
ETH Library

Imitation Learning for Photovoltaic
Power Fluctuation

Master Thesis

Author(s):
Spiess, Robin

Publication date:
2018-08

Permanent link:
https://doi.org/10.3929/ethz-b-000303532

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000303532
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Robin Spiess

Imitation Learning for Photovoltaic

Power Fluctuation

Master Thesis

Learning & Adaptive Systems Group
Swiss Federal Institute of Technology (ETH) Zurich

Supervision

Prof. Dr. Andreas Krause
Dr. Jan Poland (ABB)

Felix Berkenkamp

August 2018

Abstract

Photovoltaic (PV) power plants are renewable energy sources of ever increasing
importance. However, their dependence on environmental factors, such as solar ir-
radiance and the presence of clouds, leads to �uctuations in their energy output.
These �uctuations have a negative impact on the stability of the power grid. It is
therefore bene�cial if the power plants are only allowed to change their output at
a certain rate. The di�erence between power production and output is drawn from
a battery. This thesis explores the possibilities of imitation learning to improve the
control of the output. By learning a policy which anticipates changes in power pro-
duction the energy throughput of the battery can be minimized. This will increase
the lifespan of the batteries and thereby reduce costs for the production of solar
energy.

In this work we use arti�cial neural networks to predict an improved policy for the
battery output. An optimal policy is computed for past data of a PV power plant.
This optimal policy serves as an expert to train the neural networks with imitation
learning. The data used as input consists of sky images and sensor measurements.
The images are �rst processed by a convolutional neural network architecture called
ResNet. After the ResNet, feedforward or recurrent neural network layers are added
to predict the policy output.

The results show that the trained models are able to beat the baseline policy. The
best performance is achieved by only executing the predicted action if the model
is con�dent enough. Otherwise, if the model is not con�dent, the baseline pol-
icy is applied. Pre-training the ResNet with the right target labels improves the
performance. We furthermore show that certain pre-processings can help as well.
Surprisingly, recurrent neural networks perform worse than feedforward architec-
tures. The best performing model is a feedforward neural network which combines
all of these improving factors.

i

Contents

Abstract i

1 Introduction 1
1.1 Thesis Objective . 2
1.2 Related Work . 2

2 Background 5
2.1 Clearsky Model . 5
2.2 Arti�cial Neural Networks . 6

2.2.1 Feedforward . 6
2.2.2 ResNet . 7
2.2.3 Recurrent . 7

2.3 Imitation Learning . 8
2.3.1 Dataset Aggregation Algorithm 9

2.4 Calibration and Uncertainty of Neural Networks 11

3 Methodology 13
3.1 Problem formulation in the imitation learning framework 13

3.1.1 Baseline and Optimal Policy 15
3.1.2 Policy Representation . 16
3.1.3 Sampling new data . 17
3.1.4 Target policy . 17

3.2 Dataset . 19
3.2.1 Pre-processing . 19

3.3 Neural Network Architectures . 22
3.3.1 ResNet . 22
3.3.2 Policy Network . 23

4 Experiments 25
4.1 Perfect Future Knowledge . 25
4.2 Feedforward Neural Network . 29

4.2.1 Input Data . 29
4.2.2 Balanced and Unbalanced Sampling 29
4.2.3 Larger Model and More Training 32
4.2.4 Di�erent ResNet Embeddings 33

iii

4.2.5 Training from Scratch or Finetune ResNet 36
4.2.6 Linear Program and Correcting to Optimal Trajectory 37
4.2.7 Imitation Learning . 38
4.2.8 Discussion . 38

4.3 Di�erence between Validation and Test Set 40
4.4 Recurrent Neural Network with Perfect Future Knowledge 42

4.4.1 Model . 42
4.4.2 Training on a single day . 42
4.4.3 Training on whole dataset . 43

4.5 Recurrent Neural Network with Images 46
4.5.1 Model . 46
4.5.2 Single Day . 46
4.5.3 Whole dataset . 46
4.5.4 New dataset split . 47
4.5.5 Discussion . 48

4.6 Error Analysis . 51
4.6.1 Discussion . 56
4.6.2 Conclusion regarding RNN performance 56

4.7 More input images and new pre-processing 57
4.7.1 Multiple input images . 57
4.7.2 Multiple input images and cropped pre-processing 57
4.7.3 Color correction . 59

4.8 Discussion . 61

5 Conclusion and Outlook 63

A Parameter Tables 67
A.1 Feedforward . 67
A.2 Recurrent . 68

List of Abbreviations

ABB Asea Brown Boveri
ANN Arti�cial Neural Network
AggreVaTe Aggregate values to imitate algorithm
BESS Battery energy storage system
BN Batch normalization
DAD Data as demonstrator algorithm
DAgger Dataset Aggregation algorithm
ETH Eidgenössische Technische Hochschule
GHI Global Horizontal Irradiance
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HDR High Dynamic Range
LOLS Locally optimal learning to search algorithm
LSTM Long Short-Term Memory
MLP Multilayer Perceptron
NWP Numerical Weather Prediction
PV Photovoltaic
ReLU Recti�ed Linear Unit
ResNet Residual Network
RNN Recurrent Neural Network
SEARN Search and learning algorithm
SGD Stochastic Gradient Descent
SMILe Stochastic mixing iterative learning algorithm

Chapter 1

Introduction

As our society shifts its power production to renewable sources, technologies such as
photovoltaics (PV) become more important. With a growth rate of roughly 30% per
year, PV power generation has been growing at an enormous speed in recent years
[30]. In 2017, new PV power plants totaling more than 97 GW were constructed
[8]. The global solar PV power generating capacity reached 400 GW by the end of
2017 [2]. However, a problem of environment dependent energy sources are their
�uctuation in power production. If not managed carefully, the electrical grid can
become unstable [5]. This could cause damage to sensitive machines or in the worst
case result in a power outage due to cascading failures.

One way of preventing strong �uctuation is to add a battery to the PV system, in
order to bu�er the spikes in power production. Such a combination is sometimes
called PV/BESS (battery energy storage system). Often there is a limit on the rate
of change for the output of power plants [16]. These limits are called ramp rate rules.
If a cloud suddenly occludes the sun, the power production of the PV will drop. In
order to still ful�ll the ramp rate constraints, the missing di�erence in power will be
drawn from the battery.

The ageing of lithium-ion batteries is strongly in�uenced by the depth of cycle and
state of charge [46]. In order to maximize the battery life it is therefore bene�cial
to minimize the energy throughput of the battery. This can be achieved by using
short-term predictions of the produced power to appropriately control the overall
output. Predicting the output of solar [4] and wind based power plants is an active
�eld of research. But most models focus on longer time horizons of a few hours to
a few days. These predictions are often based on long-term statistical data of the
climate, numerical weather prediction or satellite images.

1

2 1.1. Thesis Objective

1.1 Thesis Objective

The goal of this thesis is to improve the control of the PV/BESS output in order to
minimize the energy throughput of the battery. The energy throughput is measured
as the integral of the absolute di�erence between the power production and the
system's output. The model for our policy consists of neural networks which directly
predict the optimal action. Possible actions are to increase or decrease the output
or to simply follow the current power production. The rate at which the output may
change based on these actions is constrained by the ramp rate rules. As input we use
sky images and a few sensor measurements such as the current solar irradiance. The
data is provided by ABB. Our neural networks are trained with imitation learning
algorithms. The problem is stated formally and with more details in section 3.1.

1.2 Related Work

There is a large amount of research done in the area of predicting the output of PV
power plants. Most models focus on longer time horizons of a few hours to a few
days. These predictions are often based on past measurements [31, 34], numerical
weather predictions [35], satellite images [22] or combinations of these [6]. For
example, Gensler et al [18] show that arti�cial neural networks (ANN) outperform
physical models given historical numerical weather prediction data. They �nd that
a Long Short-Term Memory network on top of an auto encoder performs best. But
the improvement compared to a standard multi-layered perceptron is very small.

There are a few di�erent approaches which use sky images for the prediction. The
methods in [12, 43] use sky images to create shadow maps, i.e. clouds mapped to the
ground. These shadow maps are used to improve predictions of the power output.
Chu et al. [14] show that further improvements can be made by reforecasting with
an ANN integrating information about power generation in the short past.

Other work has used cloud motion and cloud map forecasts to improve global hori-
zontal irradiance (GHI) prediction [36]. The motion of clouds can also be determined
by sparse optical �ow. The movement of the clouds is then extrapolated and the
projected cloud map is used to determine the irradiance [42]. Using two cameras
Hashimoto and Nagakura [23] create 3d representation of clouds and classi�ed them.
This enabled them to predict when large clouds will cover a PV power plant and
decrease its output drastically.

Another approach [13], which uses ANNs, computes the fraction of clouds in grid
elements which are projected in the reverse direction of the cloud movement from
the sun position. The fraction of clouds in these grid elements serve as input to an

Chapter 1. Introduction 3

ANN that predicts the change in irradiance.

Bernecker et al [7] use a circular sector in front of the sun to create a preliminary
forecast. This forecast is then re�ned with a Kalman �lter. This approach can be
used for continuous forecasts up to 10 minutes. It is better than persistence for
forecasts more than a minute ahead.

A previous master's thesis by Dinesh Pothenini [38] examined which convolutional
neural network architecture works best on the dataset used in this work to predict
the weather in 5 minutes. He found that a certain ResNet architecture, which is ex-
plained in more detail in subsection 3.3.1, performs best in predicting whether there
will be clouds in 5 minutes or not. In this work we will use the same architecture
to process the sky images as a �rst step.

The master's thesis by Arthur Habicht [21] examined if reinforcement learning could
be applied to the same problem as this thesis endeavors to solve. Despite multiple
di�erent strategies and network architectures the reinforcement learning approach
did not manage to beat the baseline policy as it is de�ned in section 3.1. One
possible reason for this might be that training a good policy with reinforcement
learning from scratch is very di�cult for this problem.

4 1.2. Related Work

Chapter 2

Background

In this chapter we explain the clearsky model, which is used to predict the solar
irradiance on sunny days, provide information about neural networks in general and
about the architecture called ResNet in particular. Furthermore, we describe what
imitation learning is and some of the algorithms from that area. We also take a look
at the calibration of neural networks which we will use later in this thesis.

2.1 Clearsky Model

A clearsky model predicts a value for the solar irradiance under the assumption
that no clouds are present. The clearsky model used in this thesis is implemented in
pvlib-python [3] based on the Ineichen-Perez model [28]. This model computes the
global horizontal irradiance (GHI). GHI represents the total amount of radiation
a surface horizontal to the ground would receive. It is the sum of direct normal
irradiance and di�use horizontal irradiance. The input of the model consists of
the location's altitude and information about the optical air mass. By comparing
the measured solar irradiance with the prediction of the clear sky model it can be
determined whether it was cloudy at the time of measurement or not. This is useful
for creating ground truth labels for training.

5

6 2.2. Arti�cial Neural Networks

2.2 Arti�cial Neural Networks

2.2.1 Feedforward

Arti�cial neural networks are a class of machine learning models which are inspired
by biological neural networks. They consist of connected units called arti�cial neu-
rons. In the analogy, these connections correspond to the synapses in a biological
brain. The arti�cial neurons can send signals to connected neurons. Depending
on the incoming signals, the receiving neurons forward a signal themselves. The
neurons are grouped in layers. If neurons in a layer are only connected to neurons
in the next layer, then the network is said to have a feedforward architecture. In
such an architecture, each neuron �rst sums up all incoming signals from the con-
nected neurons in the previous layer. Each signal is weighted with a parameter. An
additional value called bias is added to this sum. Finally, an activation function is
applied to the result which determines the output of the neuron. The function a
neuron j computes in layer l can be described as follows: olj = f(blj +

∑n
i=1 o

l−1
i wlij)

where olj is the output of neuron j in layer l, f is the activation function and b and w
are parameters which can be learned. There are many possible activation functions,
for example, f(x) = tanh(x) or the recti�ed linear unit (ReLU) f(x) = max(0, x)
among others.

A simple way to learn these parameters is called stochastic gradient descent (SGD).
For each data sample drawn at random, SGD computes the �rst-order derivative
of a cost function with respect to the network's parameters. Then the parameters
are updated according to the derivatives. The �rst-order derivatives can easily be
computed by applying backpropagation. Backpropagation reuses already computed
partial derivatives which makes it computationally e�cient to compute the gradients
for the parameters.

Figure 2.1: Illustration of a feedforward neural network. The neurons are grouped
into layers. Each neuron is only connected to the neurons in the next layer. The
layers between the input and the output layer are called hidden layers.

Chapter 2. Background 7

2.2.2 ResNet

The ResNet architecture was presented by He et al. in 2015 [24]. It is a deep
convolutional architecture mainly used for image processing. The main idea is that
the input to a block of layers is added to the output of the block. In other words, the
layers have to learn the residual to the identity function. As shown in Figure 2.2a
if a block of layers learns F(x), then the output after the block is F(x) + x. This
means that the block has to learn the residual F(x) = H(x)− x where H(x) is the
target. There are also more sophisticated blocks which were introduced in [26] and
use batch normalization [29] (see also Figure 2.2b).

(a) A ResNet building block. For image

processing, weight layer is usually a con-

volutional layer. relu denotes the activa-

tion function ReLU.

(b) A pre-activated building block. BN

is Batch Normalization, ReLU is the rec-

ti�er activation function and weight is a

convolutional layer.

2.2.3 Recurrent

For data with an element of time, a di�erent architecture can provide more bene�ts.
In recurrent neural networks (RNN), layers have an additional connection to itself.
While it is possible to simply include a connection of the neurons with themselves,
often the neurons are modeled di�erently in order to deal with the recurrent con-
nection. Currently one of the most widely used models is the Long Short-Term
Memory (LSTM) neuron [27]. It keeps an internal cell state which can be selec-
tively updated. A simpler model is the Gated Recurrent Unit (GRU) [10]. Instead
of having a dedicated cell state, GRUs use the output of the previous timestep as
recurrent input. RNNs can be trained with backpropagation through time. The
RNN is unrolled over multiple time steps. The unrolled network has a feedforward
architecture which we already know how to train. The only di�erence is that the

8 2.3. Imitation Learning

weights are shared between the time steps and have to be updated accordingly. The
training error can be computed for each time step individually. The update is then
computed with respect to the average training error.

Recurrent neural networks achieve state of the art performance for sequential data
like speech recognition, natural language processing, handwriting recognition, time
series prediction and so on.

2.3 Imitation Learning

In imitation learning we assume that we have an expert system. The expert executes
a policy which minimizes our target cost function. A model trained with imitation
learning tries to imitate the optimal policy instead of directly minimizing the cost
function. The expert system usually only works on past data where everything is
known. However, the trained model has only access to limited data. The underlying
assumption of imitation learning is that by imitating the expert, the model learns
to extract useful information from the limited data.

There are multiple algorithms which implement imitation learning. The simplest
approach is the supervised approach, where the model is only trained on trajectories
generated by the expert. Each trajectory consists of the states the expert encounters
and the action the expert takes in these states. The main problem of this approach
is that the learned policy is unable to recover from failure. Once it strays from
the trajectory as observed by the expert, it will most likely perform poorly and be
unable to get back to the optimal states.

Forward training was introduced by Ross and Bagnell [39]. This algorithm trains a
policy for each time step t for all T iterations. As it starts with π1 the policy for a
later step πi is trained on the actual distribution of states induced by π1, ...πi−1. This
algorithm is only suitable for small T and therefore not suitable for most real-world
applications.

Search and learning (SEARN) [15] keeps a current hypothesis h of the policy.
The initial policy π needs to be good and e�ciently computable. If possible, the
expert is used as the initial policy. In each iteration of the algorithm, the current
policy h is used to create a set of new training samples S. Then a new classi�er h′

is trained on S and interpolated with the current hypothesis: h ← βh′ + (1 − β)h.
Only samples created within the same iteration are used for training h′. In the end,
the last hypothesis hlast without depending on the initial policy π is returned as the
result.

Chapter 2. Background 9

The stochastic mixing iterative learning algorithm (SMILe) [39] is similar to SEARN.
It starts with π0 which always queries and executes the expert's actions. At iteration
i the policy π̂i is trained to mimic the expert on the state distribution induced by
πi−1. πi is then a stochastic mixture of πi−1, π̂i and the expert π0. The probability
to query the expert decreases with each iteration and is at any step (1 − α)i. The
algorithm can be stopped at any time. The resulting policy is the last policy without
dependence on the expert and with normalized probabilities.

For non-optimal expert policies πref an algorithm called Locally Optimal Learning
to Search (LOLS) was developed [9]. LOLS can improve on the expert policy. For
each time step t the algorithm �rst performs a roll-in by executing π̂, the policy
learned so far. This is done so that the state distribution is representative of the
learned policy. At step t the cost for each possible action is determined by rolling
out with either the reference policy πref with probability β and with the learned
policy π̂ otherwise. These costs, the state st and the original input features together
form a new sample for the training data set. After doing this for all time steps t,
the policy π̂ is trained on the newly created training data set.

The Aggregate Values to Imitate (AggreVaTe) [40] algorithm leverages additional
information from the actual cost. It generates new datasets for training by sampling
a trajectory with the current policy π. At a random time step t ∈ {1, 2, ..., T} an
exploration action at is executed and the expert is executed until the end of the
episode at time T . We observe the estimate cost-to-go Q̂ from t to T . The new data
sample consists of the state st, the action at and Q̂.

2.3.1 Dataset Aggregation Algorithm

The dataset aggregation algorithm, also called DAgger [41], was presented in 2011
by Ross et al. The basic idea is to �rst train a policy on a dataset labeled by an ex-
pert. Then an additional dataset is sampled by applying the trained policy. During
sampling, the action predicted by the trained policy is ignored with probability β
and the expert is asked instead. This ensures that the sampled data is meaningful
by preventing the policy from straying too far o� course. The newly created data
points are all labeled by the expert and merged with the original dataset. This
process is then repeated with the aggregated dataset as training data for the next
policy. The additional data enables the policy to learn how to handle suboptimal
states. The algorithm is described in algorithm 1. βi is a parameter depending
on the iteration number i and describes the aforementioned probability to ask the
expert during sampling. The only requirement for βi is βN = 1

N

∑N
i=1 βi → 0 as

N →∞. A version of DAgger without hyperparameter exists where βi is chosen to
be β0 = 1, βi = 0 ∀i > 0.

10 2.3. Imitation Learning

Algorithm 1: DAgger Algorithm

1 Initialize D ← ∅.
2 Initialize π̂1 to any policy in Π.
3 for i = 1 to N do
4 Let πi = βiπ

∗ + (1− βi)π̂i
5 Sample T -step trajectories using πi.
6 Get dataset Di = {(s, π∗(s))} of visible states by πi and actions given by

expert.
7 Aggregate datasets: D ← D ∪Di
8 Train classi�er π̂i+1 on D.
9 end
10 return best π̂i on validation

Ross et al. additionally provide a few guarantees for DAgger. For these guarantees
they assume that the underlying algorithm which trains the policies π̂1:N has the
no-regret property. This means that the average regret with respect to the best
policy in hindsight goes to 0 as N →∞:

1

N

N∑
i=1

li(πi)−min
π∈Π

1

N

N∑
i=1

li(π) ≤ γN for lim
N→∞

γN = 0

Here li is the loss at iteration i.

For the �nite sample case, where m trajectories are sampled in each DAgger it-
eration, they found that with probability at least 1 − δ DAgger learns a policy
π̂ ∈ π̂1:N during its N iterations for which holds:

Es∼dπ̂ [l(s, π̂)] ≤ ε̂N + γN +
2lmax

N
[nβ + T

N∑
i=nβ+1

βi] + lmax

√
2 log(1/δ)

mN

where dπ̂ represents the state distribution induced by π̂, l(s, π̂) is the loss for π̂ and
state s, ε̂N is the training loss of the best possible policy in hindsight, γN is the
average regret of π̂1:N , lmax is an upper bound on the loss for all policies π̂i and nβ
is the largest n ≤ N such that βn >

1
T
.

If we choose N ∈ Ω(T 2 log(1/δ)) and m > 0 then the upper bound simpli�es to:

Es∼dπ̂ [l(s, π̂)] ≤ ε̂N +O(1/T)

Many no-regret algorithms give a guarantee that γN ∈ Õ(1/N). With this fact and
our choice of N it follows that γN ∈ O(1/T).

Further work has shown that the DAgger algorithm is more stable than Searn [47].
A slight variation of DAgger is the Data as Demonstrator (DAD) algorithm [45].
The labels of the generated samples are the correction, i.e. what the model should
do in order to get back to the optimal trajectory.

Chapter 2. Background 11

2.4 Calibration and Uncertainty of Neural Networks

The con�dence of modern neural networks is often poorly calibrated, i.e. the net-
works are often too con�dent in their predictions. The probability output of a well
calibrated network would match the true correctness likelihood. Guo et al. [20] have
found a simple method called temperature scaling, to adjust the output of neural
networks so that accuracy and con�dence match. Temperature scaling is derived
from the entropy maximization principle with an appropriate balanced equation.
The resulting idea is to scale the logits, the outputs of the neural network, before
they are transformed into probabilities by a softmax function. The inverse of the

scaling factor λ is called temperature T =
1

λ
.

Scaled softmax of logits vector z : q(zk) =
eλzk∑K
j=1 e

λzj
(2.1)

Since all logits are scaled by the same factor, the index of the maximum does not
change. This means that temperature scaling does not change the accuracy of the
model, it simply calibrates the con�dence of the network. This simple method
was found to perform better than more sophisticated calibration methods across
various architectures and data sets. The optimal temperature can be determined
by minimizing the negative log-likelihood on the validation set with respect to the
temperature.

Another approach, which is not used in this thesis, is presented by Alex Kendall
and Yarin Gal [32]. Instead of looking at the softmax output they found other
ways to determine the uncertainty of a neural network. The authors di�erentiate
between aleatoric and epistemic uncertainty. Aleatoric uncertainty is inherent to
the data, e.g. if noise is present. Epistemic uncertainty is the uncertainty of the
model when it has not yet seen enough data. Depending on whether the task is a
regression or a classi�cation problem di�erent implementations are used to determine
the uncertainty. For instance in the regression case, the aleatoric uncertainty is an
additional output of the neural network and directly included in the loss function.

12 2.4. Calibration and Uncertainty of Neural Networks

Chapter 3

Methodology

In this chapter we formulate the problem in more detail and explain how we use
imitation learning to solve it. Moreover, we describe the data with which we work
and how it is pre-processed. Finally, we present the architectures of the neural
networks for our trained policies.

3.1 Problem formulation in the imitation learning

framework

The main objective is to train a policy which minimizes the energy throughput of the
battery. This stabilizes the PV output and reduces the cost of the energy production
by increasing the battery life. The policy has to operate under the constraint of the
ramp rate rules. The ramp rate rules limit the rate at which the policy is allowed
to change the output.

A few simplifying assumptions are made for this thesis:

First, the power production is represented by the solar irradiance. This assumption
is justi�ed since power production is mainly in�uenced by the irradiance. Figure 3.1
shows how strong the correlation between power production and irradiance is. There
are a few additional parameters which in�uence the power production, e.g. temper-
ature, snow or dirt on the panels etc. A model which is able to work with and
predict changes in solar irradiance will provided a very good starting point for fu-
ture work. Consequently, the aforementioned ramp rate rules are formulated with
regards to the irradiance. In our case we assume a ramp rate rule of 40W/m2 per
minute. For comparison, the solar irradiance value during a sunny day can go up to
around 1000W/m2. This means that if the solar irradiance drops from 1000W/m2 to

13

14 3.1. Problem formulation in the imitation learning framework

200W/m2 due to clouds, it will take 20 minutes for the system to adjust its output.

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000 2015-07-22
Irradiance
Power

Figure 3.1: Comparison of irradiance and power output. The power production of
the PV system is highly correlated with the value of the irradiance.

Secondly, we assume that the battery has in�nite charge. This assumption simpli�es
our objective function since we are not constrained by the capacity of the battery
and we do not have to keep track of the current charge. A simple way to reintroduce
this constraint would be to add an optimal state of charge to the objective function.
For example, if the battery always returns to a charge of half of its maximum
capacity, the system is able to store surplus energy and to output additional energy
if required. Though a more sophisticated solution might be better, as the state of
charge in�uences the battery life as well [46].

The third and last assumption is that the control predicted by the model is applied
immediately. This means that there is no delay between receiving the input data
and predicting as well as applying the next action. In a real world application some
delay might be introduced by the system's electrical or mechanical parts and by the
model especially if it is complex and takes time to compute a solution.

Given these assumptions we can formulate a simple objective function we would like
to minimize:

ξ(t1, t2) =

∫ t2

t1

|o(t)− s(t)|dt

The energy throughput ξ on a time interval t1 to t2 is determined by the integral
of the absolute di�erence between the current output o(t) and the solar irradiance
s(t).

Chapter 3. Methodology 15

3.1.1 Baseline and Optimal Policy

A simple but e�ective policy is to follow the current irradiance value. This policy
does not take any forecasting into account and instead assumes that everything stays
the same and just reacts to changes which have already happened. Formally de�ned
the baseline policy acts in the following way:

o(t+ 1) =

s(t+1), |o(t)− s(t+1)| ≤ r

o(t) + r, |o(t)− s(t+1)| > r ∧ s(t+1) > o(t)

o(t)− r, otherwise

As before, o(t) is the output of the PV system, s(t) the current irradiance and r is
the ramp rate. This policy serves as the baseline to assess the performance of our
trained policies.

Finding the optimal policy for our data can be done with a simple linear program,
because we have the true irradiance data for the whole day. We denote the irradiance
measurements as y, our output as x̂ and the ramp rate constraint as ri = 40 W/m2

per minute. We want to minimize the di�erence between the irradiance and our
current output d̂i = |x̂i − yi|.

min
x

cTx

s.t. Ax ≤ b

x =

x̂1
...
x̂T
d̂1
...

d̂T

, A =

A1,1 A1,2

A2,1 A2,2

A3,1 0
A4,1 0

 , b =

-y
y
r
r

 , c =

0
...
0
1
...
1

A1,1 = A1,2 = A2,2 =

−1
. . .

−1

 , A3,1 =

−1 1
.

−1 1

A2,1 = −A1,1, A4,1 =− A3,1

The constraints translate into the following:

16 3.1. Problem formulation in the imitation learning framework

∀i. d̂i ≥ |x̂i − yi|, ri ≥ |x̂i − x̂i−1|, where ri = 40 W/m2 per minute

Furthermore, since we want to minimize cTx = d̂ the constraint d̂i ≥ |x̂i − yi|
e�ectively turns into d̂i = |x̂i − yi|.

A comparison between this optimal policy and the baseline policy can be seen in
Figure 3.2. As a side note, the �gure also shows that if we had a policy close to the
optimal one, it might be possible that less total battery capacity would be needed.
For instance around 16:20 when the output decreases, we have to drain a large
amount from the battery if the baseline policy is applied. With the optimal policy,
we �rst store a small amount in the battery and then drain a small amount from
the battery.

(a) Baseline (b) Optimal

Figure 3.2: Comparison of the baseline and the optimal policy. The area between
the output of the policy and the irradiance is smaller for the optimal policy. This
area corresponds to the energy throughput of the battery. In this example the
baseline's energy throughput is 268'794 while the optimal policy results in an energy
throughput of only 152'395.

3.1.2 Policy Representation

A model generates a policy by classifying every data sample into one of three classes:

1. Follow the current irradiance, equivalent to the baseline policy.

2. Increase output.

3. Decrease output.

The problem is thus formulated as a classi�cation problem and models can be opti-
mized by minimizing the cross entropy loss.

Chapter 3. Methodology 17

L(ŷ, y∗) = −
3∑
i=1

I{y∗=i} log ŷi

With ŷ the model's softmax output, y∗ the true label and I{y∗=i} the indicator
function.

We found that the performance of our models is better, if their predictions are only
applied, when they are con�dent enough. Otherwise, the baseline policy is executed,
as if the model had predicted the �rst class to follow the current irradiance. This
is comparable to cases where a misclassi�cation costs more than if no decision was
made. In our case, the baseline policy is executed when no decision is made. The
output of the softmax is used as a measure of con�dence. This works because the
models are su�ciently well calibrated, meaning the output probability matches the
accuracy, and the threshold for con�dence is determined for each model individually.
In cases where the model is not well calibrated, we apply the temperature scaling
method described in section 2.4. While temperature scaling does not improve the
accuracy of the model, it makes it easier to �nd a good threshold.

3.1.3 Sampling new data

The core idea of imitation learning algorithms such as DAgger (subsection 2.3.1) is
to generate additional data by applying the policy learned so far. The expert policy
is selected with a certain probability while sampling to prevent the model from
going too far o� track. This probability is the β parameter. For the feedforward
architectures we choose β = 0.9epoch. We start sampling after 5 epochs of training
and then sample after every 2 epochs of training. For the recurrent architectures
we choose β = 0.8sampling epoch. To prevent creating outlier samples which could
negatively in�uence the model, the sampled output is reset to the optimum value
every 60 time steps. Furthermore, the output that can be sampled is restricted to
be between 0 and 1300 W/m2 which is 100 W/m2 more than the highest value in
the training data. An example of such sampled data is shown in Figure 3.3.

3.1.4 Target policy

While sampling new data points the model might �nd itself in states which are
far away from the optimal policy. Since we want to apply imitation learning and
mimic the optimal policy, the generated labels for these samples point towards the
current output of the optimal policy. For example, if the sampled output is above
the optimal policy and far away, the label will be to decrease the output. If the

18 3.1. Problem formulation in the imitation learning framework

08:00 10:00 12:00 14:00 16:00 18:00 20:00
0

200

400

600

800

1000

Sampled 2015-07-25
Optimal
Baseline
Irradiance
Follow
Up
Down

Figure 3.3: Newly sampled data during training. The markers show new samples
with their respective label Follow, Up, Down. For example around 12:00 the model
stops increasing the output, even though the irradiance is still higher. The target
label for these samples is to increase the output.

sampled value is close to the optimal policy's value then the label is set to do the
same thing as the optimal policy. The value is close enough if it is smaller than the
change allowed by the ramp rate rule per minute.

An alternative would be to directly solve another linear program starting from
the currently sampled output value. This is explored in the experiment in sub-
section 4.2.6.

Chapter 3. Methodology 19

3.2 Dataset

Figure 3.4: Setup for data generation. Shown are the �sh-eye camera and irradiation
sensors.

We use a dataset collected at a PV plant located in Cavriglia, Italy. The sampling
period ranges from July 16, 2015, to April 25, 2016, with a few small gaps in-between.
The data contains sky images and various sensor measurements such as the current
irradiance value. The setup of the camera and sensors is shown in Figure 3.4 and a
few example images are shown in Figure 3.5. The images are high dynamic range
(HDR) images which improves the quality as we are looking directly at the sun. A
minor draw back is that the colors are not always calibrated in the same way. On
some days all images have a red tint.

We use two di�erent splits which divide the dataset into training, validation and test
set. For both, the size ratio is roughly 70%, 15% and 15%. The �rst dataset split
is done in an interleaving manner, meaning that there is roughly one week between
any two days in the validation set. The same property holds for the test set. In
order to break any regularities, e.g. that a test day always follows a day used for
validation, the interval between days of the same set is slightly varied. Out of 256
days, it uses 183 for training, 36 for validation and 37 for testing. The days for the
second dataset split are drawn completely at random. In this second split 179 days
are used for training, 38 for validation and 39 for testing.

The reason for having two di�erent splits is that the �rst batch of experiments
revealed a discrepancy in di�culty between the validation and test set of the �rst
split. This is discussed in more detail in section 4.3. The �rst experiments in
chapter 4 use the �rst split, while later experiments use the second split.

3.2.1 Pre-processing

In this thesis we evaluate three di�erent pre-processing methods. The one used in
most experiments downsizes the original images from 1566×1566 pixels to 224×224.
Then a mask is applied to remove the border of the camera and other background
objects.

20 3.2. Dataset

(a) Sunny (b) Cloudy (c) Rain drops

(d) Red tint (e) Bird (f) Insects

Figure 3.5: A few sample images and possible noise and irregularities in the data.

The second pre-processing centers the images on the sun, crops the size to 448×448
and then scales the image down to 224 × 224. The reasoning behind this pre-
processing is that it should be easier for the models, if the sun is always at the
same position. Furthermore, clouds far away from the sun could confuse the neural
network and hence it is better to limit the input to the relevant area by cropping
the image. Examples of this pre-processing method are shown in Figure 3.6.

Figure 3.6: A few sample images which are recentered, cropped and scaled down.

The third pre-processing is a small re�nement of the second pre-processing by adding
color correction. While there are sophisticated methods for tonal correction in videos
[17, 44] we are satis�ed with the results of a very simple method. We simply keep an
exponential moving average of the current mean values for the red, green and blue
channels. The target mean value RGB

(t)
avg at timestep t is applied to each channel

after it is updated according to RGB
(t)
avg = 0.1 ·RGB(t) + 0.9 ·RGB(t−1)

avg . Concretely,

every pixel value is multiplied with RGB
(t)
avg/RGB(t). The black pixels of the mask

are ignored for the computations. The results of applying this color correction can

Chapter 3. Methodology 21

be seen in Figure 3.7. After the color correction the images are cropped and scaled
down in the same way as in the second pre-processing method. While the color
stabilization cannot solve the images of days where all images have a red tint, it can
improve the consistency between consecutive images on all days.

Figure 3.7: Five subsequent images without and with color stabilization. Without
the color stabilization, two images in the original series have a green tint and the
middle one has slightly more red. The colors are more consistent when applying the
color correction.

All pre-processings have in common, that the pixel values of the loaded images are
divided by their maximum value of 255. This ensures that every value is normalized
to be between 0 and 1. Only timestamps where the clearsky model predicts at least
an irradiance of 100 W/m2 are considered. Timestamps with a lower clearsky value
are in the morning and evening. These timestamps are ignored for two reasons. The
�rst is that in these cases the potential improvement by using a sophisticated model,
instead of a simple baseline policy, is small. Secondly, at those times the sun is very
close to the horizon. Due to the �sh-eye perspective the region around the sun is
very distorted. This would make training more di�cult.

22 3.3. Neural Network Architectures

3.3 Neural Network Architectures

In this section we describe the networks we used in the experiments. All neural
networks run in Keras [11] with the Tensor�ow [1] backend.

3.3.1 ResNet

The ResNet used in this work is a 18 layer version with pre-activated building blocks
introduced in [26]. The weights are initialized by the He et al [25] initializer which
is an adaption of the Xavier [19] initializer for the ReLU activation function. The
choice for this architecture is mostly motivated by previous work by Pothineni [38].
It was found to achieve the best accuracy on the same dataset as used in this work
in predicting whether it will be cloudy in 5 minutes. Since we are working with
di�erent training and test set splits, we do not use models pretrained by Pothineni.
Instead, the ResNet is trained with various target labels, e.g. whether it is cloudy
in 5 minutes or how the irradiance changes. We either trained the ResNet with a
single target label or in a multi-task setting where the ResNet had to predict the
target for multiple time intervals simultaneously. In most experiments we provided
two images which are one minute apart as input. But we also conducted several
experiments with three or six images as input.

We tested a few variations for the last few layers of the ResNet. In the �rst variation
we have an average pooling as the last operation which reduces a 7×7×512 tensor to
a �at 512 dimensional output. In cases where the ResNet was trained in a multitask
setting we added a fully connected layer with 128 neurons after the average pooling.
The �nal variation is used in conjunction with the second and third pre-processing
method described in the previous subsection. We replaced the average pooling with
a 1 × 1 convolution to reduce the 7 × 7 × 512 tensor to 7 × 7 × 64 dimensions. In
other words, we reduce the number of channels but keep spatial information. Our
reasoning for this decision was that with these pre-processing methods the sun is
always in the center and thus it might be even more important to know where a
certain feature was detected. The resulting tensor is then �attened and fed to the
aforementioned fully connected layer of size 128. The output of this fully connected
layer serves as an embedding of the input images and is used as input for the policy
network. All of these variations are shown in Figure 3.8.

Chapter 3. Methodology 23

(a) ResNet for single

target label.

(b) ResNet for multi-

task labels.

(c) ResNet with 1 × 1
convolution.

Figure 3.8: Variations of the last layers of the ResNet and how they connect to the
policy Network. ResNet (7x7x512) denotes the ResNet up to these last layers.

3.3.2 Policy Network

The policy network consists of the the layers we add after the ResNet. In the simple
case, these architectures only use fully connected layers. Figure 3.9 shows these
networks. In the shown examples we have 6 channels for the input images which
is due to the fact that two images with 3 channels each are concatenated as input
for the ResNet. All fully connected layers have the ReLU activation function and
are initialized with the He et al [25] initializer. Besides these feedforward networks
we also experimented with networks containing recurrent layers. Figure 3.10 shows
these models. In a few experiments we supply the true future irradiance values
instead of the current and past sky images. How the architecture looks like in
that case is shown in Figure 3.10a, while Figure 3.10b shows how the ResNet is
incorporated when images are used.

24 3.3. Neural Network Architectures

Input images (6x224x224)

ResNet

Scalar input values

Fully connected (32)

Fully connected (16)

Output layer (3)

(a) Small feedforward model.

Input images (6x224x224)

ResNet

Scalar input values

Fully connected (64)

Fully connected (128)

Output layer (3)

Fully connected (24)

Fully connected (64)

Fully connected (16)

(b) Larger feedforward model.

Figure 3.9: Feedforward models.

Scalar input values

Fully connected (128)

Output layer (3)

Fully connected (128)

Recurrent layer (256)
LSTM or GRU

(a) Recurrent model with future irradi-

ance values.

(b) Recurrent Model with images as in-

put.

Figure 3.10: Recurrent models.

Chapter 4

Experiments

In this chapter we conduct multiple experiments with di�erent architectures and
input con�gurations. Since these models take quite some time to train (a few models
presented in this chapter took up to three weeks of training) and computational
resources are limited, each con�guration is only trained once. All models were
initialized with the same random seed.

In all experiments the performance of our models is measured by their sum of loss,
the objective function de�ned in section 3.1. To compute the sum of loss, we start
at the �rst timestamp on each day and initialize the current output to the irradiance
value. Then we give full control over the output to the trained model. In the end
we compute the sum of the absolute di�erence between the output trajectory as
determined by the model and the irradiance values. Missing values are linearly in-
terpolated. Other metrics such as validation accuracy are less important in our case,
since the validation and test data on which we could compute these metrics consist
of the optimal trajectory and the expert's actions. In practice the model quickly
moves o� the optimal trajectory and thus the accuracy is no longer applicable.

4.1 Perfect Future Knowledge

To start, we want to show that training with imitation learning works and that the
target policy, according to subsection 3.1.4, provides good guidance. We tested if a
neural network is able to learn the optimal solution given perfect knowledge of how
the irradiance develops within the next 15 minutes.

A multilayered perceptron (MLP) provided by Scikit-learn [37] was used for this
experiment. It contains two layers of sizes 128 and 32. The activation function is

25

26 4.1. Perfect Future Knowledge

the ReLU function. The network was trained with the Adam [33] optimizer. The
input to the model consists of the current output of the policy and the irradiance
values every 15 seconds from the current measurement to 15 minutes in the future.
The maximum irradiance value in the data set is 1195. The values were divided
by 1000 to normalize them while still being easily interpretable. The parameterless
dataset aggregation algorithm (see subsection 2.3.1) was applied for 20 epochs. After
every epoch new data was sampled with the currently trained model. The results
show that the model is very close to the optimal solution, but in some cases does
not react early enough, see Figure 4.1a. This is most likely due to the fact that a
time horizon of 15 minutes is not always large enough to come up with the optimal
solution. This is corroborated by the fact that a larger MLP with three layers of
sizes 128, 64 and 32 performs equally well (Figure 4.2). This shows that it is not
the network size which creates the gap in performance to the optimal solution.

Redoing these experiments with a time horizon of 30 minutes instead of 15 minutes
shows that it may improve the performance in certain cases (see Figure 4.1b). But
overall the performance does not improve, as becomes clear when comparing Fig-
ure 4.3 with Figure 4.2. The additional input dimensions seem to make training
slightly harder. In one epoch the smaller model performs worse than the baseline.
The accuracy, i.e. how often the model made the same decision as the optimal
policy, for the training and validation set is shown in Table 4.1.

Model Accuracy Training Validation
MLP Small 15min 0.905 0.936
MLP Large 15min 0.917 0.948
MLP Small 30min 0.898 0.915
MLP Large 30min 0.914 0.941

Table 4.1: Training and validation accuracy after 20 epochs of training. These values
show that the smaller MLP model might be overburdened by the additional data for
30 minutes into the future as its performance drops compared to the 15min small
MLP.

An important property is that the model is robust with regard to suboptimal states,
see Figure 4.4. These results show that the target policy is well chosen and a neural
network can learn a near optimal policy given good input data.

Chapter 4. Experiments 27

15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30
Time

0

200

400

600

800

1000

So
la
r I
rra

di
an
ce
 (W

/m
2)

2015-07-31
Small MLP
Optimal
Baseline
Irradiance

(a) Small MLP 15 minutes horizon

15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30
Time

0

200

400

600

800

1000

So
la
r I
rra

di
an
ce
 (W

/m
2)

2015-07-31
Small MLP
Optimal
Baseline
Irradiance

(b) Small MLP 30 minutes horizon

Figure 4.1: Performance of two models trained with di�erent time horizons on an
example. Both come close to the optimal performance given perfect knowledge of
the future irradiance values. But even with perfect knowledge the model in 4.1a is
unable to react early enough around 16:10 to get the optimal energy throughput.
The model in 4.1b which receives the irradiance values for the next 30 minutes
performs better in this example. Both models were trained for 20 epochs.

1 2 4 6 8 10 12 14 16 18 20
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Su
m

 o
f L

os
s

1e7 Validation

Small MLP
Large MLP
Optimal
Baseline

(a) Validation 15 minutes horizon

1 2 4 6 8 10 12 14 16 18 20
Epoch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Su
m
 o
f L

os
s

1e7 Test

Small MLP
Large MLP
Optimal
Baseline

(b) Test 15 minutes horizon

Figure 4.2: Sum of loss on validation and test set. Both models perform equally
well. They are close to the optimal performance.

28 4.1. Perfect Future Knowledge

1 2 4 6 8 10 12 14 16 18 20
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Su
m

 o
f L

os
s

1e7 Validation

Small MLP
Large MLP
Optimal
Baseline

(a) Validation 30 minutes horizon

1 2 4 6 8 10 12 14 16 18 20
Epoch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Su
m
 o
f L

os
s

1e7 Test

Small MLP
Large MLP
Optimal
Baseline

(b) Test 30 minutes horizon

Figure 4.3: Sum of loss on validation and test set of models trained with the future
irradiance values for the next 30 minutes. The performance is not better than with
a shorter time horizon of 15 minutes (Figure 4.2). At epoch 5 the small MLP is
actually worse than the baseline policy. This might indicate that the smaller model
has more problems training with larger input data.

15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30
Time

0

200

400

600

800

1000

1200

So
la
r I
rra

di
an

ce
 (W

/m
2)

2015-07-31
Policy
Optimal
Irradiance
Random Reset

Figure 4.4: A short episode where the current output value is reset to a random
amount after every 200th step. The trained policy always �nds its way back to a
near optimal trajectory. This shows that the choice of the target policy for training
produces robust policies.

Chapter 4. Experiments 29

4.2 Feedforward Neural Network

In this section an architecture which uses embeddings created by the ResNet and
a few fully connected layers is explored. Multiple experiments to determine the
in�uence of di�erent parameters are conducted.

4.2.1 Input Data

For this model we use the image data and a few scalar measurements from the
dataset. Two images which are one minute apart are given as input to the ResNet.

The scalar input consists of the current output of the system, the current irradiance
measurement irrt and the clearsky model prediction with their value divided by
1000. This ensures that the values are between 0 and 1 except for a few cases where
the irradiance is above 1000. The highest value for irradiance in the dataset is 1195.
Additionally, a boolean whether it is currently cloudy or not is provided.

Furthermore, the di�erences of the last 5 irradiance measurements irrt−5, ..., irrt−1

each spaced 7 seconds apart and the current measurement are given transformed as
f(irrt−i) = sign(irrt−i − irrt)

√
|irrt−1 − irrt|. This transformation was compared

with simply scaling the di�erence or taking the measurement of irradiance at time
t− i without subtracting the current value irrt and was found to be the best per-
forming. This is most likely due to the fact, that most values of irrt∀t are smaller
than one and the di�erences are therefore very small. The square root in the trans-
formation will push all values closer to one, especially the very small ones. This
makes it easier for the network to e.g. distinguish between small positive and small
negative changes. The interval of 7 seconds was chosen because it is the median
interval between two measurements. If no measurement is at that exact time, a
linearly interpolated value is used.

4.2.2 Balanced and Unbalanced Sampling

The labels in the data are imbalanced. For 82% of the samples the target policy
is to follow the irradiance. The other two possibilities, increasing or decreasing
the output, are both equally distributed at 9% of the data. This leads to the
question whether this imbalance will cause any problems during training. A �rst set
of experiments evaluates this. For this experiment we used the small feedforward
model (see Figure 3.9a).

Two identical models were trained with the single di�erence that one model was

30 4.2. Feedforward Neural Network

trained with the unbalanced samples and one with balanced sampling, i.e. each
batch contains the same number of samples for each class. The batch size was set
to 30, so that 10 samples of each class can be used for the balanced sampling.

For the evaluation only predictions where the neural network is certain are consid-
ered, i.e. the maximum of its softmax output is larger than the chosen threshold.
Otherwise the baseline policy is executed. The trained network is still well calibrated
(see Figure 4.7), since the ResNet is �xed during training and the model on top of
the ResNet is small. This justi�es the use of the softmax output as a measure of
con�dence.

Both models were trained for 20 epochs with the dataset aggregation algorithm
(subsection 2.3.1). The β parameter of the algorithm was set to 0.9epoch. The
networks were trained for 5 epochs before they were used to sample additional data.
Afterwards, sampling was done after every 2 epochs. The loss and accuracy on
training and validation set are shown in Figure 4.5. Both models can outperform
the baseline by a very small amount, as shown in Figure 4.6. The model trained with
unbalanced sampling is slightly better than when trained with balanced sampling.
As a result, we decided to always work with the unbalanced dataset directly.

1 5 10 15 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss
 a
nd

 A
cc
ur
ac

y

Training

Balanced loss
Balanced accuracy

Unbalanced loss
Unbalanced accuracy

(a) Training

1 5 10 15 20
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss
 a
nd

 A
cc
ur
ac

y

Validation

Balanced loss
Balanced accuracy

Unbalanced loss
Unbalanced accuracy

(b) Validation

Figure 4.5: Loss and accuracy for the training and validation dataset up to epoch
20.

Chapter 4. Experiments 31

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

2.30

2.35

2.40

2.45

2.50

2.55

Su
m
 o
f L
os
s

1e7

Optimal at 1.64e7

Validation
Balanced
Unbalanced
Baseline

(a) Validation

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

2.05

2.10

2.15

2.20

2.25

2.30

Su
m

 o
f L

os
s

1e7

Optimal at 1.41e7

Test
Balanced
Unbalanced
Baseline

(b) Test

Figure 4.6: Balanced compared against unbalanced sampling after 20 epochs of train-
ing. While both resulting models can outperform the baseline by a small amount,
the model trained with unbalanced sampling is better especially on the test set. The
sum of loss for the optimal policy is at 1.64 · 107 and 1.41 · 107 for validation and
test set respectively.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence bin

0.0

0.2

0.4

0.6

0.8

1.0

0.3 1.2 3.5 4.9 5.0 4.5 3.4 2.8 4.8 69.6

Unbalanced
Accuracy
Gap less accurate
Gap more accurate

(a) Unbalanced sampling

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence bin

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.9 2.7 4.5 3.6 3.6 4.0 4.3 4.6 71.5

Multitask Irradiance
Accuracy
Gap less accurate
Gap more accurate

(b) Multitask irradiance

Figure 4.7: Reliability plots for two di�erent models. The model trained with un-
balanced sampling from subsection 4.2.2 and the multitask irradiance model from
subsection 4.2.4. The model is sampled on the validation data. The largest value
of the softmax output is used as con�dence. The samples are binned according to
their con�dence. If the average accuracy is lower than the average con�dence in
such a bin, then the model is over-con�dent (marked as gap less accurate in red).
The numbers on the bars indicate the percentage of samples within that bin. Most
samples are in the bin with highest con�dence. Most of the clear sky samples are
located in that bin. Both models are well calibrated and close to the dashed identity
function where con�dence equals accuracy. The unbalanced sampling model which
was trained for only 20 epochs tends to be not con�dent enough while the multitask
irradiance model which was trained for 50 epochs tends to be slightly over-con�dent.

32 4.2. Feedforward Neural Network

4.2.3 Larger Model and More Training

In order to �nd out if the small feedforward architecture was large enough, we tested
whether it is able to over�t to a single day in the training set. July 25, 2015, was
chosen for this experiment because this day includes periods of clear sky but also
clouds on multiple layers and some rain. As it turns out, the model was not large
enough to learn a good �t for this single day. The small network achieved a training
accuracy of 83%. An even smaller network with no hidden layers achieved only an
accuracy of 74% on this single day. However, a larger network was able to achieve
92% training accuracy and also performed better in terms of energy throughput.
The architecture of the larger network is shown in Figure 3.9b. It was trained for
50 epochs and the best performance was found for a probability threshold of 0.5.
The resulting policy is shown in Figure 4.8. The policy's performance is close to
the optimal policy. Consequently, we decided to continue to work with the larger
architecture.

09:30 09:40 09:50 10:00 10:10 10:20 10:30
Time

0

200

400

600

800

1000

So
la

r I
rra

di
an

ce
 (W

/m
2)

2015-07-25

Policy
Optimal
Baseline
Irradiance

11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30
Time

0

200

400

600

800

1000

So
la
r I
rra

di
an

ce
 (W

/m
2)

2015-07-25

Policy
Optimal
Baseline
Irradiance

18:15 18:20 18:25 18:30 18:35 18:40 18:45
Time

0

100

200

300

400

500

So
la

r I
rra

di
an

ce
 (W

/m
2)

2015-07-25
Policy
Optimal
Baseline
Irradiance

Figure 4.8: The larger feedforward model trained on a single day. The probability
threshold is set to 0.5. The policy's sum of loss over the whole day is 1'004'778
which is closer to the optimal policy (808'795) than the baseline (1'475'074).

This larger network bene�ts from more training up to 50 epochs as shown in Fig-
ure 4.9. After epoch 50 the performance deteriorates again on the test set. Note
that the validation set was not used to tune any hyperparameters. The training was
done with the dataset aggregation algorithm in the same way as described in the
previous subsection.

Chapter 4. Experiments 33

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

2.30

2.35

2.40

2.45

2.50

2.55

Su
m
 o
f L
os
s

1e7

Optimal at 1.64e7

Validation
Epoch 20
Epoch 40
Epoch 50
Epoch 80
Baseline

(a) Validation

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

2.05

2.10

2.15

2.20

2.25

2.30

2.35

Su
m

 o
f L

os
s

1e7

Optimal at 1.41e7

Test
Epoch 20
Epoch 40
Epoch 50
Epoch 80
Baseline

(b) Test

Figure 4.9: Additional training epochs are bene�cial for a larger network architec-
ture. While the training loss and accuracy remain mostly the same after 20 epochs,
training still improves the performance since more data, generated by the imitation
learning algorithm, is included. After epoch 50 the performance increases only on
the validation set while the performance on the test set slightly decreases.

4.2.4 Di�erent ResNet Embeddings

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Ratio irradiance / clearsky

0

200000

400000

600000

800000

1000000

1200000

1400000
Irradiance and Clearsky Distribution

Figure 4.10: Distribution of the ratio between irradiance and the clearsky model
predictions. The data is clearly bimodal. The black line denotes the threshold at
which a sample is classi�ed as cloudy (ratio below 0.7) or sunny (ratio above 0.7).

In the previous experiments we worked with a ResNet which was trained to predict
the immediate change of irradiance. in this subsection we investigate the in�uence
of training the ResNet in a di�erent way. Besides the change of irradiance, another
possible target label is to predict whether or not the weather will be cloudy in a
certain time interval. We can determine whether it is cloudy or sunny at a given
timestamp by comparing the measured irradiance and the predicted clearsky model.
As can be seen in Figure 4.10 the ratio between irradiance and the clearsky model
has two clear modes. A data sample is given the label cloudy when this ratio is
below 70%.

34 4.2. Feedforward Neural Network

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.99
Probability Threshold

2.30

2.35

2.40

2.45

2.50

2.55

Su
m

 o
f L

os
s

1e7

Optimal at 1.64e7

Validation
1 Minute Cloudy
Irradiance Change
Multitask Cloudy
Multitask Irradiance
Baseline

(a) Validation

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.99
Probability Threshold

2.05

2.10

2.15

2.20

2.25

2.30

Su
m
 o
f L
os
s

1e7

Optimal at 1.41e7

Test
1 Minute Cloudy
Irradiance Change
Multitask Cloudy
Multitask Irradiance
Baseline

(b) Test

Figure 4.11: A comparison between di�erent ResNet models. The di�erence between
the networks is the training target. The ResNet output is followed by the larger
network to make a policy prediction.

In Figure 4.11 we compare the performance of the larger model with four di�erently
trained ResNets. The ResNets di�er in their training target labels. 1 Minute Cloudy
was trained on labels to predict whether it is cloudy in 1 minute or not. Irradiance
Change had to predict how the irradiance changes in the next timestep (7 seconds
later). The multitask networks had the same tasks but for multiple time intervals
simultaneously. Multitask Irradiance Change was trained to predict the change of
irradiance in 10 seconds, 30 seconds, 1 minute and 2 minutes. Multitask Cloudy had
to predict whether it is cloudy in 30 seconds, 1 min, 2 min, 5 min and 10 minutes
simultaneously. A change for the multitask ResNet architecture is the addition of a
hidden layer of size 128 before all output layers. Since previous models had many
"dead" neurons, i.e. neurons which never activated, in their layer before the output,
the bias of this new layer was initialized to a small positive value of 0.1 instead of
zero.

Multitask Irradiance Change performs best on the validation set and still performs
better than the baseline on the test set. On the test set Irradiance Change performs
better. The discrepancy between validation and test set is analyzed in section 4.3.
The di�erences between the ResNets can be seen as well when comparing their
embeddings of the input images, see Figure 4.12.

Based on the performance, we decided to focus on the Multitask Irradiance Change
ResNet for further experiments. Another advantage of this ResNet is that it reaches
optimal performance consistently on both sets at a probability threshold of 0.85.

Chapter 4. Experiments 35

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
Target Policy

Follow
Increase
Decrease

(a) Irradiance Change

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

1.5

Target Policy
Follow
Increase
Decrease

(b) 1 Minute Cloudy

−3 −2 −1 0 1 2 3 4

−2

−1

0

1

2

3
Target Policy

Follow
Increase
Decrease

(c) Multitask Irradiance Change

−6 −4 −2 0 2 4 6−4

−3

−2

−1

0

1

2

3

4 Target Policy

Follow
Increase
Decrease

(d) Multitask Cloudy

Figure 4.12: These plots show the two dimensional PCA projections of 300 ran-
dom samples from the training set for four di�erently trained ResNets. Multitask
irradiance change has the best separation between the Follow and the Increase or
Decrease targets.

36 4.2. Feedforward Neural Network

4.2.5 Training from Scratch or Finetune ResNet

Seeing how changes to the ResNet substantially in�uence the performance of the
whole model, we investigated whether �netuning the ResNet parameters can lead
to further improvements. We compared three di�erent approaches.

1. Finetune trained the ResNet �rst but kept the weights trainable once the pol-
icy network layers were added.

2. Subsequent �netuning �rst trained the ResNet for 50 epochs, then froze the
weights of the ResNet and trained the policy network for 50 epochs. Finally
all weights were made trainable again for another 50 epochs.

3. From scratch trained the whole architecture from a random initalization with
imitation learning. Training the whole architecture from scratch to epoch
90 took 3 weeks, due to the additional training data sampled for imitation
learning. Training from zero to epoch 50 took only one week.

Surprisingly �netuning the ResNet parameters does not improve the performance of
the model as can be seen in Figure 4.13. For example Multitask irradiance achieved
a sum of loss of 2.32 · 107 on the validation set compared to the �netuned network
which only achieved a loss of 2.36 · 107 which is equal to the performance of the
baseline.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

2.30

2.35

2.40

Su
m
 o
f L
os
s

1e7

Optimal at 1.64e7

Validation

From Scratch Epoch 50
From Scratch Epoch 90
Finetune Epoch 50
Subsequent Finetuning Epoch 100
Baseline

(a) Validation set

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

2.05

2.10

2.15

2.20

2.25

2.30

Su
m
 o
f L

os
s

1e7

Optimal at 1.41e7

Test
From Scratch Epoch 50
From Scratch Epoch 90
Finetune Epoch 50
Subsequent Finetuning Epoch 100
Baseline

(b) Test set

Figure 4.13: Comparison of �netuning the ResNet weights at di�erent times. See
text for description of di�erent models. The network which was trained as a whole
from scratch for three weeks performs the best on both sets.

Chapter 4. Experiments 37

4.2.6 Linear Program and Correcting to Optimal Trajectory

So far the target labels of the generated samples were set as corrections so that the
model returns to the optimal trajectory. In a few cases there might be a better
action which will lead to a lower total energy throughput. This better action can
be found by solving a linear program similarly to how the optimal trajectory for
the whole day was computed. The linear program is solved for the next 30 minutes
with a time resolution of 7 seconds and the currently sampled output value as a
starting point. The �rst step of the optimal solution is taken as the target label.
The performance comparison between the two methods is shown in Figure 4.14. It
is not clear if one of the two methods is better than the other. On the validation set
deriving the target policy from the precomputed optimal policy is better. On the
test set it is better to use a linear program to determine the target label. A detailed
examination of the days with the largest di�erences in performance between the two
models has not revealed any clear insights. Neither a systematic behavior where one
model performs better than the other nor a di�erence in the data which would favor
one of the models was found. In the end we decided to stick with the correction
towards the optimal trajectory, as this method does not require to solve a linear
program for every data point and is therefore less computationally expensive.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

2.55

Su
m
 o
f L
os
s

1e7

Optimal 1.64e7

Validation

Cloudy Linear Program
Cloudy Towards Optimal
Irradiance Linear Program
Irradiance Towards Optimal
Baseline

(a) Validation set

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.30

Su
m
 o
f L

os
s

1e7

Optimal 1.41e7

Test

Cloudy Linear Program
Cloudy Towards Optimal
Irradiance Linear Program
Irradiance Towards Optimal
Baseline

(b) Test set

Figure 4.14: Comparison of deriving target labels from the precomputed optimal
solution and solving a linear program. We did this experiment with two di�erent
ResNets: The multitask irradiance and the multitask cloudy ResNet. On the test
set the models trained with multitask cloudy do not beat the baseline. Overall, no
clear verdict can be determined, as the performance depends on the data set.

38 4.2. Feedforward Neural Network

4.2.7 Imitation Learning

In the last experiment of this section we want to con�rm whether imitation learn-
ing is really required or if supervised learning would work as well. We also look
at the parameter-free version of DAgger. So far all networks were trained with
the DAgger parameter βt = 0.9t. Figure 4.15 shows the di�erence between the
parameter-free version, βt = 0.9t and what happens if no additional data is sam-
pled. The model without additional sampled data immediately performs worse once
the threshold is below 0.95. This model is not able to handle states which are o� the
optimal trajectory. The two other two models are similar in performance. Because
the parameter-free algorithm sometimes samples additional training data where the
output stays at the extremes of either constantly 0 or at the maximum possible
value, we decided to continue using βt = 0.9t.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Probability Threshold

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Su
m
 o
f L
os
s

1e7

Optimal at 1.64e7

Validation
No Sampling
Parameter-free
β=0.9
Baseline

(a) Validation set

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Probability Threshold

2.0

2.1

2.2

2.3

2.4

2.5

2.6

Su
m
 o
f L

os
s

1e7

Optimal at 1.41e7

Test
No Sampling
Parameter-free
β=0.9
Baseline

(b) Test set

Figure 4.15: Imitation learning comparison of βt = 0.9t and parameter-free version.
The performance is roughly equal except for some calibration di�erences, i.e. the
curves are horizontally di�erently stretched. When no additional data is sampled,
the model performs much worse as it cannot handle non-optimal states.

4.2.8 Discussion

To summarize, we found that networks trained with unbalanced sampling perform
better than when trained with balanced sampling. The larger feedforward architec-
ture performs better than the smaller one. Having the ResNet learn to predict the
change of irradiance gives better results than when it learns to predict whether it will
be cloudy or not. Finetuning the parameters of the ResNet surprisingly decreases
the performance. Finally, we showed that imitation learning is necessary for good
results. Otherwise, the trained policy is not able to handle non-optimal states.

Chapter 4. Experiments 39

The performance of a few selected models presented in this section is shown in
Table 4.2. It shows that the accuracy of the imitation learning algorithm is not a
good indication for the actual performance on the validation and test set. This is
due to the fact that the accuracy is computed on the optimal trajectory.

Since the problem deals with a time series it makes sense to also consider recur-
rent neural networks. Experiments with RNNs are conducted in section 4.4 and
section 4.5. Another topic which requires more in-depth analysis is the di�erence in
performance between the validation and test set. This is done in section 4.3.

Experiment Tr.Acc. Val.Acc. Validation (107) Test (107)
Baseline 2.361 (0%) 2.123 (0%)
Optimal 1.412 (100%) 1.637 (100%)

Balanced sampling (Epoch 20) 0.760∗) 0.844 2.357 (0.53%) 2.121 (0.29%)
Unbalanced sampling (Epoch 20) 0.893 0.891 2.347 (1.87%) 2.109 (2.01%)
Larger unbalanced (Epoch 50) 0.908 0.899 2.347 (1.88%) 2.100 (3.17%)
Multitask irradiance (Epoch 50) 0.913 0.887 2.321 (5.46%) 2.111 (1.67%)
Resnet from Scratch (Epoch 90) 0.908 0.890 2.350 (1.53%) 2.097 (3.61%)

Table 4.2: The accuracy during training and on the validation set as well as the
actual performance on the validation and test set for selected models. The accuracy
is computed as the fraction of optimal decisions while on the optimal trajectory.
The performance on the validation and test set are given as the sum of loss. In
parenthesis we give the improvement over the baseline, with the baseline policy at
0% and the optimal policy at 100%. The value marked with ∗) is not comparable
with others, as it is not the accuracy on the whole training set, but on the balanced
data used for training which has less samples of class 0, where the target is to follow
the current irradiance.

40 4.3. Di�erence between Validation and Test Set

4.3 Di�erence between Validation and Test Set

The previous experiments revealed a discrepancy between the performance of the
trained models on the validation and the test set. An analysis of the performance
per day for the Multitask Irradiance model in Figure 4.17a reveals that three or four
days are responsible for the largest di�erence of the trained policy to the baseline.
The model has a large variance in performance. A second dataset split was created,
this time completely at random. Figure 4.17b and Figure 4.16 show that when the
same model is trained on this new split, its performance is slightly worse but overall
more consistent. While there are still a few outlier days on the validation set, their
values are less extreme. A good performance on this second split should be more
indicative of an actually well trained and more robust model.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Probability Threshold

90%

95%

100%

105%

110%

115%

120%

Su
m
 o
f L
os
s c

om
pa
re
d
to
 B
as
el
in
e

Dataset Comparison
Original Validation
Original Test
New Validation
New Test
Baseline

Figure 4.16: Comparison between dataset splits. They are compared to the value of
their respective baseline. Since the absolute values for the two dataset splits di�er,
they are compared as fractions. The scale is set so that the baseline is at 100%
and the corresponding optimal value is at 0%. The new splits are more consistent.
Trained and evaluated on the old split, the model performs much better on the
validation set than on the test set. On the new split the performance on both sets
are closer to each other.

Chapter 4. Experiments 41

−20000 0 20000 40000 60000 80000 100000120000140000
Improvement

0

1

2

3

4

5

6

7

Nu
m
be
r o

f d
ay

s

No Difference: 9 days
Difference

Difference to Baseline on Validation

−20000 0 20000 40000 60000
Improvement

0

2

4

6

8

Nu
m
be

r o
f d

ay
s

No Difference: 6 days
Difference

Difference to Baseline on Test

(a) Comparison of trained policy Multitask Irradiance (introduced in subsection 4.2.4) with

the baseline policy in terms of loss di�erence per day. The probability threshold was �xed

at 0.85. On the validation set the trained policy performs much better on three days. The

largest outlier has an improvement of over 130'000. On the test set the positive outliers

are less extreme. On the other hand, there is even one day where the performance of the

trained policy is worse than the baseline by more than 20'000. Figure 4.16 shows that

the positive outliers on the validation set lead to a large di�erence in overall performance

between test and validation set.

−20000 0 20000 40000 60000 80000 100000120000140000
Improvement

0

2

4

6

8

10

Nu
m
be
r o

f d
ay

s

No Difference: 18 days
Difference

Difference to Baseline on new Validation

−20000 0 20000 40000 60000
Improvement

0

2

4

6

8

Nu
m
be
r o

f d
ay

s

No Difference: 10 days
Difference

Difference to Baseline on new Test

(b) Multitask Irradiance trained on the new training set and evaluated on the new vali-

dation and test set. The probability threshold was again set to 0.85. The validation set

contains no outliers with an improvement of more than 40000. On the test set there are

no samples which perform worse than the baseline by more than 7500. In summary, the

model has less variance in performance and the validation and test set are closer in overall

performance than on the original dataset split.

Figure 4.17: Performance compared to the baseline per day on the �rst and second
dataset split.

42 4.4. Recurrent Neural Network with Perfect Future Knowledge

4.4 Recurrent Neural Network with Perfect Future

Knowledge

In the next two sections we explore if a recurrent architecture can achieve better
performance. This seems likely as our data is a time series. In this section we provide
the true future irradiance values while in the next section we only use images and
information from the past and present.

4.4.1 Model

We use the recurrent architecture with only scalar input values (see Figure 3.10a).
The model is trained with short episodes. Each episode consists of a batch of
5 sequences with 100 timesteps, which is equivalent to almost 12 minutes. The
sequences are chosen at random from the training set. The �rst 20 timesteps are used
to initialize the hidden state of the recurrent layer without updating the network's
weights. After that the model is trained with 20-step truncated backpropagation
and the Adam optimizer.

In order to be able to compare the results with previous experiments we use the
old dataset split for training and evaluation. It still ful�lls the purpose of evalu-
ating whether recurrent neural networks (RNN) work for this problem and if our
implementation is correct.

4.4.2 Training on a single day

In order to see if our implementation of the RNN is correct, we trained and evaluated
it on a single day. To start, we used the future values of the irradiance for the next
15 minutes as input, similar to section 4.1. We compared Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU) as well as whether adding a fully con-
nected layer before and after the recurrent layer helps. All models were trained for
6000 episodes. New data was sampled every 200 episodes after an initial learning
period of 500 episodes. The performance of these four di�erent combinations can be
seen in Figure 4.18. Adding the fully connected layers de�nitely improves the per-
formance. No clear statement can be made with regard to whether GRUs or LSTMs
are better.We decided to use LSTMs because that model is better calibrated, i.e. it
is easier to �nd a good threshold.

This �rst experiment served as a preliminary examination to see which combination
works best. The performance could be further improved by training for longer and
using 30 minutes instead of 15 minutes future irradiance data as input.

Chapter 4. Experiments 43

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99
Probability Threshold

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5
Su

m
 o

f L
os

s
1e6 Single Day

GRU simple
GRU fully connected
Optimal

LSTM simple
LSTM fully connected
Baseline

Figure 4.18: Comparison of four di�erent models with knowledge about future ir-
radiance values. The architectures with fully connected layers before and after the
recurrent layer perform better. The best performance of the LSTM and GRU with
fully connected layers are almost equal but the LSTM is more robust to the choice
of the probability threshold.

4.4.3 Training on whole dataset

The LSTM model with hidden layers was trained on the whole training set. Fig-
ure 4.19 shows the performance of the model. The policy induced by the model
outperforms the baseline. However, in terms of sum of loss it is worse than the
feedforward model in section 4.1. Seeing how there is only little change between
10'000 and 20'000 episodes of training, further training is unlikely to improve the
performance of this model.

If the model receives twice as much input, the future irradiance values for 30 minutes
instead of 15 minutes, then the picture is di�erent. In this case training improves
the performance by a lot. But even more training seems to lead to slight over�tting
which worsens the performance on the validation and test set. This shows that
RNNs bene�t from longer training, if they receive more data to work with, but they
might be prone to over�tting. Examples on how these two models perform on actual
data is shown in Figure 4.20.

44 4.4. Recurrent Neural Network with Perfect Future Knowledge

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Probability Threshold

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

Su
m
 o
f L
os
s

1e7 Validation
LSTM 15min 10000 Episodes
LSTM 15min 20000 Episodes
LSTM 30min 10000 Episodes
LSTM 30min 20000 Episodes
LSTM 30min 30000 Episodes
Optimal
Baseline

(a) Validation 15min and 30min horizon

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Probability Threshold

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

Su
m

 o
f L

os
s

1e7 Test
LSTM 15min 10000 Episodes
LSTM 15min 20000 Episodes
LSTM 30min 10000 Episodes
LSTM 30min 20000 Episodes
LSTM 30min 30000 Episodes
Optimal
Baseline

(b) Test 15min and 30min horizon

Figure 4.19: Sum of loss on validation and test set. For the LSTM with 15 minutes
horizon there is not much di�erence between 10'000 and 20'000 training episodes.
But if twice as much input data is provided, additional training provides a huge
bene�t and improves the performance. The performance at 20'000 episodes is still
slightly worse than in the feedforward architecture with future knowledge, see Fig-
ure 4.2. Additional training leads to over�tting and worsens the performance on the
validation and test set.

Chapter 4. Experiments 45

15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30
Time

0

200

400

600

800

1000

So
la
r I
rra

di
an
ce
 (W

/m
2)

2015-07-31
LSTM 20000 Episodes
Optimal
Baseline
Irradiance

(a) 15min horizon

15:30 15:45 16:00 16:15 16:30 16:45 17:00 17:15 17:30
Time

0

200

400

600

800

1000

So
la
r I
rra

di
an
ce
 (W

/m
2)

2015-07-31
LSTM 30min 20000 Episodes
Optimal
Baseline
Irradiance

(b) 30min horizon

Figure 4.20: Resulting policy of LSTM with irradiance knowledge of next 15min or
30min trained for 20000 episodes. The performance is very similar to the one shown
in Figure 4.1a. The model with 30min horizon performs better at 16:10 but shows
small signs of overshooting around 15:55.

46 4.5. Recurrent Neural Network with Images

4.5 Recurrent Neural Network with Images

In this section we provide two images and the same scalar input values as in sec-
tion 4.2 to a neural network with a LSTM layer.

4.5.1 Model

The architecture is shown in Figure 3.10b. It consists of the Multitask Irradiance
ResNet after which are added: a fully connected layer of size 128, followed by an
LSTM layer with 256 units and �nally another fully connected layer of size 128
before the output layer.

In order to be able to compare the new results with previous experiments, we �rst
train the network on the �rst dataset split. In subsection 4.5.4 we train the model
on the second dataset split.

4.5.2 Single Day

To test how well the RNN implementation works with images, it is trained and
evaluated on a single day.

It is trained for 20'000 episodes each consisting of 5 sequences with 100 timesteps.
The �rst 20 timesteps are used to initialize the hidden state of the RNN which are
reset after every batch. Starting after episode 1000, additional data sets are sampled
every 500 episodes. The probability during sampling to ask the expert instead of the
model is β = 0.8|D|, where |D| is the number of already created datasets including
the original one. The performance of the trained model can be seen in Figure 4.21.
It is almost equal to the optimal performance. This is much better than what the
feedforward architecture achieved in Figure 4.8. Furthermore, the fact that this
model is able to over�t to this extent shows that it is large enough to handle this
type of data.

4.5.3 Whole dataset

On the whole dataset the RNN model is trained for longer. The �rst additional data
is sampled after 5000 episodes and afterwards after every 2500 episodes. Each new
dataset consists of 1000 contiguously sampled timesteps per day. During training
the batches consist of randomly selected episodes. A batch is picked as follows: For

Chapter 4. Experiments 47

09:30 09:40 09:50 10:00 10:10 10:20 10:30
Time

0

200

400

600

800

1000

So
la

r I
rra

di
an

ce
 (W

/m
2)

2015-07-25

Policy
Optimal
Baseline
Irradiance

11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30
Time

0

200

400

600

800

1000

So
la
r I
rra

di
an

ce
 (W

/m
2)

2015-07-25

Policy
Optimal
Baseline
Irradiance

18:15 18:20 18:25 18:30 18:35 18:40 18:45
Time

0

100

200

300

400

500

So
la

r I
rra

di
an

ce
 (W

/m
2)

2015-07-25
Policy
Optimal
Baseline
Irradiance

Figure 4.21: A model with a recurrent layer is trained on a single day. The proba-
bility threshold is set to 0. The policy's sum of loss over the whole day is 837'205
which is almost the same as the optimal policy (808'795). The baseline performs
much worse (1'475'074).

each sequence in the batch a dataset is �rst selected (Either the original one or one
of the newly sampled datasets), then one of the training days is picked and �nally
a valid starting timestamp within that day. Valid means that after the timestamp
there are another 100 timestamps left to �t the whole episode. The experiment is
stopped after episode 90'000. As can be seen in Figure 4.22 the model is not able
to outperform the baseline. More training after episode 50'000 does not lead to any
improvement on the validation or test set.

4.5.4 New dataset split

The same picture can be seen when the model is trained on the second dataset split.
The model is unable to beat the baseline which is shown in Figure 4.23. Temperature
scaling is applied in order to make it easier to �nd a good threshold. But even then,
the model is still worse than the baseline.

To ensure that over�tting is not the root of the problem, we trained a smaller model.
After concatenating the ResNet output and the scalar input values, this model only

48 4.5. Recurrent Neural Network with Images

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Su
m

 o
f L

os
s

1e8 Validation
LSTM 10000 Episodes
LSTM 20000 Episodes
LSTM 50000 Episodes
LSTM 90000 Episodes
Optimal
Baseline

(a) Validation

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Su
m
 o
f L

os
s

1e8 Test
LSTM 10000 Episodes
LSTM 20000 Episodes
LSTM 50000 Episodes
LSTM 90000 Episodes
Optimal
Baseline

(b) Test

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Su
m
 o
f L
os
s

1e8 Training

LSTM 20000 Episodes
LSTM 50000 Episodes
LSTM 90000 Episodes
Optimal
Baseline

(c) Training

Figure 4.22: Performance on whole dataset. Also shown is the performance of the
model on the training set.

has a fully connected layer and the recurrent LSTM layer, each with 64 neurons,
before the output. Furthermore, we increased the batch size from 5 to 10 and
reduced the sequence length from 20 to 10 time steps. An episode was still 100 time
steps long, but only the �rst 10 were used to initialize the hidden states. Since each
episode contains twice as much data and the model is smaller, we decided to stop
training after episode 30'000. Still, Figure 4.23 shows that this smaller model does
not outperform the baseline. So it is unlikely that over�tting due to too many free
parameters is the reason for the bad performance of the recurrent models.

Chapter 4. Experiments 49

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

0.0

0.5

1.0

1.5

2.0

2.5

Su
m
 o
f L
os
s

1e7 Validation new split

LSTM (T=1) 50000 Episodes
LSTM (T=1.5) 50000 Episodes
LSTM Small 30000 Episodes
Optimal
Baseline

(a) New Validation

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Probability Threshold

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Su
m
 o
f L
os
s

1e7 Test new split

LSTM (T=1) 50000 Episodes
LSTM (T=1.5) 50000 Episodes
LSTM Small 30000 Episodes
Optimal
Baseline

(b) New Test

Figure 4.23: Performance on whole dataset with new dataset split. The model is not
able to beat the baseline. Even after applying temperature scaling with T = 1.5 (see
Figure 4.24), which makes it easier to �nd a good threshold, the model is unable to
outperform the baseline. A smaller model was trained as well. It does not perform
better than the larger model, which shows that over�tting is unlikely to be the
culprit for the bad performance.

(a) T=1 (b) T=1.5

Figure 4.24: The model trained on the new dataset split is better calibrated after
applying temperature scaling with T = 1.5.

50 4.5. Recurrent Neural Network with Images

4.5.5 Discussion

The RNN model is not better than the feedforward models. Since the model is
able to almost perfectly learn the optimal solution for a single day and is able to
outperform the baseline on the training set, there does not seem to be a fundamental
�aw in the training procedure. One possible explanation for the bad performance
on the validation and test set is over�tting. However, this is most likely not the
case since the model does not even come close to the optimal performance on the
training set (see Figure 4.22c) and a smaller model does not perform any better
(Figure 4.23). This is further corroborated by the fact that the average training
accuracy for the last 10'000 training batches on the �rst dataset split is 91.0% and
on the new split 91.4%. The feedforward models achieve similar training accuracies.
At this point there is no clear indication what parameters could be changed to
improve the performance of the RNN model. Hence, the next section will conduct
an extensive error analysis.

Chapter 4. Experiments 51

4.6 Error Analysis

To gain further insights as to why the RNN does not perform better than the base-
line, we performed a detailed analysis of the days with the largest errors. Figure 4.25
shows the sum of loss per day compared to the baseline. The negative outliers are
further analysed in Figure 4.26 and Figure 4.27. The positive outlier of the validation
set is looked at in more detail in Figure 4.29.

−300000 −200000 −100000 0 100000
Improvement

0

2

4

6

8

10

Nu
m
be

r o
f d

ay
s

Difference
No Difference

Difference to Baseline on Validation

(a) Validation

−250000−200000−150000−100000−50000 0 50000
Improvement

0

2

4

6

8

10

Nu
m
be

r o
f d

ay
s

Difference
No Difference

Difference to Baseline on Test

(b) Test

Figure 4.25: Improvement of model with LSTM layer trained for 90'000 episodes
compared to baseline. The model was evaluated with a probability threshold of 0.8.
In the validation set there is one day which is a clear outlier in terms of negative
performance. This day is analysed in greater detail in Figure 4.26. The three most
negative outliers of the test set are analysed in Figure 4.27.

Another thing to look at is the reliability of the recurrent model. Figure 4.28 shows
that the calibration is worse than that of the previous feedforward models, which was
shown in Figure 4.7. This can be improved with the temperature scaling method.
Without temperature scaling the model is overcon�dent and many samples end up
with a softmax maximum close to 1. After applying temperature scaling the samples
are shifted towards bins of lower con�dence, so that the con�dence better matches
the accuracy.

52 4.6. Error Analysis

09:30 09:40 09:50 10:00 10:10 10:20 10:30
Time

0

50

100

150

200

250

300

350

400

So
la
r I
rra

di
an
ce
 (W

/m
2)

2015-12-14

Policy
Optimal
Baseline
Irradiance
Picture Timestamp

(a) Errors in the morning

13:10 13:20 13:30 13:40 13:50 14:00 14:10
Time

0

50

100

150

200

250

300

350

400

So
la
r I
rra

di
an

ce
 (W

/m
2)

2015-12-14

Policy
Optimal
Baseline
Irradiance
Picture Timestamp

(b) Errors in the afternoon

(c) Image at 9:40 (d) Image at 10:15 (e) Image at 13:35

Figure 4.26: Analysis of validation set outlier. (a) and (b) show the time spans with
the largest error. The lower row shows images at the indicated times. In the morning
it is di�cult due to the clouds covering much of the image but not being dense, i.e.
they still let through most of the light. Additionally since it is December, the sun
is very close to the horizon which makes it even more di�cult. In the afternoon it
is not clear why the model decides to decrease its output around 13:35. There are
a few barely visible clouds at high altitude around the sun, but they are not dense
enough to in�uence the irradiance in any signi�cant way.

Chapter 4. Experiments 53

16:00 16:05 16:10 16:15 16:20 16:25 16:30 16:35 16:40 16:45 16:50
Time

0

100

200

300

400

500

600

700

800

So
la

r I
rra

di
an

ce
 (W

/m
2)

2015-09-30
Policy
Optimal
Baseline
Irradiance
Picture Timestamp

(a)

(b) Image at 16:08

08:00 08:05 08:10 08:15 08:20 08:25 08:30
Time

0

100

200

300

400

500

So
la

r I
rra

di
an

ce
 (W

/m
2)

2015-07-31
Policy
Optimal
Baseline
Irradiance
Picture Timestamp

(c)
(d) Image at 8:14

10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30
Time

0

200

400

600

800

1000

1200

So
la
r I
rra

di
an

ce
 (W

/m
2)

2015-07-31

Policy
Optimal
Baseline
Irradiance

(e)

13:20 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05
Time

0

100

200

300

400

500

600

700

So
la

r I
rra

di
an

ce
 (W

/m
2)

2015-10-26

Policy
Optimal
Baseline
Irradiance
Picture Timestamp

(f)

(g) Image at 13:37

Figure 4.27: Analysis of test set outliers. The largest di�erence to the baseline is on
September 30. (a) shows one of the largest errors on that day. The corresponding
image in (b) shows that the model is in�uenced by the large amount of clouds and
decides to decrease the output although in that moment the sun is between the
clouds. The situation is the same 20 minutes later when the policy decides to stay
low instead of increasing the output. The day with the second largest error is July
31. (c) shows an obvious error of the trained policy. The picture (d) shows that
there is a cloud covering the sun. But because it is located close to the border, where
the image is distorted, it is hard to estimate how long it will take until the cloud
has fully moved past the sun. The remainder of the same day (e) contains no such
obvious mistakes, but the slight deviations sum up and lead to a large di�erence. (f)
shows an example on the day with the third largest di�erence to the baseline. The
model anticipates another decrease in irradiance due to the clouds. But the borders
of the cloud are rather thin so it takes longer until the irradiance drops again to a
lower level around 13:50.

54 4.6. Error Analysis

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence bin

0.0

0.2

0.4

0.6

0.8

1.0

0.3 0.9 2.8 3.7 3.9 3.9 4.2 4.8 6.6 68.9

Recurrent LSTM (T=1.0)
Accuracy
Gap less accurate
Gap more accurate

(a) Temperature T=1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Confidence bin

0.0

0.2

0.4

0.6

0.8

1.0

0.9 2.6 5.7 6.0 5.7 5.2 5.5 6.5 9.9 52.1

Recurrent LSTM (T=1.75)
Accuracy
Gap less accurate
Gap more accurate

(b) Temperature T=1.75

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99
Probability Threshold

2.20

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

Su
m
 o
f L
os
s

1e7 Validation

LSTM (T=1) 90000 Episodes
LSTM (T=1.75) 90000 Episodes
Baseline

(c) Validation set

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.99
Probability Threshold

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

Su
m
 o
f L
os
s

1e7 Test

LSTM (T=1) 90000 Episodes
LSTM (T=1.75) 90000 Episodes
Baseline

(d) Test set

Figure 4.28: Reliability of the recurrent architecture. Di�erent values for tempera-
ture scaling are applied. For a higher temperature of 1.75 the con�dence matches
the accuracy better which makes it easier to choose a better probability threshold.
For the uncalibrated network, the optimal threshold lies between 0.99 and 1.0. Even
if we found that optimal threshold it would be more unstable with respect to small
changes.

Chapter 4. Experiments 55

09:40 09:50 10:00 10:10 10:20 10:30 10:40 10:50 11:00
Time

200

400

600

800

1000

So
la
r I
rra

di
an

ce
 (W

/m
2)

2016-03-20
Policy
Optimal
Baseline
Irradiance
Picture Timestamp

(a) Interval with largest di�erence between baseline and trained

policy for the positive outlier of the validation set.

(b) Image at 10:37.

The clouds are mov-

ing downwards at a

very high speed.

Figure 4.29: Positive outlier of the validation set. The trained policy improves on
the baseline by maintaining the reduction of the output even during gaps between
clouds. This happens around 10:00 and 10:37. Another slight improvement is to
keep increasing the output around 9:50. This example shows that during rapid
and large scale changes of irradiance even a few slight deviations can make a big
di�erence due to their long-term e�ect.

56 4.6. Error Analysis

4.6.1 Discussion

There are a few scenarios which are di�cult for the trained model. A major one
is when the sun is close to the horizon. This is problematic for multiple reasons:
Firstly, the resolution of the images are lower towards the horizon. Secondly, the
camera's perspective leads to distortions towards the border of the image. The
convolutional �lters which might work well in the center of the image do not work
properly close to the horizon. As an example, it might be di�cult to estimate how
long it takes for a cloud to move past the sun due to deformation of the cloud and
its motion. Besides situations where the sun is close to the horizon, a few di�erent
types of clouds pose a larger problem for the neural networks: Clouds with rapid
changes between high and low irradiance are di�cult to predict in general. Borders
of clouds or thin clouds, which sometimes have the e�ect of increasing the irradiance
due to additional light being scattered towards the sensor position, can mislead the
model. Another big general problem is that the most important region right around
the sun is not visible due to the brightness of the sun itself.

4.6.2 Conclusion regarding RNN performance

We have shown that our RNN with LSTM units is able to learn the optimal policy
for a single day (see subsection 4.4.2). This indicates that the model is complex
enough to handle the data su�ciently. On the whole dataset the model does not
perform as well and is not able to beat the baseline. Over�tting is unlikely to be the
cause for this problem for multiple reasons: The performance on the training set is
better than the baseline but still far from the optimal policy. Secondly, a similar
model which is given the perfect future irradiance values instead of the ResNet
embeddings of the images performs well on validation and test set without any signs
of over�tting to the training set. Lastly, we trained a model with a smaller recurrent
architecture in subsection 4.5.4 and it did not perform better than the larger model.

In this section we analysed the episodes with the largest error and came to the
conclusion that these episodes are often associated with di�cult images, such as
when many clouds are present and the sun is close to the horizon. Additional input
images or more sophisticated pre-processings could make it easier for the network
to determine the current weather situation and improve performance. We explore
these two approaches in the next section.

Chapter 4. Experiments 57

4.7 More input images and new pre-processing

Up until now we have tried multiple models with di�erent parameter settings. In
subsection 4.6.2 we conclude that improving the input to the neural networks might
provide a boost in performance. In this section we show whether providing additional
input images or applying more sophisticated pre-processings provide any bene�ts.
All experiments in this section were conducted with the second split of the dataset
into training, validation and test set. We trained both, the larger feedforward and
the recurrent model each time. For the recurrent model we reduced the number of
recurrent units from 256 to 128, thereby reducing the number of trainable parameters
from 446'211 to 166'659. For comparison, the feedforward model has 23'515 trainable
parameters.

The performance of all feedforward models described in the following subsections
is shown in Figure 4.30, while Figure 4.31 shows the performance of the recurrent
models.

4.7.1 Multiple input images

In this experiment we provided the current image and all images every minute up
to 5 minutes in the past. In other words, we provided an input of six images
instead of only two. The increase in input data increased the training time of the
models as well, since it took longer to copy the data to the GPU. For instance, the
ResNet's training time was a bit more than a week and afterwards the feedforward
policy network had to be trained for almost another two weeks. As can be seen in
Figure 4.30, additional images help for the test set, but worsen the performance on
the validation set. A possible reason for this could be that an image from 5 minutes
in the past is often no longer relevant for the future. Especially if other images closer
to the present are given as well. The additional redundant information might make
training for the network harder and lead to additional uncertainty during execution.

On the other hand, the recurrent model seems to bene�t from the increased in-
put and performs better than previously trained models with a recurrent layer, see
Figure 4.31. However, the performance is still only roughly at baseline level.

4.7.2 Multiple input images and cropped pre-processing

In this subsection we investigate the in�uence of pre-processing when providing 6
input images. We applied the second pre-processing method described in subsec-
tion 3.2.1. This method crops the images to an area centered around the sun. This

58 4.7. More input images and new pre-processing

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.99
Probability Threshold

1.950

1.975

2.000

2.025

2.050

2.075

2.100

Su
m
 o
f L

os
s

1e7

Optimal at 1.45e7

Validation Feedforward

Multitask Irradiance Epoch 50
Multi-image feedforward Epoch 50
Feedforward cropped Epoch 50
Feedforward color corrected Epoch 50
Baseline

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.99
Probability Threshold

2.600

2.625

2.650

2.675

2.700

2.725

2.750

2.775

2.800

Su
m
 o
f L
os
s

1e7

Optimal at 1.88e7

Test Feedforward
Multitask Irradiance Epoch 50
Multi-image feedforward Epoch 50
Feedforward cropped Epoch 50
Feedforward color corrected Epoch 50
Baseline

Figure 4.30: Performance of the feedforward models on the validation and test set.
Multitask Irradiance is the model from section 4.3. Simply adding more input images
(Multi-image feedforward) helps for the test set, but worsens the performance on the
validation set to such a degree that the model only achieves baseline performance.
However, if additionally a di�erent pre-processing is applied (Feedforward cropped),
the model is able to achieve a better result on both sets. A slight re�nement of this
new pre-processing and reducing the input images from six to three (Feedforward
color corrected) leads to even better performance.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.99
Probability Threshold

1.950

1.975

2.000

2.025

2.050

2.075

2.100

Su
m
 o
f L
os
s

1e7

Optimal at 1.45e7

Validation Recurrent

LSTM (T=1.5) Episode 50000
Multi-image recurrent Episode 50000
LSTM cropped Episode 50000
LSTM color corrected Episode 50000
Baseline

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.950.99
Probability Threshold

2.550

2.575

2.600

2.625

2.650

2.675

2.700

2.725

2.750

2.775

2.800

Su
m

 o
f L

os
s

1e7

Optimal at 1.88e7

Test Recurrent

LSTM (T=1.5) Episode 50000
Multi-image recurrent Episode 50000
LSTM cropped Episode 50000
LSTM color corrected Episode 50000
Baseline

Figure 4.31: Performance of the recurrent models on the validation and test set.
LSTM (T=1.5) is described in subsection 4.5.4. Adding additional input images
(Multi-image recurrent) improves the performance. The pre-processing which in-
volves cropping the image to an area around the sun (LSTM cropped) leads to
further improvements on the test set. Reducing the number of input images again
from six to three (LSTM color corrected) decreases the performance again to worse
than baseline.

Chapter 4. Experiments 59

should make processing easier for the neural network, as the sun is always in the
same position and clouds which are far away are removed altogether. We further-
more replaced the average pooling operation at the end of the ResNet with a 1× 1
convolution in order to keep additional spatial information. The exact architecture
is described in more detail in subsection 3.3.1. As can be seen in Figure 4.30 this
pre-processing slightly improves the performance. Now the feedforward architecture
is able to beat the baseline on the validation and test set. For the recurrent model,
it only improves the performance on the test set, see Figure 4.31.

4.7.3 Color correction

Finally, we tested the third pre-processing method. This is a small re�nement of the
previous cropping method. We additionally stabilize the color between subsequent
images by updating and enforcing an exponential moving average for each color
channel. For this experiment we provided three instead of the previous six images:
the current image as well as the ones which are 30 seconds and one minute in the
past. Figure 4.30 shows that the performance of the feedforward model increases
slightly compared with the previous subsection's model. This makes it the best
performing model on the second dataset split. An example of this policy on the test
set is shown in Figure 4.32. The recurrent architecture seems to have more problems
than before and does not beat the baseline. Considering that the pre-processing is
only slightly di�erent, the culprit for the worsening of the performance is most likely
the decreased number of input images.

A comparison with exact numbers between all feedforward models of this section is
shown in Table 4.3.

60 4.7. More input images and new pre-processing

13:15 13:20 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05
Time

0

200

400

600

800

1000

1200

So
la
r I
rra

di
an

ce
 (W

/m
2)

2015-09-24
Policy
Optimal
Baseline
Irradiance

Figure 4.32: Example of feedforward colorcorrected on the test set. Around 13:20
and 13:40 the trained policy is able to anticipate when clouds move in front of the
sun and reduce the irradiance. But it struggles to predict when the clouds move
away and the irradiance increases again, for instance at 13:25.

Chapter 4. Experiments 61

Experiment Tr.Acc. Val.Acc. Validation (107) Test (107)
Baseline 2.033 (0%) 2.671 (0%)
Optimal 1.448 (100%) 1.880 (100%)
LSTM (T=1.5, subsection 4.5.4) 0.914 2.039 (-0.99%) 2.671 (0.02%)
LSTM cropped (Episode 50000) 0.897 2.030 (0.49%) 2.665 (0.79%)

Multitask irradiance (Epoch 50) 0.911 0.901 2.025 (1.35%) 2.666 (0.65%)
Multi-image (Epoch 50) 0.908 0.904 2.031 (0.28%) 2.642 (3.66%)
Multi-image cropped (Epoch 50) 0.909 0.907 2.023 (1.75%) 2.639 (4.07%)
Color corrected (Epoch 50) 0.913 0.902 2.018 (2.62%) 2.637 (4.35%)

Table 4.3: Performance of selected models on the second dataset split. We show
the imitation learning training and validation accuracy as well as the sum of loss
on the validation and test set. In parenthesis we indicate the improvement over the
baseline, where 0% is the same as the baseline and 100% is the optimal policy. The
training accuracy for the LSTM models is computed by taking the average over the
last 5'000 training batches. Multitask irradiance is the same model as in Table 4.2.

4.8 Discussion

The challenges faced in this thesis were multifold. Firstly, the data is quite di�-
cult. For instance the area around the sun is barely visible because of the sun's
brightness. When the sun is covered by very thin clouds, the irradiance can actually
increase because additional light is scattered towards the PV's location. Secondly,
we cannot directly optimize our desired objective function in an easy way. This
is the reason why we investigated the use of imitation learning where we use the
actions of the optimal policy as our optimization target. Another di�culty is the
long training time of one week or more for every model. This fact is aggravated by
the imitation learning algorithm which samples additional data for training. Testing
di�erent parameters became thus a time consuming endeavor. Due to the compu-
tation costs, we were furthermore unable to perform evaluation techniques such as
cross-validation where the same model is trained multiple times on di�erent training
subsets. We worked with two di�erent training, validation and test set splits. On
the �rst dataset split some models were able to achieve good improvements over the
baseline due to a few outlier days. We showed in section 4.3 that the second dataset
split leads to more consistent results. Table 4.2 shows an overview of selected models
and their performance on the �rst dataset split. The table for the second dataset
split is Table 4.3. The model Multitask Irradiance was evaluated on both splits.
The di�erence in performance shows that it is di�cult to compare the performances
across the two dataset splits.

Despite of all these challenges, we managed to train models which beat the baseline.
An important part for achieving this was to only apply the prediction of the neural
network when it is con�dent enough. Figure 4.33 shows two examples which demon-

62 4.8. Discussion

strate the advantage of this thresholding. The best threshold was easier to �nd for
models which were well calibrated, i.e. the con�dence of the model matched the
accuracy. We showed that pre-training the ResNet with good target labels leads to
better performance. With appropriate pre-processings the models can achieve even
smaller losses.

10:55 11:00 11:05 11:10 11:15 11:20 11:25 11:30
Time

0

100

200

300

400

500

600

700

So
la

r I
rra

di
an

ce
 (W

/m
2)

2015-10-11

Policy (p > 0)
Policy (p > 0.8)
Optimal
Irradiance

(a) Example on validation set

12:25 12:30 12:35 12:40 12:45 12:50 12:55 13:00 13:05 13:10 13:15
Time

400

500

600

700

800

900

So
la
r I
rra

di
an
ce
 (W

/m
2)

2016-04-02
Policy (p > 0)
Policy (p > 0.8)
Optimal
Irradiance

(b) Example on test set

Figure 4.33: Comparison of having no probability threshold with a threshold of
0.8. The policy is more robust to short changes in irradiance if we only execute the
predictions of the neural network which have a probability larger than 0.8.

Chapter 5

Conclusion and Outlook

In this thesis we presented how neural networks trained with imitation learning
algorithms can be used to improve the battery usage of PV power plants. By
reducing the energy throughput of the battery, its lifetime should be increased and
thereby reduce the costs for producing solar power.

Our models performed almost optimal when either supplied with the true irradiance
values of the near future or when trained and evaluated on a single day. When only
past and present information is provided, the models are able to beat the baseline
policy. Di�erent neural network architectures were tested. The images were �rst
processed by a ResNet, a convolutional architecture. The resulting embeddings
were concatenated with scalar input values and then fed to either fully connected
or recurrent layers to predict the next action. To our surprise, the networks with
a recurrent layer performed worse than the purely feedforward architectures. Even
after an extensive analysis the exact reason for this remains unclear.

The technique which improved the performance the most was to introduce an addi-
tional parameter at test time, the con�dence threshold. Only if the trained model
was con�dent enough in its prediction was the predicted action executed. Otherwise
the baseline policy was applied. Further improving factors are the pre-training of
the ResNet with the right target labels and applying an appropriate pre-processing
to the images.

We were able to achieve the objective of this thesis and improve the control of
PV/BESS systems. While they are still far from optimal, this work showed how to
train policies which are able to outperform the baseline policy.

Further improvements could be gained by re�ning the pre-processing. Dealing with
the distortion of the �sh-eye perspective might bring the most bene�ts. The images
could either be pre-processed to undo the distortion or one could come up with a

63

64

special architecture to deal with the transformation. Another small change could
be to further improve the color stabilization, in order to handle the color as well as
brightness changes due to the HDR processing. There are also more sophisticated
possibilities such as applying optical �ow to determine the cloud movement and then
rotating the images so that the clouds always move in the same direction. The sun
could remain in the center of the image. Of course, special care would need to be
taken when multiple layers of clouds that move in di�erent directions are present.

Future work could look at optimizing the cost function directly. One possibility to do
this is to use reinforcement learning. The reward would only be signaled at the end
of an episode and would represent the actual cost that we want to optimize. Previous
attempts with reinforcement learning likely failed, because it is di�cult to train the
model from scratch. It would be necessary to use e.g. the results of this work as
a basis for the model which then would be further improved with reinforcement
learning. Another reason could be that when the reward is provided at every time
step, the model might have a tendency to simply learn the baseline policy, which is
the greedy solution for this problem. A less elaborate way to incorporate the true
objective function could be to add di�erent costs for misclassi�cation depending on
the resulting loss after this action is taken. Though this approach might be biased
towards the baseline policy, as it is never strictly worse than any of the other two
options.

If more computational resources are available, it could also be worthwhile to test
additional architecture con�gurations, e.g. adding more layers or modifying their
sizes. One way to reduce the computational cost could be to reduce the size of the
ResNet. Most likely a smaller version would still produce good results.

Another approach to improve on this work could be to let the neural network di-
rectly predict its uncertainty instead of looking at the softmax output. Finding an
appropriate threshold could be replaced by a second neural network which decides
whether to use the prediction or not. This second model would need to be trained
speci�cally for every policy, since each model makes di�erent errors. For multiple
experiments and models like we investigated, searching for a good threshold during
evaluation was easier than training an additional model each time.

Acknowledgement

I would like to thank Prof. Dr. Andreas Krause for providing me with the opportu-
nity to work on this project and pointing me towards additional ideas to explore. I
am deeply grateful for the regular feedback provided by Felix Berkenkamp and his
very valuable words of advice for the writing of my report. Dr. Jan Poland provided
the data for this work, gave numerous, valuable pieces of advice and his door was
always open whenever I had a question. For this I would like to express my heartfelt
gratitude. I would also like to thank ABB for providing additional working space
and computational resources. Finally, I would like to thank Arthur Habicht for
giving me access to his code for the clear sky model and the precomputed optimal
policy.

65

66

Appendix A

Parameter Tables

In the following we show the parameters and their values. In case an experiment
uses di�erent values, it is stated in the description of the experiment.

Parameter Value
Ramp Rate per minute 40 W/m2

Minimum Clearsky 100 W/m2

Optimizer Adam
Optimizer Learning Rate 0.001
Optimizer β1 0.9
Optimizer β2 0.999

Table A.1: Parameters for all experiments.

A.1 Feedforward

Parameter Value
Batch size 30
Irradiance history Last 5 measurements
Epochs before sampling 5
Epochs between sampling 2
DAgger expert probability 0.9epoch

Table A.2: Parameters for all feedforward models.

67

68 A.2. Recurrent

A.2 Recurrent

Parameter Value
Batch size 5
Episode length 100
Episode warm-up 20
Irradiance history Last 5 measurements
Episodes before sampling 5000
Episodes between sampling 2500
DAgger expert probability 0.8|D|

Table A.3: Parameters for all recurrent models. The |D| signi�es the number of
other datasets (including the original one), i.e. how many times additional data has
been sampled so far.

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Je�rey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensor�ow.org.

[2] International Energy Agency. Snapshot of global photovoltaic markets.
Technical report, IEA, 2017. http://www.iea-pvps.org/fileadmin/dam/

public/report/statistics/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_

1992-2017.pdf Accessed: 2018-07-30.

[3] Robert W Andrews, Joshua S Stein, Cli�ord Hansen, and Daniel Riley. In-
troduction to the open source pv lib for python photovoltaic system modelling
package. In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, pages
0170�0174. IEEE, 2014.

[4] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F.J. Martinez de Pison, and
F. Antonanzas-Torres. Review of photovoltaic power forecasting. Solar Energy,
136:78 � 111, 2016.

[5] M Anvari, G Lohmann, M Wächter, P Milan, E Lorenz, D Heinemann,
M Reza Rahimi Tabar, and Joachim Peinke. Short term �uctuations of wind
and solar power systems. New Journal of Physics, 18(6):063027, 2016.

[6] Clara Arbizu-Barrena, José A. Ruiz-Arias, Francisco J. Rodríguez-Benítez,
David Pozo-Vázquez, and Joaquín Tovar-Pescador. Short-term solar radiation
forecasting by advecting and di�using msg cloud index. Solar Energy, 155:1092
� 1103, 2017.

69

http://www.iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2017.pdf
http://www.iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2017.pdf
http://www.iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_-_A_Snapshot_of_Global_PV_-_1992-2017.pdf

70 Bibliography

[7] David Bernecker, Christian Riess, Elli Angelopoulou, and Joachim Hornegger.
Continuous short-term irradiance forecasts using sky images. Solar Energy,
110:303 � 315, 2014.

[8] bp Global. Bp statistical review of world energy. Technical report,
2018. https://www.bp.com/en/global/corporate/energy-economics/

statistical-review-of-world-energy/renewable-energy/

solar-energy.html Accessed: 2018-07-30.

[9] Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III,
and John Langford. Learning to search better than your teacher. CoRR,
abs/1502.02206, 2015.

[10] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. CoRR, abs/1406.1078,
2014.

[11] François Chollet et al. Keras. https://keras.io, 2015.

[12] Chi Wai Chow, Bryan Urquhart, Matthew Lave, Anthony Dominguez, Jan
Kleissl, Janet Shields, and Byron Washom. Intra-hour forecasting with a total
sky imager at the uc san diego solar energy testbed. Solar Energy, 85(11):2881
� 2893, 2011.

[13] Yinghao Chu, Hugo T.C. Pedro, Mengying Li, and Carlos F.M. Coimbra. Real-
time forecasting of solar irradiance ramps with smart image processing. Solar
Energy, 114:91 � 104, 2015.

[14] Yinghao Chu, Bryan Urquhart, Seyyed M.I. Gohari, Hugo T.C. Pedro, Jan
Kleissl, and Carlos F.M. Coimbra. Short-term reforecasting of power output
from a 48 mwe solar pv plant. Solar Energy, 112:68 � 77, 2015.

[15] Hal Daumé, John Langford, and Daniel Marcu. Search-based structured pre-
diction. Machine Learning, 75(3):297�325, Jun 2009.

[16] Energinet.dk. Technical regulation 3.2.2 for pv power plants with a power
output above 11 kw. Technical report, 2015.

[17] Zeev Farbman and Dani Lischinski. Tonal stabilization of video. ACM Trans.
Graph., 30(4):89:1�89:10, July 2011.

[18] A. Gensler, J. Henze, B. Sick, and N. Raabe. Deep learning for solar power
forecasting - an approach using autoencoder and lstm neural networks. In 2016
IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pages 002858�002865, Oct 2016.

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/solar-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/solar-energy.html
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/solar-energy.html
https://keras.io

Bibliography 71

[19] Xavier Glorot and Yoshua Bengio. Understanding the di�culty of training deep
feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Arti�cial Intelligence
and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
249�256, Chia Laguna Resort, Sardinia, Italy, 13�15 May 2010. PMLR.

[20] Chuan Guo, Geo� Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of
modern neural networks. CoRR, abs/1706.04599, 2017.

[21] Arthur Habicht. Deep reinforcement learning with real-world data for the con-
trol of pv power plants. Master's thesis, ETH Zurich, Learning and Adapative
Systems, October 2017.

[22] A. Hammer, D. Heinemann, E. Lorenz, and B. Lückehe. Short-term forecasting
of solar radiation: a statistical approach using satellite data. Solar Energy,
67(1):139 � 150, 1999.

[23] Takeshi Hashimoto et al. Prediction of output power variation of solar power
plant by image measurement of cloud movement. Journal of Advanced Research
in Physics, 2(2), 2012.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep
into recti�ers: Surpassing human-level performance on imagenet classi�cation.
CoRR, abs/1502.01852, 2015.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. CoRR, abs/1603.05027, 2016.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735�1780, 1997.

[28] Pierre Ineichen and Richard Perez. A new airmass independent formulation for
the linke turbidity coe�cient. Solar Energy, 73(3):151 � 157, 2002.

[29] Sergey Io�e and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR, abs/1502.03167,
2015.

[30] Adam Johnston. Global solar pv demand grows for 10th straight
year, 2017 will be bigger. https://cleantechnica.com/2017/01/21/

global-pv-demand-grows-tenth-straight-year-ihs-report/. Accessed :
2018-07-30.

[31] Y Kemmoku, S Orita, S Nakagawa, and T Sakakibara. Daily insolation fore-
casting using a multi-stage neural network. Solar Energy, 66(3):193�199, 1999.

https://cleantechnica.com/2017/01/21/global-pv-demand-grows-tenth-straight-year-ihs-report/
https://cleantechnica.com/2017/01/21/global-pv-demand-grows-tenth-straight-year-ihs-report/

72 Bibliography

[32] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep
learning for computer vision? CoRR, abs/1703.04977, 2017.

[33] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[34] Sonia Leva, Alberto Dolara, Francesco Grimaccia, Marco Mussetta, and
Emanuele Ogliari. Analysis and validation of 24 hours ahead neural network
forecasting of photovoltaic output power. Mathematics and Computers in Sim-
ulation, 131:88�100, 2017.

[35] Elke Lorenz, Johannes Hurka, Giota Karampela, Detlev Heinemann,
Hans Georg Beyer, and Martin Schneider. Quali�ed forecast of ensemble power
production by spatially dispersed grid-connected pv systems. Measurement,
2007.

[36] Lydie Magnone, Fabrizio Sossan, Enrica Scolari, and Mario Paolone. Cloud mo-
tion identi�cation algorithms based on all-sky images to support solar irradiance
forecast. In Photovoltaic Specialists Conference, number EPFL-CONF-228953,
2017.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825�2830,
2011.

[38] Dinesh Pothineni. Deep learning for analysis of cloud images and irradiance
forecasting. Master's thesis, ETH Zurich, Computer Vision and Geometry Lab,
July 2017.

[39] Stephane Ross and Drew Bagnell. E�cient reductions for imitation learning.
In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth
International Conference on Arti�cial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pages 661�668, Chia Laguna Resort,
Sardinia, Italy, 13�15 May 2010. PMLR.

[40] Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation learning
via interactive no-regret learning. CoRR, abs/1406.5979, 2014.

[41] Stéphane Ross, Geo�rey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings
of the fourteenth international conference on arti�cial intelligence and statistics,
pages 627�635, 2011.

[42] Schmidt, Thomas, Calais, Martina, Roy, Eric, Burton, Ashton, Heinemann,
Detlev, Kilper, Thilo, and Carter, Craig. Short-term solar forecasting based
on sky images to enable higher pv generation in remote electricity networks.
Renew. Energy Environ. Sustain., 2:23, 2017.

Bibliography 73

[43] B. Urquhart, C. W. Chow, A. Nguyen, J. Kleissl, M. Sengupta, J. Blatchford,
and D. Jeon. Towards intra-hour solar forecasting using two sky imagers at
a large solar power plant. proceedings of the solar conference, 2:1068�1073, 1
2012.

[44] J. Vazquez-Corral and M. Bertalmìo. Color stabilization along time and across
shots of the same scene, for one or several cameras of unknown speci�cations.
IEEE Transactions on Image Processing, 23(10):4564�4575, Oct 2014.

[45] Arun Venkatraman, Martial Hebert, and J Andrew Bagnell. Improving multi-
step prediction of learned time series models. In AAAI, pages 3024�3030, 2015.

[46] J Vetter, Petr Novak, Markus Wagner, C Veit, Kai Möller, J.O. Besenhard,
MWinter, MWohlfahrt-Mehrens, C Vogler, and Abderrezak Hammouche. Age-
ing mechanisms in lithium-ion batteries. 147:269�281, 09 2005.

[47] Andreas Vlachos. An investigation of imitation learning algorithms for struc-
tured prediction. In European Workshop on Reinforcement Learning, pages
143�154, 2013.

