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“Start where you are. Use what you have. Do what you can.”

Arthur Ashe
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Abstract

Across the globe, injuries sustained from traffic accidents are the eighth leading

cause of mortality, and with the number of annual deaths steadily rising to over

1.25 million, now account for 2.5 % of total worldwide fatalities. This growing issue

is not limited to the low and middle-income regions of the world, as the frequency

and severity of traffic accidents has also been increasing in developed countries over

the last decades. For example, between 2014 and 2015 the amount of traffic fatali-

ties in the United States rose sharply by 7.2 %. Through analysing the patterns and

locations of traffic accidents, road authorities can identify dangerous sections of the

road network and prioritise these locations for infrastructure improvement, helping

to prevent these tragic events from occurring. However, traffic accident analysis is

traditionally based on historic crash data and is restrictive in many ways, typically

suffering from issues including small sample sizes, underreporting of traffic acci-

dents, and data scarcity. Furthermore, in the limited number of countries where it

is available, historical accident data is often only provided on a deferred basis and

analyses can be severely out-of-date.

Naturalistic driving data, available from the advanced sensors and technology em-

bedded in connected, semi-, and fully-autonomous vehicles, potentially offers both

road safety researchers and practitioners a new and dynamic source of variables for

analysis. The technology in these vehicles can be leveraged to detect accidents and

‘near miss incidents’, or critical driving events, such as heavy braking and evasive

manoeuvres, and reliably predict locations with a high likelihood of traffic accidents.

Both researchers and industry players alike see the promise of this data to combat the

existing challenges of accident analyses. For example, real-time assessment of the

locations of these events could aid road authorities in monitoring existing accident

hotspots, as well as identifying new and developing areas of high accident exposure,

offering various possibilities to intervene before incidents occur there. Yet, despite

the great potential in identifying the locations of traffic accident hotspots with in-

sights from these vehicles, to date, there is limited empirical evidence on whether

the perilousness of locations can be accurately predicted through naturalistic driv-

ing data.

Furthermore, with these insights and the rise of increasingly connected and intel-

ligent vehicles, as well as the emergence of smartphone turn-by-turn navigation

applications, various safety-focused innovations become a possibility, such as pro-

viding safe-routing services and in-vehicle warnings of potential accident hotspots.
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Whereas safe-routing will attempt to avoid an accident hotspot entirely, encounter-

ing these dangerous locations will always remain a possibility. Consequently, iden-

tifying ways of effectively reducing the frequency and severity of traffic accidents

at these known locations remains of the utmost importance. Latest studies provide

promising evidence that in-vehicle warning systems can have significant positive ef-

fects on driving behaviour and collision avoidance, and while the potential of these

systems to improve driver safety are undisputed, the vast majority of studies have

focused on simulation setups or controlled field experiments. Moreover, the benefit

of real world location analytics on accident hotspots as a data source for in-vehicle

warnings has widely not been investigated.

In order to address the aforementioned research gaps, a comprehensive interven-

tion system was developed as part of the research at hand and deployed in a real-

istic field setting. This system both collected naturalistic driving data and provided

warnings to drivers based on location analytics applied to a national historical ac-

cident dataset, composed of over 266 000 accidents. As such, this thesis depicts the

design and field evaluation of an in-vehicle system, that for the first time bridges the

gap between real world location analytics, accident hotspot warnings, and a natural-

istic driving setting. The presented system was deployed in an 18 week nationwide

field study of 72 professional drivers, covering over 690 000 km, and collected high

frequency sensor data from the CAN Bus of each of the vehicles.

Ultimately, by going beyond existing research and exploring driver behaviour in

a naturalistic driving setting, this thesis demonstrates that in-vehicle warnings of

accident hotspots had a significant improvement on driver safety over time. First

evidence is additionally provided that an individual’s personality plays a key role

in the effectiveness of such in-vehicle warning systems. However, in contrast to

the promising results of existing lab experiments, an immediate effect on driver be-

haviour was not observed, further highlighting the importance of conducting exper-

imental research in a realistic field setting.

This thesis additionally identifies the potential of driving data to reliably predict

the locations of accident hotspots, assessed through a nationwide spatial regres-

sion to determine Crash Frequency across the majority of the Swiss road network.

The results demonstrate a proportional relationship between Crash Frequency, and

heavy braking events and trip frequency measurements from the field study fleet,

along with additional explanatory variables for urban and highway locations. These

insights provide initial indications that companies, organisations, and other play-

ers in the automotive industry with access to a fleet of connected, semi-, or fully-

autonomous vehicles can determine existing and newly arising locations of high
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accident probability. Such a data-powered approach to road safety both enables the

possibility for road authorities to intervene before traffic accidents occur at emerging

dangerous locations, and empowers new safety-focused automotive services, such

as the in-vehicle warnings that have been shown in this work to encourage safer

driving through accident hotspots.
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Zusammenfassung

Weltweit sind Verletzungen durch Verkehrsunfälle die achthäufigste Todesursache.

Zudem stieg die Zahl der jährlichen Todesfälle stetig auf zuletzt über 1.25 Millionen,

was circa 2.5 % der weltweiten Todesfälle entspricht. Dieses wachsende Prob-

lem beschränkt sich nicht nur auf die Regionen mit niedrigem und mittlerem

Einkommen, da die Häufigkeit und Schwere von Verkehrsunfällen in den letzten

Jahrzehnten auch in den Industrieländern zugenommen hat. So stieg die Zahl

der Verkehrstoten in den USA zwischen 2014 und 2015 deutlich um 7.2 %. Durch

die Analyse der Muster und Orte von Verkehrsunfällen können Straßenverkehrsbe-

hörden gefährliche Abschnitte des Strassennetzes identifizieren, diese Orte für die

Verbesserung der Infrastruktur priorisieren und so dazu beitragen, diese tragischen

Ereignisse zu verhindern. Allerdings basiert die Analyse von Unfallschwerpunkten

traditionell auf historischen Unfalldaten und ist in vielerlei Hinsicht beschränkt. So

leidet sie in der Regel unter Problemen wie kleinen Stichprobengrößen, der unvoll-

ständigen Erfassung von Verkehrsunfällen und mangelnden Daten. Darüber hinaus

werden historische Unfalldaten in der ohnehin begrenzten Anzahl von Ländern, in

denen sie verfügbar sind, oft nur mit Verzögerung zur Verfügung gestellt, wodurch

entsprechende Analysen nur schwer auf dem neusten Stand zu halten sind.

Reale Fahrdaten, die über hochentwickelte Sensoren und Technologien in ver-

netzten, halb- und vollautonomen Fahrzeugen erfasst werden, stellen im Bereich

Verkehrssicherheit für die Forschung wie auch für die Praxis eine neue und dy-

namische Datenquelle für unterschiedliche Analysen dar. Die Technologie in diesen

Fahrzeugen kann eingesetzt werden, um Unfälle und kritische Fahrereignisse bzw.

‘Beinahe-Unfälle’, wie z.B. schwere Brems- und Ausweichmanöver, zu erkennen

und Orte mit einer erhöhten Unfallwahrscheinlichkeit zuverlässig vorherzusagen.

Sowohl die Forschung als auch die Industrie sehen in diesen Daten das Poten-

zial, den bestehenden Herausforderungen der Unfallanalyse zu begegnen. Beispiel-

sweise könnte die Echtzeit-Bewertung von Gefahrenstellen Straßenverkehrsbehör-

den helfen, bestehende Unfallschwerpunkte zu überwachen. Darüber hinaus kön-

nten auch Orte mit steigendem Unfallpotential identifiziert werden. Diese Infor-

mationen bieten verschiedene Möglichkeiten zum Eingreifen, bevor es zu tatsäch-

lichen Unfällen kommt. Dennoch gibt es trotz des großen Potenzials der Unfallschw-

erpunkteidentifizierung bisher nur begrenzt empirische Hinweise darauf, ob die

Gefährlichkeit von Standorten durch kritische Fahrereignisse genau vorhergesagt

werden kann.

Darüber hinaus werden mit diesen Erkenntnissen und dem Aufkommen von
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zunehmend vernetzten und intelligenten Fahrzeugen sowie dem Aufkommen

von Smartphone-Turn-by-Turn-Navigationsanwendungen verschiedene sicherheit-

srelevante Innovationen möglich, wie beispielsweise die Bereitstellung von Safe-

Routing-Diensten und die Warnung vor möglichen Unfallschwerpunkten im

Fahrzeug. Während Safe-Routing versucht, einen Unfallschwerpunkt vollständig

zu vermeiden, bleibt die Begegnung mit Gefahrenstellen immer eine Möglichkeit.

Daher ist es nach wie vor von größter Bedeutung, Wege zu finden, um die Häu-

figkeit und Schwere von Verkehrsunfällen an diesen bekannten Orten wirksam zu

reduzieren. Neueste Studien belegen, dass sich Warnsysteme im Fahrzeug deut-

lich positiv auf das Fahrverhalten und die Kollisionsvermeidung auswirken kön-

nen. Und während das Potenzial dieser Systeme zur Verbesserung der Fahrsicher-

heit unumstritten ist, konzentrierte sich die überwiegende Mehrheit der Studien auf

Simulationsaufbauten und kontrollierte Feldstudien. Ob sich die Ergebnisse dieser

Studien jedoch auch auf die reale Welt übertragen lassen, blieb bisher weitgehend

unerforscht.

Um die genannten Forschungslücken zu schließen, wurde im Rahmen der vor-

liegenden Thesis ein umfassendes Interventionssystem entwickelt und in einem re-

alistischen Umfeld eingesetzt. Dieses System sammelte reale Fahrdaten und zeigte

Warnungen für die Fahrer auf der Grundlage von Standortanalysen an, die auf einen

nationalen, historischen Unfalldatensatz mit über 266 000 Unfällen angewandt wur-

den. In dieser Arbeit wird das Design und die Feldevaluation eines Fahrzeugsys-

tems dargestellt, das zum ersten Mal die Lücke zwischen realer Standortanalyse,

Unfall-Hotspot-Warnungen und einer realen Fahrsituation schließt. Das vorgestellte

System wurde in einer 18-wöchigen landesweiten Feldstudie mit 72 Berufskraft-

fahrern auf über 690 000 km eingesetzt und sammelte hochfrequente Sensordaten

aus dem CAN-Bus der einzelnen Fahrzeuge.

Zusammenfassend zeigt diese Arbeit, dass Warnungen vor Unfallschwerpunk-

ten im Fahrzeug die Sicherheit des Fahrers im Laufe der Zeit deutlich verbessert

haben. Sie geht dabei über die bestehenden Forschungsarbeiten hinaus, indem

sie Fahrerverhalten in einem naturalistischen Setting untersucht. Zusätzlich wird

gezeigt, dass die individuelle Persönlichkeit eine Schlüsselrolle für die Wirksamkeit

solcher Warnsysteme im Fahrzeug spielt. Im Gegensatz zu den vielversprechen-

den Ergebnissen bestehender Laborexperimente wurde jedoch keine unmittelbare

Auswirkung auf das Fahrerverhalten beobachtet, was die Bedeutung der Übertra-

gung experimenteller Forschung auf einen realistischen Kontext unterstreicht.

Diese Arbeit identifiziert darüber hinaus das Potenzial von Fahrdaten zur zuver-

lässigen Vorhersage von Unfallschwerpunkten, basierend auf einer landesweiten
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räumlichen Regression zur Bestimmung der Unfallfrequenz und deckt dabei den

Grossteil des Schweizer Strassennetzes ab. Die Ergebnisse zeigen einen propor-

tionalen Zusammenhang zwischen Unfallfrequenz, starken Bremsvorgängen und

Fahrfrequenzmessungen aus der Feldstudienflotte sowie zusätzlichen erklären-

den Variablen für Stadt- und Autobahnstandorte. Die Erkenntnisse liefern er-

ste Hinweise, dass Unternehmen, Organisationen und andere Akteure der Au-

tomobilindustrie mit Zugang zu einer Flotte von vernetzten, halb- oder vollau-

tonomen Fahrzeugen bestehende und neu entstehende Unfallschwerpunkte iden-

tifizieren können. Der vorgestellte datenbasierte Ansatz für die Verkehrssicherheit

ermöglicht Straßenverkehrsbehörden einzugreifen, bevor sich Verkehrsunfälle an

aufkommenden Gefahrenstellen ereignen. Er ermöglicht außerdem neue, auf Sicher-

heit ausgerichtete Dienste, wie beispielsweise Warnungen im Fahrzeug, die, wie

diese Arbeit zeigt, eine sicherere Fahrt durch Unfallschwerpunkte fördern.





ix

Previous Publications

Parts of this thesis have already been published previously by myself and colleagues

as scientific articles in peer-reviewed journals or in conference proceedings. While

I am the first author of all of these documents and hereby declare that the majority

of the content that has been integrated into this thesis has been written by myself,

other co-authors have contributed to these documents with their reviews, changes,

suggestions and edits. As a result, some sections of this thesis correspond literally

to work previously published by me or bear strong similarities. Thus, the following

publications are included in parts, or in an extended version, throughout this thesis:

• Benjamin Ryder, Andre Dahlinger, Bernhard Gahr, Peter Zundritsch, Felix

Wortmann, and Elgar Fleisch (2018). “Spatial prediction of traffic accidents

with critical driving events – insights from a nationwide field study”. In:

Transportation Research Part A: Policy and Practice. URL: https : / / www .

sciencedirect.com/science/article/pii/S0965856417310145

• Benjamin Ryder, Bernhard Gahr, Philipp Egolf, André Dahlinger, and Felix

Wortmann (2017). “Preventing traffic accidents with in-vehicle decision sup-

port systems – the impact of accident hotspot warnings on driver behaviour”.

In: Decision Support Systems 99, pp. 64–74. URL: http://www.sciencedirect.

com/science/article/pii/S0167923617300829

• Benjamin Ryder and Felix Wortmann (2017). “Autonomously detecting and

classifying traffic accident hotspots”. In: Proceedings of the 2017 ACM Interna-

tional Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of

the 2017 ACM International Symposium on Wearable Computers. ACM, pp. 365–

370. URL: https://dl.acm.org/citation.cfm?id=3123199

• Benjamin Ryder, Bernhard Gahr, and André Dahlinger (2016). “An in-vehicle

information system providing accident hotspot warnings”. In: Proceedings of

the 24th European Conference on Information Systems (ECIS). AIS. URL: http :

/ / aisel . aisnet . org / cgi / viewcontent . cgi ? article = 1000 & context =

ecis2016_prototypes

Furthermore, the following publications were part of my Ph.D. research, but are

outside the scope of this thesis:

• Bernhard Gahr, Benjamin Ryder, André Dahlinger, and Felix Wortmann

(2018b). “Driver identification via brake pedal signals a replication and ad-

vancement of existing techniques (forthcoming)”. In: Proceedings of the 21st

https://www.sciencedirect.com/science/article/pii/S0965856417310145
https://www.sciencedirect.com/science/article/pii/S0965856417310145
http://www.sciencedirect.com/science/article/pii/S0167923617300829
http://www.sciencedirect.com/science/article/pii/S0167923617300829
https://dl.acm.org/citation.cfm?id=3123199
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1000&context=ecis2016_prototypes
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1000&context=ecis2016_prototypes
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1000&context=ecis2016_prototypes


x

IEEE International Conference on Intelligent Transportation Systems. IEEE

• Bernhard Gahr, Benjamin Ryder, André Dahlinger, and Felix Wortmann

(2018a). “A crowd sensing approach to video classification of traffic accident

hotspots”. In: Proceedings of the 14th International Conference on Machine Learn-

ing and Data Mining. Springer. URL: https://link.springer.com/chapter/

10.1007/978-3-319-96133-0_14

• André Dahlinger, Felix Wortmann, Benjamin Ryder, and Bernhard Gahr (2018).

“The impact of abstract vs. concrete feedback design on behavior - insights

from a large eco-driving field experiment”. In: Proceedings of the 2018 CHI Con-

ference on Human Factors in Computing Systems. ACM, p. 379. URL: https:

//dl.acm.org/citation.cfm?id=3173953

• Arne Meeuw, Sandro Schopfer, Benjamin Ryder, and Felix Wortmann (2018).

“Lokalpower: enabling local energy markets with user-driven engagement”.

In: Extended abstracts of the 2018 chi conference on human factors in computing

systems. ACM. URL: https://dl.acm.org/citation.cfm?id=3188610

• André Dahlinger, Felix Wortmann, Verena Tiefenbeck, Benjamin Ryder, and

Bernhard Gahr (2017). “Feldexperiment zur wirksamkeit von konkretem vs.

abstraktem eco-driving feedback”. In: Proceedings of the 13th International

Wirtschaftsinformatik Conference. AIS. URL: https : / / wi2017 . ch / images /

wi2017-0292.pdf

• Remo Manuel Frey, Benjamin Ryder, Klaus Fuchs, and Alexander Ilic (2016).

“Universal food allergy number”. In: Proceedings of the 6th International Confer-

ence on the Internet of Things. ACM, pp. 157–158. URL: https://dl.acm.org/

citation.cfm?id=2998462

• André Dahlinger, Benjamin Ryder, and Felix Wortmann (2015). “Car as a sen-

sor - paying people for providing their car data”. In: Proceedings of the 5th

International Conference on Internet of Things. IEEE. URL: http://www.iot-

conference.org/iot2015/wp-content/uploads/2015/11/IoT2015_PS07_

1570213122.pdf

• Benjamin Ryder, André Dahlinger, and Felix Wortmann (2015). “Leveraging

controller area network data for predicting vehicle position during GPS out-

age”. In: Proceedings of the 5th International Conference on Internet of Things.

IEEE. URL: http : / / www . iot - conference . org / iot2015 / wp - content /

uploads/2015/11/IoT2015_PS05_1570213088.pdf

https://link.springer.com/chapter/10.1007/978-3-319-96133-0_14
https://link.springer.com/chapter/10.1007/978-3-319-96133-0_14
https://dl.acm.org/citation.cfm?id=3173953
https://dl.acm.org/citation.cfm?id=3173953
https://dl.acm.org/citation.cfm?id=3188610
https://wi2017.ch/images/wi2017-0292.pdf
https://wi2017.ch/images/wi2017-0292.pdf
https://dl.acm.org/citation.cfm?id=2998462
https://dl.acm.org/citation.cfm?id=2998462
http://www.iot-conference.org/iot2015/wp-content/uploads/2015/11/IoT2015_PS07_1570213122.pdf
http://www.iot-conference.org/iot2015/wp-content/uploads/2015/11/IoT2015_PS07_1570213122.pdf
http://www.iot-conference.org/iot2015/wp-content/uploads/2015/11/IoT2015_PS07_1570213122.pdf
http://www.iot-conference.org/iot2015/wp-content/uploads/2015/11/IoT2015_PS05_1570213088.pdf
http://www.iot-conference.org/iot2015/wp-content/uploads/2015/11/IoT2015_PS05_1570213088.pdf




xi

Acknowledgements

This thesis is result of my time at the Chair of Information Management at ETH

Zürich, where I had the privilege to be part of the Bosch IoT Lab, a collaboration be-

tween the University of St. Gallen, ETH Zürich, and the Bosch Group. The valuable

discussions, collaborations, and expertise of many teams and individuals within

Bosch certainly helped to shape the work presented here, and I would like to start

by thanking the Bosch Group for supporting me during my Ph.D. studies.

Above all, I would like to thank Prof. Dr. Elgar Fleisch for giving me the opportunity

to explore the topic of data-powered road safety and for his supervision over the

years. I am not only grateful for the insights and feedback that were provided on

the project, which were always encouraging and thought-provoking, but also for the

entrepreneurial guidance and the unique working and research environment that I

found both refreshing and energising. In addition, I would like to thank Prof. Dr.

Andreas Herrmann for his willingness to co-supervise my research, for supporting

my work during the final phase of my thesis, and for the inspiration I gained from

his recent book on autonomous driving.

Furthermore, I feel that it is not possible to fully express my gratitude to Ass. Prof.

Felix Wortmann, Scientific Director of the Bosch IoT Lab, in just a few short lines

here. Aside from the day-to-day guidance, constant enthusiasm, and motivation

to push the project as far as possible together, I have greatly valued the career ad-

vice and publishing direction he has provided throughout the years. Both Prof. Dr.

Markus Weinberger and Timo Gessmann also deserve a special mention and thanks

for their support in directing the lab, encouraging our research, promoting our work

within Bosch, and connecting us to industry partners. I would additionally like to

thank Elisabeth Vetsch-Keller from the University of St. Gallen, and Monica Heinz

and Judith Holzheimer of ETH Zürich, for their outstanding organisational support

and assistance in times of need.

I believe that it is also important to highlight that the work presented in this thesis

is the result of a group effort. Over my years at the Bosch IoT Lab I have had the

pleasure to work alongside André Dahlinger and Bernhard Gahr in the Connected

Car team, two exceptional colleagues without whom none of what is presented here

would have been possible. Among many other things, I would like to thank them

both for the unwavering dedication they showed to the project, the excitement and

passion they bought with them, and most importantly the good times we shared. I



xii

am incredibly grateful to have been part of this team and eagerly look forward to

our future endeavours together.

I am also thankful for the opportunity I had during my Ph.D. studies to super-

vise two excellent Master thesis students, Peter Zundritsch, who investigated the

relationship between driving data and traffic accidents, and Philipp Egolf, who de-

servedly won the ETH Medal for his work on accident hotspot analysis.

This work would not have been possible without the contribution of various re-

search partners. In particular I would like to thank the management team and

drivers of Touring Club Suisse (TCS), whose commitment, support, and patience

enabled the naturalistic driving field study to be a success. Additionally, I would

like to thank the Swiss Federal Roads Office (FEDRO) Statistics For Road Accidents

department, who kindly provided access to the traffic accident dataset which was

foundational to my research.

Finally, the everyday effort of any venture is always eased when it is shared with,

and supported by, good friends and colleagues. Over the years at the Bosch IoT

Lab I have had the pleasure to enjoy the excellent company of Cotizo Sima, Arne

Meeuw, Dominik Bilgeri, Shu Liu, Mathieu Chanson, Andreas Bogner, Dominic

Wörner, Thomas von Bomhard, Paul Rigger, Marcus Köhler, Stefanie Turber, and

Kristina Flüchter. I would also like to thank all of the incredible and passionate peo-

ple across the Chair of Information Management at ETH Zürich, and the Institute of

Technology Management at the University of St. Gallen, for the amazing times we

have already enjoyed together, and those that I am sure we will share in the future.

Last but not least, although my family and friends from home often feel far away,

they have remained an ever steadfast presence throughout my life. I also consider

myself incredibly lucky to have enjoyed the last years of my studies with Chloé

Chong, who has always brought happiness, laughter, and inspiration into every day

we shared together. I can only thank them all for their enduring love, support, and

guidance, no matter how far away I have travelled over the years, and dedicate this

thesis to them.





xiii

Contents

Abstract iii

Zusammenfassung vi

Previous Publications ix

Acknowledgements xi

Contents xiv

Glossary xxvii

1 Introduction 1

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and Related Work 9

2.1 Road Traffic Accident Analysis . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Driver Safety and In-Vehicle Warnings . . . . . . . . . . . . . . . . . . . 13

2.3 Potential of Driving Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Foundational Materials and Methods 20

3.1 Supporting Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Touring Club Suisse Field Study . . . . . . . . . . . . . . . . . . . . . . 36



xiv

4 The Impact of Accident Hotspot Warnings on Driver Behaviour 40

4.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Spatial Prediction of Traffic Accidents with Heavy Braking Events 68

5.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 General Discussion and Implications 94

6.1 Summary and Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Limitations and Research Outlook . . . . . . . . . . . . . . . . . . . . . 103

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References 109

A FEDRO Police Accident Report Form 125

B Accident Hotspot Warning Signs and Text Combinations 130

Curriculum Vitae 135





xv

Contents (detailed)

Abstract iii

Zusammenfassung vi

Previous Publications ix

Acknowledgements xi

Contents xiv

Glossary xxvii

1 Introduction 1

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Improving Driver Safety . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Predicting Accident Hotspot Locations . . . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and Related Work 9

2.1 Road Traffic Accident Analysis . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The Evolution of Accident Analysis . . . . . . . . . . . . . . . . 9

2.1.2 Spatial Accident Hotspot Analysis . . . . . . . . . . . . . . . . . 11

2.2 Driver Safety and In-Vehicle Warnings . . . . . . . . . . . . . . . . . . . 13

2.2.1 Fundamental Approaches to Driver Safety . . . . . . . . . . . . 13



xvi

2.2.2 In-Vehicle Warnings . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Potential of Driving Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Foundational Materials and Methods 20

3.1 Supporting Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 FEDRO Traffic Accident Dataset . . . . . . . . . . . . . . . . . . 21

3.1.2 FEDRO Traffic Frequency Dataset . . . . . . . . . . . . . . . . . 27

3.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Vehicle Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Smartphone Application . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Backend Infrastructure and Data Collection . . . . . . . . . . . . 35

3.3 Touring Club Suisse Field Study . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Field Study Overview . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Study Participants . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 The Impact of Accident Hotspot Warnings on Driver Behaviour 40

4.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Research Implications and Structure . . . . . . . . . . . . . . . . 43

4.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Controlled Field Experiments . . . . . . . . . . . . . . . . . . . . 45

4.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Accident Hotspot Identification and Classification . . . . . . . . 46

4.3.2 Accident Hotspot Warning Generation . . . . . . . . . . . . . . 55

4.3.3 Field Study Description . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



xvii

5 Spatial Prediction of Traffic Accidents with Heavy Braking Events 68

5.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.2 Research Implications and Structure . . . . . . . . . . . . . . . . 71

5.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 The Naturalistic Driving Approach . . . . . . . . . . . . . . . . . 72

5.2.2 Driving Data and Traffic Accidents . . . . . . . . . . . . . . . . . 73

5.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 FEDRO Average Daily Traffic Dataset . . . . . . . . . . . . . . . 74

5.3.2 FEDRO Traffic Accident Dataset . . . . . . . . . . . . . . . . . . 75

5.3.3 Field Study Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.4 Variable Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Crash Rate and Jerk Rate . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Representative Fleet Assumption . . . . . . . . . . . . . . . . . . 81

5.4.3 Crash Frequency and Jerk Frequency . . . . . . . . . . . . . . . 84

5.4.4 Crash Frequency Spatial Regression . . . . . . . . . . . . . . . . 86

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 General Discussion and Implications 94

6.1 Summary and Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Improving Driver Safety . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.2 Predicting Accident Hotspot Locations . . . . . . . . . . . . . . 99

6.2 Limitations and Research Outlook . . . . . . . . . . . . . . . . . . . . . 103

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References 109

A FEDRO Police Accident Report Form 125



xviii

B Accident Hotspot Warning Signs and Text Combinations 130

Curriculum Vitae 135





xx

List of Figures

2.1 Examples of existing road sign infrastructure. From left to right: tradi-

tional static sign, temporary static sign, variable-message sign, vehicle

activated sign. All images courtesy of www.wikipedia.org . . . . . . . 15

3.1 Chart showing the number of traffic accidents within Switzerland . . . 22

3.2 Chart showing the number of people involved in traffic accidents, by

degree of injury, within Switzerland . . . . . . . . . . . . . . . . . . . . 22

3.3 Switzerland’s national coordinate system - Swiss coordinates

LV03 (Federal Office of Topography, 2016) . . . . . . . . . . . . . . . . . 23

3.4 Swiss FEDRO accident data - Nationwide heatmap Green represents

low, and red indicates high accident frequency . . . . . . . . . . . . . . . . . 25

3.5 Swiss FEDRO accident data - Zurich heatmap Green represents low, and

red indicates high accident frequency . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Swiss FEDRO accident data - Zurich Kunsthaus heatmap Green repre-

sents low, and red indicates high accident frequency . . . . . . . . . . . . . . 26

3.7 FEDRO Police Accident Report Form (in German) - Pages 1 and 3,

with the attributes related to ‘What’, ‘Why’, and ‘Where’ highlight in

blue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Examples of Swiss automatic traffic counting stations (Swiss Federal

Road Office, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.9 Locations of Switzerland’s automatic traffic counting stations (Swiss

Federal Road Office, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.10 Histogram showing the distribution of Average Daily Traffic from

2016 across the automatic counting stations in Switzerland . . . . . . . 30



xxi

3.11 UML sequence diagram showing an overview of the information flow

of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.12 Non-warning feedback provided by the information system . . . . . . 34

3.13 Two examples of the in-vehicle warning intervention shown to

drivers approaching an accident hotspot . . . . . . . . . . . . . . . . . . 35

3.14 Locations in Switzerland where naturalistic field study driving data

was collected over the 18 week period . . . . . . . . . . . . . . . . . . . 37

3.15 Overview of the field study and experimental setup, adapted from

Dahlinger, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Selection of accident hotspots identified through DBSCAN, accidents

contributing to the hotspot are shown in red . . . . . . . . . . . . . . . 51

4.2 Accident Hotspot Warning Cone Example Sequence Red Google Maps

marker indicates centre of accident hotspot . . . . . . . . . . . . . . . . . . . 53

4.3 Two examples of the in-vehicle warning intervention shown to

drivers approaching an accident hotspot . . . . . . . . . . . . . . . . . . 55

4.4 Chart showing distribution of age amongst the drivers in the control

and intervention groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Distribution of speed and number of hotspots encountered for the

control and intervention groups . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Distribution of time of day and number of hotspots encountered for

the control and intervention groups . . . . . . . . . . . . . . . . . . . . 61

5.1 Histogram showing the distribution of ADT from counting stations

during the 18-week field study, with a bin size of 5,000 . . . . . . . . . 75

5.2 Histogram showing the distribution of traffic accidents within count-

ing station bounding grids during the 18-week field study, with a bin

size of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Histogram showing log-normal distribution of field study fleet trips

through counting station bounding grids, with a bin size of 0.4. Verti-

cal line indicates 15 trips cut-off . . . . . . . . . . . . . . . . . . . . . . . 83



xxii

5.4 Scatter plot showing relationship between TFPit and TFSit. Dashed line

is Model (2.1). Long dashed line is Model (2.4). Vertical line indicates

15 trips cut-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Distribution of Urban (red) and Rural (yellow) locations in Switzer-

land where naturalistic field study driving data was collected . . . . . 87

5.6 Distribution of Highway (red) and Other (white) locations in Switzer-

land where naturalistic field study driving data was collected . . . . . 87

A.1 FEDRO Police Accident Report Form - Page 1 . . . . . . . . . . . . . . . 126

A.2 FEDRO Police Accident Report Form - Page 2 . . . . . . . . . . . . . . . 127

A.3 FEDRO Police Accident Report Form - Page 3 . . . . . . . . . . . . . . . 128

A.4 FEDRO Police Accident Report Form - Page 4 . . . . . . . . . . . . . . . 129





xxiv

List of Tables

3.1 Potential attributes assigned to each traffic accident in the FEDRO

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Descriptive statistics of the Big Five personality traits of the partici-

pants, measured on a Likert scale from 1 (very low) to 5 (very high) . . 38

4.1 The top ten most commonly encountered hotspot types, for both the

control and intervention groups, along with the frequency they were

encountered by drivers, and occurrences of one or more heavy brak-

ing events at the locations . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Binary Logistic Regression Odds Ratio and Significance. Dependent

Variable: Occurrence of a Dangerous or High Danger Braking Event.

N = 24,419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Negative binomial regression results for the Crash Rate (CRPit) depen-

dent variable and the independent variable Jerk Rate (JRSit), sampled

by number of trips through counting station bounding grids (TFSit) . . 80

5.2 Negative binomial regression results for the Population Traffic Fre-

quency (TFPit) dependent variable and the independent variable Fleet

Traffic Frequency (TFSit) sampled by number of trips through count-

ing station bounding grid (TFSit) . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Negative binomial regression results for the Crash Frequency (CFPit)

dependent variable and the independent variables Jerk Rate (JRSit)

and Fleet Trip Frequency (TFSit), sampled by number of trips through

counting station bounding grid (TFSit) . . . . . . . . . . . . . . . . . . . 85



xxv

5.4 Spatial combo regression results for the Crash Frequency (CFPit) de-

pendent variable and iteratively added independent variables, with

grids limited to those with a fleet Trip Frequency greater than 15 (TFSit) 89





xxvii

Glossary

ADT Average Daily Traffic

CAN Controller Area Network

CDE Critical Driving Event

CFPit Number of accidents within location i from population P in

timeframe t

CRPit Number of accidents per 100-million vehicle transits of

population P in timeframe t for location i

DBSCAN Density-Based Spatial Clustering of Application with Noise

FEDRO Swiss Federal Roads Office

GDP Gross Domestic Product

GPS Global Positioning System

IMU Inertial Measurement Unit

JFSit Number of high jerk events within location i from sample (fleet)

S in timeframe t

JRSit Number of high jerk events per vehicle transit of sample (fleet) S

in timeframe t for location i

OBD-II On-Board Diagnostics

SARTC Swiss Automatic Road Traffic Counts

TCS Touring Club Suisse

TFPit Number of transits of location i of population P in timeframe t

TFSit Number of transits of location i from sample (fleet) S in

timeframe t

WHO World Health Organization





1

Chapter 1

Introduction

“Road traffic injuries are a major but neglected public health challenge that requires concerted

efforts for effective and sustainable prevention. Of all the systems with which people have to

deal every day, road traffic systems are the most complex and the most dangerous.”

World report on road traffic injury prevention,

World Health Organization & World Bank, 2004

1.1 Context and Motivation

In 2004 the World Health Organization (WHO) and the World Bank jointly issued the

first major report on road traffic injury prevention, claiming that the existing level

of road traffic injury is unacceptable and a largely avoidable issue (World Health

Organization and World Bank, 2004). Among other findings, the report concluded

that unsafe road traffic systems seriously harm global public health and develop-

ment, and projected that without fresh commitments to road safety there would be

a 65 % increase in traffic fatalities by the year 2025, reaching almost 2 million annual

deaths. During 2013 and 2015 the WHO issued new reports on the global status of

road safety, and while the previous projections of a dramatic increase in traffic acci-

dents appear to have been averted, the number of road traffic fatalities has continued

to steadily increase (World Health Organization, 2013a; World Health Organization,

2015). In fact, the Global Health Estimates report indicates that road traffic crashes

are the leading cause of death among young people, i.e. those aged between 15 and

29 years, and the 8th leading cause among all age groups (World Health Organiza-

tion, 2018). While road injuries have long been the primary cause of death by injury,

this new data now suggests that they account for 2.5 % of total worldwide fatalities.

As such, it seems clear that the call for urgent action in the WHO global status re-

ports on road safety is more relevant than ever if the 2015 commitment of the United
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Nations to halve the global number of deaths and injuries from road traffic crashes

by 2020 is to be reached (United Nations, 2015).

Beside the growing humanitarian concerns of so many fatalities worldwide, approx-

imately 50 million people each year suffer from non-fatal injuries due to traffic ac-

cidents (World Health Organization, 2015). In countries struggling with other de-

velopment needs this is an even greater issue, since the scale of the problem created

by traffic accidents is rarely inline with the typical investment in road safety. When

combined, the economic impact of the consequences related to traffic accident in-

juries, such as the cost of medical treatment or supporting a family member who can-

not work (Jacobs, Aeron-Thomas, and Astrop, 2000; Prinja et al., 2015), and the dam-

ages to vehicles and infrastructure, create a significant burden on a country’s health,

insurance, and legal systems. Overall, the worldwide economic costs of traffic acci-

dents are estimated to be 3% of the global Gross Domestic Product (GDP) (McMahon

and Dahdah, 2008), and data suggests that in certain countries these economic losses

can reach up 5% of the GDP.

As such, the importance of appropriately tackling the growing issue surrounding

traffic accidents is being recognised on a global level. The previously mentioned

global status reports on road safety from the WHO present information from over

180 countries, accounting for almost 99% of the world’s population (World Health

Organization, 2013a; World Health Organization, 2015). On the recommendations of

the WHO, progress is being made towards improving both vehicle safety and road

traffic legislation. For example, in 2013, just 28 of the countries had detailed safety

laws covering fundamental road risk factors (World Health Organization, 2013a). In

2015, a further 17 countries had updated at least one of their laws with recommenda-

tions related to these key components of driver safety. Yet despite this progress, the

recent data highlights that more needs to be done to prevent traffic accidents from

occurring (World Health Organization, 2015), Thus, there are various governmental

initiatives and research studies targeted towards reducing the amount of both fatal

and non-fatal traffic accidents on our roads. For example, after a sharp increase in

traffic fatalities in the United States of 7.2% between 2014 and 2015, the White House

and the United States Department of Transportation issued a joint call to action (U.S.

Department of Transportation, 2016). In a step to help combat this rising epidemic,

the Department of Transportation released an open dataset that contained detailed

information about each of the traffic incidents of that year. The two institutions ad-

ditionally encouraged the continuous research of transportation scholars and data

scientists into the different approaches and insights that could help road authorities

improve the situation.
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Through analysing the patterns and locations of traffic accidents, one of the respon-

sibilities of governmental road authorities is to identify dangerous sections of the

road network and prioritise these locations for infrastructure improvement, helping

to prevent these tragic events from occurring. However, traditional traffic accident

analysis is typically based on historic crash data, such as the dataset issued by the

Department of Transportation, and is restrictive in many ways, typically suffering

from issues including small sample sizes, underreporting of traffic accidents, and

data scarcity (Mannering, Kilareski, and Washburn, 2007). Furthermore, in the lim-

ited number of countries where it is available, historical accident data is often only

provided on a deferred basis and analyses can be severely out-of-date.

A promising solution to the described drawbacks lies in the post-processing and

aggregation of driving data available from the advanced sensors and technology

embedded in connected, semi-, and fully-autonomous vehicles. Naturalistic driv-

ing data collected from these modern vehicles potentially offers both road authori-

ties and researchers a new and dynamic source of variables for analysis (Mannering

and Bhat, 2014). The increasingly connected vehicles on our road networks are en-

abled by a wealth of technology capabilities, including network connectivity, high

precision sensor data from the vehicle’s Controller Area Network (CAN) Bus and

GPS capabilities, and those with semi-autonomous features often include additional

high definition cameras and LIDAR systems (Mannering, Kilareski, and Washburn,

2007). This technology can be leveraged to detect accidents and ‘near miss inci-

dents’, such as heavy braking and evasive manoeuvres, otherwise known as critical

driving events. Both researchers and industry players alike see the potential in the

data from these events to help combat the rise in traffic accidents by reliably pre-

dicting locations with a high likelihood of collisions occurring. As such, the modern

advancements in data quantity and quality has focused many research endeavours

toward analysing critical driving situations and near-accidents.

The locations of these incidents could identify areas of high accident exposure, of-

fering automotive manufacturers, insurers, and other industry players, a unique op-

portunity to reduce traffic accidents through the adoption of safety-focused services

and business models. Moreover, this approach holds promise not only for the auto-

motive and insurance industry, but also for policy makers in the long-standing field

of road safety, where understanding the new capabilities and the reliance of find-

ings from recent advances in automotive technology will be vital for determining

suitable future traffic safety approaches and strategies. By adopting such a data-

powered strategy to road safety there is the potential to reduce traffic accidents, and

the unrealised opportunity to save lives around the world. Yet despite this, to date,
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there is limited empirical evidence on whether the likelihood of traffic accidents oc-

curring at specific locations can be accurately identified through driving data and

critical driving events.

In addition, driving data insights enable various safety-focused innovations for the

automotive and insurance industry, further powered by the rise of increasingly con-

nected vehicles and the emergence of smartphone turn-by-turn navigation appli-

cations. For example, in-vehicle warnings of potential accident hotspots could en-

courage insurance customers to drive more cautiously at locations with high risk

exposure, and customised navigation services may offer safe-route options that

avoid accident hotspots entirely, effectively enhancing ‘pay-how-you-drive’ policies

with ‘pay-where-you-drive’ incentives. Yet even if safe-routing technology becomes

widely adopted, it is unlikely that encountering accident hotspots can be circum-

vented in all driving situations. As such, identifying ways of effectively reducing

the frequency and severity of traffic accidents at these known locations remains of

the utmost importance. Among the wide ranging topics and approaches of improv-

ing traffic safety, there is a growing field that has been investigating how in-vehicle

warning systems can encourage drivers to adapt their behaviour and drive safer.

Typically, these in-vehicle systems aim to prevent a collision with an upcoming ve-

hicle or pedestrian by providing interventions to drivers, and latest studies demon-

strate promising evidence that these systems can indeed have significant positive

effects (Kazazi, Winkler, and Vollrath, 2015; Tey et al., 2014; Werneke and Vollrath,

2013). However, the vast majority of studies have focused on either simulation (Nau-

joks and Totzke, 2014; Seeliger et al., 2014) or controlled lab experiments (Ruscio,

Ciceri, and Biassoni, 2015; Zhang, Suto, and Fujiwara, 2009). As such, the existing

research falls short of both bringing an in-vehicle warning system into a field study

setting, and utilising real world location analytics on traffic accident data to gener-

ate in-vehicle warnings. Going one step further, the benefit of detecting dangerous

locations from data gathered by connected vehicles, and conceivably using these lo-

cations as a source for in-vehicle warnings, has widely not been addressed in this

growing domain.

1.2 Objective and Approach

When considering the great potential of in-vehicle warning systems to reduce traffic

accidents, along with the increasing availability of connected vehicle driving data,

there is a gap in both research and practice regarding the real world assessment of
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such systems, and the potential of utilising vehicle data to identify hazardous loca-

tions on the road network. This leads to the following two research topics that this

thesis sets out to investigate: The first, do in-vehicle warnings of accident hotspots,

identified through real world location data, have a positive impact on driver be-

haviour in a realistic driving setting. The second, to what extent can the perilousness

of our road networks be predicted on the basis of naturalistic driving data collected

from connected vehicles. In the following section these two individual topics are

outlined in more detail, and an overview of the thesis objectives and the approaches

taken to address these research subjects is presented.

1.2.1 Improving Driver Safety

Many modern vehicles are equipped with sensors that can give guidance while the

driver is parking, and through audio notifications prevent minor impacts with the

infrastructure surrounding the vehicle. In a similar way, various research studies

are geared towards investigating how in-vehicle warning systems can encourage

drivers to adapt their behaviour on the road when necessary and improve traffic

safety. The interventions explored in prior work have ranged from imminent col-

lision warnings that require immediate evasive manoeuvres from participants, to

general advisory warnings of upcoming road hazards that suggest that a more cau-

tious driving style should be adopted (Kazazi, Winkler, and Vollrath, 2015; Tey et al.,

2014; Werneke and Vollrath, 2013; Zhang, Suto, and Fujiwara, 2009). These studies

provide promising evidence that all of these systems can indeed have significant

effects on improving driving behaviour.

The vast majority of research regarding the positive impact these warnings can have

on empowering drivers to avoid upcoming collisions and dangerous situations have

predominantly focused on controlled setups in lab-based environments. For exam-

ple, simulation studies have been extensively used to assess the effects of novel

warning features and offer researchers a variety of advantages, such as repayable

driving scenarios that can be tested on multiple subjects, the ability to monitor par-

ticipants and their reactions, as well as the option to safely explore more critical cir-

cumstances involving collisions (Naujoks and Neukum, 2014a; Seeliger et al., 2014).

A second common experimental setup is to make use of controlled field studies,

where participants receive in-vehicle warnings while either driving in a location

where there are no other road users, i.e. a race track, or following a pre-defined route

on the road network as dictated by a researcher who is also in the vehicle (Ruscio,

Ciceri, and Biassoni, 2015; Zhang, Suto, and Fujiwara, 2009). In these setups, more
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critical collision scenarios cannot be explored, but deeper insights may be developed

into how participants behave in more realistic driving situations than simulation ex-

periments. However the variables that can be monitored are more restricted and the

locations are limited to set routes. While the overall potential of in-vehicle warn-

ing systems to improve driver safety are undisputed, it is vital to validate these

promising lab-based results, and gain insights into how these interventions impact

behaviour in a more naturalistic driving setup. Furthermore, in this field, the benefit

of utilising real world location analytics to identify traffic accident hotspots, and use

these as a source to generate in-vehicle warnings has not been previously discussed.

As such, the first research objective of this thesis is to go beyond existing research,

and depict the design and field evaluation of an in-vehicle warning system in order

to answer the following research question:

RQ 1 Do warnings of upcoming dangerous locations have a positive effect on driv-

ing behaviour?

In order to answer this question, and in contrast to other in-vehicle studies, location

analytics were applied to a national historical accident dataset, composed of over

266 000 accidents, and a retrofit in-vehicle warning system was developed to pro-

vide accident hotspot interventions to drivers. This system was tested outside of the

simulation environment as part of an 18 week country-wide field test of professional

drivers in Switzerland. During a dedicated experimental phase the drivers were

split into control and warning intervention groups, and over a period of four weeks,

with a total of 170 000 km driven, the impact of the system on driver behaviour was

assessed with real-time sensor data collected from the vehicles.

1.2.2 Predicting Accident Hotspot Locations

Historical accident datasets, such as the one utilised to generate the accident hotspot

warnings, are only collected and distributed in a limited number of countries, typi-

cally on a deferred basis. For example, in Switzerland such data is only made avail-

able once per year. As such, traditional traffic accident analysis based on historic

crash data can be restrictive and severely out of date, additionally suffering from is-

sues including under and over-dispersion, small sample size, and underreporting of

traffic accidents (Mannering, Kilareski, and Washburn, 2007). Aside from this, traf-

fic frequency measurements, e.g. average daily traffic (ADT), are vital to accurately

calculate exposure measures, such as Crash Rate. However, these traffic frequency

variables are expensive to measure and hence tend to mostly suffer from a very low

spatial resolution or cover only small fractions of a road network.



1.2. Objective and Approach 7

A promising solution to the described drawbacks lies in the post-processing and

aggregation of data available from the advanced sensors of highly connected and

increasingly autonomous vehicles. Naturalistic driving data offers both researchers

and practitioners “the potential [to] greatly expand the scope of statistical modelling

and the inferences that can be drawn” when compared to the restrictive analysis

possible with sparse data collected after an accident has occurred (Mannering and

Bhat, 2014). As such, the recent advancements in data quantity and quality from

modern vehicles has focused many research endeavours toward analysing critical

driving situations and near-accidents. Many problems associated with crash data

can be overcome by identifying the ‘crash potential’ of road sections, and conven-

tional methods can be augmented by insights provided from vehicle data (Guo et

al., 2010a; Guo et al., 2010b; Klauer et al., 2006). Moreover, estimations of traffic

frequency measurements, such as ADT, can be generated from the frequency and

trip details of vehicles travelling through these locations, transmitted via modern

telematics, and used to estimate accident exposure measures.

Both researchers and industry players alike see potential in analysing the data col-

lected from the sensors embedded in modern vehicles to detect critical driving

events, such as heavy braking and evasive manoeuvres, and help improve road

safety. The conditions leading to, and the locations of these events would offer both

road safety researchers and practitioners a new and dynamic source of variables for

assessment, overcoming many of the issues with traditional traffic accident analysis.

Furthermore, these insights could identify areas of high accident exposure, offering

automotive manufacturers and insurers a unique opportunity to reduce traffic ac-

cidents through the adoption of safety-focused business models, such as providing

safe-routing services and in-vehicle warnings. As such, if automotive insurers and

manufacturers wish to accurately measure and encourage safer driving and reduce

the number of traffic accidents, then the ability to identify locations on the road net-

work that carry a high risk of accident occurrence, so called ‘blackspots’, ‘sites with

promise’, or ‘hotspots’ (Cheng and Washington, 2005), is of utmost value. While

there is research showing that the situational factors of crashes and near-misses are

strongly related, there is limited empirical data on whether potentially dangerous

locations can be reliably identified through analysis of driving data and critical driv-

ing events (Pande et al., 2017). Thus, the second research objective of this thesis is to

collect naturalistic driving data and evaluate the relationship between these events

and historically dangerous areas of the road network, and and answer the following

research question:
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RQ 2 Is it possible to predict the locations of traffic accident hotspots on the basis of

driving data and critical driving events?

To address this question, the full 18-week naturalistic driving field study dataset

was considered, where the 72 vehicles that took part generated 690 000 km of high-

frequency driving data across Switzerland. The locations and frequency of traffic

accidents that occurred over the national road network during the field study were

compared to the sensor data collected from the vehicles, which was processed to

identify the locations of critical driving events. Explanatory variables associated

with the likelihood of traffic accidents occurring were additionally considered, in-

cluding the amount of vehicle traffic through the area, and whether or not the inci-

dents were on the highway and in an urban area.

1.3 Outline

The remainder of this thesis is structured as follows: In the opening chapter, the

background and related work on the subjects of traffic accident analysis, driver

safety and in-vehicle warnings, and the potential that access to driving data brings,

are outlined. Following this, foundational materials and methods utilised through-

out the work are presented, highlighting the datasets that support the research, as

well as describing both the system that was developed and the field study that was

conducted in order to answer the introduced research objectives. Subsequently, the

first of the research objectives is explored, and describes the generation of the ac-

cident hotspot warnings and the impact that the in-vehicle system had on driver

behaviour during the naturalistic driving experiment. The second research objec-

tive is investigated in the penultimate chapter, which focuses on the relationship

between the perilousness of locations across the road network, and the frequency of

heavy braking events at these sites. Finally, the thesis is concluded with a summary

of the key findings, the implications for both research and practice, and an outlook

on the opportunities that the technology and analyses presented bring to the future

of road safety, along with the work that should be conducted to advance this topic

in the future.
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Chapter 2

Background and Related Work

In order to support the presented research objectives, it is important to consider the

existing work and research background of the following three key topics: traffic ac-

cident analysis, driver safety and in-vehicle warnings, and the potential that driving

data has to support these fields. This chapter outlines the existing fundamental re-

search on each of these subjects, and an additional discussion of the related ‘State of

the Art’ work can be found in Chapters 4 and 5 respectively.

2.1 Road Traffic Accident Analysis

2.1.1 The Evolution of Accident Analysis

Through analysing the many attributes of traffic accidents that occur, such as the

type of vehicles that were involved, the speed being travelled, and the condition of

the driver, both researchers and road authorities seek to understand the root causes

of these tragic incidents in order to better inform policy and practice and to im-

prove road safety. In particular, the locations and patterns of traffic accidents on

our road networks have been extensively researched over the past sixty years, with

various methods developed to assess the need for, and impact of, road improve-

ments (Hauer, 1996). The most common approaches have historically been non-

spatial techniques, considering traffic accidents which occurred on locations defined

by the underlying road structure. The so-called Crash Frequency method (Deacon,

Zegeer, and Deen, 1974) is probably the most fundamental identification technique

of this type. In this approach, the number of accidents that occurred during a spec-

ified period determines a road segment’s perilousness. Estimations for Crash Fre-

quency typically utilise count data models at selected locations (Anastasopoulos and

Mannering, 2009; Bhat et al., 2014). Moreover, other examples of this approach have
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examined, on the basis of multivariate analysis, how the frequency of highway acci-

dents is impacted by roadway geometries (e.g. horizontal and vertical alignments),

weather, and seasonal effects (Shankar, Mannering, and Barfield, 1995). In a separate

study, the influence of road segment length was explored with regard to accident fre-

quency (Thomas, 1996), and the impact of horizontal curvature and an auxiliary lane

has also been recently investigated (Pande et al., 2017).

The Crash Rate method is similar to the concept of Crash Frequency, but provides

a measure of accident exposure of vehicles as it takes traffic volume into account

(Hauer and Persaud, 1984). However, there are some evident drawbacks of both

the Crash Frequency and Crash Rate methods, such as not considering random fluc-

tuations of the number of accidents and the general lack of traffic volume data for

generating the Crash Rate (Yu et al., 2014). As such, over time researchers have

developed and utilised statistical models in the analysis of hazardous road sec-

tions (Miaou, 1994; Oppe, 1979). Probably the most prominent and applied identifi-

cation technique using a statistical model is the Empirical Bayesian method (Hauer,

1997; Hauer et al., 2002). From a statistical perspective, it is argued that the Empirical

Bayesian method can outperform both Crash Rate and Crash Frequency (Montella,

2010; Yu et al., 2014). Yet despite this, both Crash Frequency and Crash Rate are still

commonly in use today, with their popularity stemming from the ease of implemen-

tation and interpretation.

The most common models for predicting accident data, that is count data, are nega-

tive binomial and Poisson regression models and their variants (Gianfranco, Soddu,

and Fadda, 2017; Greibe, 2003; Lord and Mannering, 2010; Miaou, 1994; Quddus,

2008). Following this, negative binomial and hierarchical Bayesian models have

been utilised to investigate the prominently discussed topic of the relationship be-

tween speed and accidents, where it was found that, when controlling for traffic

volume and road geometry, average speed is not associated with accident rates

whereas speed variations can be positively associated (Quddus, 2013). The effects

of land use on accident rates has also been modelled, with a uniform grid made up

of 0.259km2 cells, resulting in statistically significant results using negative binomial

models to predict the number of accidents (Kim, Brunner, and Yamashita, 2006). Fi-

nally, classification analysis has been applied to create a learning model based on

attributes such as road, weather and traffic conditions, and social factors (Park, Kim,

and Ha, 2016).

Alternative approaches to identify the perilousness of hazardous locations include

measuring injury severity and cost estimates for crashes, where various statistical
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methods have been investigated, such as the ordered logit and ordered probit mod-

els (Kockelman and Kweon, 2002; O’Donnell and Connor, 1996). These models are

suitable when the dependent variable has multiple possible outcomes and a natural

ordering, for example, injury severity can be encoded by “no injury (0), minor in-

jury (1), severe injury (2), and fatal injury sustained by driver (3)” (Kockelman and

Kweon, 2002). Throughout the literature, locations identified with higher values for

risk measures, e.g. Crash Frequency, Crash Rate and Crash Severity, are regarded to

be more hazardous than locations with lower values. There are, however, common

issues in many of these studies, which are associated with the difficulties in using

crash data for the analysis of traffic safety (Lord and Mannering, 2010).

2.1.2 Spatial Accident Hotspot Analysis

The classic techniques outlined so far mostly neglect the spatial aspects and pat-

terns of accidents, and focus on capturing details of the traffic accidents which are

mapped onto predefined sections of road (Flahaut et al., 2003; Whitelegg, 1987).

In contrast to these traditional approaches, recent analyses have considered the ac-

tual locations of individual accidents that occurred, regardless of the underlying

road structure, utilising techniques that can capture the spatial relationship between

these incidents. For example, spatial autocorrelation is a property found across ge-

ographic space, according to which random variables at certain distances from each

other are either “more similar (positive autocorrelation) or less similar (negative au-

tocorrelation) than expected for randomly associated pairs of observations” (Leg-

endre, 1993). Thus, observations are dependent on their spatial location, and data

points can be aggregated to areas such as those used in census tracts or other zoning

schemes (Quddus, 2008), grid based representations, or divided into regular or irreg-

ular polygons (Wang and Kockelman, 2013). As such, models for accident analysis

have been proposed to account for this spatial relationship. For example, traditional

count data models have been compared to spatial lag and error models, as well as

spatial Bayesian hierarchical models (Quddus, 2008). These new models address

spatial heterogeneity in geographical data and have been determined to perform

well across the different model types.

Furthermore, with the increasing appearance of Geographic Information Systems

and the larger availability of precise, geo-coded data, as well as digital maps, re-

searchers have started to use spatial data analysis methods for identifying accident

hotspots (Anderson, 2009; Flahaut et al., 2003; Okabe, Satoh, and Sugihara, 2009).
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This follows the theory that the concentration of individual accidents at certain lo-

cations is called forth by a set of common causes – implying a spatial dependence of

the accidents (Anderson, 2009; Flahaut et al., 2003). Underlying causes for such

a concentration may include weather effects, infrastructure challenges, or traffic

conditions (Geurts, Thomas, and Wets, 2005; Montella, 2010; Xie and Yan, 2008).

The most commonly used spatial accident hotspot identification approaches are ei-

ther the K-means clustering technique, spatial autocorrelation, or the Kernel Den-

sity Estimation method. In particular, the Kernel Density Estimation method has

been extensively researched (Erdogan et al., 2008; Pulugurtha, Krishnakumar, and

Nambisan, 2007; Xie and Yan, 2008), and in general it is argued that it outperforms

other hotspot identification methods, such as the spatial autocorrelation, Crash Fre-

quency or Crash Rate, and might perform equally well as the Empirical Bayesian

method (Flahaut et al., 2003; Yu et al., 2014). In an example using this approach,

accident hotspots on highways in Turkey were identified and explored with two dif-

ferent methods of Kernel Density Estimation analysis and repeatability analysis (Er-

dogan et al., 2008). The authors in this study additionally presented a Geographic

Information System that was used as a management tool for accident analysis and

the detection of hotspots with statistical methods. Furthermore, in another study,

both a Kernel Density Estimation and a K-means clustering approach were used to

profile road accident hotspots (Anderson, 2009).

However, more recently researchers have started to use the data mining clustering

technique ‘Density-Based Spatial Clustering of Application with Noise’ (DBSCAN),

to identify road accident hotspots (Szénási, 2015; Szénási and Csiba, 2014; Szénási

and Jankó, 2016). DBSCAN is a density-based algorithm which classifies elements

into clusters in such way that inside a cluster, the density of elements is higher com-

pared to the outside of the cluster (Ester et al., 1996). Therefore, it can efficiently

identify members of arbitrarily shaped clusters, as well as noise, and remain robust

against outliers (Khan et al., 2014). After receiving significant attention in both the-

ory and practice, the manuscript presenting the DBSCAN algorithm was awarded

the ‘2014 SIGKDD test of time award’ for the important impact it has had on the

data mining research community (SIGKDD, 2014). DBSCAN has additionally been

attributed with some key advantages when compared to other clustering techniques.

Among these are the attributes that it does not require a predefined number of clus-

ters as an input to the algorithm, and the two parameters, the minimum number of

points to form a cluster and the distance that a point is considered a neighbour to

another, can be set by a domain expert.
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2.2 Driver Safety and In-Vehicle Warnings

2.2.1 Fundamental Approaches to Driver Safety

Supported by the ongoing worldwide research and analysis to reduce the number

of traffic accidents on our roads, and the risks associated with these, a multitude of

approaches to improve driver safety have arisen. In general, these approaches can

be split into three categories: governmental laws and the associated enforcement

that punishes dangerous driving behaviour, improvements to vehicles that aim to

prevent or reduce the impact of traffic accidents, and infrastructure improvements

that hope to reduce the likelihood of accidents occurring or limit the injuries that

might be sustained.

One of the most critical factors in road safety are the laws that countries strongly

and sustainably enforce in order to improve road user behaviour. Reductions in

road traffic crashes, injuries, and fatalities can all be achieved through legislative

change and effective road safety programmes, such as those targeting speeding in

urban areas or drinking and driving, as seen in a variety of countries around the

world (Peden et al., 2004; World Health Organization, 2013b). In a similar way,

regulatory requirements have additionally led to the development of safer and more

advanced vehicles, especially in higher income countries. Consumer demand has

led to the introduction of initially expensive safety features to vehicles, which have

then become cheaper over time, and some even made mandatory requirements for

new vehicles after demonstrating a contribution to improving road safety. Perhaps

the most successful example of this is electronic stability control, a technology that

aims to prevent the loss of vehicle control and swerving in the case of oversteering

or understeering, which has proven so successful in preventing traffic accidents that

it has become a required feature for all vehicles through UN regulation (Global New

Car Assessment Programme, 2015). Through this regulation, which both encourages

and requires the adoption of this safety feature, studies have shown that there has

been a reduction in serious and fatal injuries that would have been sustained from

various types of traffic accident (Erke, 2008; Lie et al., 2006).

Moreover, with respect to the improving technology within vehicles themselves, the

advent of autonomous vehicles brings the promise of a new era of traffic safety,

where the frequency of road accidents can be drastically reduced, and potentially

eliminated entirely (Fagnant and Kockelman, 2015). However, even in the most ad-

vanced markets, it will take decades to make this vision a reality. For example, recent

predictions indicate that it is unlikely that the majority of the light-duty vehicle fleet
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in the U.S. will be capable of full self-driving automation by the year 2045 (Bansal

and Kockelman, 2017). As such, semi-autonomous vehicles will become the domi-

nating paradigm in the coming years, and traffic accidents from the manual driving

of these vehicles will persist as a key issue (Albright et al., 2016). Although recent

advancements in areas such as autonomous braking hope to reduce the number of

fatalities from traffic accidents in the near future (Fildes et al., 2015), the road infras-

tructure itself remains an important road safety factor.

The extensive research on the locations of road traffic accidents, and identifying ar-

eas with a higher risk of collisions, is often motivated by determining suitable lo-

cations and priorities for road infrastructure improvement (Hauer, 1996). These

infrastructure changes are typically in the form of either significantly altering the

road structure, e.g. converting a dangerous junction into a roundabout, or adding

new road sign infrastructure to convey safety information to drivers and improve

awareness. Perhaps an unexpected example of the importance of altering the ex-

isting road structure can be seen in typical urban road networks that have often

had insufficient attention paid to the integration of footpaths and cycle paths dur-

ing their planning and development stages (World Health Organization, 2015). The

rise in health and sustainability programs in many countries, encouraging walking

and cycling within cities, has led to a mix of road users where fast-moving traffic

shares the road with pedestrians and cyclists. Despite the worthy intentions of these

programs, these circumstances potentially increase the risk of traffic accidents as the

non-vehicle participants have to negotiate various dangerous situations on the road.

Thankfully, studies have shown that the modification of the existing road structure,

for example, the addition of cycle paths to urban roads, can reduce cyclist injuries

and fatalities by 35 % (Peden et al., 2004).

Road sign infrastructure has long been associated with providing directional guid-

ance to drivers and in enhancing traffic safety, with many countries adopting simple

and standardised warning signs to aid driver understanding and adherence to traffic

regulation. The road sign infrastructure on road networks that impact road safety

can be grouped into the following distinct types that have evolved as a result of

improving technology. Traditional traffic signs are almost always static, and most

commonly take the form of physical road signs, such as stop signs and speed limits.

Temporary physical signs are used in situations where drivers need to be notified of

potential danger for a limited time, examples of this include signs during road works

or current icy conditions. Variable-message traffic signs have recently become more

prevalent on highways, and can provide a variety of dynamic information, such

as changeable speed limits, and warnings of adverse weather condition warnings
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FIGURE 2.1: Examples of existing road sign infrastructure. From
left to right: traditional static sign, temporary static sign, variable-
message sign, vehicle activated sign. All images courtesy of

www.wikipedia.org

and upcoming traffic jams (Emmerink et al., 1996). An extension of these variable-

message signs includes dynamic, or smart, signs that are equipped with sensors so

that warnings are shown only when an approaching vehicle is displaying certain be-

haviour, the most common instance being exceeding the speed limit (Gregory et al.,

2016). Visual examples of each of these types of warning can be found in Figure 2.1.

Overall, various studies have demonstrated that a significant improvement in driver

safety can be achieved through warnings of upcoming hazardous road features,

such as sharp corners and icy conditions, thus mitigating the risk of vehicle acci-

dents (Carson and Mannering, 2001; Persaud et al., 1997). However, the cost of

installing and maintaining all of these types of infrastructure can be high, especially

for developing countries (International Road Federation, 2006). This has motivated

the development of smartphone applications and in-vehicle systems that can pro-

vide warnings of hazardous situations in a more cost-effective and dynamic way.

An interesting example of this approach has been in place in Iceland since 2014,

where hazardous conditions, such as volcanic behaviour, are alerted to every phone

in the area via SMS, effectively serving as a ‘virtual warning’ (Iceland Review, 2014).

2.2.2 In-Vehicle Warnings

The promise of in-vehicle warning systems to improve driving safety has generated

a substantial body of research (An and Harris, 1996; Hirst and Graham, 1997), and

a positive impact can be seen when they are compared with traditional warning ap-

proaches in relation to driver behaviour and accident frequency, e.g. in the context

of railway crossings (Tey et al., 2014). For example, common conventional warn-

ing devices, such as the passive stop sign, were compared by researchers to active

variations, i.e. flashing lights and a half bloom-barrier with flashing lights. The

results showed that, on average, driver responses to passive and static warnings
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were poor in comparison to active warnings (Tey, Ferreira, and Wallace, 2011). In a

later follow-up study, rumble strips and in-vehicle audio warnings were compared

to the previous active and passive warnings at the railway level crossings (Tey et

al., 2014). Results indicated that both of the novel warning devices produced much

higher levels of driver compliance than the existing conventional warnings, demon-

strating the positive impact in-vehicle warning systems can have when compared to

conventional approaches.

Furthermore, various simulator based studies have shown that in-vehicle warning

systems can have a positive effect on driving behaviour. In one example, early warn-

ing signals displayed while approaching an intersection showed a positive shift to-

wards participants driving safer (Werneke and Vollrath, 2013). Those drivers that

were shown the intervention adapted their driving behaviour by turning with a

lower velocity after waiting longer at the intersection, and so avoided collisions.

Visual warnings have also had a positive effect on drivers braking reaction time,

for both older and younger participants (Kazazi, Winkler, and Vollrath, 2015). The

largest improvement was seen in critical situations, where collisions were success-

fully avoided due to the warnings.

Outside of simulation experiments, a few controlled field studies have investigated

the impact of in-vehicle warnings on driver safety. The influence of warning ex-

pectancy and automation complacency on real-life emergency braking has been in-

vestigated (Ruscio, Ciceri, and Biassoni, 2015). In particular, reliable warnings quick-

ened the decision making process and misleading warnings generated automation

complacency, slowing visual search for hazard detection. Additionally, specific spa-

tially located hazards have been investigated with regard to the effect of in-vehicle

warning systems (Zhang, Suto, and Fujiwara, 2009). In the study, the hazardous area

tested was an intersection near an arch-shaped bridge, where traffic accidents had of-

ten occurred due to poor visibility, and the effects of different combinations of audio

and visual warnings provided to a driver were investigated. It was demonstrated

that information about the cause of accidents was more effective than information

on road infrastructure in helping drivers to avoid dangerous driving situations.
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2.3 Potential of Driving Data

In many of the studies highlighted regarding the positive effects on in-vehicle warn-

ings, driver behaviour was either manually observed by the researchers or oper-

ationalised with variables extracted from the simulation environment, such as ve-

locity and braking reaction time (Kazazi, Winkler, and Vollrath, 2015; Werneke and

Vollrath, 2013). With the modern developments in data quantity and quality from

the advanced sensors in smartphones and connected, semi-, and fully-autonomous

vehicles many research endeavours have additionally started to investigate insights

that can be gained from driving data from these sources (Guo et al., 2010a; Guo et

al., 2010b; Klauer et al., 2006). Furthermore, access to such naturalistic driving data

offers both road safety researchers and practitioners a new and dynamic source of

data for analyses, which can be used independently from, or to augment, the typi-

cally restrictive road traffic accident datasets (Mannering and Bhat, 2014).

One of the simplest, but also most powerful, of these technologies is the ease of ac-

cessing localisation data from the Global Positioning System (GPS), technology that

is now built into almost every smartphone and modern vehicle, while driving. Not

only does this enable accurate navigation services, but when the data is transmitted

via modern telematics, estimations of traffic frequency measurements, such as av-

erage daily traffic, can be generated from the frequency and trip details of vehicles

travelling across the road network. In fact, even without GPS capability and inter-

net connectivity, the infrastructure powering mobile phones has been shown to be

capable of providing accurate traffic flow information just from the data generated

when a phone changes location, and then swaps from being serviced by one phone

mast to another (Swisscom, 2017).

Due to the overall wide and increasing availability of smartphones, many recent re-

search efforts have identified the capability for these devices to be used as a source

of driving data. As well as GPS connectivity, modern smartphones are typically

equipped with an inertial measurement unit (IMU) to provide three-dimensional

acceleration values, as well as a camera and microphone that can also be utilised

for detection of various driving related activities, for example, stop-and-go or fluid

traffic conditions, and road quality (Mohan, Padmanabhan, and Ramjee, 2008). In

other studies, road roughness conditions and features, such as potholes and man-

hole covers, were detected using a mounted smartphone’s accelerometer and micro-

phone data (Mednis, Elsts, and Selavo, 2012), and sensor fusion utilised to identify

driving style, differentiating between aggressive and non-aggressive driving ma-

noeuvres (Johnson and Trivedi, 2011). Finally, gyroscope and magnetometer sensor
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data can also be obtained in certain smartphones and have been considered, in con-

junction with the accelerometer, for detecting risky and safe driving behaviour, i.e.

by comparing the similarity of an identified event to predefined risky and safe event

patterns (Eren et al., 2012).

However, a limitation of these approaches is that the smartphone must typically be

mounted in the vehicle to obtain accurate results (Fazeen et al., 2012). If the smart-

phone is moved while driving then false positives for events and road features will

almost certainly be introduced into any system. An option to overcome this limi-

tation is to add an additional mounted IMU to a vehicle and use the same signal

processing techniques as applied to smartphone accelerometer data (Tin Leung et

al., 2011). These two different sensor approaches have been compared for the detec-

tion of driving acceleration, braking and steering events (Paefgen et al., 2012). While

the authors found correlations between the smartphone and IMU-based events, dif-

ferences were also reported between the statistical distributions of generated event

counts, primarily due to variations in how the smartphone was mounted and posi-

tioned inside the vehicle.

An alternative approach for the collection of driving data is to make use of increas-

ingly available access to the sensors in the vehicle itself. Since access to standardised

On-Board Diagnostics (OBD-II) data is mandatory for all vehicles manufactured or

sold in the USA from 1996, many of these parameters have been widely used in

research. This data gives insights into features such as vehicle velocity and en-

gine speed, and has been used to detect hazardous driving behaviour (Imkamon

et al., 2008). As such, the automotive insurance market has harnessed these in-

sights through telematics solutions and smartphone applications in order to mea-

sure ‘pay-as-you-drive’ trip distances, and reward safer driving for ‘pay-how-you-

drive’ policies by assessing dangerous driving patterns, such as speeding, swerving,

and heavy braking (AXA Winterthur, 2016; Metromile, 2018). From a research per-

spective, OBD-II data has been utilised in a study that predicted passenger ratings

of driving behaviour by assigning current hazardousness to a range of values be-

tween driving safely and driving dangerously (Castignani, Frank, and Engel, 2013).

The authors developed classification models of these levels by combining OBD-II

sensor data, 3-axis accelerometer data, and fuzzy logic, a technique suitable when

a binary distinction is not appropriate. In other work, the behaviour of different

driver groups in the US State of Georgia was studied by collecting data from vehicle

OBD-II systems, as well as GPS location data (Jun, Ogle, and Guensler, 2007), and it

was noted that clusters of hard deceleration events were co-located with clusters of

historical accident data.
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Yet OBD data is a small subset of the data that is potentially available within a ve-

hicle. The Controller Area Network (CAN) Bus holds unstandardised information

on the inner-workings and communications between the subsystems of a vehicle.

Deeper insights into a vehicle’s operation are available on the CAN Bus of a va-

riety of vehicles, and as such, have been used in recent research studies of driver

behaviour. For example, one proposed platform, based on a feature extraction algo-

rithm and a fuzzy system, identified current driving conditions and provided energy

consumption feedback to the driver (Araújo et al., 2012). Feedback for the system

was based on GPS measurements from a smartphone combined with CAN Bus sen-

sor readings, including vehicle speed, acceleration, throttle signal, fuel consumption,

and engine speed. Other studies have also made use of the CAN Bus of several ve-

hicles to identify fuel efficient driving behaviour (D’Agostino et al., 2015; Ferreira,

Almeida, and Silva, 2015), and characteristics of aggressive and calm driving have

been previously identified (Karaduman et al., 2013).
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Chapter 3

Foundational Materials and

Methods

Addressing the research objectives of this thesis, presented in Section 1.2, requires

several key components that are described in the following chapter. The first re-

search objective, determining what impact in-vehicle warnings, utilising real world

location data to generate interventions, have on driver behaviour, requires knowl-

edge of places that are dangerous on the road network, and a system that can pro-

vide such warnings, as well as measure driver behaviour. The second research ob-

jective, investigating to what extent the perilousness of our road networks can be

predicted on the basis of critical driving events, also requires the insights into where

traffic accidents have historically occurred, along with data regarding the traffic flow

of the road network, and driving data collected in a naturalistic setting. As such, this

chapter initially outlines the two supporting datasets utilised in this thesis, the first

featuring fundamental information on the traffic accidents occurring within Switzer-

land since 2011, and the second providing traffic frequency measurement at specific

locations across the country. Following this, the development and features of an

in-vehicle system that in parallel collects high frequency driving data for analyses

and provides accident hotspot warning interventions to drivers is then presented.

Finally, the chapter concludes by detailing the field study that was conducted to

answer the introduced research objectives utilising the in-vehicle system, the demo-

graphics of the participants, and the experimental design that was applied.

3.1 Supporting Datasets

Two fundamental datasets are presented in this initial section that the subsequent

development and analysis of the thesis build upon. The first, a dataset containing
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contextual information on traffic accidents occurring in Switzerland is the founda-

tion of generating the accident hotspot warnings presented in Chapter 4, and deter-

mining the perilousness of locations in Chapter 5. The second, a dataset providing

traffic flow measurements for a variety of locations across the Swiss road network is

utilised in the analysis of Chapter 5.

3.1.1 FEDRO Traffic Accident Dataset

In order to facilitate the investigation into data-powered road safety of both Chap-

ters 4 and 5, and determine whether in-vehicle warnings of accident hotspots can

help improve driver behaviour, the Swiss Federal Roads Office (FEDRO) Statistics

For Road Accidents provided access to a historical accident dataset. Since 2011, FE-

DRO has collected detailed information regarding every Swiss road accident for

which the police were called, building up an extensive accident record. The data

collection procedure of FEDRO is comprised of the following steps: Police officers

are called to traffic accidents and have to fill out a report for each incident. This re-

port includes information regarding the involved persons and vehicles, details about

the location of the accident, the leading cause, and the circumstances and course of

events leading to the collision. Once the report has been filled out, it is then sent to

the FEDRO, which reviews and controls the data to ensure integrity and credibility.

Appendix A provides an example of the report template of the FEDRO (in German).

This data is made available for research purposes on a yearly basis, and so the initial

dataset received and utilised for generating in-vehicle warnings was composed of

over 266 000 geo-located accident records, which occurred in Switzerland between

the years 2011 to 2015. Following this, two additional datasets were later received

covering the years 2016 and 2017. Combined, these datasets provide details on over

377 000 traffic accidents, and, as seen in Figure 3.1, the number of accidents occur-

ring in Switzerland follows the global trend of remaining at an unacceptably high

level year on year, with an average of almost 54 000 annual reported accidents.

The provided dataset includes a multitude of features related to each accident, such

as the reason for the incident occurring, the number of people and vehicles involved,

and the severity of the suffered injuries. From this data, and as shown in Figure 3.2,

it can be seen that, at least in the traffic accidents reported to the police, roughly

80 % of the participants are thankfully uninjured. However, an average of 16.1 %

of the participants suffer minor injuries, dropping from 18 805 to 17 759 between

2011 and 2017, a change of 5.6 %. This trend is also seen in the number serious
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FIGURE 3.1: Chart showing the number of traffic accidents within
Switzerland
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FIGURE 3.2: Chart showing the number of people involved in traffic
accidents, by degree of injury, within Switzerland
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FIGURE 3.3: Switzerland’s national coordinate system - Swiss coordi-
nates LV03 (Federal Office of Topography, 2016)

injuries incurred due to traffic accidents, where approximately 3.6 % of those in-

volved are affected, which has dropped from 4437 to 3654 (17.7 %) over the years.

Finally, the average number fatalities from traffic accidents is 0.2 % of the total peo-

ple involved over a year, falling from 320 to 230 deaths, a dramatic change in seven

years of 28.13 %. Yet, while the proportion of people suffering minor to fatal injuries

from traffic accidents in Switzerland has been dropping, significantly more work is

needed in order to reach the United Nations 2015 commitment of halving the num-

ber of injuries and deaths from traffic accidents by 2020.

Aside from the descriptive features of each accident, the FEDRO traffic accident

dataset also includes the geo-location information of where each incident occurred.

As FEDRO is a federal institution of Switzerland, the location data of the accidents

is provided in the so-called LV03 Swiss coordinate system. This coordinate system is

typically the standard used by federal authorities to collect and store geo-locations,

and represents the Earth in a projected form. The point of origin of the projection is

in Bern, which is labeled as E = 600 000 m (east) and N = 200 000 m (north), and is

illustrated in Figure 3.3 demonstrating the LV03 coordinate frame. The main advan-

tage of using the Swiss coordinate system is that, unlike systems that represent the

Earth as a sphere, i.e. the Global coordinates (WGS84), distance calculations between

two points are simpler and can use Euclidean distance.

The Swiss coordinate system LV03 can be transformed into the more commonly used
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WGS84 projection by applying a set of derived formulas (Federal Office of Topogra-

phy, 2016). The accuracy of these approximate formulas is at least 0.12′′ (arcseconds)

in longitude, 0.08′′ in latitude and 0.5 metres in height everywhere in Switzerland.

As such, the coordinate transformation of the accident data was achieved via the

following approximation approach:

1. Transformation of the projection coordinates (east (y)/ north (x)) into the civil

coordinate frame (where Bern = (0,0)) and into units of [1000 km]:

y′ =
(y− 600000)

1000000
(3.1)

x′ =
(x− 200000)

1000000
(3.2)

2. Calculation of longitude (λ) and latitude (φ) [10 000′′]:

λ′ = 2.6779094 + 4.728982y′ + 0.791484y′x′ + 0.1306y′x′2 − 0.0436y′3 (3.3)

φ′ = 16.9023892+ 3.238272x′− 0.270978y′2− 0.002528x′2− 0.0447y′2x′− 0.0140x′3

(3.4)

3. Transformation to units of [◦]:

λ = λ′
100
36

(3.5)

φ = φ′
100
36

(3.6)

Once transformed into GPS latitude and longitude coordinates, the locations of the

traffic accidents across the country can be visualised. Figures 3.4 to 3.6 all present

heatmap representations of the initial 2011 to 2015 traffic accident datasets provided

by FEDRO, where green locations indicate a lower frequency of accidents, and red a

higher frequency. As one would perhaps expect, Figure 3.4 shows that the cities and

urban areas in Switzerland have a higher concentration of traffic accidents, typically

explained by a higher number of vehicles and other road participants, e.g. pedestri-

ans, in these areas. Additionally, main transportation routes, for example highways,

can be easily identified linking these urban locations due to a higher frequency of ac-

cidents than the surrounding rural areas. Figure 3.5 provides a more detailed exam-

ination of one of the cities, Zurich, where the main transportation routes can again

be seen, as well as a higher concentration of accidents when compared to the nearby

suburban and rural locations. Furthermore, certain areas inside the city demonstrate
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FIGURE 3.4: Swiss FEDRO accident data - Nationwide heatmap
Green represents low, and red indicates high accident frequency

FIGURE 3.5: Swiss FEDRO accident data - Zurich heatmap
Green represents low, and red indicates high accident frequency
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FIGURE 3.6: Swiss FEDRO accident data - Zurich Kunsthaus heatmap
Green represents low, and red indicates high accident frequency

a significantly higher amount of traffic accidents than even the surrounding urban

locations.

Figure 3.6 shows an example of one of these locations in greater detail, here the inter-

section and crossing in the centre of the image has a much higher frequency than the

nearby road infrastructure. For some reason, this location is clearly more dangerous

than other intersections and crossings in the same area. Looking in more detail in

the map based image, it can be seen that this particular location is a combination

of pedestrian crossings, a traffic light controlled multi-lane intersection, and a tram

line. With just a visual inspection it is difficult to identify a clear cause explaining

why these traffic accidents are occurring. However, when considering the features

provided in the FEDRO dataset for the traffic accidents that contribute to this dan-

gerous location, a clearer idea of what the underlying cause of these accidents can

start to be constructed.

Each traffic accident in the FEDRO dataset is composed of several sets of features,

which can be grouped into three fundamental categories:

• ‘What’ was involved in the accident, e.g. cars, motorcycles, pedestrians

• ‘Why’ did the accident occur, e.g. speeding, aquaplaning, distraction

• ‘Where’ did the accident happen, e.g. at a roundabout, intersection, pedestrian

crosswalk
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TABLE 3.1: Potential attributes assigned to each traffic accident in the
FEDRO dataset

What Why Where
Objects involved Reasons for accident Surrounding road infrastructure

Agricultural vehicle Aquaplaning Bus/Tram stop
Bicycle (Moped, E-Bike) Careless backing up Crosswalk
Bus Collision with animals (pet, wild animals) Curve
Coach Condition / Intention of the driver Cycle path
Lorry/Juggernaut Cutting corners Entry/ exit parking lot / property
Motorcycle Disregard right of way Intersection
Passenger car Disregard signalisation Junction
Pedestrian Disregard traffic light Lay-by (Rest stop)
Train Illegal crossing Parking lot
Tram Inattentiveness / Distraction Parking space

Lack of consideration while lane changing Protection island
Lack of space between cars Railroad crossing without barrier
Not adapted speed (e.g. curve) Railroad crossing with barrier
Not adapted speed (e.g. road condition) Roundabout
Sun dazzling Square
Technical defects of the vehicle Straight road

Traffic abatement
Tunnel

Table 3.1 provides an overview of these categories and the features that each traf-

fic accident might be labelled with1, and Figure 3.7 presents the two pages of the

FEDRO report form (in German) associated with these categories, with the related

attributes highlighted in blue.

If the features provided in the FEDRO dataset for the traffic accidents contributing

to the previously discussed dangerous location in Zurich are considered, more than

half of the accidents are reported with the ‘why’ main cause being “lack of consider-

ation while lane changing” of the vehicles involved, and so a clearer picture can be

built of what the underlying cause is of these accidents. Hotspots such as this, where

there is a dominant reason for the traffic accidents occurring, strongly motivate re-

search investigating whether in-vehicle warnings of these dangerous locations can

improve driver safety.

3.1.2 FEDRO Traffic Frequency Dataset

Aside from the attributes of accidents previously described, such as the location, ob-

jects involved, and the underlying causes, traffic accident analysis has traditionally

considered additional variables related to the road infrastructure itself in order to

1 For brevity, the full set and subsets of all possible objects, reasons, and locations have been sum-
marised in this table. For the complete list of attributes and combinations, please see the FEDRO
report forms (in German) in Appendix A.
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FIGURE 3.8: Examples of Swiss automatic traffic counting sta-
tions (Swiss Federal Road Office, 2013)

(A) An automatic traffic counting station (B) Integrated road surface induction loops

investigate safety related topics. For example, the rate of traffic flow, i.e. the num-

ber of cars travelling on a particular stretch of road, has long been associated with

traffic accidents (Hauer and Persaud, 1984). The argument for this is that with a

fixed probability of a traffic accident occurring, sections of road with higher traffic

flow will see a higher number of traffic accidents per year. Therefore, to assess a

specific location’s Crash Rate or risk exposure based on the number of traffic acci-

dents, it is important to account for traffic frequency. In order to incorporate this into

potential analysis, traffic data was obtained from FEDRO and the Swiss Automatic

Road Traffic Counts (SARTC) department. These datasets are freely available online,

and are powered by a network of permanent automatic traffic counting stations on

the country’s most important thoroughfares. As shown in Figure 3.8, these auto-

mated stations detect and count vehicles via connected induction loops which are

integrated into the road surface. In total, 466 such stations have been in operation

as of May in 2013 in Switzerland, and of these, 424 were still operational for at least

part of 2016 . However, as is the case in many countries, in Switzerland there is only

partial location coverage of such automatic counting stations.

The ultimate goal of SARTC is to record both the direction and time of traffic move-

ments, and in this case the average daily traffic (ADT) and average weekday traffic

(AWT) volumes are considered the two most important criteria for evaluation. For

ADT, the figure is calculated by SARTC on every day of the year for 24 hour traffic

volumes, and AWT from traffic volumes on all weekdays (Monday to Friday) except

public holidays. These statistics are only recorded for roads when they are open,

so some data is not collected during winter when certain roads are forced to close.

Annual and monthly results, between January 2002 and August 2017 at the time of

writing, for ADT and AWT are available online (Swiss Federal Road Office, 2017),
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FIGURE 3.9: Locations of Switzerland’s automatic traffic counting sta-
tions (Swiss Federal Road Office, 2013)

FIGURE 3.10: Histogram showing the distribution of Average Daily
Traffic from 2016 across the automatic counting stations in Switzer-

land
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along with a separate dataset containing the locations of the counting stations (Swiss

Federal Road Office, 2013). As with the FEDRO traffic accident dataset outlined in

Section 3.1.1, the locations of the counting stations are represented in the LV03 Swiss

coordinate system, and presented in Figure 3.9. Thus, the same formulas from Sec-

tion 3.1.1 can be applied to transform the Swiss coordinate system LV03 into the

WGS84 projection (Federal Office of Topography, 2016).

Figure 3.10 provides a histogram showing the distribution of the yearly ADT across

the Swiss road network, as available in the FEDRO ADT dataset. In this case, the

ADT measurements for each month of the year 2016 were averaged to generate the

yearly ADT for each counting station. A total of 351 of the 424 operational counting

stations in 2016 collected measurements for each of the 12 months, the remaining 73

stations were not included in the summary.

3.2 System Description

The outlined datasets are used throughout the thesis in order to facilitate the inves-

tigation into the impact of in-vehicle warnings, and the relationship between critical

driving events, such as heavy braking, with the locations of accident hotspots. In

order to achieve these goals, an in-vehicle system was developed that could display

accident hotspot warnings to drivers, as well as collect driving data from the vehicle

itself to investigate driving behaviour and road safety. This system was developed

through multiple build and evaluation stages, typical of iterative development, fol-

lowing the design science research paradigm (Gregor and Hevner, 2013; Peffers et

al., 2007; Von Alan et al., 2004). The prototype was developed in conjunction with

regular drivers over the course of a year, comprising of surveys and an initial field

test of eight drivers for approximately two weeks, where approximately 5000 km

were driven.

The subsequent in-vehicle system was comprised of three core components: a blue-

tooth OBD-II dongle to access data from the vehicle, a smartphone application that

acts as the user-interface for the driver, and a backend server infrastructure to col-

lect, store, and process the driving data. First, the driving data from the vehicle is

collected through the OBD-II dongle that was configured to access CAN Bus data

of specific vehicles, this data is passed to the smartphone in the vehicle via a Blue-

tooth connection. Second, a smartphone application receives the CAN Bus data from
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FIGURE 3.11: UML sequence diagram showing an overview of the
information flow of the system.

the OBD-II dongle, and transmits this in real-time to the backend server for analy-

sis, along with metadata, such as the GPS location associated with each measure-

ment. For the majority of the time while driving, the user interface of the smart-

phone application displays a variety of eco-driving feedback for the driver, and the

differences between the types of feedback has been investigated in a supporting

study (Dahlinger, 2018; Dahlinger et al., 2018). The smartphone application addi-

tionally determines if and when the accident hotspot warning interventions should

be displayed to the driver, changing the application screen when necessary from the

eco-driving feedback when not in a hazardous area, to a contextual warning when

an accident hotspot is being approached. Finally, the backend server architecture

provides an updatable reference of the locations of historic accident hotspots which

can be queried by the smartphone application, along with processing and storing

the transmitted vehicle data for post-processing and analyses. The remainder of this

section provides a more detailed description of each of these three components, and

Figure 3.11 provides a UML sequence diagram showing an overview of the system.

3.2.1 Vehicle Data Collection

When access to the CAN Bus of a vehicle is not restricted, then the messages trans-

mitted from the vehicle’s internal sensors can be obtained. As such, vehicle data,

representative of that available in modern connected and semi-autonomous vehi-

cles, was collected via the retrofit system by accessing the CAN Bus of the vehicles

via an OBD-II dongle. The dongle was configured to interpret the CAN messages on

compatible vehicles, and was paired via Bluetooth with a smartphone in the vehicle.

The signals and messages accessed are unstandardised and vary between makes and

models of a vehicle, and the dongle was configured to transmit these at a maximum
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rate of 30 Hz per measurement. Based on the prior research into driving related in-

sights, the following measurements were identified and collected for the purpose of

measuring driver behaviour and potentially identifying hazardous areas:

• Engine Speed [rpm]

• Individual Wheel Speed [km/h]

• Vehicle Acceleration [m/s2]

• Throttle Pedal Position [%]

• Brake Pedal Position [%]

• Steering Wheel Angle [◦]

• Longitudinal Acceleration [m/s2]

• Lateral Acceleration [m/s2]

• Yaw Rate [◦/s]

• Antilock Braking System [on/off]

• Electronic Stability Control

[on/off]

• Traction Control System [on/off]

• Wheel Slip Status [on/off]

• Outside Temperature [◦C]

• Windshield Wiper [on/off]

• Headlight Setting [on/off]

Additionally, the vehicle’s fuel consumption measurements (Litres per hour) were

collected and used to provide eco-driving feedback to the driver in the dedicated

smartphone application. Finally, the driving data and CAN Bus signals received by

the smartphone application were streamed in real-time via the phone’s internet con-

nection to a backend server, augmented with the smartphone’s own GPS location,

timestamp, accelerometer data, and metadata regarding the trip status and general

usage information.

3.2.2 Smartphone Application

The visual user interface of the Android smartphone application was separated into

two components, non-warning feedback and warning feedback. In order to encour-

age use of the system, a variety of non-warning information was capable of being

provided to the user when they were not travelling through accident hotspots. Of

this non-warning feedback, there were two types of eco-driving feedback available

within the application. The first is concrete feedback that extends the vehicles dash-

board and provides real-time fuel consumption information. The second is abstract

feedback, where a tree grows and shrinks based on the average fuel consumption

of the current trip. Figure 3.12 shows these two types of eco-driving feedback. Fur-

ther, an additional ‘g-radar‘ screen was also available, showing the longitudinal and

lateral acceleration values that the vehicle was currently experiencing.

Prior driving studies have demonstrated that, in general, brief glances away from

the forward roadway, for the purpose of scanning the driving environment and the
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FIGURE 3.12: Non-warning feedback provided by the information
system

(A) Concrete Eco-Driving Feedback (B) Abstract Eco-Driving Feedback

in-vehicle instrument cluster, are safe and decrease crash and near crash risk (Klauer

et al., 2006). In addition, simulation studies that provided early warning signals to

drivers approaching a hazardous location reported a positive shift towards safer be-

haviour, where participants receiving the intervention drove at a lower velocity after

waiting longer at the intersection, and so avoided collisions (Werneke and Vollrath,

2013). In order to promote this safe driving behaviour, and encourage driver alert-

ness through potentially hazardous areas, warning feedback is displayed via the

smartphone application based on contextual information of the accident hotspot.

This contextual information is based on the ‘What’, ‘Where’, and ‘Why’ attributes

of the traffic accidents that together form the accident hotspot, and the method for

generating this is described in greater detail in Section 4.3.1. As an example, a ‘Cau-

tion Pedestrians’ warning is provided when the majority of accidents making up

the hotspot are reported to have included pedestrians. These interventions are pro-

vided to the drivers when they approach an accident hotspot, and the non-warning

feedback is replaced by the relevant warning for that location, as illustrated in Fig-

ure 3.13.

Naturalistic driving studies typically observe driving behaviour of participants

through cameras and other recording devices, and previous work has found that a

short glance from the forward roadway for a simple task only increases marginally,

if at all, the risk of a crash or near crash while driving (Klauer et al., 2006). However,

the importance of non-intrusive interactions with the driver are also highlighted.

Previous in-vehicle warning studies have shown that audio-based warnings may be

as effective as both audio and visual warning information combined (Zhang, Suto,

and Fujiwara, 2009). However, since it would have been difficult to detect and con-

trol for whether the driver had manually disabled the volume of the smartphone,

audio warnings were not included in the experimental version of the application.

Additionally, tactile warnings, e.g. vibrations delivered through the vehicle seat,

throttle pedal, or seat belt, have previously been provided to drivers (Meng and
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FIGURE 3.13: Two examples of the in-vehicle warning intervention
shown to drivers approaching an accident hotspot

(A) Pedestrian Crosswalk Warning (B) Dangerous Tunnel Warning

Spence, 2015), however at the time of development it was not possible to deliver tac-

tile feedback through smartphone applications2. As such, only visual warnings were

implemented as part the in-vehicle system considered in the research at hand. In or-

der to reduce driver inattention due to the accident hotspot warning functionality,

and convey actionable information to the driver, the visual warnings were imple-

mented following the guidelines of previous studies (Cao et al., 2010).

3.2.3 Backend Infrastructure and Data Collection

In order to process and store the high volume and frequency of data being transmit-

ted from each vehicle and smartphone, a backend server infrastructure was devel-

oped utilising the latest Big Data technology (Manyika et al., 2011). Apache Kafka,

Storm, and Cassandra were used to process the vehicle data messages in real-time

and store them for post-processing (Ranjan, 2014). Furthermore, in order to enable

the updating of existing, and the addition of new, accident hotspot warnings if re-

quired, the locations and details of the each hotspot were stored on the server, and

queried and loaded onto the smartphone whenever the vehicle was started.

Aside from sensor measurements from the vehicle and smartphone, additional data

was generated and collected for each trip, such as the start and end location, along

with notifications and metadata of when accident hotspots were encountered and

warnings shown to the driver. All data was initially stored on the smartphone, and

streamed to the backend infrastructure in real-time when a suitable internet connec-

tion was available. So as to not lose any data in the case of weak internet signal, a set

2 Although it is worth noting that recent technology advancements have potentially enabled the option
for delivering such tactile feedback to drivers, by incorporating the warning interventions into a
vibrating smartwatch notification.
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of transfer buffers and databases were implemented in the smartphone application

in order to store information until the connection was restored.

3.3 Touring Club Suisse Field Study

In order to answer the previously outlined research questions, and in contrast to the

state-of-the-art in vehicle warning studies that focus on simulations and controlled

experiments, the outlined in-vehicle warning system was tested in a country-wide

field test of professional drivers. The following section provides an overview of this

field study, along with details of the participant demographics, and the experimental

design that was applied.

3.3.1 Field Study Overview

Professional drivers were recruited to participate in an 18 week field study from a

fleet of road assistance patrollers, in cooperation with their employer, Touring Club

Suisse (TCS), a Swiss road assistance club. Participation was voluntary and anony-

mous, and limited to German speaking drivers who drove cars compatible with the

prototype system for extracting CAN Bus data from the vehicle, as described in Sec-

tion 3.2.1. Out of the 92 potential patrollers that were invited via email to sign up

for the study, 72 agreed to participate. As such, each of these drivers worked for

the same roadside assistance company across a variety of locations, and all drove a

Chevrolet Captiva of similar make and model.

During the 18 week period these drivers drove for approximately four hours, with

an average of 144km travelled, per driver per day. Drivers followed their usual day-

to-day routines, and did not undertake any specific driving tasks as part of the nat-

uralistic driving field study. In total, this resulted in over 690 000 km of driving data

collected using the system across the majority of the Swiss road network. Figure 3.14

shows the routes in Switzerland which were travelled by the participants during the

study. Since the location data acquisition relied on the GPS position of the smart-

phone, in areas where there was no GPS signal, such as in tunnels, no location data

was captured.
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FIGURE 3.14: Locations in Switzerland where naturalistic field study
driving data was collected over the 18 week period

3.3.2 Study Participants

Of the 72 recruited participants, 66 provided demographic details, such as age and

gender, and completed a set of questionnaires regarding their personality and sub-

jective driving style. Each of the participants providing this information was offered

a voucher worth 100 Swiss francs as an incentive and compensation. All but one of

the participants providing demographic data were male, and ranged from 21 to 64

years of age, with a mean age of 39.2 and a median of 37.

Existing research into the impact of driver personality on driving behaviour shows

that various Big Five traits can be linked to subjective driving styles (Taubman-Ben-

Ari and Yehiel, 2012). A previous study has shown that there are correlations be-

tween ‘reckless’ and ‘angry’ driving styles and high levels of Extraversion, and low

Agreeableness and Conscientiousness. Additionally, high levels for Agreeableness,

Conscientiousness, and Openness were correlated to the ‘careful’ driving style. Fi-

nally, the ‘anxious’ driving style was linked to high Neuroticism. Since a driver’s

personality may impact their behaviour (Taubman-Ben-Ari and Yehiel, 2012), the

personality of the participants was measured in order to control for these factors

when assessing the effect of the eco-driving and warning interventions. There-

fore, the Big-Five-Inventory-10 (BFI-10) questionnaire (Rammstedt and John, 2007),

a short version of the well-established Big-Five-Inventory (BFI) (John and Srivas-

tava, 1999), was provided to the drivers. The BFI-10 consists of 10 items to cover

the five personality factors, Agreeableness, Consciousness, Extraversion, Neuroti-

cism and Openness, each with two items accordingly and measured on a Likert

scale from 1 (very low) to 5 (very high). Psychometric properties do not reach the
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TABLE 3.2: Descriptive statistics of the Big Five personality traits of
the participants, measured on a Likert scale from 1 (very low) to 5

(very high)

Personality Trait Mean Standard Deviation Median Minimum Maximum

Agreeableness 2.85 0.65 3.00 1.00 4.50
Conscientiousness 3.51 0.70 3.50 2.00 5.00
Extraversion 2.91 0.76 3.00 1.50 4.50
Neuroticism 3.50 0.65 3.50 2.00 5.00
Openness 2.94 0.56 3.00 1.50 4.50

quality of the original BFI, but deliver sufficient values. The short version of the

questionnaire was chosen due to restrictions on participant’s time and to avoid at-

trition. Table 3.2 provides an overview of the distribution of each of the Big Five

personality traits among the drivers. Additionally, the subjective driving style of the

drivers was assessed using the multidimensional driving style inventory (Taubman-

Ben-Ari, Mikulincer, and Gillath, 2004). This inventory measures driving style on a 7

point Likert scale across eight dimensions: ‘angry’, ‘anxious’, ‘careful’, ‘dissociative’,

‘distress-reduction’, ‘high-velocity’, ‘patient’, and ‘risky’.

3.3.3 Experimental Design

The field study was conducted over a course of 18 weeks, and consisted of a 2 week

baseline and on-boarding phase, a 12 week experimental phase during which two

intervention experiments were performed, and a final 4 week ‘free driving’ phase

where drivers could choose between the experimental interventions. The first ex-

periment explored the impact of eco-driving feedback on driver behaviour, where,

after the 2 week baseline and on-boarding phase, participants were randomly allo-

cated into one of three groups and shown either a control intervention, concrete eco-

driving feedback, or abstract eco-driving feedback3. After another 8 weeks, these

three experimental groups of drivers were randomly split a second time, between

a control group and a warning intervention group. This second group allocation

was undertaken to control for the effect that the eco-driving intervention had on the

group driving behaviour, and the eco-driving feedback of each driver remained the

same during the two experimental phases. Randomisation checks were conducted

at both of these group allocation stages, and indicated that there were no significant

group differences with respect to drivers’ demographic and subjective driving style

3 For a detailed analysis of this phase, please see the two supporting studies from Dahlinger et al.,
2018, and Dahlinger, 2018.
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FIGURE 3.15: Overview of the field study and experimental setup,
adapted from Dahlinger, 2018

survey responses. Overall, the warning experimental phase lasted for 4 weeks, after

which all drivers had the warning intervention enabled and were given free choice

between the three styles of eco-driving feedback for the final 4 weeks of the field

study. Figure 3.15 provides an overview of this experimental setup, and the group

sizes at each stage of the randomly assigned allocations.
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Chapter 4

The Impact of Accident Hotspot

Warnings on Driver Behaviour

The previous chapters have so far outlined the background work on driver safety

and in-vehicle warnings, and presented the development of a prototype system that

could in parallel display accident hotspot warnings to drivers and collect data from

the car itself. The naturalistic field study setup has additionally been described,

that enabled the collection of vehicle data and the analyses of the following chapter,

which investigate the impact that the accident hotspot warnings had on the drivers.

This chapter opens by revisiting the motivation of providing such warnings, and

going into more detail on the latest studies that the analyses build upon. The spe-

cific materials and methods that were utilised to identify traffic accident hotspots

from the historical accident data, and the generation of contextual warnings from

these, are then described. Finally, the results of the intervention on the drivers’ be-

haviour are presented, and the chapter closes with a discussion of the findings and

the conclusions that can be drawn from the work.

4.1 Context and Motivation

According to the World Health Organization (WHO) road traffic accidents are now

the eighth leading cause of death globally, with the number of road traffic fatalities

steadily increasing since 2001 to over 1.25 million people each year (World Health

Organization, 2015). An example of the growing risk can be seen in the United

States, where, according to the National Highway Traffic Safety Administration

(NHTSA), the number of deaths from traffic accidents in 2015 rose by 7 % from the

year before, up to 35 092 fatalities (NHTSA, 2007). Aside from the humanitarian con-

cerns of so many injuries and mortalities, the worldwide economic costs caused by
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the impact of traffic accidents are estimated to account for a loss of approximately

3 % of the global GDP (McMahon and Dahdah, 2008). As such, the United States

Department of Transport, along with the White House, issued a call to action, en-

couraging the continuous research into different approaches that can help to reduce

the number of traffic accidents, both fatal and non-fatal (U.S. Department of Trans-

portation, 2016).

In light of the depicted challenges, a huge variety of research endeavours and sys-

tems have emerged to help tackle the problem of traffic accidents on our road net-

works. For example, due to the data requirements and the complexity of urban plan-

ning and transportation problems, there has been a growing interest in the use of

new methods and tools to analyse the strategic planning (Coutinho-Rodrigues et al.,

1997; Ülengin et al., 2007), the multi-vehicle tactical (Santos, Coutinho-Rodrigues,

and Antunes, 2011) and the individual vehicle operational levels (Keenan, 1998;

Ray, 2007). In particular, spatial systems have been shown to play a vital role in

this domain, enabling a variety of analytics on the existing challenges of road in-

frastructure. An instance of such as a system was presented in an accident hotspot

evaluation study that took place in India, where inadequate development of trans-

port networks led to traffic congestions and accidents (Prasannakumar et al., 2011).

In the study, geo-information technology was used to help examine the location and

distribution of hotspots, highlighting the influence of spatial and temporal factors in

their formation.

Furthermore, at the individual vehicle operational level, various research studies are

geared towards how in-vehicle systems can encourage drivers to adapt their driv-

ing behaviour when necessary. The latest studies in this field provide promising

evidence that these systems can indeed have significant positive effects on driving

behaviour and collision avoidance (Kazazi, Winkler, and Vollrath, 2015; Tey et al.,

2014; Werneke and Vollrath, 2013). Moreover, the benefits of these systems can be

delivered to vehicles either directly through their own data connections and dis-

plays, or through existing mobile or standalone satellite navigation systems (Zhang,

Suto, and Fujiwara, 2009).

4.1.1 Research Objectives

While the potential of in-vehicle systems is undisputed, the vast majority of stud-

ies have focused on simulation experiments (Naujoks and Neukum, 2014a; Seeliger

et al., 2014) and controlled field studies (Ruscio, Ciceri, and Biassoni, 2015; Zhang,
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Suto, and Fujiwara, 2009), typically providing warnings to drivers to prevent a colli-

sion with an upcoming vehicle or pedestrian. In this field, the existing research falls

short of both bringing an in-vehicle warning system into a field study setting, and

utilising real world location analytics on traffic accident data as a source for gener-

ating in-vehicle warnings. As such, this chapter of the thesis goes beyond existing

studies and depicts the design and field evaluation of an in-vehicle warning system

that aims to improve driver safety at known dangerous locations. Thus investigating

the first research objective of this thesis, determining whether warnings of upcom-

ing dangerous locations have a positive effect on driving behaviour, as discussed in

Section 1.2.1.

The existing studies that measure the impact of in-vehicle warnings through simu-

lation environments and controlled field studies typically make use of a variety of

features to assess the effect of warnings on driver behaviour. The effectiveness of

these interventions are typically assessed using variables that are unique to a more

controlled experimental setting, and examples include measuring either the number

of collisions incurred or braking reaction time (Kazazi, Winkler, and Vollrath, 2015)

Since the research objective is the field evaluation of a system that warns users of

historically hazardous locations, rather than specific upcoming objects, many of the

typical validation variables in this field are unavailable for analysis. For example,

‘minimum-time-to-collision’, the time left for a participant to avoid a collision with

another object (Naujoks and Totzke, 2014), is unsuitable as the distance to other ob-

jects is unknown and there may be no need for a change in the driver’s behaviour.

Therefore, a more applicable dependent variable to measure the effect of the warn-

ings are the number of potentially dangerous braking events incurred by the driver,

which are a key result of decision making driving behaviour through hazardous

locations. With this dependent variable, and the approach of applying real world lo-

cation analytics on traffic accident data, the research objective can be operationalised

to generate the first concrete research question of this thesis:

RQ 1a To what extent do warning interventions of upcoming dangerous locations,

i.e. accident hotspots, impact the braking behaviour of drivers in a naturalistic

driving setting?

As the warnings are designed to encourage awareness of historically dangerous ar-

eas, drivers that receive the interventions should be both more alert and effective

at planning for situations ahead (Zhang, Suto, and Fujiwara, 2009). Therefore, the

hypothesis of the research at hand is that when the warnings are shown to drivers

approaching these accident hotspots then dangerous braking events are less likely

to occur at these locations.
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4.1.2 Research Implications and Structure

In order to assess the impact of the system, and in contrast to other in-vehicle studies,

location analytics were applied to a national historical accident dataset, composed of

over 266 000 accidents, and a complete in-vehicle warning system providing warn-

ing interventions to drivers deployed to the field. This system was tested outside of

the simulation environment in a country-wide field test of 72 professional drivers in

order to assess the impact of the system on driver behaviour and safety.

The supporting description of the prototype system, and the national traffic accident

dataset utilised to generate the in-vehicle warnings have been previously discussed

in Chapter 3. As such, the remainder of this chapter initially focuses on the state-of-

the-art research with regard to in-vehicle systems that provide warnings to drivers,

and proceeds to present the methods regarding the identification of the accident

hotspots and the classification techniques to generate the contextual warning inter-

ventions. Subsequently, the data collection from the naturalistic driving experimen-

tal phase is presented, along with the generation of the ‘heavy braking’ dependent

variable. Finally, the chapter concludes with an evaluation of the system with regard

to its effect on safe driving behaviour, and a discussion of the results and implica-

tions of the research.

Overall, the topic at hand of driver safety and in-vehicle warning systems is highly

relevant to both policy makers and industry players, such as vehicle manufactures

and insurances. Numerous hardware-based vehicle safety systems have become

mandatory in various countries throughout the last decades, for example, air-bags

and electronic stability programs. Similarly, policy makers could consider promot-

ing data-powered in-vehicle warning systems that encourage safer driver behaviour.

Eventually, such warning intervention setups that have proven to prevent accidents

could also be enforced by corresponding regulation. The automotive industry might

also recognise that data-powered prevention services are positioned to be an effec-

tive means to address the distinct safety needs of consumers and form a basis for

sustainable competitive differentiation.

4.2 State of the Art

4.2.1 Simulation Studies

Recent research has indicated that active warning signs, e.g. flashing lights, and

in-vehicle warning devices both produced higher levels of driver compliance than
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the existing conventional roadside warnings, demonstrating the positive impact in-

vehicle warning systems can have when compared to traditional road safety ap-

proaches (Tey et al., 2014). This overall positive effect is supported by various other

simulation studies that demonstrate how in-vehicle warning systems, such as early

warning signals displayed while approaching an intersection, can encourage safer

driving behaviour (Werneke and Vollrath, 2013). Participants in the study that re-

ceived the interventions were able to avoid collisions by waiting for a longer time at

the intersection and turning with a lower velocity, thus adapting their behaviour to

better reflect the driving situation. In particular, it has been reported that in-vehicle

warnings led to a significant reduction in collisions during simulated critical situ-

ations, and that both older and younger drivers demonstrated improved braking

reaction time during non-critical scenarios (Kazazi, Winkler, and Vollrath, 2015).

In other simulation studies, the effects on driving behaviour from advisory warn-

ings were found to be strongly dependent on warning time, with earlier warnings

more effective than late warnings (Naujoks and Neukum, 2014a). The interventions

were more greatly appreciated by drivers when given earlier, even though in critical

situations shorter warning times were still effective (Naujoks and Neukum, 2014b).

In situations where there is low visibility of potential hazardous situations, the fre-

quency of critical situations was reduced when early advisory warnings were pro-

vided, especially in surprising or unexpected situations (Naujoks et al., 2015). With

regard to the types of warning that can be provided, contextual warnings had lim-

ited importance to the behaviour of the driver, but users rated the system much

higher due to them (Naujoks and Neukum, 2014a). Additionally, it has been shown

that in less critical situations a contextual caution warning sign is more suitable than

a stop sign warning (Kazazi, Winkler, and Vollrath, 2015).

Furthermore, the recent developments in heads-up displays and the visualisation

technology built into the dashboard of modern vehicles have started to enable even

more innovative approaches to in-vehicle warnings. For example, simulation stud-

ies have started to explore how augmented reality systems can provide even greater

improvements to driver behaviour than other in-vehicle approaches (Schwarz and

Fastenmeier, 2017; Schwarz and Fastenmeier, 2018). When the researchers com-

pared a control condition to augmented reality warnings with spatial referencing

of a hazard, it was reported that drivers’ reactions consistently improved, as well

as their ability to identify unnecessary warnings. Participants additionally reported

that they subjectively preferred scaling animations as part of the augmented real-

ity setup, where warnings grew in size as the hazardous location was approached,
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however there was no impact on drivers’ objective behaviour (Schwarz and Fasten-

meier, 2017). Additionally, when measuring participants’ gaze and braking reaction

times, passing speeds, and collision rates, visual warnings with contextual informa-

tion on the upcoming hazard were reported to have advantages over the three other

warning designs (Schwarz and Fastenmeier, 2018).

4.2.2 Controlled Field Experiments

Several controlled field studies have investigated the impact of in-vehicle warnings

on driver safety by going beyond the simulation environment and into more realis-

tic driving situations. For example, the impact on real-life emergency braking has

been investigated in a study with regard to automation complacency and warning

expectancy (Ruscio, Ciceri, and Biassoni, 2015). The study involved 30 participants

that drove a customised vehicle, equipped with a variety of measuring devices and

cameras, around a small controlled track with no other road participants, where

a simple collision warning system was tested, along with misleading warnings and

unexpected events for the driver. Aside from the task of stopping as quickly as possi-

ble when the warnings were shown, the researchers tested automation complacency

by, unexpectedly for the driver and without warning from the system, throwing a

foam rubber cube into the path of the vehicle on a straight section of track before

the end of the experimental task. The results of the study highlight that reliable

warnings for drivers quickened the overall decision making process for emergency

braking, and show that misleading warnings of upcoming collisions generated au-

tomation complacency, slowing the visual search for unexpected hazards1.

Moreover, in a separate study an existing spatially located hazard on the Japanese

road network was considered and the effects of visual and audio warning combi-

nations on driver behaviour were investigated (Zhang, Suto, and Fujiwara, 2009).

Poor visibility had previously led to traffic accidents occurring at a downhill road

section of the intersection near an arch-shaped bridge, and this hazardous area was

the source of warnings provided to drivers in the study as they approached the loca-

tion. In the experiment that was conducted, 14 students drove with an observer on

the identified highway, and were presented with either an audio warning, or a com-

bination of an audio and heads-up display visual warning. Additionally, two types

1 However, it is worth noting that the reported results on automation complacency should be further
validated in a different setting, as when asked about the surprise appearance of the foam cube, several
drivers reported that they either “had not seen the obstacle”, “did not have time to realise there was
an obstacle to be avoided”, or “were not sure whether they had to brake or not, as they were not sure
[whether] it was part of the experiment”.
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of intervention were evaluated, the first was static information, that warned only

of the approaching traffic light infrastructure, the second was dynamic information,

triggered manually by the researcher in the car, and warning of a vehicle ahead that

was stopping. The authors demonstrated that the drivers were better able to avoid

dangerous situations when the warnings included information about the causes of

accidents, i.e. the dynamic information on stopping vehicles, rather than on the

road infrastructure itself. The results also indicate that the audio voice-based inter-

ventions may be as effective in improving driver awareness as the combination of

both the voice and heads-up display warnings.

4.3 Materials and Methods

In order to go beyond these existing studies, and provide meaningful warnings of

traffic accident hotspots to drivers at a national level, two key prerequisite goals

must be achieved. The first is the spatial identification of these dangerous areas,

and the second is the classification of why each of the identified locations is dan-

gerous. As such, the following section initially opens by outlining the data-mining

and rule-based approaches that were utilised to tackle these two goals respectively,

and the FEDRO traffic accident dataset that contained details of over 266 000 inci-

dents occurring in Switzerland between 2011 to 2015. Subsequently, the logic and

conditions of how and when the accident hotspot warnings were displayed to the

drivers are outlined. The section then closes with a description of the experimental

phase of the field study where the interventions were tested, along with the data and

post-processing applied to generate the variables for analysis.

4.3.1 Accident Hotspot Identification and Classification

The literature review revealed multiple approaches to spatially identify accident

hotspots, however, not all of them were compatible with the available dataset. The

Empirical Bayesian approach, which is commonly applied by governmental insti-

tutions, is well known to produce good results. However, it is very sensitive to

the quality of the estimation function and requires detailed information about risk

variables, such as traffic volumes or road parameters, e.g. curve radii (Deublein et

al., 2015). Since the provided dataset of the FEDRO consisted only of rough traffic

flow estimates and lacked other road parameters, Empirical Bayesian was discarded

as a suitable approach. Nonetheless, other promising analysis methods, such as
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spatial autocorrelation or Kernel Density Estimation, are appropriate for identify-

ing locations where many accidents occurred. Meanwhile, current research sug-

gests that spatial clustering techniques can achieve similar results, and have the ad-

vantage of being simpler to interpret and perform much more efficiently on large

datasets (Szénási, 2015). As it is not trivial to identify the hotspot boundaries that

Kernel Density Estimation generates, and therefore, identify the accidents which

contribute toward a hotspot being formed, DBSCAN was selected as a natural den-

sity based clustering technique that clearly identifies observations contributing to a

cluster.

DBSCAN classifies elements into clusters in such a way that inside a cluster the

density of elements is higher compared to the outside of the cluster, and elements

that are not part of any group are considered as noise (Ester et al., 1996). As such,

identified clusters can be considered hotspots with a significantly higher density of

accidents compared to other areas. Noise elements represent “random” accidents,

which have no, or very little, spatial dependencies to other crashes. DBSCAN’s per-

formance in identifying clusters is very sensitive to the distance between points that

are considered to be part of the same cluster (ε), and the minimum number of points

which must be within ε to form together a cluster (MinPts). There exists no optimal

choice of these parameters, and domain expertise is suggested to identify optimum

values based on the intentions of the analysis. If ε is too small, only accidents oc-

curring in very close proximity to each other will be considered as hotspots, and if

too large, hotspots can grow in size and cover parallel roads. Likewise, if MinPts is

too high, only the most severe clusters are identified, and if too low, many small and

“random” hotspots are found.

Therefore, the following practical approaches were considered when applying DB-

SCAN on the FEDRO dataset. The value of MinPts was discussed with experts from

one of the largest automotive clubs in Europe and hence defined with the following

heuristic: to call a specific location a hotspot, on average, more than two accidents

per year had to occur at that location. As a result, it was decided that MinPts cannot

be smaller than ten as the hotspots were formed out of a dataset covering accidents

over five years. Finally, ε was fine-tuned by a visual inspection of a selection of acci-

dent hotspots, this was achieved using a map-based tool, which was purpose built

for the research at hand, and enabled the validation the DBCAN parameters and

provided statistical overviews of the clusters. The selection of hotspots that were

considered in this review stage contained both examples which were closely con-

nected to certain road infrastructure, and others were more spatially distributed. It

was found that with ε = 15m DBSCAN produced results where individual clusters
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did not span multiple roads. These parameters can be loosely defined by the fol-

lowing natural definition: For an observation to be included in an accident hotspot,

at least ten accidents must have occurred within 15 meters of that location over five

years. With these parameter settings for ε and MinPts, a total of 1608 unique ac-

cident hotspots were found in Switzerland from over 266 000 geo-located accident

records.

With the accident hotspots across Switzerland identified, the second goal of this sub-

section is to generate contextual reasons for why each of the identified locations

are considered dangerous, with the intention of providing drivers with meaning-

ful warning feedback whenever they are approaching the accident hotspots, rather

than a generic warning (Kazazi, Winkler, and Vollrath, 2015). Following the guide-

lines from the NHTSA, drivers should be provided with warning messages in the

form of signs and non-critical supporting text (Campbell et al., 2007). The feedback

information varies depending on the available contextual information derived from

the spatially identified accident hotspots. The assumption is that drivers can directly

and quickly relate the warning sign to the upcoming dangerous location. Addition-

ally, the warning text should provide further non-time critical information, e.g. the

predominant cause of the accident hotspot.

The contextual information of each accident hotspot was derived based on the corre-

sponding accident protocols of the FEDRO. In these reports, police officers recorded

all related accident information and determined, besides other details, the leading

cause and type of the accident. In order to not overwhelm the drivers with too de-

tailed or complicated warnings, a simple categorisation algorithm was developed.

The detailed contextual information of each accident was summarised into three

main categories: “What”, “Why”, and “Where”. “What” refers to the type of objects

which were involved in the accident, e.g. cars, cyclists or pedestrians. “Why” refers

to the predominant cause and type of the accident, e.g. disregarding right of way,

speeding or swerving. Lastly, “Where” refers to the location information about the

predominant type of road infrastructure at which the accident happened, e.g. at a

crossroad intersection, roundabout or traffic light. In other words, where possible,

information was captured about what objects were involved in the accident, why

it happened and where it occurred. Furthermore, previous simulation studies have

shown that warnings making use of contextual objects and directions are preferred

by users (Naujoks and Neukum, 2014a). Therefore, when generating the warning,

the preference of information primarily shown was ranked in the following order:

“What”, “Why” and “Where”.

As such, the warning intervention was generated through a ranked majority-voting
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of the categorisation statistics of each accident hotspot (Lam and Suen, 1997). In

order to capture accurate contextual information of a hotspot, more than 50 % of

the accidents involved had to share the same predominant contextual detail infor-

mation. Otherwise, a general warning sign and message was shown. Algorithm 1

outlines the classical DBSCAN pseudocode (Ester et al., 1996), which was modi-

fied so that once a hotspot was identified it was assigned a contextual warning type

through the classification pseudocode also provided. In the majority of cases the

official road warning signs of Switzerland were matched to the generated warnings

and were used in the intervention. This was to prevent any potential confusion

about the meaning of the shown warning messages. However, in some cases the

creation of new symbols was inevitable. In total, six new signs were generated, fol-

lowing NHTSA standards (Campbell et al., 2007). This classification approach of the

1608 detected hotspots led to a total number of 20 different warning signs, and 36

unique combinations of sign and text. Figure 4.1 shows a selection of four different

types of the accident hotspots that were detected using DBSCAN and this classifi-

cation approach. The full list of sign and text combinations, in both English and

German, can be found in Appendix B, and the top ten most commonly encountered

combinations can be found in Chapter 4 in Table 4.1.

In order to empower a more cautious driving style, the warnings built into the ap-

plication should be shown at a point in time that a driver has the ability to adapt

their behaviour while approaching an accident hotspot. Not only this, but once the

hotspot has been passed the warning should disappear as it is no longer providing

useful information to the driver. These two conditions come with an added con-

straint, in that the warnings should not be shown too early, which could potentially

create confusion for the driver, as well as not shown too late and prevent the driver

from altering his or her behaviour. With these goals in mind, two approaches to de-

termine when to present the warnings to the driver were explored, developed and

tested.

The first of these approaches was a point-to-point map-matching algorithm, mak-

ing use of freely available OpenStreetMap data as the digital data input (Open-

StreetMap, 2016). OpenStreetMap provides digital map data in the following format,

GPS points making up a road network are referred to as ‘nodes’ with a unique ID,

and individual sections of roads, known as ‘ways’, are a collection of these nodes.

Additionally, sections of road that intersect can be encoded using this approach

through two or more ways sharing the same node. The implemented point-to-point

map-matching technique found the closest way to a provided GPS coordinate, and

then returned the closest node on the identified way. Using this method, the centre



50 Chapter 4. The Impact of Accident Hotspot Warnings on Driver Behaviour

Algorithm 1 Modified DBSCAN and Hotspot Classification Pseudocode

accidentHotspotDBSCAN(D, ε, MinPts)

hotspot H = 0

for each accident A in dataset D

if A is visited then continue next accident

mark A as visited

Neighbours = all accidents within ε-radius around A

if sizeOf(Neighbours) < MinPts then mark A as NOISE

else

H = next hotspot

expandHotspot(A, Neighbours, H, ε, MinPts)

assignHotspotContext(H,D)

expandHotspot(A, Neighbours, H, ε, MinPts)

add A to hotspot H

for each accident A’ in Neighbours

if A’ is not visited then

mark A’ as visited

Neighbours’ = all accidents within ε-radius around A’

if sizeOf(Neighbours’) >= MinPts then

Neighbours = Neighbours union Neighbours’

if A’ is not yet member of any hotspot then add A’ to hotspot H

assignHotspotContext(H, D)

associativeArray WhatTypeCount =

for each whatType T in dataset D initialise with 0

associativeArray WhyTypeCount =

for each whyType T in dataset D initialise with 0

associativeArray WhereTypeCount =

for each whereType T in dataset D initialise with 0

for each accident A in hotspot H

increment WhatTypeCount(whatType(A))

increment WhyTypeCount(whyType(A))

increment WhereTypeCount(whereType(A))

if maxCount(WhatTypeCount) > 50% sizeOf(H) then

set warning W of hotspot H to maxType(WhatTypeCount)

else if maxCount(WhyTypeCount) > 50% sizeOf(H) then

set warning W of hotspot H to maxType(WhyTypeCount)

else if maxCount(WhereTypeCount) > 50% sizeOf(H) then

set warning W of hotspot H to maxType(WhereTypeCount)

else set warning W of hotspot H to ‘General’
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FIGURE 4.1: Selection of accident hotspots identified through DB-
SCAN, accidents contributing to the hotspot are shown in red

(A) Roundabout Hotspot (B) Pedestrian Crossing Hotspot

(C) Train Hotspot (D) Rear-end Hotspot
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of each accident hotspot can be mapped to a representation of the road network,

with each hotspot assigned a unique node ID, which is then the basis for provid-

ing warnings for specific sections of road. The same point-to-point map-matching

technique is additionally suitable for identifying a vehicle’s current road segment

in real-time, and then determining if an accident hotspot is being approached and

if a warning should be provided to the driver. For example, a background process

can find the closest way to vehicle’s current GPS coordinates, and then return any

warnings associated with nodes which are encompassed in this way.

The second, and ultimately more robust approach, was to develop a ‘warning cone’

to determine whether a vehicle was approaching an accident hotspot. This cone

effectively projects a digital circular slice ahead of the vehicle, which adapts in size

and shape depending on the speed and bearing of the vehicle, and is updated with

each new GPS measurement. The logic behind this approach is that if an accident

hotspot falls within this cone, then the vehicle is on a trajectory towards the hotspot

and a set of rules can be applied to determine whether or not to show the associated

warning. This warning cone is demonstrated in Figure 4.2, and alters its shape and

size based on the following driving parameters:

• The cone length L [m], or radius of the circular sector from vehicle to outer

edge, is determined by the speed S [km/h] of the vehicle, and the desired

warning time T [s] by applying the equation:

L = T · S
3.6

(4.1)

• The cone angle θ [◦] is determined by a fixed cone width W [m], and the cone

length L [m], and determined by the following formula:

θ =
sin (W

L ) · 180
π

(4.2)

• The steering angle offset γ [◦] is calculated with the current steering wheel

angle β [◦] and the maximum steering wheel angle α [◦], and is subtracted

from the vehicle’s current bearing in order to take into account the expected

direction that the vehicle will continue in. The steering angle offset is defined

by:

γ = sgn β · log |β| · 2π · 360
α

(4.3)

Extensive user testing of this approach led to the warning cone parameters being set

to T = 15[s] and W = 90[m], along with the addition of a circular area surrounding
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FIGURE 4.2: Accident Hotspot Warning Cone Example Sequence
Red Google Maps marker indicates centre of accident hotspot

(A) vehicle speed: 122 km/h
cone length: 507 m

cone angle: 14◦

steering angle offset: −11◦

hotspot in cone: FALSE
GPS measurements in cone: N/A

warning shown: FALSE

(B) vehicle speed: 103 km/h
cone length: 429 m

cone angle: 14◦

steering angle offset: 7◦

hotspot in cone: FALSE
GPS measurements in cone: N/A

warning shown: FALSE

(C) vehicle speed: 77 km/h
cone length: 321 m

cone angle: 14◦

steering angle offset: 20◦

hotspot in cone: FALSE
GPS measurements in cone: N/A

warning shown: FALSE

(D) vehicle speed: 58 km/h,
cone length: 244 m,

cone angle: 15◦

steering angle offset: −21◦,
hotspot in cone: FALSE,

GPS measurements in cone: N/A
warning shown: FALSE

(E) vehicle speed: 52 km/h
cone length: 216 m

cone angle: 16◦

steering angle offset: −22◦

hotspot in cone: TRUE
GPS measurements in cone: 1

warning shown: FALSE

(F) vehicle speed: 51 km/h
cone length: 213 m

cone angle: 17◦

steering angle offset: −17◦

hotspot in cone: TRUE
GPS measurements in cone: 2

warning shown: TRUE
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the vehicle with a radius of 50 m. Further, warnings were displayed only when

the GPS centre of a hotspot was within this cone or radius for at least two GPS

measurements from the vehicle, which added confidence that the hotspot was about

to be encountered. These warnings would remain shown to the driver until the

accident hotspot had been passed, i.e. when the centre of the hotspot no longer falls

within the cone or the radius surrounding the vehicle, and always remained visible

for at least 6 s. With these parameters, warnings were reliably shown in a good time

frame as a driver approached an accident hotspot.

When comparing the two approaches, significant user-experience difficulties were

encountered using the map-matching technique. The first of these was that it did

not take into account the direction of travel, and so warnings would remain in view

for longer than desired once the accident hotspot had been passed, and it was chal-

lenging to ensure the warnings were provided with enough time for the drivers to

alter their behaviour. The second disadvantage was that the implemented setup

was limited to performing the real-time map-matching process on a backend server,

and so became reliant on a constant internet connection, this occasionally led to a

delay in receiving the warnings when the connection was poor. Although a map-

matching approach could have been developed to run locally on the smartphone,

due to resource constraints it was decided that the cone provided both a better user-

experience and more reliable warning results. However, it is worth noting that both

of these approaches suffered weaker performance in situations where there was poor

GPS signal or the road network featured multilevel sections, i.e. a bridge crossing

over a highway, as in the prototype stage neither could distinguish between road

levels.

In order to help address the multilevel issue, a simple rule based approach was

added to the smartphone implementation to ensure sensible warnings were shown

to the driver given the driving situation. As the maximum speed limit in Switzer-

land for non-highway roads is 80 km/h, the vehicle was determined to be driving

on a highway when travelling over 90 km/h, and so infrastructure and object warn-

ings not associated with highways could be disregarded. These warning locations

included: bus stops, crossroads, parking, roundabouts, and traffic lights. Addition-

ally, warnings for pedestrians and pedestrian crossings, rail crossings, trains, and

trams were also not shown in highway driving situations.
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FIGURE 4.3: Two examples of the in-vehicle warning intervention
shown to drivers approaching an accident hotspot

(A) Pedestrian Crosswalk Warning (B) Dangerous Tunnel Warning

4.3.2 Accident Hotspot Warning Generation

Finally, regarding visual warnings, the NHTSA released a guideline for the design of

crash warning devices (Campbell et al., 2007). The project reflects a review of the hu-

man factors associated with the implementation of such warning system interfaces,

and the lessons learned were then developed into guidelines for interface design.

The highest efficiency was achieved by the choice of a discrete display, providing

binary on-off information, and symbol or icon based information. Additionally, it

was reported that the alphanumeric display type led to poor results and is com-

mented with “Only appropriate for non-time-critical complex information”. Based

on these design suggestions, the warning sign is primarily displayed with the ad-

ditional non-time-critical warning text below. Visual warnings are displayed on the

smartphone application as the driver approaches an accident hotspot, and remain

until the area surrounding the hotspot is passed. As earlier warnings are more ef-

fective and greater appreciated by drivers than late warnings, the warnings were

shown up to 15 seconds before a driver encountered an accident hotspot (Naujoks

and Neukum, 2014a; Naujoks and Neukum, 2014b). Figure 4.3 shows examples of

the in-vehicle warning intervention provided to the drivers when approaching an

accident hotspot.

4.3.3 Field Study Description

The impact of the in-vehicle warning system, presented in Section 3.2, and the de-

scribed accident hotspot warnings on users’ decision making behaviour while driv-

ing was assessed as part of the 18 week field study of professional drivers, as out-

lined in Chapter 3. Each of the drivers worked for the same firm across a variety

of locations, and drove a company issue Chevrolet Captiva, all of similar make and
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model. After the 8 week eco-driving study the participants were randomly split be-

tween a control group (N = 33) and a warning intervention group (N = 39). As the

eco-driving intervention of each participant remained the same during the warning

experimental phase, this second random group allocation controlled for the effect

that the eco-driving intervention had on the driving behaviour.

Of the 72 recruited participants, 6 did not provide important demographic details,

such as age and gender. Randomisation checks on the remaining 66 drivers indicated

that there were no significant group differences with respect to drivers’ demographic

and subjective driving style survey responses, as detailed in Section 3.3. A further 9

of the 66 drivers were excluded from the subsequent analyses as they drove signifi-

cantly less during the four week experimental period than the other participants, i.e.

because of planned vacation. This resulted in roughly even split of the remaining 57

drivers suitable for analyses between the control group (N = 27) and intervention

group (N = 30). During the four week period, over 170 000 km were driven using

the system, with an average of 144 km travelled per driver per day.

Of the 57 participants, all were male and ranged from 21 to 64 years of age, and

Figure 4.4 shows the distribution of driver age between the control and interven-

tion groups, using the same categories as previous accident analysis studies (Paef-

gen, Staake, and Fleisch, 2014; Paefgen, Staake, and Thiesse, 2013). The majority of

drivers (45.61 %) fall between the ages of 35 to 59 years, with a mean of 40.3 and a me-

dian of 39 years of age. Furthermore, existing research into the impact of a driver’s

personality on driving behaviour linked various Big Five traits to four identified

driving styles (John and Srivastava, 1999; Taubman-Ben-Ari and Yehiel, 2012). Pre-

vious studies found that the ‘anxious’ driving style was linked to high Neuroticism,

and high levels for Agreeableness, Conscientiousness and Openness were correlated

to the ‘careful’ driving style. Additionally, the reported results found correlations

between high levels of Extraversion, and low levels of Agreeableness and Conscien-

tiousness, to the ‘reckless’ and ‘angry’ driving styles. As such, the personality of par-

ticipants was measured at the beginning of the study with the Big-Five-Inventory-10

(BFI-10) questionnaire, which consists of 10 items to cover the five personality fac-

tors, each with two items respectively, and is measured on a Likert scale from 1 to

5 (Rammstedt and John, 2007).

As previously described, the existing studies measuring the impact of in-vehicle

warnings through simulation environments and controlled field studies made use

of a variety of features to assess the effect of warnings on driver behaviour which

are unsuitable in a naturalistic setting. These include variables such as the time left

for a participant to avoid a collision with another object, counting the number of
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FIGURE 4.4: Chart showing distribution of age amongst the drivers
in the control and intervention groups
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collisions, or measuring braking reaction time (Kazazi, Winkler, and Vollrath, 2015;

Naujoks and Totzke, 2014). As such, the dependent variable in this study is the ef-

fect of the warnings on potentially dangerous braking events incurred by the driver,

a key result of decision making driving behaviour. Chapter 2 presented various

methods of capturing insights from driving data, including accessing smartphone

accelerometer data (Johnson and Trivedi, 2011) and on-board diagnostics (OBD-II)

standardised data (Imkamon et al., 2008). However, data available on the Controller

Area Network (CAN) Bus of vehicles can give deeper insights into a vehicle’s op-

eration, for example, by directly accessing the values of the built in sensors of the

vehicle while driving, characteristics of aggressive and calm driving can be identi-

fied (Karaduman et al., 2013).

As such, braking behaviour is captured from the vehicle’s longitudinal acceleration

sensor, accessed on the CAN Bus of each of the field study vehicles via an OBD-II

Bluetooth dongle and transmitted to the smartphone in the vehicle. The current driv-

ing speed was additionally collected, and calculated from averaging the individual

speeds of each of the four wheels. Braking events have previously been categorised

as Low Danger, Dangerous and High Danger levels, based on thresholds of decel-

eration values (Bergasa et al., 2014). Low Danger events are those where vehicle
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deceleration was between 1.0 m/s2 to 2.0 m/s2, Dangerous events between 2.0 m/s2

to 4.0 m/s2 and High Danger events as greater than 4.0 m/s2. As the system pro-

vides warnings in historically hazardous locations, Low Danger braking behaviour

may be unavoidable in many situations, and a large portion of events are expected

to fall into this category. Therefore, only the deceleration events over 2.0 m/s2 are

considered, capturing Dangerous and High Danger level braking events that are

above the level that occupants feel comfortable experiencing as passengers (Her-

rmann, Brenner, and Stadler, 2018). When reviewing the brake events that occurred

as drivers crossed each of the accident hotspots during the experimental phase of

the field study, in only 0.28 % of the cases were more than one dangerous braking

event observed. Thus, a binary measure was applied to generate the dependent vari-

able, i.e. whether or not one or more dangerous events were experienced while the

hotspot was encountered.

The evaluation was conducted through collecting vehicle sensor data during times

that the warning intervention was shown to the driver. In the case of the control

group, data were collected while the warning would have been shown, i.e. when

drivers crossed an identified hotspot but no warning was shown. Finally, erroneous

observations of encountered hotspots were cleansed from the dataset in certain situ-

ations, i.e. where there were issues with the sensors in the vehicle and data were not

collected. This led to a total of 24 419 observations of encountered hotspots; 10 683

in the control group where no intervention was provided, and 13 736 in the inter-

vention group where the location based accident hotspot warnings were shown. Ta-

ble 4.1 shows the top ten most commonly encountered warning interventions across

the study. The table additionally shows the number of hotspots encountered, as

well as occurrences of one or more heavy braking events at the locations, for both

the control and intervention groups.

Along with the sensor data, various other variables were collected which have been

shown to have an effect on the likelihood of a traffic accident occurring (Paefgen,

Staake, and Fleisch, 2014; Paefgen, Staake, and Thiesse, 2013). These values include

the time of day, the day of the week and the speed that the vehicle was travelling

when the hotspot was encountered. For comparison, these variables are categorised

into bands on the basis of previous studies (Paefgen, Staake, and Fleisch, 2014; Pae-

fgen, Staake, and Thiesse, 2013). As shown in Figure 4.5, the majority of hotspots

were encountered travelling between 30 km/h to 60 km/h, with similar distribu-

tions between the control and intervention group. Figure 4.6 additionally shows
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TABLE 4.1: The top ten most commonly encountered hotspot types,
for both the control and intervention groups, along with the fre-
quency they were encountered by drivers, and occurrences of one or

more heavy braking events at the locations

Hotspot Warning Total Control Group Intervention Group

Sign Text Count Events Count Events Count Events

Disregarding Right of Way 4541 777 2135 384 2406 393

Dangerous Crossroad 4378 783 2022 354 2356 429

Rear-end Collisions 3532 375 1407 138 2125 237

Disregarding Traffic Light 2037 284 951 120 1086 164

Control Speed 1927 87 586 36 1341 51

Caution Dangerous Area 1471 112 803 60 668 52

Swerving Accidents 964 108 317 35 647 73

Disregarding Right of Way 931 200 438 101 493 99

Dangerous Roundabout 880 201 407 95 473 106

Caution Cyclists 689 112 342 59 347 53

OTHER 3069 349 1275 150 1794 199

TOTAL 24419 3388 10683 1532 13736 1856
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FIGURE 4.5: Distribution of speed and number of hotspots encoun-
tered for the control and intervention groups

0-30 30-60 60-90 90+

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1,671

5,733

2,209

1,070

2,373

6,815

3,178

1,370

Speed (km/h)

#H
ot

sp
ot

s
En

co
un

te
re

d

Control
Intervention

that the drivers were typically operating, and so crossing the accident hotspots, be-

tween the ‘working hours’ of 5 am and 6 pm, and that both the control and interven-

tion groups again follow a similar distribution. In addition, an incremental count

was collected for each driver in the intervention group every time they were shown

the warning intervention for each specific accident hotspot, effectively generating a

‘number of warnings shown’ variable for each driver per hotspot. For the control

group, this count variable was therefore always zero.

4.4 Results

In order to account for the impact of the individual drivers among the control and

intervention groups, multilevel mixed-effects logistic regression was utilised (Sni-

jders, 2011), and the dependent variable was a binary measure of whether one or

more dangerous braking events occurred while each accident hotspot was encoun-

tered. Seven models were iteratively developed to test the impact that the in-vehicle

accident hotspot warnings had on the braking behaviour of the drivers, and these

regression results are shown in Table 4.2. In the remainder of this section, each of

these models and the insights that they present are discussed.
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FIGURE 4.6: Distribution of time of day and number of hotspots en-
countered for the control and intervention groups
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Firstly, in Model (1) the regression was run with only the independent variable

‘warning’ capturing whether or not the warning intervention was provided to the

driver, and thus the difference between the control and intervention groups. Here a

significant impact is not observed of the warnings provided to the drivers on their

braking behaviour. This indicates that when only comparing the behaviour between

the control group and the intervention group, the occurrence of a warning had no

significant impact on driver safety. Thus, it was not possible to confirm the immedi-

ate positive effect of warnings seen across many lab studies.

Exploring this further in Model (2), an additional independent variable ‘number of

warnings’ was added to the previous analysis. This variable describes the number

of times a driver in the intervention group had been shown the warning for a spe-

cific accident hotspot. This way the learning effect that repeated warnings of the

same area had on a driver can be explored. Instead of linear effects of the num-

ber of warnings experienced, the impact of repeated warnings shown is expected

to decrease with each additional warning experienced. Thus, in line with existing

studies (Paefgen, Staake, and Fleisch, 2014; Paefgen, Staake, and Thiesse, 2013), the

time effects of the variable are explored using a logarithmic transformation. In this

model it can be observed that the number of times a warning has been shown has a
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significant effect on the likelihood of dangerous braking events occurring. This in-

dicates that the more times a driver is exposed to the same warning in a hazardous

area then the more cautious that driver operates, and a dangerous braking event

is less likely to occur. Overall this is a positive result, and shows that the accident

hotspot warning intervention has a significant learning effect on driving behaviour

over time, but not an immediate short-term one.

Various models were analysed to test whether the significance of the learning effect

of the in-vehicle warnings remained stable. Additional independent variables cap-

turing the speed that the vehicle was travelling when the warning was shown, the

time of day, day of week, driver age, and each of the Big Five personality traits of the

driver were considered individually. When incorporating the speed as a predictor

to generate Model (3), the immediate warning effect continues to be insignificant,

and the learning effect remains. Additionally there are significant variations in the

likelihood of a heavy braking event based on the speed that an accident hotspot

was approached at. The stability of the learning effect was also tested with tempo-

ral variables in Model (4), which have historically been found to influence the rate

of crashes (Paefgen, Staake, and Fleisch, 2014). Both time of day and day of week

categorical independent variables were incorporated into the regression model. The

short-term warning continues to be insignificant, and the learning effect remains at

the same level as seen in Model (2). Overall, in contrast to previous studies, no time

of day category was more or less dangerous at a significant level when compared to

the ‘00 - 05 h’ category. The only significant temporal effect was comparing the days

of the week, Monday compared to Tuesday, where on Tuesday it was found to be

more likely to incur a dangerous braking event.

Various studies have shown the effect of a driver’s age and personality factors on

driving related behaviour (Taubman-Ben-Ari and Yehiel, 2012). In order to incor-

porate this into the model, the age categories and personality information of the

drivers were added in Model (5). As with the other models, the short-term effect

of the warnings remained insignificant and the learning effect remained significant

at a similar level to Models (2) and (4). Although investigating the effect of driver

personality on driving behaviour is not the primary aim of this thesis, a significant

effect of the Agreeableness trait is observed to reduce the likelihood of a dangerous

braking event. This seems to confirm findings from a previous study (Taubman-Ben-

Ari and Yehiel, 2012), where low levels of Agreeableness are correlated to ‘reckless’

and ‘angry’ driving styles, and high levels correlate to ‘careful’ driving behaviour.

Each of the additional independent variables discussed in Models (3), (4) and (5)

were merged into the combined Model (6). The insignificant immediate effect of the
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TABLE 4.2: Binary Logistic Regression Odds Ratio and Significance.
Dependent Variable: Occurrence of a Dangerous or High Danger

Braking Event. N = 24,419

(1) (2) (3) (4) (5) (6) (7)

Warning 0.950 1.115 1.081 1.124 0.997 0.976 1.021

Number of Warnings 0.892*** 0.922** 0.892*** 0.891*** 0.921** 1.276

Speed (vs. 0-30 km/h)

30-60 km/h 2.008*** 2.035*** 2.031***

60-90 km/h 1.611*** 1.632*** 1.632***

90+ km/h 0.472*** 0.477*** 0.479***

Time of Day (vs. 00-05 h)

05-18 h 1.038 1.054 1.049

18-21 h 0.874 0.876 0.876

21-24 h 0.768 0.759 0.765

Day of Week (vs. Monday)

Tuesday 1.183* 1.212* 1.219*

Wednesday 1.078 1.102 1.108

Thursday 1.067 1.094 1.101

Friday 1.107 1.126 1.128

Saturday 0.959 0.970 0.976

Sunday 1.127 1.143 1.148

Driver Age (vs. 18-25)

25-35 0.781 0.718 0.734

35-59 0.803 0.717 0.714

59+ 0.895 0.813 0.830

Driver Personality

Agreeableness 0.913* 0.913* 0.954

Conscentiousness 1.038 1.034 1.023

Extraversion 1.001 0.996 1.006

Neurotiscism 1.046 1.049 1.037

Openness 0.974 0.986 0.985

Driver Age Interactions (vs. 18-25)

Number of Warnings × 25-35 0.930

Number of Warnings × 35-59 1.000

Number of Warnings × 59+ 0.978

Driver Personality Interactions

Number of Warnings × Agreeableness 0.944*

Number of Warnings × Conscentiousness 1.013

Number of Warnings × Extraversion 0.988

Number of Warnings × Neurotiscism 1.005

Number of Warnings × Openness 0.994

Constant 0.164*** 0.164*** 0.103*** 0.151*** 0.266** 0.158*** 0.128***

L1 error 0.354*** 0.350*** 0.338*** 0.353*** 0.324*** 0.314*** 0.317***

*p < 0.05, **p < 0.01, ***p < 0.001



64 Chapter 4. The Impact of Accident Hotspot Warnings on Driver Behaviour

intervention and the learning effect continues to remain stable across all the mod-

els, showing a reduction in the likelihood of a dangerous braking event. The other

significant effects discussed in the previous models also remain in the fully merged

model, and no new features become significant.

Finally, existing evidence suggests that, aside from the previously discussed impact

on general driving behaviour, an individual’s characteristics, such as age and per-

sonality, are important variables which might affect the generalisability of the find-

ings, for example, in the form of moderators (Sprotles and Kendall, 1986; Taubman-

Ben-Ari and Yehiel, 2012; Tiefenbeck et al., 2016). Thus, Model (6) was enhanced

with interactions between the observed learning effect and age, as well as personal-

ity. Specifically, the interactions between the ‘number of warnings’ and driver age

and personality variables were added to generate Model (7). Here it can be seen that

neither the learning effect nor the effect of Agreeableness remain significant. How-

ever, the interaction between the two is. This interaction indicates that the learning

effect previously identified is dependent on an individual’s level of Agreeableness,

where only those with reasonable levels improve their driving behaviour due to the

warnings provided by the system.

4.5 Discussion

In summary, the analyses presented on data from a large naturalistic field study

demonstrate that in-vehicle warnings of accident hotspots can have a significant im-

provement on driver behaviour over time. However, neither an immediate positive

nor negative effect of the warnings on dangerous braking behaviour of the drivers

was observed. When investigating generalisability on the basis of interactions, re-

sults indicate that the learning effect requires an adequate level of driver Agreeable-

ness. The Agreeableness personality trait is linked to characteristics such as coop-

eration and social harmony (John and Srivastava, 1999). Hence, drivers who do not

accept advice from an in-vehicle system (lack of willingness to cooperate), or do

not care or reflect that they might harm others (lack of social harmony), might not

benefit from such a system. Thus, in order to improve driver safety, future work

should investigate the key determinants of, and how to best facilitate, the learning

effects of such in-vehicle warning systems (Bokhove and Drijvers, 2012; Brendryen

and Kraft, 2008). Finally, although the impact of vehicle speed on the likelihood of

heavy braking events is not a focus of this thesis, a significant effect is observed in

the analyses, which is similar to previous work that considers the influence of ve-

locity on the exposure-accident relationship (Paefgen, Staake, and Fleisch, 2014). In
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line with these findings, the literature generally associates higher velocities with a

greater risk of accident involvement (Aarts and Van Schagen, 2006). This is primarily

due to larger stopping distances and reduced manoeuvrability at higher speeds.

The presented work has implications both for researchers and practitioners. From a

research perspective, the learning effect observed is well known with regard to digi-

tal interventions. Similar long-term effects are seen in other domains, such as health

and education (Bokhove and Drijvers, 2012; Brendryen and Kraft, 2008), where sig-

nificant effects are reported the more often an intervention was triggered. The results

further confirm the importance of measuring personality traits when researching in-

terventions with any kind of system that supports decision making behaviour. Per-

sonality traits have long been recognised as a strong predictor of human decision-

making outcomes (Sprotles and Kendall, 1986). However, research on real-time feed-

back interventions have only recently considered the impact of personality as a key

factor in human behaviour (Tiefenbeck et al., 2016). Additionally, the results empha-

sise the importance of field research. The large effects that are often reported from

very controlled settings have to be verified under real-world conditions to ensure

generalisability.

On a more general note, the interaction of Agreeableness and the learning effect that

can be seen in the results trigger a call for action towards the personalisation of sup-

port systems in general, as the effectiveness of digital interventions vary according to

an individual’s characteristics (Tiefenbeck et al., 2016). However, measuring person-

ality traits is inconvenient and often perceived as intrusive by the user (Tourangeau

and Yan, 2007). As such, one can either seek to identify the user’s personality unob-

trusively, or rely on the stable effect of the warnings over time and on the consumers’

self-selection.

Importantly, the results of this study should be seen in the light of its limitations.

While there are many thresholds for heavy braking values suggested in the related

research, as well as other methods to identify and measure safe driving behaviour,

in this early stage just one threshold was considered in order to generate the depen-

dent variable. Furthermore, the described system makes use of historical accident

data from a national dataset, restricting the adaptation of this approach to regions

with similar sources of information. However, there is increasing work in both re-

search and practice to utilise naturalistic driving data for traffic accident analysis. As

such, Chapter 5 of this thesis discusses and investigates the potential of identifying

such accident hotspots from near-miss events detected through connected vehicles.
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Finally, this research is geared towards the development and validation of an inno-

vative artefact. In accordance with this goal and in conformance with latest discus-

sions in the scientific community (Von Alan et al., 2004), the chapter does not focus

on theory. Future research should cover theoretical models of human behaviour to

further increase generalisability of the findings.

4.6 Conclusions

Overall, in-vehicle systems can encourage drivers to adapt their driving behaviour

when necessary, and have therefore been the focus of various research endeavours.

Latest studies provide promising evidence that these systems can indeed have sig-

nificant positive effects on driving behaviour and collision avoidance. Going beyond

the existing research, a complete in-vehicle warning system was designed and im-

plemented, which provided accident hotspot warning interventions to drivers based

on location analytics applied to a national historical accident dataset. The system

was tested with 57 drivers in a field test covering over 170 000 km. As such, this

thesis is among the first to bring research on in-vehicle systems and warnings for

drivers into the field in a realistic experimental setting.

Ultimately, the results show that in-vehicle warnings of accident hotspots can have

a significant improvement on driver braking behaviour over time. Thereby demon-

strating that such systems can play a fruitful role in the field of connected vehicles,

a domain which has traditionally not been a core focus of the decision support and

information systems research fields. In addition, the positive intervention effects are

bound to drivers’ Agreeableness, i.e. drivers have to be willing to “listen” to the

in-vehicle system. Hence, future research should carefully reflect the role and im-

pact of subjects’ personality. Moreover, there appears to be potential for fields such

as design science research to develop and validate effective strategies that help to

overcome technology adoption challenges, which are based on a lack of Agreeable-

ness (Peffers et al., 2007). Finally, in contrast to existing lab experiments with very

promising results, an immediate effect of warnings on driver behaviour was not

able to be confirmed, and thus demonstrates the importance of building innovative

artefacts and conducting experimental research in a realistic field setting. As such,

there remains a strong need for further field experiments with high resolution vehi-

cle data in order to determine whether the impressive results of existing lab-based

studies can deliver in diverse field situations.
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In practice, safety-focused services such as the one presented could particularly ben-

efit the automotive insurance industry, where the ever-increasing digitisation of the

physical world has, until recently, primarily been viewed as an advanced concept

with limited short- and mid-term impact (Roland Berger, 2015). Hence, many insur-

ers have previously adopted a cautious attitude to this new technology paradigm.

Meanwhile, early-adopters have been disrupting the way insurers traditionally con-

duct business by demonstrating how vehicle sensors, along with smartphones and

wearable technology, can proactively engage policyholders and help improve risk

assessment in loss prevention (Koenig et al., 2016). In the insurance industry, as

advice-led customer interactions become both more frequent and in real-time, a

shift is starting as companies pivot more toward active loss prevention (Reifel et

al., 2014). As such, many insurers are moving away from purely ‘reactive’ business

models and incorporating ‘preventative’ measures into their products in order to

help their customers and cut long-term costs. Some of the first companies to adopt

this approach were insurers in the health domain, which have introduced preven-

tive actions into their portfolios, such as offering customers incentives to engage in

healthy behaviour (CSS Insurance, 2017; Sanitas, 2017). Likewise, in the automotive

insurance market, safer driving can be both encouraged with an in-vehicle warning

system such as the one described, and measured through vehicle sensors and ‘pay-

how-you-drive’ smartphone applications that assess dangerous driving patterns.
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Chapter 5

Spatial Prediction of Traffic

Accidents with Heavy Braking

Events

The previous chapters have so far presented the motivation for, and background

work on traffic accident analysis, and the potential that driving data brings to this

long standing field. The prototype system that was developed has also been out-

lined, and its capability to access high-frequency naturalistic driving data has been

discussed, along with the naturalistic field study setup that enabled the collection of

vehicle data and the analyses featured in the following chapter. While the results of

the previous study have shown that in-vehicle warnings of accident hotspots have a

significant improvement on driver behaviour over time, a key limitation is the diffi-

culty in adapting the approach to regions that either do not collect or do not provide

historical accident data. As such, this chapter opens by revisiting the motivation

of spatially predicting the potential locations of traffic accidents with driving data,

and provides more information on the state-of-the-art work that the analyses are

structured upon. The materials and methods that are specific to these analyses are

subsequently detailed, and the results presented. Finally, a discussion of the results

and the conclusions that can be drawn from the work bring the chapter to a close.

5.1 Context and Motivation

The advent of fully-autonomous vehicles brings the promise of drastically reduc-

ing the frequency of road traffic accidents, and potentially eliminating them entirely,

ushering in a new era of traffic safety (Fagnant and Kockelman, 2015). However, it

may take decades to make this vision a reality in even some of the most advanced
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markets. For example, recent predictions indicate that by the year 2045 it is unlikely

that the majority of the light-duty vehicle fleet in the U.S. will be capable of full self-

driving automation (Bansal and Kockelman, 2017). As such, connected and semi-

autonomous vehicles will become the dominating paradigm in the coming years,

and traffic accidents from the manual driving of these vehicles will persist as a key

issue (Albright et al., 2016). As these vehicles become increasingly common, a shift

will be expected away from the traditional model-based approaches of accident pre-

diction and ‘rough proxies’ of exposure (Sheehan et al., 2017), to a crowd-sourcing

approach using the real-time collection and analysis of data from these vehicles.

Modern connected vehicles are enabled by a wealth of technology capabilities, in-

cluding network connectivity, high precision sensor data from the vehicle’s Con-

troller Area Network (CAN) Bus and GPS capabilities, and their semi-autonomous

counterparts with additional high definition cameras and LIDAR systems (Manner-

ing, Kilareski, and Washburn, 2007). These technologies can be leveraged to detect

accidents and ‘near miss incidents’, such as heavy braking and evasive manoeuvres,

otherwise known as critical driving events (CDEs).

The data from these incidents could be employed to determine existing and emerg-

ing locations of high accident probability and enable more proactive business mod-

els. For example, in the automotive insurance industry usage-based incentives

for taking ‘safe routes’ could be provided and pay-how-you-drive insurance plans

could be optimised (Sheehan et al., 2017). Furthermore, with the knowledge that

a potentially dangerous location is ahead, a semi-autonomous vehicle might drive

in a more cautious mode to reduce risk or hand over control to the driver to trans-

fer insurance liability. Furthermore, recent research studies, including the previ-

ous chapter, of in-vehicle warning systems have shown that drivers themselves

can be encouraged to adapt their driving behaviour at potentially dangerous loca-

tions (Kazazi, Winkler, and Vollrath, 2015; Tey, Ferreira, and Wallace, 2011; Werneke

and Vollrath, 2013). Ultimately, companies with access to such insights can collabo-

rate with road authorities to improve the road infrastructure that contribute to dan-

gerous locations, and manufactures to better understand vehicle capabilities and

advance safety-focused offerings (Sheehan et al., 2017).

As such, if players in the automotive industry wish to accurately measure and

encourage safer driving and progress further toward more loss prevention busi-

ness models, then the ability to identify locations on the road network that carry

a high risk of accident occurrence, so called ‘blackspots’, ‘sites with promise’, or

‘hotspots’ (Cheng and Washington, 2005), is of utmost value. In this regard, there
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are two common measures of a roads perilousness that have been extensively re-

searched. The first is Crash Frequency, the actual number of accidents that have

occurred on a road section during a specified period of time (Deacon, Zegeer, and

Deen, 1974). The second is Crash Rate, a measure of accident exposure risk of ve-

hicles on a road segment, which is typically estimated by normalising the Crash

Frequency by the traffic volume, e.g. average daily traffic (ADT) (Hauer and Per-

saud, 1984). While there is research showing that the situational factors of crashes

and near-misses are strongly related, there is limited empirical data on whether the

Crash Frequency and Crash Rate of potentially dangerous locations can be reliably

identified through analysis of CDEs (Pande et al., 2017).

5.1.1 Research Objectives

Currently, low levels of connected, semi-, and fully-autonomous vehicle adoption

make the large-scale collection of CDE data a challenge. However, preliminary anal-

ysis is made possible through the installation of the retrofit in-vehicle system pre-

viously presented, that collects data analogous to that found in these more modern

vehicles. As a result, this chapter of the thesis goes beyond existing research and

provides early results from the nationwide naturalistic driving field study of 72 cars

covering over 690 000 km in Switzerland. Thus investigating the second research

objective of this thesis, determining whether it possible to predict the locations of

traffic accident hotspots on the basis of driving data and critical driving events, as

discussed in Section 1.2.2. These vehicles were equipped with the system that col-

lected sensor information from each car’s CAN Bus in order to access data synony-

mous with that available in more advanced vehicles. The study presented in this

chapter can be split into two parts. In a first step, an ideal setting is analysed for a

sub-region of Switzerland, where data for both Crash Frequency and the volume of

vehicle traffic, i.e. ADT, were available. This enabled the Crash Rate of these loca-

tions to be determined, and the operationalisation and investigation of the second

concrete research question of this thesis:

RQ 2a To what extent can the Crash Rate of a location be predicted by CDE infor-

mation from that location, assuming that Crash Frequency and ADT data are

available?

In practice, however, regions where both Crash Frequency and ADT are available

are exceedingly rare. While government bodies are now regularly collecting police-

recorded Crash Frequency data across whole road networks, accurate measures for

traffic frequency remain only partially available and come most often from counting
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stations. Since traffic frequency is necessary to calculate exposure measures such as

Crash Rate, traffic safety analysis are commonly limited to utilising Crash Frequency

as a dependent variable for all road segments in this sparse setting. However, to reli-

ably estimate the Crash Frequency of a location on the basis of CDEs, the relationship

between traffic frequency of the utilised vehicle fleet and total traffic frequency (of

the overall vehicle population) must be known for each location. This dilemma can

be addressed by fulfilling a key assumption: The fleet should be ‘representative’ of

the overall population of vehicles.

Therefore, the final stage of the analyses is built upon the assumption that a ‘rep-

resentative’ fleet of vehicles is available for data capture. More specifically, the as-

sumption is that there is a well-defined relationship between traffic frequency of the

overall population (TFPit) and traffic frequency of the sample, i.e. field study fleet

(TFSit), which is independent of location i for a given timeframe t of the analysis.

From this the relationship between fleet-generated CDEs and the Crash Frequency

variable can be tested, and the final research question operationalised as:

RQ 2b To what extent can the Crash Frequency of a location be predicted by CDE

information from that location, assuming we have sparse data coverage (only

Crash Frequency information is available) and a well-defined relationship be-

tween TFSit and TFPit, i.e. a ‘representative’ fleet?

To address this question, the partially available TFPit data is first leveraged to test to

what extent the field study fleet utilised for the analysis fulfils the ‘representative’

fleet assumption. The analysis then concludes by estimating Crash Frequency on the

basis of CDEs for the majority of Switzerland, where TFPit was unavailable, utilising

spatial regression.

5.1.2 Research Implications and Structure

The remainder of this chapter is structured as follows. In the next section, the state-

of-the-art research is outlined and the data collection process and the field study

setting revisited. Next, the results of the study are presented with regard to the

relationship between Crash Rate and CDEs. This is followed by an exploration of

fleet data from the field study to explain Crash Frequency, and finally demonstrate

the relationship between Crash Frequency and CDEs through nationwide spatial

regression, for situations in practice where traffic frequency data is unavailable. The

final sections discuss the limitations of the research and how they could be addressed

in future work, and the chapter closes with the general conclusions.
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Overall, this research has implications for companies, organisations, and other play-

ers in the automotive industry both today and in the near future. The presented

approach empowers those with access to data from connected, semi-, and fully-

autonomous vehicles to rapidly identify areas of high accident exposure and to im-

prove their management of customer risk. Furthermore, the importance of such a

fleet satisfying the ‘representative’ fleet assumption is demonstrated, and how this

enables analysis where traffic frequency measurements are unavailable. Moreover,

this information may have potential not only for industry practitioners, but also for

policy makers in this long-standing field, where understanding the new capabili-

ties and the reliance of findings from recent automotive technology advances will be

vital for determining suitable traffic safety approaches and strategies.

5.2 State of the Art

5.2.1 The Naturalistic Driving Approach

In the last years, several researchers have built upon the idea that driving behaviour

displayed in avoiding a crash is similar to that of a crash event itself, and hence, if

detected, can be considered in the identification of crash potential. In prior work,

a naturalistic driving study of 100 cars equipped with cameras, radar, and OBD-II

sensors was conducted, and analyses established that accident ‘near-misses’ can act

as a suitable safety metric surrogate for rarely occurring crashes (Dingus et al., 2006).

This foundational study was the first to equip predominantly privately owned vehi-

cles with unobtrusive recording devices in order to collect naturalistic driving data

at a large-scale. The drivers taking part in the study were given no specific driving

instructions, and unlike previously discussed controlled field studies, no researcher

was present in the vehicle with the driver. The resulting dataset reportedly con-

tains primarily examples of typical driving behaviour, along with a select number of

instances where the participants demonstrate drowsiness, judgment error, risk tak-

ing and aggressive driving behaviour, and traffic violations, along with many other

actions that would be considered unsafe.

From these extreme cases, a ‘near-miss’ accident has been described operationally as

“any circumstance that requires a rapid, evasive manoeuvre by the participant ve-

hicle, or any other vehicle, pedestrian, cyclist, or animal, to avoid a crash” (Dingus

et al., 2006). Furthermore, a rapid, evasive manoeuvre is further defined as “steer-

ing, braking, accelerating, or any combination of control inputs that approaches the

limits of the vehicle capabilities” (Guo et al., 2010a; Guo et al., 2010b). Overall, the
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identified ‘near-misses’ that occurred in the study were determined to have a very

strong correlation with actual crash events. It was found that the reaction to events

displayed by drivers was typically much lower for crashes than for near-crashes,

suggesting that often the level of awareness of the driver is the deciding factor

between a collision and a near-miss. As such, the study and the related analyses

demonstrate how naturalistic driving data offers both road safety researchers and

practitioners a source of variables for analysis that are not limited to rarely occur-

ring traffic accidents. Whereas the participants in the so called ‘100-Car Naturalistic

Driving Study’ were recorded with cameras in order to operationalise dangerous

driving behaviour and establish the connection between traffic accidents and near-

miss incidents, the behaviour itself can be measured using the advanced sensors

embedded in connected, semi-, and fully-autonomous vehicles.

5.2.2 Driving Data and Traffic Accidents

The technology in these modern vehicles can be potentially be leveraged to detect ac-

cidents and critical driving events, such as heavy braking and evasive manoeuvres,

and used to predict locations with a high likelihood of traffic accidents. Both re-

searchers and industry players alike see the promise of this data to combat the exist-

ing challenges of accident analyses, which include issues surrounding small sample

sizes, underreporting of traffic accidents, and data scarcity (Mannering, Kilareski,

and Washburn, 2007). For example, the behaviour of different driver groups in the

US State of Georgia was studied by collecting data from vehicle OBD-II systems, as

well as GPS location data, and it was noted that clusters of hard deceleration events

were co-located with clusters of historical accident data (Jun, Ogle, and Guensler,

2007). Furthermore, in very recent work, a small naturalistic driving study of 33

university staff members, with an average of 10 days of data collected per partic-

ipant, modelled accident frequency on US Highway 101 using only data gathered

from a GPS logger (Pande et al., 2017). In the study, a total of 39 segments were

analysed in a negative binomial model by considering variables such as the percent-

age of high jerk (the rate of change of acceleration) events, the slope of the road

segment, and the average daily traffic. As a result, the authors found a promising

relationship between the collected jerk events and the frequency of traffic accidents,

and call for additional research on a larger scale in order to validate and generalise

their findings.

In summary, by extending existing work to detect high jerk events with a large

enough fleet of vehicles and validating this approach with existing traffic accident
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analysis techniques, it becomes theoretically possible to identify crash potential and

dangerous locations before an accident occurs. While traditional vehicles require

retrofitting to deliver such insights, the growing number and popularity of increas-

ingly connected vehicles offer a unique opportunity to detect the locations of real-

time CDEs. These events can act as a predictor for rarely occurring traffic accidents,

and hence address issues of data scarcity and time delay (Guo et al., 2010a; Guo et

al., 2010b; Klauer et al., 2006). A prominent example of how this could be applied

in practice addresses traffic queues forming on highways, where many lives are lost

each year from drivers approaching these unforeseen queues too quickly (Li, Chung,

and Cassidy, 2013). By detecting such hazardous situations early enough and in real-

time, loss prevention services can be provided, such as triggering in-vehicle warn-

ings to encourage drivers to approach with caution, and vehicles with autonomous

driving features can take risk reducing measures, such as adapting their speed grad-

ually rather than abruptly (Herrmann, Brenner, and Stadler, 2018).

5.3 Materials and Methods

5.3.1 FEDRO Average Daily Traffic Dataset

Traditionally, the amount of traffic flow, i.e. the number of cars travelling on a par-

ticular stretch of road, has long been associated with traffic accidents (Hauer and

Persaud, 1984). The argument for this is that sections of road with higher traffic

flow will see a higher number of traffic accidents per year, assuming there is a fixed

probability of a traffic accident occurring. Therefore, in order to assess a specific lo-

cation’s Crash Rate or risk exposure based on the number of traffic accidents, it is

important to account for traffic frequency. In order to incorporate this into the analy-

sis, traffic data was obtained from the Swiss Federal Roads Office (FEDRO) Statistics

For Road Accidents. This dataset is comprised of the average number of vehicles per

day passing a variety of counting stations across the Swiss road network, as outlined

in Section 3.1. However, as is the case in many countries, in Switzerland there is only

partial location coverage of ADT counting stations. This data was filtered to cover

the same 18 week time period as the full field study, as presented in Section 3.3. As

such, the final set of observations were constructed from locations where measure-

ments were available for this period, resulting in 194 counting stations and ADT

measurements. The distribution of the ADT counts at these locations is shown in

Figure 5.1.
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FIGURE 5.1: Histogram showing the distribution of ADT from count-
ing stations during the 18-week field study, with a bin size of 5,000

5.3.2 FEDRO Traffic Accident Dataset

Traffic accident data, as initially presented in Section 3.1, was obtained from FE-

DRO in order to generate the dependent variables for the analyses. This dataset

contained GPS locations, as well as contextual information on the causes, on over

266 000 traffic accidents which occurred in Switzerland between 2011 and 2017. Since

accident locations can change over time due to improved road infrastructure, time-

relevant Crash Rate and Crash Frequency dependent variables were generated by

first sampling only the traffic accidents which occurred during the 18 week field

study from the overall dataset, a total of 25 493 accidents across the country. Sec-

ondly, a naive grid-count approach was applied to count the traffic accidents which

occurred within a 1 km2 grid of each of the 194 traffic counting stations from Sec-

tion 3.1, where the centre of the grid was each traffic frequency counting station,

similar to a previous traffic accident study (Yang and Kim, 2003). Over the 18 week

period, this came to a total of 972 traffic accidents, with an arithmetic mean of 5.01

and a geometric mean of 3.29 accidents per counting station location. Figure 5.2

shows the distribution of traffic accidents within the bounding grid of the counting

stations.
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FIGURE 5.2: Histogram showing the distribution of traffic accidents
within counting station bounding grids during the 18-week field

study, with a bin size of 2

5.3.3 Field Study Dataset

Following a recent study, high-jerk events were considered for classifying near-miss

events and CDEs (Pande et al., 2017). For the purpose of this analysis the jerk event

behaviour was calculated from the vehicle’s longitudinal acceleration sensor, which

was sampled at 10 Hz from the CAN Bus of each of the field study vehicles. Post-

processing of the acceleration values enabled the generation of jerk events for each

participant of the field study. These values were calculated for each measurement

time step based on the following equation:

j = da/dt (5.1)

where da is the change in acceleration [m/s2], and dt is the change in time [s].

The thresholds suggested for identifying near-miss jerk events significantly vary

between research projects (Aichinger et al., 2016). These thresholds range from

very strong events between −9.9 m/s3 to −12.6 m/s3 (Bagdadi and Várhelyi, 2011),

which occur very infrequently in the fleet of professional drivers, with less than 600

events in the 18 week period, to very low events between −0.15 m/s3 to −0.61 m/s3
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(Pande et al., 2017), which were triggered for almost every braking event that oc-

curred in the study. As such, a threshold value of −2 m/s3 was chosen to classify

an event as high jerk. These jerk events were then limited to situations where the

vehicles were decelerating, resulting in a dataset of roughly 912 000 geo-located jerk

events over the course of the field study. Therefore, deceleration jerk events were cal-

culated using the pseudocode shown in Algorithm 2, where successive jerk events

were counted as one single event.

Algorithm 2 Pseudocode for deceleration jerk event generation

DecelerationJerkEventGeneration(A, J)

set successiveJerkEvent = false

set jerkEventList = []

for each value A’ in acceleration values list A:

if (A’ < 0 m/s2):

// vehicle is decelerating

J’ = jerk values list J[position of A’ in A]

if (J’ < −2 m/s3):

// vehicle jerk rate is under threshold

if (successiveJerkEvent == false):

add J’ to jerkEventList

set successiveJerkEvent = true

else if (J’ > 0 m/s3):

set successiveJerkEvent = false

else

// vehicle is accelerating

set successiveJerkEvent = false

return jerkEventList

5.3.4 Variable Definitions

On the basis of the average daily traffic and traffic accident datasets previously out-

lined, the following definitions are put forward:

• Let CFPit (Crash Frequency) be the number of accidents within location i from

population P in timeframe t

• Let TFPit (Traffic Frequency) be the number of transits of location i of popula-

tion P in timeframe t – in our case the average ADT over the period of the field

study multiplied by the length of the study



78 Chapter 5. Spatial Prediction of Traffic Accidents with Heavy Braking Events

A standardised measure of roadway safety, and long-standing alternative to

analysing Crash Frequency, is to consider the exposure risk of locations, such as

Crash Rate. In research and practice, Crash Rate is often reported and analysed as

number of accidents per 1 million or even 100 million vehicle miles travelled. There

are two fundamental reasons for the context-specific scaling of Crash Rates. Firstly,

very small decimal numbers, as well as very high numbers, are hard to commu-

nicate. Secondly, the scaling of Crash Rate enables the application of well-proven

techniques, such as established count regressions. Based on the scaling of a previous

study (Anastasopoulos et al., 2012), CRPit is defined as:

CRPit = CFPit/TFPit · 108 (5.2)

The third dataset is the connected vehicle fleet dataset from the field study. In ac-

cordance to the definitions above, the following definitions are put forward on the

basis of fleet data:

• Let JFSit (Jerk Frequency) be the number of high jerk events within location i

from sample (fleet) S in timeframe t

• Let TFSit (Trip Frequency) be the number of transits of location i from sample

(fleet) S in timeframe t – in our case the number of trips through that location

during the period of the field study

Finally, Jerk Rate, JRSit, is defined as the following:

JRSit = JFSit/TFSit (5.3)

5.4 Results

The results of four sequential sets of analysis are presented in the following section,

with the underlying theme of investigating the link between CDEs and traffic ac-

cidents. The analyses of Sections 5.4.1, 5.4.2, and 5.4.3 primarily consider locations

where ADT measurements from FEDRO are available. In Section 5.4.4 the approach

is extended to the majority of the Swiss road network, where the population traffic

frequency measurements are unavailable. As such, this section proceeds by address-

ing the following problems:

• Section 5.4.1 examines an optimal scenario for determining accident exposure

on the basis of driving data, in that we consider the subset of locations with
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available ADT measurements. This enables an investigation into the relation-

ship between the Crash Rate of the population and the Jerk Rate of vehicles at

these sites, and further motivates the subsequent sections.

• Section 5.4.2 follows by investigating the assumption that the Trip Frequency

of the field study fleet is representative of the overall population traffic fre-

quency, i.e. ADT, through these locations. By satisfying this, the more practical

situation where traffic frequency data is unavailable can start to be modelled.

• Section 5.4.3 then continues by utilising the assumption from Section 5.4.2 and

testing of the relationship between the Crash Frequency of the population, and

the Jerk Rate and Trip Frequency of the field study fleet at these locations.

• Section 5.4.4 concludes the analyses by demonstrating the same relationship

from Section 5.4.3 through nationwide spatial regressions covering the major-

ity of the Swiss road network. The robustness of this model is additionally

explored by iteratively including explanatory variables well-known to be as-

sociated with impacting the likelihood of traffic accidents occurring.

5.4.1 Crash Rate and Jerk Rate

In a first step, the analysis focuses on an ideal setting, where Crash Frequency as well

as traffic frequency are available for all locations. More specifically, locations were

defined using a naive grid-count approach, i.e. traffic accidents and traffic volumes

were determined within a 1 km2 grid of each of the 194 traffic counting stations.

Since the dependent variable in the initial analysis is CRPit, i.e. the expected number

of traffic accidents of the grid per 100 million transits, a count variable is effectively

being analysed as a measure of exposure. There are indications of over-dispersion

of the variable, as there are large differences between the mean (183.3) and the vari-

ance (123 340.2). In addition, when considering the JRSit independent variable, it is

also observed to follow a Poisson distribution. As such, this is transformed via the

commonly used natural log function to normalise the variable (Quddus, 2008), and

negative binomial regression utilised, thus assuming that:

CRPit = ea1 · JRSit
b1 (5.4)

Regressions were run for the whole set of counting stations (TFSit > 0), and addi-

tional models generated where counting stations were excluded based on a mini-

mum value of TFSit. As shown in Table 5.1, the correlation between Crash Rate and



80 Chapter 5. Spatial Prediction of Traffic Accidents with Heavy Braking Events

TABLE 5.1: Negative binomial regression results for the Crash Rate
(CRPit) dependent variable and the independent variable Jerk Rate
(JRSit), sampled by number of trips through counting station bound-

ing grids (TFSit)

Dependent Variable: CRPit

Model 1.1 Model 1.2 Model 1.3 Model 1.4 Model 1.5 Model 1.6
TFSit > 0 TFSit > 5 TFSit > 10 TFSit > 15 TFSit > 20 TFSit > 25

Independent Variables

ln (JRSit) 0.293*** 0.338*** 0.354*** 0.362*** 0.385*** 0.383***
(3.86) (4.43) (4.56) (4.40) (4.74) (4.66)

Constant 20.03*** 20.09*** 20.12*** 20.14*** 20.16*** 20.16***
(273.63) (266.12) (260.01) (251.74) (252.18) (252.45)

ln alpha
Constant -0.326*** -0.352*** -0.377*** -0.375*** -0.393*** -0.396***

(-4.22) (-4.30) (-4.39) (-4.29) (-4.43) (-4.44)

Observations 194 172 159 152 149 147

McFadden’s Pseudo R2 0.079 0.108 0.121 0.120 0.137 0.133

χ2 14.90 19.66 20.82 19.36 22.48 21.71

t statistics in parentheses
* p < 0.05

** p < 0.01
*** p < 0.001

Jerk Rate is highly significant in all models and has a similar coefficient, ranging

between 0.293 to 0.383. In addition, the over-dispersion constant, i.e. ln alpha, is

significant for all models, confirming the suitability of negative binomial regression.

The best fitting model is where counting stations were excluded with 20 or less trips

(TFSit) through the surrounding bounding grid, with a pseudo R2 of 0.1371. This in-

dicates that there is a minimum number of times an area should be driven through

before an assessment should be conducted on the likelihood of traffic accidents oc-

curring based on driving data. However, the model fit drops when limiting with

higher number of trips, most likely due to decreased observations in the model.

In order to answer the first concrete research question of the chapter, RQ 2a: To

what extent can the Crash Rate of a location be predicted by CDE information from

that location, assuming that Crash Frequency and ADT data are available, the null

hypothesis that CRPit of a location is not explained by ln(JRSit) is tested. Through

testing the χ2 values for each of the generated models this null hypothesis is rejected,

with p < 0.001 for all models. Since negative binomial regression utilises the log-

link, and JRSit is natural log transformed, the interpretation of the best-fitting model

1
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allows us to conclude that with a 10 % increase in the Jerk Rate there would be a

3.7 % (1.100.385 = 1.037) increase in the Crash Rate within the surrounding area.

However, for practitioners and researchers alike, while CFPit can often be obtained,

such ideal data coverage for TFPit, e.g. ADT, is rarely available to generate CRPit. It

is therefore important to consider more common situations in traffic analysis where

only the Crash Frequency can be leveraged as a dependent variable for the whole

road network. Therefore, while Crash Rates have been used in the first part of this

analysis, the remainder of the analyses focus on Crash Frequency, additionally mo-

tivated by previous work investigating traffic accident exposure (Hauer, 1995).

5.4.2 Representative Fleet Assumption

The second stage of the analysis is built upon the following assumption to deter-

mine Crash Frequency: That there has to be a well-defined relationship between

traffic frequency of the population (TFPit) and traffic frequency of the fleet sample

(TFSit), which is independent of location i for a specific timeframe t, i.e. a ‘repre-

sentative’ fleet. A roadside assistance fleet, as employed in the field study, could

be considered representative, since they are called to locations where typical drivers

have broken down or require assistance. Thus, in order to test the second research

question of this chapter, regarding the relationship between fleet-generated events

and the Crash Frequency variable, the representative assumption on the fleet dataset

at hand should first be assessed. This assumption can be tested by considering the

relationship between TFPit and TFSit. Since TFPit for the set of stations is generated

by multiplying the ADT of the location by the length of the field study, a count

variable is being considered which follows a Poisson distribution. Additionally, by

reviewing the mean (41 964) and variance (1.10× 109) of TFPit, it can be seen that

the variance is much larger, indicating that the variable is over-dispersed and that

negative binomial regression is a suitable technique for analysis.

When considering TFSit, the traffic frequency of the sample of fleet drivers, a Poisson

distribution of the data is also observed, and thus the commonly used normalisation

technique of natural logarithm transformation is applied to the variable (Quddus,

2008). As in the previous section, there is the additional assumption that there is

a trade-off with the sample, where there is a minimum number of times an area

should be driven through for a reliable assessment on the basis of driving data. As

such, by removing grids with less trips from the fleet of drivers (TFSit) the fit of the

model should increase, until a certain point where too many data points have been

removed. The results of these regressions are shown in Table 5.2.
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TABLE 5.2: Negative binomial regression results for the Population
Traffic Frequency (TFPit) dependent variable and the independent
variable Fleet Traffic Frequency (TFSit) sampled by number of trips

through counting station bounding grid (TFSit)

Dependent Variable: TFPit

Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5 Model 2.6
TFSit > 0 TFSit > 5 TFSit > 10 TFSit > 15 TFSit > 20 TFSit > 25

Independent Variables

ln (TFSit) 0.203*** 0.269*** 0.342*** 0.425*** 0.424*** 0.428***
(5.78) (5.30) (7.19) (10.14) (9.28) (9.04)

Constant 14.49*** 14.13*** 13.72*** 13.24*** 13.24*** 13.22***
(74.18) (49.44) (51.08) (56.77) (51.51) (49.50)

ln alpha
Constant -0.482*** -0.642*** -0.740*** -0.808*** -0.792*** -0.792***

(-4.97) (-5.30) (-6.25) (-6.46) (-6.33) (-6.25)

Observations 194 172 159 152 149 147

McFadden’s Pseudo R2 0.204 0.241 0.279 0.327 0.309 0.302

χ2 33.43 28.12 51.77 102.8 86.11 81.72

t statistics in parentheses
* p < 0.05

** p < 0.01
*** p < 0.001

The results show that the natural logarithm of TFSit has a highly significant coeffi-

cient with TFPit. Through testing the null hypothesis that TFPit of a location is not

explained by ln(TFSit) of the field study fleet, it can be determined whether the over-

all population traffic volume can be explained by fleet traffic volume on the basis of

the assumed relationship:

TFPit = ea2 · TFSit
b2 (5.5)

Through testing the χ2 values for each of the generated models, this null hypothesis

is rejected, with p < 0.001 for all models. The best fitting model was where count-

ing stations were excluded with 15 or less trips through the surrounding bounding

grid and with a pseudo R2 of 0.327. Finally, Figure 5.3 shows the distribution of the

natural logarithm transformed TFSit independent variable, and Figure 5.4 the rela-

tionship between TFPit and TFSit. Both figures feature the full dataset, and a vertical

cut-off demonstrating the data used in the negative binomial regression model with

the best fit, i.e. only including grids with greater than 15 trips.
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FIGURE 5.3: Histogram showing log-normal distribution of field
study fleet trips through counting station bounding grids, with a bin

size of 0.4. Vertical line indicates 15 trips cut-off

FIGURE 5.4: Scatter plot showing relationship between TFPit and
TFSit. Dashed line is Model (2.1). Long dashed line is Model (2.4).

Vertical line indicates 15 trips cut-off
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5.4.3 Crash Frequency and Jerk Frequency

Building upon the evidence that we have a well-defined relationship between TFSit

and TFPit, the Crash Frequency of the locations can be estimated based on the Jerk

Rate and Trip Frequency of the sample, substituting TFPit with TFSit and thereby

eliminating the need for ADT information. More specifically, based on the previous

definitions and assumptions:

(from Equation 5.2) CRPit = CFPit/TFPit · 108

(from Equation 5.4) CRPit = ea1 · JRSit
b1

(from Equation 5.5) TFPit = ea2 · TFSit
b2

it can be concluded that:

CFPit/TFPit · 108 = ea1 · JRSit
b1 (5.6)

CFPit = ea1−ln(108) · JRSit
b1 · TFPit (5.7)

CFPit = ea1−ln(108) · JRSit
b1 · ea2 · TFSit

b2 (5.8)

CFPit = ea1+a2−ln(108) · JRSit
b1 · TFSit

b2 (5.9)

Thus, through a Poisson or negative binomial regression with Crash Frequency

(CFPit) as the dependent variable, one can derive the coefficients b1 as well as b2. If

a2 is available from a previous analysis determining the relationship between TFPit

with TFSit, i.e. through the analysis in Section 5.4.2, a1 can also be determined. With

estimates for a1 and b1, CRPit can ultimately also be predicted on the basis of:

(from Equation 5.2) CRPit = ea1 · JRSit
b1

Considering the CFPit dependent variable, a Poisson distribution continues to be

observed, where the variance (28.20) is higher than the mean (5.01), indicating over-

dispersion of the variable and thus negative binomial regression should be applied.

Results of the regressions, sampled by number of trips (TFSit) are shown in Table 5.3.

When compared to the CRPit set of models, improved model fit is observed, with

pseudo R2 ranging from 0.281 to 0.336. In addition, the same pattern seen in the

previous regressions of Section 5.4.2 can be seen, where model fit improved when

grids with less than 15 trips were excluded from the analysis. This reaffirms that
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TABLE 5.3: Negative binomial regression results for the Crash Fre-
quency (CFPit) dependent variable and the independent variables
Jerk Rate (JRSit) and Fleet Trip Frequency (TFSit), sampled by num-

ber of trips through counting station bounding grid (TFSit)

Dependent Variable: CFPit

Model 3.1 Model 3.2 Model 3.3 Model 3.4 Model 3.5 Model 3.6
TFSit > 0 TFSit > 5 TFSit > 10 TFSit > 15 TFSit > 20 TFSit > 25

Independent Variables

ln (JRSit) 0.330*** 0.367*** 0.405*** 0.371** 0.380*** 0.384***
(4.88) (5.18) (5.31) (4.92) (5.02) (4.93)

ln (TFSit) 0.232*** 0.259*** 0.314*** 0.378*** 0.367*** 0.363***
(6.43) (5.20) (6.15) (7.95) (7.54) (7.30)

Constant 0.479** 0.333 0.0171 -0.366 -0.302 -0.276
(2.61) (1.25) (0.06) (-1.49) (-1.19) (-1.06)

ln alpha
Constant -0.929*** -0.905*** -0.960*** -1.020*** -1.012*** -1.004***

(-6.38) (-5.83) (-5.84) (-5.82) (-5.74) (-5.68)

Observations 194 172 159 152 149 147

McFadden’s Pseudo R2 0.281 0.275 0.303 0.336 0.331 0.322

χ2 56.77 49.49 62.09 73.27 69.24 64.32

t statistics in parentheses
* p < 0.05

** p < 0.01
*** p < 0.001

there should be a minimum number of fleet transits of an area before analyses are

conducted on the basis of driving data.

With the outlined results, the second concrete research question of this chapter can

now be addressed, RQ 2b: To what extent can the Crash Frequency of a location

be explained by CDE information from that location, assuming we have sparse data

coverage (only Crash Frequency information is available) and a well-defined rela-

tionship between TFSit and TFPit, i.e. a ‘representative’ fleet. This is achieved by

separately testing two null hypotheses, i.e. that CFPit of a location is not explained

by either ln(JRSit) or by ln(TFSit) of our field study fleet. Through independently

testing the χ2 values for each variable of the generated models, both null hypothe-

ses are rejected, with p < 0.001 for both variables and all models. Regarding the b1

coefficient, which gives the proportional increase in both Crash Rate, and Crash Fre-

quency in the models, it can be observed that in the CFPit regressions it falls within

a similar range (0.330 to 0.405) to the coefficient in the CRPit set of models (0.293

to 0.383). In addition, the b2 coefficient can be seen to also fall in a similar range

(0.232 to 0.378) to the coefficient in the TFPit models (0.203 to 0.428). From this it can
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be concluded that, with a fleet which can be demonstrated to be representative of

the population, one can estimate Crash Frequency, and from the coefficient make an

approximation for the Crash Rate exposure measure.

5.4.4 Crash Frequency Spatial Regression

In practice, such an analysis would not be run on a small subset of grids, but over

the whole road network. In order to provide insights into a nationwide approach,

this problem is now considered for the whole field study dataset, covering the ma-

jority of the Swiss road network. Following the same approach as the first part of

the analysis, the country was divided into regular square grid cells of 1 km2 in order

to perform the analysis (Kim, Brunner, and Yamashita, 2006). Crash Frequency was

generated within each grid, along with the Jerk Frequency, and Traffic Frequency

of the fleet, allowing the generation of new values for the variables CFPit, JRSit, and

TFSit. Based on the results of the previous sections, grids with a value for TFSit less

than 15 were excluded from the analysis, resulting in a total of 4197 km2 of the coun-

try’s road network being considered. Of the 25 493 traffic accidents which occurred

during the 18 week period, 15 450 were included in the grids covered by the field

study and that fulfilled the minimum number of transits by the utilised fleet.

Urban areas, as well as highways, often show very specific accident patterns (Kim,

Brunner, and Yamashita, 2006; Pande et al., 2017). These variables can be ob-

tained for locations through map-matching services and open data sources. There-

fore, in order to include these as explanatory variables in the regression, each grid

was further enriched with two binary variables, one for ‘Urban’ or ‘Rural’ and an-

other for ‘Highway’ or ‘Non-highway’ through a professional map-matching ser-

vice provider. The dataset was split roughly in half between urban and rural areas,

as shown in Figure 5.5, and Figure 5.6 shows the distribution of highway and non-

highway roads. As mentioned above, significant differences are expected between

the areas and road-types due to the difference in both population and traffic fre-

quency.

Spatial autocorrelation is where measurements are dependent on their location and

surroundings, i.e. not independent and identically distributed. Thus, it can be de-

fined as a property found across geographic space, where variables are either more

similar or less similar at certain distances from each other than would be expected

for randomly associated pairs of observations (Legendre, 1993). This spatial autocor-

relation can be tested with various indicators, where the most commonly used mea-

sure is the Moran’s I statistic (Anselin and Rey, 2014; Bivand et al., 2008). Moran’s
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FIGURE 5.5: Distribution of Urban (red) and Rural (yellow) locations
in Switzerland where naturalistic field study driving data was col-

lected

FIGURE 5.6: Distribution of Highway (red) and Other (white) loca-
tions in Switzerland where naturalistic field study driving data was

collected
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I can be interpreted as a regression coefficient for autocorrelation, where the value

falls between −1 and 1. A value of 1 indicates a strong positive spatial autocorrela-

tion, −1 indicates a strong negative spatial autocorrelation and 0 means that obser-

vations are random, and thus not spatially auto-correlated (Anselin, 1993). For the

dataset and a grid size of 1 km2, the Moran’s I value is 0.426 (p = 0.000), hence a

statistically significant spatial autocorrelation is found which should be accounted

for in the model.

Another important concept for statistical tests is homo- and heteroscedasticity. Ho-

moscedasticity is the assumption of constant error variance (Anselin and Rey, 2014).

That is, the variances around the regression line are equal for all values of the in-

dependent variable. If the distribution of values is heteroskedastic, the variance

of the independent variable cannot be assumed to be constant. Due to the spatial

distribution of accidents one can expect heteroscedasticity of accidents and vehi-

cle data along different road sections. To address the problem of heteroscedasticity,

spatial regression models can include local and global spatial relationships in order

to mitigate or reduce the effect. To utilise these spatial effects, spatial weights are

used (Anselin and Rey, 2014; Bivand et al., 2008). For the grid-based dataset, conti-

guity weights are the most logical choice, where only bordering cells are expected to

have a direct effect on the dependent variable. Other techniques, such as threshold

and inverse distance weights, are impractical as they use different distances for di-

agonal than horizontally or vertically adjacent cells due to the calculation using the

centre point of the square. Contiguity weights also allow higher order weights for

cells that are further away than the cell directly adjacent.

Lagrange Multiplier tests showed that the dataset is susceptible to both spatial lag

and spatial error, where tests are highly significant for both lag and error models for

the general and the robust specification. Therefore, the spatial combo model is used

as it includes both spatial error and spatial lag. The dependent variable, CFPit, is

transformed with the natural logarithm, to replicate the log-link relationship from

the earlier negative binomial regressions. For this analysis four models, presented in

Table 5.4, are iteratively developed in order to test the robustness of the relationships

when controlling for factors that traditionally explain large parts of the variance in

Crash Frequency, specifically Urban and Highway environments. The first of these,

Model 4.1, uses just the natural logarithm transformed JRSit and TFSit as dependent

variables, extending the results from the previous sections to a country-wide setting

and accounting for spatial autocorrelation. In Models 4.2 and 4.3 the binary variables

for Highway and Urban locations are respectively added to the regression. Finally,

both of these binary variables are included to generate the combined Model 4.4.
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TABLE 5.4: Spatial combo regression results for the Crash Frequency
(CFPit) dependent variable and iteratively added independent vari-
ables, with grids limited to those with a fleet Trip Frequency greater

than 15 (TFSit)

Dependent Variable: ln (CFPit)

Initial Urban Highway Full
Model 4.1 Model 4.2 Model 4.3 Model 4.4

Independent Variables

ln (JRSit) 0.3176*** 0.2948*** 0.3224*** 0.3043***
(35.7135) (39.8947) (34.1915) (31.2257)

ln (TFSit) 0.1060*** 0.1304*** 0.0857*** 0.0766***
(7.6174) (12.2520) (5.1154) (4.6636)

Urban 0.1417*** 0.1651***
(6.8906) (7.0837)

Highway 0.0292 0.1250***
(4.9491) (3.6352)

Constant -0.8754*** -0.9776*** -0.8694*** -0.9376***
(-13.0789) (-15.4511) (-14.0448) (-17.3417)

Spatial Lag 0.0618 0.0840* 0.1183*** 0.2022***
(1.4026) (6.8906) (3.0585) (6.0833)

Spatial Error 0.6330*** 0.5994*** 0.5559*** 0.4296***
(25.9786) (24.0536) (21.4148) (14.6869)

Observations 4197 4197 4197 4197

Spatial Pseudo R2 0.3899 0.4017 0.3913 0.4083

z statistics in parentheses
* p < 0.05

** p < 0.01
*** p < 0.001
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Considering Model 4.1 initially, as seen in the negative binomial regressions from

the previous sections, highly significant coefficients for both ln(JRSit) and ln(TFSit)

are reported. Here the coefficient of ln(JRSit) falls within a similar range as the re-

sults from the previous section, and so with an increase of 10 % in Jerk Rate from

the fleet at a location we would expect an increase of 3.1 % (1.100.3176 = 1.031) in

the Crash Frequency at that location. On the other hand, while the number of trips

the fleet makes through the location also shows a significant proportional increase

in the Crash Frequency, the coefficient is lower than in the previous models. In this

case, the coefficient can be interpreted such that a 10 % increase in trips leads to a

1.0 % (1.100.1060 = 1.010) increase in the number of accidents. Here the importance

of incorporating spatial factors in such an analysis is potentially witnessed, since the

spatial error is highly significant in all of the models. Therefore, there is an indication

that the error of an observation affects the errors of its neighbours. As the individ-

ual trips of the fleet naturally pass through neighbouring grids, this behaviour can

potentially be accounted for in the spatial model.

Model 4.2 sees the significance impact of the Urban binary variable that was in-

cluded in the regression, and the spatial lag additionally becomes significant. Since

spatial lag is the variable which captures the influence of neighbouring observations

on the dependent variable, it can be determined that controlling for Urban and Ru-

ral locations highlights the similarity of neighbouring observations in the dataset.

Model 4.3 adds the binary variable for whether the location is a Highway, here the

variable itself does not have a significant effect on the number of crashes within that

grid. However, we see that the coefficient and the significance of the spatial lag in-

crease, indicating higher importance of the influence of neighbouring observations

on the number of crashes.

Finally, Model 4.4 is the combined approach and is the best-fitting model with a

pseudo R2 of 0.4083. Here the significance of both the binary variables of Urban

and Highway can be observed, along with the spatial lag and error for these models

remaining significant. With regard to the impact of the binary variables, the results

of this model are primarily considered. In including these variables, minor changes

can be observed in the coefficients of ln(JRSit), from 0.3176 to 0.3043, and ln(TFSit),

from 0.1060 to 0.0766, with the significance of both variables remaining. The binary

variable coefficients in the model indicate the direct effect on the dependent variable

of being in urban and highway areas respectively. Thus, the impact of being in an

urban location increases the number of accidents at that location by 16.5 % when

compared to rural areas. Moreover, highway locations had an increase of 12.5 % in

the Crash Frequency when compared to other non-highway roads.
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5.5 Discussion

The topic at hand has several implications for research, policy, and industry. At the

core of the research is the hypothesis that the rate of CDEs at a specific location is

related to the Crash Rate and Crash Frequency of that location. Thus, an explorative

nationwide study was conducted to provide early evidence that the Crash Rate can

be modelled by the Jerk Rate of vehicles that represent a connected, semi-, or fully-

autonomous fleet. Here, we observe the significance of coefficients that would be ex-

pected from the literature and see promising quality metrics with regard to pseudo

R2 and χ2. In addition, model fit generally increased where grids were only con-

sidered for analysis when they had a higher number of transits by the utilised fleet.

This demonstrates that with more trips the measure of Jerk Rate becomes more rep-

resentative of the population Crash Rate. However, in reality, traffic safety analysis

is commonly limited to estimating Crash Frequency as a dependent variable, since

the necessary traffic frequency data needed to calculate exposure measures, such as

Crash Rate, is rarely available for whole road networks.

In order to reliably estimate the Crash Frequency of a location on the basis of Jerk

Rate (without the corresponding data for overall population traffic frequency), the

relationship between the traffic frequency of the field study fleet and total traffic fre-

quency of the population has to be known. The results indicate that a road assistance

fleet, such as the one used in this field study, can address this requirement. More

specifically, evidence is provided of a well-defined relationship between the number

of trips made by the fleet and the overall traffic frequency measure, ADT. In practice,

it may be easier for interested parties to use a professional fleet to model both Crash

Rate and Crash Frequency, rather than recruiting and collecting data from typical

drivers within the general population. After validating the assumption that the fleet

in the field study was representative of the population, models were developed to

estimate Crash Frequency, and from the coefficient make an approximation for the

Crash Rate exposure measure.

Through these steps, the results contribute to the existing body of research by going

beyond the most recent studies that consider individual highway segments (Pande

et al., 2017), applying the analysis to a subset of locations with ADT data, and pro-

viding model quality measures to help researchers and practitioners validate their

approaches. Furthermore, in practice such an analysis would not be run merely on

a small subset of grids where traffic frequency information is available, but over the

whole road network where only Crash Frequency is typically collected. Therefore,

the study at hand, which covers the majority of the Swiss road network, provides
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first insights into a nationwide approach. The importance of controlling for spatial

lag and error effects is also highlighted, and attention drawn to how urban and high-

way variables, obtainable from map-matching services, impacted Crash Frequency

at those locations and improved model fit when included in the analyses. Finally,

the models presented in each section form a concrete starting point for automotive

insurance companies looking to exploit the growing opportunity for active loss pre-

vention, such as providing in-vehicle warnings and safe-routing services. These ser-

vices, which build upon an accurate knowledge of dangerous locations on the road

network, will be further enabled by the growing popularity and advanced features

of the semi- and fully-autonomous vehicles in the coming decades.

Whilst this study demonstrates how traffic accident exposure can be modelled by

naturalistic driving data, the results should be seen in the light of their limitations.

While there are many jerk threshold values suggested in the related research, as

well as other variables to detect CDEs, in this early stage just one threshold of jerk

was considered in order to generate the dependent variables. In addition, spatial

point data can be analysed in numerous ways, and it is important to mention that

improvements in the analysis could be made by considering non-grid based spatial

regression techniques. For example, map-matching traffic accidents, trips, and CDEs

onto a representation of the road network and dividing this into network segments

could be a promising future endeavour (Pande et al., 2017). Moreover, including at-

tributes for these road segments, e.g. road curvature, as seen in other studies, could

provide deeper insights into the relationship between CDEs and Crash Frequency.

5.6 Conclusions

Previous research has shown that the situational factors of crashes and near-misses

are strongly related, and that naturalistic driving data can provide promising in-

sights for traffic accident analysis, yet thus far there has been limited empirical evi-

dence on whether the Crash Frequency and Crash Rate of locations can be reliably

identified through analysis of CDEs. While low adoption levels of connected, semi-,

and fully-autonomous vehicles currently make investigating this potential a chal-

lenge, preliminary analysis was made possible with the installation of the retrofit

system that could access vehicle sensor measurements analogous to those found in

these vehicles. Using this setup, jerk events were detected from 72 vehicles equipped

with the in-vehicle system presented in Section 3.2, and sensor information collected



5.6. Conclusions 93

from each car’s CAN Bus, synonymous with data that facilitate the advanced fea-

tures in modern vehicles. As such, the research at hand presented results from the

18 week field study of these vehicles, which covered over 690 000 km in Switzerland.

Overall, this early-stage research shows a consistent and robust relationship between

the critical driving events from a naturalistic driving field study, and both the Crash

Rate and Crash Frequency of locations across the Swiss road network. This not only

validates the results reported by other studies (Pande et al., 2017), that have typically

focused on limited segments of road over a small timeframe, but further demon-

strates the potential for traffic safety analysis that could be achieved with the driving

data collected from advanced vehicles. Moreover, the relationship between the fleet

trip data and the traffic frequency of the general population was investigated, and

the results highlight that a road assistance company or similar partner operating a

professional fleet can provide valuable road usage insights. Furthermore, there is

an indication that there is a minimum number of times an area should be driven

through by such a fleet before an assessment conducted on the likelihood of traffic

accidents occurring based on driving data.

These findings could be of particular importance to the automotive insurance in-

dustry, where there is an ongoing shift of moving away from purely ‘reactive’ busi-

ness models toward active loss prevention. In this increasingly data-powered world,

the ability to identify high risk locations on the road network could become of ut-

most value and the cornerstone for future safety-focused innovations and services.

Through this, preventative measures can be incorporated into insurance products,

such as encouraging customers to adapt their driving behaviour at potentially dan-

gerous locations, or offering safe-routing options that avoid accident hotspots en-

tirely, and enhance ‘pay-how-you-drive’ policies with ‘pay-where-you-drive’ incen-

tives. Furthermore, semi-autonomous vehicles approaching these locations might

drive more carefully to reduce risk or hand over control to the driver to transfer in-

surance liability. Finally, with the continued rise of automotive technology improve-

ments, understanding the new practical opportunities of connected vehicles, such as

those presented in this work, will become vital for determining suitable traffic safety

approaches and strategies, both for insurers and policy makers in this long-standing

field of traffic accident prevention.
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Chapter 6

General Discussion and

Implications

The previous chapters of this thesis have so far presented the motivation for, and

background work on the two research topics that have focused on the impact of

warnings on driving behaviour and the potential of driving data to predict accident

hotspots. The results of these two studies have been presented in the corresponding

chapters, along with the foundational materials and methods that enabled the in-

vestigations, and the naturalistic driving field study that was conducted. This chap-

ter opens by briefly reintroducing the overall context and motivation of the work.

Subsequently, the core results of the two studies are revisited, summarising the key

findings of this thesis and outlining the implications for research, practice, and pol-

icy making. This is then followed by a discussion on the limitations of the research

and how future work can advance the topics at hand, and finally, the chapter brings

this thesis to its conclusion and closes with final remarks regarding the work pre-

sented.

6.1 Summary and Key Findings

Overall, the topic of road safety and how to improve it has been extensively dis-

cussed by academics, road authorities, automotive manufacturers, and governmen-

tal bodies alike over the last 60 years. The issues surrounding traffic accidents have

been steadily increasing over the previous decades, and the injuries sustained from

these incidents can often prove to be fatal and are now the eighth leading cause of

death worldwide. This serious problem is not only seen in developing countries

with limited investment in road infrastructure, but additionally affects high income

countries. For example, the United States saw a sharp increase of 7.2 % in the amount
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of traffic fatalities between 2014 and 2015, bringing the annual number of lives lost

to 35 092 people across the country. Among the many endeavours to reduce both

the frequency and severity of accidents, road authorities prioritise dangerous sec-

tions of the road network for infrastructure improvement, identified by analysing

the patterns and locations of traffic accidents. However, this traffic accident analysis

is traditionally based on historic crash data and is restrictive in many ways, typi-

cally suffering from issues including small sample sizes, underreporting of traffic

accidents, and data scarcity.

A new and dynamic source of naturalistic driving data variables, collected from

the advanced sensors and technology embedded in connected, semi-, and fully-

autonomous vehicles, potentially offers the opportunity to overcome the existing

challenges and traditional limitations of accident analysis. Both road safety re-

searchers and practitioners see the opportunity to reliably predict locations with a

high level of traffic accident exposure by leveraging the technology in these vehicles

to detect accidents and ‘near miss incidents’, otherwise known as critical driving

events (CDEs). Yet, to date, there is limited empirical evidence on whether the per-

ilousness of locations can be accurately predicted through naturalistic driving data,

despite the great potential for improving road safety by identifying the locations of

traffic accident hotspots with insights from these vehicles.

Furthermore, various safety-focused innovations become a possibility with the in-

sights of these dangerous locations, for example, automotive manufacturers and in-

surances can start to offer reliable ‘pay-where-you-drive’ safe-routing services and

incentives, and in situations where hazardous locations cannot be avoided, provide

in-vehicle warnings of accident hotspots. While the potential of such in-vehicle

warning systems are undisputed in their ability to improve driver safety in crit-

ical situations, such as avoiding imminent collisions, the vast majority of studies

have focused on simulation and controlled field experiments. Moreover, the benefit

of real world location analytics on accident hotspots as a data source for in-vehicle

warnings has widely not been investigated.

When considering the promise of in-vehicle warning systems to reduce traffic acci-

dents, along with the increasing availability of connected vehicle driving data, this

thesis identified gaps in both research and practice regarding the real world assess-

ment of such systems, and the potential of vehicle data to identify hazardous lo-

cations. From this, two research topics were investigated in this thesis: The first,

what impact do in-vehicle warnings, utilising real world location data to generate

interventions, have on driver behaviour in a realistic driving setting. The second, to

what extent can the perilousness of our road networks be predicted on the basis of
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naturalistic driving data collected from connected vehicles. The results from the sets

of analysis tackling these two topics are presented in the following sections respec-

tively, summarising the key findings of the work and their implications for research,

practice, and policy making.

6.1.1 Improving Driver Safety

In order to address the first research objective highlighted in Section 1.2.1, and deter-

mine whether warnings of upcoming dangerous locations have a positive effect on

driving behaviour, a smartphone based in-vehicle warning system was developed

and tested as part of an 18 week nationwide field test of professional drivers. In

contrast to other in-vehicle studies that focus on simulation and controlled field ex-

periments, typically involving imminent collision scenarios, location analytics were

applied to a national historical accident dataset in order to identify accident hotspots

on the Swiss road network. The locations and contextual causes for these histor-

ically hazardous locations were then used to generate warnings, which were pro-

vided through the in-vehicle system to an intervention group of drivers as they ap-

proached the specific accident hotspots during a 4 week experimental phase of the

field study. During this period, real-time sensor data was collected from the vehicles

of both a control and intervention group of drivers, and post-processing detected

heavy braking events from this data so that the following research question from

Section 4.1.1 could be investigated:

RQ 1a To what extent do warning interventions of upcoming dangerous locations,

i.e. accident hotspots, impact the braking behaviour of drivers in a naturalistic

driving setting?

In order to answer this research question, and account for the effect of the individual

drivers among the control and intervention groups, multilevel mixed-effects logistic

regression was applied and seven different models iteratively generated to test the

robustness of the results with different independent variables. Based on these anal-

yses the following three key findings, and their implications for research, practice

and policy, are highlighted:

In contrast to existing studies, an immediate effect of warnings was not confirmed.

Throughout all seven models that were generated, the independent variable that

represented the difference between the control and the warning intervention group,

i.e. whether a warning was shown or not, did not demonstrate a significant effect
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on the likelihood of a heavy braking event at the location occurring. Overall, this re-

sult offers two insights, the first is that unlike the promising reports from simulation

and controlled field experiments, the strong effect of in-vehicle warnings could not

be confirmed in our naturalistic driving setting. However, given that the vast ma-

jority of other studies typically focus on scenarios involving an upcoming collision,

i.e. with another vehicle or pedestrian, invoking an immediate braking or evasive

manoeuvre from the driver is typically the main aim of the in-vehicle warnings. In

contrast to these studies, the research at hand focused on warning drivers of acci-

dent hotspots, locations that historically pose a safety risk and require the driver to

be more aware of the driving situation and surrounding traffic in general, but that

may not demand a guaranteed action in order to avoid a collision. Nonetheless,

the warnings themselves had neither an immediate positive nor negative effect on

the driver’s braking behaviour at these locations, which leads to a second insight:

that the interventions did not appear to distract the drivers and raise the likelihood

of heavy braking events occurring. Overall, this is a positive result for the field

of in-vehicle warnings, and the lack of a direct effect demonstrates the importance

of exploring this topic in a realistic driving setting, along with building innovative

artefacts and conducting experimental research. Despite this, field evidence sup-

porting the impressive results reported in simulation and controlled experiments is

still weak, and there remains a strong need for further naturalistic driving experi-

ments with high resolution vehicle data to confirm if these systems can deliver in

diverse field situations on their “lab promises”.

However, in-vehicle warnings of historically dangerous locations had a signifi-

cant improvement on driver braking behaviour over time. Unlike the direct ef-

fect of the accident hotspot warnings on driver behaviour, a positive and significant

learning effect of the warnings was observed that remained stable throughout the

first six models that were generated. This learning effect implies the following: the

more often a driver in the intervention group encountered an accident hotspot and

received the associated in-vehicle warning for that location, the less likely he was to

have a heavy braking event at that location, effectively driving smoother and more

controlled through the hotspot each time. Other studies outside of the traffic safety

and accident prevention field, for example those in the health and education do-

mains, have reported similar long-term effects of interventions, where significant

results are found the more often an intervention was triggered (Bokhove and Dri-

jvers, 2012; Brendryen and Kraft, 2008).

Both policy makers and industry players alike should find the main implication of

these results, that accident hotspot warnings can improve driver behaviour over
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time, highly relevant to their existing work and approaches to road traffic safety. Nu-

merous countries throughout the last decades have made various hardware-based

vehicle safety systems mandatory in new vehicles, for example, air-bags and elec-

tronic stability programs. Similarly, policy makers should start to consider promot-

ing software-based and data-powered in-vehicle warning systems that have been

shown to encourage safer driver behaviour, since such tools are lightweight, low

cost and highly scalable (Brendryen and Kraft, 2008). Hence, they could efficiently

complement traditionally more complex and expensive approaches to improve traf-

fic safety, such as altering the existing hazardous road infrastructure and installing

and maintaining road warning signs. Ultimately, when such systems have been

conclusively proven to prevent traffic accidents across multiple vehicle and driver

demographics, and on various different road types, then corresponding regulation

could enforce the inclusion of these in new vehicles. Prior to this occurring, con-

sumer demand has historically led to the introduction of novel safety features being

included in new vehicles. As such, the automotive industry might recognise that

data-driven prevention services are positioned to be an effective means to address

the distinct safety needs of consumers and form a basis for sustainable competi-

tive differentiation. For vehicle manufacturers and mobility solution providers the

presented accident hotspot warning use-case could extend their portfolio of safety

features and connected car services, both of which are increasingly important for car

buyers’ purchase decisions (Wee et al., 2015).

Finally, there is evidence that an individual’s personality plays a key role in the

effectiveness of in-vehicle systems that support decision making behaviour. This

key finding was identified when investigating the generalisability of the reported

learning effect of the warnings on driver behaviour with respect to the individual

drivers’ characteristics, which was tested by including each driver’s age and per-

sonality as moderators. When considering the final model that was generated, the

significant interaction between the ‘number of warnings’ shown and the individ-

ual’s level of Agreeableness indicates that the learning effect previously identified

is dependent on this personality trait. As such, only those with reasonable levels

of Agreeableness improved their driving behaviour due to the warnings provided

by the system. The Agreeableness personality trait is linked to characteristics such

as cooperation and social harmony, i.e. drivers have to be willing to “listen” to the

in-vehicle system (John and Srivastava, 1999). This result is important for future

research, not just in the field of in-vehicle warnings, but when researching interven-

tions with any kind of system that supports decision making behaviour, of which

personality is a longstanding predictor for (Sprotles and Kendall, 1986). Yet research
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on real-time feedback interventions have only recently started to consider the impact

of personality as a key factor in human behaviour (Tiefenbeck et al., 2016), and the

results of this thesis further confirm the importance of carefully reflecting the role

and impact of subjects’ Agreeableness in such systems. Thus, in order to improve

driver safety, future work should identify the key determinants of the learning ef-

fects of such in-vehicle warning systems, and how best to facilitate these moving

forward (Bokhove and Drijvers, 2012; Brendryen and Kraft, 2008).

Overall, the in-vehicle warning system that was developed in this thesis incorpo-

rates automatically generated accident hotspot interventions as an alternative to hu-

man selected locations or up-coming collision warnings, and is the first of its kind

among the comprehensively reviewed systems. Moreover, the conducted field study

was the first to test such warning interventions in real world conditions across a lon-

gitudinal field study, and provides evidence of an improvement on driver braking

behaviour over time. Additionally, the importance of carefully reflecting the role

and impact of subjects’ Agreeableness personality trait when assessing any kind of

system that supports decision making behaviour is also highlighted in the results, a

finding not just applicable to the field of in-vehicle warnings. Furthermore, due to

the integration of accident location reports and details, the proposed system can be

easily extended to other parts of the world where similar data are compiled, either at

a regional or national level, or where insurances have collected their own informa-

tion on the locations and causes of traffic accidents. In regions where such reports

are not routinely collected, then in-vehicle warning could still be offered if the loca-

tions of traffic accident hotspots can be predicted on the basis of driving data, and

the results of research into this topic are discussed in the forthcoming section.

6.1.2 Predicting Accident Hotspot Locations

The traditional limitations and challenges associated with analysis of historical ac-

cident records can be potentially overcome by considering variables available from

naturalistic driving data, which are increasingly available in connected, semi-, and

fully-autonomous vehicles from the advanced sensors that enable their modern fea-

tures. By leveraging the technology in these vehicles to detect critical driving events

there is the opportunity to identify areas on the road network with a high level of

traffic accident exposure. Thus, the full 18 week field study, along with the FEDRO

traffic accident and frequency datasets, was utilised in order address the second re-

search objective highlighted in Section 1.2.2, and determine whether it is possible
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to predict the locations of traffic accident hotspots on the basis of driving data and

critical driving events.

As is the case in many countries, in Switzerland traffic frequency measurements are

only available at limited locations across the road network, therefore accurate acci-

dent exposure analysis is restricted to these areas. Thus, in order to first investigate

the relationship between Crash Rate and naturalistic driving data, both the traffic ac-

cident and field study real-time sensor datasets were sampled to only include data

collected within 1 km2 of the 192 traffic counting stations. At each of these locations,

the frequency of traffic accidents occurring during the field study was normalised

by the average daily traffic (ADT) of the same period to generate the Crash Rate de-

pendent variable. Furthermore, post-processing identified heavy jerk events from

the field study vehicles, along with the number of times each location was driven

through, in order to investigate the first research question from Section 5.1.1:

RQ 2a To what extent can the Crash Rate of a location be predicted by CDE infor-

mation from that location, assuming that Crash Frequency and ADT data are

available?

To answer this research question, the jerk rate dependent variable was generated

by normalising the number of jerk events by the number of trips through each lo-

cation, and six different models were iteratively generated using negative binomial

regression to test the robustness of the results. Each of these successive models in-

creasingly restricted the locations that were modelled based on a minimum number

of trips that the field study fleet had to have been determined to have made in the

surrounding area. Based on these analyses the following key finding is highlighted:

There is a proportional relationship between the Crash Rate and the Jerk Rate

of vehicles driving through an area. Throughout each of the six models that were

assessed the coefficient for the Jerk Rate falls within a similar range and is highly

significant. Furthermore, the null hypothesis that the Jerk Rate of a location does

not explain the Crash Rate is rejected for all models when testing the χ2 values.

Thus, based on the coefficient of the best fitting model, where only locations that

had been visited more than 15 times by the field study fleet were considered, the

results of this thesis indicate that a 3.7 % increase in the Crash Rate of a location

can be expected with a 10 % increase in the Jerk Rate. Additionally, as model fit

generally increased when only grids with a higher number of transits by the utilised

fleet were considered for analysis, the results also demonstrates that with more trips

the measure of Jerk Rate becomes more representative of the population Crash Rate.
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For both research and practice, if this relationship is validated by future studies,

then heavy jerk events may be determined to be a suitable surrogate for traffic ac-

cidents when assessing the impact of new vehicles and safety related systems. In

the near future, the presented approach of measuring critical driving events may

form the basis to develop procedures for the assessment of the advanced features

of semi- and fully-autonomous vehicles. Since an evaluation based on rarely oc-

curring traffic accidents will naturally take a substantial amount of time, access to

technology to measure these events could be considered crucial for the approval and

insurance of such systems before they are permitted on the road network. Further-

more, the ability to consider the variables collected from naturalistic driving studies

as a surrogate for accident risk and Crash Rate may form the basis for differentiat-

ing between the capabilities of different vehicles and the software powering their

autonomous functions. In the same way that automotive manufacturers allow ac-

cess to their vehicles’ inner sensors to provide fuel efficiency measures, policy mak-

ers might consider mandating the sharing of the location and frequency of heavy

jerk events incurred while driving. Access to this information would both enable

the safety assessment and comparison of these vehicles and their modern systems,

along with potentially providing road authorities new variables that may revolu-

tionise traffic accident analysis.

However, one of the aforementioned limitations of traffic accident analysis includes

the limited availability of traffic frequency measures, i.e average daily traffic, and

the lack of data coverage restricts the generation of the Crash Rate variable across

the road network. It is therefore important to consider in accident analysis the more

common situation, where only the Crash Frequency can be leveraged for the whole

road network as a dependent variable. Nevertheless, reliably assessing Crash Fre-

quency on the basis of driving data comes with its own challenges, and the relation-

ship between the traffic frequency of the utilised vehicle fleet (TFSit) and the total

traffic frequency of the population (TFPit) should be known for each location. Thus,

the assumption that the fleet driving behaviour was representative of that of the

global population was tested at the locations where ADT data was available, and

led to the second key finding in this section:

The number of trips made by the connected fleet in the field study has a propor-

tional relationship with the population traffic frequency. By generating negative

binomial regression models that increasingly limited the considered locations by the

number of field study fleet trips, evidence is provided of a well-defined relationship

between the number of these trips and the ADT of locations. The results indicate

that the representative fleet assumption can be fulfilled by a road assistance fleet,
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such as the one used in this field study, and that there is a minimum number of trips

that should be made through a location before this relationship becomes stable and

an assessment of road safety should be made. For research, this offers a new vari-

able to potentially act as a proxy for the rarely available traffic frequency data, and

in practical settings, rather than recruiting and collecting data from typical drivers

within the general population, it may be easier for interested parties to use or partner

with a professional fleet. Once the assumption that the fleet in the field study was

representative of the population had been validated, the second research question of

Section 5.1.1 could be investigated:

RQ 2b To what extent can the Crash Frequency of a location be predicted by CDE

information from that location, assuming we have sparse data coverage (only

Crash Frequency information is available) and a well-defined relationship be-

tween TFSit and TFPit, i.e. a ‘representative’ fleet?

In order to answer this question, models were developed to estimate Crash Fre-

quency both on the sub-sample of locations where traffic frequency measurements

were available, and then across the majority of the Swiss road network utilising spa-

tial regression techniques. These sets of analysis led the final key finding of Chap-

ter 5:

There is a proportional relationship between the Crash Frequency and both the

fleet trip frequency and the Jerk Rate of vehicles driving through an area. Fol-

lowing the approach of the prior sets of analysis, these relationships were initially

modelled using negative binomial regression. In each of the six models the coeffi-

cient of both the jerk rate and trip frequency of the fleet are significant, and the null

hypotheses that neither variables explain the Crash Frequency are rejected when

testing the χ2 values. From this, and with vehicles that satisfy the ‘representative

fleet’ assumption, it can be concluded that Crash Frequency can be estimated from

naturalistic driving data, and an approximation made for the Crash Rate exposure

measure from the coefficient and equations presented in Section 5.4.3. The robust-

ness of these relationships were then tested by a considering the more practical case,

where such analyses would typically be conducted over a whole country, rather than

on a small subset of grids where traffic frequency information is available. As such,

the results of the spatial regression, covering over 4000 km2 of the Swiss road net-

work, highlight the importance of controlling for spatial lag and error effects, as well

as how including explanatory variables for urban and highway locations impacted

the Crash Frequency and improved model fit when included in the analyses.

As such, the study at hand provides first insights into a nationwide approach for
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utilising naturalistic driving data to overcome the challenges faced by traditional

traffic accident analysis. The analyses presented form a concrete starting point for

both research and practice to consider critical driving events as a surrogate for rarely

occurring traffic accidents. However, while it can be demonstrated that there is a

proportional relationship between heavy jerk events and the frequency of traffic ac-

cidents at the 1 km2 grid based level, in practice this may not be sufficient to take

action on specific infrastructure challenges or to provide the safety-focused services

previously discussed. For such use-cases, future research should consider exploring

the benefits of using either smaller grids, conceivably down to the level of 100 m in

urban areas, or map-matching both the driving data and the traffic accidents to a

representation of the road network.

Overall, a thorough search of the relevant literature indicates that this is the first

work to incorporate a national level traffic accident and traffic volume dataset cov-

ering the same period as a nationwide naturalistic driving field study. Utilising

these datasets, the results of this thesis demonstrate that, on a sub-sample of data

where average daily traffic measurements were available, the rate of high jerk events

of vehicles has a proportional relationship with the Crash Rate of the population.

Since traffic frequency measures are expensive to collect and rarely available over

the whole road network, it was further shown that the number of trips made by

the connected fleet in the field study has a proportional relationship with the pop-

ulation traffic frequency. From this, this thesis further modelled Crash Frequency

with the rate of high jerk events and the number of trips made by the fleet. Finally,

spatial regression analysis was applied on Crash Frequency across locations cover-

ing the majority of the Swiss national road network, and highlights the relationship

with the rate of high jerk events and fleet traffic frequency, along with urban and

highway explanatory binary variables for these locations.

6.2 Limitations and Research Outlook

The promising findings and implications of this thesis should be considered in the

light of the challenges of the research setting, and as discussed in Sections 4.5 and 5.5

respectively, the field study at the core of this thesis and the two set of analysis

performed share several limitations. This section revisits the previously mentioned

challenges while additionally highlighting other limitations of the thesis, and in-

cludes discussions on the future work that should be conducted to address these

issues and advance the research topics in the future.
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Firstly, an important key weakness of the field study that was conducted and pre-

sented in this thesis is the homogeneity of the researched sample. Out of the 72 par-

ticipants taking part in the field study just one was female, and all were professional

drivers. Moreover, when considering the sub-sample of 57 drivers who took part in

the experimental phase for assessing the impact of the in-vehicle accident hotspot

warning system, all were male. Their profession means that they are typically ex-

pected to be more experienced and demonstrate safer driving behaviour than other

road users, thus this sample may not be easily generalisable to regular drivers. How-

ever, the proficiency of the sample of drivers, implies that the effect of the in-vehicle

warning solution may have been dramatically underestimated, as there is poten-

tially greater opportunity to improve driving behaviour for more regular drivers.

Furthermore, with regard to the potential of naturalistic driving data to predict acci-

dent hotspots, the relationships between the various measures of road perilousness

and critical driving events may be more pronounced when collecting data from less

proficient drivers. Finally, while the overall sample size of the study was larger than

comparable work (Pande et al., 2017; Zhang, Suto, and Fujiwara, 2009), the total

number of drivers participating could be increased in future research, and the length

of both the 18 week field study and 4 week experimental phase extended. Overall, in

order to improve the reliability and generalisability of the results for both research

objectives, future studies that wish to develop and validate this work should make

use of a larger and more diverse sample of drivers, as well as measure the behaviour

of drivers for a longer length of time.

A second common limitation shared by the two studies stems from the lack of a

clear and common operationalisation of dangerous or ‘near-miss’ driving behaviour,

for example heavy braking and other critical driving events. While there are many

thresholds suggested in the related literature for heavy braking and jerk values, as

well as other methods to identify and measure safe driving behaviour, in this early

stage just one threshold was considered in order to generate each of the dependent

variables. In a similar way, both researchers and practitioners should apply the mod-

els presented in this thesis with an element of caution. For example, with regards to

the results of the spatial prediction of accident hotspots, transferring and applying

these models to other locations outside of Switzerland may not be a trivial task based

on the varying driving behaviour displayed across different cultures. In the majority

of European countries, the United States, and Canada the road usage culture is typ-

ically calmer, steadier, and more respectful than might be experienced on a road in

China, many Middle-Eastern countries, or northern Africa (Herrmann, Brenner, and

Stadler, 2018). As such, the presented relationship between the locations of heavy
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braking events and traffic accidents may well be very different in regions of the

world displaying a more organic and chaotic approach to the mixing of pedestrian

with vehicles than the stop-and-wait culture that can be seen in Switzerland. Thus,

in order to gain greater and more accurate insights into road safety there is a strong

need to develop clear operationalisations of driver safety variables, and reliably val-

idate these for multiple vehicle and driver demographics, on various different road

types across the world.

With regard to the specific studies of this thesis, the investigation into predicting the

perilousness of locations through naturalistic driving data in Chapter 5 has several

additional limitations that encourage future research on this topic. Firstly, following

the methodology of similar studies, the spatial analyses considered a grid-based ap-

proach of 1 km2 unit cells to combine and measure the traffic accident and jerk event

frequency across Switzerland (Kim, Brunner, and Yamashita, 2006). This approach

comes with many advantages, including the ease of implementation and interpreta-

tion of the results, along with well defined strategies to capture the spatial effects,

such as the contiguity weights that were utilised in this thesis. However, while the

approach potentially provides actionable insights in rural and highway locations,

the cell size of 1 km2 might not create results that can be employed in urban areas

where road infrastructure is more densely located. In order to more accurately pin-

point dangerous locations on the basis of driving data, future work could consider

either applying smaller cell sizes across the road network, or utilising clustering

techniques on the traffic accident locations that fall within specific cells of interest.

A second consideration for future research could be analysing the spatial point data

in alternative ways, in particular, map-matching traffic accidents, trips, and critical

driving events onto a representation of the road network could provide more appli-

cable results, especially for practitioners (Pande et al., 2017).

Furthermore, the work surrounding the in-vehicle accident hotspot warnings and

their effect on driver behaviour in Chapter 4 is geared towards the development

and validation of an innovative artefact. In accordance with this goal and in con-

formance with latest discussions in the scientific community (Von Alan et al., 2004),

the chapter does not focus on theory, and future research should cover theoretical

models of human behaviour to further increase generalisability of the findings. It

also important to note that visual warnings of accident hotspots are just one type

of feedback than can be provided by such a system. Due to the limitations of us-

ing a smartphone-based approach, and the inability to detect if drivers had disabled

the audio of the device, only the visual warning was considered in the work pre-

sented in this thesis. Future studies should consider extending existing research and
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investigate the impact on driver behaviour and the preference of participants with

regard to warnings delivered through tactile, audio, and visual feedback, and the

combination of these, in a naturalistic setting. Furthermore, modern technological

advances regarding the capabilities of the dashboard of modern vehicles and heads-

up displays enable even more innovative approaches to accident hotspot warnings.

Recent studies have shown the benefits of augmented reality systems in simulation

experiments, which if validated in a naturalistic setting, could have the potential to

improve accident hotspot warnings by better conveying spatial information about

the location (Schwarz and Fastenmeier, 2017; Schwarz and Fastenmeier, 2018).

Finally, the in-vehicle warnings presented benefited from the detailed situational in-

formation recorded in the FEDRO reports, whereas outside of Switzerland similar

data collection procedures are rarely standardised across a whole country. Various

studies have shown that a general warning sign with limited information can still

improve driver behaviour, and so both accident and naturalistic driving hotspots

could be warned of in countries without such detailed accident accounts. However,

users have previously reported that they generally preferred to receive more contex-

tual warnings (Naujoks and Neukum, 2014a). If insurances, automotive manufac-

turers, and other industry players wish to offer such a warning service, then auto-

matically and accurately classifying the identified accident hotspot locations without

detailed situational accident reports might be a beneficial topic to explore in future

research. Methods to generate insights into the underlying challenges of these area

could include infrastructure recognition through satellite imagery or LIDAR data of

the hotspots, or alternatively ‘dash-cam’ videos captured by vehicles themselves as

they cross these locations (Gahr et al., 2018a).

To summarise, the research presented in this thesis contributes to creating a foun-

dational starting point for a variety of future studies and developments, both in re-

search and in practice, that focus on the large-scale assessment of road safety on the

basis of driving data, and improving driver behaviour through in-vehicle warnings.

For practice, these insights can facilitate the accident analysis work of road authori-

ties and the implementation of in-vehicle warning services of automotive manufac-

turers and insurers, along with encouraging the field deployment of systems that

can collect naturalistic driving data from fleet vehicles. The insights additionally

demonstrate for researchers the importance of conducting longitudinal field assess-

ments to validate the promising findings of ‘lab-based’ experiments, open up a new

set of dynamic variables for traffic accident analysis, and provide a concrete starting

point for promising follow-up studies. Furthermore, the in-vehicle system that was

developed to in parallel collect naturalistic driving data from vehicles and provide
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real-time feedback through the smartphone interface to the drivers has proven to

be a robust and stable research tool that provided rich naturalistic driving insights.

With the growing popularity of smartphone turn-by-turn navigation applications,

along with the emergence of driver assistance and insurance ‘driver scoring’ appli-

cations, such a retrofit smartphone solution might offer a platform to explore ad-

ditional questions and theories related to both road safety and improving driver

behaviour.

6.3 Conclusion

While the importance of preventing traffic accidents is not a new topic, without the

continuous research of transportation scholars, road authorities, and automotive

manufacturers and insurers into the different approaches and insights that could

improve the situation, these accidents will continue to remain the primary cause of

death by injury worldwide. The advent of autonomous vehicles brings the promise

of a new era of traffic safety, where ultimately the threat of road accidents may po-

tentially be drastically reduced or eliminated entirely. However, even in the most

advanced markets, it may take decades to make this vision a reality, and in the mean-

time alternative options must be explored into how road safety can be dramatically

improved if the steady increase in traffic accidents is to be reversed. With connected

and semi-autonomous vehicles becoming increasingly common on our road net-

works, and the data available from the technology and sensors within these modern

vehicles increasing in quality and quantity, traditional model-based approaches of

accident prediction and exposure can start to be enhanced with the crowd-sourcing

and real-time collection of data from these vehicles. Furthermore, the latest lab-

based studies provide promising evidence that in-vehicle warning systems of dan-

gerous locations can have positive effects on collision avoidance and driver safety,

yet the benefit of real world location analytics on traffic accident hotspots as a source

for these warnings had not been previously considered. As such, this thesis has

presented results from the field assessment of in-vehicle warnings generated from

the historical locations of traffic accidents and the impact these had on driving be-

haviour, along with insights into the potential of naturalistic driving data and critical

driving events to predict accident hotspots.

Overall, if new data-powered road safety services are to be realised, and the growing

opportunity to exploit active loss prevention business models explored, then auto-

motive manufacturers and insurers will need to build upon an accurate knowledge

of dangerous locations on the road network. The research at hand demonstrates that
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this knowledge will be further enabled by the growing popularity and advanced

features of connected, semi-, and fully-autonomous vehicles in the coming decades,

and the presented approach empowers those with access to data from these vehicles

to rapidly identify areas of high accident exposure. Thus, with the increasing col-

lection of driving data from almost every vehicle, automotive manufacturers, phone

service providers, and insurance companies are set to become the gate keepers to

highly accurate estimations of traffic and safety levels on our roads. Nonetheless,

without a collaborative approach to data sharing, especially with regards to traffic

frequency estimates, it may be hard to obtain a true picture of real-time road safety

from critical driving events and fully realise the benefits that this knowledge can

bring. Therefore, when determining suitable traffic safety approaches and strate-

gies, it becomes vital for policy makers to understand the new capabilities and the

reliance of findings from recent automotive technology advances, and to consider

how the data from these vehicles can be best used for the benefit of all.

Ultimately, the insights of this thesis show that the exploration of naturalistic driv-

ing data holds great promise to combat the traditional challenges of traffic accident

analysis and identify accident hotspots on our road networks without relying on his-

torical crash data. The results further demonstrate how in-vehicle warnings of acci-

dent hotspots can improve driver behaviour over time by encouraging awareness of

upcoming road challenges, offering the opportunity of a cost-effective, scalable, and

dynamic approach to promoting safer driving on our roads. This data-powered per-

spective to road safety should encourage the collaboration between road authorities

and the many players in the automotive industry. Together, they have the unrealised

potential to determine existing and newly arising locations of high accident proba-

bility, and the power to intervene through in-vehicle warnings and other methods

in order to prevent traffic accidents from occurring.
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FIGURE A.1: FEDRO Police Accident Report Form - Page 1
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FIGURE A.2: FEDRO Police Accident Report Form - Page 2
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FIGURE A.3: FEDRO Police Accident Report Form - Page 3
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FIGURE A.4: FEDRO Police Accident Report Form - Page 4
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Sign Image English Text German Text

Dangerous Crossroad Gefährliche Kreuzung

Dangerous Junction Gefährliche Einmündung

Disregarding Right of Way Vortritt wird missachtet

Rear-end Collisions Auffahrunfälle

Control Speed Auf Geschwindigkeit achten

Swerving Accidents Schleuder- und Selbstunfälle

Control Speed Auf Geschwindigkeit achten

Dangerous Roundabout Gefährlicher Kreisel

Control Speed Auf Geschwindigkeit achten

Disregarding Right of Way Vortritt wird missachtet
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Sign Image English Text German Text

Dangerous Curve Gefährliche Kurve

Control Speed Auf Geschwindigkeit achten

Disregarding Right of Way Vortritt wird missachtet

Parking Accidents Parkierunfälle

Disregarding Right of Way Vortritt wird missachtet

Caution Bikes Auf Zweiräder achten

Caution Cyclists Auf Fahrräder achten

Caution Motorbikes Aur Motorräer achten

Danger Changing Lanes Gefahr bei Fahrstreifenwechsel

Control Speed Auf Geschwindigkeit achten
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Sign Image English Text German Text

Caution Pedestrians Auf Fussgänger achten

Dangerous Pedestrian Crossing Gefährlicher Fussgängerstreifen

Disregarding Right of Way Vortritt wird missachtet

Caution Trucks Auf Lastwagen achten

Caution Animals Auf Tiere achten

Caution Trains/Trams Auf Zug/Tram achten

Dangerous Railroad Crossing Gefährlicher Bahnübergang

Disregarding Right of Way Vortritt wird missachtet

Dangerous Railroad Crossing Gefährlicher Bahnübergang

Disregarding Right of Way Vortritt wird missachtet
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Sign Image English Text German Text

Caution Dangerous Area Achtung gefährliche Stelle

Disregarding Right of Way Vortritt wird missachtet

Caution Buses Auf Busse achten

Disregarding Right of Way Vortritt wird missachtet

Disregarding Traffic Light Ampel wird missachtet

Dangerous Tunnel Gefährlicher Tunnel
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