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ABSTRACT
Models of orogens identify subduction of oceanic crust as the key 

mechanism leading to continental collision. Such models, based inter 
alia on thermobarometric and geochronological evidence preserved in 
high-pressure metamorphic rocks and subduction-related magmatism, 
have been used to explain the convergence of Europe and Adria in 
the Cretaceous–Cenozoic and the subsequent Alpine orogen. Here, we 
review the metamorphic, igneous, and sedimentary record of the past 
300 Ma of the Alpine orogen to show that there is no evidence of igne-
ous activity during subduction initiation and prograde high-pressure 
metamorphism, leading to an ~50 Ma hiatus in magmatism, or “arc 
gap.” The closure of rift basins forming the Piemont-Liguria ocean 
did not follow a classical Wadati-Benioff–type subduction. Instead, 
subduction initiation at passive margins allowed for the accretion of 
the hydrated portion of the subducting plate within an orogenic wedge 
as subduction of dry subcontinental lithosphere inhibited magmatism 
during subduction initiation and ocean closure.

INTRODUCTION
Recycling of oceanic lithosphere through subduction is a fundamental 

process governing plate tectonics, continental collision, and arc magma-
tism (Cloos, 1993). The mechanisms allowing for the initiation of new 
subduction zones are related to either spontaneous or induced subduction 
and are thought to occur predominantly within weaknesses in oceanic 
lithosphere such as transform faults and oceanic detachments (e.g., Stern 
and Gerya, 2017). Well-documented examples of subduction initiation 
in mature oceanic settings (Neotethys supra–subduction zone ophiolites 
and Izu-Bonin-Mariana arc) have revealed that subduction initiation is 
characterized by an initial stage of upper-plate extension and tholeiitic to 
boninitic magmatism (e.g., Shervais, 2001; Maffione et al., 2017). Once 
initiated, partial eclogitization and densification of the subducting oceanic 
lithosphere results in a slab-pull mechanism representing a driving force 
for self-sustaining subduction and ocean closure (e.g., Cloos, 1993). In 
addition, dehydration of the oceanic crust drives flux melting of the overly-
ing mantle wedge, resulting in predominantly “calc-alkaline” (cf. Arculus, 
2003) magmatism (e.g., Grove et al., 2012). Therefore, calc-alkaline mag-
matism and low-temperature–high-pressure metamorphic rocks are inter-
preted as strong evidence of paleo–subduction zones (e.g., Stern, 2005).

Evidence of (ultra)high-pressure continental and oceanic fragments 
in the European Alpine orogen (e.g., Chopin, 1984; Reinecke, 1998) 
(Fig. 1) has led to models implying the subduction of a 500–1000-km-wide 

Jurassic Piemont-Liguria ocean during Cretaceous–Cenozoic convergence 
(e.g., Stampfli et al., 1998; Handy et al., 2010). The Alpine orogen, how-
ever, upon subduction initiation at ca. 85–100 Ma (Rosenbaum and Lister, 
2005; Handy et al., 2010; Zanchetta et al., 2012), lacks the distinctive 
characteristics of subduction initiation recorded in Neotethyan ophiolites 
(Fig. 2). Crucially, unlike Neotethyan ophiolites, preserved alpine ophio-
lites indicate that the Piemont-Liguria ocean was not floored by mature 
ocean crust but formed predominantly of basins floored by exhumed sub-
continental mantle, similar to magma-poor Iberia-Newfoundland ocean-
continent transition zones (OCTs) (e.g., Manatschal and Müntener, 2009; 
Mohn et al., 2011; Picazo et al., 2016). The complex architectures of these 
basins are thought to play a major role in the mechanisms controlling the 
closure of the Piemont-Liguria ocean (e.g., Tugend et al., 2014).

Here we compile igneous, sedimentary, and metamorphic geochrono-
logical data of the past 300 Ma encompassing the Alpine orogeny (Fig. 3) 
and show that there is no magmatic record of subduction initiation and 
closure of the Piemont-Liguria ocean in the Alps. We discuss potential 
reasons for subduction without magmatism and propose alternative mech-
anisms of subduction initiation occurring at passive margins.

*E-mail: anders.mccarthy@bristol.ac.uk
CITATION: McCarthy, A., et al., 2018, Subduction initiation without magmatism: The case of the missing Alpine magmatic arc: Geology, v. 46, p. 1059–1062, 

https://doi.org/10.1130/G45366.1

Manuscript received 10 July 2018 
Revised manuscript received 8 October 2018 

Manuscript accepted 11 October 2018

https://doi.org/10.1130/G45366.1

© 2018 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 23 October 2018

Zurich

Lausanne

Nice

Milan

Torino

Trieste

Genoa

Periadriatic Line

P
er

iad
riatic Line

Innsbruck
8°E 10°E 12°E 14°E

46°N

44°N 100 km

N

European margin
Outer margin / terranes

Adriatic margin Oceanic
domains
PlutonsMargna-Sesia

Figure 1. Tectonic map of European Alps showing main paleogeo-
graphic units (e.g., Schmid et al., 2004), including Alpine magmatism. 
Shaded relief is from Jarvis et al. (2008). Note that dikes along the 
Periadriatic Line are not shown (Bergomi et al., 2015). Oceanic domains 
include, amongst others, the Valaisan and Piemont-Liguria domains 
(e.g., Fig. 3D).
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MAGMATISM IN THE ALPS
Major tectonic events in the European Alps are recorded in the mag-

matic, sedimentary, and metamorphic record extending back to 300 Ma, 
and are summarized in Figure 3. Pre-rift magmatism is related to the for-
mation of (post-)Variscan volcano-sedimentary basins during a prolonged 
period of post-collisional extension in Europe. The formation of Jurassic 
OCTs is manifested by exhumed subcontinental mantle, thinned continen-
tal crust, and sparse mid-ocean-ridge basalts and gabbros (e.g., Mohn et al., 
2011; McCarthy and Müntener, 2015). Convergence-related high-pressure 
metamorphism is widespread and starts with continental fragments within 
the southern passive margin of the Piemont-Liguria ocean, reaching peak 
metamorphism at ca. 75 Ma, with the age of peak metamorphism young-
ing northwards to the European margin (e.g., Berger and Bousquet, 2008) 
(Figs. 2 and 3). However, upon prograde high-pressure metamorphism and 
ocean closure, no record exists of island-arc magmatism (Fig. 2), while 
collisional calc-alkaline magmatism is found mostly as small intrusive 
bodies along the Periadriatic Line (Fig. 1) at ca. 42–28 Ma (e.g., Del Moro 
et al., 1983; Hürlimann et al., 2016) and as andesitic clasts in sediments 
shed from the nascent Alpine orogen (Ruffini et al., 1997). Detrital zir-
con populations (n = 9268 zircons; see Figs. DR1–DR3 in the GSA Data 
Repository1) in sediments deposited between the initiation of convergence 
and Quaternary-age deposition in riverbeds preserve no magmatic zircon 
populations aged between 100 Ma and 45 Ma (Fig. 3). This is in contrast 
to known magmatic arcs where comparison of magmatic and detrital zir-
con populations shows that detrital zircon populations reflect the output of 
volcanic arcs, as erupted products are rapidly remobilized and redeposited 
in nearby basins (Cawood et al., 2012; Barth et al., 2017). Thus, the lack of 
both detrital magmatic zircons and any field evidence of arc magmatism 
in the Alps during ocean closure cannot be explained by lack of preserva-
tion of volcanic and/or plutonic edifices. We conclude that magmatism 
was sparse and confined to collision, ~50 Ma after convergence initiated.

Magma generated during collision in the Alps does share similarities 
with those of arcs, including negative Nb-Ta anomalies and hydrous arc-
tholeiitic to calc-alkaline affinity (e.g., Hürlimann et al., 2016; Fig. DR4). 
However, unlike typical arc magmatism, Paleogene Alpine magmatism 
is sparse and is confined along deep-seated faults at the plate boundaries 
(Fig. 1), with the mantle source being unusually deep (~2.7 GPa) (e.g., 
Ulmer, 1988; Hürlimann et al., 2016). Such conditions are unlike arc 
environments, where magmatism is found as much as several hundreds 
of kilometers from the trench and where the conditions of mantle-wedge 
melting are distinctively shallower (1–2 GPa; e.g., Grove et al., 2012).

INDUCED SUBDUCTION INITIATION AT PASSIVE MARGINS
Paleomagnetic data showing the migration of North Africa north-

ward, rotation of Iberia, and opening of the Bay of Biscay at ca. 100 Ma 

1 GSA Data Repository item 2018401, methods, Figures DR1–DR4, and references to text Figures 2–4, is available online at http://www.geosociety.org /datarepository 
/2018/ or on request from editing@geosociety.org.

(e.g., Rosenbaum and Lister, 2005), as well as accretionary thrusting, 
trench-filling deposits, and upper-plate (Adria) compression at 85–100 Ma, 
imply that convergence and initiation of a southward-dipping subduction 
occurred along the southern passive margin at 85–100 Ma (Stampfli et 
al., 1998; Rosenbaum and Lister, 2005; Handy et al., 2010; Zanchetta et 
al., 2012). The lack of magmatism during subduction initiation (Figs. 2 
and 3) contrasts sharply with evidence of subduction initiation in other 
settings. In the Izu-Bonin-Mariana arc, intra-oceanic slab foundering led 
to extensive trench-parallel seafloor spreading, producing forearc basalts 
± boninites. This was followed in ≤10 Ma by stratovolcano-centered mag-
matism and deposition of arc sediments in adjacent basins (e.g., Ishizuka 
et al., 2018) (Fig. 2). Subduction initiation in the Neotethys is recorded 
by supra–subduction zone ophiolites containing hydrous arc tholeiites 
and boninites, greenschist- to granulite-facies metamorphic soles, and/
or evidence of forearc extension coupled to long-lived arc magmatism 
(e.g., Maffione et al., 2017; Shervais, 2001) (Fig. 2). Though the dynam-
ics of subduction initiation depends on plate age, strength, and stress, 
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Figure 2. Timeline of initial 25 Ma following subduction initiation 
and showing subduction-related magmatism and metamorphism for 
subduction of mature oceanic lithosphere in the Neotethys (Eastern 
Mediterranean, Tibet, and Semail [Oman and U.A.E.] ophiolites) and 
Izu-Bonin arc, as well as Alpine-type subduction along the western 
and central Alps. Subduction initiation for Alps is estimated at 100 Ma 
(Zanchetta et al., 2012). References used for figure compilation can be 
found in the Data Repository (see footnote 1). FAB—forearc basalts.

Figure 3. A: Compiled U-Pb crystallization ages from central European 
magmatism. B: Time-corrected εNd(t) (bulk rock, mineral separates; black 
dashed polygons) and εHf(t) (zircon; colored polygons) of magmatic 
products. C: Distribution of U-Pb dates of detrital zircons. D: Schematic 
metamorphic pressure-time (P-t) paths of Alpine units. E. Sedimentary 
deposition, including oceanic sediments, flyschs and molasse as well 
as volcaniclastic deposits. Three distinct Alpine magmatic phases can 
be distinguished: (1) (post-)Variscan magmatism (ca. 300–240 Ma); 
(2) oceanic magmatism (ca. 170–145 Ma); and (3) syn-collisional mag-
matism (ca. 50–28 Ma). In D, double P-t peak for Piemont-Liguria is 
related to different paths of distinct tectonic units. Note that Veneto vol-
canic province consists of sporadic alkaline magmatism in northeast 
Italy. See the Data Repository (see footnote 1) for more information.
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compositionally distinct magmas may still be erupted from near the trench 
to several hundred kilometers distal from the trench (e.g., Leng and Gurnis, 
2015; Stern and Gerya, 2017).

The nucleation of the Alpine subduction at a passive margin appears 
to have been quite unique, as both the age of modern OCTs (e.g., Iberia-
Newfoundland, >100 Ma) and modeling of subduction initiation show that 
passive margins are remarkably stable and are unlikely to spontaneously 
localize and nucleate subduction (e.g., Müller et al., 2008; Leng and Gurnis, 
2015). Documented examples of subduction initiation rather occur along 
crustal weaknesses such as transform faults and oceanic detachments (e.g., 
Stern and Gerya, 2017). The geodynamic evolution resulting from the 
northward migration of Africa therefore implies that Alpine subduction 
initiation was induced and not spontaneous. Alpine OCTs could then have 
accommodated compression in several distinct ways (Fig. 4). As a result of 
the formation of a rift-related serpentinization front along exhumed mantle 
domains, compression might be accommodated along a strong viscos-
ity contrast between the base of the serpentinization front and exhumed 
peridotite (Figs. 4B and 4C) (e.g., Lundin and Doré, 2011; Tugend et al., 
2014). This interface might have allowed for the preservation of upper 
sections of the Piemont-Liguria ocean floor by the sequential accretion 
of variably thick slivers of dismembered “oceanic” and continental frag-
ments from the Adriatic to the European margin and preservation of pre-
collisional tectonic features (Fig. 4C). Similar mechanisms were tested by 
numerical thermomechanical models of induced Alpine-type subduction, 
indicating shallow accretion of hydrated lithologies upon subduction (Ruh 
et al., 2015). Field and petrological data indicate that the southern margin 
of the Piemont-Liguria ocean preserves evidence of reactivation of rift-
related OCTs (e.g., Mohn et al., 2011), which could further accommodate 
compression. Moreover, mantle exhumation during Jurassic rifting led to 
mantle domains with distinct rheological properties due to melt percolation 
during passive asthenospheric upwelling, with subcontinental mantle grad-
ing from inherited, depleted spinel-peridotites to predominantly refertilized 
plagioclase-peridotites oceanward (Fig. 4) (e.g., McCarthy and Müntener 
2015; Picazo et al., 2016). This interface between mantle domains might 
further control the propagation of deformation at depth.

SUBDUCTION OF “DRY” LITHOSPHERIC MANTLE LEADS 
TO AMAGMATIC BASIN CLOSURE AND THE “ARC GAP”

The lack of magmatism in the Alps during subduction, or the “arc gap,” 
has previously been attributed to flat-slab subduction, slow and oblique 
subduction, and/or subduction of continental slivers combined with smaller 
sections of ocean crust (e.g., Bergomi et al., 2015; Zanchetta et al., 2012). 
However, arc magmatism is driven by dehydration (± melting) of altered 
oceanic crust fluxing the mantle wedge (e.g., Grove et al., 2012) although 
decompression melting also occurs (e.g., Sisson and Bronto, 1998). Within 
the Alpine domain, exposed remnants of the Piemont-Liguria ocean are 
composed of oceanic sediments, trench deposits (flyschs), serpentinites, 
sparse gabbros and basalts, and isolated continental fragments. Therefore, 
a slow (1–2 cm/yr) and oblique Alpine oceanic subduction, coupled to 
along-strike changes in subduction polarity (e.g., Schmid et al., 2004; 
Berger and Bousquet, 2008; Vignaroli et al., 2008), implies prolonged 
heating of the slab and slab edges by the convective asthenospheric mantle, 
inducing shallower slab dehydration (≤2 GPa), enhanced flux melting 
of the mantle wedge, and possible slab melting. Such conditions would 
allow for the production of significant volumes of arc magmas (e.g., van 
Keken et al., 2011) similar to other slow and oblique subduction zones, 
as exemplified by the western Aleutians (e.g., Yogodzinski et al., 2015). 
Such a scenario is, however, inconsistent with thermobarometric studies 
indicating that Alpine high-pressure rocks reached >2.5 GPa during the 

“arc gap” (Figs. 2 and 3). Moreover, recorded flat slabs have been tran-
sient and may have either inhibited magmatism over shorter time scales 
(~10 Ma) or led to the migration of arc magmatism away from the trench 
(Ramos and Folguera, 2009), which is also inconsistent with a 50 Ma 

“arc gap.” The isotopic composition of erupted magmatic products (εHf(t) 
≤15, εNd(t) ≤10) over the past 300 Ma as well as alkaline magmatism of 
the Veneto volcanic province (Fig. 3) do not indicate an ultra-depleted 
mantle that would inhibit magmatism. Thus, the accretion of hydrated 
lithologies in a wedge-type geometry (Figs. 4C and 4D) would largely 
prevent the transport of water to mantle depth. Such a “dry” Alpine-type 
subduction may be an example of Ampferer-type subduction (Ampferer 
and Hammer, 1911), related to the amagmatic closure of magma-poor 
areas formed of thinned continental crust, magma-poor oceanic crust, and 
exhumed mantle (or OCTs) (Figs. 4A–4D), as opposed to more common 
Benioff-type subduction, which implies the subduction of mature oceanic 
lithosphere, the efficient subduction of hydrous rocks, and the production 
of voluminous arc magmatism (Figs. 4E and 4F). The concept of sub-
duction of a “dry” lithospheric slab (Fig. 4D) allows us to bridge the gap 
between two apparently contradictory observations, namely tomographic 
images showing evidence of a southward-dipping Alpine slab (e.g., Lip-
pitsch et al., 2003) and a lack of Alpine arc magmatism. Consequently, the 
efficiency of subducting hydrous rocks is an important parameter for arc 
magmatism. Voluminous exposed seafloor serpentinites and blueschist- to 
eclogite-facies rocks such as those in the Alps indicate that deep subduc-
tion of hydrous rocks was inefficient and could explain the arc gap.
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