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Abstract This paper presents a real-time vision based algorithm for 5 degrees-of-
freedom pose estimation and set-point control for a Micro Aerial Vehicle (MAV).
The camera is mounted on-board a quadrotor helicopter. Camera pose estimation
is based on the appearance of two concentric circles which are used as landmark.
We show that that by using a calibrated camera, conic sections, and the assumption
that yaw is controlled independently, it is possible to determine the six degrees-of-
freedom pose of the MAV. First we show how to detect the landmark in the image
frame. Then we present a geometric approach for camera pose estimation from the
elliptic appearance of a circle in perspective projection. Using this information we
are able to determine the pose of the vehicle. Finally, given a set point in the image
frame we are able to control the quadrotor such that the feature appears in the
respective target position. The performance of the proposed method is presented
through experimental results.
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1 Multimedia Material

Please note that this paper is accompanied by a high definition video which can be
found at the following address: http://www.youtube.com/watch?v=SMFR2aFR2E0.

Further videos can also be found on http://www.youtube.com/sflyteam.
In this video, the algorithm described in this paper is used for automatic take-

off, hovering, and landing of a small quadrocopter (Fig. 1). The navigation part is
performed using another approach which is described in [1]. In the video, you can
also see the landmark described in this paper, composed of two concentric black and
white circles (Fig. 1). The rectangular box surrounding the landmark denotes the
search area used to speed up the tracking of the landmark. The detection, conversely,
is done using the entire image. The cables visible are used for streaming the images
to the laptop and for securing the helicopter during flight.

Fig. 1 The helicopter used in our experiments and the circular blob utilized to estimate the position
and orientation of the helicopter. (Top) The appearance of the blob before take-off. (Bottom) After
take-off

http://www.youtube.com/watch?v=SMFR2aFR2E0
http://www.youtube.com/sflyteam
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2 Introduction

In this paper, we describe a real-time vision based pose estimation algorithm and a
set-point control strategy for a quadrotor helicopter. As we use a single camera, the
pose must be determined by the appearance of a known shape object in the camera image.

Because of the high processing power restrictions and due to the high frequency
of the control updates needed to stabilize the helicopter, we focus on the implemen-
tation of an efficient feature detection and pose estimation algorithm. Furthermore,
the algorithm should be robust to view point and illumination changes, motion blur,
and occlusions. As will be shown, the framework we developed is able to control the
quadrotor in hovering robustly.

This paper is organised as follows. In Section 3 the related work is presented.
Section 4 describes the feature detection algorithm. The computation of the pose and
the visual servoing algorithms are described in Sections 5 and 6. The experimental
results are presented in Section 7 while the conclusions are given in Section 8.

3 Related Work

In computer vision, the problem of estimating the 6 Degrees-of-Freedom (DoF) mo-
tion of a camera from a set of known 2D-3D point correspondences is known as the
Perspective-n-Point (PnP) problem [2], where n is the number of 3D points which
are used to estimate the pose of the camera. By knowing the exact relative position
of the points, this problem can be solved from a minimum of 3 points; however at
least 4 points are actually required to avoid ambiguities. Some applications of point
based flight control for MAVs have been reported by [3] and [4]. Other kinds of
camera pose estimation methods rely on line correspondences [5–7] or constrained
lines [8, 9], while others use closed shapes like rectangles or circles [10–13]. The
main drawback of PnP and line based approaches is however their high sensitivity
to image noise and motion blur. As an example, a few pixel error reflects onto a
position error of several centimeters or decimeters (depending on the distance to the
object) with bad effects on the stability of the MAV. Furthermore, point occlusions
and wrong point correspondences make the task even harder.

For the purpose of controlling a micro flying robot, appearance based visual
servoing approaches have been also used [3]. For our application, we chose a circular
landmark. A circle is indeed straightforward to detect and the estimation of its
parameters can be done quite robustly even in presence of partial occlusions or blur.
By exploiting the fact that a circle is mapped onto an ellipse in the camera frame, we
developed a geometric and intuitive approach for estimating the pose of the camera.
As will be also shown, by using two concentric circles instead of just one makes it pos-
sible to disambiguate the multiple solutions of the problem and determine the pose of
the camera in 5 DoF, which is actually enough to stabilize and control our helicopter.

4 Feature Detection

The approach described in this section is a complete framework to calculate the 5
DoF pose of a camera from the appearance of two concentric circles in the image
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Fig. 2 Ray bundle outgoing
from the camera C to the
circle’s contour points forms
an oblique circular cone

frame. The landmark we used is composed of two concentric circles (the smaller one
is white while the other one black).

The algorithm starts by an adaptive image thresholding which classify pixels into
black and white. Next it computes all connected pixel components. Finally some
criteria, like image moments, are used to identify the landmark (see later).

If we look at the circle from a viewpoint not lying on its normal axis, the circle will
appear as an ellipse whose parameters can be calculated. In addition the ray bundle
outgoing from the camera optical center to the circle contour points form the shell
of an oblique circular cone (Fig. 2). Considering the ellipse parameters, conic section
theory and the position of the ellipse in the image frame, we can determine how much
the camera coordinate system is tilted with respect to the world coordinate system.

A concentric smaller circle is needed to disambiguate between the two possible
solutions of the problem. It also allows us to compute the xy coordinates of the
vehicle with respect to a set point in the image frame. By knowing the size of the
cirle, we can also calculate the height of the camera above the circle. Finally, given
a set point, the quadrotor can be controlled with a LQG-LTR approach in a stable
mode.

4.1 Feature Detection Algorithm

In this section, we describe how we identify our elliptical features (blobs).
The detection algorithm is based on a growing of interest regions approach. First,

from each row of the image we extract so-called line blobs. A line blob is defined
as a sequence of pixels where the intensity value of each pixel lies in the range
[thresl, thresh]. The goal is to set the thresholds such that the intensity values of
the black circle are within this range while those of the white circle and the white
background are not.
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As described in Algorithm 1, the frame is analyzed row-wise pixel by pixel. If the
threshold check for a pixel in the i-th row and in the j-th column returns true, the
start column cols is set equal to j. Then the algorithm increments j until a pixel does
not satisfy the threshold check. The end of the line blob cole is set equal to j − 1.
The data is stored in a map imgData whose elements are vectors with elements like
(cols, cole). In a second step, every line blob is checked neighboring blobs, in which
case the two will be fused into a single blob. In contrast to the one dimensional line
blob, a blob is two dimensional. The scanning process let a blob grow by including
the line blob which is touching the blob. At the end of the inspection procedure, we
get a number of isolated regions whose intensity values are in [thresl, thresh].

We now have to select the blob which corresponds to the appearance of the black
circle. Because the feature we are searching for has an elliptical shape, we consider
scale invariant image moments up to third order. The raw moments are calculated by
iterating through n lines of the respective blob where they are first initialized to zero
and afterwards updated as follows:

M00 =
n∑

f y=1
f x2 − f x1

M10 =
n∑

f y=1

f x2 + f x1

2

(
f x2 − f x1

)

M01 =
n∑

f y=1

y
(

f x2 − f x1
)

M11 =
n∑

f y=1

y f x2 + f x1

2

(
f x2 − f x1

)
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M20 =
n∑

f y=1

2 f x3
2 + 3 f x2

2 + f x2

6
− 2 f x3

1 − 3 f x2
1 + f x1

6

M02 =
n∑

f y=1
f y2 (

f x2 − f x1
)

M30 =
n∑

f y=1

(
f x2

f x2 + 1
2

)2

−
( (

f x1 − 1
) f x1

2

)2

M03 =
n∑

f y=1
f y3 (

f x2 − f x1
)
.

Where f x1 and f x2 are respectively the minimum and maximum horizontal coor-
dinate of the respective line with vertical coordinate f y. The central moments are
obtained by the well known relations (see [14]):

μ00 = M00

μ10 = 0

μ10 = 0

μ20 = M20 − f xM10

μ02 = M02 − f yM01

μ30 = M30 − 3 f xM20 + 2 f x2 M10

μ03 = M03 − 3 f yM02 + 2 f y2 M01

where f x and f y are the centroid coordinates of the respective blob. The scale
invariant moments are obtained by applying:

ηij = μij

μ

(
1+ i+ j

2

)

00

.

As a matter of fact, the third order moments of an ellipse are zero and the
normalized area (Eq. 1) of the ellipse represented by the invariant moments is equal
to 1 for a perfect ellipse. Furthermore, we calculate the perimeter (Eq. 2) of the
ellipse represented by the raw moments [15].

Am = 4π

√
η02η20 − η2

11 (1)

Pm = π (am + b m)

⎛

⎝1 + 3λ2
1

10 +
√

4 − 3λ2
1

⎞

⎠ (2)
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where

φm = 1
2

arctan
(

2μ11

μ20 − μ02

)

C1 = 8 · M11 − f x · f y · M00

M00 sin (2φm)

C2 = M00 cos (φm)2

C3 = M00 sin (φm)2

C4 = 4
(
M20 − x2 M00

)

am =
√

C4 + C1C3

C2 + C3

b m =
√

C4 − C1C2

C2 + C3

λ1 = am − b m

am + b m

δ1 = μ20 + μ02

2
+

√
4μ2

11 + (μ20 − μ02)
2

2

δ2 = μ20 + μ02

2
−

√
4μ2

11 + (μ20 − μ02)
2

2

ε =
√

1 − δ2

δ1

Finally, our two-concentric-circle based feature is accepted as correct if it satisfies
simultaneously the following conditions, whose parameters were found empirically:

1. M00 of the black blob bigger than a given threshold
2. Am of the black blob in a given range
3. Am of the white blob in a given range
4. difference between ε of the black and ε of the white blob in a given range
5. η30 and η03 of the black blob smaller than a threshold
6. ratio of M00 of the black blob and M00 of the white blob in a given range

If the threshold for the criteria are set properly, the algorithm will not detect a
false positive in a natural scene. Once the landmark is detected, we restrict the search
to a rectangular region around the last position in order to speed up the algorithm
(see the bounding box shown in the a video described at the beginning of this paper).

4.2 Calculating Ellipse Parameters

Once the two concentric circles—which may appear as ellipses in the projec-
tion plane—are detected, n contour points f (x, y) of the outer black circle are
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transformed into n three dimensional vectors cx j (where j = {1 . . . n}) representing
the directions of appearance of the respective pixels (Fig. 2). They are stored in a
M3×n matrix whose column entries corresponds to cx j. The cx j are computed by using
the camera calibration toolbox described in [16, 17]. The obtained cx j represent the
shell of a virtual oblique circular cone which is illustrated in Fig. 2.

A rotation matrix R is composed (Eq. 4), such that the average vector (Eq. 3)
satisfies the condition (Eq. 5). Due to the fact that we only know the directions of
appearance, we need to normalize them such that they all have the same z coordinate
α0 which is the zeroth-order coefficient of the camera calibration coefficients.

cxi =
∑n

j=1 Mij

n
, i = {1, 2, 3} (3)

α = −atan2 (cx2,−cx3)

β = −atan2 (cx1,−cx2 sin α − cx3 cos α)

R1 =
⎡

⎣
1 0 0
0 cos α − sin α

0 sin α cos α

⎤

⎦

R2 =
⎡

⎣
cos β 0 − sin β

0 1 0
sin β 0 cos β

⎤

⎦

R = R2 R1

(4)

[
0 0 z0

]T = R cx (5)

M̂ = R M (6)

Nij = M̂ij

M̂3 j

α0,
i = {1, 2, 3}
j = {1 . . . n} (7)

The x and y coordinates of the j normalized contour points (Eq. 7) represent the
intersections of cx j with a plane normal to cx through c (0, 0, α0) (Eq. 8). Therefore
we introduce the coordinate system of the ellipse plane denoted e with origin in
c (0, 0, α0).

e p j
i = Nij,

i = {1, 2}
j = {1 . . . n} (8)

The e p j describe an ellipse which is defined by an implicit second order polynomial
(Eq. 9). The polynomial coefficients are found by applying a numerically stable direct
least squares fitting method [18] on

F (x, y) = ax2 + b xy + cy2 + dx + ey + f = 0 (9)

with an ellipse specific constraint

b 2 − 4ac < 0.
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The a, b , c, d, e, f are the ellipse parameters and e (x, y) are the coordinate points
obtained by the normalization procedure above. The result of the least squares fitting
are two vectors

a1 =
⎛

⎝
a
b
c

⎞

⎠ , a2 =
⎛

⎝
d
e
f

⎞

⎠

containing the parameters which satisifes the least squares condition.
The conic section equation (Eq. 9) can be transformed with the substitution

x = u cos φ − v sin φ

y = u sin φ + v cos φ

and the well known definition

tan 2φ = b
a − c

into a form where the cross coupled terms disappear. In a geometric meaning this is
a derotation of the ellipse such that the main axis is parallel to the x axis.

F (u, v) = Au2 + Bv2 + Cu + Dv + E = 0

A = c + b
2 tan φ

B = c − 1
2

b tan φ

C = d cos φ + e sin φ

D = −d sin φ + e cos φ

E = f

With the substitution

u = η − C
2A

v = ζ − D
2B

the ellipse is translated to the origin of the coordinate system which yields the form

η2 A + ζ 2 B =
(

C2

4A
+ D2

4B

)
− E. (10)

Dividing Eq. 10 by is right-hand-side we get the well known normalized ellipse
equation

η2

χ2 + ζ 2

ψ2 = 1. (11)
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where

χ =
√

C2 B + D2 A − 4EAB
4A2 B

ψ =
√

C2 B + D2 A − 4EAB
4AB2 .

5 5 DoF Pose Estimation

To estimate the tilt, we introduce an identity matrix I3 which represents the initial
configuration of the camera coordinate system. The goal is to find a rotation matrix
Rc such that wC = Rc I3. The only information available to find Rc is the appearance
of the two circles in the image frame. In the first step, we analyze the ellipticity and
orientation of the ellipse. In a second step, we consider the position of the appearance
of the ellipse.

Considering Fig. 3 and the conic section theory we know that the intersection of
a right elliptic cone with height h and the ellipse (Eq. 11) as base (where χ > ψ)

Fig. 3 Intersection of a right
elliptic cone with a plane P
(whose normal axis lies in the
yz plane and takes an angle γ

w.r.t the xz plane) yields a
circle
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Fig. 4 Considering C in Fig. 2
as the camera view point.
Contour of the outer circle
with the appearance of the
circle’s centre point (a) and
the position of the centre point
in the projection plane (b)

ex

e y

(a) Ellipse plane

p x

p y

(b) Projection plane

with a plane P yields a circle with radius r. The normal axis of P lies in the yz plane
and takes an angle γ with respect to the xz plane. The distance between E and the
intersection plane is n.

cos γ = cos β

cos α
,

α = π/2 − arctan χ/h

β = π/2 − arctan ψ/h
(12)

r = n
χ2

ψh
(13)

h = α0. (14)

For an intuitive geometric interpretation, assume C (in Fig. 3) as the camera single
view point and the base of the circular cone as the physical blob. In this configuration,
the camera lies in the normal axis g of the outer circle, therefore the circle appears
as a circle. Shifting the camera position from g causes the appearance of the circle to
become an ellipse. Considering E as the shifted camera position, the circle appears
as Eq. 11.

For an illustration in more detail, consider Fig. 4a as the obtained ellipse in the
ellipse plane with the appearance of the centre of the inner of the two concentric
circles marked with a black dot. The black dot in Fig. 4b represents the intersection
point of cx with the projection plane as it is illustrated as D in Fig. 7. Note that the
black dot in Fig. 4a does not lie in the centre of the ellipse. This is due to the fact that
the appearance of the physical centre of a circle does not coincide with the centre of
its appearance in a perspective projection. This allows us to distinguish between the
identical solutions φ and φ + π (considering only the shape and orientation of the
ellipse).

The initial situation is showed in Fig. 5 as the data obtained by an observation of
the circle from a position lying in g and the camera coordinate’s xy plane coplanar
with respect to the xy plane of the world coordinate system. The identity matrix I3

represents this initial pose. As the first operation, Eq. 19 is composed as a rotation
around χ with γ . This is shown in Fig. 3 represented by a change of the view point
from C to E. Indeed this is a big issue because of the undefined main axes of a circle
and the fact that Eq. 12 will never be 1 in an attempt. It means that this approach does
not work in practice if the camera lies in g. How to avoid this problem is showed later

Fig. 5 Assuming observing the
circle from an upright position

ex

e y

(a) Ellipse plane

p x

p y

(b) Projection plane
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(a) Ellipse plane (b) Projection plane

ex

e y

p x

p y

Fig. 6 After applying Ra the ellipse in a has its desired shape and orientation. But the optical axis
goes still trough the centre of the appearance (b). A rotation Rb forces the centre to appear in the
desired position showed in Fig. 5b

on. Note that this pose of the camera plane is illustrated in Fig. 6. The centre point
D appears in the optical centre of the projection plane and the ellipse has its desired
shape, orientation and physical centre point position.

To bring D from the position given in Fig. 6b to the one defined by Fig. 4b we
have to introduce an additional operation (Eq. 21) which completes the procedure
by a rotation with δ around s. The axis s is defined as the vertical to OD (the reader
may notice κ as the angle of OD with respect to the ex axis) and Eq. 15 as the angle
between the optical axis and cx.

Now all information given by the obtained data in Fig. 4 is used. The tilt of the
camera coordinate system with respect to the world coordinate system is completely
described by wC = Rc I3 where Rc = Rb Ra (Fig. 7).

δ = arccos
(

cx3

‖cx‖
)

(15)

κ = atan2 (cx2, cx1) (16)

ε = κ − π (17)

Rφ =
⎡

⎣
cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎤

⎦ (18)

Fig. 7 The projection plane is
perpendicular to the optical
axis. The rotation Rb is
defined by the rotation axis s
and the angle δ
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Ra = RT
φ

⎡

⎣
1 0 0
0 cos γ − sin γ

0 sin γ cos γ

⎤

⎦ Rφ I3 (19)

Rε =
⎡

⎣
cos ε − sin ε 0
sin ε cos ε 0

0 0 1

⎤

⎦ (20)

Rb = RT
ε

⎡

⎣
1 0 0
0 cos δ − sin δ

0 sin δ cos δ

⎤

⎦ Rε I3 (21)

The position of the camera optical center in the world coordinate system with
respect to the centre point of the circle can be estimated by first calculating the
height above the circle plane by solving Eq. 13 for Eq. 23. The radius r of the circle
is measured by hand and is the only scale information for the entire process. To
calculate the relative position of the camera with respect to the centre of the circle
in the x and y coordinates of the world coordinate system, a derotation (Eq. 22)
is carried out, such that the configuration of the camera coordinate system and cx̂
can be regarded as if the xy plane of the camera coordinate system is coplanar with
respect to the xy plane of the world coordinate system.

cx̂ = Rb Racx (22)

n = rh
ψ

χ2 (23)

Regarding the blob’s centre point as the origin of the world coordinate system and
co = [0, 0, −1]T as the optical axis, the position of the camera can be expressed as
Eq. 26. The scaling (Eqs. 24, 25, 27) is needed to obtain the position of the respective
points in the xy plane of the world coordinate system.

cõ = n co

co3
(24)

cx̃ = n cx̂

cx̂3
(25)

⎡

⎣
wc1

wc2

wc3

⎤

⎦ =
⎡

⎣
cõ1 − cx̃1

cõ2 − cx̃2

n

⎤

⎦ (26)

Where we considered f
(
rx, ry

)
as the position in the image frame where the feature

should appear. The corresponding three dimensional vector cr represents the desired
direction of appearance. The set point coordinate (Eq. 28) stands for the position of
the camera in the world coordinate system.

cr̃ = n cr

cr3
(27)

⎡

⎣
wq1

wq2

wq3

⎤

⎦ =
⎡

⎣
cõ1 − cr̃1

cõ2 − cr̃2
n

⎤

⎦ (28)
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Fig. 8 Height error w.r.t.
angle, r = 4.5 cm

6 Visual Servoing

The knowledge of the camera and the set point coordinates in the world fixed
coordinate system allows us to control the quadrotor with an observer based LQR-
LTR approach [1]. Since we assume that the yaw is controlled independently (and in
fact this is done by the low level controller of our MAV) we are able to control the
quadrotor in all six degrees of freedom.

As mentioned in Section 5 the calculation of the pose does not work if the camera
is in a up right position of the blob. Assuming the quadrotor to be in a horizontal
pose for hovering (or slightly tilted of very small angles), we can set Rc = I3. This
means that we neglect the tilt of the camera plane. However, experimental results
have shown that this approach is not suitable in this case. Hence, we retrieved the tilt
angle of the MAV from the on-board IMU and filled it directly into the Rc matrix.
By doing so, we were able to control the quadrotor even with non-neglectable tilt
angles.

Fig. 9 Height error w.r.t
nominal height, r = 4.5 cm.
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Fig. 10 Measured height w.r.t. nominal height, r = 4.5 cm. The line represents the ground truth

7 Results

The camera used in our experiments is the uEye camera from IDS with a 60◦ field-
of-view lens. As a first experiment, we evaluated the accuracy of our pose estimation
algorithm.

Measurement errors from a height of 20 cm up to 200 cm with a step size of 20 cm
and a circle radius r = 4.5 cm are shown in Fig. 8. The smallest error is obtained for
the smallest nominal height. The error is positive, linear with respect to the angle of
appearance and, as shown in Fig. 9, also with respect to the height. The angle shown
in the plots is the angle of sight of the blob from the camera point of view. In Fig. 10
the relation of the measured height with respect to the nominal height is plotted.

Fig. 11 RMS of norm of error vector w.r.t height, black blob radius r = 2.75 cm
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Fig. 12 RMS in time plots for
different quadrotor heights h
above the circles plane. The
radius of the black circle is
r = 2.75 cm

The knowledge of this plot allows us to conclude that at higher heights, due to
motion blur and to the smaller appearance of the circle, the circle’s contour is no
longer precisely detectable.

As for the computation time, our algorithm is very quick. On a single core Intel
Pentium M 1.86 GHz the overall algorithm takes 16 ms. The same algorithm was also
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Fig. 13 Trajectory in the xy plane, black blob radius r = 2.75 cm, nominal height h = 80 cm

tested on a Intel Core Duo 3 GHz CPU. Here, the calculation time decreased to a
few milliseconds.

The stability of the LQG-LTR controller approach presented in [1] was tested in
hovering position during 15 s. A landmark with a radius of r = 2.75 cm was placed
on the floor. The set point was set straight above the blob at a desired height h.
We performed the experiment by testing several heights (20, 30, 40, 50, 60, 70, 80 and
90 cm).

In Fig. 11 the RMS value (in centimeters) of the norm of the error vector is plotted
against the height. The higher the camera is, the smaller the blob appears. At high
heights, it is no longer possible to detect the contour of the black circle precisely. This
fact yields uncertainties in the calculation of the pose and introduces noise as visible
from the plot. A bigger blob would attenuate this problem. Indeed, the bigger the
blob, the higher the limit of stable hovering (Fig. 12).

The xy trajectory of the measured position data over time at a nominal height of
80 cm is shown in Fig. 13.

8 Conclusion

In this paper, we presented a full vision based framework to estimate the 5 degrees-
of-freedom pose of a camera mounted on a quadrotor helicopter. As a landmark,
we used two concentric circles. A description of the feature detection algorithm was
given, and we illustrated how to determine the pose of the camera with respect to the
detected blob by considering conic section theory and camera calibration.
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An analysis of the pose estimation errors was made. The behavior of the error
allows us to control the quadrotor with a LQG-LTR controller approach [1]. The
experiments have shown that the quadrotor is able to hover in a range of 20 cm up
to 90 cm if the blob radius is 2.75 cm. The use of a bigger blob results in a higher
operation height.

The analysis of the RMS values for different heights has shown that the quadrotor
is able to hover stably at a given set point. Cycle rate measurements have shown
that the whole framework works also on lower powered systems sufficiently fast and
robustly.
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