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Francesca Da Lio
Fractional Harmonic Maps

Abstract: The theory of α-harmonicmaps has been initiated some years ago by the au-
thor and Tristan Rivière in [8]. Thesemaps are critical points of the following nonlocal
energy

Lαpuq “

ż

Rk
|p´∆q

α
2 upxq|

2dxk , (2.0.1)

where u P 9HαpRk ,Nq, N Ă Rm is an at least C2 closed (compact without boundary)
n-dimensional smooth manifold. In a recent paper [10] we also introduce the notion
of horizontal α-harmonic maps. Precisely, given a C1 plane distribution PT on all Rm,
these are maps u P 9HαpRk ,Rmq, α ě 1{2, satisfying

#

PTpuq∇u “ ∇u inD1
pRkq

PTpuqp´∆q
αu “ 0 inD1

pRkq.

If the distribution of planes is integrable, thenwe recover the case of α-harmonicmaps
with values into a manifold. We will concentrate here to the case α “ 1{2 and k “

1 which corresponds to a critical situation. Such maps arise from several geometric
problems such as for instance in the study of free boundarymanifolds. After giving an
overview of the recent results on the regularity and the compactness of horizontal1{2-
harmonic maps, we will describe the techniques that have been introduced in [8, 9]
to investigate the regularity of such maps and mention some relevant applications to
geometric problems.

2.1 Overview

Since the early 50’s the analysis of critical points to conformal invariant Lagrangians
has raised a special interest, due to the important role they play in physics and geom-
etry.

Themost elementary example of a2-dimensional conformal invariant Lagrangian
is the Dirichlet Energy

Lpuq “

ż

D
|∇upx, yq|

2dxdy , (2.1.1)

where D Ď R2 is an open set, u : D Ñ Rm and∇u is the gradient of u .
We can define the Lagrangian (2.1.1) in the set of maps taking values in an at

least C2 closed n- dimensional submanifold N Ď Rm. In this case critical points
u P W1,2

pD,Nq of L satisfy in a weak sense the equation
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´ ∆u K TuN , (2.1.2)

where TξN is the tangent plane aN at the point ξ P N, or in a equivalent way

´ ∆u “ Apuqp∇u,∇uq :“ ApuqpBxu, Bxuq ` ApuqpByu, Byuq, (2.1.3)

where Apξq is the second fundamental form at the point ξ P N (see for instance [17]).
The equation (2.1.3) is called the harmonic map equation intoN .

In the case whenN is an oriented hypersurface ofRm the harmonicmap equation
reads as

´ ∆u “ 𝜈puqx∇𝜈puq,∇uy , (2.1.4)

where 𝜈 is the unit normal vector field toN .
The key point to get the regularity of the harmonic maps with values into the

sphere Sm´1 was to rewrite the r.h.s of the equations as a sum of a Jacobians. More
precisely Hélein in [17] wrote the equation (2.1.4) in the form

´ ∆u “ ∇KB ¨ ∇u, (2.1.5)

where ∇KB “ p∇KBijq with ∇KBij “ ui∇uj ´ uj∇ui , (for every vector field v : R2
Ñ

Rm,∇Kv denotes the π{2 rotation of the gradient∇v, namely∇Kv “ p´Byv, Bxvqq .
The r.h.s of (2.1.5) can be written actually as a sum of Jacobians:

∇KBij∇uj “ BxujByBij ´ ByujBxBij .

This particular structure permitted to apply to the equation (2.1.5) the following result

Theorem 2.1. [28] Let D be a smooth bounded domain of R2. Let a and b be two mea-
surable functions in D whose gradients are in L2pDq. Then there exists a unique solution
φ P W1,2

pDq to
$

&

%

´∆φ “
Ba
Bx

Bb
By ´

Ba
By

Bb
Bx , in D

φ “ 0 on BD .
(2.1.6)

Moreover there exists a constant C ą 0 independent of a and b such that

||φ||8 ` ||∇φ||L2 ď C||∇a||L2 ||∇b||L2 .

In particular φ is a continuous in D .

In the case of an oriented hypersurfaceN ofRm by using the fact that∇u is orthogonal
to 𝜈puq the equation (2.1.4) can be reformulated as follows

´ ∆ui “

m
ÿ

j“1

´

𝜈puq
i ∇p𝜈puqqj ´ 𝜈puqj ∇p𝜈puqq

i
¯

¨ ∇uj . (2.1.7)
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54 | Francesca Da Lio

Unlike the sphere case there is no reason for which the vector field

𝜈puq
i ∇p𝜈puqqj ´ 𝜈puqj ∇p𝜈puqq

i

is divergence-free. What remains true is the anti-symmetry of the matrix

Ω :“
´

𝜈puq
i ∇p𝜈puqqj ´ 𝜈puqj ∇p𝜈puqq

i
¯

i,j“1¨¨¨m
. (2.1.8)

Actually Rivière in [20] identified the anti-symmetry of the 1-form in (2.1.8) as the es-
sential structure of equation (2.1.4) and he succeeded in writing the harmonic map
system in the form of a conservation law whose constituents satisfy elliptic equations
with a Jacobian structure to which Wente’s regularity result (Theorem 2.1) could be
applied.

Let us now introduce PTpzq, PNpzq the orthogonal projections respectively to the
tangent space TzN and to the normal space pTzNq

K. Then the equation (2.1.2) can be
re-formulated as follows

PTpuq∆u “ 0, inD1
pDq. (2.1.9)

We are going to release the assumption that the field of orthogonal projections is
associated to a sub-manifoldN and to consider the equation (2.1.9) for a general field
of orthogonal projections PT and for horizontal maps u satisfying

PNpuq∇u “ 0, inD1
pDq. (2.1.10)

We will assume that PT P C1pRm ,MmpRqq and PN P C1pRm ,MmpRqq satisfy
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

PT ˝ PT “ PT PN ˝ PN “ PN

PT ` PN “ Im

@ z P Rm @U, V P TzRm ă PTpzqU, PNpzqV ą“ 0

}BzPT}L8pRmq ă `8

(2.1.11)

where ă ¨, ¨ ą denotes the standard scalar product in Rm. In other words PT is a C1

map into the orthogonal projections of Rm. For such a distribution of projections PT
we denote by

n :“ rankpPTq.

Such a distribution identifies naturally with the distribution of n-planes given by the
images of PT (or theKernel of PT) and conversely, any C1 distribution of n-dimensional
planes defines uniquely PT satisfying (2.1.11).

For any α ě 1{2 and for k ě 1we define the space of Hα-Sobolev horizontal maps

HαpRkq :“
!

u P HαpRk ,Rmq; PNpuq∇u “ 0 inD1
pRkq

)

.

Observe that this definition makes sense since we have respectively PN ˝ u P

HαpRk ,MmpRqq and∇u P Hα´1
pRk ,Rmq. Next we give the following definition.
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Definition 2.2. Given a C1 plane distribution PT in Rm satisfying (2.1.11), a map u in
the space HαpRkq is called horizontal α-harmonic with respect to PT if

@ i “ 1 ¨ ¨ ¨m
m
ÿ

j“1
PijTpuqp´∆q

αuj “ 0 inD1
pRkq (2.1.12)

and we shall use the following notation

PTpuq p´∆q
αu “ 0 inD1

pRkq.

When the plane distribution PT is integrable that is to say when

@ X, Y P C1pRm ,Rmq PNrPT X, PT Ys ” 0, (2.1.13)

where r¨, ¨s denotes the Lie Bracket of vector-fields, using Frobenius theorem the plane
distribution corresponds to the tangent plane distribution of a n´dimensional folia-
tion F. A smooth map u in HαpRmq takes values everywhere into a leaf of F that we
denote Nn and we are back to the classical theory of harmonic maps into manifolds.
Observe that our definition includes the case of α-harmonic maps with values into
a sub-manifold of the euclidean space and horizontal with respect to a plane distri-
bution in this sub-manifold. Indeed it is sufficient to add to such a distribution the
projection to the sub-manifold and extend the all to a tubular neighborhood of the
sub-manifold.

In [10] we have proved the following result

Theorem 2.3 (Theorem 2.1, [10]). Let PT be a C1 distribution of planes (or projections)
satisfying (2.1.11). Any map u P H1

pDq

PTpuq ∆u “ 0 inD1
pDq (2.1.14)

is in Xδă1C0,δloc pDq.

The main idea to prove Theorem 2.3 is to show that u satisfies an elliptic Schrödinger
type system with an antisymmetric potential Ω P L2pRk ,Rk b sopmqq (whose con-
struction depends on PT) of the form

´ ∆u “ Ω ¨ ∇u. (2.1.15)

Hence, following the analysis in [20] the authors deduced in dimension 2 the local ex-
istence on a diskD of A P L8

XW1,2
pD, GlmpRqq and B P W1,2

pD,MmpRqq, depending
both on PTpuq, such that

div pA∇uq “ ∇KB ¨ ∇u (2.1.16)

from which the regularity of u can be deduced using Wente’s Theorem 2.1.2.1

2.1 We denote by sopmq the space of antisymmetric matrices of order m and by GLm the space of
invertible matrices of order m.

Bereitgestellt von | ETH-Bibliothek Zürich
Angemeldet

Heruntergeladen am | 10.12.18 18:30



56 | Francesca Da Lio

Nowwe turn our attention to an analogous fractional problem in dimension 1. We
consider the following Lagrangian that we will call L´energy (L stands for “Line”)

L1{2
puq :“

ż

R
|p´∆q

1{4u|
2 dx (2.1.17)

within
9H1{2

pR,Nq :“
!

u P 9H1{2
pR,Rmq ; upxq P N for a. e. x P R

)

.

The operator p´∆q
α on R is defined by means of the Fourier transform as follows

{p´∆qαu “ |ξ |
2α û ,

(given a function f , both f̂ and Frf s denote the Fourier transform of f ).
The Lagrangian (2.1.17) is invariant with respect to the Möbius group and it satis-

fies the following identity
ż

R
|p´∆q

1{4upxq|
2dx “ inf

#

ż

R2
`

|∇ũ|
2dx : ũ P W1,2

pR2
`,Rmq, trace ũ “ u

+

.

In [8] we introduced the following Definition:

Definition 2.4. Amap u P 9H1{2
pR,Nq is called a weak 1{2-harmonic map intoN if for

any φ P 9H1{2
pR,Rmq X L8

pR,Rmq there holds

d
dtL

1{2
pπNpu ` tφqq|t“0 “ 0,

where ΠN is the orthogonal projection onN .

In short we say that a weak 1{2-harmonic map is a critical point of L1{2 in 9H1{2
pR,Nq

for perturbations in the target.
Weak 1{2-harmonic maps satisfy the Euler-Lagrange equation

𝜈puq ^ p´∆q
1{2u “ 0 inD1

pRq. (2.1.18)

Let Π´i : S1zt´iu Ñ R, Π´ipξ ` iηq “
ξ

1`η be the stereographic projection from
the south pole, then the following relation between the 1{2 Laplacian in R and in S1

holds:

Proposition 2.5 (Proposition 4.1, [7]). Given u : R Ñ Rm, we set v :“ u ˝ Π´i : S1 Ñ

Rm. Then u P L 1
2

pRq
2.2 if and only if v P L1pS1q. In this case

p´∆q
1
2
S1vpeiϑq “

pp´∆q
1
2
RuqpΠ´ipeiϑqq

1 ` sin ϑ inD1
pS1zt´iuq, (2.1.19)

2.2 We recall that L 1
2
pRq :“

!

u P L1locpRq :
ş

R
|upxq|

1`x2 dx ă 8

)
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Observe that p1 ` sinpϑqq
´1

“ |Π1
´ipϑq|, and hence we have

ż

S1
p´∆q

1
2 vpeiϑqφpeiϑq dϑ “

ż

R
p´∆q

1
2 upxqφpΠ´1

´i pxqq dx for every φ P C8
0 pS1zt´iuq.

From (2.1.19) and the invariance of the Lagrangian (2.1.17) with respect to the trace of
conformal maps in C it follows that a map u P 9H1{2

pR,Nq is weak 1{2-harmonic in R
if and only if v “ u ˝ Π´i P 9H1{2

pS1,Nq is weak 1{2-harmonic in S1.
Indeed v P 9H1{2

pS1,Nq satisfies

𝜈pvq ^ p´∆q
1{2v “ 0 inD1

pS1zt´iuq. (2.1.20)

Consider now the stereographic projection from thenorth poleΠi : S1ztiu Ñ R, Πipξ`

iηq “
ξ

1´η and ũ “ v ˝ Π´1
i “ u ˝

1
z . Since

1
z : Czt0u Ñ Czt0u is a conformal map,

ũ P 9H1{2
pR,Nq is weak 1{2-harmonic in Rzt0u. By applying Proposition 2.2 in [5] (a

singular point removability type result on R) we deduce that ũ is weak 1{2-harmonic
in R and in particular continuous in R. Therefore not only v is weak 1{2-harmonic in
S1 but we deduce that

lim
xÑ`8

upxq “ lim
xÑ`8

upxq and lim
zÑ´i`
zPS1

vpzq “ lim
zÑ´i´
zPS1

vpzq.

Fractional harmonic maps appear in several geometric problems and wemention
some of them below.

1. The first application is the connection between weak 1{2-harmonic maps and
free boundary minimal disks. The following characterization of weak 1{2-harmonic
maps of S1 into sub-manifolds of Rn holds, (see [7] and [18]).

Theorem 2.6. Let u P 9H1{2
pS1,Nq, where N is a n-dimensional closed smooth sub-

manifold ofRm. If u is a nontrivial weak 1{2-harmonicmap, then its harmonic extension
ũ P W1,2

pD,Rmq is conformal and

𝜈puq ^
Bũ
Br “ 0 inD1

pS1q. (2.1.21)

From Theorem 2.6 it follows that ũ is a minimal disk whose boundary lies in N and
meetsN orthogonally, namely its outward normal vector Bũ

Br is othogonal toN at each
point of ũpS1q. Moreover we can deduce the following two characterizations of 1{2-
harmonic maps in the case whereN “ S1 andN “ S2.

Theorem 2.7. i) Weak 1{2-harmonic maps u : S1 Ñ S1 with degpuq “ 1 coincide with
the trace of Möbius transformations of the disk B2p0, 1q Ď R2 .

ii) If u : S1 Ñ S2 is a weak 1{2-harmonic map then upS1q is an equatorial plane and
it is the composition of weak 1{2-harmonic map u : S1 Ñ S1 with an isometry τ : S2 Ñ

S2 .
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58 | Francesca Da Lio

2. Another geometrical application concerns the so-called Steklov eigenvalue problem
that is the first eigenvalue σ1 of the Dirichlet-to-Neumann map on some Riemannian
surfaces pM, gq with boundary BM. In [14] the authors show the following

Theorem 2.8 ( Proposition 2.8, [14]). IfM is a surfacewith boundary, and g0 is ametric
on M with

σ1pg0qLg0pBMq “ max
g
σ1pgqLgpBMq,

where LgpBMq is the lenght of BM, the max is over all smooth metrics onM in the confor-
mal class of g0. Then there exist independent eigenfunctions u1, . . . , un corresponding
to the eigenvalue σ1pg0q which give a conformal minimal immersion u “ pu1, . . . , unq

of M into the unit ball Bn and upMq is a free boundary solution. That is, u : pM, BMq Ñ

pBn , BBnq is a harmonic map such that upBMq meets BBn orthogonally. Hence u|BM is
1{2-harmonic.

3. 1{2-harmonic maps appear in the asymptotics of fractional Ginzburg-Landau equa-
tion, (see [18]) and in connections with regularity of critical knots of Möbius energy
(see [2]).

The theory of weak 1{2 harmonic maps with values into a closed n-dimensional
sub-manifold N has been initiated some years ago by the author and Tristan Rivière
in [8]. Since then several extensions have been considered (see [4, 12, 9]). The main
novelty in the regularity of1{2-harmonicwas the re-formulationof theEuler-Lagrange
equation in termsof special algebraic quantities called 3-terms commutatorswhich are
roughly speaking bilinear pseudo-differential operators satisfying some integrability
by compensation properties.

As in the local case we can consider a plane distribution PT satisfying (2.1.11) and
solutions of

PTpuq p´∆q
1{2u “ 0 inD1

pRq (2.1.22)

under the constraint PNpuq∇u “ 0 inD1
pRq. Maps u P H1{2

pRq satisfying (2.1.22) are
called horizontal 1{2-harmonic maps. One of the main result in [10] is the following
Theorem.

Theorem 2.9. Let PT be a C1 distribution of planes satisfying (2.1.11). Any map u P

H1{2
pRq

PTpuq p´∆q
1{2u “ 0 inD1

pRq (2.1.23)

is in Xδă1C0,δloc pRq.

In [10] conservation laws corresponding to horizontal 1{2-harmonic maps have been
discovered: locally, modulo some smoother terms coming from the application of
non-local operators on cut-off functions, we construct out of PTpuq A P L8

X
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9H1{2
pR, GlmpRqq and B P 9H1{2

pR,MmpRqq such that

p´∆q
1{4

pA vq “ JpB, vq ` cut-off, (2.1.24)

where v :“ pPT p´∆q
1{4u,RpPNp´∆q

1{4uqq
t, R denotes the Riesz operator defined by

xRf pξq “ i ξ
|ξ |
f̂ and J is a bilinear pseudo-differential operator satisfying

}JpB, vq} 9H´1{2pRq
ď C }p´∆q

1{4B}L2pRq }v}L2pRq. (2.1.25)

As we will see later, the conservation law (2.1.24) will be crucial in the quantization
analysis of sequences of horizontal 1{2-harmonic maps.

By assuming that PT P C2pRmq and by bootstrapping arguments one gets that
every horizontal 1{2-harmonic map u P H1{2

pRq is C1,αloc pRq, for every α ă 1 (see [11]).
We would like to mention that in the non-integrable case it seems not feasible to

get the regularity of the horizontal 1{2-harmonicmaps by the techniques in [23] or [18]
which consist in transforming the a-priori non-local PDE (2.1.18) into a local one and
in performing ad-hoc extensions and reflections.

Also in the nonintegrable case the following geometric characterization holds.

Proposition 2.10. An element in H1{2 satisfying (2.1.22) has a harmonic extension ũ
in B2p0, 1q which is conformal and hence it is the boundary of a minimal disk whose
exterior normal derivative Br ũ is orthogonal to the plane distribution given by PT .

Example : We consider the following field of non-integrable projections in C2
zt0u.

PTpzq Z :“ Z ´ |z|´2
rZ ¨ pz1, z2q pz1, z2q ` Z ¨ piz1, iz2q piz1, iz2qs . (2.1.26)

An example of u satisfying (2.1.23) is given by solutions to the system
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Bũ
Br ^ u ^ iu “ 0 inD1

pS1q

u ¨
Bu
Bϑ “ 0 inD1

pS1q

i u ¨
Bu
Bϑ “ 0 inD1

pS1q

an at least (2.1.27)

where ũ denotes the harmonic extension of u which happens to be conformal due to
Proposition 2.10 and define a minimal disk. An example of such maps is given by

upϑq :“ 1
?
2

peiϑ , e´iϑ
q where ũpz, zq “

1
?
2

pz, zq. (2.1.28)

Observe that the solution in (2.1.28) is also a 1{2-harmonic map into S3 and it would
be interesting to investigate whether this is the unique solution.

From a geometrical point of view to find a solution to (2.1.23) means to find amin-
imal disk whose boundary is horizontal and the normal direction is vertical.
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One natural question is to see if this problem is variational. A priori if ũ is a crit-
ical point of the Dirichlet energy whose boundary is horizontal, then its exterior nor-
mal derivative Br ũ does not belong necessarily to ImpPNq. Despite the geometric rel-
evance of equations (2.1.12) in the non-integrable case, it is however a-priori not the
Euler-Lagrange equation of the variational problem consisting in finding the critical
points of }p´∆q

α{2u}
2
L2 within Hα when PT is not satisfying (2.1.13). This can be seen

in the particular case where α “ 1 where the critical points to the Dirichlet Energy
have been extensively studied in relation with the computation of normal geodesics in
sub-riemannian geometry. We then introduce the following definition:

Definition 2.11. A map u in Hα is called variational α´harmonic into the plane dis-
tribution PT if it is a critical point of the }p´∆q

α{2u}
2
L2 within variations inH

α i.e. for any
ut P C1pp´1, 1q,Hαq we have

d
dt }p´∆q

α{2ut}2L2
ˇ

ˇ

ˇ

ˇ

t“0
“ 0. (2.1.29)

Example of variational harmonic maps from S1 into a plane distribution is given by
the sub-riemannian geodesics.

A priori the equation (2.1.22) is not the Euler-Lagrange equation associated to
(2.1.29). The main difficulty is that we have not a pointwise constraint but a constraint
on the gradient. In order to study critical points of (2.1.29) we use a convexification
of the above variational problem following the spirit of the approach introduced by
Strichartz in [27] for normal geodesics in sub-riemannian geometry. We prove in par-
ticular for the case α “ 1{2 that the smooth critical points of

L1{2
pu, ξq :“

ż

S1

|p´∆q
´1{4
0 pPTpuqξq|

2

2 dϑ

´

ż

S1

⟨
p´∆q

´1{4
0 pPTpuqξq, p´∆q

´1{4
0

ˆ

PTpuq
du
dϑ

˙
⟩
dϑ

´

ż

S1

⟨
p´∆q

´1{4
0 pPNpuqξq, p´∆q

´1{4
0

ˆ

PNpuq
du
dϑ

˙
⟩
dϑ

(2.1.30)

in the co-dimension m Hilbert subspace of 9H1{2
pS1,Rmq ˆ 9H´1{2

pS1,Rmq given by2.3

E :“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pu, ξq P 9H1{2
pS1,Rmq ˆ H´1{2

pS1,Rmq s. t.

ˆ

PNpuq, dudϑ

˙

9H1{2 , 9H´1{2
“ 0

p´∆q
´1{4
0 pPTpuqξq P L2pS1q and p´∆q

´1{4
0

ˆ

PTpuq
du
dϑ

˙

P L2pS1q

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

2.3 Given f P 9H1{2, g P 9H´1{2 we denote by pf , gq 9H1{2 , 9H´1{2 the duality between f and g.
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at the point where the constraint
´

PNpuq, dudϑ
¯

9H1{2 , 9H´1{2
“ 0 is non-degenerate

are “variational 1{2-harmonic" into the plane distribution PT in the sense of defini-
tion 2.11. It remains open the regularity of critical points of (2.1.30) or even of the 1{2
energy (2.1.17) in H1{2 in the case when the constraint

´

PNpuq, dudϑ
¯

9H1{2 ,H´1{2
“ 0 is

degenerate.
In a joint paper with P. Laurain and T. Rivière we investigate compactness and

quantization properties of sequences of horizontal 1{2 harmonic maps uk P H1{2
pRq

by extending the results obtainedby the author in [5] in the case of1{2-harmonicmaps
with values into a sphere. Our first main result is the following:

Theorem 2.12. [Theorem 1.2 in [6]] Let uk P H1{2
pRq be a sequence of horizontal

1{2-harmonic maps such that

}uk} 9H1{2 ď C, }p´∆q
1{2uk}L1 ď C . (2.1.31)

Then it holds:
1. There exist u8 P H1{2

pRq and a possibly empty set ta1, . . . , aℓu, ℓ ě 1 , such
that up to subsequence

uk Ñ u8 in 9W1{2,p
loc pRzta1, . . . , aℓuq, p ě 2 as k Ñ `8 (2.1.32)

and
PTpu8qp´∆q

1{2u8 “ 0, inD1
pRq . (2.1.33)

2. There is a family ũi,j8 P 9H
1{2

pRq of horizontal 1{2-harmonic maps pi P

t1, . . . , ℓu, j P t1, . . . , Niuq, such that up to subsequence
›

›

›

›

›

›

p´∆q
1{4

¨

˝uk ´ u8 ´
ÿ

i,j
ũi,j8ppx ´ xki,jq{rki,jq

˛

‚

›

›

›

›

›

›

L2locpRq

Ñ 0, as k Ñ `8 .

(2.1.34)
for some sequences rki,j Ñ 0 and xki,j P R.

Aswehave already remarked in [6] the condition }p´∆q
1{2uk}L1 ď C is always satisfied

in the case the maps uk take values into a closed manifold of Rm (case of sequences
of 1{2 harmonic maps) as soon as }uk} 9H1{2 ď C. This follows from the fact that if u is a
1{2-harmonic maps with values into a closed manifold ofN of Rm then the following
inequality holds (see Proposition 5.1 in [6])

}p´∆q
1{2u}L1pRq ď C}p´∆q

1{4u}
2
L2pRq. (2.1.35)

Hence in the case of 1{2-harmonicmaps defined in S1 wehave the following corollary.

Corollary 2.13. [Corollary 1.1 in [6]] LetN be a closed C2 submanifold of Rm and let
uk P H1{2

pS1,Nq be a sequence of 1{2-harmonic maps such that

}uk} 9H1{2pS1q
ď C (2.1.36)
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then the conclusions of Ttheseheorem 2.12 hold. In particular up to subsequencewe have
the following energy identity

lim
kÑ`8

ż

S1
|p´∆q

1{4uk|
2 dϑ “

ż

S1
|p´∆q

1{4u8|
2 dϑ `

ÿ

i,j

ż

S1
|p´∆q

1{4ũi,j8|
2 dϑ (2.1.37)

where ũi,j8 are the bubbles associated to the weak convergence.

For themoment it remains openwhether the bound (2.1.35) holds or not in the general
case of horizontal 1{2-harmonic maps.

The compactness issue (first part of Theorem 2.12) is quite standard. Themost del-
icate part is the quantization analysis consisting in verifying that there is no dissipa-
tion of the energy in the region between u8 and the bubbles ũi,j8 and between the
bubbles themselves (the so-called neck-regions). Such an analysis has been achieved
in [6] by performing a precise asymptotic development of horizontal 1{2-harmonic
maps in these neck-regions, that was possible thanks to the conservation law (2.1.24)
and an application of new Pohozaev-type identities in 1-D discovered in [6]. We refer
the reader to [6] for a complete description of compactness and quantization issues of
horizontal 1{2-harmonic maps.

We conclude this section by mentioning that the partial regularity of 1{2-
harmonicmap in dimension k ě 2with values into a sphere has been been deduced in
[18] from existing regularity results of harmonic maps with free boundary. Schikorra
[25] has also studied the partial regularity of weak solutions to nonlocal linear systems
with an antisymmetric potential in the supercritical case under a crucialmonotonicity
assumption on the solutions which allows us to reduce it to the critical case.

It still remains open a direct proof of the partial regularity without an ad-hoc
monotonicity assumption.

2.2 3-Commutators Estimates

As we have already mentioned in the previous section, when the notion of 1{2-
harmonicmapwas introduced in [8], one of themainnoveltywas the re-formulationof
the Euler-Lagrange equation in terms of three-terms-commutators which have played
a key role in all the results that have been obtained later.

In this section we will introduce such commutators and recall some important
estimates and properties. Such properties will be crucial to get regularity results of
1{2-harmonicmaps and to re-write the system (satisfied by a horizontal 1{2-harmonic
map)

$

’

&

’

%

PTpuqp´∆q
1{2u “ 0

PNpuq∇u “ 0
(2.2.1)

Bereitgestellt von | ETH-Bibliothek Zürich
Angemeldet

Heruntergeladen am | 10.12.18 18:30



Fractional Harmonic Maps | 63

in term of a conservation law.
We first introduce some functional spaces.
H1

pRnq denotes the Hardy space which is the space of L1 functions f on
Rnsatisfying

ż

Rn
sup
tPR

|φt ˚ f |pxq dx ă `8 ,

where φtpxq :“ t´n φpt´1xq and where φ is some function in the Schwartz space
SpRnq satisfying

ş

Rn φpxq dx “ 1. For more properties on the Hardy spaceH1 we refer
to [15, 16, 26].

The L2,8pRq is the space of measurable functions f such that

sup
λą0

λ|tx P R : |f pxq| ě λu|
1{2

ă `8 .

L2,1pRq is the Lorentz space of measurable functions satisfying
ż `8

0
|tx P R : |f pxq| ě λu|

1{2dλ ă `8 .

In [8] the following two three-terms commutators have been introduced:

TpQ, vq :“ p´∆q
1{4

pQvq ´ Qp´∆q
1{4v ` p´∆q

1{4Qv (2.2.2)

and
SpQ, vq :“ p´∆q

1{4
rQvs ´ RpQRp´∆q

1{4vq ` Rpp´∆q
1{4QRvq, (2.2.3)

where R is the Riesz operator.
In [8] the authors obtained the following estimates.

Theorem 2.14. Let v P L2pRq, Q P 9H1{2
pRq . Then TpQ, vq, SpQ, vq P H´1{2

pRq and

}TpQ, vq}H´1{2pRq ď C }Q} 9H1{2pRq
}v}L2,8pRq ; (2.2.4)

}SpQ, vq}H´1{2pRq ď C }Q} 9H1{2pRq
}v}L2,8pRq . (2.2.5)

We observe that under our assumptions u P 9H1{2
pR,Rmq and Q P 9H1{2

pR,MℓˆmpRqq

each term individually in T and S - like for instance p´∆q
1{4

pQp´∆q
1{4uq or Qp´∆q

1{2u
... - are not in H´1{2 but the special linear combination of them constituting T and S
are in H´1{2. In a similar way, in dimension 2, Jpa, bq :“ Ba

Bx
Bb
By ´ Ba

By
Bb
Bx satisfies, as a

direct consequence of Wente’s theorem 2.1

}Jpa, bq} 9H´1 ď C }a} 9H1 }b} 9H1 (2.2.6)

whereas, individually, the terms Ba
Bx

Bb
By and

Ba
By

Bb
Bx are not in H

´1.
Actually in [5] we improve the estimates on the operators T, S.
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Theorem 2.15. Let v P L2pRq, Q P 9H1{2
pRq. Then TpQ, vq, SpQ, vq P H1

pRq and

}TpQ, vq}H1pRq ď C}Q} 9H1{2pRq
}v}L2pRq . (2.2.7)

}SpQ, vq}H1pRq ď C}Q} 9H1{2pRq
}v}L2pRq . (2.2.8)

We refer the reader to [8] and [5] for the proof of respectively Theorem 2.14 and The-
orem 2.15. We just mention that the above estimates is based on a well-known tool
in harmonic analysis, the Littlewood-Paley dyadic decomposition of unity that we
briefly recall here. Such a decomposition can be obtained as follows. Let φpξq be a
radial Schwartz function supported in tξ P Rn : |ξ | ď 2u, which is equal to 1 in
tξ P Rn : |ξ | ď 1u . Let ψpξq be the function given by

ψpξq :“ φpξq ´ φp2ξq

ψ is then a ”bump function” supported in the annulus tξ P Rn : 1{2 ď |ξ | ď 2u .

Let ψ0 “ φ, ψjpξq “ ψp2´jξq for j ‰ 0 . The functions ψj, for j P Z, are supported
in tξ P Rn : 2j´1

ď |ξ | ď 2j`1
u and they realize a dyadic decomposition of the unity:

ÿ

jPZ
ψjpxq “ 1 .

We further denote

φjpξq :“
j
ÿ

k“´8

ψkpξq .

The function φj is supported on tξ , |ξ | ď 2j`1
u.

For every j P Z and f P S1
pRq we define the Littlewood-Paley projection operators

Pj and Pďj by

yPj f “ ψj f̂ zPďj f “ φj f̂ .

Informally Pj is a frequency projection to the annulus t2j´1
ď |ξ | ď 2ju, while Pďj is

a frequency projection to the ball t|ξ | ď 2ju .We will set fj “ Pj f and f j “ Pďj f .
We observe that f j “

řj
k“´8

fk and f “
ř`8
k“´8

fk (where the convergence is in
S1

pRq) .
Given f , g P S1

pRq we can split the product in the following way

fg “ Π1pf , gq ` Π2pf , gq ` Π3pf , gq, (2.2.9)

where

Π1pf , gq “

`8
ÿ

´8

fj
ÿ

kďj´4
gk “

`8
ÿ

´8

fjgj´4 ;

Π2pf , gq “

`8
ÿ

´8

fj
ÿ

kěj`4
gk “

`8
ÿ

´8

gj f j´4 ;
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Π3pf , gq “

`8
ÿ

´8

fj
ÿ

|k´j|ă4
gk .

We observe that for every j we have

suppFrf j´4gjs Ă t2j´2
ď |ξ | ď 2j`2

u;

suppFr
řj`3
k“j´3 fjgks Ă t|ξ | ď 2j`5

u .

The three pieces of the decomposition (2.2.9) are examples of paraproducts. Informally
the first paraproduct Π1 is an operator which allows high frequences of f p∼ 2jq mul-
tiplied by low frequences of g p! 2jq to produce high frequences in the output. The
second paraproduct Π2 multiplies low fequences of f with high frequences of g to
produce high fequences in the output. The third paraproduct Π3 multiply high fre-
quences of f with high frequences of g to produce comparable or lower frequences in
the output. For a presentation of these paraproductswe refer to the reader for instance
to the book [16] .

The compensations of the 3 different terms in TpQ, vq will be clear just from the
Littlewood-Paley decomposition of the different products. With this regards to get for
instance the estimate (2.2.7) we shall need the following groupings

– i) For Π1pTpQ, vqq we proceed to the following decomposition

Π1pTpQ, vqq “ Π1pp´∆q
1{4

pQvqq
loooooooooomoooooooooon

`Π1Qp´∆q
1{4v ` p´∆q

1{4Qvq
loooooooooooooooooomoooooooooooooooooon

.

– ii) For Π2pRpQ, uqq we decompose as follows

Π2pTpQ, vqq “ Π2pp´∆q
1{4

pQvq ´ Qp´∆q
1{4vq

loooooooooooooooooooomoooooooooooooooooooon

`Π2pp´∆q
1{4Qvq

looooooooomooooooooon

.

– ii) Finally, for Π3pRpQ, uqq we decompose as follows

Π3pTpQ, vqq “ Π3pp´∆q
1{4

pQvqq
loooooooooomoooooooooon

´Π3pQp´∆q
1{4vq

looooooooomooooooooon

`Π3pp´∆q
1{4Qvq

looooooooomooooooooon

.

The following 2-terms commutators have also been used in [9, 10]:

FpQ, vq :“ RrQsRrvs ´ Qv. (2.2.10)

ΛpQ, vq :“ Qv ` RrQRrvss. (2.2.11)

Theorem 2.16. [Theorem 3.6 in [10]] For f , v P L2 it holds

}Fpf , vq}H´1{2pRq ď C}f }L2pRq}v}L2,8pRq, (2.2.12)

and
}Fpf , vq}H1pRq ď C}f }L2pRq}v}L2pRq . l (2.2.13)

Bereitgestellt von | ETH-Bibliothek Zürich
Angemeldet

Heruntergeladen am | 10.12.18 18:30



66 | Francesca Da Lio

Theorem 2.17. [Theorem 3.7 in [10]] For Q P 9H1{2
pRq, v P L2pRq it holds

}p´∆q
1{4

pΛpQ, vqq}H1pRq ď C}Q}H1{2pRq}v}L2pRq . (2.2.14)

Actually the estimate (2.2.13) is a consequence of the Coifman-Rochberg-Weiss esti-
mate [3].

From Theorem 2.17 we deduce that under the same assumptions it holds ΛpQ, vq P

L2,1pRq with
}ΛpQ, vq}L2,1pRq ď C}Q}H1{2pRq}v}L2pRq.

We finally remark that we can simply write the operator S as follows:

SpQ, vq “ RTpQ,Rvq ´ Rp´∆q
1{4

rΛpQ,Rvqs. (2.2.15)

Therefore the estimate (2.2.8) for S can be deduced from the estimate (2.2.8) for the
operator T and Theorem 2.17.

In [10] we have proved a sort of stability of of the operators T, Swith respect to the
multiplication by a function P P H1{2

pRq X L8
pRq. Roughly speaking if we multiply

TpQ, vq or SpQ, vq by a function P P H1{2
pRq X L8

pRq we get a decomposition into the
sum of a function in the Hardy Space and a term which is the product of function in
L2,1 by one in L2.

Theorem 2.18. [Multiplication of T by P P H1{2
pRq X L8

pRq] Let P, Q P H1{2
pRq X

L8
pRq and v P L2pRq. Then

PTpQ, vq “ JTpP, Q, vq ` ATpP, Qqv, (2.2.16)

where
ATpP, Qq “ Pp´∆q

1{4
rQs ` p´∆q

1{4
rPsQ ´ p´∆q

1{4
rPQs P L2,1

with
}ATpP, Qq}L2,1 ď C}p´∆q

1{4
rPs}L2}p´∆q

1{4
rQs}L2 , (2.2.17)

and
JTpP, Q, vq :“ TpPQ, vq ´ TpP, Qvq P H1

pRq

with

}JTpP, Q, vq}H1pRq ď Cp}P}L8 ` }Q}L8 q

´

}p´∆q
1{4

rPs}L2 ` }p´∆q
1{4

rQs}L2
¯

}v}L2 .
(2.2.18)

Proof of Theorem 2.18.We have

PTpQ, vq “ Pp´∆q
1{4

rQvs ´ PQp´∆q
1{4

rvs ` Pp´∆q
1{4

rQsv
“ tPp´∆q

1{4
rQs ´ p´∆q

1{4
rPQs ` p´∆q

1{4
rPsQuv

` p´∆q
1{4

rPQvs ´ PQp´∆q
1{4v ` p´∆q

1{4
rPQsv
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´

´

p´∆q
1{4

rPQvs ` Pp´∆q
1{4

pQvq ´ p´∆q
1{4

rPsQv
¯

“ rPp´∆q
1{4

rQs ` p´∆q
1{4

rPsQ ´ p´∆q
1{4

rPQssv
` TpPQ, vq ´ TpP, Qvq.

Finally the estimates (2.2.17), (11.5.4) follow from Theorems 3.2 and 3.3 in [10].

An analogous property holds for the operator RS. We just state the Theorem and we
refer for proof to Theorem 3.10 in [10].

Theorem 2.19. [Multiplication ofRS by a rotation P P H1{2
pRqXL8

pRq] Let P, Q P

H1{2
pRq X L8

pRq and v P L2pRq. Then

PRrSpQ, vqs “ ASpP, Qqv ` JSpP, Q, vq (2.2.19)

whereASpP, Qq P L2,1, JSpP, Q, vq P H1
pRq with

}ASpP, Qq}L2,1 ď C}p´∆q
1{4

rPs}L2}p´∆q
1{4

rQs}L2 ,

and

}JSpP, Q, vq}H1pRq ď Cp}P}L8 ` }Q}L8 q

´

}p´∆q
1{4

rPs}L2 ` }p´∆q
1{4

rQs}L2
¯

}v}L2 .

We justmention that the operatorsASpP, Qq, JSpP, Q, vq andATpP, Qq, JTpP, Q, vq can
be expressed in turn as a combinations of the operators F, T, S.

Remark 2.1. We remark without going into detail that in 2-D the Jacobian Jpa, bq “

∇paq∇K
pbq satisfies a stability property enjoyed by the operators (2.2.2), (2.2.3),

(2.2.10) with respect to the multiplication by P P W1,2
pR2

q X L8
pR2

q as well. More
precisely we may define the following two zero-order pseudo-differential operators:
GradpXq :“ ∇divp´∆q

´1
pXq, RotpYq “ ∇Kcurlp´∆q

´1
pYq. If a, b P W1,2

pR2
q and

P P W1,2
pR2

q X L8
pR2

q then

Jpa, bq “ ∇paq∇K
pbq (2.2.20)

“ Gradp∇paqqRotp∇K
pbqq ´ Rotp∇paqqGradp∇K

pbqq;

and

P Jpa, bq “ P∇paq∇K
pbq (2.2.21)

“ rPGradp∇paqq ´ GradpP∇paqqs
loooooooooooooooooooomoooooooooooooooooooon

PL2,1pR2q

Rotp∇K
pbqq

` GradpP∇paqqRotp∇K
pbqq ´ RotpP∇paqqGradp∇K

pbqq
looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

PH1pR2q

.
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2.3 Regularity of Horizontal 1{2-harmonic Maps and
Applications

In this section we describe the regularity results we have obtained respectively in [8,
9, 10].

2.3.1 Case of 1{2-harmonic maps with values into a sphere

In [8]we started the investigation ofweak1{2-harmonicmaps u P H1{2
pR, Sm´1

qwith
values into the sphere Sm´1 which are critical points of the Lagrangian

L1{2
puq “

ż

R
|p´∆q

1{4upxq|
2dx. (2.3.1)

The main novelty in [8] is the rewriting of the Euler-Lagrange equation. To this
purpose we recall the following equivalent relations.

Theorem 2.20. All weak 1{2-harmonic maps u P H1{2
pR, Sm´1

q satisfy in a weak
sense

i) the equation
ż

R
p´∆q

1{2u ¨ v dx “ 0, (2.3.2)

for every v P H1{2
pR,Rmq X L8

pR,Rmq and v P TupxqSm´1 almost everywhere, or in a
equivalent way

ii) the equation
p´∆q

1{2u ^ u “ 0 inD1, (2.3.3)

or
iii) the equation

p´∆q
1{4

pu ^ p´∆q
1{4uq “ TpQ, uq inD1, (2.3.4)

with Q “ u ^ .

Proof of Theorem 2.20
i) The proof of (2.3.2) is analogous of Lemma 1.4.10 in [17].
Let v P H1{2

pR,Rmq X L8
pR,Rmq and v P TupxqSm´1. We have

ΠSm´1pu ` tvq “ u ` twt ,

where ΠSm´1 is the orthogonal projection onto Sm´1 and

wt “

ż 1

0

BΠSm´1

Byj
pu ` tsvqvjds .
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Hence

L1{2
pΠSm´1pu ` tvqq “

ż

R
|p´∆q

1{4u|
2dx ` 2t

ż

R
p´∆q

1{2u ¨ wtdx ` optq ,

as t Ñ 0.
Thus to be a critical point of (11.2.1) is equivalent to

lim
tÑ0

ż

R
p´∆q

1{2u ¨ wtdx “ 0 .

Since ΠSm´1 is smooth it follows that wt Ñ w0 “ dΠSm´1puqpvq in H1{2
pR,Rmq X

L8
pR,Rmq and therefore

ż

R
p´∆q

1{4u dΠSm´1puqpvqdx “ 0 .

Since v P TupxqSm´1 a.e., we have dΠSm´1puqpvq “ v a.e. and thus equation (2.3.2)
follows immediately.

ii)We prove (2.3.3). We take φ P C8
0 pR,

Ź

m´2pRmqq. The following holds
ż

R
φ ^ u ^ p´∆q

1{2u dx “

ˆ
ż

R
˚pφ ^ uq ¨ p´∆q

1{2u dx
˙

e1 ^ . . . ^ em . (2.3.5)

Claim : v “ ˚pφ ^ uq P 9H1{2
pR,Rmq

2.4 and vpxq P TupxqSm´1 a.e.
Proof of the claim.
The fact that v P H1{2

pR,Rmq X L8
pR,Rmq follows form the fact that its compo-

nents are the product of two functions which are in 9H1{2
pR,Rmq X L8

pR,Rmq, which
is an algebra .

We have
v ¨ u “ ˚pu ^ φq ¨ u “ ˚pu ^ φ ^ uq “ 0 . (2.3.6)

It follows from (2.3.2) and (2.3.5) that
ż

R
φ ^ u ^ p´∆q

1{2u dx “ 0 .

This shows that p´∆q
1{2u ^ u “ 0 inD1 , and we can conclude .

iii) As far as equation (2.3.4) is concerned it is enough to observe that p´∆q
1{2u ^

u “ 0 and p´∆q
1{4u ^ p´∆q

1{4u “ 0 . l

The Euler Lagrange equation (2.3.4) will often be completed by the following
“structure equation” which is a consequence of the fact that u P Sm´1 almost every-
where:

2.4 the symbol ˚ we denote the Hodge-star operator, ˚ :
Ź

ppRmq Ñ
Ź

m´ppRmq, defined by ˚β “

pe1 ^ . . . ^ enq ‚ β, the symbol ‚ is the first order contraction between multivectors, for every p “

1, . . . ,m,
Ź

ppRmq is the vector space of p-vectors.
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Proposition 2.21. All maps in 9H1{2
pR, Sm´1

q satisfy the following identity

p´∆q
1{4

pu ¨ p´∆q
1{4uq “ Spu¨, uq ´ Rpp´∆q

1{4u ¨ Rp´∆q
1{4uq, (2.3.7)

where, in general for an arbitrary integer n, for every Q P 9H1{2
pRn ,MℓˆmpRqq, ℓ ě 1

and u P 9H1{2
pRn ,Rmq, S is the operator defined by (2.2.3).

Proof of Proposition 2.21.We observe that if u P H1{2
pR,Rm´1

q then the Leibniz’s
rule holds. Thus

∇|u|
2

“ 2u ¨ ∇u in D1 . (2.3.8)

Indeed the equality (2.3.8) trivially holds if u P C8
0 pR,Rm´1

q. Let u P H1{2
pR,Rm´1

q

and uj P C8
0 pR,Rmq be such that uj Ñ u as j Ñ `8 in H1{2

pR,Rmq . Then∇uj Ñ ∇u
as j Ñ `8 in H´1{2

pR,Rm´1
q. Thus uj ¨ ∇uj Ñ u ¨ ∇u inD1 and (2.3.8) follows.

If u P H1{2
pR, Sm´1

q, then∇|u|
2

“ 0 and thus u ¨∇u “ 0 inD1 aswell. Thus u satisfies
equation (2.3.7) and this conclude the proof. l

We remark that in the sphere case the term Rpp´∆q
1{4u ¨ Rp´∆q

1{4uq is in the
Hardy-Space H1

pRq as well (see Corollary 3.1 in [8]). The estimates (2.2.4) and (2.2.5)
imply in particular that if u P 9H1{2

pR, Sm´1
q is a 1{2-harmonic map then

}p´∆q
1{4u}L2pRq ď C}p´∆q

1{4u}
2
L2pRq . (2.3.9)

where the constant C is independent of u.
From the inequality (2.3.9) it follows that if ε0 :“ }p´∆q

1{4u}L2pRq is small enough
so that

Cε0 ă 1 (2.3.10)

then the solution is constant. This the so-calledbootstrap test and it is the key observa-
tion to prove Morrey-type estimates and to deduce Hölder regularity of 1{2-harmonic
maps.

Indeed by combining Theorem 2.20, Proposition 2.21 and suitable localization es-
timates obtained in Section 4 in [8] we get the local Hölder regularity of weak 1{2-
harmonic maps.

Theorem 2.22. [Theorem 5.2, [8]] Let u P 9H1{2
pR, Sm´1

q be a weak 1{2-harmonic
map. Then u P C0,αloc pR, Sm´1

q, for all α P p0, 1q.

Sketch of Proof of 2.22. The strategy of proof is to show some decrease energy es-
timates. From Proposition 4.1 and 4.2 in [8] by using the fact that u ^ p´∆q

1{4u and
u ¨ p´∆q

1{4u satisfy respectively (2.3.4) and (2.3.7) one deduces that there exist C ą 0
depending on }p´∆q

1{4u}L2pRq, k P Z depending on ε0 in (2.3.10), such that that for
every x0 P R, for all k ă k the following estimate holds

||p´∆q
1{4u||

2
L2pB2k q ď C

8
ÿ

h“k
p2

k´h
2 q||p´∆q

1{4u||
2
L2pAhq (2.3.11)
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where B2k “ Bpx0, 2kq, Ah “ B2h`1zB2h´1 . On the other hand one has

2´1
k´1
ÿ

h“´8

||p´∆q
1{4u||

2
L2pAhq ď ||p´∆q

1{4u||
2
L2pB2k q ď

k´1
ÿ

h“´8

||p´∆q
1{4u||

2
L2pAhq.(2.3.12)

By combining (2.3.11) and (2.3.12) we get

k´1
ÿ

h“´8

||p´∆q
1{4u||

2
L2pAhq ď C

8
ÿ

h“k
p2

k´h
2 q||p´∆q

1{4u||
2
L2pAhq.

This implies by an iteration argument (see Proposition A.1 in [8], or Lemma A.1 in [24])

sup
xPBpx0 ,ρq

0ărăρ{8

r´β
ż

Bpx,rq
|p´∆q

1{4u|
2dx ď C , (2.3.13)

for ρ small enough, for some 0 ă β ă 1 independent on x0 and C ą 0 depending only
on the dimension and on }p´∆q

1{4u}
2
L2pRq.

Condition (2.3.13) yields that u P C0,β{2
loc pRq , (see for instance [1] or [11] for the details).

By bootstrapping into the equations (2.3.4) and (2.3.7) we can deduce that u P C0,αloc pRq

for all α P p0, 1q. l

We mention that Schikorra in [24] and the author and Schikorra in [12] extended
the local the Hölder continuity of respectively k{2-harmonic maps (k ą 1 odd) and
k{p-harmonic maps (p P p1,8q, k{p P p0, kq) from subsets of Rk into a sphere.

k{p-harmonic maps with values into a sphere are defined as critical points of the
following nonlocal Lagrangian

ż

Rk
|p´∆q

k
2p u|

p dxk ,

where upxq P Sm´1, a.e. and
ş

Rk |p´∆q
k
2p u|

p dxk ă `8.

2.3.2 Case of 1{2-harmonic maps into a closed manifold

We consider the case of 1{2-harmonic maps with values into a closed C2 n-
dimensional manifoldN Ă Rm. Let ΠN be the orthogonal projection onN .We denote
by PT and PN respectively the tangent and the normal projection to the manifoldN.

They verify the following properties: pPTq
t

“ PT , pPNq
t

“ PN (namely they are
symmetric operators), pPTq

2
“ PT , pPNq

2
“ PN , PT ` PN “ Id, PNPT “ PTPN “ 0 .

In this case the Euler-Lagrange equation associated to the energy (11.2.1) and the
structural equation can be expressed as follows:

#

PTpuqp´∆q
1{2u “ 0 inD1

pRq

PN∇u “ 0 inD1
pRq.

(2.3.14)
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The second step is to reformulate the two equations in (2.3.14) by using the commu-
tators introduced in the previous section. The Euler equation (2.3.4) and structural
equation (2.3.7) become in this case respectively

p´∆q
1{4

pPTp´∆q
1{4uq “ TpPT , uq ´ pp´∆q

1{4PTqp´∆q
1{4u

looooooooooooomooooooooooooon

p1q

. (2.3.15)

and

p´∆q
1{4

pRpPNp´∆q
1{4uqq “ RpSpPN , uqq ´ pp´∆q

1{4PNqpRp´∆q
1{4uq

loooooooooooooooomoooooooooooooooon

p2q

. (2.3.16)

Unlike the sphere case the term p1q in (2.3.15) is not zero and term p2q in (2.3.16) is not
in the Hardy Space.

Themain idea in Proposition 1.1 in [9] is the re-writing of the terms p1q and p2q and
to show that v “ pPTp´∆q

1{4u,RPNp´∆q
1{4uq

t satisfies a nonlocal Schrödinger type
system with a antisymmetric potential. Precisely, we obtained the following result.

Proposition 2.23. [Proposition 1.1, [9]] Let u P 9H1{2
pR,Nq be a weak 1{2-harmonic

map. Then the following equation holds

p´∆q
1{4v “ p´∆q

1{4
˜

PTp´∆q
1{4u

RPNp´∆q
1{4u

¸

“ Ω̃ ` Ω1

˜

PTp´∆q
1{4u

RPNp´∆q
1{4u

¸

(2.3.17)

` Ω
˜

PTp´∆q
1{4u

RPNp´∆q
1{4u

¸

,

where Ω “ Ω P L2pR, sop2mqq, Ω1 “ Ω1 P L2,1pR,Mmˆmq with

}Ω}L2 , }Ω1}L2,1 ď Cp}PT} 9H1{2 ` }PT}
2
9H1{2q,

Ω̃ “
¨

˚

˝

´2Fpω1, pPN∆1{4uqq ` TpPT , p´∆q
1{4uq

´2FpRpp´∆q
1{4PNq,Rpp´∆q

1{4uqq ´ 2Fpω2, PNpp´∆q
1{4uq ` RpSpPN , p´∆q

1{4uqq

˛

‹

‚

ω1, ω2 P L2pR,Mmˆmq and

}ω1}L2 , }ω2}L2 ď Cp}PT} 9H1{2 ` }PT}
2
9H1{2q.2.5

We would like to make some comments on Proposition 2.23.

2.5 The matrices Ω, Ω1, ω1 and ω2 are constructed out of the projection PT .
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In [20] and [21] the author proved the sub-criticality of local a-priori critical
Schödinger systems of the form

@i “ 1 ¨ ¨ ¨m ´ ∆ui “

m
ÿ

j“1
Ωij ¨ ∇uj , (2.3.18)

where u “ pu1, ¨ ¨ ¨ , umq P W1,2
pD,Rmq and Ω P L2pD,R2

b sopmqq, or of the form

@i “ 1 ¨ ¨ ¨m ´ ∆vi “

m
ÿ

j“1
Ωij v

j , (2.3.19)

where v P Ln{pn´2q
pBn ,Rmq and Ω P Ln{2

pBn , sopmqq. In each of these two situations
the antisymmetry of Ω was responsible for the regularity of the solutions or for the
stability of the system under weak convergence.

One of the main result in the paper [9] was to establish the sub-criticality of non-
local Schrödinger systems of the form

p´∆q
1{4v “ Ωv ` Ω1v ` ZpQ, vq ` gpxq (2.3.20)

where v P L2pRq, Q P 9H1{2
pRq, Z : 9H1{2

pRq ˆ L2pRq Ñ H1
pRq is a linear combination

of the operators (2.2.10), (2.2.2) and (2.2.3) introduced in the previous section, Ω P

L2pR, sopmqq, Ω1 P L2,1pRq. Precisely we prove the following theorem which extends
to a non-local setting the phenomena observed in [20] and [21] for the above local
systems.

Theorem 2.24. [Theorem 1.1, [9]] Let v P L2pRq be a weak solution of (2.3.20). Then
v P LplocpRq for every 1 ď p ă `8.

From Theorem 2.24 it follows that p´∆q
1{4u P LplocpRq, for all p ě 1 as well, (u as in

Proposition 2.23). This implies that u P C0,αloc for all 0 ă α ă 1, since W1{2,p
loc pRq ãÑ

C0,αloc pRq if p ą 2 (see for instance [1]).
The main technique to prove Theorem 2.24 is to perform a change of gauge by

rewriting the system after having multiplied v by a well chosen rotation valued map
P P H1{2

pR, SOpmqq . 2.6 In [20] the choice of P for systems of the form (2.3.18) was
given by the geometrically relevant Coulomb Gauge satisfying

div
”

P´1∇P ` P´1ΩP
ı

“ 0 . (2.3.21)

In this context there is not hope to solve an equation of the form (2.3.21) with the op-
erator ∇ replaced by p´∆q

1{4, since for P P SOpmq the matrix P´1
p´∆q

1{4P is not in
general antisymmetric. The novelty in [9] was to choose the gauge P satisfying the

2.6 SOpmq is the space of m ˆ m matrices R satisying RtR “ RRt “ Id and detpRq “ `1
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following (maybe less geometrically relevant) equation which involves the antisym-
metric part of P´1

p´∆q
1{4P2.7:

Asymm
´

P´1
p´∆q

1{4P
¯

:“ 2´1
”

P´1
p´∆q

1{4P ´ p´∆q
1{4P´1P

ı

“ Ω . (2.3.22)

The local existence of such P is given by the following theorem.

Theorem 2.25. There exists ε ą 0 and C ą 0 such that for every Ω P L2pR; sopmqq

satisfying
ş

R |Ω|
2dx ď ε, there exists P P 9H1{2

pR, SOpmqq such that
$

’

’

’

&

’

’

’

%

piq P´1
p´∆q

1{4P ´ p´∆q
1{4P´1P “ 2Ω ;

piiq
ż

R
|p´∆q

1{4P|
2dx ď C

ż

R
|Ω|

2dx .
(2.3.23)

l

The proof of this theorem is established by following an approach introduced by
K.Uhlenbeck in [29] to construct Coulomb Gauges for L2 curvatures in 4 dimension.
The construction does not provide the continuity of the map which to Ω P L2 assigns
P P 9H1{2. This illustrates the difficulty of the proof of Theorem 10.4.5 which is not a
direct consequence of an application of the local inversion theorem but requires more
elaborated arguments.

Thus if the L2 norm of Ω is small, Theorem 10.4.5 gives a P for which w :“ Pv
satisfies

p´∆q
1{4w “ ´

”

PΩP´1
´ p´∆q

1{4P P´1
ı

w ` TpP, P´1wq ` PΩ1P´1w

` PZpQ, P´1wq “ ´Symm
´

pp´∆q
1{4Pq P´1

¯

w ` TpP, P´1wq

` PΩ1P´1w ` PZpQ, P´1wq . (2.3.24)

The matrix Symm
´

pp´∆q
1{4Pq P´1

¯

belongs to L2,1pRq and this fact comes from
the combination of the following lemma according to which

p´∆q
1{4

pSymm
´

pp´∆q
1{4Pq P´1

¯

q P H1
pRq

and the sharp Sobolev embedding 2.8 which says that f P H1
pRq implies that

p´∆q
´1{4f P L2,1. Precisely we have

2.7 Given a m ˆ m matrix M, we denote by AsymmpMq and by SymmpMq respectively the antisym-
metric and the symmetric part ofM, namely AsymmpMq :“ M´Mt

2 and SymmpMq :“ M`Mt

2 ,Mt is the
transpose of M .
2.8 The fact that v P H1 implies p´∆q´1{4v P L2,1 is deduced by duality from the fact that p´∆q1{4v P

L2,8 implies that v P BMOpRq. This last embedding has been proved by Adams in [1]
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Lemma 2.26. Let P P H1{2
pR, SOpmqq then p´∆q

1{4
pSymm

´

p´∆q
1{4P P´1

¯

q is in the
Hardy spaceH1

pRq and the following estimates hold

}p´∆q
1{4

rp´∆q
1{4P P´1

` P p´∆q
1{4P´1

s}H1 ď C}P}
2
9H1{2 ,

where C ą 0 is a constant independent of P. This implies in particular that

}Symm
´

pp´∆q
1{4Pq P´1

¯

}L2,1 ď C}P}
2
9H1{2 . (2.3.25)

The proof of Lemma 2.26 is a consequence of the Theorem 1.5 in [9].

By combining the different properties of the commutators (2.2.2), (2.2.3), (2.2.10)
mentioned in section 2.2, in [10] we proved that the system (2.3.20) is “equivalent" to
a conservation law.

Theorem 2.27. Let v P L2pR,Rmq be a solution of (2.3.20), where Ω P L2pR, sopmqq,
Ω1 P L2,1pRq, Z is a linear combination of the operators (2.2.10), (2.2.2) and (2.2.3),
ZpQ, vq P H1 for every Q P 9H1{2, v P L2 with

}ZpQ, vqq}H1 ď C}Q} 9H1{2}v}L2 .

There exists ε0 ą 0 such that if

p}Ω}L2 ` }Ω1}L2,1 ` }Q} 9H1{2q ă ε0,

then there exist A P 9H1{2
pR, GLmpRqqq and an operator B P 9H1{2

pRq (both constructed
out of pΩ, Ω1, Qq) such that

}A} 9H1{2 ` }B} 9H1{2 ď Cp}Ω}L2 ` }Ω1}L2,1 ` }Q} 9H1{2q (2.3.26)
distptA, A´1

u, SOpmqq ď Cp}Ω}L2 ` }Ω1}L2,1 ` }Q} 9H1{2q (2.3.27)

and
p´∆q

1{4
rAvs “ JpB, vq ` Ag, (2.3.28)

where J is a linear operator in B, v, JpB, vq P H1
pRq and

}JpB, vq}H1pRq ď C}B} 9H1{2}v}L2 . (2.3.29)

Wemention that the case of k{2-harmonic maps (k ě 3 odd) with values into a closed
manifold has been considered in [4].

2.3.3 Case of horizontal 1{2-harmonic maps

We release the assumption that the field of orthogonal projection PT is integrable and
associated to a sub-manifoldN and to consider the equation (2.3.14) for a general field
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of orthogonal projections PT defined on the whole of Rm and for horizontal maps u
satisfying PTpuq∇u “ ∇u.

Precisely we consider PT P C1pRm ,MmpRqq and PN P C1pRm ,MmpRqq such that
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

PT ˝ PT “ PT PN ˝ PN “ PN

PT ` PN “ Im

@ z P Rm @U, V P TzpRmq ă PTpzqU, PNpzqV ą“ 0

}BzPT}L8pRmq ă `8

(2.3.30)

For such a distribution of projections PT we denote by

n :“ rankpPTq.

Such a distribution identifies naturally with the distribution of n´planes given
by the images of PT (or the Kernel of PT) and conversely, any C1 distribution of
n´dimensional planes defines uniquely PT satisfying (2.3.30).

We will present here the proof of the Cαloc of horizontal 1{2-harmonic maps which
directly uses the conservation law (2.3.28) and which is a refinement of the arguments
used in Theorem 2.24 (Theorem 1.1 in [9]). We premise the following result.

Theorem 2.28. Let m P IN˚, then there exists δ ą 0 such that for any PT , PN P

9H1{2
pR,Mmq satisfying

$

&

%

PT ˝ PT “ PT , PN “ Im ´ PT

@ X, Y P Rm , for a.e x P R ă PTpxqX, PNpxqY ą“ 0
(2.3.31)

and
ż

R
|p´∆q

1{4PT |
2 dϑ ď δ (2.3.32)

then for any f P H´1{2
pRq

pPT ` PN Rq f “ 0 ùñ f “ 0. (2.3.33)

Proof of Theorem 2.28.
We first set f :“ p´∆q

1{2u. From (2.3.33) it follows that
$

’

&

’

%

PTp´∆q
1{2u “ 0

PNRp´∆q
1{2u “ 0

(2.3.34)

Then set v “ pPTp´∆q
1{4u,RpPNp´∆q

1{4uqq
t. Therefore v satisfies a systemof the form

(2.3.20) with Ω P L2pR, sopRmqq Ω1 P L2,1, (Ω and Ω1 depend on PT), ZpPT , vq is a
linear operator in PT , v, ZpPT , vq P H1 with

}Ω}L2 “ }Ω}L2 ď C}PT} 9H1{2
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}Ω1}L2,1 “ }Ω1}L2,1 ď C}PT} 9H1{2

}ZpPT , vqq}H1 ď C}PT} 9H1{2}v}L2

From Theorem 2.27 it follows that if δ is small enough then there exist A P L8
X

9H1{2
pR, GLmpRqq and B P 9H1{2

pR,MmˆmpRqq such that

p´∆q
1{4

rAvs “ JpB, vq (2.3.35)

and

}A} 9H1{2 ` }B} 9H1{2 ď C}PT} 9H1{2

distptA, A´1
u, SOpmqq ď ď C}PT} 9H1{2 (2.3.36)

}JpB, vq}H1pRq ď C}B} 9H1{2}v}L2 .

From (2.3.35) and (2.3.36) it follows that

}v}L2 “ }A´1Av}L2 ď C}A´1
}L8 }Av}L2 (2.3.37)

ď C}p´∆q
´1{4JpB, vq}L2,1 ď C}B} 9H1{2}v}L2

ď C}PT} 9H1{2}v}L2 ď Cδ}v}L2 .

Again if δ is small enough then (2.3.37) yields v ” 0 a.e. and therefore f “ 0 a.e. as
well. l

Proof of Theorem 2.9. The proof of Theorem 2.9 follows by combining Theorem
2.28 and localization arguments used in [9]. l

2.3.4 Applications

In this section we mention two geometric applications related to 1{2-harmonic maps.
We start by proving Theorem 2.7 .

Proof of Theorem 2.7 . 1) (see [5, 14, 18] ). IfN “ S1, then its harmonic extension
ũ, which is conformal thanks to Theorem 2.6, maps the unit disk B2p0, 1q into itsself
because of themaximumprinciple. On theother hand it turns out that every conformal
transformation with finite energy from B2p0, 1q into B2p0, 1q and sending S1 into S1

has to be a finite Blaschke product, namely there exist d ą 0, ϑ0 P R, a1, . . . , ad P

B2p0, 1q such that

ũpzq “

d
ź

i“1
eiϑ0 z ´ ai

1 ´ zai
.

Since degpuq “ 1 then d “ 1 and ũ coincides with a Möbius transformation of the
disk.

2)We are going to use the following result by Nitsche [19]: if Σ is a regular minimal
immersion in B3p0, 1q Ă R3 that meets B3p0, 1q orthogonally then BΣ is a great circle.
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Let ũ : B2p0, 1q Ñ B3p0, 1q be the harmonic extension of u. In [11] it has been
shown that u P C1,αpS1q, therefore ũ P C1,αpB2q. Moreover ũ is conformal in B2p0, 1q

(see Proposition 2.29 below)2.9 and by Maximum Principle ũ takes values in B3p0, 1q.
We set h “ |ũ|

2. We have ´∆h ď 0, and h “ 1 on S2. By Hopf Boundary Lemma we
have Bh

Br ‰ 0 on S1. Since ũ is conformal up to the boundary, this implies in particular
∇ũ ‰ 0 on S1 and therefore ũ is a minimal immersion up to the boundary. Since it
meets B3p0, 1q orthogonally then by Nitsche’s result [19] ũpS1q “ upS1q is an equato-
rial circle. Let T : S2 Ñ S2 be an isometry,2.10 σ :“ taz ` by ` cx “ 0, a, b, c P Ru

be a plane in R3 such that upS1q “ σ X S2. Define τ “ T|σXS2 : σ X S2 Ñ S1. Let
v :“ τ ˝ u : S1 Ñ S1 and we show that it is 1{2-harmonic in S1.

#

∆pĆτ ˝ uq “ 0 in B2
Ćτ ˝ u “ τ ˝ u in BB2

(2.3.38)

Since τ can be identified with a rotation in R3, we have

BĆτ ˝ u
B𝜈

“ τ Bũ
B𝜈 .

It follows that

p´∆q
1{2

pτ ˝ uq “
BĆτ ˝ u

B𝜈
“ τ Bũ

B𝜈

“ τp´∆q
1{2u || τ ˝ u .

We can conclude the proof. l

Proposition 2.29. [Proposition 1.1, [10]] An element in H1{2 satisfying

PTpuq p´∆q
1{2u “ 0 inD1

pS1q (2.3.39)

has a harmonic extension ũ in B2p0, 1q which is conformal in B2p0, 1q and hence it is
the boundary of a minimal disk whose exterior normal derivative Br ũ is orthogonal to
the plane distribution given by PT .

Proof of Proposition 2.29. We prove the result by assuming that PT P C2pRmq. In
that case we have that u P C1,αpS1q, (see [11]). Denote ũ the harmonic extension of u.
It is well known that the Hopf differential of ũ

|Bx1 ũ|
2

´ |Bx2 ũ|
2

´ 2 i ⟨Bx1 ũ, Bx2 ũ⟩ “ f pzq

is holomorphic. Considering on S1 “ BB2

2 ⟨Br ũ, Bϑ ũ⟩ “ ´ sin 2ϑ
´

|Bx1 ũ|
2

´ |Bx2 ũ|
2
¯

´ cos 2 ϑ p´2 ⟨Bx1 ũ, Bx2 ũ⟩q “ ´ Im
´

z2 f pzq
¯

.

2.9 We refer to the book [22] for an overview of the the regularity of minimal disks up to the boundary
(solution of the Plateau problem)
2.10 The isometry group of the sphere S2 is isomorphic to the group SOp3q of orthogonal matrices.
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Since 0 “ PTpuq p´∆q
1{2u “ PTpuq Br ũ and 0 “ PNpuq Bϑu “ PNpuq Bϑ ũ on S1 we have

that
Im

´

z2 f pzq
¯

“ 0 on S1.

Hence the holomorphic function z2 f pzq is equal to a real constant. Since f pzq cannot
have a pole at the origin we have that z2f pzq is identically equal to zero and thus ũ is
conformal. l
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