect the actual growth stage that is sensitive to specific weather. More specifically, in 

case of a WI that aims at reducing farmers’ financial exposure to drought risk, the rainfall sum 

within a growth stage that is insensitive to water shortages. Two major approaches have been 

suggested for flexibly incorporating shifts of the occurrence dates of vulnerable crop growth 

stages over time and space. First, by using a thermal time model using growing degree days 

(GDD) that estimates the occurrence dates of critical growth stages based on required 

temperature loads that (Kapphan et al. 2012, Conradt et al., 2015b). Second, by using actually 

observed growth stages, i.e. phenology observations, provided by a public and independent 

institution (Dalhaus & Finger, 2016). Chapter 2 tests and compares different approaches to find 

the occurrence dates of these phases and uses this information to reduce temporal basis risk of 

WI. We find spatially explicit, public and open databases of phenology reports to contribute to 

reduce basis risk and thus improve the attractiveness of WI. In contrast, we find growth stage 

modelling based on growing degree days (thermal time) not to result in significant 

improvements. 

Weather impacts both crop yield quality and quantity and is thus a driving force of farm income 

volatility (Lesk et al., 2016). While yield quantity risks and their determinants are usually well 

documented, yield quality risk is often unspecified although it is an important driver of price 

risks (Grunert, 2005). Here, the agronomic mechanisms for how weather can negatively 

influence crop quality are well known, while the monetary consequences of such quality losses 

on the farm level remain unexplored so far. The quantification is important for a better 

understanding of how weather impacts farmers’ income but also to develop WI that 
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incorporates monetary consequences of weather induced quality and thus price losses, i.e. to 

reduce design basis risk. In chapter 3 we use the example of late spring frost events in apple 

production to quantify the monetary impact of weather events on farmers’ revenues. By 

disentangling the effect of late spring frosts on both yield and price components we are able to 

distinguish quality and quantity losses, which is usually impossible due data restrictions (e.g. 

Bozzola et al., 2017). We find that a frost day induces drops in yields (-1% to -5%) and quality 

implying farm gate price reductions (-4% to -35%), which finally leads to lower revenues 

(- 3% to -43%). 

Design basis risk occurs if the insured weather index is generally a poor predictor for losses, 

e.g. through missing an important weather variable, a weather impact (such as in the case of 

quality risks) or using an uninformed econometric strategy. The econometric estimation of the 

impact of weather on crop yields informs the design of the WI and both strike level and ticksize 

can be derived from regression results. Here, Conradt et al. (2015a) found that using quantile 

regression (QR) reduces the design basis risk of WI compared to standard linear ordinary least 

squares (OLS) regression. QR differs from OLS in two major dimensions. First, it minimizes 

the absolute distance between the fitted and observed values rather than the squared deviation, 

which makes the estimation more robust against outliers in the data. Second, QR allows for 

differences in the impact of weather across quantiles of the crop yield distribution. For example, 

QR can estimate different impacts of rainfall on yields depending on whether the yield is high 

or low. Here, figure 4.1 shows exemplarily that the impact of one millimeter of rainfall on 

winter wheat yields is more severe when yields are low. To account for farm-specific drivers 

of yield variability, farm-level data on both weather and crop yields are indispensable for 

designing a tailored WI. However, the availability of insufficiently long time series of historical 

yield records is often limited at the farm-level. In contrast, longer and more wide-spread 

regional level yield data are often freely available provided by public bodies. However, the 
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yield variability of aggregated yield data is substantially lower (e.g. Marra and Schurle, 1994, 

Finger, 2012, Woodard and Garcia, 2008). Thus, aggregated data is not able to capture 

idiosyncratic risks and therefore are also less suited to identify the marginal impacts of different 

weather shocks on crop yields. To overcome these challenges, we explore the use of Bayesian 

Quantile Regression (BQR, Yu & Moyeed, 2001) to design WII in chapter 4. This allows for 

combining of data on different levels of aggregation and accounting for spatial and temporal 

basis risk. Here we propose using aggregated crop yield data to serve as the prior for farm-level 

estimates in Bayesian regression framework, and the use of quantile regression (QR) to estimate 

the impact of weather indices on crop yields. Our results show that, although BQR helps to 

design structures to effectively reduce farmers’ financial exposure to drought risk, basis risk 

remains unaffected in this case study context. 

1.3.2 Considering farmers’ behavior in insurance design 

In many countries, farmers’ participation in crop insurance schemes is facilitated with massive 

subsidization, so that high levels of crop insurance uptake have required premium subsidies to 

the point that insurance purchasing often has a positive expected value (Glauber, 2004, Coble 

& Barnett, 2013, Du, Feng & Hennessy, 2017). In contrast, the uptake of unsubsidized crop 

insurance is often low.7 Assuming a standard expected utility (EU) framework, this observation 

is not consistent with the optimal behavior of risk averse farmers. A potential explanation for 

this anomaly is that a share of farmers do not assign insurance premiums and payouts to 

fluctuations in crop income, but rather narrowly frame insurance as a stand-alone investment 

(Babcock, 2015). Recent evidence also suggests that cumulative prospect theory (CPT) 

(Tversky & Kahneman, 1992) may be a better predictor of farmers’ insurance decision-making 

                                                 

7 A small number of countries with functioning non-subsidized crop insurance markets, such as Switzerland (e.g. 

Finger and Lehmann, 2012), represent exceptions and do not preclude this general tendency.  
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than EU theory (Du et al., 2017, Babcock, 2015). To this end, in chapter 5 we adjust insurance 

contract parameters to better tailor farmers’ preferences by introducing what we call behavioral 

weather insurance. We test BWI across various scenarios of real-world elicited CPT preferences 

on loss aversion and probability weighting (Bocquého et al., 2014, Bougherara et al., 2017). 

We find that a stochastic multiyear premium increases the prospect value of weather insurances 

depending on farmers’ preferences while holding the risk reducing properties constant.  

1.4 Discussion & Outlook  

1.4.1 Basis Risk  

Chapter 2 is the first study that explicitly compares WIs that consider single stages of plant 

growth, i.e. by using either phenological observations or GDD modelling (Dalhaus & Finger, 

2016, Conradt et al., 2015b, Kapphan et al., 2012). It therefore provides an overview of current 

knowledge of how to better incorporate crop growth stages in WI design. The results presented 

here can serve as an important basis for further research but also as a reference tool for insurance 

analysts. More specifically, depending on the data availability and the crop to be insured either 

modelling or phenology observations can be an optimal solution to be implemented. It also 

suggests entry points for further research that could add additional options to find occurrence 

dates of growth stages for insurance purposes such as ‘biometeorological time’ or 

‘physiological days’ as suggested by Saiyed et al. (2009) or satellite imagery Sakamoto et al. 

(2005). Going even further, also social media posts, which can be surprisingly easy accessed 

and analysed in large amounts, can provide information on the actual timing of growth stages 

(Zipper, 2018). Thus, temporal basis risk might be further reduced also in countries where 

phenological observations data is scarce. For Germany, concept of using phenological 

observations has already stimulated further research in WI in Doms et al. (2018) and Möller et 

al. (2018).   
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In chapter 3, our results regarding the impact of spring frost on apple yields are consistent with 

the literature and are commonly observed in many regions (Rodrigo, 2000, Menapace et al., 

2013). Recent studies even suggest to implement WI that aims to reduce farmers’ spring frost 

risk exposure (Ho et al., 2018). However, our findings that frost leads to significant reduction 

of farm gate prices and subsequent revenue losses add a new perspective on how spring frost 

impacts apple production. More generally, a major lack of evidence exists on the quantification 

of monetary consequences of quality losses. As notable exception, Kawasaki & Uchida (2016) 

find that economic impacts of weather on rice quality can outweigh those on quantity of yields, 

however they are unable to quantify the effect in terms of revenues. WI practice should take 

this into account and develop products that include weather’s impact on crop quality. Future 

research should also take up our findings when estimating the impact of climate change on 

agricultural production. Especially, when simulating farmers’ behavior under future climate 

scenarios, the consideration of the overall effect of weather on revenues through quantity and 

quality might influence the results compared to a focus on yields only.  

In chapter 4, we find that WI based on farm-level data is able to reduce the drought risk exposure 

of wheat producing farms in Eastern Germany. However, this only holds if farm-level yield 

data is sufficiently available for a long time period. In contrast, our results indicate that WI 

designed using county average yields instead of farm-level yields, are unable to reduce farmers’ 

financial exposure to drought risk. This is in line with literature on aggregation bias (e.g. Marra 

and Schurle, 1994, Finger, 2012). Although the Bayesian quantile regression framework 

presented here did not improve the risk reducing properties of WI, Bayesian inference has been 

proven to be supportive in crop insurance pricing (Shen et al. (2015)). These findings and results 

presented by März et al. (2016), who found Bayesian quantile regression to be superior in 

estimating farmland rental rates, might encourage future research to extend the findings 

presented here to other weather perils. In case of threats that occur more systemically, e.g. 

temperature or joint indices of temperature and rainfall, the BQR framework might present 
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more promising results. Moreover, BQR needs to be tested in a framework where larger 

differences exist between farm-level and county-level data availability. In our case study, 

reliable county-level yields were available from 1992 onwards only, due to the end of the 

German Democratic Republic. In case of longer time series on county yield records, more 

extreme events and systemically occurring shocks might be available serving as better priors 

for estimating farm-level risk. 

1.4.2 Considering farmers’ behavior in insurance design 

Babcock (2015) shows that loss aversion can lead to a reduction of optimal crop insurance 

coverage levels and thus to less protection against potential income losses. The BWI proposed 

in chapter 5 aims to counteract this tendency by accounting for CPT properties of farmers' 

preferences while holding risk reduction potential constant. This includes transforming single 

year premiums into multiyear premiums and letting farmers experience frequent small gains 

(insurance payouts) as a result of having no deductible. We find that the BWI with both 

Adjustments implemented jointly, is unable to increase the prospect value as compared to TWI. 

However, when switching off the zero deductible option, BWI increases the prospect value 

compared to TWI for some CPT specifications. More specifically, higher risk aversion over 

gains and risk seeking over losses, such as observed in these specifications increases 

preferences for BWI compared to TWI. This is due to the fact that this variation of BWI enables 

stochastic multi-year premiums rather than deterministic yearly premiums as is the case with 

traditional weather insurances, satisfying the risk seeking behaviour over losses. Hence, 

stochastic multiyear premiums potentially increase the insurance demand of prospect value 

maximizing farmers. In contrast, a zero deductible design does not benefit farmers in terms of 

prospect value as it increases the total amount of premium payments which are framed as losses 

in the CPT setting. This holds in the situation when both Adjustments are fulfilled and when 

only the zero deductible design is implemented. This result is in line with Babcock (2015) who 
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shows that prospect value maximizing farmers with relatively low risk aversion and average 

loss aversion prefer insurance with higher deductibles. Consequently, a stochastic multiyear 

premium, although being itself prospect value increasing, is not able to counteract the 

overweighting of premium payments framed as losses. Future research should take into account 

that WI parameters can be adjusted to increase WI’s prospect value according to farmers’ 

preferences and test whether this increases the demand. Moreover, also other insurance decision 

making processes can be accounted for in the design on WI.   

1.5 Conclusions 

With respect to the overarching research goal of this thesis, namely to reduce basis risk and 

include farmers insurance decision making in the design of WI, the here presented chapters 

offer various entry points for making WI more attractive to farmers.  

The incorporation of innovative and open data sources of phenology observations as presented 

in chapter 2 was found to be highly basis risk reducing in our case study context. The 

availability of such data also in other countries indicates the relevance also for other perils and 

regions. Moreover, the increasing availability of data that is collected by e.g. on-farm 

machinery, drones or satellites can be useful and this thesis offers insights of how to incorporate 

such information to improve WI. Regarding this, especially the Bayesian quantile regression 

framework presented in chapter 5 offers a useful tool for combining various data sources into a 

tailor made single farm insurance contract. In addition, chapter 3 includes the first study that 

explicitly quantifies the effect of weather on idiosyncratic price movements, i.e. occurring only 

at single farms. This adds a whole new layer of quality related income risk that needs to be 

accounted for not only in WI context. In a broader context, studies that asses the risk of future 

climate and its implications for farmers’ behaviour and thus food security should take into 

account that weather induced quality losses can be a driving factor of a farms success.  
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Regarding the Behavioral Weather Insurance presented in chapter 4, this thesis pointed out that 

a stochastic multiyear premium can help to increase an insurance’s prospect value if farmers 

narrowly frame it as stand-alone investment. The incorporation of insights that are coming from 

behavioral economics into the design of agricultural insurance is novel and offers entry points 

also for further adjustments. More specifically, also other insurance decision making processes 

might exists within a farmer’s population that should be incorporated in the insurance design. 

The work presented here can then be considered as a starting point of a development that can 

lead to insurance products that are highly tailored to single farmer’s individual preferences.  
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1.6 Chapter Abstracts & Author contributions 

CHAPTER 2: Phenology Information Contributes to Reduce Temporal Basis Risk in 

Agricultural Weather Index Insurance  

Abstract 

Weather risks are an essential and increasingly important driver of agricultural income 

volatility. Agricultural insurances contribute to support farmers to cope with these risks. Among 

these insurances, weather index insurances (WII) are an innovative tool to cope with climatic 

risks in agriculture. Using WII, farmers receive an indemnification not based on actual yield 

reductions but are compensated based on a measured weather index, such as rainfall at a nearby 

weather station. The discrepancy between experienced losses and actual indemnification, basis 

risk, is a key challenge. In particular, specifications of WII used so far do not capture critical 

plant growth phases adequately. Here, we contribute to reduce basis risk by proposing novel 

procedures how occurrence dates and shifts of growth phases over time and space can be 

considered and test for their risk reducing potential. Our empirical example addresses drought 

risks in the critical growth phase around the anthesis stage in winter wheat production in 

Germany. We find spatially explicit, public and open databases of phenology reports to 

contribute to reduce basis risk and thus improve the attractiveness of WII. In contrast, we find 

growth stage modelling based on growing degree days (thermal time) not to result in significant 

improvements. 

Author Contributions 

T.D. and R.F. wrote the main manuscript and designed the study. T.D. carried out the 

underlying statistical analysis and prepared all figures. O.M. provided the underlying farm-level 

yield data and commented on various former versions. All authors reviewed the final 

manuscript.  
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CHAPTER 3: Economic impact of weather on yield quantity and quality: The case of spring 

frost in Swiss apple production 

Abstract  

Weather extremes impacting crop yield quantity and quality are essential drivers of farmers’ 

income risk. However, weather induced changes in quality and resulting monetary implications 

remain often unexplored. Here we use the case of late spring frost in apple production to 

quantify that a frost day induces drops in yields (-1% - -5%), quality reduction implying farm 

gate price reductions (-4% - -35%), and finally leads to lower revenues (-3% - -43%). We base 

our analysis on a panel dataset of 2’389 observations of Swiss apple orchards. Our findings 

reveal that quantity and quality need to be accounted for when quantifying climate impacts on 

agriculture. 

Author Contributions 

T.D. and R.F. wrote the manuscript and designed the study. T.D. conducted statistical analysis 

and prepared all figures. M.B. reviewed and commented on various versions of the manuscript. 

E.B., D.D., S.S. and T.D. collected and prepared data. All authors read and approved the final 

manuscript.   
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CHAPTER 4: Bayesian quantile regression for weather index insurance design: Insuring 

idiosyncratic risk under data scarcity 

Abstract  

Crop insurance plays a key role in managing farmers’ financial exposure to weather risks. 

Recent developments have shown that weather index insurance (WII) can help to overcome 

problems of asymmetric information in classical indemnity based crop insurance. However, 

basis risk, i.e. the discrepancy between WII payouts and on-farm losses, presents the largest 

adoption hurdle for WII. Farm-level yield records are necessary to design and assess the 

effectiveness of WII contracts, but are more scarcely available than longer and more wide-

spread regional level yield data. We explore using Bayesian quantile regression (BQR, Yu & 

Moyeed, 2001) to estimate WII structures, thus allowing the use of both county-level yield data 

as informative prior in conjunction with  farm-level yields and weather in designing the 

insurance. We develop an empirical application of insuring drought risk in Eastern German 

winter wheat production. Our results show that, although BQR helps to design structures to 

effectively reduce farmers’ financial exposure to drought risk, basis risk remains unaffected in 

this case study context. Further research might expand the use of BQR approach to other perils 

with higher spatial dependence and regions with longer records of county yields. 

Author Contributions 

T.D. and R.F. wrote the main manuscript and designed the study. T.D. carried out the 

underlying statistical analysis and prepared all figures. J.D.W. commented on various former 

versions. All authors reviewed the final manuscript. 
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CHAPTER 5: Behavioral weather insurance: Applying cumulative prospect theory to 

agricultural insurance design under narrow framing 

Abstract  

Experience across many countries has shown that, without large premium subsidies, crop 

insurance uptake rates are generally quite low. In this article, we propose to use cumulative 

prospect theory in designing weather insurance products, for situations in which farmers 

narrowly frame insurance as stand-alone investment. To this end, we adjust insurance contract 

parameters to better tailor farmers’ preferences by introducing what we call behavioral weather 

insurance. We find that a stochastic multiyear premium increases the prospect value of weather 

insurances depending on farmers’ preferences, while a zero deductible design does not. We 

suggest that insurance contracts be tailored to optimally serve farmers’ needs, which offers 

potential benefits for both insurer and insured. 

Author Contributions 

T.D. and R.F. wrote the main manuscript and designed the study. T.D. carried out the 

underlying statistical analysis and prepared all figures. B.J.B. commented on various former 

versions. All authors reviewed the final manuscript.  
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Abstract  

Weather risks are an essential and increasingly important driver of agricultural income 
volatility. Agricultural insurances contribute to support farmers to cope with these risks. Among 
these insurances, weather index insurances (WII) are an innovative tool to cope with climatic 
risks in agriculture. Using WII, farmers receive an indemnification not based on actual yield 
reductions but are compensated based on a measured weather index, such as rainfall at a nearby 
weather station. The discrepancy between experienced losses and actual indemnification, basis 
risk, is a key challenge. In particular, specifications of WII used so far do not capture critical 
plant growth phases adequately. Here, we contribute to reduce basis risk by proposing novel 
procedures how occurrence dates and shifts of growth phases over time and space can be 
considered and test for their risk reducing potential. Our empirical example addresses drought 
risks in the critical growth phase around the anthesis stage in winter wheat production in 
Germany. We find spatially explicit, public and open databases of phenology reports to 
contribute to reduce basis risk and thus improve the attractiveness of WII. In contrast, we find 
growth stage modelling based on growing degree days (thermal time) not to result in significant 
improvements.  
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2.1 Introduction 

Agricultural insurance solutions are an important tool for farmers to manage risks. Among a 

wide set of available insurance solutions [1] weather index insurances (WII) have recently 

emerged as promising alternative to classical damage based insurance solutions. For WII the 

payout made to the farmer is based on a measured index, e.g. precipitation at a weather station, 

and is not directly based on yield or income losses experienced by the farmer. Thus, WII 

overcome asymmetric information problems of classical insurance schemes, because farmer 

and insurance company have equal information about the weather risk and are unable to 

manipulate the insured value (the weather) [2]. In addition, compensation of farmers only 

requires information of weather records and is thus fast and cheap. Hence, WII have a large 

potential in both developed and developing countries and can contribute to better farm-level 

risk management and more efficient use of natural resources [3, 4]. However, index insurances 

not necessarily lead to accurate compensation of yield losses and thus might fail to payout if 

farmers experience income losses. This phenomenon is denoted as basis risk and constitutes a 

significant adoption hurdle of these products by farmers. Basis risk can be separated into three 

components: 1) Geographical/spatial basis risk occurs if index is measured with spatial distance 

to production location [5]. 2) Design basis risk is a result of taking an index that is an inadequate 

predictor of yield losses [6]. 3) Temporal basis risk captures the imperfect choice of the time 

frame for index measurement [7, 8]. In this paper, we suggest novel approaches to reduce 

temporal basis risk.  

Temporal basis risk mainly occurs because WII does not reflect the actual growth stage that is 

sensitive to specific weather, e.g. droughts. The measurement period for the weather index has 

to be specified in the insurance contract by both parties before the growth period of the crop 

starts. As the most straightforward procedure, periods over which the index is measured are 

thus often chosen to reflect particular calendar periods (e.g. specific weeks or months). These 

fixed time windows can only roughly approximate crop specific growth phases [9]. Moreover, 
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the occurrence dates of growth phases are not constant across time and space, because weather 

conditions can cause large shifts in the actual occurrence of these periods [10, 11]. The resulting 

misspecification of insurance periods results in biased WII payout determination and therefore 

weak risk reducing properties hampering insurance uptake across risk averse farmers [12]. So 

far, only few studies have suggested approaches aiming to reduce temporal basis risk of WII, 

following more flexible index designs, i.e. by considering shifts of crop growth phases over 

time and space [13, 14]. In this respect, ‘flexible’ implies to implement yearly changing 

insurance periods according to the actual occurrence dates of vulnerable growth phases [10]. 

First, Kapphan et al. [13] used growing degree days (GDD) to model occurrence dates of 

emergence, vegetative period, grain filling and maturity in corn production based on thermal 

time. They evaluated the performance of their WII based on simulated corn yield and weather 

scenarios. Second, Conradt et al. [14] used GDD to simulate occurrence dates of tillering, 

shooting and ear emergence in spring wheat. They tested the risk reducing properties of the 

resulting WII based on a case study in Kazakhstan. Both approaches allow for fine scaled 

estimates of multiple growth phases. Furthermore, Dalhaus and Finger [15] suggest to use 

observations from a phenological network of farmland in the farms’ region to find winter 

wheat’s occurrence dates of stem elongation, ear emergence and milk ripeness. They tested 

their WII based on a case study in central Germany. The latter approach accounts additionally 

for a maximum of comprehensibility for the farmer, which is considered as key success factor 

in WII [16,17] So far, no study has compared different approaches to consider crop growth 

phases in WII design.  

We here use an empirical example of a WII against drought risk in winter wheat production in 

Germany to compare existing and propose new approaches to reduce temporal basis risk. In 

winter wheat production, especially phases of low water supply during “reproductive and grain-

filling” limit the development of the plant [18]. Farooq et al. [18] review outcomes of several 
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contributions concerning yield reduction due to drought taking place at different developmental 

stages in winter wheat. Their findings indicate, that wheat is most vulnerable to drought during 

the phase from ‘stem elongation’ to ‘anthesis’ [19, 18]. Within this phase, assimilates are to a 

large extent used to develop grains [20]. Hence, drought induced leaf senescence [21, 22], 

reduced carbon uptake due to stomata closure [23] as well as shortening of grain filling period 

[20] decrease grain number and grain weight, thus reducing final yield outcome.  

In this study, we aim to test and compare different approaches to find the occurrence dates of 

these phases and use this information to reduce temporal basis risk of WII. We focus on the 

following crop growth stage modeling and different phenology observation networks (see also 

table 2.1 for comparative features).  

Growing Degree Days: Plants are expected to require a plant and growth stage 

specific temperature load to reach a certain growth stage. The growing degree days 

approach helps to model this based on observed temperature data. Using the GDD 

model we are able to estimate the occurrence dates of the drought sensitive period 

between stem elongation and anthesis of winter wheat.  

Yearly Phenology Reporters: Publicly provided open dataset of plant growth stage 

occurrence dates. The network comes with a high spatial density and a detailed 

reporting procedure including various different growth stages. Data is published at the 

end of the calendar year. (denoted as ‘Yearly Reporter’ henceforward) Using yearly 

reporters’ data we are able to derive region specific information on the actual 

occurrence dates of the drought sensitive growth stages stem elongation and ear 

emergence in winter wheat.  

Immediate Phenology Reporters: Publicly provided open dataset of plant growth 

stage occurrence dates. The network however comes with a lower spatial density and 

less reported growth phases compared to the latter network. Data is published directly 
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after observation. (For a detailed explanation of all three approaches, see section 

‘Determination of water sensitive growth stages’.) (denoted as ‘Immediate Reporter’ 

henceforward) Using immediate reporters’ data we are able to derive region specific 

information on the actual occurrence dates of the drought sensitive growth stages stem 

elongation and ear emergence in winter wheat. 

To this end, we add to the current discussion of utilizing (big) data sources to support more 

efficient insurance solutions and thus sustainable agriculture [24, 25]. 

 

Table 2.1: Characteristics of the different Approaches to account for Drought sensitive 
growth Stages in WII Design 

GDD Yearly Reporter Immediate Reporter 

• Simulation 

• 356 Weather Stations 

• Numerous growth 

phases 

• Simulation of 

Anthesis occurrence 

possible 

• Immediate calculation  

• Vernalizationa not 

considered 

• Observation 

• 1,200 reporters 

• 7 growth phases for winter 

wheat 

• Anthesis not reported 

• Available at the end of the 

year 

• See figure 2 for the spatial 

distribution in the case study 

region 

• Observation 

• 400 Reporters 

• 6 growth phases for 

winter wheat 

• Anthesis not reported 

• Available 

immediately  

• See figure 3 for the 

spatial distribution in 

the case study region 

a Coolness requirement of winter crops to induce generative growth phases. GDD Approach does not distinguish 

between winter and spring temperature loads [29, 30]  
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More specifically we aim to answer the following research questions  

RQ1: Which approach to explicitly consider yearly changing insurance periods 

reduces farmers’ financial exposure to drought risk compared to a ‘no insurance’ 

scenario?  

RQ2: Which approach to explicitly consider yearly changing insurance periods fits 

best to reduce temporal basis risk of weather index insurance? 

We use expected utilities (EU) of insured farmers as risk measure to test for a reduction in the 

financial exposure to drought risk. We conduct this assessment for different scenarios of 

farmers’ level of risk aversion. Our approach is particularly focused on the relevance of WII to 

reduce downside risks, i.e. the compensation of extreme yield losses, by utilizing power utility 

function to calculate expected utilities and the use of quantile regressions to obtain critical 

parameters of the WII such as tick size [6]. Our empirical example is based on farm-level wheat 

yield data for northern Germany, with a focus on drought risks. We conclude with a critical 

discussion on the applicability of the various approaches considered here, with respect to the 

insured crop, data availability and potential further research paths.  

2.2 Results 

For summary statistics on differences between the three approaches and WII contracts see the 

respective section of the online supplementary file.  

We test for statistical significance of i) the ability of WII solutions to reduce farmers’ financial 

exposure to drought risk compared to no insurance (RQ1) and ii) differences across the different 

WII specifications used here (RQ2). Table 2.2 shows Wilcox test results of the risk reducing 

properties of the different insurance products compared to the uninsured case. This assessment 

is based on average values of expected utilities across all considered farms and a fair insurance 

premium. We find that both WII based on phenology reporting data highly significantly 
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increased farmers’ expected utility and thus reduce the financial exposure to drought risk. This 

result holds over all implemented levels of risk aversion. Note that for risk neutrality (risk 

aversion being equal to zero) no improvement can be obtained from any insurance with fair 

insurance premiums. Regarding WII based on GDD estimated growth stages we could not 

detect any significant changes in expected utility compared to the ‘no insurance’ base scenario. 

Hence, GDD based WII did not reduce the financial exposure to drought risk in our empirical 

example of winter wheat production in Germany.  
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Table 2.2 Results RQ1: Tests for risk reducing properties of different WII compared to 
‘no insurance’ reference scenario 

 Yearly Reporter Immediate Reporter GDD… 

Coefficient of relative risk 

aversion rr 

H0:EUyear ≤ EUnoins H0:EUimm ≤ EUnoins H0:EUGDD≤ EUnoins 

p- value  

 

0 (risk neutral) 0.62 0.29 0.93 

 

0.5 3.48 ∙10-2  6.31 ∙10-2  0.84 

 

1 2.51 ∙10-2  7.49 ∙10-3  0.64 

 

2 6.73 ∙10-3  9.93 ∙10-3  0.60 

 

3 5.72 ∙10-3  1.42 ∙10-2  0.51 

 

4 (extremely risk averse) 5.28 ∙10-3  1.31 ∙10-2  0.53  

EUyear: Vector of expected utility values of insured farmers using yearly phenology reporters’ 
data 
EUimm: Vector of expected utility values of insured farmers using immediate phenology 
reporters’ data 
EUGDD: Vector of expected utility values of insured farmers using growing degree days 
modelling 
EUnoins: Vector of expected utility values of uninsured farmers 
 
Table 2.3 displays the results of comparisons between the different approaches. We find no 

difference in the risk reducing properties between different phenology reports. This result 

reveals that the benefits of using phenology reports in WII are independent of the reporting 

schemes. Compared to WII based on GDD approach, both phenology reporter based WII 

performed significantly better and thus reduced temporal basis risk. 
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Table 2.3 Results RQ2: Comparing risk reducing properties between WII 

Coefficient of relative risk 

aversion α 

H0:EUyear ≤ EUimm H0:EUyear ≤ EUGDD H0:EUimm ≤ EUGDD 

 p-value  

 

0 (risk neutral) 0.50 0.23 0.17 

 

0.5 0.27 3.77 ∙10-2 5.97 ∙10-2 

 

1 0.35 3.77 ∙10-2 3.94 ∙10-2 

 

2 0.13 2.38 ∙10-2 4.73 ∙10-2 

 

3 0.10 1.98 ∙10-2 5.97 ∙10-2 

 

4 (extremely risk averse) 0.10 1.98 ∙10-2 8.29 ∙10-2  

EUyear: Vector of expected utility values of insured farmers using yearly phenology reporters’ 
data 
EUimm: Vector of expected utility values of insured farmers using immediate phenology 
reporters’ data 
EUGDD: Vector of expected utility values of insured farmers using growing degree days 
modelling 
EUnoins: Vector of expected utility values of uninsured farmers 
 

All results presented here show the differences between the three WIIs with respect to their 

ability to reduce temporal basis risk and thus increase farmers’ expected utility. Within our 

online supplementary file we present results on the magnitude of the here identified effects (see 

table A4 of the online supplementary file). 
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2.3 Discussion 

This study is the first comparing different WIIs that explicitly consider managing drought risk 

in single stages of plant growth. In our approach, insurance periods vary across time and space 

according to the occurrence dates of the growth stages stem elongation, anthesis and ear 

emergence. Our results reveal improvements for WII schemes by reducing temporal basis risk. 

Drought risks are expected to become more pronounced for arable farmers in Europe in the 

future. Thus, developing functioning WII insurance solutions is considered as viable climate 

change adaptation tool [26,27].  

Using phenological observations to suit WII to agronomical plant development highly 

significantly decreased farmers risk exposure and thus increased farmers’ expected utility 

compared to both, using GDD based WII and to insuring ‘no insurance reference scenario. 

However, both phenology reporting networks did only provide information about the growth 

stage of ‘ear emergence’ and not about the highly drought sensitive growth stage of ‘anthesis’, 

which can be estimated by the GDD approach [28]. More specifically, GDD based approaches 

allow a substantially finer assessment of crop growth stages than phenology observations. 

Nevertheless, the GDD approach failed to properly estimate the occurrence of ‘anthesis’ and 

risk reducing properties of the reporters based WII remained strong. The fact that both reporting 

networks, which have different reporting procedures and network densities, showed a relatively 

similar performance, underlines the robustness of our results to changes in the reporting 

procedure and station density. With respect to timely insurance payouts in the case of loss 

events, we would like to clearly emphasize that immediate reporters, which publish their 

findings right after occurrence, constitute the preferable option compared to yearly reporters. 

Timely compensation of losses to avoid illiquidity is considered as key requirement of crop 

insurances to avoid illiquidity. However, including the growth stage of ‘anthesis’ in the 

phenology reporting system would potentially further increase the risk reducing properties.  



39 
 

 
 

Concerning the usage of GDD to find appropriate WII periods, we found several drawbacks 

that have to be considered. Thus, GDD estimate of the occurrence dates of ‘stem elongation’ 

was considerably too early. As a result, rainfall in the insured period was considerably higher 

due to a longer insurance period and a shift into a more wet time of the year. Hence, drought 

risk was underestimated and farmers received fewer payouts resulting in low risk reducing 

properties (tables 2.1, 2.2, 2.A2 and 2.A3). GDD modes might be improved using expert 

knowledge or additional experimental data. Furthermore, crop modelling approaches can 

provide valuable information to derive estimates for the occurrence dates of plant growth stages 

considering differences in the impact of winter and spring temperature loads (vernalization) and 

length of the day (photoperiodism) [29, 30, 31, 32]. Thus, methods to reduce temporal basis 

risk must be selected crop specific, based on their ability to find occurrence dates of growth 

stages for the specific crop. Yet, these possible advances have to be aligned to findings that 

more complex WII solutions lead to lower acceptance on farmers’ side [16,17].  

Public institutions surveying phenological development of plants, i.e. the occurrence dates of 

growth stages, exist in many regions that are important crop insurance markets (see van Vliet 

et al., [33] for Europe or Morellato et al. [34] for South and Central America). However, despite 

their availability and the fact that all approaches tested could be easily implemented in current 

practical index insurance schemes, none of them has been considered in practice so far. This 

reveals a massive potential for improvements especially for WII products. This is particularly 

valid for countries such as the USA, where the market for WII is well established (premiums 

paid for WII exceeded 284 m USD in 2016, (www.rma.usda.gov) and various data sources on 

crop phenology are not yet used in WII (www.usapn.org).  

WII currently are tested in many developing countries where the availability of phenology 

information might be limited and where the impacts of drought might be more severe [35,36]. 

Here, crop specific methods to find the occurrence dates of sensitive growth stages might be 
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implemented. Whereas, in our case study the availability of cheap real-time phenology 

observations constitutes the most cost-effective and from farmer’s perspective comprehensible 

tool, it might be worth using more complex approaches in case of phenology data scarcity. In 

this respect also alternatives to GDD approach such as ‘biometeorological time’ or 

‘physiological days’ as suggested by Saiyed et al. [37] or satellite imagery [38] could further 

reduce temporal basis risk. Improving weather-index insurance by integrating crop modelling 

seems key in developing better insurance solutions for countries where phenology data is 

scarce. Moreover, validating GDD models using regional phenological observations could be a 

practical way to bring together advantages of both approaches. Consequently, our study 

discloses a variety of ways to include temporally flexible index designs. 

Moreover, our findings contribute to the ongoing debate on the inclusion of novel (big) data 

sources in agricultural decision making in general and agricultural insurance in particular [24]. 

Within the broader picture of smart farming, where “aspects of technology, diversity of crop 

and livestock systems, and networking and institutions […] are considered jointly” [25], we 

contribute a practical application that combines large and open datasets, crop modelling and 

meteorological applications with agronomical knowledge. Our findings are thus expected to 

stimulate further research but also business opportunities in the field of agricultural risk 

assessment and risk management. 

Finally, our findings contribute to improve risk management options based on WII. But, 

individual risk management options should be compared and embedded in a whole farm 

analysis. For estimating the optimal risk management strategy coping with various perils a more 

holistic framework might be applied, taking into account the whole crop rotation, livestock 

production, the financial situation as well as off farm income, i.e. whole farm/ household 

income [39] 
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2.4 Methods and Data 

2.4.1 Design of the Weather Index Insurance 

We aim to develop a WII that reduces the exposure to drought risk which frequently affects 

winter wheat yields in our study region [40] (see section "Farm Level Yield Data" for a 

description of the underlying dataset). Thus, winter wheat yield y is displayed as a function of 

weather index r, in our case the sum of precipitation within a drought sensitive growth stage: 

𝑦𝑦 = 𝑔𝑔(𝑟𝑟) + 𝜀𝜀      (2.1) 

More specifically, we implement a cumulative precipitation index 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
𝑅𝑅 , which represents the 

sum of precipitation within a specific period [41, 42]: 

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
𝑅𝑅 = ∑ 𝑅𝑅𝑡𝑡𝑡𝑡

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠       (2.2) 

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
𝑅𝑅  denotes the precipitation index of farm i in year t and insurance product 𝑘𝑘 ∈  [GDD, Yearly 

Reporter, Immediate Reporter], summing up daily rainfall 𝑅𝑅𝑡𝑡𝑡𝑡
𝑑𝑑 . Further, d=dstart and d=dend mark 

start and end-dates of accumulation period and should be tailored to water sensitive growth 

stages. We especially aim to improve flexible start and end date detection by testing three 

different approaches to find these dates based on both phenological observation networks and 

crop growth stage modeling. By specifically suiting the weather index in equation 2.2 to the 

drought sensitive growth stages, we avoid to include damaging effects of excessive rainfall, 

which can also be reflected by a rainfall sum index [43,11] 

Using a European put option design WII is suited to indemnify losses caused by low 

precipitation events. European options are financial products that give the owner the right of 

exercising the option at a specific point in time. The owner then receives a payout depending 

on a payout function. In the case of a put option, the insurance payout begins if a specific strike 

level 𝑆𝑆𝑖𝑖𝑖𝑖 of precipitation is undercut and rises depending on the options’ ticksize 𝑇𝑇𝑖𝑖𝑖𝑖 (payout 

per missing index value, in our case mm precipitation). The insurance payout 𝜋𝜋𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝is determined 
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by 𝜋𝜋𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃 ∙ [𝑇𝑇𝑖𝑖𝑖𝑖 ∙ max{(𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡

𝑅𝑅 ), 0}] , where P denotes the winter wheat price (Note that 

we assumed the winter wheat price to be 15.80 €/dt (dt denotes deciton, i.e. 100 kg) [44], our 

results are robust against changes in P as shown in tables A5 – A8 of the online supplementary 

file) 

Extending equation 1, wheat yield 𝑦𝑦𝑡𝑡𝑡𝑡 of farm i is assumed to be random and stochastically 

dependent on weather index 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
𝑅𝑅   and an error term 𝜀𝜀𝑡̃𝑡𝑡𝑡: 

𝑦𝑦𝑡𝑡𝑡𝑡 = 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑖𝑖 ∙ 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
𝑅𝑅 + 𝜀𝜀𝑡̃𝑡𝑡𝑡𝑡𝑡    (2.3) 

𝑐𝑐𝑖𝑖 is a constant intercept and 𝛽𝛽𝑖𝑖 the slope coefficient of the rainfall index variable that can be 

interpreted as the influence of rainfall index 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
𝑅𝑅  on yields 𝑦𝑦𝑡𝑡𝑡𝑡, both randomly distributed across 

the years.  

We define strike level 𝑆𝑆𝑖𝑖 as the estimated rainfall value related to the farm individual mean 

yield 𝑦𝑦� (𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑖𝑖
−1(𝑦𝑦�𝑖𝑖𝑖𝑖)). More specifically we insert coefficient estimates 𝛽̂𝛽𝑖𝑖𝑖𝑖 (which 

represents options’ ticksize Tik) and 𝑐𝑐𝚤𝚤�  together with the mean yield 𝑦𝑦�𝑖𝑖 into equation 2.3 and 

solve for the corresponding rainfall index value 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅  that marks the strike level of rainfall 𝑆𝑆𝑖𝑖𝑖𝑖.   

Both strike level and ticksize are obtained from quantile regression (QR) outcome, recently 

suggested by Conradt et al. [9], estimated for each farm separately. The estimation problem is 

defined as: 

𝛽̂𝛽𝑖𝑖𝑖𝑖(𝜏𝜏) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝛽𝛽𝑖𝑖𝑖𝑖∈ℝ

(𝜏𝜏 ∙ ∑ �𝑦𝑦𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑖𝑖 ∙ 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅 �𝑦𝑦𝑖𝑖≥𝛽𝛽𝑖𝑖𝑖𝑖∙𝑟𝑟𝑖𝑖𝑖𝑖

𝑅𝑅 + (1 − 𝜏𝜏) ∙ ∑ �𝑦𝑦𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑖𝑖 ∙ 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅 �𝑦𝑦𝑖𝑖<𝛽𝛽𝑖𝑖𝑖𝑖∙𝑟𝑟𝑖𝑖𝑖𝑖

𝑅𝑅 ) (2.4) 

QR focuses on a quantile of interest defined by 𝜏𝜏 and is comparably robust to outlier values as 

it minimizes the absolute distance between fitted values and residuals. We follow Conradt et al. 

[6] and chose 𝜏𝜏 = 0.3 and specially suit the regression on low yield outcomes. We use the 

statistical software environment R-statistics [45] with the additional package ‘quantreg’ [46]. 

For a detailed description of using quantile regression in weather index insurance design see 

Conradt et al. [6] and Dalhaus and Finger [15]. 
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2.4.2 Determination of Drought sensitive Growth Stages 

Plant Growth Stage Modelling (GDD) 

First, we use a WII conditioned using plant growth stage modelling approach, i.e. growing 

degree days (GDD) as suggested by Conradt et al. [14]. The occurrence of different crop growth 

stages are calculated based on required air temperature loads (thermal time). This approach is 

denoted subsequently as ‘GDD’. Therefore, we take average seeding dates and calculate based 

on these all following growth stages.  

𝐺𝐺𝐺𝐺𝐺𝐺 =  ∑ max (min{𝐻𝐻𝑛𝑛
𝑎𝑎𝑎𝑎𝑁𝑁

𝑛𝑛=1 , 𝐻𝐻𝑢𝑢𝑢𝑢} − 𝐻𝐻𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 0)   (2.5) 

We thus sum up mid-range daily air temperature Hav (𝐻𝐻𝑎𝑎𝑎𝑎 = 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚+𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚

2 ; with 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 

being the daily minimum and maximum air temperature respectively) if it is greater than 

Hbase = 3°C and lower than Hup = 22°C. If Hav exceeds Hup, we take Hup as GDD value, as growth 

is assumed to remain static then [28]. After reaching a GDD threshold, the plant is assumed to 

start a new growth stage. For our study region, we rely on literature values of these thresholds, 

see table 4 for an overview. We consciously decided to rely on literature values only, to ensure 

a minimum of transaction costs and to propose an easy to implement, highly transparent and 

cheap insurance product.  

 

Table 2.4: GDD Thresholds for different growth stages 
Phase Assumption Source 

Seeding Date 15th Oct Chamber of Agriculture North 

Rhine-Westphalia [60] 

Stem Elongation 659 °C Miller et al. [61] 

Anthesis 1,150 °C Torriani et al. [25] 
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GDD values are used to identify the start of the ‘stem elongation’ growth stage and obtain the 

start date dstart;GDD for equation 2.5. We then repeat the procedure for the ‘anthesis’ growth 

period and get the end value dend;GDD for equation 2.5. We decided to use this simple GDD 

model as this was applied in previous studies on WII [13,14]and it is straightforward in 

implementation. From farmer’s perspective, the WII must be easy to understand and straight 

forward in its payout determination, a more complex growth stage model might counteract this 

requirement [16,17].  
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Figure 2.1: Location of Temperature measuring Weather Stations and Case Study Farms

 
The figure was created using the package ggplot2 (version 2.2.1.9) [62] of the statistical software environment R-

statistics (version 3.3.2) 

Yearly Phenology Reporter 

Second, we condition WII based on phenological observations that indicate growth stages in a 

particular region reported at the end of the year (see figure 2.2 for location information). 

Deutscher Wetterdienst provides occurrence dates of growth stages for a variety of plants 

(ftp://ftp-cdc.dwd.de/). Within a basis network 1,300 reporters report on a yearly basis whereas 

390 of these report their findings immediately. For wheat only, the former reporter dataset 
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consist of ~650,000 observations. Taking into account that observations are available for over 

20 different crops and immediate reporter data is published in real time, this phenology data 

constitutes a data source of large potential interest for various agricultural applications. Reports 

include growing information of wild growing but also agricultural flora cultivated under real-

world (i.e. non-experimental) conditions. Observers check their reporting area two to three 

times a week and on a daily basis in rapid plant development periods. Untypical topographic 

points as well as unusual field conditions (climatic or cultivation anomalies) should be avoided. 

The data of single reporters is cross checked with surrounding reporters within the same natural 

region before publishing [47,48] (within these natural regions plant growth conditions are 

similar). Similar public networks are available for various other major crop insurance markets 

(See van Vliet et al., [33] for Europe, Morellato et al. [34] for South and Central America and 

www.usapn.org for the US). 

Our methodology here closely follows Dalhaus and Finger [15]. However, in contrast to this 

study, we focus solely and more detailed on one source of basis risk (temporal) and compare 

existing and propose new approaches coping with this issue. This data source provides high 

quality data, however with the drawback of being reported only at the end of the year. We use 

phenological observations of stem elongation and ear emergence to determine dstart; yea and dend; 

yea. As the growth stage of anthesis is not reported in the underlying data, we focus on the ear 

emergence growth stage that is closest to the anthesis stage. 

The Yearly Reporters observe a reference field cultivated under practical conditions and capture 

a phenological phase, when about 50 % of all plants reached it [47]. The findings are published 

online at the end of each year. Insurance payout can thus not be triggered directly after weather 

occurrence, but only when phenology reporters’ data is available. In total, there are around 

1,200 Yearly Reporters in Germany available for our period of interest.  

Figure 2.2: Location of Yearly Reporters 
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The figure was created using the package ggplot2 (version 2.2.1.9) [62] of the statistical software environment R-

statistics (version 3.3.2) 

 

Immediate Phenology Reporter  

Third, we use an alternative source of phenological observations that comprises a live 

publishing reporting network (see figure 2.3 for location information). This third database 

would thus provide a substantially sooner payout in case of adverse weather events but comes 

with a considerably lower reporting density [48]. Comparing the Yearly and Immediate 

Reporter networks thus allows to reflect the balance between quality of the index (reporting 

density) and the timing of indemnification. Despite its potential, this study is the first 

considering this latter database in WII context. 

The Immediate Reporters’ network of the Deutscher Wetterdienst contains around 400 reporters 

publishing phenological development right after the first occurrence of a growth stage. In 
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contrast to Yearly Reporters, all sites within a radius of up to 5 km are considered, to give an 

impression of plant development in a wider reporting area. Immediate Reporters report the first 

occurrence of a growing stage within their reporting area. The Immediate reporting network is 

especially implemented for the use in agricultural consultancy [47].  

Figure 2.3: Location of Immediate Reporters 

 

The figure was created using the package ggplot2 (version 2.2.1.9) [62] of the statistical software environment R-

statistics (version 3.3.2) 

 

Table 2.5 summarizes which growth stages are captured within the different reporting networks. 

Phases with high relevance for drought risks are III Stem Elongation -IV Ear Emergence for 

both reporting networks. This period captures drought risk during meiosis and reproductive 

phases.  

Table 2.5: Observed Phenological Phases of Immediate and Yearly Reporters 
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No. Yearly Reporters Immediate Reporters 

I Tilling Tilling 

II Seedling Growth Seedling Growth 

III Stem elongation Stem elongation 

IV Ear emergence Ear emergence 

V Milk ripeness  

VI Yellow ripeness Yellow ripeness 

VII Harvest Harvest 

Source: [48]  

To precisely account for regional specifics, we use natural regions which were originally 

defined by Meynen and Schmitthüsen [49] to find farm specific appropriate reporters. For the 

Immediate Reporters case we dropped four farms from the analysis for which no Immediate 

Reporters’ data was available within the natural region during the whole study period. For cases 

in which single year phenology reports were not available, an imputation strategy was applied 

where the mean value of occurrence dates across the available years was used as estimate.  

2.4.3 Performance testing 

As risk management tool, a WII product is assumed to reduce farmers’ financial exposure to 

weather risk. In this context, the risk reducing properties of the insurance strongly depend on i) 

basis risk that affects insurance efficacy and ii) decision makers’ risk attitude that reflects 

farmers’ individual valuation of risk reducing properties of WII. To test the potential of 

different WII products to reduce temporal basis risk, we assess farmers’ expected utility of their 

crop production and implement different scenarios of risk aversion. Consequently, the 

insurance product providing highest expected utility is assumed to provide highest reduction of 
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temporal basis risk. Within this framework, the utility function converts yearly monetary 

terminal wealth realizations into farm individual utility values, depending on level of risk 

aversion. Along these lines, we assume decreasing absolute risk aversion and use a power utility 

function to display farmers’ downside risk averse preferences (for recent examples in index 

insurance context see Dalhaus and Finger, [15], Berg et al. [50], and Leblois et al. [51] and for 

a general motivation of the utility function Di Falco and Chavas [52, 53] and Finger [54]). To 

account for these differences we test several coefficients of relative risk aversion α ∈ [0, 0.5, 1, 

2, 3, 4] ranging from risk neutral to extremely risk averse [55]. Assuming that farmers only 

hold the assets initial wealth 𝑊𝑊0, wheat production and index insurance results in yearly 

terminal wealth 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡: 

𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑃𝑃 ∙ 𝑦𝑦𝑡𝑡𝑡𝑡 + 𝜋𝜋𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝 − Γ𝑖𝑖𝑖𝑖 + 𝑊𝑊0    (2.6) 

We used direct payments of 280 €/ha as initial wealth proxy. Hence the farm individual yearly 

utility is determined by:  

U𝑘𝑘α𝑖𝑖𝑖𝑖(𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡) = �
𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡

1−α

1−α
    𝑖𝑖𝑖𝑖 α ≠ 1

  ln(𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡)  𝑖𝑖𝑖𝑖 α = 1
   (2.7) 

This results in an utility value U𝑘𝑘α𝑖𝑖𝑖𝑖 for each WII product, year t, farm i and level of risk 

aversion α. The mean values across all years reflect the expected utility 𝐸𝐸U𝑘𝑘αi of farm i, 

insurance k and level of risk aversion α. Subsequently, we test insurance products against each 

other across different levels of risk aversion. More specifically, we use a non-parametric one 

sided paired Wilcoxon rank sum test to account for the ordinal nature of utility values [6,13]. 

More specifically, ordinal nature implies that expected utility values might only be compared 

with respect to their rank but not with respect to their absolute difference. 

Assuming a fair premium, the insurance premium Γ𝑖𝑖𝑖𝑖 is equal to the expected payout. Burn rate 

pricing is used based on a bootstrapping procedure with 10,000 draws [56]. More specifically, 

we draw from the historical realizations of the insurance payouts during the period of study and 
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take the average values of those draws. We moreover use a constant premium during the whole 

period of study as we do not expect changes in the risk exposure, e.g. due to climate change, to 

change our results. For implementing a marketable insurance product we refer to Kapphan et 

al. [13], who include climate change scenarios in the pricing of WII. 

2.4.4 Weather Data 

The underlying weather data was provided by the Deutscher Wetterdienst, an independent state 

institution. Hence data provision is transparent and comprehensible for policyholders (§ 1, Law 

of the Deutscher Wetterdienst). For index calculation two weather variables are necessary. First, 

precipitation data to determine daily rainfall. Second, air temperature data to find growth stages 

with GDD approach. For both variables we chose nearby weather stations with an average 

distance between farms and stations of 8.5 km for precipitation and 22.06 km for air temperature 

stations. All weather data was freely available under ftp://ftp-cdc.dwd.de/. Table 6 gives an 

overview of precipitation sums calculated using the different approaches of plant growth 

determination. The considerably higher mean precipitation during the GDD estimated growth 

phases is a result of the fact that this approach estimates stem elongation date systematically 

too early. All weather data and code used are available in the online supplementary information. 
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Table 2.6: Summary Statistics of Precipitation Sums in Growth Phases 
Growth Stage 

determination 

Growth Stage Mean  Standard 

deviation 

Coefficient of 

Variation 

GDD Stem Elongation – Anthesis 108.77 53.40 0.49 

Yearly 

Reporter 

Stem Elongation – Ear Emergence 68.56 36.44 0.53 

Immediate 

Reporter 

Stem Elongation – Ear Emergence 68.51 31.88 0.46 

 

Table 2.A1 of the online supplementary file displays a comparison between rainfall 

determination approaches using Pearson correlation. While precipitation within reported phases 

of Yearly and Immediate Reporters is relatively closely related (0.58), GDD based precipitation 

sums are only weakly correlated with these two (0.24; 0.16).  

2.4.5 Farm Level Yield Data 

Our case study was carried out using winter wheat yield data together with latitude and 

longitude coordinates of 29 northern German crop farms (see figure 2.1 for location 

information). To consider technical change during the study period from 1996 to 2010, yield 

data was detrended using linear trends. For summary statistics see table 2.7. For a more detailed 

description of the study area see Dalhaus and Finger [15]. Pelka and Musshoff [57] give a more 

detailed motivation of why linear detrending was used. They conclude from Heimfarth et al. 

[58] that considering more robust regression approaches [59] did not lead to differences in the 

results. 
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Table 2.7: Summary Statistics of Wheat Yields  
Summary statistics yield data 

Number of Farms  29 

Minimum  [dta/ha] 45.51 

Maximum  [dt/ha] 132.00 

Mean  [dt/ha] 86.91 

Median  [dt/ha] 86.00 

Standard deviation  [dt/ha] 14.47 

Coefficient of Variation  0.17 

Source: Dalhaus and Finger [15]  

a dt denotes deciton, i.e. 100kg 

2.5 Supplementary Information 

Table 2.A1: Correlation Matrix: Precipitation in growing phases 
 GDD Yearly Reporter Immediate Reporter 

GDD 1   

Yearly Reporter 0.24 1  

Immediate Reporter 0.16 0.58 1 

 

2.5.1 Summary Results 

To give a general overview about the differences across the growth stage estimation approaches, 

table 2.A2 displays temporal gaps between the estimated timings. Hence, the GDD approach 

systematically estimates the occurrence of the ‘stem elongation growth’ stage (dstart;GDD) around 

a month earlier than the two reporting networks observe. In single outliers’ cases these 

difference can increase up to 132 days, which leads to unrealistic dates. Note that all estimated 
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(GDD) and observed (Yearly and Immediate Reporters network) dates are included in the 

online appendix. 

For the second growing stage of interest, GDD estimates ‘anthesis’ (dend;GDD) while the reporters 

only capture the actually earlier but less drought sensitive ‘ear emergence’ growing stage 

(dend;imm dend;year). GDD estimate is still around 20 days earlier than the reporters. However, this 

misspecification is mainly caused by the former mentioned issue of estimating ‘stem 

elongation’ timing. 

The median difference between Yearly and Immediate phenology Reporters is close to zero 

days for both phases. However, for single reports this difference can be up to 68 days. These 

differences arise from distance between single yearly and immediate reporters’ locations as well 

as different reporting strategies (see section 3.2).  
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Table 2.A2: Differences in estimated timings in days 
Approaches  Stem Elongation Ear Emergence/ Anthesis 

Difference between Yearly Reporters’ and GDD Dates 

 Median 37 21 

 Min -6 -23 

 Max 132 76 

Difference between Immediate Reporters’ and GDD Dates 

 Median 33 20 

 Min -26 -19 

 Max 123 64 

Difference between Yearly and Immediate Reporters’ Dates  

 Median 2 0 

 Min -68 -26 

 max 54 34 

 

Table 2.A3 summarizes WII contract parameters across the different approaches of growth 

stage determination. The aforementioned early estimated dates of the GDD approach lead to 

the fact that the insured rainfall period is longer and shifted into a period in which higher rainfall 

is more likely. Resulting strike levels that have to be undercut to trigger an insurance payout 

are higher compared to case when insuring via phenology reporting networks. Medium as well 

as maximum WII premium rates reflect a high drought risk exposure, as expected in this region. 

On average, an indemnification of the WII (i.e. net payouts are positive) in 4.10 out 15 years 
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for the GDD approach, 6.03 years for Yearly and 5.28 years for Immediate Reports. Thus, 

farmers using WII based on phenology reporters’ data receive an indemnification of 29% to 

47% more likely compared to GDD case. Even though this might increase transaction costs, not 

too rare indemnification is seen as important determinant of the success of WII [1].  

The differences in the variable ‘number of insured farms’ are due to the fact that we restricted 

the insurance only to be concluded if the sign of the estimated relationship between yield and 

rainfall was positive. That means, if our regression detected a higher negative influence of 

excessive rainfall compared to low rainfalls’ influence in the given growing stage, we dropped 

these cases as we assumed the farmers not to conclude an insurance contract then. Furthermore, 

for 8 farms there was no Immediate Reporters’ data available in the farms natural region. 
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Table 2.A3: Summary Statistics of Insurance Contract Parameters for α=1 across all 29 
case Study Farms.  

Data Source GDD Yearly Reporter Immediate Reporter 

Strike Level [mm precipitation/m²]    

Median 191.64 122.91 125.31 

Min 128.04 47.20 66.82 

Max 1903.23 507.02 360.78 

Premium [€/ha]   

Median 61.17 62.74 77.39 

Min 7.78 8.89 16.71 

Max 162.82 166.64 166.80 

Average Number of positive net Payouts (payout minus premium; out of 15 years) 

Mean 4.10 6.03 5.28 

Number of insured out of 29 farms*   

 15 24 21 

*Note that we assumed the insurance contract to be concluded only if the slope coefficient of QR was 
positive and if phenology reporters’ data was available.  

For full information about the variables see the online appendix. 
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Table 2.A4: Average Changes of Risk Premium in Percentage Terms, WII compared to 
uninsured Scenario 

Coefficient of relative risk 

aversion rr  

Yearly Reporters 

vs.  

Uninsured 

Immediate Reporters 

vs.  

Uninsured 

GDD 

 vs.  

Uninsured 

 

0 (risk neutral)    

 

0.5 - 6.25 -2.19 - 0.34 

 

1 - 6.39 -2.31 - 0.45 

 

2 - 6.66 -2.52 - 0.68 

 

3 - 6.91 - 2.72 - 0.91 

 

4 (extremely risk averse) - 7.14 - 2.89 - 1.13 
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2.5.2 Sensitivity Analyses 

Table 2.A5 Results RQ1: Tests for risk reducing properties of different WII compared to 
no insurance (Wheat Price changed to 20€/dt) 

Coefficient of relative risk 

aversion rr 

H0:EUyear ≥ EUnoins H0:EUimm ≥ EUnoins H0:EUGDD≥ EUnoins 

p- value  

 

0 (risk neutral) 0.62 0.29 0.93 

 

0.5 3.27 ∙10-2  4.76 ∙10-2  0.85 

 

1 2.35 ∙10-2  7.49 ∙10-3  0.60 

 

2 6.73 ∙10-3  9.94 ∙10-3  0.60 

 

3 5.73 ∙10-3  1.43 ∙10-2  0.56 

 

4 (extremely risk averse) 4.11 ∙10-3  1.31 ∙10-2  0.49  
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Table 2.A6 Results RQ2: Comparing risk reducing properties between WII 
(Wheat Price  changed to 20€/dt) 

Coefficient of relative risk 

aversion rr  

H0:EUyear ≥ EUimm H0:EUyear ≥ EUGDD H0:EUimm ≥ EUGDD 

 p-value  

 

0 (risk neutral) 0.50 0.24 0.17 

 

0.5 0.27 3.77 ∙10-2 6.32 ∙10-2 

 

1 0.33 3.77 ∙10-2 4.46 ∙10-2 

 

2 0.12 2.24 ∙10-2 5.02 ∙10-2 

 

3 0.11 2.11 ∙10-2 6.32 ∙10-2 

 

4 (extremely risk averse) 0.10 1.98 ∙10-2 9.20 ∙10-2  
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Table 2.A7 Results RQ1: Tests for risk reducing properties of different WII compared to 
no insurance (Wheat Price changed to 10€/dt) 

Coefficient of relative risk 

aversion rr 

H0:EUyear ≥ EUnoins H0:EUimm ≥ EUnoins H0:EUGDD≥ EUnoins 

p- value  

 

0 (risk neutral) 0.62 0.29 0.93 

 

0.5 4.46 ∙10-2  8.22 ∙10-2  0.88 

 

1 3.06 ∙10-2  9.05 ∙10-3  0.69 

 

2 7.88 ∙10-3  9.94 ∙10-3  0.62 

 

3 6.21 ∙10-3  1.31 ∙10-2  0.53 

 

4 (extremely risk averse) 4.88 ∙10-3  1.31 ∙10-2  0.58  
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Table 2.A8 Results RQ2: Comparing risk reducing properties between WII 
(Wheat Price  changed to 10€/dt) 

Coefficient of relative risk 

aversion rr  

H0:EUyear ≥ EUimm H0:EUyear ≥ EUGDD H0:EUimm ≥ EUGDD 

 p-value  

 

0 (risk neutral) 0.50 0.24 0.17 

 

0.5 0.30 3.37 ∙10-2 5.97 ∙10-2 

 

1 0.35 3.98 ∙10-2 3.94 ∙10-2 

 

2 0.16 2.53 ∙10-2 4.19 ∙10-2 

 

3 0.11 2.11 ∙10-2 5.97 ∙10-2 

 

4 (extremely risk averse) 0.11 1.86 ∙10-2 7.06 ∙10-2  
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Table 2.A9 Results RQ1: Tests for risk reducing properties of different WII compared to 
no insurance (initial wealth changed to 200€/ha) 

Coefficient of relative risk 

aversion rr 

H0:EUyear ≥ EUnoins H0:EUimm ≥ EUnoins H0:EUGDD≥ EUnoins 

p- value  

 

0 (risk neutral) 0.62 0.29 0.93 

 

0.5 3.27 ∙10-2  4.42 ∙10-2  0.84 

 

1 2.35 ∙10-2  8.24 ∙10-3  0.60 

 

2 6.73 ∙10-3  9.94 ∙10-3  0.58 

 

3 5.73 ∙10-3  1.43 ∙10-2  0.56 

 

4 (extremely risk averse) 3.78 ∙10-3  1.31 ∙10-2  0.49  
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Table 2.A10 Results RQ2: Comparing risk reducing properties between WII 
(initial wealth  changed to 200€/dt) 

Coefficient of relative risk 

aversion rr  

H0:EUyear ≥ EUimm H0:EUyear ≥ EUGDD H0:EUimm ≥ EUGDD 

 p-value  

 

0 (risk neutral) 0.50 0.24 0.17 

 

0.5 0.27 3.77 ∙10-2 6.32 ∙10-2 

 

1 0.32 3.77 ∙10-2 4.73 ∙10-2 

 

2 0.12 2.24 ∙10-2 5.02 ∙10-2 

 

3 0.11 2.11 ∙10-2 6.32 ∙10-2 

 

4 (extremely risk averse) 0.10 1.86 ∙10-2 8.74 ∙10-2  
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Table 2.A11 Results RQ1: Tests for risk reducing properties of different WII compared to 
no insurance (initial wealth changed to 350€/ha) 

Coefficient of relative risk 

aversion rr 

H0:EUyear ≥ EUnoins H0:EUimm ≥ EUnoins H0:EUGDD≥ EUnoins 

p- value  

 

0 (risk neutral) 0.62 0.29 0.93 

 

0.5 3.48 ∙10-2  7.22 ∙10-2  0.84 

 

1 2.87 ∙10-2  9.05 ∙10-3  0.64 

 

2 6.73 ∙10-3  1.09 ∙10-2  0.60 

 

3 5.73 ∙10-3  1.43 ∙10-2  0.51 

 

4 (extremely risk averse) 4.86 ∙10-3  1.31 ∙10-2  0.56  
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Table 2.A12 Results RQ2: Comparing risk reducing properties between WII 
(initial wealth  changed to 350€/dt) 

Coefficient of relative risk 

aversion rr  

H0:EUyear ≥ EUimm H0:EUyear ≥ EUGDD H0:EUimm ≥ EUGDD 

 p-value  

 

0 (risk neutral) 0.50 0.24 0.17 

 

0.5 0.27 3.37 ∙10-2 6.32 ∙10-2 

 

1 0.36 3.77 ∙10-2 3.71 ∙10-2 

 

2 0.15 2.68 ∙10-2 4.46 ∙10-2 

 

3 0.10 2.11 ∙10-2 5.97 ∙10-2 

 

4 (extremely risk averse) 0.11 1.86 ∙10-2 7.86 ∙10-2  
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Table 2.A13 Results RQ1: Tests for risk reducing properties of different WII compared to 
no insurance (loading 10%) 

Coefficient of relative risk 

aversion rr 

H0:EUyear ≥ EUnoins H0:EUimm ≥ EUnoins H0:EUGDD≥ EUnoins 

p- value  

 

0 (risk neutral) 0.99 0.99 1.00 

 

0.5 0.99 0.99 1.00 

 

1 0.99 0.99 1.00 

 

2 0.99 0.99 1.00 

 

3 0.99 0.99 1.00 

 

4 (extremely risk averse) 0.95 0.99 0.99  

 

When adding a loading factor of 10% to the insurance premiums, none of the insurances reduces 

the financial exposure to risk any longer. This was to be expected, as we only insure a single 

peril. For a marketable insurance product multiple weather risks should be combined and a 

whole farm risk management strategy should be developed. As we only compare the different 

options GDD, yearly reporter and immediate reporter to reduce temporal basis risk of the 

rainfall component of a WII, results displayed in table 2.A13 do not change the general 

conclusions drawn in the main paper.  
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Table 2.A14 Results RQ2: Comparing risk reducing properties between WII (loading 
10%) 

Coefficient of relative risk 

aversion rr  

H0:EUyear ≥ EUimm H0:EUyear ≥ EUGDD H0:EUimm ≥ EUGDD 

 p-value  

 

0 (risk neutral) 0.92 0.53 0.19 

 

0.5 0.88 0.36 0.17 

 

1 0.81 0.23 0.13 

 

2 0.69 6.03 ∙10-2 0.10 

 

3 0.46 4.16 ∙10-2 7.57 ∙10-2 

 

4 (extremely risk averse) 0.34 3.19 ∙10-2 0.11  

 

When adding a loading factor of 10% to the insurance premium, the superiority of yearly and 

immediate reporter based WII compared to GDD vanishes. This is due to the fact, that the GDD 

based insurance comes with a lower overall absolute premium compared to yearly and 

immediate reporter based WII as shown in table 2.A3. Hence, the loading factor is more 

pronounced in the reporter based WIIs as the absolute loading is higher in these cases. The 

resulting loss in the expected value of revenues is thus higher in the case of yearly and 

immediate reporter based WIIs, when adding a loading factor. This higher loss in revenues 

drives the expected utility calculations for table 2.A14. Resulting, the three insurances are no 

longer comparable when adding a loading factor. Tables 2.A15 and A16 show the results when 

adding an absolute loading of 10€/ha instead of a loading factor, coming to similar results as 

displayed in the main paper.   
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Table 2.A15 Results RQ1: Tests for risk reducing properties of different WII compared to 
no insurance (loading 10€/ha) 

Coefficient of relative risk 

aversion rr 

H0:EUyear ≥ EUnoins H0:EUimm ≥ EUnoins H0:EUGDD≥ EUnoins 

p- value  

 

0 (risk neutral) 0.99 0.99 1.00 

 

0.5 0.99 0.99 1.00 

 

1 0.99 0.99 1.00 

 

2 0.99 0.99 1.00 

 

3 0.99 0.99 1.00 

 

4 (extremely risk averse) 0.99 0.99 0.99  
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Table 2.A16 Results RQ2: Comparing risk reducing properties between WII (loading 
10€/ha) 

Coefficient of relative risk 

aversion rr  

H0:EUyear ≥ EUimm H0:EUyear ≥ EUGDD H0:EUimm ≥ EUGDD 

 p-value  

 

0 (risk neutral) 0.87 0.36 0.05 

 

0.5 0.83 1.31 ∙10-3 1.68 ∙10-3 

 

1 0.83 5.80 ∙10-4 3.05 ∙10-4 

 

2 0.60 4.27 ∙10-4 2.14 ∙10-4 

 

3 0.50 3.05 ∙10-4 4.27 ∙10-4 

 

4 (extremely risk averse) 0.45 3.05 ∙10-4 3.05 ∙10-4  
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Economic impact of weather on quantity and 
quality: Spring frost in apple production 
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Abstract  

Weather extremes impacting crop yield quantity and quality are essential drivers of farmers’ 
income risk. However, weather induced changes in quality and resulting monetary implications 
remain often unexplored. Here we use the case of late spring frost in apple production to 
quantify that a frost day induces drops in yields (-1% to -5%), quality reduction implying farm 
gate price reductions (-4% to -35%), and finally leads to lower revenues (-3% to -43%). We 
base our analysis on a panel dataset of 2’389 observations of Swiss apple orchards. Our findings 
reveal that quantity and quality need to be accounted for when quantifying climate impacts on 
agriculture. 
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3.1 Introduction 

Weather impacts both crop yield quality and quantity and is thus a driving force of farm income 

volatility (Lesk et al., 2016). While yield quantity risks and their determinants are usually well 

documented, yield quality risk is often unspecified. Regarding quality, adverse weather events 

affect value-adding parameters, such as the outer appearance (Bi et al., 2011, Houston et al. 

2017, Zhang et al., 2010), valuable constituents (Kawasaki & Uchida, 2016, Rao et al., 1993) 

or the textural structure (Sugiura et al., 2013) of the harvest. While the agronomic mechanisms 

how weather can negatively influence crop quality are well known, the monetary consequences 

of such quality losses on the farm level remain unexplored so far. As notable exception, 

Kawasaki & Uchida (2016) find that economic impacts of weather on rice quality can outweigh 

those on quantity of yields. We here contribute to fill these gaps and propose a novel approach 

to quantify the impact of adverse weather on crop quality by exploiting that deviations from 

optimum quality translate into drops in realized producer prices (Grunert, 2005). More 

specifically, we use the example of late spring frost events in apple production to quantify the 

monetary impact of weather events on farmers’ revenues. By disentangling the effect of late 

spring frosts on both yield and price components we are able to distinguish quality and quantity 

losses, which is usually impossible due data restrictions (e.g. Bozzola et al., 2017).  

Apples are one of the most consumed fruits both in Europe and worldwide and late spring frost 

is well recognized as one of the greatest weather risks that can destroy large parts of the apple 

production (e.g. large parts of European apple production have been destroyed by heavy spring 

frost in the 2017 season) (Pérez-Jiménez & Saura-Calixto, 2015, Rodrigo, 2000).Within the 

floral organs of apple blossoms, ice crystals start formation below a temperature of 0°C. The 

crystals grow from the extra cellular space, through the cell membrane into the reproductive 

organs’ cells, potentially causing multiple cell deaths. Depending on the severity of frost 

exposure, the affected flowers either continue to develop normally, produce anatomical and 

morphological damaged apple fruits or fully abort their development. These damages may 
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cause effects to be observed in i) size, ii) appearance or iii) shape of the ripening fruit (Rodrigo, 

2000; Blanke & Kunz, 2010; Eccel et al., 2009). While volumetric yield effects of spring frost 

on apple yields and expected changes in the exposure due to climate change are well 

documented (Rodrigo, 2000; Blanke & Kunz, 2010; Eccel et al., 2009, Blanke & Kunz, 2009; 

Stöckle et al. 2010; Fuhrer et al., 2014; Hoffmann & Rath, 2013), its effects on fruit quality 

have not been quantified, although it is an important driver of economic success (Garatt et al., 

2014). This is also due to the fact that the complexity of quality aspects, restricts the 

quantification of impacts on apple fruit quality. However, the assessment of climatic risks 

should be based on final aggregated economic effects that are crucial from the farmers’ 

perspective. 

We fill this knowledge gap in the literature by quantifying the impact of spring frost during 

flowering across different temperature ranges on apple yields, revenues and prices received by 

the farmers, which we use as proxy for frost induced quality losses. Our empirical economic 

analysis is based on a unique orchard-level panel dataset of apple production in Switzerland, 

which we match with regional tree phenology and historical daily temperature records. The 

remainder of this paper is structured as follows. First, we give an overview on the economic 

orchard information, variety specific tree blooming dates and high resolution weather grid data. 

Second, we introduce the econometric framework together with various sensitivity analyses. 

Third, we present our results. The paper ends with a discussion and conclusion.  

3.2 Material and Methods 

3.2.1 Economic Orchard Data 

Economic orchard-level panel data on apple production, constituting the most relevant 

horticultural production in Switzerland, were provided by the Swiss Federal research station 

Agroscope (Mouron et al., 2006). The overall dataset includes 2’389 observations containing 



80 
 

 

information on 55 apple varieties planted on 720 orchards across ten cantons (Swiss Federal 

States) during the years 1997-2014. Observed variables include yields (2’389 observations) 

[kilogram (kg)/ hectare (ha)], revenues (2’389 observations) [CHF (Swiss Francs)/ ha] (1 CHF 

= 0.85 EUR), farm gate prices (2’460 observations) [CHF/kg], variety, municipality, a dummy 

on whether the orchard produces organic and orchard age. The farm-gate prices are orchard 

specific average realized prices. Thus, a larger share of downgraded apples leads to lower 

prices. Most common varieties in our sample were Golden Delicious (16% of all orchards), 

Gala (10%) and Jonagold (8%) (see Figure A2 in the Appendix for histograms on all variables). 

Data was requested at the Swiss Federal research station Agroscope 

(www.agroscope.admin.ch). 

The investigated farms are located in the Swiss lowland and pre-alpine region, constituting the 

major apple growing region in Switzerland (Federal Office for Agriculture, 2016). This fruit 

growing region is characterized by i) small scale farms and orchards, ii) rainfed fruit production 

in a temperate climate and iii) limited risk management options. Sprinklers, heating/fogging or 

wind machines, are usually not used yet due to limited economic or technical viability. We thus 

expect frost related losses in apple production to have a considerably negative influence on 

revenues while constituting one of the greatest climate related risks.  

3.2.2 Tree Phenology Data 

Start and end dates of the apple blooming period (i.e. from BBCH 61 to BBCH 69 (Rea & 

Eccel, 2006)) in each orchard, year and variety specific were employed using phenological 

records of experimental sites across our study region. More specifically, we obtain our tree 

phenology data from 33 different experimental stations across Switzerland. The dataset 

includes location information of the experimental station and occurrence dates of growth stages 

along the BBCH scale. The data can be accessed via online form at http://www.agrometeo.ch. 

We use phenology information to find start and end dates of flowering (BBCH 61 to BBCH 69) 
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and chilling (BBCH 97 and BBCH 00; see section on temperature control variables) 

(Cesaraccio et al. 2004). Dependent on data availability we consider the following four steps of 

assigning phenology data to single orchards.  

• First we match the single orchard information with variety specific phenology data 

within the same year and canton (here we find 1182 matches). We then use the 

earliest/latest date within BBCH 61 and BBCH 69 to find the start/end date of 

flowering for the single orchard. 

• Second, in case of insufficient data for step one, we match orchard information with 

all available variety phenology (except the early flowering variety Boskoop) within 

the same year and canton (here we find 1029 further matches). We then use the 

earliest/latest date within BBCH 61 and BBCH 69 to find the start/end date of 

flowering for the single orchard. 

• Third, in case of insufficient data for step two, we match orchard information with 

variety specific phenology within the same year in all cantons (here we find 141 

further matches). We then use the earliest/latest date within BBCH 61 and BBCH 

69 to find the start/end date of flowering for the single orchard. 

• Fourth, in case of insufficient data for step three, we match orchard information with 

phenology information within the same year across all varieties from all cantons 

(here we find 108 further matches). We then use the earliest/latest date within BBCH 

61 and BBCH 69 to find the start/end date of flowering for the single orchard. 

3.2.3 Weather Data 

Daily minimum temperatures within these periods were obtained from a temperature grid with 

2.5 x 2.5 km resolution provided by the Swiss Meteorological Office (Frei, 2014). The 

interpolation method specifically considers Swiss specific texture characteristics and thus 

nonlinear temperature changes across elevation levels. Furthermore, “valley-scale cold-air 
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pools” can be realistically displayed, taking into account site specific micro climates. In a “flat 

to hilly terrain”, which is representative for our study region, the mean absolute error is 0.5°C. 

To account for different influences of spring frost on apple yields, revenues and farm-gate 

prices across different frost regimes, we systematically shifted the frost threshold (i.e. the daily 

minimum temperature, which designates a day as a frost day) from 0°C to -4.0°C daily 

minimum temperature. The latter constitutes the lowest observation within the flowering period 

within our sample showing a rather moderate overall frost risk.  

In our regression analysis we use a set of variables to control for other than frost damage effects 

of temperature. More specifically, we control for damaging summer heat and beneficial winter 

chill. Regarding the former, we use the number of days with a maximum air temperature above 

30°C to control for summer heat spells damaging apple fruits (see Racsko & Schrader (2011) 

for an overview). Regarding the latter, we control for beneficial cooling effects by including a 

winter chill control variable. Here we use the available chilling hours (hours with air 

temperature between 0°C and 7.2°C) between leaf fall and bud development (BBCH 97 and 

BBCH 00) obtained from the phenology data, according to above matching procedure. For the 

chilling variable we estimate a sine curve between the daily maximum and minimum 

temperature variables to derive hourly temperatures (Schlenker & Roberts, 2009). From that 

we derive the exposure time between 0°C and 7.2°C. 

3.2.4 Econometric implementation  

We estimate the effects of frost events on three dependent variables, i.e. plot-level apple yield, 

price and revenue. First, we quantify the impact of frost on yields by estimating the model 

displayed in equation 3.1.  

log(𝑦𝑦𝑖𝑖𝑖𝑖) = 𝛽𝛽𝑦𝑦1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑦𝑦𝑦𝑦𝑋𝑋𝑡𝑡𝑡𝑡  + 𝜇𝜇𝑦𝑦𝑦𝑦 + 𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦,    (3.1) 
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where 𝑦𝑦𝑖𝑖𝑖𝑖 is the apple yield of orchard i in year t. Furthermore,  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 is the number of days 

during flowering with a daily minimum temperature below the frost threshold, whereby we shift 

this threshold systematically from 0°C to -4°C. The Matrix 𝑋𝑋𝑡𝑡𝑡𝑡 denotes an orchard and year 

specific set of control variables including chilling hours, heat spells and orchard age. All time 

invariant information (such as variety, production method (i.e. organic), surface texture or 

microclimate) are included and controlled in plot level fixed effects 𝜇𝜇𝑦𝑦𝑦𝑦. The estimated frost 

effect is thus not affected by those information. 

𝛽𝛽𝑦𝑦1 denotes the change in apple yields given a one day change in the frost exposure. As we use 

the logarithm of yields, the estimated change is in relative terms with respect to the single 

orchard average yield.  

Second, in a similar empirical framework and assuming frost events to cause drops in apple 

quality, we estimate apple prices 𝑝𝑝𝑖𝑖𝑖𝑖, as a function of  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 and control variables 𝑋𝑋𝑡𝑡𝑡𝑡. 

Equivalent to equation 3.1, we estimate the impact of frost across a continuous scale from 0°C 

to -4°C. We further include a year fixed effect 𝜐𝜐𝑝𝑝𝑝𝑝 as we expect prices to be highly correlated 

within a year across all orchards. These dummies capture all effects of price developments 

commonly faced by all farms. We thus implicitly also control for market induced price changes. 

log( 𝑝𝑝𝑖𝑖𝑖𝑖) = 𝛽𝛽𝑝𝑝1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑝𝑝𝑝𝑝𝑋𝑋𝑡𝑡𝑡𝑡 + 𝜇𝜇𝑝𝑝𝑝𝑝 + 𝜐𝜐𝑝𝑝𝑝𝑝 + 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝    (3.2) 

Third, we expect final apple revenues 𝑟𝑟𝑖𝑖𝑖𝑖, i.e. the product of yields 𝑦𝑦 and prices 𝑝𝑝, to be a 

function of  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖, control variables 𝑋𝑋𝑡𝑡𝑡𝑡 and orchard 𝜇𝜇𝑟𝑟𝑟𝑟 and year fixed effects 𝜐𝜐𝑟𝑟𝑟𝑟, resulting 

in a similar model as already introduced for prices in equation 2.  

log(𝑟𝑟𝑖𝑖𝑖𝑖) = 𝛽𝛽𝑟𝑟1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑟𝑟𝑟𝑟𝑋𝑋𝑡𝑡𝑡𝑡 + 𝜇𝜇𝑟𝑟𝑟𝑟 + 𝜐𝜐𝑟𝑟𝑟𝑟 + 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟    (3.3) 

We estimate the above functions using a linear fixed effects panel estimator (Schlenker & 

Roberts, 2009; Schauberger, 2017). Furthermore, we apply a multivariate outlier detection 

procedure to identify and exclude outliers in our data. We thus exclude 2 out of originally 2’389 
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data points, resulting in 2’387observation which we include in our analysis (Billor et al., 2000; 

Weber, 2010). 

3.2.5 Sensitivity Analyses 

Yearly fixed effects (YFE) constitute dummy variables for each year, each of which becomes 

one if the respective observation occurs in the year of interest. By including YFE we are able 

to disentangle which effects occur only on single orchards (are idiosyncratic) and which affect 

all orchards as a whole (are systemic). More specifically, when including YFE in the model, 

the remaining estimated effects are not impacted by systemically occurring events. In the above 

specification of the model we exclude YFE from the yield model (Equation 3.1) as we expect 

frost events to occur jointly across a larger region. By including YFE we expect the yield effect 

to be absorbed as this event happens jointly at multiple orchards. Within the price and revenue 

model we include YFE in the above specification (Equations 3.2 & 3.3) as we expect that also 

prices can be highly correlated within one year through overall market movements, while we 

are interested in idiosyncratically occurring price drops. By including YFE we are specifically 

able to detect the drivers of single orchard deviations from overall market prices, which results 

from downgraded quality.  

We here change the YFE specification and include YFE in the yield equation and exclude them 

in the revenue and price equations respectively. According to equations 3.1 to 3.3 displayed in 

the main text, we here estimate equations 3.1.1 to 3.3.1 as follows:  

log (𝑦𝑦𝑖𝑖𝑖𝑖) = 𝛽𝛽𝑦𝑦1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑦𝑦𝑦𝑦𝑋𝑋𝑡𝑡𝑡𝑡  + 𝜇𝜇𝑦𝑦𝑦𝑦 + 𝜐𝜐𝑦𝑦𝑦𝑦 + 𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦    (3.1.1) 

log(𝑟𝑟𝑖𝑖𝑖𝑖) = 𝛽𝛽𝑟𝑟1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑟𝑟𝑟𝑟𝑋𝑋𝑡𝑡𝑡𝑡 + 𝜇𝜇𝑟𝑟𝑟𝑟 + 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟     (3.2.1) 

log( 𝑝𝑝𝑖𝑖𝑖𝑖) = 𝛽𝛽𝑝𝑝1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑝𝑝𝑝𝑝𝑋𝑋𝑡𝑡𝑡𝑡 + 𝜇𝜇𝑝𝑝𝑝𝑝 + 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝     (3.3.1) 

Besides changing the fixed effect specification of our model we show the robustness of our 

results also across different subsamples of our data. We therefore first split our data into years 
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before and after 2004 (resulting in a nearly 50:50 split) to show the robustness of our results 

across time. Moreover, we split the sample in early (before April 24th – Table A4) and late (after 

April 24th – Table A5) flowering observations across all years. 

All data processing including, accessing, matching and processing weather grid with economic 

and phenology data was done using the statistical software environment R (version 3.3.2) and 

R Studio (version 0.99.902). Moreover, figures were produced in R and R Studio and edited in 

Adobe Illustrator (CS6). All statistical analysis was made in Stata (version 14). 

3.3 Results 

3.3.1 Main results  

Table 3.1: Relative marginal impact of below -2°C frost on apple yield, revenue and farm-
gate price  

   

Log Yield 

[kg/ha] 

Log Revenue 

[CHF/ha] 

Log Price 

[CHF/kg] 

     

<-2°C Frost [days]  𝛽𝛽1 -0.05*** -0.15*** -0.12*** 

Chilling [hours] 𝛽𝛽𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.002* 0.000 -0.004 

Heat Spells [days] 𝛽𝛽ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.00 0.00 0.00 

Orchard age [years] 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 0.05*** -0.06*** -0.12*** 

Orchard Fixed Effects  Yes Yes Yes 

Year Fixed Effects  No Yes Yes 

Adjusted. R2  0.11 0.15 0.20 

*, ** and *** denote levels of statistical significance at the 95%, 99% and 99.9% percent 
confidence level 
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Using exemplarily the -2°C as upper threshold, Table 3.1 shows results for the relative impact 

of a <- 2°C frost on yields, prices and revenues (further sensitivity analysis are presented 

below). The exposure to one day with a daily minimum temperature below -2°C significantly 

reduced harvested apple yields (by 5%) and revenues (by 15%). The driving force for the latter 

effect can be found in the estimation results for apple prices. Hence, farm-gate apple prices 

decrease by 12 % for every <-2°C frost occurring. Hence, frost related yield drops are 

intensified by lower farm gate prices. Other variables such as heat spells, chilling hours as well 

as orchard age, serve as controls. 

 

Figure 3.1: Marginal impacts of frost across different frost regimes. Graphs in the upper 
part of the figures show the marginal impact of frost (exposure to a daily minimum 
temperature below the frost threshold on the x-axis) on log yield, log price and log 
revenue respectively. The error bars constitute the 95% cluster robust confidence 
interval. The histograms in the lower part of the figures display the average frost 
exposure during flowering in days, across all orchards and years, for the respective 
temperature interval (0°C to -4°C in 0.5°C steps). 

 

Besides the impacts of frost for a single frost threshold (-2°C) shown in table 3.1, figure 3.1 

displays frost impacts when systematically shifting the threshold from 0°C to -4°C. The grey 

shaded area marks the 95% robust confidence band and the histograms at the bottom indicate 

the average yearly exposure per farm across the different frost regimes (0°C to -4°C in 0.5°C 

steps). Quality losses causing the downgrading of apples is the major determinant of overall 
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effects on farmers’ revenues. While this effect is found across all temperature ranges, it 

becomes even more pronounced with lower temperature thresholds. Within our regression 

analysis we specifically control for systemic effects that affect all farmers simultaneously. Thus 

the displayed price and revenue drops are orchard individual and thus quality related through 

declassification.  

3.3.2 Sensitivity Analyses 

Table 3.2: Relative Marginal impact of below -2°C Frosts on apple yield, revenue and 
producer price (year fixed effects changed) 

   
Log Yield 

[kg/ha] 
Log Revenue 

[CHF/ha] 
Log Price 
[CHF/kg] 

     

<-2°C Frost [days]  𝛽𝛽1 -0.02 -0.15*** -0.10*** 

Chilling [hours] 𝛽𝛽𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.004*** -0.003 -0.006*** 

Heat Spells [days] 𝛽𝛽ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.00 0.00 0.00 

Orchard age [years] 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 0.05*** -0.00 -0.05*** 

Orchard Fixed Effects  Yes Yes Yes 

Year Fixed Effects  Yes No No 

Adj. R2  0.23 0.04 0.05 

*, ** and *** denote levels of statistical significance at the 95%, 99% and 99.9% percent 
confidence level 

 
 

Compared to our main results, the effect of frost on yields is no longer significant when 

including year fixed effects in the yield equation (as displayed in table 3.2). Thus yield reducing 

frost events occur systemically, affecting multiple regions simultaneously.  

Moreover, tables 3.3 and 3.4 show split sample results with respect to years before and after 

2004. The differences in the estimated spring frost impact results from differences in the frost 
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exposure across years. However, these constitute solely changes in the magnitude, not in the 

sign of the effect, which underlines our findings. 

Table 3.3: Relative Marginal impact of below -2°C Frosts on apple yield, revenue and 
producer price (subsample 2004 - 2014) 

   
Log Yield 

[kg/ha] 
Log Revenue 

[CHF/ha] 
Log Price 
[CHF/kg] 

     

<-2°C Frost [days]  𝛽𝛽1 -0.16** -0.28*** -0.17*** 

Chilling [hours] 𝛽𝛽𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.00 0.00 0.00 

Heat Spells [days] 𝛽𝛽ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.00 0.00 -0.02*** 

Orchard age [years] 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 0.04*** -0.68 -1.00*** 

Orchard Fixed Effects  Yes Yes Yes 

Year Fixed Effects  No Yes Yes 

Adj. R2  0.54 0.77 0.80 

*, ** and *** denote levels of statistical significance at the 95%, 99% and 99.9% percent 
confidence level 
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Table 3.4: Relative Marginal impact of below -2°C Frosts on apple yield, revenue and 
producer price (subsample 1997 - 2003) 

   
Log Yield 

[kg/ha] 
Log Revenue 

[CHF/ha] 
Log Price 
[CHF/kg] 

     

<-2°C Frost [days]  𝛽𝛽1 -0.03* -0.11*** -0.10*** 

Chilling [hours] 𝛽𝛽𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.003* 0.009* 0.002 

Heat Spells [days] 𝛽𝛽ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.00 0.01* 0.00 

Orchard age [years] 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 0.05*** -0.01 -0.09*** 

Orchard Fixed Effects  Yes Yes Yes 

Year Fixed Effects  No Yes Yes 

Adj. R2  0.64 0.45 0.46 

*, ** and *** denote levels of statistical significance at the 95%, 99% and 99.9% percent 
confidence level 
 

In addition, tables 3.5 and 3.6 show split sample results with respect to early (before April 24th 

– Table 5) and late (after April 24th – Table 3.6) flowering observations across all years. 

Compared to our main results, the impact of frosts on yields, revenues and prices within the 

subsample of observation with early flowering dates (i.e. before April 24th as displayed in table 

3.5) is alike. In contrast, when only using observations with late flowering (i.e. after April 24th 

as displayed in table 3.6) frost no longer impacts neither yields, revenues nor prices. This is 

intuitive as the later the flowering, the less likely it is that frost events impact flowering. This 

underlines the validity of our matching procedure between orchard information, regional 

flowering phenology and daily temperature grid data as we hardly observe frost events in the 

latter half of the sample. In the appendix, we further include an estimation of the effect of lagged 

frost events in the past years which translate into current year losses through alternate bearing 

property of apple trees (Krasniqi et al., 2013).  
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Table 3.5: Relative Marginal impact of below -2°C Frosts on apple yield, revenue and 
producer price (subsample flowering before April 24th) 

   
Log Yield 

[kg/ha] 
Log Revenue 

[CHF/ha] 
Log Price 
[CHF/kg] 

     

<-2°C Frost [days]  𝛽𝛽1 -0.06*** -0.15*** -0.13*** 

Chilling [hours] 𝛽𝛽𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.002 0.004 -0.001 

Heat Spells [days] 𝛽𝛽ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.00 0.00 0.00 

Orchard age [years] 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 0.05*** -0.06*** -0.12*** 

Orchard Fixed Effects  Yes Yes Yes 

Year Fixed Effects  No Yes Yes 

Adj. R2  0.62 0.64 0.69 

*, ** and *** denote levels of statistical significance at the 95%, 99% and 99.9% percent 
confidence level 
 
 

Table 6: Relative Marginal impact of below -2°C Frosts on apple yield, revenue and 
producer price (subsample flowering after April 24th) 

   
Log Yield 

[kg/ha] 
Log Revenue 

[CHF/ha] 
Log Price 
[CHF/kg] 

     

<-2°C Frost [days]  𝛽𝛽1 -0.14 -0.113 0.11 

Chilling [hours] 𝛽𝛽𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.000 -0.004 -0.001 

Heat Spells [days] 𝛽𝛽ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.00 0.00 0.00 

Orchard age [years] 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 0.06*** -0.00 -0.05** 

Orchard Fixed Effects  Yes Yes Yes 

Year Fixed Effects  No Yes Yes 

Adj. R2  0.62 0.64 0.69 

*, ** and *** denote levels of statistical significance at the 95%, 99% and 99.9% percent 
confidence level 
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3.4 Discussion and Conclusion 

Our results regarding the impact of spring frost on apple yields are consistent with the literature 

and are commonly observed in many regions (Rodrigo, 2000; Menapace et al., 2013). However, 

our findings on significant reductions of farm gate prices due to frost that result in substantial 

revenue losses add a new perspective on how spring frost impact apple production. These 

idiosyncratic weather events, i.e. events that only affect single farms, constitute a major 

downside risk for individual farmers’ income, especially when multiple frost days occur in the 

same year. Beyond frost induced damages, other effects of climate variability and climate 

change on apples such as loss of fruit firmness, hail damage and sunburn have been documented 

(Sugiura et al., 2013; Houston et al., 2017). Moreover, Kawasaki & Uchida (2016) find that 

economic impacts of weather on rice quality can outweigh those on quantity of yields.  

However, the monetary consequences of quality losses on the farm level remain unexplored so 

far. Hence, we extend earlier literature by adding a farm-level perspective on the economic 

impact of weather on single farmers’ revenues.  

Our sensitivity analysis on changing the fixed effects specification within our model shows 

further that major frost events are spatially correlated, impacting a production region as a whole 

(Gu et al., 2008). In contrast, the effect of frosts on revenues and prices do not change when 

excluding the year fixed effect from equations 3.2.1 and 3.3.1. Thus, the impact of frosts on 

quality is idiosyncratic, i.e. impacts only single orchards. Moreover, we clearly acknowledge 

that we estimate a reduced form model that estimates the impact of frosts on prices. We 

conclude that this price reduction is due to drops in quality. We are however unable to derive 

whether these are due to optical/ morphological damages such as frost rings or due to pests that 

are supported by the frost events that might manifest in rotten fruits. From the economic 

perspective, both are relevant and constitute frost induced quality damages. 
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Climate change substantially impacts global crop production (Iglesias et al., 2011) and many 

studies deal with predicting farmers’ response to such changes (e.g. Troost & Berger, 2015). 

When modelling these adaptations (e.g. crop choice) it is crucial to consider all climate change 

induced alterations in risk exposure and its monetary consequences to avoid biased predictions 

(Seo & Mendelsohn, 2008). Regarding apple trees, climate change is expected to cause 

increases in winter temperatures leading to changes in fulfillment of cooling (chilling) and heat 

requirements (forcing) that induce the end of the apple trees’ winter dormancy (Luedeling et 

al., 2009a; Luedeling et al. 2009b; Luedeling et al., 2013; Menzel et al.; 2006; Chmielewski et 

al., 2004; Legave et al. 2013; Vitasse et al., 2018). Thus, apple blooming is more likely to be 

affected by spring frost events across temperature regimes analyzed here, constituting an 

increase in the downside risk exposure of apple producers (Blanke & Kunz, 2010; Eccel et al., 

2009, Blanke & Kunz, 2009; Stöckle et al. 2010; Fuhrer et al., 2014). When adapting to a 

changing climate, knowledge of how climate influences production and income is required, to 

predict but also support farmers’ adaptation process. Our results show that quality and quantity 

effects of frost across different temperature regimes have to be disentangled to avoid biased 

inference. More specifically, effects of a higher frequency of frost events are underestimated if 

focusing on quantity effects only.  

In order to cope with increasing frost risk, adaptation measures are needed. If irrigation 

infrastructure is established, frost irrigation through sprinklers can be an efficient way of 

managing the impact of frost (Foudi & Erdlenbruch, 2011). However, resource efficient water 

use is on the policy agenda of many countries, leading to limited opportunities to apply those 

sprinklers (Finger & Lehmann, 2012). Other solutions, such as heating or wind machines are 

characterized by a high energy use (Snyder & Melo-Abreu, 2005). Thus, more sustainable 

strategies to adapt to increasing spring frost risks need to be developed. To this end, agricultural 

insurances might be designed to help farmers to overcome frost related periods of illiquidity. 

These have shown to be highly idiosyncratic as observed by the absence of natural hedging 
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effects in our case study. In this context, providing indemnity payments based on on-farm 

damage assessment of frost caused quality drops might be inappropriate and not viable. An 

alternative tool that covers weather related losses within specific phases of plant growth are 

weather index based insurances. Here, payouts are triggered based on an observed weather 

variable, such as temperature, serving as a proxy for losses rather than on losses itself (Dalhaus 

& Finger, 2016; Dalhaus et al., 2018). 
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3.4 Appendix 

Figure 3.A1: Histogram of Start (grey) and End (red) Dates of Flowering for deriving 

Frost Variable 
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Figure 3.A2: Histograms of Variables under study 
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3.A1 Frost lags 

Caused by the alternate bearing effect observed in apple trees, apple yields are highly dynamic 

over time (Krasniqi et al., 2013). This implies that, next to reducing apple yield in the year in 

which the frost occurred, a single frost event is translated into future growing seasons. More 

specifically, apple trees react to low yield years (e.g. through frost events) with increased yield 

in the next and decreased yields in the over next season. Common practice in professional apple 

production is to reduce flowers in the high yield year, which can dampen but not fully stop the 

effect in the subsequent low yield year. To show that our underlying farm-level records, 

phenology information and weather data are combined in a reasonable way, we here show that 

this effect can be clearly observed also within our sample. This estimation is based on only 

1419 observations for which we have information on three subsequent years. We estimate 

equations 3.1.2 to 3.2.2 as we do not expect such an effect in the price model 

log(𝑦𝑦𝑖𝑖𝑖𝑖) = 𝛽𝛽𝑦𝑦1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑦𝑦2 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1 + 𝛽𝛽𝑦𝑦3 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−2 + 𝛽𝛽𝑦𝑦𝑦𝑦𝑋𝑋𝑡𝑡𝑡𝑡  + 𝜇𝜇𝑦𝑦𝑦𝑦 + 𝜀𝜀𝑦𝑦𝑦𝑦𝑦𝑦        (3.1.2) 

log(𝑟𝑟𝑖𝑖𝑖𝑖) = 𝛽𝛽𝑟𝑟1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑟𝑟2 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1 + 𝛽𝛽𝑟𝑟3 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−2 + 𝛽𝛽𝑟𝑟𝑟𝑟𝑋𝑋𝑡𝑡𝑡𝑡 + 𝜇𝜇𝑟𝑟𝑟𝑟 + 𝜐𝜐𝑟𝑟𝑟𝑟 + 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟  (3.2.2) 
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Table 3.A1: Relative Marginal impact of below -2°C Frosts in the current and the two 

preceding years on apple yield, revenue and producer price  

   
Log Yield 

[kg/ha] 
Log Revenue 

[CHF/ha] 

    

<-2°C Frost [days]  𝛽𝛽1 -0.10*** -0.28*** 

One year lag <-2°C Frost [days] 𝛽𝛽2 0.03 0.06* 

Two years lag <-2°C Frost [days] 𝛽𝛽3 -0.04** -0.08*** 

Chilling [hours] 𝛽𝛽𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.001 -0.000 

Heat Spells [days] 𝛽𝛽ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.00 0.00 

Orchard age [years] 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 0.03*** -0.34 

Orchard Fixed Effects  Yes Yes 

Year Fixed Effects  No Yes 

Adj. R2  0.62 0.64 

*, ** and *** denote levels of statistical significance at the 95%, 99% and 99.9% percent 
confidence level 
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Figure 3.A3: Dynamic relative marginal impact of one below -2°C Frost day on revenues 

in the current and subsequent two years  
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Abstract  

Crop insurance plays a key role in managing farmers’ financial exposure to weather risks. 
Recent developments have shown that weather index insurance (WII) can help to overcome 
problems of asymmetric information in classical indemnity based crop insurance. However, 
basis risk, i.e. the discrepancy between WII payouts and on-farm losses, presents the largest 
adoption hurdle for WII. Farm-level yield records are necessary to design and assess the 
effectiveness of WII contracts, but are more scarcely available than longer and more wide-
spread regional level yield data. We explore using Bayesian quantile regression (BQR, Yu & 
Moyeed, 2001) to estimate WII structures, thus allowing the use of both county-level yield data 
as informative prior in conjunction with  farm-level yields and weather in designing the 
insurance. We develop an empirical application of insuring drought risk in Eastern German 
winter wheat production. Our results show that, although BQR helps to design structures to 
effectively reduce farmers’ financial exposure to drought risk, basis risk remains unaffected in 
this case study context. Further research might expand the use of BQR approach to other perils 
with higher spatial dependence and regions with longer records of county yields.  
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4.1 Introduction 

Weather index insurance (WII) has a potential role in complementing existing risk management 

instruments to cope with climatic extremes such as droughts or heat spells. The payout of WII 

relies on an underlying weather value such as the amount of rainfall, instead of relying on 

measured crop yield losses at the farm. Thus, WII do not face problems of moral hazard that 

farm-based insurance covers do, and the adjusting of claims for WII is generally lower than 

performing on-farm damage assessment. However, the payouts of WII and the losses 

experienced on the field do not necessarily coincide, a phenomenon that is referred to as basis 

risk (Woodard and Garcia, 2008a).  

Sources of basis risk are threefold. First, design basis risk occurs if, the weather index is 

generally a poor predictor of losses, e.g. through the choice of the weather variable or the 

estimation strategy to quantify the impact of weather on yields (Conradt et al. 2015a, Pelka & 

Musshoff, 2013, Woodard, Shee and Mude, 2016). Second, temporal basis risk occurs, if critical 

periods of crop growth are not covered within the index, e.g. insurance covers whole year 

rainfall sum and missing rainfall during single growth phases is the major reason for crop losses 

(Conradt et al., 2015b, Dalhaus et al. 2018). Third spatial basis risk arises from the spatial 

distance and the resulting weather difference between the weather station and the farm (e.g. 

Woodard and Garcia, 2008b, Ritter et al., 2014).  

The estimation of relevant WII specifications such as strike level or tick size is usually based 

on either i) farm-level data or ii) aggregated (e.g. county-level) data. Farm-level data is most 

informative to account for farm-specific drivers of yield variability. Often, the analyst designing 

the insurance may have larger datasets on regional level yields, but only limited on-farm yield 

data. Farm-level yield observations are usually sparse, i.e. either not available at all, only 

available in short time series or with incomplete records over time, e.g. caused by crop rotation 

requirements. In contrast, time series of aggregated data are usually available over longer 
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periods and thus also more likely contain yield observations in presence of climatic extreme 

events. However, the yield variability of aggregated yield data is substantially lower (e.g. Marra 

and Schurle, 1994, Finger, 2012, Woodard and Garcia, 2008a). Thus, aggregated data is not 

able to capture idiosyncratic risks and therefore are also less suited to identify the marginal 

impacts of different weather shocks on crop yields. To overcome these challenges, we explore 

the use of Bayesian Quantile Regression (BQR, Yu & Moyeed, 2001) to design WII. This 

allows for combining of data on different levels of aggregation and accounting for spatial and 

temporal basis risk. Here we propose using aggregated crop yield data to serve as the prior for 

farm-level estimates in Bayesian regression framework, and the use of quantile regression (QR) 

to estimate the impact of weather indices on crop yields. 

We illustrate the potential benefits utilizing BQR in designing WII using the example of wheat 

production in a drought-prone region in Germany and a WII that pays out in case of low rainfall 

events. We explore the following research questions: 

RQ1: Do the three insurance options proposed above, i.e. WII designed using i) solely 

county level yield data, ii) solely farm-level yield data and iii) a combination of 

county and farm-level yield data using BQR, reduce the financial exposure to 

drought risk compared to a no insurance scenario? 

RQ2: Does the use of county level data as prior information reduce basis risk and thus 

improve the risk reducing effect of WII?  

The remainder of the paper is structured as follows. First, we introduce our conceptual 

framework including background information of weather index insurance and basis risk, the 

econometric implementation using quantile regression and Bayesian quantile regression and 

our hypothesis testing strategy using expected utility as risk measure. Second, we present our 

data background, namely farm-level winter wheat yields, regional phenology information on 
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the occurrence dates of growth stages of winter wheat and high resolution rainfall grid data. 

Fourth, we present and discuss our results and conclude. 

4.2 Conceptual Framework 

Weather index insurance aims at providing payout in case of low yield events that are caused 

by observed weather perils. Our here proposed basis risk reduction strategy is tested using a 

case study example of winter wheat production in a drought prone area of Eastern Germany 

and a WII that aims at providing payout in case of low rainfall events. Therefore, farmers 

receive a payout once a trigger or strike level of the rainfall sum during a vulnerable phase of 

plant growth is under cut. The total insurance payout is then determined by the difference 

between the actual rainfall sum (that serves as weather index) and the strike level multiplied by 

the estimated yield loss per missing millimeter of rainfall or ticksize. Within this section we 

first introduce the concept of WII theoretically before deriving possible sources of design basis 

risk. Afterwards quantile regression and Bayesian quantile regression are suggested as ways of 

coping with this type of basis risk. Finally, expected utility is explained as a way of testing 

Bayesian quantile regression’s ability to reduce design basis risk.  

4.2.1 Weather Index based Insurance 

4.2.1.1 Background 

We assume crop yield 𝑦𝑦𝑖𝑖𝑖𝑖 of farmer 𝑖𝑖 in year 𝑡𝑡 to be function 𝑔𝑔𝑖𝑖(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) of weather 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 (i.e. a 

weather index) in that given year and at the farms location and other factors, such as inputs, site 

characteristics or pests, simplified as an error term 𝜀𝜀 uncorrelated with weather. To reduce 

farmer’s financial exposure to losses in 𝑦𝑦𝑖𝑖𝑖𝑖 caused by weather 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖, WII aims at providing 

financial compensation that precisely covers those weather induced losses. Hence, the estimated 
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relationship between weather and yield serves as basis for WII payout. More specifically, WII 

are mostly designed as European put or call options that compensate losses in case a weather 

variable under- (e.g. rainfall sum during a critical crop growth phase) or over cuts (extreme heat 

days during a critical crop growth phase) a critical threshold (or strike level 𝑆𝑆𝑙𝑙𝑙𝑙). For the former 

case the payout 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 at aggregation level 𝑙𝑙 ∈ (𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) in year 𝑡𝑡 using regression 

approach 𝑘𝑘 ∈ (𝑄𝑄𝑄𝑄 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

follows 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑙𝑙𝑙𝑙 ∗ max {0,  𝑆𝑆𝑙𝑙𝑙𝑙 − 𝑊𝑊𝑊𝑊𝑙𝑙𝑙𝑙}, where both  𝑇𝑇𝑙𝑙𝑙𝑙 and  𝑆𝑆𝑙𝑙𝑙𝑙 are derived from the 

estimated relationship between yields and weather using either of the regression approaches.  

4.2.1.2 Sources of Design Basis Risk 

In the hypothetical case of an index insurance perfectly covering all weather related losses, 

𝑔𝑔(𝑊𝑊𝑊𝑊) would be able to fully capture all effects of weather. In this case design basis risk only 

arises from shocks that are solely included in 𝜀𝜀, such as e.g. pests. In reality however, 𝑔𝑔(𝑊𝑊𝑊𝑊) 

has to be approximated by an estimate ℎ(𝑊𝑊𝑊𝑊) (ℎ𝑐𝑐(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) or ℎ𝑖𝑖(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) depending on data 

availability), which comes with a second error term 𝜗𝜗 resulting in  

 𝑦𝑦𝑖𝑖𝑖𝑖 = ℎ𝑖𝑖(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) + 𝜗𝜗 + 𝜀𝜀      (4.1) 

This second error term 𝜗𝜗 captures basis risk that results from ℎ(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) not being a perfect 

predictor for weather induced losses, e.g. through missing weather variables or a biased 

estimation strategy (e.g. Conradt et al. 2015a/b, Pelka et al., 2012). 

In equation 1 we assumed that farm level crop yield data is available to estimate ℎ𝑖𝑖(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) as 

expressed in 𝑦𝑦𝑖𝑖𝑖𝑖.  
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If this is not the case and if only aggregated average yields 𝑦𝑦𝑐𝑐𝑐𝑐 of county 𝑐𝑐 in year 𝑡𝑡 are available, 

ℎ𝑖𝑖(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) can again only be approximated by the estimate of ℎ𝑐𝑐(𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐) (estimated using county 

average yields8 as ℎ𝑖𝑖(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) = ℎ𝑐𝑐(𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐) + 𝜔𝜔 adding another error term 𝜔𝜔 and resulting in  

 𝑦𝑦𝑐𝑐𝑐𝑐 = ℎ𝑐𝑐(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) + 𝜔𝜔 + 𝜗𝜗 + 𝜀𝜀    (4.2) 

This adds another source of basis risk, namely 𝜔𝜔 which includes idiosyncratic shocks that 

cannot be observed in average county yields and which are thus not included in the estimate of 

ℎ𝑐𝑐(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖)9. Consequently, ℎ𝑖𝑖(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) ≠ ℎ𝑐𝑐(𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐) and WII design depends on the data 

availability at the different aggregation levels. So far, the only strategy to cope with this type 

of basis risk is to use farm-level yield information.  

4.2.2 Econometric Framework 

4.2.2.1 Quantile Regression  

Our research aims at improving the farm individual estimation of ℎ𝑖𝑖(𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖) in case of data 

scarcity. i.e a very limited number of observations on single farm crop yields. We therefore 

propose to use the county level estimate ℎ𝑐𝑐(𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐) as prior distribution for estimating the 

posterior distribution of the single farm impact of weather on yield within a Bayesian quantile 

regression framework.  

To quantify the weather yield relationship econometrically we estimate ℎ𝑖𝑖(𝑊𝑊𝑊𝑊𝑙𝑙𝑙𝑙) based on the 

model 

                                                 

8 Next to weather index based insurances described here, also area yield index insurances are available (Skees et 
al., 1997). Here the insurance payout does not depend on weather but directly on the achieved average yield within 
a specific region. However, drawbacks include basis risk, due to the same reason as presented here, and limited 
opportunities to reinsure the risk due to data availability.  
9 In fact, the three error terms presented here cannot be perfectly separated as illustratively argued. This does 
however not impact our later testing strategy as set out in the below subsection on Expected Utility as Risk 
Measure. 
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𝑦𝑦𝑙𝑙𝑙𝑙 = 𝛼𝛼𝑙𝑙 + 𝑊𝑊𝑊𝑊′𝑙𝑙𝜷𝜷𝑙𝑙 + 𝜈𝜈𝑙𝑙𝑙𝑙     (4.3) 

𝑦𝑦𝑙𝑙𝑙𝑙 is the crop yield at aggregation level 𝑙𝑙 ∈ (𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) in year 𝑡𝑡. Where 𝛼𝛼𝑙𝑙 and 

𝛽𝛽𝑙𝑙 are intercept and slope coefficients respectively and 𝜈𝜈𝑙𝑙𝑙𝑙 is an error term that includes 𝜔𝜔, 𝜗𝜗 

and 𝜀𝜀 from equation 4.2. 𝑊𝑊𝑊𝑊′𝑙𝑙 is a vector of weather (in our later empirical example the sum of 

rainfall during a critical growth stage of winter wheat) at farm 𝑖𝑖 or in county 𝑐𝑐 across years. 

Standard approaches use the ordinary least squares (OLS) estimator to determine the average 

marginal impact 𝜷𝜷𝒍𝒍 of weather on yields  𝑦𝑦𝑙𝑙𝑙𝑙 (Pietola et al., 2011). More specifically, this 

marginal impact gives the average change in yield if rainfall changes by one unit (e.g. mm). 

However insurances are designed to provide indemnification rather in case of downside yield 

events than average events. Therefore, not the average effect of weather across all realizations 

of 𝑦𝑦𝑙𝑙𝑙𝑙 but the effect of weather if yields are low is of interest. We therefore use QR to model 

the marginal impact of 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 on 𝑦𝑦𝑙𝑙𝑡𝑡, dependent on quantile 𝜏𝜏 ∈ (0,1) of the yield distribution 

and aggregation level 𝑙𝑙 resulting in 𝜷𝜷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 (See also figure 4.1 as exemplary presentation of 

changes in 𝜷𝜷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 across 𝜏𝜏) (Koenker & Basset, 1978, Koenker, 2004, Conradt et al., 2015a). 

𝜏𝜏 can be specifically chosen to reflect downside yield events, i.e. 𝜏𝜏 < 1/2. We thus estimate 

the model 

 𝑦𝑦𝑙𝑙𝑙𝑙 = 𝛼𝛼𝑖𝑖 + 𝑊𝑊𝑊𝑊′𝑙𝑙𝑙𝑙𝜷𝜷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 + 𝜈𝜈𝑙𝑙𝑙𝑙    (4.4) 

QR minimizes the sum of asymmetrically weighted deviations (rather than the sum of squared 

residuals in the OLS case) to obtain 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 as expressed in  

 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = min
𝜷𝜷𝒊𝒊𝒊𝒊 

∑ 𝜌𝜌𝜏𝜏(𝑦𝑦𝑙𝑙𝑙𝑙
𝑛𝑛
𝑡𝑡=1 − 𝑊𝑊𝐼𝐼′

𝑙𝑙𝜷𝜷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)   (4.5) 

where  

 𝜌𝜌𝜏𝜏�𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑊𝑊𝐼𝐼′
𝑙𝑙𝑙𝑙𝜷𝜷𝑙𝑙𝜏𝜏𝑄𝑄𝑄𝑄� = �

𝜏𝜏�𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑊𝑊𝐼𝐼′
𝑙𝑙𝑙𝑙𝜷𝜷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�                 𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑊𝑊𝐼𝐼′

𝑙𝑙𝑙𝑙𝜷𝜷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

(1 − 𝜏𝜏)�𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑊𝑊𝐼𝐼′
𝑙𝑙𝑙𝑙𝜷𝜷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�     𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝐼𝐼′

𝑙𝑙𝑙𝑙𝜷𝜷𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
 (4.6) 
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𝜷𝜷𝑙𝑙𝑙𝑙 is therefore not only focusing on low realizations of 𝑦𝑦𝑙𝑙𝑙𝑙 but is also more robust to outliers 

in the data, as the weighted absolute residuals are minimized rather than the average distance 

between observation and mean in the OLS case, where an extreme outlier affects both jointly. 

Moreover, the error term 𝜈𝜈𝑙𝑙𝑙𝑙 can take any distribution and variance across errors is allowed to 

vary (heteroscedastic errors). 

4.2.2.2 Bayesian Quantile Regression 

Drawback of this estimation strategy so far is that 𝜷𝜷𝑙𝑙𝑙𝑙 is either estimated on 𝑙𝑙 = 𝑖𝑖 farm level or 

𝑙𝑙 = 𝑐𝑐 county level and that there is so far no strategy to jointly consider data from both 

aggregation levels jointly. Bayesian inference, where any informative information can be used 

as a prior for the impact estimate, seems an appropriate tool to incorporate information from 

both aggregation levels. To this end, we use Bayesian quantile regression (BQR) (Yu & Moyeed 

(2001), Yue & Rue (2011)). Yu & Moyeed (2001) show that BQR enables to model the 

posterior distribution of the farm level weather impact 𝜷𝜷𝑖𝑖𝑖𝑖𝑖𝑖𝑄𝑄𝑄𝑄, 𝜋𝜋(𝜷𝜷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑦𝑦𝑖𝑖𝑖𝑖) based on a 

likelihood function 𝐿𝐿(𝜷𝜷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑦𝑦𝑖𝑖𝑖𝑖) and a prior 𝜋𝜋(𝛽𝛽, 𝜎𝜎) on 𝛽𝛽 and standard error 𝜎𝜎 as expressed 

in  

 𝜋𝜋�𝜷𝜷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑦𝑦𝑖𝑖𝑖𝑖� ∝ 𝐿𝐿(𝜷𝜷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|𝑦𝑦𝑖𝑖𝑖𝑖)𝜋𝜋(𝛽𝛽, 𝜎𝜎)   (4.7) 

In contrast to QR, BQR requires distributional assumptions on the likelihood function. 

Following Koenker et al. (1999) and Yu & Moyeed (2001) the minimization problem of 

equation 6 can be rewritten as maximizing an asymmetric Laplace likelihood function with 

density function 

 𝐿𝐿�𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊�𝑦𝑦𝑖𝑖𝑖𝑖� = 𝜏𝜏(1−𝜏𝜏)
𝜎𝜎

exp {−𝜌𝜌𝜏𝜏 � 𝑥𝑥−𝜇𝜇
𝜎𝜎

 �}   (4.8) 

and errors 𝜇𝜇 = 𝑊𝑊𝐼𝐼′
𝑖𝑖𝑖𝑖𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊. We use county level estimates 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 and bootstrapped standard 

errors 𝜎𝜎𝑐𝑐𝑐𝑐 as informative priors.  
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Resulting we have three different approaches of estimating the marginal impact of rainfall on 

winter wheat yields. First, the county level marginal impact 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 of county level rainfall 𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐 

on county level yields 𝑦𝑦𝑐𝑐𝑐𝑐 based on quantile regression. Second, the farm level marginal impact 

𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 of farm level rainfall 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 on farm level yields 𝑦𝑦𝑖𝑖𝑖𝑖 based on quantile regression. Third, 

the farm level marginal impact 𝜷𝜷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 of farm level rainfall 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖 on farm level yields 𝑦𝑦𝑖𝑖𝑖𝑖 based 

on Bayesian quantile regression using estimate and standard error of 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 as prior. These three 

scenarios serve as basis for the comparison indicated in above RQ1. 

We use the statistical software environment R together with the packages ‘quantreg’ (for single 

farm and county QR) and ‘bayesQR’ (for BQR) as proposed by Koenker (2013) and Benoit & 

van den Poel (2017) respectively.  

4.2.3 Index Design & Pricing 

Combining the former sections on weather index based insurance and the econometric 

framework, the Ticksize 𝑇𝑇𝑙𝑙𝑙𝑙 is the estimated slope coefficient 𝜷𝜷𝑙𝑙𝑙𝑙𝑙𝑙 (whereas strike level  𝑆𝑆𝑙𝑙𝑙𝑙 is 

derived by setting in the average yield 𝑦𝑦�𝑙𝑙 into equation 4.4 and solving for the associated 

realization of 𝑊𝑊𝑊𝑊 (𝑆𝑆𝑙𝑙 = ℎ𝑙𝑙𝑙𝑙
−1(𝑦𝑦�𝑙𝑙))10. The fair insurance premium can then be estimated by 

approximating 𝐸𝐸(𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙), for which various methods exist (see Odening et al. 2007 for an 

overview). We here use the nonparametric burn rate pricing by bootstrapping 10.000 times from 

the historically realized payouts 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙. The average over those bootstrapped values is then the 

fair insurance premium 𝜑𝜑𝑙𝑙𝑙𝑙.  

For 𝑊𝑊𝑊𝑊 we follow Dalhaus et al. (2018) and use the sum of rainfall from stem elongation to 

milk ripening, which constitute the most drought sensitive growth stages in winter wheat. 

                                                 

10 Please note that in many other WII applications the insurance aims at below average rainfall levels (e.g. 
Heimfarth et al., 2012) here we aim at providing indemnification rather below the rainfall level that triggers 
average yields.  
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Therefore, the weather index follows 𝑊𝑊𝑊𝑊𝑙𝑙𝑙𝑙 = ∑ 𝑅𝑅𝑑𝑑
𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , where 𝑊𝑊𝑊𝑊𝑙𝑙𝑙𝑙 is the weather index at 

location l (either farm i or county c) and 𝑅𝑅𝑑𝑑
𝑙𝑙𝑙𝑙 is the rainfall sum from d = ‘start date’ to d = ‘end 

date’ determined using phenology observations. More specifically, we use regional 

observations on plant growth stages to specifically account for shifts in growth phases over 

space and time. Moreover we use high resolution rainfall grid data to specifically derive rainfall 

for the single farm and county locations (Dalhaus & Finger, 2016). Our WII therefore comes 

with a minimum of spatial and temporal basis risk. Please see section 4.3 Data for more 

information on the underlying datasets used. 

4.2.4 Expected Utility as Risk Measure & Hypothesis Testing 

We assume that a farmer choses an insurance contract that maximizes her expected utility 

arising from terminal wealth 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙 to solve the maximization problem max 𝐸𝐸[𝑈𝑈( 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙)], where 

𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙 is the terminal wealth being defined as 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑦𝑦𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 − 𝜑𝜑𝑙𝑙𝑙𝑙 + 𝑊𝑊0. 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙 includes 

stochastic yields 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝑏𝑏 which is the market price for yields 𝑦𝑦. Moreover, 𝑊𝑊0 is the initial 

(beginning of period) wealth. 𝑈𝑈(. ) is the von Neumann-Morgenstern representation of decision 

makers’ preferences towards risk. If farmers are risk averse, a specification of WII that reduces 

the variance and/or skewness of terminal wealth and has a fair premium would increase the 

expected utility. Thus WII would be chosen, 𝑊𝑊𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ≺ 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 if 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)] < 

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)]. This implies that losses in yields 𝑦𝑦𝑖𝑖𝑖𝑖 can be compensated through insurance 

payouts 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙. Any discrepancies between these two variables arise from the error terms 𝜔𝜔, 𝜗𝜗 

and 𝜀𝜀, i.e. basis risk. Holding everything else constant we are thus able to test i) whether an 

insurance is reducing the farmers financial exposure towards risk compared to the uninsured 

case (RQ1) and ii) to compare different WII designs with respect to their risk reducing 

properties, i.e. with respect to their ability to reduce design basis risk (RQ2). According to 
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above econometric framework, we compare and test the following null hypotheses with respect 

to the research questions derived in the introduction: 

Regarding RQ1: 

H1: H0: 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐)] ≤ 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] 

H2: H0: 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖)] ≤ 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] 

H3: H0: 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] ≤ 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] 

Regarding RQ2: 

H4: H0: 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] ≤ 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐)] 

H5: H0: 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] ≤ 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖)] 

 

To consistently account for downside risk aversion in 𝑈𝑈(𝑊𝑊) we use a power utility function to 

reflect farmers’ preferences:  

U𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙) = �
𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙

1−α

1 − α
    𝑖𝑖𝑖𝑖 α ≠ 1

  ln(𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙)  𝑖𝑖𝑖𝑖 α = 1
 

where α is the Arrow Pratt coefficient of relative risk aversion (Di Falco & Chavas, 2009). We 

test for scenarios α ∈  (0, 0.2, 0.4, 0.6, 0.8, 1) ranging from lower to higher risk aversion (for 

elicited preferences of German farmers see Maart-Noelck & Musshoff, 2014 or Meraner & 

Finger, 2017). To account for the ordinal nature of expected utility values we use one sided 

paired Wilcoxon test to test Hypotheses 1 to 5.   
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4.3 Data 

This study employs farm and county level winter wheat yields, as well as precipitation data to 

evaluate the efficacy of using BQR in WII design. 

4.3.1 Winter Wheat Yield 

Winter wheat yield data for the period 1995 to 2014 for 73 counties in a drought prone area of 

Eastern Germany are obtained from the German Statistical office11 (N = 1255 observations). 

We include counties located in the Federal States Mecklenburg-Western Pomerania, 

Brandenburg, Saxony-Anhalt, Saxony and Thuringia. This Region is characterized by 

considerable drought risk. The farms in this region are primarily commercial scale operations. 

Farm-level yield data are obtained from 84 winter wheat producing farms in this region for the 

same period (N= 1252 observations). Both datasets are unbalanced. The 84 farms are located 

in 44 different counties (N=804 remaining county yield observations). Controlling for 

technological change, both county and farm level yield was detrended using an M-estimator as 

proposed by Finger (2013). The trend is based on national average winter wheat yields (FAO, 

2018). We use the average level of direct payments (i.e. 280 €/ha following Dalhaus & Finger 

(2016)) as proxy for initial wealth 𝑊𝑊0.  

                                                 

11 Please note also that these federal states lie within the area of the former German Democratic Republic, therefore 
average county yields are available earliest from 1992 on.  
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Table 4.1: Summary statistics of detrended winter wheat yields in decitons per hectare 

 County-Level Farm-Level 

Mean 65.28 65.14 

Median 66.44 65.51 

Min 23.12 10.75 

Max 92.38 109.90 

Standard Deviation 11.23 14.52 

Coefficient of Variation 0.17 0.22 

 

4.3.2 Precipitation 

Rainfall grid data was obtained from the German Meteorological Office (Deutscher 

Wetterdienst) as suggested by Dalhaus & Finger (2016). The rainfall data are daily and have a 

spatial resolution of 1 square kilometer. For the county level data, we use the grid cell in which 

the respective county’s centroid is located. For the farm level, we use the grid cell in which the 

farm is located. All rainfall grid data can be accessed via ftp://ftp-cdc.dwd.de/pub/CDC/  

ftp://ftp-cdc.dwd.de/pub/CDC/
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Table 4.2: Summary statistics of cumulative rainfall [l/m2] from stem elongation to milk 

ripening in liter per squaremeter 

 County-Level Farm-Level 

Mean 139.6 139.20 

Median 130.3 132.80 

Min 17.4 9.30 

Max 372.2 402.70 

Standard Deviation 61.3 59.22 

Coefficient of Variation 0.44 0.43 

 

4.3.3 Phenology 

As proposed by Dalhaus & Finger (2016) and Dalhaus et al. (2017) we use regional 

observations on the occurrence dates of plant growth stages to find the drought sensitive growth 

stage of anthesis and to capture shifts of this phase across time and space. Those phenological 

observations are provided by the German Meteorologial Office and can be freely accessed at 

ftp://ftp-cdc.dwd.de/pub/CDC/. For the county level we minimize the spatial distance between 

the center of the county and the phenology reporting station taking into account that both must 

lie within the same natural region. Natural regions are defined by having homogenous plant 

growth conditions (Dalhaus et al. 2018). We use start dates of the growth stage stem elongation 

and end dates of milk ripeness and sum up daily rainfall during this period. This rainfall sum 

index constitutes the insured weather index.  

  

ftp://ftp-cdc.dwd.de/pub/CDC/
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4.4 Results 

 

Figure 4.1: Marginal Impact of the Rainfall Sum [l/m2] during the Anthesis Stage of 

Winter Wheat on Winter Wheat Yields 

Note: This exemplary figure is based on estimating equation (4) systematically shifting 𝜏𝜏 

(Quantile of the Winter Wheat Yield Distribution) between zero and one. Moreover all 

farm-level observations are pooled together (N=1252). Shaded areas constitute 

bootstrapped standard errors. 

 

Figure 4.1 shows the marginal impact of the rainfall sum during the growth stages from stem 

elongation to milk ripening on winter wheat yields. Thus, the impact is highly nonlinear across 

the yield distribution, which generally motivates to use a quantile regression approach. 

Moreover, the impact of rainfall is positive for large parts of the distribution and insignificant 
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for the upper part, i.e. when yields are high. Thus, drought events during this growth stage 

substantially drop winter wheat yields. 

Table 4.3: Summary Statistics of Contract Parameters 

 
County-Level Data Farm-Level Data Bayes 

    

Strike level [median in millimeter] 160.2 174.5 170.8 

Ticksize [median €/millimeter] 0.34 0.55 0.41 

Premium [median in €/ha] 69.05 93.79 84.10 

Note: Displayed values constitute medians across county, farm-level and combined contracts 

using Bayesian quantile regression.  

 

Summary statistics of WII contracts shown in table 4.3 show that drought risk on the county 

level is substantially lower compared to the farm-level as indicated by a lower strike level, 

ticksize and resulting also the premium per hectare. Vice versa, farm-level WII already pays 

out at higher levels of rainfall (on average 174.5 compared to 160.2 at county level), the impact 

of one missing millimeter of rainfall is here on average 60% higher (0.55 compared to 0.34 on 

county level) and resulting the premium of farm-level based WII is 35% higher compared to 

county-level WII. Consequently, when combining both insurances using our BQR approach, 

the average drought risk and the average contract parameters lie in between.  

Table 4.4 shows the results of hypotheses tests 1 to 3. For risk neutral decision makers, i.e. 

coefficient of relative risk aversion equals zero, no difference exists between insured and 

uninsured expected utility. As expected, unsubsidized WII does not increase utility of risk 

neutral decision makers. We find that WII based on county level data is not effectively risk 
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reducing under all scenarios of risk aversion. In contrast, if WII is specified using farm-level 

data, it increases the EU of a risk averse farmer. More specifically, in the second column 

comparative results of farm-level based WII compared to a no insurance scenario show that 

WII conditioned based on farm-level yield data is able to reduce the financial exposure to 

drought risk across all levels of risk aversion tested. In the third column, it can be seen that this 

also holds for WII designed using both aggregation levels of winter wheat yields and Bayesian 

quantile regression.  
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Table 4.4 Results RQ1: Tests for risk reducing properties of different WII compared to 

‘no insurance’ reference scenario 

 County-Level Data Farm-Level Data Bayes 

Coefficient of relative 

risk aversion α 

H1:H0: 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] 

H2:H0:𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] 

H2:H0: 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] 

p- value  

 

0 (risk neutral) 0.96 0.69 0.85 

 

0.2 0.63 6.56∙ 10−2 0.13 

 

0.4 0.55 1.94∙ 10−2 2.09∙ 10−2 

 

0.6 0.38 6.76∙ 10−3 1.13∙ 10−2 

 

0.8 0.32 6.06∙ 10−3 9.75∙ 10−3 

 

1 (extremely risk 

averse) 0.24 4.75∙ 10−3 7.52∙ 10−3 

 

Note: Tests are based on comparing vectors of expected utility values per farm. Pairwise testing 

between vectors (one per insurance scenario) was done using non parametric Wilcoxon rank 

sum tests. 
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Table 4.5 shows results of hypotheses tests 4 to 6. Here WII using BQR, i.e. including farm- 

and county-level data, outperforms WII designed solely using county-level yield data.  

Table 4.5 Results RQ2: Comparison tests for risk reducing properties between different 

WII  

 
Bayesian Quantile vs. 

County-Level 

Bayesian Quantile vs. 

Farm-Level 

Coefficient of relative risk aversion α 

H4: H0:𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐)] 

H5:H0:𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖)] 

p- value  

 

0 (risk neutral) 0.23 0.45 

 

0.2 0.14 0.59 

 

0.4 0.09 0.56 

 

0.6 0.05 0.58 

 

0.8 0.05 0.60 

 

1 (extremely risk averse) 0.04 0.65  

Note: Tests are based on comparing vectors of expected utility values per farm. Pairwise testing 

between vectors (one per insurance scenario) was done using non parametric Wilcoxon rank 

sum tests. 
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All results in tables 4.4 & 4.512 underline the necessity of sufficiently long farm-level yield time 

series. Vice versa, county-level winter wheat yields do not constitute a valuable basis for 

designing risk reducing WII neither in the classical nor in the Bayesian quantile regression 

framework. 

4.5 Discussion & Conclusion 

We find that WII based on farm-level data is able to reduce the drought risk exposure of wheat 

producing farms in Eastern Germany. However, this only holds if farm-level yield data is 

sufficiently available for a long time period. In contrast, our results indicate that WII designed 

using county average yields instead of farm-level yields, are unable to reduce farmers’ financial 

exposure to drought risk. This is in line with literature on aggregation bias (e.g. Marra and 

Schurle, 1994, Finger, 2012). This implies that in aggregated winter wheat yields, e.g. county 

average yields, single spikes in yield observations that are observable in farm-level yield 

observations, can be averaged out when occurring idiosyncratically, i.e. on single farms only. 

For drought risk, i.e. lack of rainfall, in our cases study region eastern Germany, this 

idiosyncratic component seems to be the driver of single farm yield losses, as WII conditioned 

based on county average yields does not provide any potential to reduce farmers financial 

exposure to drought risk. This finding is in line with Heimfarth et al. (2012). This underlines 

that for insuring drought risk in eastern German winter wheat production, time series of single 

farm yields are indispensable.  

Although the Bayesian quantile regression framework presented here did not improve the risk 

reducing properties of WII, Bayesian inference has been proven to be supportive in crop 

insurance pricing (Shen et al. (2015)). These findings and results presented by März et al. 

                                                 

12 See also table A1 & A2 of the appendix for simulated data scarcity.  
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(2016), who found Bayesian quantile regression to be superior in estimating farmland rental 

rates, might encourage future research to extend the findings presented here to other weather 

perils. In case of threats that occur more systemically, e.g. temperature or joint indices of 

temperature and rainfall, the BQR framework might present more promising results. Moreover, 

BQR needs to be tested in a framework where larger differences exist between farm-level and 

county-level data availability. In our case study, reliable county-level yields were available 

from 1992 onwards only, due to the end of the German Democratic Republic. In case of longer 

time series on county yield records, more extreme events and systemically occurring shocks 

might be available serving as better priors for estimating farm-level risk. 

Next to extending our findings to other perils, future research might also apply the BQR 

framework to other more drought exposed regions such as Africa. Here single farm yield data 

is hardly available and WII are mostly designed based on panel data estimation, i.e. similar 

contracts for multiple farmers (Woodard et al. 2016).   
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4.5 Appendix 

Analogously to tables 4.2 & 4.3 in the main body of the paper, tables 4.A1 and 4.A2 show 

results of RQ1 and RQ2 when farm-level yield data is scarce, but county level data is available 

for the entire period. More specifically the full farm-level yield dataset described above mainly 

includes farms that provided time series of yield data longer than 12 years. For results in tables 

4.A1 and 4.A2 we simulated yield data scarcity by randomly sampling 5 years per farm and 

using yield and rainfall information to design WII using the three presented approaches. For 

testing the performance of the resulting WIIs we then again used the full time series of data.  

Results in table 4.A1 show that under farm-level yield data scarcity none of the three insurance 

designs tested is able to reduce the financial exposure to drought risk in our case study. 

Moreover, table 4.A2 shows accordingly that no differences exist between the WIIs in terms of 

risk reduction when farm level yield data is scarce.  
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Table 4.A1 Results RQ1: Tests for risk reducing properties of different WII compared to 

‘no insurance’ reference scenario under farm-level yield data scarcity 

 County Data Farm-Level Data Bayes 

Coefficient of relative 

risk aversion α 

H1:H0: 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] 

H2:H0:𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] 

H2:H0: 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] 

p- value  

 

0 (risk neutral) 0.59 0.69 0.51 

 

0.2 0.57 0.34 0.46 

 

0.4 0.54 0.33 0.41 

 

0.6 0.51 0.29 0.38 

 

0.8 0.47 0.27 0.33 

 

1 (extremely risk 

averse) 0.43 0.25 0.30 

 

Note: Tests are based on comparing vectors of expected utility values per farm. Pairwise testing 

between vectors (one per insurance scenario) was done using non parametric Wilcoxon rank 

sum tests.  



127 
 

 
 

Table 4.A2 Results RQ2: Comparison tests for risk reducing properties between different 

WII under farm level yield data scarcity 

 
Bayesian Quantile vs. 

County-Level 

Bayesian Quantile vs. 

Farm-Level 

Coefficient of relative risk aversion α 

H4: H0:𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐)] 

H5:H0:𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)] ≤

𝐸𝐸[𝑈𝑈(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖)] 

p- value  

 

0 (risk neutral) 0.27 0.77 

 

0.2 0.25 0.76 

 

0.4 0.23 0.75 

 

0.6 0.22 0.70 

 

0.8 0.22 0.71 

 

1 (extremely risk averse) 0.22 0.69  

Note: Tests are based on comparing vectors of expected utility values per farm. Pairwise testing 

between vectors (one per insurance scenario) was done using non parametric Wilcoxon rank 

sum tests.  
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Behavioral weather insurance: Applying 
cumulative prospect theory to agricultural 
insurance design under narrow framing 
Tobias Dalhaus, Barry J. Barnett and Robert Finger 
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Abstract  

Experience across many countries has shown that, without large premium subsidies, crop 
insurance uptake rates are generally quite low. In this article, we propose to use cumulative 
prospect theory in designing weather insurance products, for situations in which farmers 
narrowly frame insurance as stand-alone investment. To this end, we adjust insurance contract 
parameters to better tailor farmers’ preferences by introducing what we call behavioral weather 
insurance. We find that a stochastic multiyear premium increases the prospect value of weather 
insurances depending on farmers’ preferences, while a zero deductible design does not. We 
suggest that insurance contracts be tailored to optimally serve farmers’ needs, which offers 
potential benefits for both insurer and insured. 
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5.1 Introduction 

Climate risks threaten agricultural crop production and are expected to become even more 

pronounced due to climate change (Schlenker & Roberts, 2009). Crop insurance could be one 

of the key risk management tools that can help address increased weather variability due to 

climate change (IPCC 2014, Di Falco et al., 2014). Crop insurance products can be classified 

into two groups: i) those that indemnify farmers for realized losses (indemnity-based 

insurance); and, ii) those that make payments based on some objective measure that is assumed 

to be highly correlated with realized losses (index-based insurance). Standard examples of the 

latter include area yield insurance (AYI) (Skees, Black, & Barnett, 1997) and weather insurance 

(WI) (Martin, Barnett, & Coble, 2001; Vedenov & Barnett, 2004; Odening, Musshoff, & Xu, 

2007).   

In many countries, farmers’ participation in crop insurance schemes is facilitated with massive 

subsidization, so that high levels of crop insurance uptake have required premium subsidies to 

the point that insurance purchasing often has a positive expected value (Glauber, 2004; Coble 

& Barnett, 2013; Du, Feng & Hennessy, 2017). In contrast, the uptake of unsubsidized crop 

insurance is often low.13 Assuming a standard expected utility (EU) framework, this 

observation is not consistent with the optimal behaviour of risk averse farmers. A potential 

explanation for this anomaly is that a share of farmers does not assign insurance premiums and 

payouts to fluctuations in crop income, but rather narrowly frames insurance as a stand-alone 

investment (Babcock, 2015). Recent evidence also suggests that cumulative prospect theory 

(CPT) (Tversky & Kahneman, 1992) may be a better predictor of farmers’ insurance decision-

making than EU theory (Du, Feng & Hennessy, 2017; Babcock, 2015). CPT extends EU theory 

                                                 

13 A small number of countries with functioning non-subsidized crop insurance markets, such as Switzerland 

(e.g. Finger and Lehmann, 2012), represent exceptions and do not preclude this general tendency.  
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in three dimensions that are relevant for insurance uptake. First, it distinguishes outcomes into 

gains and losses with respect to a certain reference point. Second, the slope of the value function 

is steeper in the loss domain compared to the gain domain indicating loss aversion. Third, 

individual outcomes receive weights according to a function accounting for decision makers’ 

subjective distortions of probability values.  

Since actual crop insurance purchasing behavior deviates so significantly and so consistently 

from what standard EU theory would predict, it seems appropriate to reconsider conventional 

behavioral assumptions. As one path, we follow Babcock (2015) and assume that some farmers 

frame insurance purchase decisions as a stand-alone investment rather than a risk management 

tool. Therefore, we adjust insurance parameters to better fit such framing. We propose to 

modify the traditional weather insurance (TWI) design and introduce what we call behavioral 

weather insurance (BWI). To this end, we propose a two-step design of WI products. First, the 

BWI should be effective in reducing farmers risk exposure and basis risk should be as small as 

possible. Second, the design of this BWI should be adjusted in line with insights derived from 

CPT, extending the narrower EU framework.  

Thus, we also adopt a two-step empirical procedure to design BWI. First, we test whether both 

TWI and BWI can effectively reduce the insured’s financial exposure to production risk, which 

we underline by testing for increases in EU across various scenarios of risk aversion. Second, 

we evaluate potential changes in insurance demand through BWI compared to TWI by testing 

for prospect value changes under various real world CPT specifications and the assumption of 

the above stand-alone investment framing. As a descriptive analogy, in a first step, we produce 

a food product and test for healthiness. Subsequently, in a second step, we design a nice 

packaging that fits observed purchase behavior to increase demand for the product. 

Analogously, farmers buy a risk reducing insurance not only because of its risk reducing 
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properties but also because of factors like the number of payouts or the timing of premium 

payments. It remains unexplored in the existing literature if adjusting those parameters can lead 

to an increase in insurance demand across risk averse decision makers and thus a more resilient 

farming system.  

We proceed as follows. First, the theoretical framework of EU and CPT is used to propose 

modifications to the design of TWI contracts yielding BWI. Second, we posit hypotheses about 

preferences for BWI designs relative to TWI assuming first an EU value function and then a 

CPT value function, according to the above two-step procedure. Third, we test these hypotheses 

using data from a drought-prone wheat production region in eastern Germany.  

5.2 Methodology 

This section gives an overview about decision making criteria under risk, specifications used, 

the underlying testing procedure and the insurance design.  

5.2.1 Decision-making under risk  

In the subsequent section we introduce the underlying methodology to address our two step 

approach for designing BWI. We first present an overview of the EU framework used in step 

one. We then describe how cumulative prospect theory is used to assess insurance from a 

narrowly framed stand-alone investment perspective in step two. Afterwards we combine both 

frameworks within one decision making model. Based on that, we are able to propose 

adjustments to the insurance contract that potentially increase both expected utility and the 

prospect value and thus market demand of two parts of the farmers’ population.  
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5.2.1.1 Expected Utility Theory (Step 1) 

In the EU framework, terminal wealth 𝑊𝑊𝑡𝑡𝑡𝑡 for farm i in year t is transformed into a utility value 

using a utility function 𝑈𝑈(𝑊𝑊𝑡𝑡𝑡𝑡). The occurrence probability weighted average of these results is 

the expected utility 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑡𝑡𝑡𝑡)] (EU). For clarity of our analysis, we assume farmers produce 

wheat only, resulting in terminal wealth 𝑊𝑊𝑡𝑡𝑡𝑡 to follow 𝑊𝑊𝑡𝑡𝑡𝑡 =  𝛿𝛿𝑦𝑦𝑖𝑖𝑖𝑖 + 𝜋𝜋𝑡𝑡𝑡𝑡 − Γ𝑖𝑖 + 𝑊𝑊0. Here, 𝛿𝛿 

denotes the wheat price14, 𝑦𝑦𝑖𝑖𝑖𝑖the yield of farm i in year t, 𝜋𝜋𝑡𝑡𝑡𝑡 the insurance payout, Γ𝑖𝑖  the 

insurance premium and 𝑊𝑊0 the initial wealth. The standard assumption is that farmers chose 

their insurance plans according to the expected utility maximization problem, i.e. 

max 𝐸𝐸[𝑈𝑈( 𝑊𝑊𝑡𝑡𝑡𝑡)]. In case of farmers being downside risk averse, insurance payouts 𝜋𝜋𝑡𝑡𝑡𝑡 shall 

cover downward movements of stochastic yields 𝑦𝑦𝑖𝑖𝑖𝑖. Furthermore, insurance premium Γ𝑖𝑖 shall 

not exceed farmers individual risk premium which constitutes the maximum amount a farmer 

is willing to pay to get rid of the risk arising from 𝑦𝑦𝑖𝑖𝑖𝑖 and which is dependent on her risk 

preferences. Thus, everything else being equal, changes in 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑡𝑡𝑡𝑡)] while changing insurance 

plans serve as proxy for changes in welfare and consequently, in case of insurance premium Γ𝑖𝑖 

being fair, as changes in the respective insurance’s ability to reduce the financial exposure to 

risks.  

For this analysis we use a power utility function to reflect farmers’ preferences (Di Falco & 

Chavas, 2006, 2009). 

U𝑡𝑡𝑡𝑡φ(𝑊𝑊𝑡𝑡𝑡𝑡) = �
𝑊𝑊𝑡𝑡𝑡𝑡

1−φ

1−φ
      𝑖𝑖𝑖𝑖 φ ≠ 1

ln(𝑊𝑊𝑡𝑡𝑡𝑡)    𝑖𝑖𝑖𝑖 φ = 1
    (5.1) 

                                                 

14 The insurance does not protect against stochastic prices and we do not expect a natural hedge at the farm-level. 

Thus, for the analysis presented here, price is included just as a scaler that translates stochastic yield events into 

monetary units. 
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where 𝜑𝜑 is the measure of relative risk aversion. As a result, we obtain vectors 𝑒𝑒𝑒𝑒𝜅𝜅𝜅𝜅𝜅𝜅 containing 

EU values for each of the i farms for the two insurance designs 𝜅𝜅 (𝜅𝜅 = 𝑇𝑇𝑇𝑇𝑇𝑇 or 𝐵𝐵𝐵𝐵𝐵𝐵) and levels 

of risk aversion φ. 

5.2.1.2 Cumulative Prospect Theory (Step 2) 

As farmers tend to deviate from expected utility maximizing insurance choice, Babcock (2015) 

suggests that farmers might narrowly frame insurance as stand-alone investment and evaluate 

this investment violating expected utility theory. In fact, previous studies suggest that people 

frequently make decisions that violate EU determined preference rankings (see Stamer, 2000 

for an overview). Consequently, a number of alternative theories to explain and predict human 

behavior have been proposed, such as CPT or rank-dependent expected utility (e.g. Quiggin, 

1991). Especially CPT has received considerable attention in recent agricultural economics 

literature (e.g. Liu, 2013, Holden & Quiggin, 2017).  

CPT extends EU by distinguishing gains and losses as deviations from a certain reference point, 

resulting in two (potentially) different ‘utility’ functions combined into a value function v(𝜎𝜎), 

which implies risk aversion over gains and risk seeking behavior over losses:  

v𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝜎𝜎𝑡𝑡𝑡𝑡) = �
𝜎𝜎𝑡𝑡𝑡𝑡

𝛼𝛼                 𝑖𝑖𝑖𝑖 𝜎𝜎𝑡𝑡𝑡𝑡 > 0
0                     𝑖𝑖𝑖𝑖 𝜎𝜎𝑡𝑡𝑡𝑡 = 0
−𝜆𝜆(−𝜎𝜎𝑡𝑡𝑡𝑡)𝛼𝛼    𝑖𝑖𝑖𝑖 𝜎𝜎𝑡𝑡𝑡𝑡 < 0

   (5.2) 

Instead of terminal wealth realizations, CPT transforms single prospect outcomes 𝜎𝜎 into 

prospect values v, which depend on the level of risk aversion 𝛼𝛼 and loss aversion 𝜆𝜆.15 v(𝜎𝜎) is 

strikly increasing and |v(𝜎𝜎)| < |v(−𝜎𝜎)| implying loss aversion. Moreover, 𝜕𝜕2v(𝜎𝜎) 𝜎𝜎2⁄ ≤ 0 for 

                                                 

15 Note that α is an anti-index for risk aversion. 0 < 𝛼𝛼< 1 implies risk aversion, 𝛼𝛼 = 1 risk neutrality, and 𝛼𝛼 > 1 

risk seeking.  
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𝜎𝜎 > 0 (implying risk aversion in gains) and 𝜕𝜕2v(𝜎𝜎) 𝜎𝜎2⁄ ≥ 0 for 𝜎𝜎 < 0 (implying risk seeking in 

losses) jointly implying diminishing sensitivity towards changes in 𝜎𝜎 with increasing distance 

from the reference point for both gains and losses (Barberis, 2013). 

For the second step CPT framework, we follow Babcock (2015) and frame the EU increasing 

weather insurance from the first step as a stand-alone investment, thus gains are felt, when 

payouts exceed premiums and losses are felt in the opposite case (see also Barberis, Huang & 

Thaler, 2006 for further details on narrow framing). Babcock (2015) finds that farmers tend to 

use the premium paid Γ𝑖𝑖 as reference point 𝑅𝑅𝑖𝑖 so that the difference between payouts and 

premiums for farm i in year t is indicated by the prospect outcome 𝜎𝜎𝑡𝑡𝑡𝑡 =  𝜋𝜋𝑡𝑡𝑡𝑡 − 𝑅𝑅𝑖𝑖 = 𝜋𝜋𝑡𝑡𝑡𝑡 − Γ𝑖𝑖. 

For each 𝜎𝜎𝑡𝑡𝑡𝑡 there is a corresponding probability of occurrence 𝑝𝑝𝑡𝑡𝑡𝑡. These probabilities are 

translated into decision weights, considering the observed tendency for decision-makers to 

overweight small probabilities and underweight large ones (Quiggin, 1991; Tversky & 

Kahneman, 1992), i.e. by using a function 𝜔𝜔(𝑝𝑝). Assuming ordered outcomes 𝜎𝜎𝑖𝑖 with 

probabilities 𝑝𝑝𝑖𝑖 of farm i over the years t from largest loss year m to largest gain year n the 

decision weight of a gain in year t is defined as  

 

𝜗𝜗𝑡𝑡𝑡𝑡
+ =  𝜔𝜔(𝑝𝑝𝑡𝑡 + ⋯ + 𝑝𝑝𝑛𝑛) 

− 𝜔𝜔(𝑝𝑝𝑡𝑡+1 + ⋯ + 𝑝𝑝𝑛𝑛) 

And of a loss in t as  

𝜗𝜗𝑡𝑡𝑡𝑡
− =  𝜔𝜔(𝑝𝑝𝑚𝑚 + ⋯ + 𝑝𝑝𝑖𝑖) 

− 𝜔𝜔(𝑝𝑝𝑚𝑚 + ⋯ + 𝑝𝑝𝑖𝑖−1) 
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The final prospect value 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is evaluated by summing up the weighted single year values: 

𝑝𝑝𝑝𝑝𝑖𝑖𝛼𝛼𝛼𝛼𝛼𝛼 = ∑ 𝜗𝜗𝑡𝑡𝑡𝑡v𝑡𝑡𝑡𝑡𝑡𝑡(𝜎𝜎𝑡𝑡𝑡𝑡)𝑛𝑛
𝑡𝑡=1     (5.3) 

Thus, in case of narrowly framing insurance as a stand-alone investment, the maximization 

problem is 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑖𝑖𝛼𝛼𝛼𝛼𝛼𝛼. Hence, based on CPT we are able to add a second performance measure 

to assess insurance next to the risk reducing properties provided by the EU framework. This is 

in line with Jäntti et al. (2014) who suggest the use of welfare measures according to the 

subject’s underlying decision making process. More specifically, we use prospect value to 

measure welfare in the case of the subject being prospect value maximizing.  

5.2.1.3 Coexistence of decision making processes and contract adjustments 

By following Harrison & Rutström (2009) we assume that “several behavioral processes […] 

coexists” within the farmers population. Hence, any number of (unobservable) decision rules 

could be assumed and our framework allows one to test for various decision rules. However, 

we will focus on the two that have been addressed most prominently in the literature. Thus 

max 𝐸𝐸[𝑈𝑈( 𝑊𝑊𝑡𝑡𝑡𝑡)] and 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑖𝑖𝛼𝛼𝛼𝛼𝛼𝛼 are two representations of the potentially existing decision 

making processes. Our here presented framework allows further processes to be included if 

experimental evidence suggests their existence. Assuming that a share of farmers maximizes 

𝑝𝑝𝑝𝑝𝑖𝑖𝛼𝛼𝛼𝛼𝛼𝛼, we state that insurance design should take this into account. By assuming that BWI 

should increase both, EU and 𝑝𝑝𝑝𝑝 according to our two step-procedure we aim at increasing the 

welfare for both groups of individuals, i.e. EU and CPT maximization (Jäntti et al., 2014), while 

holding EU related risk reducing properties constant. Therefore, we test two adjustments for 

their ability to increase both the expected utility 𝐸𝐸[𝑈𝑈(𝑊𝑊𝑡𝑡𝑡𝑡)] and the prospect value 𝑝𝑝𝑝𝑝𝑖𝑖𝛼𝛼𝛼𝛼𝛼𝛼 of 

weather insurance. 
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ADJUSTMENT 1: Insure also small losses (no deductible).  

The diminishing sensitivity property of v(𝜎𝜎) in the gain domain, i.e. 𝜕𝜕2v(𝜎𝜎) 𝜎𝜎2⁄ ≤ 0 for 𝜎𝜎 > 0, 

implies that decision makers particularly positively value small gains that occur close to their 

reference point. This property is consistent with the decreasing marginal utility property of 

𝑈𝑈(𝑊𝑊). However, in CPT this sensitivity is shifted and appears close to the reference point. 

Moreover, the concavity of v(𝜎𝜎) in the gain domain implies risk aversion in gains. Therefore, 

individuals prefer multiple small gains relative to, or in addition to, infrequent large gains 

(Thaler, 1985, Thaler & Johnson, 1990, Tversky & Kahneman, 1991). Applying this to weather 

insurance, farmers would prefer contracts that provide larger payouts in the case of catastrophic 

losses but also small payouts with higher frequencies (Vargas Hill, Robles & Ceballos, 2016, 

Cole, Stein & Tobacman, 2014, Enjolras & Sentis 2011; Platteau, De Bock & Gelade 2017).  

Increasing the number of payouts comes at the cost of higher premiums, which are, in our 

narrow framing example, experienced as losses. Hence, changes in 𝑝𝑝𝑝𝑝 through ADJUSTMENT 1 

are dependent on how decision makers value less risk in the gain domain in comparison to 

additional losses. More specifically, the success of ADJUSTMENT 1 is expected to be a function 

of 𝛼𝛼 and 𝜆𝜆, i.e. risk aversion and loss aversion. Our focus on an index insurance product allows 

us to enable high frequency payouts (no deductibles) because of low administrative costs as 

payouts are automatically triggered based on the performance of the index rather than by farm 

damage assessments. Moreover, in the index insurance framework one is less concerned about 

moral hazard which reduces the need for a deductible. 

ADJUSTMENT 2: Conclude a multi-year contract and pay premiums only in years of no crop 

losses or, if there are no years with no losses, at the end of the contract period. 
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The convexity of the value function in the loss domain, 𝜕𝜕2v(𝜎𝜎) 𝜎𝜎2⁄ ≥ 0 for 𝜎𝜎 < 0, implies risk-

seeking behavior in losses, i.e. v(−𝑥𝑥) + v(−𝑦𝑦) < v(−(𝑥𝑥 + 𝑦𝑦)) (Thaler, 1985). Translated into 

the weather insurance context, this implies that farmers prefer volatile premium payments in 

contrast to stable premium payments. Paying premiums only every nth year makes the amount 

of the premium payment depend on how many yearly payments are summed together. Thus, 

we propose to change the deterministic annual premium into a stochastic multi-year premium, 

which considers risk seeking behavior and diminishing sensitivity in losses. This requires 

extending the insurance contract period over several years. Multi-year contracts have additional 

benefits compared to annual contracts because administrative costs and premium loadings can 

be reduced (Osipenko, Chen & Odening, 2015, Chen & Goodwin, 2015). This part of 

ADJUSTMENT 2 acknowledges CPT’s principle of ‘integrating losses’ (Thaler, 1985). 

Moreover, in case of mixed gain/loss events, i.e. occurrence of outcome (x,-y) with x < y, it is 

not intuitive whether v(𝑥𝑥) + v(−𝑦𝑦) ≷ v(𝑥𝑥 − 𝑦𝑦)). The general tendency is that the smaller 𝑥𝑥 is 

in relation to 𝑦𝑦, the more segregation of 𝑥𝑥 and – 𝑦𝑦 is preferred as v(𝑥𝑥) + v(−𝑦𝑦) > v(𝑥𝑥 − 𝑦𝑦)) 

tends to hold. Related to weather insurance, farmers should be able to postpone their premium 

payment in case of a small insurance payout (coming from ADJUSTMENT 1) to be able to 

experience  v(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) as a gain. This part of ADJUSTMENT 2 acknowledges CPT’s principle of 

‘segregation of silver linings’. 

5.2.1.4 Specification of EU & CPT 

For the empirical analysis, we conduct sensitivity analysis using different EU and CPT 

specifications. For EU we vary the measure of risk aversion 𝜑𝜑  across [0, 0.2, 0.4, 0.6, 0.8, 1.0]. 

This range is in accordance with experimentally elicited preferences of farmers in Germany, 

e.g. Meraner & Finger (2017) or Musshoff et al. (2013). 
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Regarding CPT, we expect our results to be dependent on 𝛼𝛼, 𝜆𝜆 and 𝛾𝛾/ 𝛿𝛿. More specifically, we 

use specifications from the only two peer reviewed empirical studies that elicited CPT 

preferences in European agriculture (Bocquého, Jacquet. and Reynaud, 2014, Bougherara et al., 

2017). Bocquého, Jacquet. and Reynaud (2014) deliver three sets of CPT parameters based on 

different estimation techniques (abbreviated as Boc.1- 3 hereafter). In addition, Bougherara et 

al. (2014) provide a fourth set of CPT elicited parameters (abbreviated as Bou hereafter). 

Extending real-world elicited preferences, we use CPT specifications employed by Babcock 

(2015), which were taken from the original cumulative prospect theory paper of Tversky & 

Kahneman (1992) (abbreviated as Bab hereafter). Table 5.1 and figure 5.1 summarize and 

visualize the different specifications applied in the above papers. Here, Boc.1 is characterized 

by a low α-coefficient indicating relatively high risk aversion over gains and risk seeking over 

losses. The loss aversion coefficient λ indicates the losses are weighted almost twice as much 

as gains. Similarly, Boc.2 implies slightly lower risk aversion in gains (and lower risk seeking 

in losses) and similar loss aversion compared to Boc.1. Boc.3 has still lower risk aversion over 

gains and risk seeking over losses compared to Boc.1 and Boc.2 but with higher loss aversion. 

Bou, as compared to the former three scenarios, has lower risk aversion over gains (and risk 

seeking over losses) together with considerably lower loss aversion. The Bab specification has 

relatively lower risk aversion over gains and risk seeking over losses together with a loss 

aversion specification that is similar to Boc.1 and Boc.2. 
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Table 5.1. CPT Specifications of recent Studies  
 

Abbreviation 

𝛼𝛼 – 

coefficient 

(risk 

aversion)a 

𝜆𝜆 – 

coefficient 

(loss 

aversion) 

𝛾𝛾/ 𝛿𝛿 – coefficient 

(probability 

distortion) 

     

Bocquého, Jacquet. 

and Reynaud (2014) 

Boc.1 

Boc.2 

Boc.3 

0.280 

0.325 

0.512 

2.275 

2.110 

3.756 

0.655 

0.679 

0.647 

Bougherara et al. 

(2017) 

Bou 0.614 1.374 0.785 / 0.844 

Babcock (2015) Bab 0.880 2.250 0.610 / 0.690b 

a Note that smaller numbers imply higher risk aversion.  

b According to equations 5.1 and 5.2 different weighting functions are used for gains and 

losses respectively 
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Figure 5.1. Visual Classification of CPT Specifications of recent Studies. Flags indicate 
Abbreviations according to Table 1.  

 

With respect to probability weighting, all CPT specifications imply overweighting of small and 

underweighting of high probability values with almost similar magnitudes. The employed 

specifications also differ with respect to the functional forms of 𝜔𝜔(𝑝𝑝). Equations 5.4 to 5.5.2 

show the specifications of 𝜔𝜔(𝑝𝑝) as proposed by i) Bocquého, Jacquet. and Reynaud (2014) (𝜔𝜔1) 

and ii) Bougherara et al. (2017) and Babcock (2015) (𝜔𝜔2
+ and 𝜔𝜔2
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𝜔𝜔1(𝑝𝑝) = exp [−(− ln(𝑝𝑝))𝛾𝛾]   (5.4) 

𝜔𝜔3
+(𝑝𝑝) = 𝑝𝑝𝛾𝛾

(𝑝𝑝𝛾𝛾+(1−𝑞𝑞)𝛾𝛾)
1
𝛾𝛾
   𝜔𝜔3

−(𝑝𝑝) = 𝑝𝑝𝛿𝛿

(𝑝𝑝𝛿𝛿+(1−𝑞𝑞)𝛿𝛿)
1
𝛿𝛿
  (5.5.1/ 5.5.2) 

We thus obtain vectors 𝑝𝑝𝑝𝑝𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅 for the two insurance designs 𝜅𝜅 and the five CPT specifications. 

These vectors contain insurance prospect values for each farm. Altogether, the five above 

specifications allow us to implement a realistic range of preference scenarios that support our 

empirical analysis.  

5.2.2 Testing 

We investigate the proposed BWI by conducting statistical tests in three different dimensions. 

First, we test the risk reducing properties of an actuarially fair TWI scheme against the 

actuarially fair BWI by comparing 𝑒𝑒𝑒𝑒𝜅𝜅𝜅𝜅 vectors of insured terminal wealth. More specifically, 

we test the following null hypotheses based on observations across various farms and across 

different levels of risk aversion 𝜑𝜑 : 

H1: H0: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑≤  𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H2: H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤  𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H3: H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤  𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 𝜑𝜑 

Second, we test whether the BWI scheme is better suited to farmers’ preferences (in terms of 

prospect value) than a TWI scheme and thus would be likely to increase insurance demand. 

Furthermore, we explore the stability of the expected performance of the BWI scheme using 

different CPT value function parameters. We then compare the performance of BWI and TWI 

across the different CPT specifications (See Table 5.1).   
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H4: H0: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏.1 ≥  𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏.1 

H5: H0: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏.2 ≥  𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏.2 

H6: H0: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏.3 ≥  𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏.3 

H7: H0: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏 ≥  𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏 

H8: H0: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏 ≥  𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏 
 

Third, we disentangle how some of the individual adjustments that inform our approach 

contribute to an increase in the prospect value of the insurance. More specifically, we present 

results for the statistical tests of H4 – H8 when BWI ADJUSTMENT 1 (“Insure also small losses 

--no deductible”) has been turned off and when ADJUSTMENT 2: (“Conclude a multi-year 

contract and pay premiums only in years of no crop losses or, if there are no years with no 

losses, at the end of the contract period”) has been turned off. 

For all the above hypotheses, we use nonparametric paired Wilcoxon rank sum tests to compare 

vectors 𝑒𝑒𝑒𝑒𝜅𝜅𝜅𝜅 (to test for expected utility changes across levels of risk aversion) and 𝑝𝑝𝑝𝑝𝜅𝜅𝜅𝜅𝜅𝜅𝜅𝜅 (to 

test for prospect value changes across levels of risk and loss aversion as well as probability 

weighting functions). The Wilcoxon rank sum test makes a pairwise comparison of whether the 

differences between the vectors stated in the above hypotheses are positive. We thus obtain a 

p-value for each tested scenario.  

5.2.3 Index design 

Both the TWI and the BWI aim at providing indemnification in case of a drought event during 

sensitive stages of plant growth. We consider a TWI design with a standard linear payout 

function, a 10% deductible, and premium payment every year. We contrast TWI with a BWI 

design that includes the two adjustments described earlier. The multi-year contract length was 
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fixed to three years (following Chen & Goodwin, 2015).16 In any year during the three year 

period, if a payout is not made, the cumulative premium due must be paid. If the insurance 

makes payouts in each of the three years, the cumulative premium due must be paid at the end 

of the contract period. Figure 2 displays an example case of yields together with premiums and 

payouts for both TWI and BWI across a 12 year period17.  

TWI 
(Fair premium, 10% deductible) 

BWI 
(Fair premium, 0% deductible) 

 

 
Figure 5.2. Exemplary visualization of TWI and BWI (no basis risk) 
 

Following Conradt et al. (2015), we select the characteristics of the weather insurance contracts 

for each farm to minimize basis risk and maximize risk reducing properties. Focusing on the 

coverage of winter wheat yield losses due to a lack of rainfall during vulnerable growth stages, 

                                                 

16 Our results were robust against changes in the contract length. See the Appendix for results using two and four 

year contracts.  

17 Our results were qualitatively robust against the consideration of discounting. We discounted all payouts and 

premium payments of BWI back to the year of contract closure (interest rate = 2%). As this procedure results in 

premiums being no longer fair, we continued without assuming an interest charge.  
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we match farm level yield records with historical cumulative rainfall data during vulnerable 

stages of plant growth that are exogenous to our analysis.18 We use high resolution grid data to 

remove spatial basis risk (Dalhaus & Finger 2016). Thus, the rainfall index value 𝑟𝑟𝑡𝑡𝑡𝑡
𝑅𝑅 for farm i 

in year t is calculated as the sum of rainfall 𝑅𝑅𝑑𝑑
𝑡𝑡𝑡𝑡 from day d = ’start date’ to day d = ‘end date’: 

𝑟𝑟𝑡𝑡𝑡𝑡
𝑅𝑅 = ∑ 𝑅𝑅𝑑𝑑

𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑=𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠      (5.6) 

Start and end dates of critical plant growth stages (i.e. from stem elongation to milk ripening) 

are determined using regional crop growth monitoring network data for each year as proposed 

by Dalhaus, Musshoff & Finger (2018). Thus, the farm individual insurance period is flexible 

in both, space and time according to individual occurrence dates of winter wheat growth stages, 

which vary across reporting stations and years.  

We estimate the relationship between 𝑟𝑟𝑡𝑡𝑡𝑡
𝑅𝑅and farm yields 𝑦𝑦𝑡𝑡𝑡𝑡 using quantile regression (QR) that 

puts a special emphasis on explaining low yield outcomes (Conradt et al. 2015). More 

specifically, we expect 𝑦𝑦𝑡𝑡𝑡𝑡 to be a function 𝑔𝑔(𝑟𝑟𝑡𝑡𝑡𝑡
𝑅𝑅) including 𝑟𝑟𝑡𝑡𝑡𝑡

𝑅𝑅 and other factors that are 

summarized within an error term 𝜀𝜀 that are uncorrelated with weather. To quantify the relation 

between weather and yield econometrically, we estimate the model 

 𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝑟𝑟𝑖𝑖
𝑅𝑅′𝜷𝜷𝑖𝑖 + 𝜀𝜀𝑖𝑖     (5.7) 

where 𝜷𝜷𝒊𝒊 marks the change in yields when changing the rainfall index value 𝑟𝑟𝑡𝑡𝑡𝑡
𝑅𝑅 by one unit 

(millimeter). As we expect this change to be nonlinear across yield levels (i.e., the impact of 

missing rainfall is more severe when yields are low), we use QR as proposed by Conradt et al. 

                                                 

18 Please see section ‘5.3 Data’ for a detailed explanation of both, the yield dataset and the high resolution rainfall 

grid used to design the rainfall index. The latter allows an individual matching between farm yield and historical 

rainfall.  
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(2015). First, QR minimizes the absolute sum of residuals rather than the squares and second it 

allows to focus on different quantiles of the yield distribution dependent on 𝜏𝜏 ∈ (0,1). The 

minimization problem of QR is  

 𝜷𝜷𝒊𝒊𝒊𝒊 = min
𝜷𝜷𝒊𝒊𝒊𝒊 

∑ 𝜌𝜌𝜏𝜏(𝑦𝑦𝑖𝑖𝑖𝑖
𝑛𝑛
𝑡𝑡=1 − 𝑟𝑟𝑡𝑡𝑡𝑡

𝑅𝑅′𝜷𝜷𝑖𝑖𝑖𝑖)   (5.8) 

where  

𝜌𝜌𝜏𝜏(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑡𝑡𝑡𝑡
𝑅𝑅′𝜷𝜷𝑖𝑖𝑖𝑖) = �

𝜏𝜏�𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑡𝑡𝑡𝑡
𝑅𝑅′𝜷𝜷𝑖𝑖𝑖𝑖�                 𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 𝑟𝑟𝑡𝑡𝑡𝑡

𝑅𝑅′𝜷𝜷𝑖𝑖𝑖𝑖

(1 − 𝜏𝜏)�𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑡𝑡𝑡𝑡
𝑅𝑅′𝜷𝜷𝑖𝑖𝑖𝑖�     𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑟𝑟𝑡𝑡𝑡𝑡

𝑅𝑅′𝜷𝜷𝑖𝑖𝑖𝑖
  (5.9) 

We follow Conradt et al. (2015) and use 𝜏𝜏 = 0.3 to put a special emphasis on low yield 

outcomes. 

Aiming at paying out in drought cases, our insurance is designed as a European put option, i.e. 

insurance payout 𝜋𝜋𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛿𝛿 ∙ [𝑇𝑇𝑖𝑖𝑖𝑖 ∙ max{(𝑆𝑆𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡
𝑅𝑅 ), 0}]. The optimal Ticksize and strike are 

determined from quantile regression results. More specifically, the strike level 𝑆𝑆𝑖𝑖𝑖𝑖 of rainfall 

under which a payout is triggered is estimated as the rainfall value that corresponds to the mean 

yield 𝑦𝑦𝚤𝚤�  in the case of BWI, i.e. 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑔𝑔−1(𝑦𝑦𝚤𝚤�), and to 90% of the mean yield in the case of 

TWI, i.e. 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑔𝑔−1(0.9𝑦𝑦𝚤𝚤�). We thus follow Conradt et al. (2015) and indemnify not for below 

average rainfall but rather for rainfall levels that would imply below average yields. Ticksize 

𝑇𝑇𝑖𝑖𝑖𝑖 is the estimated slope coefficient  𝜷𝜷𝒊𝒊𝒊𝒊. 

Actuarially fair premiums for the TWI and BWI contracts are calculated using the burn rate 

method (e.g. Odening, Musshoff & Xu, 2007).19 The actuarially fair insurance premium is 

                                                 

19 Qualitatively, our results were robust to changes in the premium rate loading factor. Results assuming a premium 

rate load of 20% are in the online appendix.  
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determined based on the average payout over 10,000 bootstrapped payout realizations from the 

estimated rainfall distribution.  

5.3 Data 

In the following section we introduce the underlying farm level yield, crop phenology and 

weather datasets used. 

5.3.1 Yield data 

Our case study region is located in a drought prone area of eastern Germany (see figure 3). 

More specifically, the farms lie in the German Federal states of Mecklenburg-Western 

Pomerania, Brandenburg, Saxony-Anhalt, Thuringia and Saxony. Here, crop yield variability 

is much larger compared to other regions in Germany (Lüttger & Feike 2017). Our farm-level 

yield dataset originally consisted of a panel of 90 farms for the years 1995 to 2015 obtained 

from a local insurance provider. Each farm has a minimum size of 1,500 hectares, which is 

considerably higher than the German average (of only 60 hectares) but representative for the 

eastern part of Germany. The farms are highly specialized with crop production being the main 

source of farm income. As a result, they have a significant interest in managing their exposure 

to weather risk. In order to obtain an individual weather risk assessment from the insurance 

provider, farmers provided their historical yield records for multiple crops, of which we use 

winter wheat as an example for this study. Based on the findings of the weather risk 

assessments, private non-subsidized and individually-tailored weather insurance contracts were 

offered to the farmers. To our knowledge this unsubsidized weather index insurance market is 

a unique case in a developed country context, which underlines the importance of further 

improving weather insurance to help farmers insure their weather risks (for further details see 

www.die-wetterversicherung.de). 
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Concentrating our analysis on a single weather risk, we reduced the dataset to 38 farms that 

provided at least 15 years of wheat yield data and where a considerable vulnerability against a 

lack of precipitation was indicated.20 Farms that are more vulnerable to a lack of precipitation 

are also more likely to be interested in a rainfall insurance. We consider a fixed wheat price of 

15.3 €/deciton to transform wheat yield units into monetary terms and use per hectare direct 

payments of 280 € as a proxy for initial wealth in the expected utility calculations. Considering 

technological trends, the yield data were detrended using the M-Estimator as suggested by 

Finger (2013b) (R Core Team, 2016)21. 

Table 5.2: Summary statistics of detrended winter wheat yields in decitons per hectare 

Mean 66.39 

Median 66.55 

Min 17.42 

Max 109.88 

Standard Deviation 13.90 

Coefficient of Variation 0.21 

 

                                                 

20 Heterogeneous soil conditions across the region lead to a lack of precipitation being an insufficient trigger for 

drought losses for 17 farms.   

21 We used the rlm function included in the ‘MASS’ package in the statistical software environment R. 
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Figure 5.3. Location of Case Study Farms within German Federal States 

5.3.2 Phenology and Weather Data 

Table 5.3: Summary statistics of cumulative rainfall from stem elongation to milk ripening 
in liter per squaremeter 

Mean 133.73 

Median 127.1 

Min 9.1 

Max 402.7 

Standard Deviation 56.14 

Coefficient of Variation 0.42 

 



152 
 

 

To define critical farm-level growth phases, in which wheat is especially reactive to drought 

stress, we make use of a rich phenology observation network provided by the Deutscher 

Wetterdienst (DWD; engl. German meteorological office) (Dalhaus & Finger, 2016). As 

proposed by Dalhaus & Finger (2016) and Dalhaus et al. (2018), droughts during both periods 

from stem elongation to ear emergence and from ear emergence to milk ripening can cause 

large damages to final yields. Insurance contracts include the sum of rainfall across both stages 

as insured weather index.  

Rainfall grid data is used to generate records of farm-level rainfall levels for the period 1997 to 

2014. More specifically, we follow Dalhaus & Finger (2016) and use the RegNie weather 

rainfall grid, which is also provided by the DWD (available under ftp://ftp-cdc.dwd.de/). We 

used the read.regnie function provided within the ‘esmisc’ package of the statistical software 

environment R to derive this weather information (Szöcs, 2017).  
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5.4 Results 

Table 5.4 Summary Statistics of Contract Parameters 
 TWI BWI 

   

Strike level [millimeter]  

Median 

Min 

Max 

Across all 

farms 

127.70 

1.47 

5935.00 

206.20 

1.33 

25850.00 

Ticksize [€/millimeter]  

Mean 

Min 

Max 

Across all 

farms 

1.06 

0.00 

3.34 

Premium rate [in %]   

Mean 

Min 

Max 

Across all 

farms 

2.71 

0.00 

13.40 

8.85 

2.54 

22.25 

Years with payout [in %]   

Mean 

Min 

Max 

Across all 

farms 

24.6 

5.8 

60.0 

78.0 

35.0 

100 

Years with premium [in %]   

Mean 

Min 

Max 

Across all 

farms 

100 

100 

100 

33.3 

38.44 

66.67 
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Table 5.4 gives summary statistics of the WI contract parameters. The median rainfall strike 

level was 206.20 mm for BWI and 127.70 mm for TWI respectively. The average Ticksize was 

1.06 €/mm (here displayed in monetary terms, i.e. 0.07 deciton/ millimeter rainfall [yield terms] 

* 15.3 €/ deciton [wheat price]). The average premium rate for the TWI was 2.71% whereas it 

was 8.85% for the BWI. BWI was comparably more expensive because it did not include a 

deductible. Hence the percentage of years for which a payout was made was also considerably 

higher in the BWI case, 78% compared to 24.6% for TWI on average.  

5.4.1 Risk reducing Properties of TWI and BWI according to EUT (Step 1) 

Referring to our two step procedure described above, tables 5.5, 5.6 and 5.7 show Wilcox test 

results for step 1 (H1, H2 and H3). Test results for H1 and H2 in table 5.5 reveal, that while 

TWI significantly increases farmers’ expected utility relative to a no insurance scenario, BWI 

with both ADJUSTMENTS in place does not. Thus, assuming a fair premium and EU preferences, 

only TWI products reduce weather risk and are thus beneficial for risk averse farmers. 

Accordingly, results for H3 indicate no statistically significant expected utility increase through 

BWI compared to TWI, which is unsurprising as BWI was proposed to better fit CPT 

preferences. The inability of BWI to increase EU compared to the no insurance scenario (H2) 

is due to the fact that the summed up premium payment at the end of the contract period is 

especially high in this context due to the non-existence of a deductible. If this end of contract 

payment occurs jointly with a yield loss event, the payment exacerbates the already bad 

financial situation of the farm. Thus, for BWI with both ADJUSTMENTS being fulfilled, farmers 

can be worse off in case of yield losses making this insurance design unattractive for risk averse 

EU decision makers, which exacerbates the consequences of basis risk. Results regarding 

hypotheses H1-H3 are robust across all levels of risk aversion tested. For risk neutral decision 

makers, no differences between the scenarios occur, indicating that the charged premium is 

actuarially fair. 
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Table 5.5. Wilcox Test Results for Changes in Expected Utility (H1, H2 and H3) 

Coefficient of 

relative risk 

aversion 𝛗𝛗 

p-valuea/b 

H1 H2 H3 

H0: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤ 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑>  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

 

0 0.56 0.32 0.52 

 0.2  3.72 ∙10-2 0.99 0.99 

 

0.4 4.58 ∙10-3 0.99 0.99 

 

0.6 1.61 ∙10-3 0.99 0.99 

 

0.8 1.00 ∙10-3 0.99 0.99 

 

1.0 7.20 ∙10-3 0.99 0.99 

a Low p-values imply a rejection of the null hypotheses stated in H1-H3. 

b Bonferroni corrected p-values 

In addition to table 5.5, where both ADJUSTMENTS of BWI are fulfilled, table 5.6 shows tests 

for expected utility changes when ADJUSTMENT 1 is switched off. Here, BWI only differs from 

TWI with respect to the stochastic multiyear premium (ADJUSTMENT 2), i.e. small losses are 

uninsured. Accordingly, results for H1 do not differ from those displayed in table 5.5. In 

contrast, results for H2 show that expected utility of BWI is significantly greater compared to 
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a no insurance scenario. Hence assuming a fair premium, BWI without ADJUSTMENT 1 is able 

to significantly reduce farmers’ financial exposure to weather risk. For the sake of 

completeness, again H3 reveals that no differences exist between TWI and BWI with respect 

to expected utility changes, which was to be expected as the ADJUSTMENTS made were 

specifically suited to CPT decision makers.  

Table 5.6. Wilcox Test Results for Changes in Expected Utility when switching off 
ADJUSTMENT 1 (insure also small losses) (H1, H2 and H3) 

Coefficient of 

relative risk 

aversion 𝛗𝛗 

p-valuea/b 

H1 H2 H3 

H0: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤ 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑>  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

 

0 0.56 0.42 0.29 

 0.2  3.72 ∙10-2 2.48 ∙10-2 0.23 

 

0.4 4.58 ∙10-3 2.72 ∙10-3 0.14 

 

0.6 1.61 ∙10-3 2.04 ∙10-3 0.10 

 

0.8 1.00 ∙10-3 2.96 ∙10-3 0.10 

 

1.0 7.20 ∙10-3 3.70 ∙10-3 0.08 

a Low p-values imply a rejection of the null hypotheses stated in H1-H3. 

b Bonferroni corrected p-values 
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Table 5.7 shows test results for H1-H3 when switching ADJUSTMENT 1 back on and 

ADJUSTMENT 2 off. Here, small losses are insured and premiums are due every year. Results 

for H1 are in accordance to those of tables 5.5 and 5.6. Moreover, results for H2 show, that 

BWI insuring small losses is able to significantly increase expected utility and thus reduce 

farmers’ financial exposure to weather risk. Thus BWI is EU increasing for each of the 

ADJUSTMENTS separately and only the combination of both (as indicated in table 5.5) seems to 

make BWI not EU increasing.  

According to above results and unsurprisingly, H3 shows that no differences exist between 

expected utility of BWI and TWI insured farmers.  
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Table 5.7. Wilcox Test Results for Changes in Expected Utility when switching off 
Adjustment 2 (Conclude a multi-year contract  and pay premiums only in 
years of no crop losses or, if there are no years with no losses, at the end of the 
contract period) (H1, H2 and H3) 

Coefficient of 

relative risk 

aversion 𝛗𝛗 

p-valuea/b 

H1 H2 H3 

H0: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤ 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑>  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

 

0 0.56 0.32 0.52 

 0.2  3.72 ∙10-2 5.36 ∙10-2 0.30 

 

0.4 4.58 ∙10-3 1.49 ∙10-3 0.14 

 

0.6 1.61 ∙10-3 3.80 ∙10-4 0.18 

 

0.8 1.00 ∙10-3 1.02 ∙10-4 0.10 

 

1.0 7.20 ∙10-3 8.00 ∙10-5 0.04 

a Low p-values imply a rejection of the null hypotheses stated in H1-H3. 

b Bonferroni corrected p-values 

5.4.2 Prospect Value Changes of TWI and BWI according to CPT (step 2) 

The previous section focused on comparing TWI and BWI assuming farmers’ preferences are 

characterized by standard EU assumptions. This section makes the same comparison but 

assuming that farmers’ preferences are instead characterized by CPT. Regarding step 2 of our 
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analysis, i.e. investigating the performance of the different insurance schemes across CPT 

specifications, table 5.4 shows significance levels of Wilcoxon test results of hypotheses H4 to 

H8, with respect to three different BWI designs, i.e. all ADJUSTMENTS fulfilled, ADJUSTMENT 1 

switched off, ADJUSTMENT 2 switched off.  

The second column of table 5.8 and the upper left graph of figure 5.4 present BWI results with 

all adjustments described above being fulfilled (According to table 5.5 of section 5.4.1). In this 

case, BWI provided no significant improvement with respect to prospect value compared to 

TWI for all CPT specifications, i.e. Bocquého, Jacquet. and Reynaud (2014) (Boc.1, Boc.2 and 

Boc.3), Bougherara et al. (2017) (Bou) and Babcock (2015) (Bab).  

The third column of table 5.8 displays results for BWI excluding ADJUSTMENT 1 (“insure also 

small losses”). Contrary to the first specification, BWI outperformed (in terms of prospect 

value) TWI for specifications Boc.1, Boc.2 and Boc.3. Compared to the former column, this 

BWI design introduces more uncertainty in the gain domain, while overall losses are smaller, 

due to lower premiums caused by the now implemented deductible. Thus, the effect of saved 

premium payments outweighs the effect of covering small losses for these specifications. Said 

differently, loss aversion (the premium payments would be small losses for the insured) clearly 

dominates risk aversion in these cases.  

The fourth column of table 5.8 shows results for BWI excluding ADJUSTMENT 2 (“Conclude a 

multi-year contract and pay premiums only in years of no crop losses or, if there are no years 

with no losses, at the end of the contract period”). Here, BWI does not outperform TWI (in 

terms of prospect value) across all specifications. In this scenario, premium payments (small 

losses from the perspective of the insured) come every year and the overall amount of losses is 
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experienced more intensively as single year premium payments appear close to the reference 

point.  

Table 5.8. Wilcox Test Results for Differences in the Prospect Value using CPT 
Specifications Boc.1, Boc.2 Boc.3 and Bab (H4 – H8) 

 

BWI with all 

adjustments fulfilled 

BWI excluding adjustment 

ii)  

(Small losses not insured) 

BWI excluding adjustment 

iv)  

(Payment every year) 

Specifications 

p-valuea,b 

H0: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤   𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

H1: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 >  𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

H4: Boc.1 0.99  5.29 ∙10-5  0.25 

H5: Boc.2 0.99  2.63 ∙10-4  0.87 

H6: Boc.3 1  0.03  1 

H7: Bou 1  0.15  0.99 

H8: Bab 0.99  0.65  0.99 

a Low p-values imply a rejection of the null hypotheses stated in H4-H8 

b Bonferroni corrected p-values  



161 
 

 
 

 

Figure 5.4 Performance of Weather Insurance schemes under different CPT 
Specifications.  

n.s. = not significant. Neither of the both insurances outperformed the other.  

Note: Flags indicate the outperforming insurance scenario according to test results displayed in 

table four. The underlying literature sources of CPT preferences can be derived from figure 1.  
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5.5 Discussion  

Babcock (2015) shows that loss aversion can lead to a reduction of optimal crop insurance 

coverage levels and thus to less protection against potential income losses. The BWI proposed 

here aims to counteract this tendency by accounting for CPT properties of farmers' preferences. 

This includes transforming single year premiums into multiyear premiums (ADJUSTMENT 1). 

With BWI a farmer can also experience frequent small gains (insurance payouts) as a result of 

having no deductible (ADJUSTMENT 2). We introduce a two-step procedure to test the 

ADJUSTMENTS with respect to changes in the risk reducing properties (Step 1: Expected Utility 

Theory) and changes in the prospect value (Step 2: Cumulative Prospect Theory) under various 

real world preference scenarios.  

Regarding step 1, we find that the actuarially fair BWI objectively reduces weather risk 

exposure as each of the ADJUSTMENTS separately increases EU while the combination of both 

ADJUSTMENTS does not. In the case of both ADJUSTMENTS being fulfilled, BWI is not able to 

increase EU as it can exacerbate adverse financial situations. Regarding this, Clarke (2016) 

finds that weather insurance becomes unattractive for risk averse decision makers if it worsens 

bad financial situations Thus, combining both ADJUSTMENT would increase the possibility of 

basis risk, i.e. the discrepancy between insurance payout and financial losses on the farm, 

through relatively high multiyear payments.   

Regarding step 2, we find that the BWI with both ADJUSTMENTS implemented jointly, is also 

unable to increase the prospect value as compared to TWI. However, when switching off 

ADJUSTMENT 1, BWI increases the prospect value compared to TWI for CPT specifications in 

Boc.1, Boc.2 and Boc.3. More specifically, higher risk aversion over gains and risk seeking over 

losses, such as observed in these specifications increases preferences for BWI compared to 

TWI. This is due to the fact that BWI with only ADJUSTMENT 1 implemented enables stochastic 
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multi-year premiums rather than deterministic yearly premiums as is the case with TWI, 

satisfying the risk seeking behaviour over losses. Hence, stochastic multiyear premiums 

potentially increase the insurance demand of prospect value maximizing farmers. It needs to be 

noted that postponing premium payments also enables the possibility of strategic default 

possibly requiring actions to avoid this behavior (Elabed et al., 2013). 

In contrast, a zero deductible design (ADJUSTMENT 1) does not benefit farmers in terms of 

prospect value as it increases the total amount of premium payments which are framed as losses 

in the CPT setting. This holds in the situation when both ADJUSTMENTS are fulfilled and when 

only ADJUSTMENT 1 is implemented. This result is in line with Babcock (2015) who shows that 

prospect value maximizing farmers with relatively low risk aversion and average loss aversion 

prefer insurance with higher deductibles. Consequently, a stochastic multiyear premium, 

although being itself prospect value increasing, is not able to counteract the overweighting of 

premium payments framed as losses. Thus the ‘segregation of silver linings’ is unable to 

counterbalance loss aversion in our case study. Regarding this, Du, Feng & Hennessy (2017) 

show that farmers are reluctant to buy actuarially fair insurance as out of pocket premium 

payments increase. This further underlines that farmers avoid higher premium payments even 

if these objectively reflect their risk profile in case of a fair premium. 

It should be noted that our test results rely on the framing of insurance as stand-alone investment 

and thus the choice of the reference point. As indicated, we expect that more decision making 

behaviors might exist across farmers and that especially differences in the reference point can 

require further ADJUSTMENTS being necessary. We therefore see our analysis as first step into 

the direction of insurance being specifically designed according to farmers’ decision making 

behavior. Especially, findings of Köszegi & Rabin (2006) offer various entry points of adjusting 

the reference point to include also basis risk and frame this as a loss. Future research should 
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take this into account and include experimental findings of farmers’ behavior in insurance 

design. Regarding further behavioral economic insights and entry points for further research, 

Elabed & Carter (2015) deliver insights on how compound risk aversion influences index 

insurance demand under basis risk. 

As our results rely on simulations, they have to be proven in the field before offering a market 

ready BWI. Furthermore, it is important to note that the analysis presented is based on data 

from large farms in eastern Germany. Due to differences in institutional structures, and possibly 

differences in risk preferences, future research could examine how generalizable these findings 

are to developing country contexts where many efforts to develop weather insurance markets 

are currently ongoing. 

5.6 Conclusion 

In summary, our approach proposes at two-step procedure to first set-up an insurance product 

that has risk reducing properties under EU and second evaluate insurances’ prospect value 

under CPT. Recalling the analogy raised at the beginning of the article we compare our strategy 

to first design a healthy food product and second a packaging that fits observed purchase 

behavior. For both theories we propose to test for various preference scenarios. Our strategy 

includes a temporal redistribution of money flows to frame crop insurance in a way that we 

believe may be more attractive to farmers.  

We find that for farmers with EU preferences, BWI is not preferred to TWI, which was to be 

expected. In fact, some BWI designs (both ADJUSTMENTS implemented) are not even preferred 

to a no-insurance scenario. However, when switching off either of the two ADJUSTMENTS BWI 

is able to reduce the financial exposure to weather risk and is preferred by farmers with EU 

preferences (is a healthy food product that should be consumed by risk averse farmers). 

Moreover and most importantly, for farmers with CPT preferences BWI may be preferred to 
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TWI depending on the assumed CPT preference specifications if only the stochastic multiyear 

premium is implemented (ADJUSTMENT 2). BWI might thus lead to an increase of insurance 

demand (as the packaging fits to observed purchase behavior).  

Important conclusions can be drawn. First, to our knowledge this is the first study explicitly 

designing crop insurance in general and weather insurance in particular, according to farmers 

CPT preferences. By doing so, we point out, how integrated premium payments together with 

a multi-year contract, can lead to an increase in insurance demand. Second, we show that the 

relative benefits of the BWI depend strongly on assumed CPT value function characteristics 

such as the degree of risk aversion and loss aversion. In this respect, farmers’ characteristics 

should be considered when designing individual crop insurance contracts to increase 

attractiveness of the contracts and thus insurance purchases. Hence, offering multiple types of 

contracts should be considered. Third, with BWI potentially more farmers are insured against 

downside risks compared to the initial state, which makes the farming system as a whole more 

resilient against climate shocks. Finally, recalling the contract parameters displayed in table 5.4 

and weather summary statistics in table 5.3, we tested across a wide range of risk scenarios (as 

displayed through the very heterogeneous premium rates), we thus conclude that our findings 

are upscalable also to other perils and regions. 
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5.7 Appendix 

Table 5.A1. Wilcox Test Results for Changes in Expected Utility (H1, H2 and H3) – 
Sensitivity Analysis two year contract 

Coefficient of 

relative risk 

aversion 𝛗𝛗 

p-valuea/b 

H1 H2 H3 

H0: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤ 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑>  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

 

0 0.56 0.32 0.52 

 0.2  3.72 ∙10-2 0.93 0.99 

 

0.4 4.58 ∙10-3 0.96 0.99 

 

0.6 1.61 ∙10-3 0.97 0.99 

 

0.8 1.00 ∙10-3 0.97 0.99 

 

1.0 7.20 ∙10-3 0.97 0.99 

a Low p-values imply a rejection of the null hypotheses stated in H1-H3. 

b Bonferroni corrected p-values   
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Table 5.A2. Wilcox Test Results for Changes in Expected Utility (H1, H2 and H3) – 
Sensitivity Analysis four year contract 

Coefficient of 

relative risk 

aversion 𝛗𝛗 

p-valuea/b 

H1 H2 H3 

H0: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤ 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑>  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

 

0 0.56 0.32 0.52 

 0.2  3.72 ∙10-2 0.99 0.99 

 

0.4 4.58 ∙10-3 0.99 0.99 

 

0.6 1.61 ∙10-3 0.99 0.99 

 

0.8 1.00 ∙10-3 0.99 0.99 

 

1.0 7.20 ∙10-3 0.99 0.99 

a Low p-values imply a rejection of the null hypotheses stated in H1-H3. 

b Bonferroni corrected p-values  
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Table 5.A3. Wilcox Test Results for Changes in Expected Utility when switching off 
ADJUSTMENT 1 (insure also small losses) (H1, H2 and H3) – Sensitivity Analysis 
two year contract 

Coefficient of 

relative risk 

aversion 𝛗𝛗 

p-valuea/b 

H1 H2 H3 

H0: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤ 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑>  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

 

0 0.56 0.42 0.29 

 0.2  3.72 ∙10-2 3.32 ∙10-2 0.47 

 

0.4 4.58 ∙10-3 1.63 ∙10-2 0.64 

 

0.6 1.61 ∙10-3 1.27 ∙10-2 0.71 

 

0.8 1.00 ∙10-3 1.84 ∙10-2 0.67 

 

1.0 7.20 ∙10-3 1.63 ∙10-2 0.65 

a Low p-values imply a rejection of the null hypotheses stated in H1-H3. 

b Bonferroni corrected p-values  
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Table 5.A4. Wilcox Test Results for Changes in Expected Utility when switching off 
ADJUSTMENT 1 (insure also small losses) (H1, H2 and H3) – Sensitivity Analysis 
four year contract 

Coefficient of 

relative risk 

aversion 𝛗𝛗 

p-valuea/b 

H1 H2 H3 

H0: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤ 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H0: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑≤  

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑>  

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜑𝜑 

H1: 𝑒𝑒𝑒𝑒𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝜑𝜑> 

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 

 

0 0.56 0.42 0.29 

 0.2  3.72 ∙10-2 0.44 0.80 

 

0.4 4.58 ∙10-3 0.21 0.90 

 

0.6 1.61 ∙10-3 0.13 0.84 

 

0.8 1.00 ∙10-3 0.11 0.91 

 

1.0 7.20 ∙10-3 0.10 0.92 

a Low p-values imply a rejection of the null hypotheses stated in H1-H3. 

b Bonferroni corrected p-values  
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Table 5.A5. Wilcox Test Results for Differences in the Prospect Value using CPT 
Specifications Boc.1, Boc.2 Boc.3 and Bab (H4 – H8) – Sensitivity Analysis two 
year contract 

 

BWI with all 

adjustments fulfilled 

BWI exluding adjustment 

ii)  

(Small losses not insured) 

Specifications 

p-valuea,b 

H0: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤   𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

H1: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 >  𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

H4: Boc.1 1  4.73 ∙10-4  

H5: Boc.2 1  4.73 ∙10-3  

H6: Boc.3 1  9.66 ∙10-4 

H7: Bou 1  2.90 ∙10-3 

H8: Bab 0.99  3.79 ∙10-2 

a Low p-values imply a rejection of the null hypotheses stated in H4-H8 

b Bonferroni corrected p-values  
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Table 5.A6. Wilcox Test Results for Differences in the Prospect Value using CPT 
Specifications Boc.1, Boc.2 Boc.3 and Bab (H4 – H8) - Sensitivity Analysis 20 
% Loading 

 

BWI with all 

adjustments fulfilled 

BWI exluding adjustment 

ii)  

(Small losses not insured) 

BWI excluding adjustment 

iv)  

(Payment every year) 

Specifications 

p-valuea,b 

H0: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤   𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

H1: 𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 >  𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

H4: Boc.1 0.99  1.35 ∙10-5  1 

H5: Boc.2 0.99  5.48 ∙10-5  1 

H6: Boc.3 1  0.03  1 

H7: Bou 1  0.13  1 

H8: Bab 0.99  0.58  1 

a Low p-values imply a rejection of the null hypotheses stated in H4-H8 

b Bonferroni corrected p-values 
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