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Abstract

The ideal vision system for an autonomous robot would not only provide the robot’s position and
orientation (localisation), but also an accurate and complete model of the scene (mapping). While
localisation information allows for controlling the robot, a map of the scene allows for collision-free
navigation; combined, a robot can achieve full autonomy.

Visual Inertial Odometry (VIO) algorithms have shown impressive localisation results in recent
years [2,3]. Unfortunately, typical VIO algorithms use a point cloud to represent the scene, which
is hardly usable for other tasks such as obstacle avoidance or path planning.

In this work, we explore the possibility of generating a dense and consistent model of the
scene by using a 3D mesh, while making use of structural regularities to improve both mesh and
pose estimates. Our experimental results show that we can achieve a 26% more accurate pose
estimates than state-of-the-art VIO algorithms when enforcing structural constraints, while also
building a 3D mesh which provides a denser and more accurate map of the scene than a classical
point cloud. We also show that our approach does not rely on assumptions about the scene and is
general enough to work when structural regularities are not present.

xi
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Chapter 1

Introduction

1.1 Motivation

Visual Inertial Odometry (VIO) algorithms combine the visual information from the images of a
camera with the accelerometer and gyroscope readings from an Inertial Measuring Unit (IMU)
to achieve accurate state estimates. A camera and an IMU are especially interesting sensors in
combination as they have complimentary features.

An IMU provides high-frequency motion information, which is accurate at short intervals of
time, but drifts over time. Instead, a camera provides images at smaller frequencies, but allows for
accurate estimations of the motion long term. In the last decade, multiple real-time and highly-
accurate VIO algorithms have been developed such as [4] or [5]. Unfortunately, these systems have
nowadays two limitations that we want to address in this thesis, and which we detail below.

1.1.1 Enhancing sparse point clouds

Classical VIO approaches use a sparse point cloud to represent the environment. This representa-
tion, although practical because it allows efficient and accurate inference, is nevertheless of limited
use. Indeed, a sparse representation of the scene removes large amounts of information about the
environment that is essential for other important tasks. In the field of autonomous systems, a
sparse point cloud is not suitable for obstacle avoidance or path planning, where a dense map is
necessary instead. In augmented reality, it would be more useful to have a map that captures the
geometry of the objects in the scene to allow the seamless projection of virtual elements. To this
effect, we want to make the estimated map by a VIO algorithm more amenable to other potential
applications.

1.1.2 Enforcing structural regularities

Common man-made indoor scenes are characterized by strong regularities such as parallel and
planar walls, which are not used as prior information in classical VIO pipelines. Nevertheless,
using this information could potentially improve both the quality of the map and the accuracy
of the state estimation. Our hypothesis originates from the simple observation that landmarks
estimated by a VIO pipeline are not consistent with the underlying geometry of the scene. When
running a VIO pipeline over a planar surface, landmarks do not seem to lie on a single plane, but
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they are instead scattered approximately around the planar surface — with some landmarks even
deviating significantly from the surface. Therefore, we will also explore the influence of using prior
information about the structure of the scene on the overall performance of a VIO pipeline.

1.2 Approach

In the literature, few implementations can achieve accurate pose estimates and simultaneously
build a map useful for other tasks than localization [6-8]; they rely nevertheless on RGB-D cam-
eras that provide dense estimates of the scene. These approaches suffer from high computational
loads since they use all pixels in a camera, which leads to vast amounts of information having
to be processed. Therefore, they often require the use of dedicated hardware like GPUs — which
consume relatively high amounts of power, thereby making these algorithms not applicable to
computationally constrained systems such as Micro Aerial Vehicles (MAV).

In this respect, the motivation of this thesis is to develop a new VIO pipeline for computa-
tionally restricted systems that provides accurate state estimation while mapping the environment
densely and precisely.

We will use sparse keypoint-based visual inertial odometry, with regular RGB cameras, to
estimate the scene in a dense manner, while achieving accurate state estimates, using off-the-shelf
CPUs.

To achieve these results, we perform a 2D Delaunay triangulation over the 2D keypoints in
the image, and project the triangulation as a mesh in 3D. We then use the 3D mesh to detect
regularities in the scene: such as points lying on the same plane or high-level regularities between
planes (parallel planes, like the floor and a table top, or orthogonal planes, such as vertical walls
and the floor) typically found on man-made environments. We then encode these regularities
as constraints in a factor-graph; which has as variables, among others, the camera poses, the
landmarks’ positions and the planes observed.

In order to achieve real-time performance, we frame the optimization problem in an incremen-
tal fashion, and we bound the problem to a fixed time-horizon. Such an approach is commonly
referred in the literature as Fixed-lag Smoothing, and it is used in several state-of-the-art VIO
pipelines [3,9].

After optimization of the factor graph, we obtain both accurate pose estimates of the camera,
and a mesh-based representation of the scene.

Recent work with similar objectives as us have so far worked in a decoupled way. For example,
[10] estimates a mesh of the environment assuming given ground truth estimates of the position
and orientation. [11] also relies on an external algorithm for state estimation and mapping, while
they focus on building the mesh. In our case, we want to estimate both the mesh and the state
in a tightly coupled manner with the expectation of making both pose and map estimates more
accurate.

1.3 Thesis outline

Concerning the strucutre of the thesis, we will first present a review of previous work related to
the subject of visual inertial odometry, dense mapping and the usage of structural regularities in
state estimation, thereby covering the state-of-the-art. Then, we will present the mathematical
formulation of our approach, providing details on both the structure of the backend and the
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frontend of our VIO. Finally, we will present the experimental results achieved, and conclude with
the insights that we have gained in the process.



1.3. Thesis outline




Chapter 2

State of the art

Since we are not simply trying to improve the accuracy of the pose estimation in VIO, but also
tackle the problem of dense map estimation, we found convenient to do a literature review of the
fields of Visual Inertial Navigation (§ 2.1) and dense mapping (§ 2.2). We also review previous
work using structural regularities in § 2.3.

2.1 Visual Inertial Navigation

In this work, we focus on Visual Inertial Odometry (VIO) algorithms. Using Visual and Inertial
sensors for state estimation has been extensively studied over the past decades, leading to many
different types of implementations. We can segment these implementations depending on the type
of optimization used (backend). In particular, we distinguish three types of VIO algorithms based
on the number of state variables that are being estimated:

e Filtering based methods are the oldest way of solving the problem of state estimation, and
consist in finding the optimal state for the most recent time where sensor data is available.
Initial work was based on the Extended Kalman Filter (EKF), used by Smith et al. [12].
The EKF simply estimates a Gaussian density over the last state in a recursive fashion;
where the state typically includes the current pose of the robot and the observed 3D land-
marks. Nevertheless, the computational complexity of the EKF grows quadratically with
the number of variables used in the state, and it becomes quickly intractable when dealing
with many landmarks [13]. This is because the underlying uncertainty representation of the
EKF is the actual covariance matrix, which does not stay sparse (unlike the information
matrix in smoothing), and requires dense matrix operations instead of the much more effi-
cient sparse methods [14]. To avoid this problem, the Multi-State Constraint Kalman Filter
(MSCKF) [15] makes use of a measurement model that avoids including landmarks in the
state, therefore reducing significantly the number of state variables. While we will not be
using a filtering method, we will also reduce the number of variables from the optimization
problem by removing landmarks positions from the state vector as MSCKF [15].

Another issue with filtering is that it is shown to become inconsistent when using nonlinear
models as in SLAM [16]. This is caused by introducing linearization inaccuracies that cannot
be corrected after marginalization. To counter such linearization errors, care must be taken to
reject outlier measurements [17]. The open-source Robust Visual Inertial Odometry (ROVIO)
algorithm [18] achieves good results by being robust to bad initial guesses and image blur.
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keyframes

Marginalization

While we will not be using a filtering approach, both [15] and [18] achieve state-of-the-art
performance in VIO, and therefore we ought to compare them with our approach. The reader
can find more information about filtering based methods in the survey [19].

Full-smoothers use instead all the data collected until the last sensor measurements. Hence,
they attempt to solve a large optimization problem each time new sensor measurements are
available (incremental methods) or after collecting all measurements (batch methods) [20,21].
This technique is referred to, in the field of photogrammetry, as "bundle adjustment" [22],
and in computer vision as "structure from motion" [23]. These methods avoid marginalizing
the states, achieving an accurate state estimation that might include not only the robot
trajectory, but also all landmarks. Nevertheless, the optimization problem rapidly becomes
intractable, as the number of variables grows unbounded. One way that state-of-the-art
methods try to tackle this problem is by using keyframes — selected frames that provide
more and better information than merely using consecutive frames — and discard redundant
frames [3,24]. Our approach will also rely on keyframes to remove redundant information
and speed-up the inference time.

On the backend side, it has been shown that using the information matrix and exploiting its
sparsity structure is a better approach than using an EKF [25,26]. Since this approach is
based on factorizing the information matrix on a square-root form, they are referred to as
square root SAM (or vV.SAM). Kaess et al. [27] proposed a fast incremental square-root SAM
that effectively updates the square-root information matrix by reusing previous computations.
It was nevertheless necessary to perform batch steps to keep the consistency of the estimation.
To solve this issue, the same authors first presented the use of the Bayes tree [28], and further
exploited this novel data structure to develop iISAM2 [29], a state-of-the-art incremental exact
inference method. Their Bayes tree representation allows relinearization of a small set of
variables, therefore providing a boost in efficiency while keeping the sparse structure of the
problem. SVO-GTSAM |[2] made use of iSAM2 combined with SVO’s frontend [30] (a semi-
direct visual odometry algorithm) to achieve state-of-the-art results in VIO. In our approach,
we will also use iISAM2, but contrary to the full-smoothing approach of SVO-GTSAM, we
will be using a fixed-lag smoothing technique. We will also compare our approach with

SVO-GTSAM.

Fixed-lag smoothing makes use of marginalization to avoid the problem of an ever increas-
ing number of variables. Marginalization removes older variables without removing informa-
tion, which allows for reducing the estimation problem to the variables that are within a
fixed time window, also known as sliding-window or time-horizon [31-34]. More specifically,
a fixed-lag smoother proceeds recursively by interleaving two operations: a measurement
update, followed by a marginalization step. Fixed-lag smoothers hence trade accuracy for
efficiency depending on the size of the time window used. It can actually be shown that
the standard Kalman filter corresponds to using a fixed-lag smoother with a window size
including only the last state [14].

Open Keyframe-based Visual Inertial SLAM (OKVIS) [3] makes use of a fixed-lag approach
were keyframes older than a given time are marginalized. OKVIS has achieved the best
results for fixed-lag smoothing approaches for a long time, although new methods have shown
excellent results as well; such as VINS-MONO [9], which makes use of the IMU pre-integration
theory of [2] to improve on OKVIS (besides introducing other new features). In our case,
we will also use the pre-integration theory of Forster et al. [2]. Since both OKVIS and
VINS-MONO achieve state-of-the-art performances, we will compare our approach to these
algorithms as well.

Delmerico et al. [1] have taken on the important and time-consuming task of benchmarking

the above mentioned state-of-the-art monocular VIO algorithms for the scientific community. We
will use their results to compare our approach in the EuRoC MAV dataset in chapter 4.
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2.2 Dense Mapping

Retrieving a dense map of the scene has always been a tempting endeavour in computer vision
because of the multiple uses a faithful map has. In robotics, dense maps are a valuable asset
since they can be used to avoid obstacles [35], to plan optimal paths [36], and even to allow
manipulation of objects in the scene [37,38]. Dense maps also provide means for visual inspection
of structures [11] as they are visually appealing [39].

As we have seen previously, SLAM has had a great deal of success with a flurry of works
achieving unprecedented results [2,3,9,15,18]. The performance of SLAM sparked a renewed
interest to achieve dense scene reconstructions instead of sparse point clouds that SLAM pipelines
use for accurate localization. While the first works making use of the newly acquired accuracy of
SLAM for dense mapping consisted in using a 3D mesh built over the sparse 3D landmarks [35,40],
the scientific community focused later instead into "every pixel" methods. One of the earliest
real-time dense reconstruction systems is the one from Pollefeys et al. [41], who achieved dense
reconstructions of urban scenes from a rig with eight cameras mounted on a vehicle, having as well a
GPS and an IMU. Their approach uses real-time structure-from-motion combined with plane sweep
stereo and depth map fusion [42]. As a last step, they still used a multi-resolution triangular mesh
to generate a model of the scene, by using a quadtree!. Newcombe et al. [6], by re-using the parallel
architecture of PTAM [44], proposed a dense reconstruction algorithm performing real time depth
estimation for each pixel using Total Variation regularisation. They also used a mesh to have a
first approximation of the depth of the scene, which they then warp into a depth map. Impressive
results were also achieved using RGB-D cameras, for example KinectFusion [8] demonstrated a
real-time dense mapping using the Kinect camera. DTAM [7] was nevertheless one of the first
to prove that online dense reconstruction is possible using standard cameras. Unfortunately, all
these approaches necessitate GPUs, since they are computationally demanding. This constraint
hindered their applicability because GPUs require significantly more power than CPUs, making
it difficult to apply such alogrithms in computationally constrained platforms such as MAVs or
smartphones.

Recently, new approaches have tried to avoid the caveats of an every-pixel approach, which
oversamples simple geometries such as planes. Indeed, trying to perform dense stereo matching
seems to be unnecessary for simple geometries, such as planar surfaces, where depth at each pixel
might be redundant, or just too difficult to find due to a lack of texture. The alternative to
every-pixel approaches seems to go in two directions:

e Semi-dense approaches, that try to use direct methods (feature-less) or attempt to densify
feature-based algorithms. Semi-dense methods have been in vogue during the past years as
they provide a good trade-off between computational performance and denser maps.

In an attempt to avoid the use of GPUs, Engel et al. [45] proposed LSD-SLAM, a multi-
threaded algorithm running on CPUs that achieves semi-dense maps by performing direct
photometric alignment of images to estimate the depth and the position of the camera. Their
approach effectively uses all the information in the image which allows for capturing most of
the scene.

Alternatively, the authors of ORB-SLAM [46] tried to densify their feature-based pipeline
and proposed a probabilistic semi-dense mapping [47]. Their approach uses a parallel thread
to their SLAM algorithm and computes the depth estimates using the same stereo correspon-
dence search and inverse depth uncertainty derivation as [48], but on a per-keyframe basis,
instead of on consecutive frames.

The debate about whether using direct methods or feature-based methods is nevertheless still

ITheir mesh did not keep the manifold property (defined below), which would require the use of a restricted
quadtree [43], but that would hinder processing speed.
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open; and it seems that one might be better than the other depending on the applications,
with some authors combining even both [49].

Other authors try to achieve ever denser maps by densifying semi-dense maps from direct
SLAM pipelines. DPPTAM [50] achieves a dense reconstruction of the scene by combining
the natural output of a direct monocular SLAM pipeline, meaning a semi-dense map, and
adding piecewise planar low-gradient regions (detected using superpixel segmentation) to
the map. They rely nevertheless on the assumption that low-gradient regions correspond to
planar surfaces, which seems to be reasonable for many man-made environments.

e Mesh-based approaches, on the other hand, start from sparse features and use some form
of tesselation or meshing to recover the topology of the scene. Parallel to semi-dense methods,
mesh-based methods have seen a renewed interest over the last years.

Teixeira [11] and Greene [10] both use sparse features and accurate camera poses from a
SLAM pipeline, but, contrary to [47], they use a 3D mesh generated by doing a 2D delaunay
triangulation over the image keypoints and subsequently projecting the mesh in 3D. The
resulting mesh accurately captures the scene at the current camera viewpoint, and leads to
very fast and scalable algorithms, as also acknowledged by other works [51]. We have therefore
followed this same approach, although our 3D mesh does not only cover the currently visible
frame as in [11], but rather the whole scene observed by all the keyframes present in the
time-horizon of the optimization (we use a fixed-lag smoothing approach, thereby optimizing
over multiple keyframes simultaneously).

The issue with meshes built this way is that they need to be regularised, otherwise they would
be too noisy or have unwanted artifacts. Teixeira [11] therefore implements a Laplacian
smoother over the mesh to remove outlier vertices. Greene et al. [10] proposed to use a
Non-Local Second Order Total Generalized Variational (NLTGV?) regularisation cost over
the inverse depth of the vertices of the mesh, thereby efficiently regularising the mesh so
that it keeps planar surfaces while preserving edges. Greene et al. were inspired by previous
work from Piniés [52] who tackled the problem of dense reconstruction from an every-pixel
approach instead of a sparse feature approach; showing that what is learned from dense
approaches can be applied to sparse featured-based methods, and potentially the other way
around.

In our case, we also need to regularise the mesh. For this, we used simple outlier filters
detailed in § 3.2.1, similarly to Teixeira, although we did not use the same filters. We
also use non-local regularisation as Greene et al., but contrary to Greene, we encoded the
regularisation term? directly on the same optimization problem solved in SLAM, instead of
decoupling SLAM and mesh regularisation.

Indeed, none of the algorithms presented above seem to have tackle the optimization of the
pose estimate and the dense reconstruction in a tightly couple manner were the mesh is used
to improve as well the SLAM performance. In this respect, KinectFusion [7] seems to be one
of the few that use their dense model to calculate the pose of the camera using ICP.

Rather than making the densification of the point cloud and the SLAM algorithm agnostic of
each other, our approach is to close a feedback loop between mesh estimation and SLAM. We
do this by first generating a mesh over the sparse features of the SLAM algorithm, as most
of the authors above, but we subsequently use the mesh to enforce structural constraints for
the SLAM problem, thereby improving both the localization and the reconstruction of the
scene.

In order to keep real-time performance, we decided to proceed as Teixeira et al. by performing
a 2D Delaunay triangulation and projecting it in 3D. Nevertheless, our 3D mesh captures
all 3D landmarks that are present in the time-horizon of our optimization problem, thereby
describing a larger portion of the map, instead of limiting the 3D mesh to the current frame.

2We will not use the appellation "regularisation term", instead we will refer to it as structural regularity con-
straints, in § 3.1.5.
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The methods that we have mentioned so far represent just one branch of possible solutions
to achieve dense reconstructions. There is also a volumetric approach which deals with dense
reconstructions by discretizing the 3D space. We will not be using a volumetric approach, never-
theless it is instructive to see what are their benefits and drawbacks. Here, we discuss two types
of volumetric approaches:

e 3D Delaunay: Some works attempt to build a 3D Delaunay tetrahedralisation directly from
the sparse 3D landmarks. Incrementally building a mesh from sparse 3D points is nevertheless
non-trivial. The estimated 3D points are typically noisy, some are outliers, and their density
is highly irregular. On top of this, the point cloud is growing over time. Most methods extract
surfaces from sparse point clouds by labeling what is "outside" or "inside", alternatively what
is "free" versus "occupied", by using visibility information. The actual surface corresponds
therefore to the boundary between free and occupied space. A 3D Delaunay triangulation
on the 3D points provides an irregular discretization of the space, which is advantageous
since it adapts nicely to the underlying density of the point cloud. The difference between
algorithms using this approach resides mainly in the way free and occupied space is classified.
Unfortunately, this operation typically requires costly space carving algorithms [53].

The most ambitious attempts also try to enforce the 3D mesh to have the manifold property.
A mesh is said to be a manifold if each vertex v is regular, which is the case if and only
if the edges connecting the vertices opposite to v are homeomorphic to a disk, or in other
words, if they form a closed path without loops [54]. This property is useful to improve
the mesh for smoothing [55] or photometric optimization [56]. While some works have en-
forced manifoldness incrementally [57,58], these approaches are not able to run in real-time.
Nevertheless, recent approaches have achieved impressive results. Piazza et al. [59] improve
the work of [57,58] by making it run in (near) real time and on a single CPU core, while
reaching similar accuracy as the original algorithms and maintaining the manifold property
of the mesh as well. They achieved these results by changing certain parts of the original
algorithms (shrinking process and ray tracing), yet they achieve a boost in processing time,
while also making the algorithm work for points whose positions are being refined, as it
occurs in SLAM.

e Zero set methods: Which use a distance function that gives each point in the space a signed
distance to the closest surface, thereby gaining the title of "implicit" surface representa-
tions). Different types of functions can be used: radial-basis functions [60], signed distance
functions [61], and truncated signed distance functions [62].

Signed Distance Functions (SDF) represent surfaces as the set of 3D points whose coordinates
zero out a given function. An SDF represents free space as positive values that increase
with the distance to the closest surface, while potentially occupied space is represented with
negative values.

To avoid volumes interfering each other, it is necessary to truncate the SDF to a truncation
radius around the boundary of the surface as detailed in [63]. Truncated SDFs (T'SDF) are
a useful implicit surface representation for dense reconstruction as they are relatively fast to
build, offer increased robustness to sensor noise and can be used to generate interpretable
meshes with high resolution [7]. TSDFs became popular with KinectFusion [7]; which used
a TSDF as a volumetric representation of the scene in order to achieve an accurate and
high resolution 3D reconstruction in real-time (using a GPU), while also being able to track
the camera with the built 3D model using a coarse-to-fine ICP algorithm. A voxel-based
representation is nevertheless a redundant way of defining continuous surfaces and empty
space, which limit the applicability of TSDFs to large scale 3D mapping. Nevertheless,
following KinectFusion, other works focused on expanding to larger scenes, such as Kintinuous
[64] (by using a TSDF ounly locally), and also managed to reduce the computational load [65]
(by using octrees) associated to SDF representations.
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There are other mapping representations that are difficult to classify using the labels above.
For example, RGB-D SLAM [66] uses surfels® [67], which are small planar surfaces with color, and
are an alternative to polygonal modelling or point clouds. Although Bylow et al. [68] show that
using TSDF-maps it is possible to reach the same level of accuracy as RGB-D SLAM. Alternatively,
dense reconstructions can be achieved on the level of objects. Salas-Moreno et al. [69] demonstrate
a SLAM system where landmarks are actually objects such as chairs and tables. Their system,
named SLAM++, uses prior dense models to represent the landmark objects in the map.

It is also interesting to see that Kriisi et al. [70] have tried to bypass the recovery of a dense
map, and instead considered using a raw point cloud, for path planning of a ground robot; therein
omitting a method to extract the topology of the scene, and opening questions on whether it is
really necessary to do so. Their approach nevertheless still requires a rather dense point cloud
provided by a LIDAR.

2.3 Structural Regularities

In the SLAM literature, it is well-known that adding high-level features in the optimization problem
leads to increased localization and mapping accuracy [71-74]. There are many types of high-
level features that can be used. Common features are lines [75, 76|, planes [77, 78|, vanishing
points [79, 80|, quadrics? [81,82], and even full 3D objects [69,83]. Each feature has its own
benefits and associated difficulties [84]. In our case, we will focus on detecting co-planar landmarks
by extracting potential planes, therefore, we will just review SLAM algorithms using planes.

Planes are coincidently the most common high-level feature used both for its simple parametri-
sation and descriptive power. Planar regularities are common in man-made environments: such as
in urban scenes with roads and buildings, or indoor scenes with corridors. Unfortunately, planes
are usually textureless, therefore, most often than not, SLAM algorithms working with planes rely
on RGB-D cameras, which use structured light to extract depth information. For this reason, while
we are using a standard camera, most of the literature we will review uses RGB-D cameras.

Weingarten et al. [85] presented one of the early works that used planes in the optimization
problem. They used an EKF approach for inference, which, as we have seen previously in § 2.1,
has the drawback that the computational cost increases quadratically with the number of variables
used, thereby limiting the approach to a few plane estimates. Nevertheless, the intrinsic limitation
of the EKF pushed some authors [86] to device methods to reduce the size of the state space by
collapsing redundant point features that could be explained instead by a plane. While subsequent
works still used an EKF approach [87-89], most recent works use instead a graph formulation
[74,90,91]. By using a fixed-lag smoother, we follow as well this last approach.

Besides the optimization framework used, SLAM algorithms using planes can differ on the
type of plane parametrization used. Parametrizing a plane is rather simple, but there are multiple
approaches to do so with their own benefits and caveats:

e Spherical parametrization. Lee et al. [71] use a spherical parametrization that uses three
parameters to describe a plane, which is the minimum number of parameters necessary.
These are the plane’s orientation given in altitude and azimuth (in spherical coordinates),
and the distance of the plane to the origin. Despite its common usage [85,87], this type of
parametrization suffers from singularities similar to the feared gimbal lock for Euler angles.
Singularities complicate the optimization problem when encountered.

3Surfel is an abbreviation for "surface element".
4Generalization of conic sections (ellipses, parabolas and hyperbolas) to higher dimensions.
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¢ Non-homogeneous parametrization (Normal and distance). Another common parametriza-

tion [77,92] consists in using four parameters: three to describe the plane’s normal and one to
define the distance of the plane from the origin. Since a plane only has three degrees of free-
dom, the normal and distance represent an over-parametrization of a plane. Unfortunately,
such over-parametrizations lead to a singular information matrix. Hence, a Gauss-Newton
optimization will fail (since we need to invert the information matrix), and a Levenberg-
Marquardt optimization would need to be used instead, which adds a regularization term
that would slow convergence speed.

e Homogeneous parametrization. The plane is just represented by an homogeneous vector
7 = (m,me,m3,m4)T € P in projective space [23]. This is as well an over-parametrized
representation.

e Minimal homogeneous parametrization. Kaess [93] presented an homogeneous plane
parametrization which is minimal, yet it does not present singularities. This parametrization
is therefore especially suitable for incremental solvers such as iISAM [27].

Similarly to Trevor et al. [92], we will be using a non-homogeneous parametrization for our
plane estimates. In our case, it will allow us to express the distance from a point to a plane
in a neat way, resulting on a mathematically simple jacobian, while also avoiding undesirable
singularities. This will result in an over-parametrization, but we will solve a constrained optimiza-
tion problem using the properties of manifolds (§ 3.1.7)to overcome the associated problems with
over-parametrizations.

Even if multiple methods might share the type of optimization framework used and the type
of plane parametrization, they might differ on the way planes are detected or associated. Trevor
et al. [92] uses a Joint Compatibility Branch and Bound (JCBB) technique for data association
as in [94]. To reduce the computational burden of plane detection, [78] proposed to do plane
tracking. Nevertheless, faster plane extraction algorithms were presented in [95] and [96] (using
RGB-D cameras).

While we are using a standard camera, by being able to extract 3D landmark information,
we can detect planes by observing the 3D structure instead of relying solely on 2D images of the
scene. We will nevertheless use simple 2D histograms over the set of mesh faces to detect the
orientation and distance to the origin of walls (assuming they are vertical) and a 1D histogram
to detect horizontal surfaces, thereby extracting the most common planes in urban and indoor
scenes. With this approach, we can also avoid expensive iterative plane fitting methods such as
RANSAC [97]. Histograms have been used in other works as well as an effective way to get rough
estimates of the underlying structure in a scene [98].

Concerning plane association, it is common to just compare normals and distances to the
origin between planes, and decide if both planes correspond to the same entity depending on the
difference between their normals and distances to the origin. This is the approach we will follow.
Other authors might add extra criteria for robustness, for example Hsiao et al. [91] presented a
plane association algorithm which also checks that the original plane should describe the points of
the new plane accurately.

Finally, using solely planes is difficult since the pose of the camera can be easily undercon-
strained if not enough planes are observed (at least three planes must be observed per pose). This
is the major problem in formulations such as the one from Kaess [93]. Nevertheless, [93] was even-
tually extended to work with visual odometry constraints [91], and later with inertial constraints as
well [74]. Points and planes were combined in [77] to also avoid underconstrained variables. In our
case, we will avoid such issues by always relying on points; planes will be only used as structural
information about the geometry of these points.

There are few works that ressemble nevertheless to ours in terms of the optimization problem
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they try to solve.

On the one hand, Hsiao et al. [74] is close to ours in that it uses inertial constraints while
using planes in the optimization problem. Our work instead does not encode planes as landmarks
that we observe, but rather as high-level constraints that provide information about the relative
position of the 3D point landmarks (in particular co-planarity constraints between these point
landmarks). This difference is natural; Hsiao et al. use a RGB-D camera that makes plane obser-
vations straightforward, while we use a standard camera that works best by extracting keypoints
and inferring sparse 3D landmarks. In this sense, our work is the first, to the best of our knowledge,
to use inertial and co-planarity constraints in the same optimization problem. Moreover, we seem
to be the first to have used structureless, inertial and stereo/mono reprojection constraints in the
same formulation; and, by induction, the first to use this formulation with co-planarity constraints
as well.

On the other hand, co-planarity constraints in SLAM have been investigated in a limited
extend, yet insightful way, in [73], and have been applied in multiple setups [71,99]. While [99]
formulated the co-planarity constraint between landmarks and planes on the image space because of
the scale ambiguity of monocular SLAM, we will formulate the co-planarity constraint geometrically
as in [71].

As an end note, our pipeline is versatile in that it can work on unstructured environments,
and does not rely on assumptions about the world (such as the commonly used Manhattan World
assumption [72]). Nevertheless, it is only capable to detect structural regularities of two types due
to its simple frontend: planes that are vertical, such as walls, and planes that are horizontal, such
as the floor, the ceiling or the surface of tables. Hence, if the scene has structural regularities of
this type, our approach will capture and encode them gracefully in the optimization problem, and,
if no structural regularities were to be present, it will downgrade to a classical VIO.



Chapter 3

Mathematical Formulation

The VIO algorithm we propose in this thesis shares the same structure than classical VIO pipelines.
In essence, it has two modules that work in a sequential manner:

(i) A backend that builds an optimization problem with the variables to estimate. In our case, we
will be using a state-of-the-art VIO backend, similar to [2], which we will extend to encode
a new set of constraints and variables necessary to add information about the structural
regularities of the scene. We explain in § 3.1 the mathematical formulation of these new
constraints and variables.

(ii) A frontend that processes the raw measurements from the sensors to extract meaningful
information about the state of the system and the scene. In our case, we are receiving a
pair of images from the stereo camera, as well as acceleration and angular velocities from the
IMU. In § 3.2, we explain how we process these measurements, and how we build a 3D mesh
to estimate the geometry of the scene.

3.1 Backend

A VIO algorithm tries to infer the state of a system, such as a robot, equipped with two sensors:
a camera and an IMU.

It is common in the literature to define as the state of the robot the actual position and
orientation of the IMU sensor (mainly to avoid unnecessary transformations between frames of
reference) [2|. In our case, we further simplify the formulation by assuming that the IMU frame
and the camera frame is fixed and that we know it a priori. The actual transformation between
IMU and camera is typically found through calibration, using for example Kalibr [100].

We define the state of the system in a standard way, following the same notation and formu-
lation of [2], which we will later extend to incorporate structural regularities.

13
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3.1.1 State of the system

If we denote the set of all keyframes up to time t by K, the state of the system x; at keyframe
i € K4, is described by the IMU orientation (R;), position (p;), velocity (v;) and biases (b;):

X = [Riapi7vi7bi]7 (31)

where the pose (R;,p;) € SE(3), v; € R?, and b; = [bY b¢] € R®, where b?,b? € R? are the
gyroscope and accelerometer bias, respectively.

At this point, we combine two different ways of defining the map of the scene in the state
vector. Let us start first introducing the most classical way of representing the map in § 3.1.1. We
will then proceed with the other more recent, and efficient, way in § 3.1.1. Finally, in § 3.1.1, we
formulate our combined state vector, which we will use for the remaining of the thesis.

Classical state formulation

Typically, the way the map is represented in a landmark-based VIO pipeline is by simply adding
the 3D positions p; € R? of each landmark ! € £; in the state vector; where we define as £, the
set of all the landmarks seen up to time ¢. This results in a state vector of the following form:

Xt = {Xiv pl}iEK:t,,leﬁt (32)

For example, OKVIS [3] formulates the state vector similarly to eq. (3.2).

Structureless state formulation

Alternatively, one can use a structureless approach, where the landmarks are not included to the
state vector. This is convenient because the optimization’s complexity increases with the number
of variables to be estimated. Hence, using a structureless approach avoids optimizing over the
landmarks, thereby reducing the time to converge to a solution. In § 4.4 we will see the actual
impact in computational performance of one approach over the other.

Mathematically speaking, this simplification is possible through the Schur complement trick,
which we restrain from explaining here by referring the reader to [2]. This approach is for example
used in MSCKF [15] to make their filtering based optimization tractable.

Combined state formulation

In our approach, we will also estimate the 3D positions p;, but we will only do so for a subset A;
of all landmarks £, visible up to time ¢: {p;}ien,, where Ay C £;. We will avoid optimizing over
the rest of the landmarks £; \ A; by using a structureless approach as detailed in [2, Sec. VII].

The set A; corresponds to the landmarks which we consider to satisfy a structural regularity,
such as co-planarity between landmarks. We hence use a non-structureless approach for these
landmarks, because we will need the explicit landmark variables to formulate contraints between
them. The resulting state vector remains as eq. (3.2), but the modelled landmarks are on A,
instead of L;:

X = {Xi7 Pl}ielct,leA,, (3'3)
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State vector for structural regularities

Finally, we will also use the subset of landmarks A; to estimate planar surfaces. We define the set
of planes detected as II;.

Therefore, the variables to be estimated comprise the state of the system {x;};cic,, the land-
marks which we consider to satisfy structural regularities {p; };ica,, and the planes {m; }rcm,. The
variables to be estimated at time ¢ are:

X = {Xi, P1, T bicxc, ten, mem, (3.4)

Landmarks are represented in homogeneous coordinates as in [101, Ch. 3.4], in order to allow
seamless integration of close and very far landmarks: p; € R*. Planes are parametrized using a
normal n € $?! and distance to the origin d € R.

Nevertheless, we are taking a fixed-lag approach to the optimization problem. Therefore, we
limit the estimation problem to the sets of variables that depend on the keyframes in a temporal
window of size A;. Hence, we limit the set KC; to all keyframes from time ¢ — A; to ¢t. Conversely,
A; and II; will contain the sets of landmarks and planes visible from the set of keyframes ;. To
avoid cluttering the notation, we skip the dependence of the sets K, A; and II; on the parameter
Ay, but we nevertheless keep the time dependence explicit by the index ¢: K;, A; and II;.

By reducing the number of state variables to a given window of time A;, we will make the
optimization problem tractable and solvable in real-time.

3.1.2 Measurements

The input for our system consists on measurements from the camera and the IMU.

We denote with C; the image measurements at keyframe i. The camera can observe multiple
landmarks /, hence C; contains multiple image measurements z!, where we distinguish the land-
marks that we will use for further structural regularities z'* (where the index c in I. stands for
constrained landmark), and the landmarks that will remain as structureless z\* (where the s in the
index of I, stands for structureless).

We denote with Z;; the set of IMU measurements acquired between two consecutive keyframes
1 and j. Therefore, we define the set of measurements collected up to time ¢ by Z;:

Zy ={Ci, Lij }i.5)ex. - (3.5)

3.1.3 Maximum a Posteriori Estimation

We want to estimate our state X, as defined in eq. (3.4), using a set of measurements Z;, defined
in eq. (3.5). Recovering the actual values of X; is difficult due to noisy measurements, and we
must content ourselves with recovering the probability of having X; given the measurements Z;.
Therefore, we want to estimate the posterior probability of the state, given the visual and inertial
measurements:

p(Xt|Zt)~ (3~6)

18?2 = {(na,ny,n2)" | |nl =1}
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Applying the Bayes rule, we obtain:

(2| X)) p(Xr)

T

P(Z4| &) p(Xo), (3.7)

where we make use of the prior information on the initial state p(Xp) and we absorb the
normalization factor over the measurements because it will not influence the result.

We use an independence assumption among the measurements to factorize eq. (3.7) into:

P(Z:|X:)p(Xo ) ] »(CiTi51x)
7, Ke
e l l (3.8)
I »@ilxixy) IT 11 otz o) T )=
(i,j)GICt 1€y l.€C, ls€C;

With slight abuse of notation, we write [, € C; or [, € C; when a landmark [, or [, respectively,
is seen at time ¢ by the camera.

In practice, we are not actually interested in the full probability density over the states X%,
but rather on a single estimate of what A}’s most likely value is. To this end, we can try to find
the X; that maximizes the posterior density p(X;|Z;).

The estimator that maximes p(X;|Z;) is named mazimum a posteriori (MAP), and we will
refer to it as XMAL:

xMAP argn}éafxp(XAZt) (3.9)

Using the bayes rule in eq. (3.7), we have:

XMAP — g mﬁXp(Zt\Xt)P(Xo) (3.10)

Maximizing eq. (3.10) is nevertheless not as convenient as minimizing the negative logarithm
of the posterior probability, which simplifies to eq. (3.11) for zero-mean Gaussian noise:

AMAP = argmin —In(p(2,|X)p(X0))
. 2y (3.11
—argminfroll, + 3 ez, + {2 A

(4,5)EK i€y 1.€C;

rCﬁL Clb

where r represent the residual errors associated to the measurements, and 3 the covariance
matrices.

We present now the optimization problem in eq. (3.11) using the expressiveness of probabilisitic
graphical models.

3.1.4 Factor Graphs

A factor graph is a bipartite graph F = (U, V,E) with two types of nodes: factors ¢; € U and
variables z; € V. Edges e;; € £ are always between factor nodes and variables nodes. The set
of variable nodes adjacent to a factor ¢; is written as N(¢;), and we write X; for an assignement
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to this set. With these definitions, a factor graph F' defines the factorization of a global function
P(X) as

P(X) = H 6i(X5). (3.12)

where dependence relationships are encoded by the edges e;; of the factor graph, with each factor
¢; a function of the variables X; in its adjacency set N (¢;).

We will use the notation detailed in table 3.1, and proposed in [102], to present the factor
graph.

Table 3.1: Edges and Node types

Type Symbol
Variable z; @
Factor ¢; | o

¢
Factor graph edges @

Classical VIO factor graph

As an example of a common factor graph, we present in fig. 3.1 the one used in typical VIO
pipelines, where the posterior is defined as:

p(Zi|X)p(Xo) =p(Xo) T[] p@ilxix) TT ] pl=clxis o)

(i,5)€K: i€t 1.€C; (3 13)
=g¢o(x0) [[ drmvxix;) [T T & o1.)
(i:j)EK:t i€kt leC;

®0 dPTMU dTMU
| | /930\ L @ l €2

1

o) b P o) o)
b

Figure 3.1: Typical VIO factor graph.

The factor graph in fig. 3.1 has the following factors:

e Pre-integrated IMU factors ¢ypry: we use the on-manifold pre-integration theory of Forster
et al. [2] for the IMU factors.

e Projection factors ¢;: we use the standard reprojection error, here for a single image mea-
1 . .
surement z,° the residual is:

v = 7 — (Ri, pi, p1), (3.14)
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where p; € R? denotes the position of the /-th landmark, and = (-) is a standard perspective
projection.

Structureless VIO factor graph

The factor graph of a structureless VIO does not include landmarks as variables (fig. 3.2), as it
uses instead a residual function rg:, that does not depend on the landmarks’ 3D positions. We

refer to [2] for the mathematical mecanisms to re-formulate the roi. such that it does not depend
on the landmark’s position. Note that in fig. 3.2, we omit the prior on zy to simplify the factor
graphs from now on.

¢Structureless ¢Structureless

Figure 3.2: Structureless VIO factor graph.

Combined VIO factor graph

Our new formulation combines both projection and structureless factor graphs into the graph
shown in fig. 3.3. This approach will allow us to add structural regularities between the landmark
variables, while enabling fast inference times by conserving structureless factors for landmarks
which are not subject to structural regularities.

We will denote the VIO solving the factor graph in fig. 3.3 as a Structureless and Projection
(S + P) pipeline for the remaining of the thesis.

¢Structureless ¢Structureless

Figure 3.3: VIO factor graph combining both Structureless and Projection factors (S + P).

VIO factor graph with structural regularities

One of the structural regularities we want to detect and encode is co-planarity between landmarks.
To do so, we first extract potential planes from the scene and we encode them in the opimization
problem as a new set of variables {7 }rem,, using the same notation as in § 3.1.1. Then, we can
add regularity constraints between landmarks and planes, denoted by ¢r,, to enforce co-planarity
between the landmarks.
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Figure 3.4 shows the regularity factors ¢z, between landmarks and plane estimates.

¢Structureless ¢Structureless
| |
PIMU PIMU
Zo l x1 » T2
¢ A o ¢ m u ¢ ¢
¢R1 d”Rl R1

Figure 3.4: VIO factor graph combining Structureless, Projection and Regularity factors (S + P
+ R). The factor ¢z, encodes relative constraints between a landmark /; and a plane .

The factor graph in fig. 3.4 has the following types of factors:

Pre-integrated IMU factors: as detailed in [2].

Structureless factors: as detailed in [2].

Projection factors ¢;: classical observation model for landmarks eq. (3.14).

Regularity constraints ¢,: to be defined in § 3.1.5 below.

A regularity factor ¢, embeds a probability distribution that depends on a landmark and
a plane. There is no measurement involved. Instead, the regularity factors ¢, encode relative
constraints between landmarks and planes in the optimization problem.

Above we are not taking into account other constraints such as parallelism/orthogonality
constraints between planes, which are typical regularities in an indoor environment. Hence, another
interesting formulation is the one depticted in fig. 3.5. Where we are enforcing constraints between
planes via the factor ¢r,. In this case, there is also no measurement involved, and we are simply
enforcing relative constraints between planes.

The maximum a posteriori corresponding to the factor graph in fig. 3.5 results in:

XtMAP:argH;l(ithI‘o”zzo
+ Z HI'L-j ;ij
(1,5)EX:
2 2
#3203 el + 3 el }
i€k, lecg tecy o
2
F Y ol e,
l.EA; weIl, i
+ Z (5(71'17772) ”I'RzH;RQ ’
(771,7r2)€Ht

where §(l., ) is the data association term for landmark to plane association, and §(my,72) is the
term for plane to plane association. Both functions return a value of 1 if the given arguments are
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linked in the factor graph (returns 1 only once to avoid duplicate factors), 0 otherwise. We explain
in § 3.2.3 how the data association is actually done.

In the following § 3.1.5, we specify the exact formulation for the regularity factors ¢, and

DR, -

PStructureless @Structureless

Figure 3.5: VIO factor graph combining Structureless, Projection and Regularity factors (S + P
+ R). In this graph we add the factor ¢, to enforce relative constraints between planes.

Notice that only landmarks which could be effectively associated to a planar surface are used
for regularization, the ones that could not be associated with a plane are kept as structureless
factors. In practice, this is not exactly the case. Since we have to ensure that when adding
a plane variable it remains fully constrained, we have to be especially careful with degenerate
configurations. For example, given three landmarks on a plane, if these landmarks are aligned
in a line, then a plane defined by these landmarks would be underconstrained, leading to an ill-
posed linear system. To avoid this, we proceed in a rather naive but practical way by requiring
that at least a given number of landmarks are associated to a plane before adding the plane in the
optimization problem. This nevertheless creates the scenario where there might be some landmarks
in the optimization problem that are constrained by projection factors, yet they are not constrained
by any regularity factor.

3.1.5 Regularity constraints

¢Rr,: Constraints between landmarks and planes

Let us take a toy example for the planarity constraints. Point-clouds of triangulated landmarks
in a typical VIO pipeline are usually scattered around the real surfaces they represent. Take a
textured wall for example, a VIO pipeline will be able to triangulate the 3D points of this wall, but
these 3D map points will not lie on a plane due to noise in the measurements. These landmarks
will be distributed (ideally in a Gaussian way) around the plane primitive as in fig. 3.6.
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Landmark p;
o

o %1 C
L JZL Plane 7

Figure 3.6: A possible distribution of 3D landmarks p; obtained from triangulation. The distance
from p; to the plane 7 is represented by d;.

Assuming we have been given the association of points to planes, we can use different metrics
to enforce planarity constraints for these landmarks.

1. A simple planarity constraint would consist in taking the sum of the distances from each
landmark p; to its corresponding plane w = (my, w2, 73, 74). The cost function for a single
landmark p; would then be:

4. (m, pr) = [TLZ o a7 (3.16)

«/W%Jrﬂ'% +7r§

The optimal landmarks p; would then minimize the following optimization problem:

N
p* = argmin Z d, (m, pr) (3.17)
=0

and in case we want to optimize over the plane parameters as well:

N
T, pt = argminZdL(w,pZ), N >2 (3.18)
P =

In this case, we need at least 3 points to avoid an infinite number of solutions, therefore
N > 2. We have also to be careful to avoid degenerate configurations such as the one where
all points lie on a single line, which would allow for an infinite number of solutions.

If we parametrize the plane 7 as having a normal n and a distance to the origin d. The

normal of the plane being n = M and the distance d = ———4 We
i+ 75+ N
have the following optimization problem:
N
* 7% * : 2
n*,d* p* = argmmZdJ_(n,d,pl), st |n||"=1, N>=2 (3.19)
n.d,p 1=0
where we re-define d, (n,d, p;) as:
2
di(n,d,p)=||n" - p—d| (3.20)

Also, we need to make sure the optimization leads to a set of plane parameters which indeed
represent a plane. In other words, the normal of the plane should be of unit norm ||n||2 =1.
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¢Prior ¢Prior ¢Prior

Figure 3.7: Minimalistic factor graph for the cost function of Eq. 3.19: three landmarks [;, with
given prior factors ¢p,ior, and a plane 7y.

Ezxample: A minimalistic factor graph representation of the cost function 3.19 would involve
three landmarks and a plane, as shown in fig. 3.7. Notice that prior factors ¢p,ior are added
to the landmarks to avoid having under-constrained variables.

To implement the factors ¢, in GTSAM [103], we must first define what is a plane. For
this, we have used a previous implementation from [92], where they define an OrientedPlane3
by using a normal/distance parametrization of a plane. Where the normal is an element of
the ordinary unit 2-sphere 5? = {z € R3: ||z| = 1}2.

Once we have defined what a plane is, we need to create a factor class which will take as
parameters the variables involved, in our case a landmark and a plane, and use them to
compute the error, as well as the jacobians of the error with respect to the variables. In this
case, the error between the 3D landmark p and the plane w = (n, d) corresponds ton'-p—d,
and we are left finding the Jacobian of the error. Unfortunately, since the normal lives on
the two-dimensional manifold S?, we cannot directly optimize over it. Instead, we need a
way to know how to move in the neighborhood of our initial estimate of the normal. Using
a vector addition + to update a normal, as if it was a simple vector, would likely result in
an element which is not a normal as it will not lie in the $? manifold. In addition, we know
that normal vectors have only two degrees of freedom, not three, because of the unit norm
constraint.

For a normal vector in the unit sphere, a good candidate for two-dimensional, vector-valued
increments can be obtained from the tangent space T},,S?; defined as the plane orthogonal
to the normal vector n on the sphere S?. Mathematically, we can define T}, S? as all vectors
tangent to S? at n:

TnyS? = {€ € R¥nTE =0} (3.21)

If we parametrize the error using the retraction R, (v) : Tp,, 5% — S? from the tangent space
T,5? € R? to S? at the linearization point m, we arrive to an error formulation as follows:

e(n,d)=n" -p—deev,d =R,(v)"-p—d (3.22)

Now, we can define how to move around the normal n by taking the jacobian of e(v, d) with
respect to v € R? and d € R.

By implementing the factor graph defined in fig. 3.7 and optimizing using Gauss-Newton,
we obtain the following results in GTSAM, where we called BasicRegularPlane3Factor the
regularity factor ¢r,:

Factor Graph:
size: 6

Factor O0: PriorFactor on 1

2Named Unit3 in GTSAM.
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prior mean: [0, O, 1]°
isotropic dim=3 sigma=0.1
Factor 1: PriorFactor on 2
prior mean: [1, O, 1]’
isotropic dim=3 sigma=0.1
Factor 2: PriorFactor on 3
prior mean: [0, 1, 1]’
isotropic dim=3 sigma=0.1

BasicRegularPlane3Factor Factor on point 1, 4
isotropic dim=1 sigma=0.5
BasicRegularPlane3Factor Factor on point 2, 4
isotropic dim=1 sigma=0.5
BasicRegularPlane3Factor Factor on point 3, 4
isotropic dim=1 sigma=0.5

Initial Estimate:

Values with 4 values:

Value 1: (N5gtsam6Point3E) [0, 19, 3]°

Value 2: (N5gtsam6Point3E) [-1, 2, 2]’

Value 3: (Nbgtsam6Point3E) [0.3, -1, 8]’

Value 4: (N5gtsaml4OrientedPlane3E) : 0.107833
0.215666
0.970495
0

Initial error: 21577.9
newError: 0.208035
newError: 0.00477048502535
newError: 4.07647603461e-10
newError: 5.42341872339%e-31
newError: 0

Final Result:

Value 1: (N5gtsam6Point3E) [0, O, 1]°
Value 2: (N5gtsam6Point3E) [1, 0, 1]°
Value 3: (N5gtsam6Point3E) [0, 1, 1]°

Value 4: (Nbgtsaml4OrientedPlane3E) : 2.5972326623e-17
1.38818376841e-17
1
1

In the above example, the landmarks are anchored by the priors such that they lie on a plane
with a normal pointing in the z direction and at a height of 1 meter. The plane instead is
not directly constrained by a prior but by the three regularity factors ¢x,.

Before the optimization, we set as initial estimates for the landmarks to be scattered in the
world. Nevertheless, the plane’s initial estimate is set to be relatively close to the optimial
value. The actual initial values can be seen in Initial Estimate. For the OrientedPlane3,
the first three numbers represent the normal’s parameters, while the last one is the distance.

After the optimization, all landmarks are situated right where the priors suggest that the
landmarks should be, while the plane updates its parameters to pass through the landmarks,
up to numerical errors, as can be seen in Final Result.

2. Alternatively, co-planarity constraints can be defined in image space, which is especially
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PR,

suitable to avoid the scale ambiguity in monocular visual SLAM [99]. Since in our case the
scale is observable, we did not need to proceed this way. Nevertheless, it would be interesting
to explore what are the effects of using one against the other.

: Constraints between planes

Another set of regularities are the ones that we can define between estimated planes themselves.
If we parametrize the planes by their normals and distances to the origin, it is straightforward to
define these error metrics.

Below we detail the possible metrics to be used. Unfortunately, for this thesis, we will not en-

force these regularities in the factor graph as they require a powerful frontend capable of extracting
plane to plane constraints while ensuring that no false positives are added.

1. Parallelism: minimizing the difference between the normal vectors n of both plane estimates

#t; and 7; should encourage the two planes to be parallel. Hence, the factor ¢r, could
encode the following residual (where the word residual is misleading because there is no
proper measurement):

r)= s, —na 5, (3.23)

where ¢ and j correspond to the indices of the planes which we believe are parallel, the
covariance matrix being isotropic ;.

In order to find the Jacobian of Eq.3.23, we need to define the same error metric using instead
the retraction from tangent space to the unit 2-sphere, Ry, (v) : Ty, S — S

r)(v1,02) = [ R, (v1) = Rans (02)]5, (3.24)

Now, we can calculate how to move in the tangent space in order to reduce the error metric
while keeping the constraints on the norms of the normals.

One might ask at this point, why we do not define the error metric in tangent space instead
of doing it in R3. Where the error would be defined by ¢, the R? vector in tangent space.

Tangent space metric corresponds to the geodesic distance (technically, it is called ortho-
dromic distance, which is the shortest distance between two points on the surface of a sphere),
while the one in R® corresponds to the chordal distance.

The geodesic metric corresponds to the projection of one normal to the tangent space spanned
by the other normal. The error is therefore defined in R?, instead of R? as in eq. (3.19).
Previous work on geodesic and chordal metrics for rotations has been done, and showed that
both formulations are tightly related [104].

. Parallelism + separation: A more general and expressive formulation of parallelism would be

to allow for setting distances between planes, the cost function of eq. (3.23) is then augmented
to:

tyn = [lna, = na, |, + lde — da, = Ayl (3.25)

where A;; corresponds to the measured distance between planes ¢ and j in T. Co-planarity
then becomes a particular case where A;; = 0.

Nevertheless, in our case, we will potentially detect sets of landmarks which should be co-
planar, and then initialize a plane estimate which links to these landmarks using regularity
constraints of type R;. Once we do this for two or more sets of landmarks, we can apply Rs
regularity constraints.
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Figure 3.8: Minimalistic factor graph for the cost function of Eq. 3.23: a plane, with prior factor
@prior, and another plane constrained to a landmark ¢, (with a prior itself ¢pior) and the first

plane ¢r,.
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Figure 3.9: Minimalistic factor graph for the cost function of Eq. 3.25: a plane, with a prior factor
Pprior constrained to another plane.

3. Orthogonality: for orthogonal planes we would have:

T 2
ri = |nans |, (3.26)
Unfortunately, this allows for multiple solutions. Fixing one of the normals, all the vec-
tors generated by rotating a vector perpendicular to this normal would minimize the cost,

therefore allowing for multiple planes to solve the problem.

4. Orthogonality -+ separation: a single solution appears if we measure as well the difference
between distances to the origin of each plane (A;;).

ria = |[nfna I, + e~ de, - 2415, (3.27)

There are also degenerate configurations, for example if the planes pass through the origin,
then the distances are always zero, and we have many solutions again.

5. Another extra generalization would be to allow any angle between planes, where the dot
product between normals would be used to measure the difference against the cosine func-
tion of the angle. Nevertheless, it is difficult to measure the angle between planes besides
orthogonality and parallelism, at least when using an RGB camera.

rg = ||nk ns, — cos(@)H;I (3.28)

3.1.6 Robust cost functions

The optimization should take into account that certain observations might be outliers — such as
when wrongly assigning a new observation to an earlier observation § 3.2.3 — and consequently
can corrupt the estimated variables. This is especially problematic in least-squares optimization,
which is particularly sensitive to outliers.

A robust cost function has the ability to reduce the influence of outliers. They achieve this
property by reducing the cost (residual cost) associated to large errors, compared to a quadratically
increasing function.
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Therefore, instead of minimizing the square of the residuals ;" , = r?, we minimize another

i=1
function of the residuals vazl = p(ri), where p(-) is ideally a robust function to outliers.

GTSAM [103] provides the option to use robust error functions in the factors. We have
considered three cost functions for three types of factors. The factors that we consider are: point-
plane regularity factors and projection factors. The cost functions that we tested are:

(i) L2, i.e. the standard least-squares error function defined as 2.

ir? for |r| <4,

105
5(Ir| — 39), otherwise.[ |

(ii) Huber loss: defined as ps(r) = {

A1 -1- 2By f <
(iii) Tukey loss: defines as p.(r) = 5¢ (L= {1 = (/e for r] N “
(c?/6), otherwise.
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Figure 3.10: Curves for different cost functions. Source: web.as.uky.edu/statistics/pbreheny

Figure 3.10 shows the slope of these functions, and fig. 3.11 shows the actual effect of using
the robust cost functions that we are considering on a simple linear regression problem where some
of the data points are outliers. It can be seen that while the least-squares error function is largely
influenced by the outlier data points, the Huber error function better fits the inlier data. On
the extreme, the Tukey error function is even capable of completely ignoring outliers, due to its
constant term for errors larger than its tuning constant c.

Decreasing the tuning constants § and ¢ make the error functions more robust to outliers, but
the efficiency is lower when the errors are normally distributed. Where we define the efficiency in
an informal way: in the case that there are no outliers in the data and it is corrupted by Gaussian
noise, an efficient estimator is expected to have an approximately normal distribution (we refer the
reader to [106] for details).
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Figure 3.11: Linear regression over data with outliers when using different cost functions. Source:
web.as.uky.edu/statistics/pbreheny

The tuning constant should be chosen to have a high efficiency, yet be robust to outliers.
For the Huber norm the tuning constant is recommended to be £ = 1.3450 to have the highest
efficiency, and for Huber ¢ = 4.68510, where o is the standard deviation of the errors.

In practice, we need a good estimate of the standard deviation of the errors to find the right
tuning constants. Nevertheless, it is recommended to use a robust measure of spread instead of
the standard deviation of the errors. For example, using the median absolute residual (MAR)
6 = MAR/0.6745 [107], similarly to what the authors of PTAM [108] used.

In our case, we find the right tuning constant by running the VIO multiple times with different
parameters for the standard deviation of the errors, the type of error function, and different values
for the tuning constant (in the neighborhood of the median of the standard deviation of all the
residuals). We proceed in this way for the two types of factors we consider: regularity and projection
factors. Table 3.2 shows the results after several of these evaluations for a subset of tested values
and just for the regularity factors. We use boxplots to observe the performance of the pipeline
depending on the noise sigma (o) for the given factor, the type of norm used, and the tuning
constant (which is given proportional to the actual o). The boxplots show the maximum, the
minimum, the median and the first and third quartile of all Absolute Position Errors at each pose
of the camera compared with the ground-truth, more details about this error can be found in
§ 4.2.2. We can see that using a Huber or Tukey robust error function might lead to better results
than using an L-2 norm.

3.1.7 Optimization

The optimization problem formulated in eq. (3.15), corresponding to the factor graph in fig. 3.5,
can be solved in an incremental and efficient manner by using iISAM2 [29]. iSAM2 makes use
of a Bayes Tree to perform a fast incremental update of the square-root information matrix by
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Table 3.2: Absolute Pose Error depending on Noise Model, Noise Model Parameter, and Noise
Sigma for Point-Plane Regularity factors. The VIO also uses Structureless, Projection, and Regu-

larity factors (S + P + R).

Norm Type Norm Parameter [xo] APE translational error w.r.t. Regularity Noise Sigma (o)
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reusing previous computations. The Bayes tree representation allows relinearization of a small set of
variables, therefore providing a boost in efficiency while keeping the sparse structure of the problem.
Unfortunately, since we are adding multiple constraints between variables, we are contributing to
making the optimization problem less sparse, which negatively affects the optimization convergence
time, as we will se in § 4.4.

3.2 Frontend

Our frontend has the same components than a keyframe-based indirect (extracts sparse keypoints)
visual inertial odometry pipeline, but it also incorporates a module to generate a 3D mesh, and

another one to detect structural regularities from the 3D mesh. Therefore, our frontend consists
of:

1. Keypoint detector: we use a Harris keypoint detector [109].

2. Feature tracker: we use an iterative Lucas-Kanade method with pyramids [110]. We also use
RANSAC to discard inconsistent tracked keypoints [111].

3. Keyframe selector: which selects a subset of images for further processing (called keyframes)
that are expected to provide better motion information than consecutive frames, similarly
to [3].

4. Keyframe to IMU synchronization: visual and inertial information need to be synchronized
to be fused accurately in the optimization problem.

5. 3D Mesh generator: uses the output from the keypoint detector to triangulate features and
construct a 2D mesh. This mesh is then projected in 3D, and filtered to remove faces of the
mesh that do not represent an actual surface.

6. Regularities detector: detects planes from the 3D mesh, and does data association between
planes and landmarks, and between planes in the optimization problem and newly detected
planes.

Except for the 3D Mesh generator and the regularities detector, we use a rather standard
approach for the rest of the modules. The reader may refer to the references given above for more
details.

3.2.1 3D Mesh generation

Building a consistent 3D Mesh of the environment using a sparse point cloud from a SLAM system
is difficult because:

e The 3D positions of the landmarks are noisy, and some are outliers.
e The density of the point cloud is highly irregular.
e The point cloud is morphing by removing and adding points, and the points that remain are

also changing positions at each iteration.

Therefore, we avoid performing a 3D tetrahedralisation directly from the sparse 3D land-
marks, which would require expensive algorithms such as space carving, to extract meaningful
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surfaces. Instead, we perform a triangularisation on the keypoints in the image, and project the
2D triangulation in 3D, resulting in a 3D mesh at a fraction of the computational cost of 3D
tetrahedralisation.

This approach does not come without caveats, as we are not yet solving any of the issues
raised above. To solve the first issue we will need to remove outliers in a post-processing step. For
the second, there is not much we can do. And for the third, while there are works that present
interesting approaches for incremental mesh reconstruction [59], these are meant for 3D Meshes,
so we will need to process the incremental part from a 2D perspective. Some algorithms use the
mesh in a per-frame basis instead of expanding the mesh incrementally [11,51,112]. Nevertheless,
we want to enforce structural regularities on possibly all landmarks that are currently present in
the optimization problem.

To achieve this we will need to propagate the 3D mesh both temporally and spatially. We define
temporal propagation of a mesh as the process by which the mesh is updated when the positions of
the 2D keypoints, and therefore the positions of 3D points are updated. Similarly, we define spatial
propagation of a mesh as the way the mesh is updated when new keypoints and thereby landmark
positions appear; or when keypoints are removed; or when landmarks are marginalized from the
optimization problem. Note that the last two cases can occur independently: it can happen that a
keypoint is no longer tracked in the current image, but its corresponding landmark is still present
in the optimization problem; and conversely, it can happen that the landmark is marginalized out
of the optimization problem, while the keypoint is still being tracked in the current frame. We
define these concepts ourselves as we could not find similar terminology in previous literature.

Below we present the process to go from 2D points in the image to a 3D Mesh in space, and
its temporal and spatial propagation.

Keypoint Detection and Tracking

Figure 3.12 shows the keypoints detected in the image as green squares, as well as the feature
tracks as green lines. The tracks are shortened to the previous observation of the keypoint to
avoid cluttering the image. Red crosses with yellow circles represent keypoints that were wrongly
tracked and thereby classified as outliers by RANSAC. We then use the extracted keypoints for
triangulation.

2D Delaunay Triangulation from Sparse Keypoints

Amongst all the keypoints that are successfully tracked, we discard keypoints that do not have
a 3D landmark associated. This is because we use the 3D position of the landmarks to project
the mesh in 3D, as explained in § 3.2.1. We also discard those keypoints that do not have a valid
stereo correspondence. Figure 3.14 shows as blue dots the keypoints used for triangulation; all the
discarded keypoints, either because they lack an associated 3D landmark or because they do not
have a stereo correspondence, are represented by red dots.

Figure 3.13 shows an schematic representation of which keypoints are used for 2D Delaunay
triangulation and which keypoints are discarded. In particular, only those keypoints which have a
stereo correspondence and have an associated 3D landmark are considered valid.

Using the valid keypoints in the image, we compute a 2D Delaunay triangulation as shown in
fig. 3.14. Mathematically, a Delaunay triangulation for a given set of points is a triangulation such
that no point is inside the circumcircle of any triangle.
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Figure 3.12: Keypoint detection and tracking on image. Green squares represent successfully
tracked keypoints, with their previous location pointed at by a green line. Red crosses with yellow
circles correspond to keypoints that were not tracked correctly (RANSAC’s outliers).

The Delaunay triangulation maximizes the minimum angle of all the angles of the triangles
in the triangulation; thereby avoiding triangles with one or two extremely acute angles (silver
triangles). Since we want to promote triangles that represent planar surfaces, this is a desirable
property, as it will result in near isotropic triangles that cover a good extent of a potentially
planar surface. Silver triangles instead, are typically long and thin, so they do not provide much
information about the planarity of the underlying surface.

However, the Delaunay triangulation does not necessarily minimize the length of the edges.
Which will potentially lead to large triangles that cover an unreasonable portion of the image. We
can nevertheless easily detect and discard these triangles, as explained in § 3.2.1. Similarly, while
the Delaunay triangulation reduces the number of silver triangles, there will still be some that are
still present, and that we will need to deal with.

2D to 3D Mesh Projection

With the newly obtained triangulation from keypoints having a corresponding landmark, it is
possible to simply extrapolate the triangles obtained in 2D connecting triplets of keypoints to
triangles in 3D connecting the corresponding triplets of landmarks, as shown in fig. 3.15.

Mesh Propagation

Concerning mesh propagation:
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Keypoint with no right correspondence,
but landmark in time-horizon.

Keypoint with right correspondence,
but landmark not in time-horizon.

Keypoint with right correspondenc'e“"
and landmark in time-horizon. .-~ .-~

Figure 3.14: Delaunay triangulation on successfully tracked and triangulated keypoints, with valid
stereo correspondence (blue dots). Red dots represent two types of keypoints: (i) keypoints with
valid stereo correspondences that were not tracked in the previous keyframe. (ii) keypoints that
were successfully tracked in the previous keyframe, but have no valid stereo correspondence.
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Figure 3.15: 2D to 3D Mesh projection. The rectangle in the center of the figure corresponds to
the 2D Delaunay triangulation (in green) projected on the frustum of the camera; the 3D Mesh is
represented by the grey triangles.

e Spatial propagation, or what to do when new keypoints appear and/or old ones disappear.
Unfortunately, most of the keypoints’ positions on the 2D image change each time the camera
moves. Therefore, using an incremental 2D Delaunay triangulation with the expectation of
reducing computational cost does not seem a viable approach, as we would incurr the cost
of bookkeeping which keypoints have changed pixel positions, which have been added and
those that have been removed. Hence, we will be computing a 2D Delaunay triangulation
from scratch over the keypoints of the current frame.

Alternatively, we could have kept the original triangulation between keypoints of the previous
frame on the current frame, potentially breaking the triangulation’s Delaunay property. We
would thereafter remove the edges linking a keypoint which is not tracked anymore and
perform a Delaunay triangulation for the new keypoints (and its neighbours). This would
result in an hybrid triangulation, with some subset of triangles having the Delaunay property
while the triangulation as a whole would not.

e Temporal propagation, or what to do to with the 3D mesh when a new frame — with an updated
2D triangulation — is available, and when old landmarks disappear from the optimization’s
time-horizon.

— A new 2D triangulation is available: in this case, since we are keeping track of which
keypoint is associated to each landmark, we can convert all the triangles of the 2D
triangulation to 3D mesh faces, while avoiding to duplicate faces.

More specifically, the 2D triangulation is stored as a list of triplets of keypoints: a n x 3
matrix, where each row contains the ids of the vertices (the keypoints) of a single triangle.
The 3D mesh is stored in a similar way: as a n x 3 matrix where the ids correspond
instead to the landmarks’ ids. Therefore, after calculating the 2D triangulation matrix,
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it is straightforward to build the corresponding 3D mesh matrix, by just changing the
keypoints ids for corresponding landmark ids.

The problem comes when appending this new 3D mesh to the previous 3D mesh. As
we said before, we are not just keeping a 3D mesh in the current frame, but one that
spans the whole optimization’s time-horizon — which potentially has multiple frames,
and certainly multiple landmarks.

When the 2D Delaunay triangulation is performed from scratch, some rows of the matrix
storing the 2D triangulation will be the same as the previous matrix (some triangles are
still using the same triplets of keypoints, and thereby the same triplets of landmarks).
Therefore, we will update the old global 3D mesh by appending the new local 3D mesh
on the current frame, but making sure we do not add duplicated faces to the mesh.

— Old landmarks disappear, as they get marginalized from the optimization’s time-horizon:
in this case, we remove any row in the 3D mesh matrix that contains the offending
landmark id. In this way, we keep the mesh anchored in the time-horizon of the opti-
mization problem, which bounds the memory usage and the computational complexity
of the problem. This is not without problems, since the removed landmark might have
been at the center of a wall for example, thereby leaving a hole when surrounding faces
of the mesh are deleted. While we did not attempt to solve this issue, the problem
usually appears on the portion of the mesh that is not currently visible by the camera.

Mesh Filtering

Some artifacts are generated on the 3D mesh when projecting the 2D triangulation in 3D. In fact
the connectivity at the 2D image level does not necessarily translate to 3D points lying on the same
surface. Figure 3.16 shows two of the problems encountered. In particular, fig. 3.16a shows the
problem of trying to mesh the edge between a vertical wall and the floor. If the 2D triangulation
does not have an edge at the same location than the edge between the wall and the floor, it will
result in a 3D mesh face that does not represent the actual surface. This problem is referred as
feature preservation in the computer graphics literature [113]. Another source of errors, comes
from the fact that the landmarks associated to the keypoints in the 2D triangulation have a noisy
position estimate, and some might even be outliers. Figure 3.16b shows mesh faces that have one
vertex which is a landmark outlier.

In our implementation, we have dealt with some of these misrepresentative faces of the mesh
as follows:

e Mesh triangles with two acute angles: these are the silver triangles mentioned before that
give little information about the planarity of the scene.

e Mesh triangles with a large ratio between largest and smallest side. These are triangles that
have a very long edge compared to their smallest side. This filter removes those triangles
that have an outlier landmark as vertex, since they tend to have two long edges touching the
outlier, while conserving a small edge between the accurate landmarks. Two of the angles
are close to 90 degrees, thereby skipping the first filter.

e We also remove triangles that have at least one edge that is longer than a threshold. Thereby
removing triangles that are unreasonably large.

The outlier removal approaches described above promote isotropic triangles in the 3D mesh.
These triangles are then used to extract high-level regularities of the scene.

We have also tried to refine the mesh using similar heuristics as in DPPTAM [50]. The most
relevant one being the assumption that regions with an homogeneous color tend to belong to planar
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surfaces. Unfortunately, applying this filter is very sensitive to the threshold on the color gradients
in the image and as such we did not use it. Also it requires a great deal of computational load
for a single-threaded application as ours, since it most compute the gradient over all the triangles
surface to determine if the color is homogeneous.

3.2.2 Regularity Detection

The 3D mesh is key to extract high-level regularities in the scene. By reasoning in terms of the
triangular faces of the mesh, we can extract the geometry in the scene in a non-iterative way (unlike
RANSAC approaches [97]). The regularities between triangles that we are interested in are:

e Co-planarity: landmarks from the same planar surface in the scene should lie on the same
plane.

e Parallelism/Orthogonality: pairs of plane estimates that correspond to parallel/orthogonal
surfaces in the real world should also be parallel /orthogonal.

To find these properties we need to first find planar surfaces in the scene. Our approach, which
we detail below, is versatile in that it can work on unstructured environments, and does not rely
on assumptions about the world (such as the commonly used Manhattan World assumption [72]).
Nevertheless, it is only capable to detect planes of two types due to its simplicity: planes that are
vertical, such as walls, and planes that are horizontal, such as the floor, the ceiling or the surface
of tables. Hence, if the scene has structural regularities of this type, our approach will capture and
encode them gracefully in the optimization problem, and, if no structural regularities were to be
present, it will downgrade to a classical VIO.

We rely nevertheless on having a good estimate of what the vertical direction is. This is an
acceptable assumption since the gravity direction is observable in our system as we are using an
IMU. For VIO pipelines, the error in pitch and roll is usually small [2].

Co-Planarity

To find which landmarks in the optimization problem should have co-planarity constraints, we
need to extract the planes in the scene. We attempt to extract planes that are horizontal and
vertical:

e Horizontal planes

1. Cluster faces of the mesh which have their normal parallel to the vertical direction.
2. Build a 1D histogram of the height of the clustered faces’ vertices, as in fig. 3.17a.

3. Extract local maximums from the histogram. To extract local maximums we need to first
apply a Gaussian filter over the data, otherwise multiple local maximums are present as
can be seen in fig. 3.17a. The resulting smoothed histogram is then used to extract local
maximums. We only keep the maximums that are supported by a minimum number
of points, to make sure we are considering an extended surface, and that we are not
dealing with a degenerate configuration (such as all points lying on a line, as explained
in § 3.1.5). These local maximums correspond to estimates for the distance to the origin
of planes with a normal vector n = (0,0,1)7. In other words, horizontal surfaces such
as the floor (which in histogram fig. 3.17b appears to be at a height of -0.38m) and a
table top (which in the same histogram appears to be at -0.1 m). The fact that the
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(a) Slanted triangles from ground to wall.

(b) Large triangles due to outlier landmarks.

Figure 3.16: Mesh without filters.
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distances are negative should not bother the reader, since the world origin is set at the
first pose estimate of the VIO (which is actually slightly on top of the detected table in
the histogram), and not at the actual floor level.

4. From the plane candidates, extract a set of landmark inliers to be considered for the co-
planarity constraint, as explained in more detail in the Data Association section 3.2.3.
§ 3.1.5 shows nevertheless how we enforce these regularities in the backend optimization
once they are detected.

e Vertical planes.

1. Cluster faces of the mesh which have their normal perpendicular to the vertical direction.

2. Build a 2D histogram of the clustered mesh faces, where one axis represents the distance
to the origin of the plane that the face represents, and the other is the azimuth of the
normal with respect to the gravity direction (vertical axis). Therefore, the 2D histogram
shows the density of faces of the mesh which represent a particular plane at a certain
distance from the origin and with a certain orientation perpendicular to the vertical
axis. Intuitevely, planar surfaces such as vertical walls will generate several mesh’s faces
that fall in one particular bin of the 2D histogram.

3. Extract local maximums from the 2D histogram. To extract local maximums we proceed
as in the 1D histogram, where we need to first apply a Gaussian filter over the data
to avoid multiple local maximums (the kernel of the filter is simply of size 5 x 5). The
resulting smoothed histogram is then used to extract local maximums. We only keep
the maximums that are supported by a minimum number of faces, to make sure we are
considering a vertical wall.

4. From the wall candidates, we extract a set of landmark inliers to be considered for the
co-planarity constraint as for the horizontal planes.

The result is that we are able to extract both horizontal and vertical planes. Figure 3.18 shows
the actual planes detected at a given time. Painted in blue are the faces that support horizontal
planes, and in green the faces that support vertical planes. The estimated horizontal planes are
depicted as blue squares (in fig. 3.18 we can see the estimated floor plane at the origin of the
coordinate system). A green square is also shown for the walls, but the density of mesh faces
hides it. We also show as white lines the co-planarity constraints between the landmarks and the
corresponding plane.

Parallelism

From the plane estimates detected previously we can easily enforce planarity constraints. For the
horizontal planes, it is obvious that all candidates extracted from the 1D histogram should be
parallel. For the vertical planes, we need instead to explore the dimension of the 2D histogram
representing the azimuth. If two detected walls share the same orientation, they can then be
constrained as parallel planes.

Orthogonality

On the one hand, the horizontal planes detected from the 1D histogram are by definition orthogonal
to the walls detected using the 2D histogram. On the other hand, the vertical planes detected from
the 2D histogram might also be orthogonal between them, which we have to check by looking again
at the azimuth component of pairs of planes. If the azimuth is offset by 90 degrees, the planes are
potentially orthogonal.
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(b) Smoothed histogram with a Gaussian filter (kernel of size 3).

Figure 3.17: Histogram of landmarks depending on their elevation. All landmarks considered are
vertices of faces of the mesh, and we only consider those faces that have a normal parallel to the
vertical axis.
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Figure 3.18: Plane detection on 3D mesh. Faces of the mesh that are segmented on vertical walls
are colored in green, while the ones segmented on horizontal surfaces are colored in blue. A blue
square shows what is the current estimate of the plane parameters for the floor plane. White lines
from the plane to the mesh vertices show the constraints between landmarks and plane.
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3.2.3 Data Association
Point to Plane Association

With the newly detected planes, we still need to associate which landmarks are on each plane. For
this, we use the set of supporting landmarks in the original histogram for the given plane. We use
hard associations for simplicity, instead of using a soft association approach within an Expectation
Maximization framework [114].

Plane to Plane Association

Once we have a new set of planes detected, we also need to check whether a detected plane is
already present in the optimization problem or not, to avoid duplicated plane variables.

For this, we simply compare the normals and distances to the origin of the plane to see
if they are close to each other. Other authors might suggest to add another criteria to make
this association more robust to false positives; such as ensuring that the plane which is in the
optimization accurately fits through the points that are supporting the newly detected plane [74]
(if it is the case then the planes are merged together).
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Results

The output of our pipeline is two fold: the pose of the camera at each timestep and a mesh-based
representation of the scene.

To quantify the performance of the pose estimate we will be using both absolute and relative
error metrics. These metrics will give us insights, respectively, on the global and local consistency
of the trajectory estimate.

For the quality of the mesh we will be using a point cloud to point cloud distance as a metric
to quantify how well the mesh represents the actual scene.

4.1 Dataset

The EuRoC MAV dataset [115] (for short EuRoC) contains Visual (stereo camera) and Inertial
(IMU) data recorded from an MAV flying in different indoor scenes. There are eleven datasets in
total, recorded in two different scenarios.

One of the scenarios is a so called Machine Hall, denoted by the letters MH, which is the interior
of an industrial facility. It consists of little planar regularities, as neither the ceiling nor the floor
are clearly visible, and there are few or no planar surfaces present.

The other one is a Vicon Room, denoted by the letter V, which is similar to an office room
where walls, floor and ceiling are close together, and other planar surfaces are visible, as some boxes
and stacked mattresses fill the room. There are in particular two types of Vicon Room datasets,
V1 and V2, which differ only on the position of the objects in the scene.

Moreover, each dataset is labelled by the level of difficulty it represents for Visual-Inertial
SLAM algorithms: using the adjectives “easy", “medium", and “difficult". The difficulty is increased
by simply increasing the speed of the MAV, which results in motion-blur and drastic illumination
changes on the images. For example, dataset MH_03_medium corresponds to a dataset in the

Machine Hall where the MAV was flying at moderate speeds.

Each dataset provides the ground-truth trajectory of the drone, allowing us to compare our
estimated trajectory with the real one. For the Vicon Room datasets, we are also provided with
an accurate ground-truth point cloud of the scene, which we will use to evaluate the quality of our
mesh.
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4.2 State Estimation

In our case, the state of our optimization problem comprises not only the poses of the camera, but
also the IMU biases, the plane estimates, as well as the landmarks positions. Nevertheless, the
most important state is the actual pose of the camera, since this is ultimately used to control a
robot’s position and orientation. Also, the plane and landmark estimates will be assessed in the
next section, where we evaluate the quality of the mesh itself.

To grade the quality of the pose estimates we must first align both temporally and spatially
the ground-truth trajectory with our estimated trajectory, as explained in § 4.2.1. Then, we will
use two different metrics to quantify the global accuracy (§ 4.2.2) and the local accuracy (§ 4.2.3)
of our trajectory estimate’.

4.2.1 Data Alignment
Time Synchronization

We need to temporally align ground-truth poses to our estimated poses. First, we select the tra-
jectory with the smallest amount of state estimates. Then, for each entry of this trajectory (which
could be either the ground-truth trajectory or the estimated one) we look for the corresponding
state estimate with the closest timestamp. Associated timestamps that differ more than a given
threshold are discarded. In our evaluation this threshold is held constant at 0.01 seconds.

Trajectory Alignment

Once the state estimates are temporally aligned, we want to spatially align the trajectories. Math-
ematically speaking, given two sets of 3-dimensional points {x;} and {y;},i=1,2,...,n, we want
to find the rotation matrix R, translation vector ¢, and scale factor ¢ that minimize the mean
squared error e*(R,t,c) = = 3" | |ly; — (cRx; + t)[%.

n

This problem can be solved in closed form using Umeyama’s method? [117].

The scale is typically corrected when comparing the trajectories of monocular visual odometry,
where the scale is not observable. In our case, the scale is observable because we are using a
stereo camera and an IMU (any of these sensors would disambiguate the scale factor by itself).
Therefore, we align our estimated trajectory and the ground-truth trajectory in SE(3) (rotation R
and translation t) instead of Sim(3)3, which includes the scale parameter c.

Also, notice that when aligning the trajectories we ignore the actual orientation of the camera
at each pose; we just use the translation part of the pose estimates.

4.2.2 Absolute Pose Error

The Absolute Pose Error (APE) is a metric for investigating the global consistency of a SLAM
trajectory.

I'We thank Michael Grupp for developing a great toolbox to evaluate odometry and SLAM: github.com/
MichaelGrupp/evo

2Umeyama’s method always gives the correct transformation parameters even when the data is corrupted, and,
in this respect, it is an improved version over Horn’s method [116].

38im(3) = {(R,t,c) : R € SO(3),t € R?,c € Rt}


github.com/MichaelGrupp/evo
github.com/MichaelGrupp/evo
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APE is based on the absolute relative pose between two poses Pref i, Pesti € SE(3) at times-
tamp :
Ei = P_l ‘Pest,i = Lest,i S PT'ef,i € SE(3)

ref,i

where we introduce the inverse compositional operator &, which takes two poses and gives the
relative pose, as defined in [118].

We can use different pose relations to calculate the APE:

e Using the translation part of FE;:

APE; = |[trans(E;)|| (4.1)

e Using the rotation angle of E;:
APE; = |angle(loggos) (rot(£;))| (4.2)
loggos)(+) is the inverse of expy,(3)(-) (Rodrigues’ formula)
e Using the rotation part of Ej:

APE1 = HI’Ot(EZ) — IS><3HF

e Using the full relative pose FE;:

APE1 = HE7, - I4><4||Fa

where we use the Frobenius norm ||Al|r= \/Z?il > i1 laij|?; aij is the entry at row i and

column j of the m x n matrix A .

Used approach

The absolute pose error of the final points in the trajectory can be a bad indicator of the perfor-
mance of a state estimation pipeline, since this metric is heavily influenced by the instance where
the estimation errors are made. For example, rotational errors happening at the beginning of the
trajectory result in larger pose errors at the end poses.

To limit the influence of this bias, we calculate the APEs at all timestamps, and report the
statistics of these errors. In particular, we report the minimum, the maximum, the median, as well
as the first and third quartile of the APFE; errors in translation eq. (4.1). For a better visualization
of these statistics, we use boxplots when presenting the results in fig. 4.1. We also report in
table 4.1 the mean, the median and the Root Mean Squared Error (RMSE) of the APE errors in
translation eq. (4.1), this time just for the pipeline using Structureless and Projection factors (S +
P) and the one using Regularity factors (S + P + R), for an in-depth comparison in the following
§4.2.2.

We refrain from using the APE; in rotation since the trajectory alignment ignores the orien-
tation component of the pose estimates (as shown in § 4.2.1).

We also report the RMSE to be able to compare the performance of our pipeline against
other VIO algorithms; such as OKVIS [4], MSCKF [15], ROVIO [18], VINS-MONO [9], and
SVO-GTSAM |[2] using the reported values in [1] (see table 4.2). These algorithms currently
represent the state-of-the-art in VIO; OKVIS/VINS-MONO (keypoint-based) and SVO-GTSAM
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(semi-dense photometric tracking) for optimization-based approaches, and MSCKF and ROVIO
for filtering methods. We refer the reader to [1] for details on the particular implementations
and set of parameters used for each algorithm. Note that, while VINS-MONO can handle loop
closures, we only report the values when the loop-closure module is disabled, in order to be fair in
the comparison with the rest of the algorithms.

Finally, we found to be instructive to color-encode the estimated trajectory with the actual
APE errors at each pose estimate; which provides insights on how quickly the state estimation
degrades (fig. 4.2). To know exactly the point in time when the errors occur we refer the reader
to the later § 4.2.3, that explores instead relative errors from pose to pose.

APE results

Figure 4.1 gives us an excellent overview of the performance of the different pipelines considered in
this thesis, and makes explicit the different capabilities of our proposed approach using structural
regularities.

First, if we look at the performance of the different pipelines for the datasets MH_03_medium,
MH_04_difficult and MH_05_difficult in fig. 4.1, we observe that all pipelines perform equally.
This is because in these datasets no structural regularities were detected. Hence, our proposed
pipeline using Strutureless, Projection and Regularity factors (S + P + R) gracefully downgrades
to a pipeline using solely Structureless factors (S) when no regularities are detected.

Second, looking at the performance of the pipelines for dataset V2_03_difficult, we can
observe that both the pipeline using Structureless and Projection factors (S + P) and the S + P +
R pipeline perform equally, and better than the S pipeline. In this case, structural regularities are
detected, leading to a conversion of Structureless factors to Projection factors. Nevertheless, since
the number of regularities detected is not sufficient to spawn a new plane estimate and enforce its
corresponding constraints with the landmarks, no structural regularities are actually used in the
factor graph. This leads to the S + P + R pipeline having the same exact performance as the S
+ P pipeline, while achieving different results than the S pipeline.

Finally, we can observe in fig. 4.1 that the S + P + R pipeline consistently achieves better
results over the rest of datasets where structural regularities are detected and enforced.

For the remaining of the state estimation analysis, we will just compare the S + P pipeline
against our proposed S + P + R pipeline as this will best show the impact of the regularity factors
on the state estimation performance.

Table 4.1 shows an in-depth comparison between S + P and the S + P + R pipelines. It shows
that the S + P + R pipeline consistently achieves better translational APE results over all datasets
exhibiting structural regularities than the S + P pipeline, while performing equally for the datasets
where no structural regularities were enforced. In particular, the performance increases up to 28%
on the median APE, 24% on the mean, and 26% on the RMSE for datasets with multiple planes
such as V1_01_easy, V1_02_medium and V2_02_medium.

This performance increase is clearly visible when plotting the APE errors on the trajectory, as
done in fig. 4.2 for dataset V1_01_easy. Figure 4.3 shows in detail the effects of using structural
regularities on the APE. We provide these plots for all datasets as well in appendix A.

Finally, we compare our results with the state-of-the-art in table 4.2.

We can extract two main conclusions from this comparison:
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Figure 4.1: Comparison of the Absolute Pose Error (APE) on the EuRoC datasets while using
Structureless factors (S), structureless and Projection factors (S + P), and our proposed approach
using Structureless, Projection and Regularity factors (S + P + R).

Table 4.1: Accuracy of the state estimation when using Structureless factors (S), Structureless and
Projection factors (P), and our proposed approach using Structureless, Projection and Regularity
factors (R).

APE Translation

S+ P S + P + R (Proposed)

Sequence Median Mean RMSE Median Mean RMSE

[cm] [cm)] [cm] [cm] [cm] [cm]
MH 01 easy 124 13.3 15.0 10.7 12.7 14.5
MH 02 easy 17.6 15.8 16.7 12.6 12.4 13.0
MH 03 medium 21.0 20.3 21.2 21.0 20.3 21.2
MH 04 difficult 17.3 20.4 21.7 17.3 20.4 21.7
MH 05 _difficult 21.6 21.0 22.6 21.6 21.0 22.6
V1_01_easy 6.2 6.9 7.7 5.3 5.3 5.7
V1 02 medium 8.7 8.9 9.4 6.3 6.8 7.4
V1_03_difficult 13.6 15.6 17.6 13.5 15.1 16.7
V2 01 easy 6.6 7.5 8.2 6.3 7.5 8.1
V2 02 medium 9.1 11.2 13.5 7.1 8.5 10.3

V2 03 _difficult 26.0 25.7 27.2 26.0 25.7 27.2
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Figure 4.2: Dataset V1_01_easy: APE translation error plotted on the trajectory estimated by
VIO using Strutureless and Projection factors (S + P), against our proposed approach using also
Regularity factoris (S + P + R).
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(1)

Our approach using structural regularities (S + P + R) achieves the best results when com-
pared with the state-of-the-art on datasets which have structural regularities; such as in
datasets V1_01_easy and V1_02_medium, where multiple planes are present (walls, floor,
etc.). We observe a 19% improvement compared to the next best performing algorithm
(SVO-GTSAM) in dataset V1_01_easy, and a 26% improvement in dataset V1_02_medium
compared to ROVIO and VINS-MONO, which achieve the next best results. Moreover, as ex-
plained previously, we used the same parameters for all datasets (no per dataset fine-tuning),
and we are still not enforcing higher level regularities (such as parallelism/orthogonality)
between plane estimates. Therefore, the improvements could potentially be larger.

Our implementation of the S and S + P pipelines (and implicitly S + P + R) still need to
be improved. We arrive at this conclusion by looking at the performance of SVO-GTSAM.
SVO-GTSAM is in essence very similar to the pipeline using just Structureless factors (S)
— at least in terms of the backend used — yet SVO-GTSAM performs much better than the
S pipeline in all MH datasets. Indeed, we both use Structureless (Smart) and Pre-integrated
IMU factors for the factor-graph formulation. Moreover, we both use GTSAM to build
the factor-graph, as well as ISAM2 to solve the optimization problem. The main difference
being that SVO-GTSAM’s frontend is semi-dense and based on photometric errors, while
ours is sparse and based on reprojection errors. While the frontends are quite different, it
seems unlikely that this alone can explain why the performance is so different. Also, the S
+ P pipeline should be more accurate than the SVO-GTSAM pipeline, since we are using
Projection factors which are known to be more accurate than Structureless factors [119].
Note that, if we ignore SVO-GTSAM’s results, our pipeline is still doing very good in the MH
datasets.

We can also see that SVO-GTSAM fails for datasets V1_03_difficult, V2_02_medium,
and V2_03_difficult, while ours keeps providing accurate state estimates. SVO-GTSAM
fails in these datasets because of motion-blur and fast changes in brightness on the images,
which make state estimation using direct photometric tracking difficult (although new event-
cameras have proved to minimize this problem [120]).

Table 4.2: Comparison of the RMSE of the APE in translation for OKVIS, MSCKF, ROVIO,
VINS-MONO and SVO-GTSAM (reported values from [1]), against our proposed S + P + R
pipeline. A cross (x) states that the pipeline failed.

RMSE APE translation [cm]

Sequence OKVIS MSCKF ROVIO VINS- SVO- S+P+R
MONO GTSAM (Pro-
posed)
MH 01 easy 16 42 21 27 5 14.5
MH 02 easy 22 45 25 12 3 13.0
MH 03 _medium 24 23 25 13 12 21.2
MH 04 difficult 34 37 49 23 13 21.7
MH 05 _difficult 47 48 52 35 16 22.6
V1 01 easy 9 34 10 7 7 5.7
V1 02 medium 20 20 10 10 11 7.4
V1 03 _difficult 24 67 14 13 x 16.7
V2 01 easy 13 10 12 8 7 8.1
V2 02 medium 16 16 14 8 X 10.3
V2 03 _difficult 29 113 14 21 X 27.2

While the APE can give meaningful insights on the global consistency of the trajectory esti-

mate, it does not provide insights on the moment in time when the erroneous estimates happen.
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To obtain this information we calculate instead the Relative Pose Error as explained in the next
§4.2.3.

4.2.3 Relative Pose Error
The Relative Pose Error (RPE) is a metric for investigating the local consistency of a SLAM
trajectory.

RPE compares the relative poses along the estimated and the reference trajectory. This is
based on the delta pose difference dest, ; = Pest,i © Pest,j:

Eivj = (P_l ‘PTGf,j)il(P_l ‘Pest,j) = (Pcst,j@Pest,i)e(Pref,j @Pref,i) = 5est7¢,j 95ref7;‘j S SE(?))

ref,i est,i
We can use different pose relations to calculate the RPE from timestamp i to j:

e Using the translation part of E; ;:

RPE,; j = [[trans(E; ;) || (4’3)

e Using the absolute angular error of F; ;:
RPE, ; = |angle(logso(3) (rot(E; ;)] (4.4)
where loggos)(+) is the inverse of exp,,(3)(-) (Rodrigues’ formula)

e Using the rotation part of F; ;:

RPE; ; = |[rot(E; j) — Isxsllr

e Using the full delta pose difference E; ;:

RPE; j = |E;i; — Lixallr

The above RPE metrics can be combined in multiple ways to offer different assessments of
the performance of the state estimate. For example, [121] suggested to use the sum of the squared
translational and rotational parts of Ej ;, resulting in the following metric:

1
RPE(F) = 7 Z trans(E; j)* + rot(E; ;)? (4.5)
(i,5)€F

where F is the set of pairs of frames considered, |F| the number of relative relations, and ¢trans(-)
and rot(-) are used to separate and weight the translational and rotational components; and differ
from our definitions of trans(-) and rot(-) in that they have a weighting component encoded.

We will be nevertheless using the metric suggested in [122]. Which we believe is a more trans-
parent metric to evaluate the performance of the state estimation, since it decouples translational
and rotational errors. It consists on taking the mean of the RPE; ; defined in (4.3) and (4.4):

1
RPEirans(F) = | Z [[trans(E; ;)]|2 (4.6)

?
‘ (i,7)€F
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1

RPErot(]:) = m

> |angle(loggos) (rot(E; ;)] (4.7)
(i,7)€F

Unfortunately, this metric, (4.6) and (4.7), is not as convenient as (4.5), since we now have two
different numbers to compare a pair of algorithms; and while one might be achieving good results
in terms of translational errors, it might perform poorly in terms of rotational errors. Justifying
which algorithm is best therefore rests in the reader’s hands.

Notice that none of the metrics suggested explicitly states how do we choose which relative
displacements §; ; are included in the set 7. There seem to be at least three reasonable ways to
choose those:

(i) Calculating the error between all possible pairs of measurements in the trajectory, as it is done
by default in the RPE’s calculation used in TUM’s RGB-D SLAM dataset [123]. A caveat of
this approach is that the number of pair of measurements in the trajectory is quadratic in the
length of the trajectory, therefore downsampling is usually considered. How we downsample
the trajectory must be specified when comparing the output of different algorithms, since
merely using a uniform random sampling would lead to different results even when using the
same algorithm.

(ii) Another alternative is to compare each pose to a later pose according to a window size defined
in a convenient unit (e.g. number of frames, distance travelled, time difference). Therefore,
we are comparing overlapping windows of estimates.

(iii) If we do not want overlapping windows to be considered, instead of calculating the RPE for
each pose, we can use consecutive poses at a fixed window size. For example, if we consider
a window size of two frames, we would calculate the RPE for the first pose against the third,
and consecutively the third one to the fifth. This method, is ideal to visualize relative errors
plotted on the trajectory itself, but might not give a complete picture of the performance of
the algorithm as we are deliberately ignoring estimates.

Also note that the RPE is independent of the spatial alignment of the trajectories, and in
this respect it provides a metric that just depends on the accuracy of the state estimate and the
temporal alignment of the trajectories.

Used approach

To evaluate our pipeline we will be using the last two approaches, (ii) and (iii), for the metrics
defined in (4.3) and (4.4).

For the approach (ii), we plot the statistics of all the calculated RPE; ; at different window
sizes defined in terms of the distance travelled. These statistics include the maximum and the
minimum RPE; ; achieved, the mean (as in (4.6) and (4.7)), as well as the values of the first and
third quartile. Instead of using a table to report these values, we use boxplots for an eye-friendly
comparison, as in fig. 4.5.

For the approach (iii), we calculate RPE; ; for a window size also defined in terms of length
travelled, but instead of computing the statistics as before, we directly plot the error on the 3D
trajectory by color-encoding the segments of the trajectory, as in fig. 4.6.
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RPE results: approach (ii)

First, the boxplots in fig. 4.4 confirm one of the conclusions that we draw when looking at the
APE results: our pipeline gracefully downgrades to a S pipeline when there are no regularities
in the scene (like in dataset MH_03_medium, fig. 4.4a), and downgrades to a S + P pipeline when
regularities are detected but not enforced (like in dataset V2_03_difficult, fig. 4.4b).

Second, we can evaluate the accuracy increase when using regularities. For this, we collect the

medians I/%‘I\DE of the RPE errors for the different segment lenghts that we used to evaluate both
the S + P and S + P + R pipelines, and compute the percentage improvement as:

S+P S+P+R
RPE, - RPE,
5+P

n

ARPE, = % 100, (4.8)

where RPE,  is the RPE of the n'® segment length used to evaluate the pipeline S + P. For
S+P
example, in fig. 4.5a, we used 5 different segment lengths to evaluate the RPE, therefore RPE,

refers to the median of the RPE errors calculated for the first segment length (which is 10m long),
for the S + P pipeline.

We then calculate the mean of these improvements as:

N
— 1 —
ARPE = + > ARPE,, (4.9)

n=1

where N is the number of segment lenghts used (VN =5 for fig. 4.5a).

Calculating the different AE]\D_EH, for datasets V1_02_medium (fig. 4.5a) and V2_02_medium(fig.

we observe that using our proposed pipeline S + P + R leads to:

e An accuracy improvement of up to 50% in translation and 30% in rotation (maximum values
of ARPE,, achieved on dataset V2_02_medium fig. 4.5b), and,

e An average improvement of ARPE = 20% in translation and 15% in rotation with respect
to S + P pipeline.

While these improvements are significant, we are not yet enforcing higher level regularities
(such as parallelism or orthogonality) between planes. Therefore, these improvements could be
even larger, potentially rivaling pipelines enforcing loop-closures.

We provide boxplots for the RPE in translation and rotation for all datasets in the appendix B.

RPE results: approach (iii)

Finally, fig. 4.6 provides an example of the visualization of the RPE errors in translation plotted
on the trajectory, which gives us precise insights on where the errors have occurred, and it is more
meaningful in this sense than the APE errors plotted on the trajectory, which do not provide
information on the exact point where the errors originated. Alternatively, we can spot which
keyframe generated the largest errors by looking at fig. 4.7, which simply plots the RPE errors per
keyframe.

Figures 4.6 and 4.7 must nevertheless be treated with caution, since they provide a narrow
view of the actual performance of the pipeline. Indeed, we are using consecutive frames to compute

4.5b),
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Figure 4.4: Detailed comparison of the state estimation accuracy while using Structureless factors
(S), Structureless and Projection factors (SP), and our proposed approach using Structureless, Pro-
jection and Regularity factors (SPR) on EuRoC’s V102 medium and V2 02 medium datasets.
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54 4.3. Mapping quality

the RPE, which is susceptible to a particular set of errors, such as errors in feature tracking due
to brightness changes, instead of capturing the overall performance of the pipeline, and in this
respect the RPE boxplots provide a clearer perspective.

We provide as well plots of all trajectories color-encoded with the RPE in translation C and
rotation D in the appendix.

4.3 Mapping quality

We use the ground-truth point clouds provided on the EuRoC dataset (fig. 4.8) to assess the quality
of the mesh by calculating its accuracy (§ 4.3.2) and completeness (§ 4.3.3), as defined in [124].
The evaluation is done using the freely available open-source software Cloud Compare [125]. Before
evaluating these metrics, we must pre-process the mesh for a suitable comparison with the ground-
truth point cloud (§ 4.3.1).

4.3.1 Pre-processing

Due to their different nature, in order to compare the estimated mesh against the ground-truth
point cloud, we must perform some preliminary steps that we detail below:

Mesh Sampling

Comparing a mesh with sparse vertices with a dense point cloud can be achieved by generating a
point cloud from the mesh itself, and then comparing both point clouds. In our case, we compute
a point cloud by sampling the mesh with a uniform density of 1000 points per square meter.

Point Cloud Registration

We register the resulting point cloud to the ground-truth point cloud using an Iterative Closest
Point (ICP) algorithm.

4.3.2 Map Accuracy

With the newly registered point cloud, we can compute a cloud to cloud distance to assess the
accuracy of the mesh relative to the ground-truth point cloud.

Used Approach

We compute the cloud to cloud absolute distance using the nearest neighbour distance. For each
point of the estimated cloud from the mesh, we search the nearest point in the reference cloud and
compute their Euclidean distance.

Mathematically, if we define by R our estimated point cloud, and by G our ground-truth
point cloud, the nearest neighbour distance from any point in R to the ground-truth point cloud
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Figure 4.6: Dataset V1_02_medium: RPE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure 4.7: Dataset V1_02_medium: RPE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure 4.8: Ground-truth point cloud for dataset V1_01_easy.
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Figure 4.9: Graphical comparison of the Nearest Neighbour Distance (NND) used to compute the
cloud to cloud distance (d,,—¢g), against the true distance between a point on the mesh and the
real surface (bottom-right corner). Also depicted are the distances from the sampled point cloud
of the mesh to the ground-truth point cloud d,,_,g, used to calculate the accuracy of the mesh
(eq. (4.12)), and viceversa dg4, _,», used to calculate the completeness of the mesh (eq. (4.13)).
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G corresponds to:

dysg =min|r —g|l, for reR (4.10)
S

The nearest neighbour distance is susceptible to the density of the reference point cloud. The
denser the cloud the best approximation of the accuracy error. In fig. 4.9 we can see graphically
the difference between the nearest neighbour distance and the actual real distance. In our case,
since the ground-truth point cloud is fairly dense, we can assume that our approximation converges
to the true distance.

More specifically, we report the mean and standard deviation of eq. (4.10):

_ 1 1 _
dr = Rl » dyg and og = \/IRI > drsg - dR|2 (4.11)

reER reER

where |R| is the cardinality of R, dg is the mean, and o the standard deviation. These values
give a good estimate of what is the accuracy (mean) and precision (standard deviation) of the
mesh.

Nevertheless, it is more common to define the accuracy A as the fraction (in percentage) of
estimated points which are within a distance threshold 7 of the ground-truth point cloud [39,124]:

1
A(r) = = > [ng < T} x 100 (4.12)
w2 .
where [P]; is the Iverson bracket, defined as:

1 if P is true;
[Pl = .
0 otherwise,

Table 4.3 reports the mean and standard deviation of the cloud to cloud distance from the
mesh to the ground-truth point cloud (eq. (4.11)) for both the S + P and the S + P + R pipelines.
Table 4.4 reports instead the accuracy A(7), as defined in eq. (4.12), for different 7.

As a reminder, the S + P pipeline still uses the mesh to detect regularities and transform
Structureless factors to Projection factors, but, contrary to the S + P + R pipeline, it does not
enforce the structural regularities on the landmarks.

Mapping Accuracy Results

Table 4.3 shows that both the mean and the standard deviation of the distance from the mesh
to the ground-truth point cloud decreases when enforcing structural regularities, as done in the
S + P + R pipeline. On average, each point sampled on the mesh generated by the S + P +
R pipeline is 0.5 cm closer to the ground-truth point cloud than the points sampled on the mesh
generated by the S + P pipeline. Therefore, enforcing structural regularities makes the estimated
mesh closer to the real scene. In terms of accuracy values A(7), table 4.4 shows that the S +
P + R pipeline consistently achieves more accurate mesh estimates (between 3%-7% better) for
distance thresholds 7 < 10cm. Figures 4.10 and 4.11 show the actual error distributions for d, g,
and the mesh accuracy A(7) for distance thresholds 7 going from 0 to 0.3 meters, for both the S
-+ P and the S + P + R pipelines respectively.
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Note that, the results in absolute values are not near the quality of dense 3D reconstruction
algorithms such as COLMAP [126], that easily achieves more than 80% in accuracy and 50%
in terms of completeness for thresholds as small as 2cm [124]. Indeed, we do not pretend to
compete against offline dense 3D reconstruction algorithms, but rather sparse keypoint-based visual
pipelines. Compared with the sparse point cloud generated by these visual pipelines, our mesh
provides a denser estimate of the scene.

We can also visualize the improvement achieved when enforcing structural regularities by
color-encoding the estimated point cloud with the errors. Figure 4.14 shows the ground-truth
point cloud (a), next to the estimated point cloud (b), from the same point of view. The error
distances d,_,g for each point are color-encoded on the estimated point cloud, while the colors
on the ground-truth point cloud are only set for visualization purposes. We can observe that
significant errors are actually present on the planar surfaces, especially on the walls, when we do
not enforce structural regularities. A closer view on the wall itself in fig. 4.20 shows that it is
visually clear that adding co-planarity constraints results in smoother walls.

Figure 4.15 shows instead that the estimated point cloud has significantly less errors when
structural regularities are enforced (b).

Finally, on fig. 4.16 we compare the point cloud estimated by the S + P pipeline against the
point cloud estimated by the S + P + R pipeline. We can observe that planar surfaces such as the
walls and the floor have significantly less errors for the mesh generated by the S + P + R pipeline
than for the mesh of the S + P pipeline. On figs. 4.17 to 4.19, we compare the same point clouds
from another viewpoint.

Table 4.3: Statistics for the cloud to cloud absolute distance from the mesh to the ground-truth
point cloud d,_,g, as defined in eq. (4.11). Results are reported for the pipeline using Structureless
and Projection factors (S + P), and our proposed approach using Regularity factors (S + P + R),
for dataset V1_01_easy.

VIO Type
d,_g statistics (eq. (4.11)) S+P S + P + R (Proposed)
Mean dg [cm] 4.9 4.4
Standard Deviation o [cm] 5.0 4.6

Table 4.4: Mesh accuracy A(7) as defined in eq. (4.12) for pipeline using Structureless and Projec-
tion factors (S + P), and our proposed approach using Regularity factors (S + P + R), for dataset
V1_01_easy. The distance threshold 7 is set to different values to better assess the accuracy of
the mesh.

Mesh accuracy A(7) [%] (eq. (4.12))

Distance threshold 7 [cm)] S+P S + P + R (Proposed)
T=1 14 17
T=4 o7 64
T=10 90 90

4.3.3 Map Completeness

Similarly to the accuracy, we define the completeness of the mesh as the percentage of points within

completeness
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a threshold of the ground truth:

1

C(r) = ]

[dﬁn < T:| X 100 (4.13)

geg I

where [P]; is the Iverson bracket. The completeness explains to what extent all the ground-truth
points are covered.

Map Completeness Results

Table 4.5 shows that, in terms of completeness, both S + P and S + P + R pipelines achieve similar
results. On figs. 4.12 and 4.13, we can see that the distributions of the distance errors d,_,z are
similar for both pipelines; leading to similar completeness C(7) values for distance thresholds 7 go-
ing from 0 to 0.3 meters. Figure 4.21 color-encodes each ground-truth point with its corresponding
distance to the sampled point cloud from the mesh (d,—%) for both the S + P and the S + P + R
pipelines; we can see that the walls have a slightly better completeness for the S + P + R mesh,
but there is no significant difference against the S + P mesh.

As expected, enforcing structural regularities does not necessarily improve the completeness
metric since the amount of faces of the mesh used by both pipelines is similar. Both pipelines extract
and use the same keypoints from the image, therefore they work both with a similar amount of 3D
landmarks, and implicitly the same number of mesh faces. Of course, due to changes in accuracy
caused by the regularity factors, it can happen that some faces of the mesh are filtered out when
propagating the mesh from 2D to 3D, as explained in § 3.2.1. Nevertheless, the filtering of mesh
faces is not substantial and does not lead to significant differences on the completeness of the mesh.

Table 4.5: Mesh completeness C(7) as defined in eq. (4.13) for pipeline using Structureless and
Projection factors (S + P), and our proposed approach using Regularity factors (S + P + R), for
dataset V1_01_easy. The distance threshold 7 is set to different values to better assess the level
of completeness achieved.

Mesh completeness C(7) [%] (eq. (4.13))

Distance threshold 7 [cm)] S+P S + P + R (Proposed)
T=1 18 17
T=4 52 53
T=10 72 74

Note that the trajectory of the camera in the EuRoC dataset is not intended for a complete
3D reconstruction (as it only observes a subset of the scene); assessing the completeness using this
dataset is therefore misleading. To avoid the issue of having parts of the scene unobserved, we
explicitly ignore the points in the ground-truth point cloud which have a completeness value higher
than 0.3m, since these points are most likely unobserved.

4.3.4 F-score

As noted by [126], precision alone can be maximized by creating multiple copies of a sparse set
of precisely localized landmarks, while completeness can be maximized by uniformly covering the
scene with points. To rank dense reconstructions it is therefore common to use the F-score [39,126]:

_ 2A(7)C(T)
FO = Zm e 19
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Figure 4.10: Dataset V1_01_easy, S + P pipeline. Top figure: Histogram of points sampled on
the mesh depending on their distance to the ground-truth point cloud (d,_g). Bottom figure:
Accuracy A(T), corresponding to the cumulative histogram of d,_,g. Colormap matches the one
used in figs. 4.14 to 4.19 for better visualization.
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Figure 4.11: Dataset V1_01_easy, S + P + R pipeline. Top figure: Histogram of points sampled
on the mesh depending on their distance to the ground-truth point cloud (d,_g). Bottom figure:
Accuracy A(T), corresponding to the cumulative histogram of d,_,g. Colormap matches the one
used in figs. 4.14 to 4.19 for better visualization.
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Figure 4.12: Dataset V1_01_easy, S + P pipeline. Top figure: Histogram of ground-truth points
depending on their distance to the point cloud sampled from the mesh (d4_%). Bottom figure:
Completeness C(7), corresponding to the cumulative histogram of dy_,%. Colormap matches the
one used in fig. 4.21 for better visualization.



64 4.3. Mapping quality
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Figure 4.13: Dataset V1_01_easy, S + P + R pipeline. Top figure: Histogram of ground-truth
points depending on their distance to the point cloud sampled from the mesh (dy—z). Bottom
figure: Completeness C(7), corresponding to the cumulative histogram of dy,_,z. Colormap matches
the one used in fig. 4.21 for better visualization.
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Contrary to the arithmetic mean, the F-score has the property that if either A(7) — 0 or C(7) — 0,
then F(7) — 0, and in this sense it is a more suitable summary measure than the mean.

F-score results

It is clear from table 4.6 that the mesh estimated by our proposed approach, using structural
regularities (S + P + R), consistently outperforms the mesh generated by the S + P pipeline.
In this respect, we can conclude that using structural regularities on the optimization problem
improves the overall quality of the mesh.

Table 4.6: Mesh F-score F(7) as defined in eq. (4.14) for pipeline using Structureless and Projection
factors (S + P), and our proposed approach using Regularity factors (S + P + R), for dataset
V1_01_easy. The distance threshold 7 is set to different values to better assess the F-factor
achieved by each pipeline.

Mesh F-score F (1) [%] (eq. (4.14))

Distance threshold 7 [cm] S+P S + P + R (Proposed)
T=1 15.7 17.0
T=25 54.4 58.0
T =10 80.0 81.2

4.4 Timing

The different pipelines covered in this thesis differ in that they try to solve an increasingly compli-
cated problem. While the Structureless pipeline (S) does not include neither the 3D landmarks nor
the planes as variables in the optimization problem, the pipeline using Structureless and Projection
factors (S + P) includes 3D landmarks, and the pipeline using regularities (S + P + R) further
includes planes as variables. Moreover, the S + P has significantly less constraints between the
variables than the S + P + R pipeline. We refer the reader to the concise book of F. Dellaert and
M. Kaess [14] for an explanation on how the optimization time depends on the number of variables
involved and the number of constraints. For the scope of this thesis, it is sufficitent to know that
the larger the number of variables and constraints between them, the slower it takes to solve the
optimization problem.

Hence, we can expect that the optimization times for the different pipelines will be each
bounded by the other as t&" < tgﬁp < tg’iPJrR, where 52" is the time taken to solve the opti-
mization problem of pipeline X.

4.4.1 Experimental Results

Experimentally, we observe that the optimization time follows indeed the expected distribution
t? < tﬁ p < tg’i pop- Figure 4.22 shows the time taken to solve the optimization problem for
each type of pipeline. We can also see that, while the S + P pipeline takes slightly longer than the
S pipeline per keyframe (an average of 11ms longer, with a maximum difference of 138ms), the S +
P + R seems to show larger delays with respect to the S + P pipeline (an average of 28ms longer,
with a maximum of 262ms). This larger delay between S + P and S + P + R than between the
S and S + P pipelines can be explained by the considerable increase of constraints added when
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(a) Ground-truth point cloud. Color-encoded for better visualization.

 ———— : ] |

0.00 0.05 0.10 0.15 0.20 0.25 0.30
dr—>g [m]

(b) Sampled mesh with color-encoded cloud to cloud distances against ground-truth point cloud.

Figure 4.14: Ground-truth point cloud and estimated point cloud (sampled from the mesh) for
pipeline S + P and dataset V1_01_easy. Viewpoint is the same for both images.
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(a) Ground-truth point cloud. Color-encoded for better visualization.

 ——— : ] |

0.00 0.05 0.10 0.15 0.20 0.25 0.30
dr—>g [m]

(b) Sampled mesh with color-encoded cloud to cloud distances against ground-truth point cloud.

Figure 4.15: Ground-truth point cloud and estimated point cloud (sampled from the mesh) for
pipeline S + P + R and dataset V1_01_easy. Viewpoint is the same for both images.



68 4.4. Timing

(a) S+ P

 ——— : ] |

0.00 0.05 0.10 0.15 0.20 0.25 0.30
dr—>g [m]
b)S+P+R
Figure 4.16: Estimated point cloud (sampled from the mesh) for pipeline S + P and S + P +

R color-encoded with cloud to cloud errors with respect to ground-truth point cloud for dataset
V1_01_easy. Viewpoint is the same for both images.
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(a) Ground-truth point cloud. Color-encoded for better visualization.

 ———— : ] |

0.00 0.05 0.10 0.15 0.20 0.25 0.30
dr—g [m]
(b) Sampled mesh with color-encoded cloud to cloud distances against ground-truth point cloud.

Figure 4.17: Ground-truth point cloud and estimated point cloud (sampled from the mesh) for
pipeline S + P and dataset V1_01_easy. Viewpoint is the same for both images.
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(a) Ground-truth point cloud. Color-encoded for better visualization.

 ———— : ] |

0.00 0.05 0.10 0.15 0.20 0.25 0.30
dr—g [m]
(b) Sampled mesh with color-encoded cloud to cloud distances against ground-truth point cloud.

Figure 4.18: Ground-truth point cloud and estimated point cloud (sampled from the mesh) for
pipeline S + P + R and dataset V1_01_easy. Viewpoint is the same for both images.
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(a) S+ P

0.00 0.05 0.10 0.15 0.20 0.25 0.30
dr—>g [m]
(b)S+P+R

Figure 4.19: Estimated point cloud (sampled from the mesh) for pipeline S + P and S + P +
R color-encoded with cloud to cloud errors with respect to ground-truth point cloud for dataset
V1_01_easy.
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(b) Mesh estimate when enforcing co-planarity constraints.

Figure 4.20: Visual comparison of the mesh with and without co-planarity constraints enforced.
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
dg—R [m]
b)S+P+R

Figure 4.21: Estimated point cloud (sampled from the mesh) for pipeline S + P and S + P +
R color-encoded with cloud to cloud errors with respect to ground-truth point cloud for dataset
V1_01_easy. Viewpoint is the same for both images.
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enforcing regularities. Indeed, each time a plane is added it is attached to potentially hundreds of
landmarks in the factor graph, therefore increasing significantly the number of constraints.

Similarly to the failure modes of landmark-based SLAM methods, which become intractable
when too many landmarks are present in the optimization at any time, we observe that if the
number of plane variables is large (~ 10'), and consequently the number of constraints between
landmarks and planes also gets large (~ 10?), the optimization problem cannot be solved in real-
time.
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(b) Structureless and Projection factors. Dataset V1_01_easy

0.40

e @

SRt

S &
1 1

=]

[\

ot
L

e

[

ot
1

B

[

(e
1

Optimization time % 5 5 [3]
o
[\~
o
1

=]

o

ot
L

0.00 T T T T T T
100 200 300 400 500 600
Keyframe Index |-

(c) Structureless, Projection and Regularity factors. Dataset V1_01_easy

Figure 4.22: Comparison of the time to solve the optimization problem for pipeline using Struc-
tureless factors (S), Structureless and Projection factors (S + P), and our proposed approach using
Structureless, Projection and Regularity factors (S + P + R).
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Chapter 5

Conclusion

5.1 Key insights

Overall, we have seen that enforcing structural regularities, in particular co-planarity constraints
between landmarks, provides more accurate state and map estimates than simply ignoring these
structural regularities. In particular, the state estimation improves its global consistency by 26%
(Absolute Position Error), while it improves its local consistency by up to 50% (Relative Position
Error) in scenes with structural regularities. The accuracy and completeness of the mesh also
benefit from enforcing structural constraints by a significant degree.

We have also shown a way to incrementally build a 3D mesh using only the sparse keypoints
detected, while also presenting a way to reduce the mesh to the time-horizon of the optimization
problem. Therefore, the mesh spans multiple viewpoints, thereby covering a larger area; yet the
size of the mesh remains bounded, allowing for real-time operation.

Finally, we have shown that the proposed VIO algorithm surpasses in accuracy the state-of-
the-art in scenes exhibiting structural regularities.

We have hence confirmed, in real experiments, the conclusions drawn by previous authors [73]
about the benefits of using structural regularities. We have also implemented, to the best of our
knowledge, the first VIO pipeline to use Structureless [119] and Projection factors (both monocular
and stereo) simultaneously. And hence the first to also show the benefits of using Structureless,
Projection and Regularity factors in the same optimization problem.

5.2 Future Work

Our current implementation would greatly benefit from improving the current frontend of the
pipeline. As it is now, the types of structural regularities that we can detect are rather limited.
Indeed, we can only hope to recover horizontal or vertical planes in the scene. Ideally, the frontend
would be capable of extracting all planar surfaces in the scene, and encode these constraints in
the optimization problem. To this end, one can imagine to use a convolutional neural network to
detect potentially planar surfaces in the image. The landmarks associated to the keypoints falling
in planar regions could then be used to infer initial plane parameters by using a simple consensus
approach such as RANSAC.

7
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Another straigthforward extension would be to use an RGB-D camera that easily extracts
depth information of textureless planes, which are the main source of problems for RGB cameras.

Yet another aspect from the frontend that we wish to improve is the quality of the 3D mesh.
An ambitious approach that would substantially increase the quality of the mesh would be to
enforce that the incremental updates of the mesh maintain the manifold property. Recent works
have managed to do so in a reasonable frequency, which could be amenable for use in real-time
applications [59]. Alternatively, it would be interesting to use a multi-resolution quad-tree based
mesh such as in [41], that would make the handling of triangles covering depth disparities more
amenable.

An increased quality of the mesh could in turn allow us to simplify the optimization problem
and the complexity of the mesh, reducing the number of vertices (landmarks) of the mesh; and in
turn the number of variables in the optimization. One approach would be to merge triangles along
the plane estimates [127] to simplify the mesh. Reduce the state vector by replacing points by the
plane as in [88] or maybe using a multi-resolution mesh as in [41].

The plane to plane association is currently not very robust since it relies simply on the differ-
ence between normals and distances to the origin of the planes. The approach of Hsiao et al. [91]
is able to reduce the number of false positive associations by ensuring that the associated planes
both describe the combined set of landmarks represented by each plane.

Also, in terms of data association, we are now using hard associations, instead of using a
probabilistic approach with soft labels using an Expectation Maximization framework as in [114].

On the performance assessement side, we could use a synthetic dataset to more effectively
assess the performance changes that noise levels have. An example of dataset we could use is a
synthetic Blender-generated city by Zhang et al. [128], from which we can even generate RGB-D
images.

On the optimization’s side it would be also interesting to use a regularity constraint between
landmarks and planes defined in image space as in [99], instead of geometrically, as we do in § 3.1.5.
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Figure A.1: Dataset MH_01_easy: APE translation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure A.2: Dataset MH_01_easy: APE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.3: Dataset MH_02_easy: APE translation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure A.4: Dataset MH_02_easy: APE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.5: Dataset MH_03_medium: APE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.6: Dataset MH_03_medium: APE translation error plotted on trajectory estimates for VIO

using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.7: Dataset MH_04_difficult: APE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.8: Dataset MH_04_difficult: APE translation error plotted on trajectory estimates for

VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.9: Dataset MH_05_difficult: APE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.10: Dataset MH_05_difficult: APE translation error plotted on trajectory estimates
for VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.11: Dataset V1_01_easy: APE translation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure A.12: Dataset V1_01_easy: APE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.13: Dataset V1_02_medium: APE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.14: Dataset V1_02_medium: APE translation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.15: Dataset V1_03_difficult: APE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.16: Dataset V1_03_difficult: APE translation error plotted on trajectory estimates
for VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.17: Dataset V2_01_easy: APE translation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure A.18: Dataset V2_01_easy: APE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.19: Dataset V2_02_medium: APE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.20: Dataset V2_02_medium: APE translation error plotted on trajectory estimates for

VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.21: Dataset V2_03_difficult: APE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure A.22: Dataset V2_03_difficult: APE translation error plotted on trajectory estimates
for VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure B.1: Detailed comparison of the state estimation accuracy on the EuRoC dataset while using
Structureless factors (S), Structureless and Projection factors (SP), and our proposed approach
using Structureless, Projection and Regularity factors (SPR).
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Figure B.2: (Continuation) Detailed comparison of the state estimation accuracy on the EuRoC
dataset while using Structureless factors (S), Structureless and Projection factors (SP), and our
proposed approach using Structureless, Projection and Regularity factors (SPR).
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Figure B.3: (Continuation) Detailed comparison of the state estimation accuracy on the EuRoC
dataset while using structureless factors (S), structureless and projection factors (P), and our
proposed approach using structureless, projection and regularity factors (R).
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Figure C.1: Dataset MH_01_easy: RPE translation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure C.2: Dataset MH_01_easy: RPE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.3: Dataset MH_02_easy: RPE translation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure C.4: Dataset MH_02_easy: RPE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.5: Dataset MH_03_medium: RPE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.6: Dataset MH_03_medium: RPE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.7: Dataset MH_04_difficult: RPE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.8: Dataset MH_04_difficult: RPE translation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.9: Dataset MH_05_difficult: RPE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.



116

RPE translation error mapped onto trajectory [m]

0.070
B | Reference
10
5
E 0.035
EN
0
-5
—10 0.000
0 5 10 15
z (m)
(a) RPE translation for S+P
RPE translation error mapped onto trajectory [m] 0.070
Lo R‘CfCI'CHCC
10
5
NG 0.035
=
0
-5
—10 0.000
0 5 10 15
x (m)

(b) RPE translation for S+P+R

Figure C.10: Dataset MH_05_difficult: RPE translation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.11: Dataset V1_01_easy: RPE translation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure C.12: Dataset V1_01_easy: RPE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.13: Dataset V1_02_medium: RPE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.14: Dataset V1_02_medium: RPE translation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.15: Dataset V1_03_difficult: RPE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.16: Dataset V1_03_difficult: RPE translation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.17: Dataset V2_01_easy: RPE translation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure C.18: Dataset V2_01_easy: RPE translation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.19: Dataset V2_02_medium: RPE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure C.20: Dataset V2_02_medium: RPE translation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.



Appendix C. RPE translation errors

127

0.14

0.12

ot
=
IS

0.08

RPE translation [m]

e
=
&

0.04

0.14

o
=
o

e
—_
fem)

0.08

RPE translation [m|
=

0.04

0.02 +t

RPE translation
rmse (0.03616)
median (0.02009)
mean (0.02739)
std (/- 0.02361)

0.02 -

i

100 200 300 400 500
Keyframe index |[-]

(a) S+P

RPE translation
rmse (0.03616)
median (0.02009)
mean (0.02739)
std (+/- 0.02361)

100 200 300 400 500
Keyframe index [-]

(b) S+P+R

Figure C.21: Dataset V2_03_difficult: RPE translation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.



128

RPE translation error mapped onto trajectory [m]

0.170
"""" Reference
4
3
2
= 1
LE/ 0.085
=
0
-1
-2
0.000
—4 -3 -2 -1 0 1 2
z (m)
(a) RPE translation for S+P
RPE translation error mapped onto trajectory [m| 0170
******* Reference
4
3
2
=1
N 0.085
=y
0
-1
-2
0.000
—4 -3 -2 — 0 1 2

(b) RPE translation for S+P+R

Figure C.22: Dataset V2_03_difficult: RPE translation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.1: Dataset MH_01_easy: RPE rotation error of VIO using Strutureless (S) and Projection
(P) factors, against S + P + Regularity (R) factors.



Appendix D. RPE rotation errors 131

RPE rotation error mapped onto trajectory [deg]

0.400
"""" Reference
8
6
= 4
Nai 0.200
=
2
0
_92 0.000
-2 0 2 4
z (m)
(a) RPE rotation for S+P
RPE rotation error mapped onto trajectory |[deg] 0.400
****** Reference
8
6
= 4
£ 0.200
=y
2
0
-2 0.000
-2 0 2 4
x (m)

(b) RPE rotation for S+P+R

Figure D.2: Dataset MH_01_easy: RPE rotation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.3: Dataset MH_02_easy: RPE rotation error of VIO using Strutureless (S) and Projection
(P) factors, against S + P + Regularity (R) factors.
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Figure D.4: Dataset MH_02_easy: RPE rotation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.5: Dataset MH_03_medium: RPE rotation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure D.6: Dataset MH_03_medium: RPE rotation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.7: Dataset MH_04_difficult: RPE rotation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.8: Dataset MH_04_difficult: RPE rotation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.9: Dataset MH_05_difficult: RPE rotation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.10: Dataset MH_05_difficult: RPE rotation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.11: Dataset V1_01_easy: RPE rotation error of VIO using Strutureless (S) and Projection
(P) factors, against S + P + Regularity (R) factors.
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Figure D.12: Dataset V1_01_easy: RPE rotation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.13: Dataset V1_02_medium: RPE rotation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure D.14: Dataset V1_02_medium: RPE rotation error plotted on trajectory estimates for VIO

using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.15: Dataset V1_03_difficult: RPE rotation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.16: Dataset V1_03_difficult: RPE rotation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.17: Dataset V2_01_easy: RPE rotation error of VIO using Strutureless (S) and Projection
(P) factors, against S + P + Regularity (R) factors.
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Figure D.18: Dataset V2_01_easy: RPE rotation error plotted on trajectory estimates for VIO
using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.19: Dataset V2_02_medium: RPE rotation error of VIO using Strutureless (S) and Pro-
jection (P) factors, against S + P + Regularity (R) factors.
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Figure D.20: Dataset V2_02_medium: RPE rotation error plotted on trajectory estimates for VIO

using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.21: Dataset V2_03_difficult: RPE rotation error of VIO using Strutureless (S) and
Projection (P) factors, against S + P + Regularity (R) factors.
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Figure D.22: Dataset V2_03_difficult: RPE rotation error plotted on trajectory estimates for
VIO using Strutureless (S) and Projection (P) factors, against S + P + Regularity (R) factors.
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