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Abstract

The alternating direction method of multipliers(ADMM) is a �rst-order optimization al-
gorithm for solving convex problems. We study ADMM under a specialization paradigm,
which means that we shape the algorithm to customize it to the optimization problem
at hand. This specialization paradigm comes as a contrast to using an `o�-the-shelf' or
general-purpose solver, which follows a `one size �ts all' policy. We show that algorithm
specialization makes it possible to synthesize a range of desirable algorithm features and
characteristics, which promotes ADMM as a powerful and versatile tool in optimization
and control.

We study specialized ADMM in a variety of forms and for a range of applications.
We �rst consider an optimal bidding strategy for energy reserve markets. In such mar-
kets, guarantees for providing grid-balancing power capacity are traded. We devise an
ADMM-driven negotiation protocol that coordinates aggregations of market participants
to place a joint energy reserve bid. We show that this algorithmic negotiation equally
distributes the computational burden to the participants and that it provides further
bene�cial features, such as low set-up costs and a large participant autonomy. In a
second specialized ADMM formulation, we contribute to the area of autonomous coor-
dination and collision avoidance. We present a decentralized ADMM-based navigation
protocol for the coordination of moving agents. A challenge arises from the nonconvex
collision avoidance constraints, which we handle with successive linearization at each
ADMM iteration. A main feature of the resulting algorithm is that it operates from an
agent's point of view, which means that each agent uses a local coordinate system and
interacts with its nearest neighbors only. We show that this fully decentralized perspec-
tive provides a range of favorable properties to handle the coordination task. Besides
tailor-�tting ADMM for speci�c areas, we also propose an ADMM specialization frame-
work for a general class ofmodel predictive control(MPC) problems. More speci�cally,
we devise a method that uses the structure in the controlled system as an additional
source of e�ciency for the optimization routine. The algorithm then mimics the struc-
tural properties of the system, which leads to an improved performance of the overall
procedure. The resulting ADMM formulations are highly parallelizable and particu-
larly suited for embedded implementation. We also present a novel measure for system
structure, called the separation tendency. With the separation tendency, we can decide
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Abstract

whether a system is su�ciently structured for utilizing our ADMM framework. In the
last part of this thesis, we provide a detailed application study for structure-exploiting
ADMM. We show how to model and control the power �ow in avariable speed drive
(VSD). It turns out that the resulting VSD model is a structured system, which makes
controlling the power �ow in the VSD an excellent example for algorithm specialization.
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Zusammenfassung

Die alternating direction method of multipliers(ADMM) ist ein Optimierungsalgorith-
mus erster Ordnung zur Lösung konvexer Probleme. Wir untersuchen ADMM unter
einem Spezialisierungsparadigma, was bedeutet, dass wir den Algorithmus für das je-
weils betrachtete Optimierungsproblem anpassen und spezialisieren. Die spezialisierte
Anwendung steht im Gegensatz zu Allzweck-Algorithmen, welche für eine möglichst
breite Verwendung ausgelegt sind. Wir zeigen, dass die Strategie der Spezialisierung
zu einer Reihe von wünschenswerten algorithmischen Eigenschaften führt und bewerben
damit ADMM als leistungsstarkes und vielseitiges Werkzeug in der Optimierungstheorie
und Regelungstechnik.

Bei der Analyse von ADMM betrachten wir eine Reihe verschiedener Anwendungen.
Zunächst analysieren wir eine optimale Ausschreibungsstrategie für Märkte auf denen
Netzregelkapazitäten gehandelt werden. Wir stellen ein ADMM-basiertes Vermittlungs-
protokoll vor, welches eine gemeinsame Marktteilnahme mehrerer Energieverbraucher
ermöglicht. Wir zeigen, dass diese algorithmische Koordination die notwendige Rechen-
last gleichmässig auf die Teilnehmer verteilt. Weitere vorteilhafte Eigenschaften sind
die Reduktion der Kosten für die Marktteilnahme und das Beibehalten einer grossen
Teilnehmerautonomie. In einer zweiten spezialisierten ADMM Formulierung tragen wir
zum Bereich der autonomen Koordination und Kollisionsvermeidung bei. Wir stellen ein
dezentrales ADMM-basiertes Navigationsprotokoll für die Koordination von beweglichen
Vehikeln vor. Eine Herausforderung ergibt sich aus den nicht konvexen Beschränkungen
zur Kollisionsvermeidung, welche wir mit sukzessiver Linearisierung bei jeder ADMM
Iteration meistern. Ein herausstehendes Merkmal des resultierenden Algorithmus ist,
dass er dezentral und aus der Perspektive jedes einzelnen Vehikels operiert. Im De-
tail bedeutet das, dass jedes Vehikel in einem lokalen Koordinatensystem navigiert und
nur mit seinen direkten Nachbarn kommuniziert. Wir legen dar, dass diese dezentrale
Perspektive eine Reihe von vorteilhaften Eigenschaften für die Bewältigung der Koordi-
nationsaufgabe bietet. Neben massgeschneiderten Algorithmen für bestimmte Anwen-
dungsgebiete stellen wir auch eine allgemeine ADMM Spezialisierungstechnik fürmodel
predictive control (MPC) Probleme einer bestimmten Klasse vor. Genauer gesagt ent-
wickeln wir ein Verfahren welches die Struktur im geregelten System als zusätzliche E�-
zienzquelle für die Optimierungsroutine nutzt. Das Resultat ist, dass der Algorithmus die
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Zusammenfassung

strukturellen Eigenschaften des Systems abbildet, was zu einer gesteigerten Leistungs-
fähigkeit des gesamten Prozesses führt. Die daraus resultierenden ADMM Formulierun-
gen sind hochgradig parallelisierbar und eignen sich besonders für die Implementierung
auf eingebetteten Computersystemen (embedded systems). Zusätzlich stellen wir ein
neuartiges Mass für die Systemstruktur vor, die sogenannte Separationstendenz (sepa-
ration tendency). Mit der Separationstendenz können wir abschätzen ob ein System
ausreichend strukturiert ist um einen Vorteil durch die Nutzung unserer ADMM For-
mulierung zu erreichen. Im letzten Teil dieser Arbeit präsentieren wir eine detaillierte
Anwendungsstudie für die Strukturausnutzung durch ADMM. Wir zeigen wie man den
Leistungs�uss in einemvariable speed drive(VSD) modelliert und steuert. Wie sich her-
ausstellt, ist das VSD Modell ein strukturiertes System. Wir zeigen, dass die Regelung
des Leistungs�usses im VSD aufgrund dieser Struktureingenschaften ein ausgezeichnetes
Beispiel für die Anwendung spezialisierter Algorithmen ist.
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CHAPTER1
Introduction

O PTIMIZATION-BASED decision and control strategies, such asmodel predictive
control (MPC), are increasingly applied in industrial applications [QB03] and even

�nd their way into mass production [Di 12]. Many of these applications are challeng-
ing due to strict timing requirements, limited computational capabilities, or because
the initial problem is intractable or impracticable to solve altogether [May16]. In a
broader scope, optimization-based decision making is also used for large and distributed
systems [Hau+17; Rou+08; Ver+16]. In many of these settings, we have to consider
conceptual requirements that concern the distribution of the computational burden, the
availability of information, and the �exibility to con�guration changes. In this thesis,
we show that we can address such challenges by tailoring the optimization method to
the problem setting at hand. We refer to such a tailor-�tted method as a specialized
algorithm, which emphasizes the di�erence in the design philosophy to an `o�-the-shelf'
or general-purpose solver. The strategies of specialization versus multipurpose-use com-
plement each other in the following sense: While general-purpose solvers are easier to
deploy, specialized algorithms may lead to a higher e�ciency and to favorable operating
conditions.

In most applications, the e�ciency and therefore the performance of the optimization
procedure is of paramount concern. The potential to improve an algorithm's e�ciency
through specialization rests on the availability of structure in the initial problem. This
structure can be given through the occupation pattern in the problem matrices, or by the
problem composition of di�erent types of objectives and constraints. On the algorithm
side, the exploitation of structure is re�ected in distributed computation, where our
notion of distribution refers to the following circumstances: A di�cult operation can be
decomposed into simpler steps; a computation can be executed in parallel threads on the
same device; or an optimization problem can be cooperatively solved by separate agents.
Problem structure and computational distribution go hand in hand. In some cases, a
distribution scheme makes it possible to exploit structure in the problem components.

1



Chapter 1. Introduction

In other cases, problem structure makes computational distribution possible.

In this thesis, we focus on thealternating direction method of multipliers(ADMM),
which is a �rst-order method for solving convex optimization problems. We apply ADMM
in situations where problem structure is available and where specializing an algorithm is
bene�cial. ADMM o�ers a large degree of freedom to be adapted to various conditions,
which suits the specialization paradigm. A leading reason for ADMM's high adaptability
is its conceptual simplicity, which makes it possible to preserve the problem structure
in the algorithm formulation. A second reason is that ADMM is applied to a splitting
problem, which is a partitioned problem with two coupled parts. When we obtain such a
splitting form, we can choose from a range of partition choices, where each choice leads
to a di�erent ADMM formulation.

We distinguish two general usage scenarios for ADMM. In the �rst scenario, ADMM
acts as a coordination protocol that decomposes a large problem into a collection of
subproblems. Typically, the initial problem arises from a collaboration of several agents,
and the subproblems stand for each agent's contribution to the group. While an agent
can use any optimization method to solve its local subproblem, the agent's interaction
is determined by ADMM. Through the use of ADMM as such a coordination procedure,
the agents can share the computational burden, which is in contrast to solving the
original combined problem on a centralized computation facility. Moreover, ADMM
makes it possible to store and process the problem data in a decentralized fashion, and
it provides �exibility and autonomy to the participating agents. In the second usage
scenario, we use ADMM on a single computational entity and without a subordinate
solver. In such a case, we choose an ADMM formulation that results in algorithm
steps of computationally simple operations. Due to the simplicity of each step, such an
algorithm usually requires a comparably large number of iterations to converge. This
utilization of ADMM makes an excellent �t with embedded devices and special-purpose
computing platforms, as such devices often have a limited operation set and a high clock
rate. Furthermore, the ADMM iterations typically are numerically stable, which makes
it possible to use moderate-precision �xed-point arithmetics while the rounding errors
remain stable [Jer+14]. When we execute ADMM on a single device, we still make
extensive use of distribution techniques, either to raise the e�ciency or to increase the
potential for parallel computation.

It comes with the specialization paradigm that we discuss ADMM in the context
of a particular application area or a speci�c situation where the associated optimiza-
tion problem possess a particular type of structure. In Chapters 4 and 5, we address
two applications where we utilize ADMM as a coordination protocol. The resulting
ADMM formulations have decisively distinct characteristics, which shows the variability
of ADMM and underlines that each formulation serves the necessities of the particular

2



1.1 Outline and Contribution

setup. In Chapter 6, we show an ADMM utilization strategy that suits embedded de-
vices and exploits structure in MPC problems. We refer to this utilization strategy as
structure-exploiting ADMM. In Chapter 7, we show the practical relevance of structure-
exploiting ADMM with a detailed application example from industry. Throughout the
thesis, we explore the �exibility of ADMM while we remain as close as possible to the
standard ADMM framework. Therefore, our resulting procedures are compatible with
existing results on ADMM, and we inherit convergence guarantees for all our algorithms.
The diversity of ADMM formulations that we obtain in such a way demonstrates the
richness and versatility of the ADMM framework and promotes it as a powerful tool in
optimization and control.

1.1 Outline and Contribution

In Chapter 2, we assemble some essential concepts that are required to apply ADMM,
and in Chapter 3, we collect basic application scenarios that provide the context for the
following algorithms. In Chapter 4, we utilize ADMM to solve a large-scale optimization
problem that arises from placing bids on energy markets. In Chapter 5, we address a
nonconvex collision avoidance setting where ADMM makes it possible to distribute the
algorithm execution to autonomous agents. In Chapter 6, we extend our focus to a
general class of MPC problems, and we show a procedure that exploits structure in the
controlled system. In Chapter 7, we apply the previously presented structure-exploiting
method to a variable speed drive(VSD). Finally, Chapter 8 contains conclusions and an
outlook. Below, we summarize the contributions of Chapters 4 to 7 to their respective
�elds.

Aggregated Bidding in Energy Reserve Markets (Chapter 4)

In a power grid, the electricity supply and demand must be balanced at all times to
maintain the system's frequency. In practice, the grid operator achieves this balance by
procuring frequency reserves in an ahead-of-time market setting. During runtime, these
reserves are then dispatched whenever there is an imbalance in the grid. Recently, there
has been an increased interest in engaging electricity consumers, such as plug-in electric
vehicles or buildings, to o�er such frequency reserves by exploiting their �exibility in
power consumption. We focus on an aggregation of buildings that face the challenge of
placing a joint bid on a reserve market. The resulting shared decision is modeled as a
large-scale optimization problem. Our main contribution is to show that the aggregation
can make its decision in a computationally e�cient and conceptually meaningful way

3



Chapter 1. Introduction

by using ADMM as a coordination protocol. The proposed approach exhibits several
attractive features that include (i ) the computational burden is distributed between the
buildings; (ii ) the setup naturally provides privacy and �exibility; (iii ) the iterative
algorithm can be stopped at any time, while it provides a feasible (though suboptimal)
solution; and(iv ), the algorithm provides the foundation for a reward distribution scheme
that strengthens the group's ability to provide reserves.

Decentralized Coordination and Collision Avoidance (Chapter 5)

We devise a communication and control procedure for decentralized coordination of
moving agents. In particular, we consider a nonconvex MPC framework for a group of
agents, and we utilize ADMM as a communication protocol to distribute the problem.
Each agent has linear dynamics with convex state and input constraints. Nonconvex col-
lision avoidance constraints constitute the inter-agent coupling. The resulting method
is decentralized in the sense that the algorithm is executed without a central computa-
tion facility and therefore fully relies on agent-to-agent communication. Furthermore,
we write the algorithm from an agent's perspective. As each individual agent does
not require knowledge about the overall aggregation, we speak of a fully decentralized
method. Applied by all agents, the algorithm mediates individual objectives while it
satis�es constraints. The resulting procedure exhibits several attractive features, which
include (i ) fully decentralized and parallel operation, where each agent is only aware
of its nearest neighbors;(ii ) adaptive linearization to handle the nonconvex collision
avoidance constraints; and(iii ), the treatment of uncooperative agents.

Structure-Exploiting ADMM for MPC (Chapter 6)

In this chapter, we focus on MPC settings, and we tailor ADMM to exploit structure in
the MPC optimization problem. Primarily, we take advantage of interacting components
in the controlled system. We identify these components by decomposing the system dy-
namics with virtual subsystems and virtual inputs. The resulting structure-exploiting
ADMM formulation is written as a negotiation process between the components. We
increase the adaptability of the procedure by introducing subsystem-individual penalty
parameters, and we provide an optimal parameter selection technique. Furthermore,
we propose a novel measure of system structure, called separation tendency, which is a
measure for the amenability of our method for a given system. For a su�ciently struc-
tured system, structure-exploiting ADMM has the following characteristics:(i ) it scales
favorably with the problem size;(ii ) it is highly parallelizable; (iii ) it is highly adaptable
to the problem at hand; and(iv ), even for a single-thread implementation, it improves

4



1.1 Outline and Contribution

the convergence performance. This chapter di�ers from the previous chapters in several
ways. First, additional to the MPC problem distribution as performed in Chapter 5, the
system decomposition marks an extra distribution layer. Second, in structure-exploiting
ADMM, there is no underlying optimization routine, i.e., each algorithm step is a com-
putationally simple operation; and third, the distributed computation happens on-chip,
i.e., there is only one computational entity that solves the problem.

Power Management in Variable Speed Drives (Chapter 7)

VSDs are used to convert power between electricity grids and electric machines. Typi-
cally, they are AC-DC-AC power converters that consist of a recti�er, a storage capacitor,
and an inverter. In this chapter, we �rst establish that controlling the power �ow through
such devices is a viable application for MPC. We show that an MPC-based solution ex-
ceeds the capabilities of conventionalproportional-integral (PI) control techniques. We
also argue that MPC makes it possible to build drives with a smaller storage capacitor.
Furthermore, we show that the resulting problem formulation provides a strong use-case
for structure-exploiting ADMM, and we show that our method outperformsinterior
point methods (IPMs) for the given situation.

5



Chapter 1. Introduction

1.2 Publications

The work presented in this thesis is a result of close collaboration with colleagues and is
based on the submitted or published articles below.

Chapter 4

[Rey+18b] F. Rey , X. Zhang, S. Merkli, V. Agliati, M. Kamgarpour, and J. Lygeros.
�Strengthening the group: aggregated frequency reserve bidding with ADMM�.
In: IEEE Transactions on Smart Grid (2018).

Chapter 5

[Rey+18a] F. Rey , Z. Pan, A. Hauswirth, and J. Lygeros. �Fully decentralized ADMM
for coordination and collision avoidance�. In:European Control Conference.
IEEE. 2018, pp. 825�830.

Chapter 6

[RHL17b] F. Rey , P. Hokayem, and J. Lygeros. �Ask not what ADMM can do for
you, ask what you can do for ADMM - virtual subsystems in MPC�. In:
Conference on Decision and Control. IEEE. 2017, pp. 4357�4362.

[RHL18] F. Rey , P. Hokayem, and J. Lygeros. �ADMM for exploiting structure in
MPC�. In: arXiv preprint arXiv:1808.06879 (2018).

Chapter 7

[RHL17a] F. Rey , P. Hokayem, and J. Lygeros. �A tailored ADMM approach for
power coordination in variable speed drives�. In:20th IFAC World Congress
50.1 (2017), pp. 7403�7408.

[RHL17c] F. Rey , P. Hokayem, and J. Lygeros. �Power coordination in variable speed
drives using model predictive control�. In:20th IFAC World Congress50.1
(2017), pp. 3307�3312.

6



1.2 Publications

Miscellaneous

The following articles are submitted or published during my doctorate but are not an
integral part of this thesis.

[Rey+16] F. Rey , D. Frick, A. Domahidi, J. Jerez, M. Morari, and J. Lygeros.
�ADMM prescaling for model predictive control�. In: Conference on De-
cision and Control. IEEE. 2016, pp. 3662�3667.

[Ban+18] G. Banjac, F. Rey , P. Goulart, and J. Lygeros. �Decentralized resource al-
location via dual consensus ADMM�. In:arXiv preprint arXiv:1809.07376v1
(2018).

[Eck+19] M. Eckert, K. Nagatou, F. Rey , O. Stark, and S. Hohmann. �Solution
of time-variant fractional di�erential equations with a generalized Peano-
Baker series�. In: IEEE Control Systems Letters3.1 (Jan. 2019), 79�84.

Related Projects

Several student projects that have been conducted at the Automatic Control Laboratory
relate to the research presented in this thesis. Among them, the following Master's theses
have supported my �ndings.

[Agl16] V. Agliati. Distributed frequency reserve provision of an aggregation of build-
ings. Master Thesis. Automatic Control Laboratory, ETH Zurich, 2016.

[Kim16] A. Kim. Robust feasibility and stability in MPC for bu�er management
problems. Master Thesis. Automatic Control Laboratory, ETH Zurich, 2016.

[Man16] D. Manickathu. Comparison of ADMM formulations for MPC problems.
Master Thesis. Automatic Control Laboratory, ETH Zurich, 2016.

[Vla16] P. Vlachas.A comparison of ADMM and AMA for MPC. Master Thesis.
Automatic Control Laboratory, ETH Zurich, 2016.

[Pan17] Z. Pan.Fully decentralized collision avoidance with ADMM. Master Thesis.
Automatic Control Laboratory, ETH Zurich, 2017.

[Pap17] A. Papasavvas.Distributed privacy. Master Thesis. Automatic Control Lab-
oratory, ETH Zurich, 2017.

[Jet18] S. Jetzer.Combining ADMM and DDP for composite horizon MPC prob-
lems. Master Thesis. Automatic Control Laboratory, ETH Zurich, 2018.

[Mar18] V. Marda. Distributed optimization for energy management using ADMM.
Master Thesis. Automatic Control Laboratory, ETH Zurich, 2018.

7



Chapter 1. Introduction

1.3 Notation

We introduce a selection of elementary concepts and notations that we use throughout
this thesis. Standard terminology from convex optimization [BV04] and control the-
ory [AM10] is assumed to be known. We present several concepts with a reduced level
of generality for best-serving the purpose of this thesis.

Elementary Nomenclature

We useR to denote the set of real numbers,R+ = f x 2 R j x > 0g for positive real
numbers, N for non-negative integers, andN+ = f x 2 N j x > 0g for positive integers.
We denote dimensions with non-italic symbols, e.g.,A 2 Rn� m. For vectors, we use
matching symbols whenever possible, e.g.,x 2 Rx .

For x1; x2 2 Rx , we use the tuple(x1; x2) 2 Rx � Rx . If a tuple contains several
elements, we also use the sequence notationf x i gi =1 ;2;::: = ( x1; x2; : : : ) 2 Rx � Rx � : : : .
We omit the range ofi if it is clear from context. We also use curly brackets to denote
sets, e.g.,f x 2 Rx j Ax = bg � Rx whereA 2 Rb� x and b2 Rb. The distinction between
sequences and sets is clear from context.

Concatenations

We use the notation[A ij ] 2 Rn� m to concatenate a set of submatricesA ij 2 Rni � m j along
the rows i = 1; : : : ; N and columns j = 1; : : : ; M , i.e.,

[A ij ] =

2

6
6
4

A11 : : : A1M
...

. . .
...

AN 1 : : : ANM

3

7
7
5 ; (1.1)

wheren =
P N

i =1 ni and m =
P M

j =1 mj .

Further, we use vertical[A1j ; A2j ] 2 R(n1+n 2 )� m j , horizontal [A i 1jA i 2] 2 Rni � (m 1+m 2 ) ,
and diagonal diag(A11; A22) 2 R(n1+n 2 )� (m 1+m 2 ) concatenation. Consistently, we stack
vectorsx1; x2 2 Rx with

[x1; x2] =

"
x1

x2

#

2 R2x: (1.2)

For x 2 Rx , we also use the notationdiag(x) 2 Rx� x to obtain a diagonal matrix
where the elements ofx are placed on the main diagonal.
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1.3 Notation

Special Objects

The identity matrix of dimension n� n is denotedI n. We use the matrices0n� m and 1n� m

of sizen � m with all elements0 or 1. For m = 1, we simplify the notation to 0n and 1n.
We omit all subscripts if the dimension is clear from context.

We allow for empty matricesA 2 Rn� m where n = 0 or m = 0. When we multiply
such empty matrices, we may obtain nonempty matrices, e.g., forA 2 Rn� 0, B 2 R0� m,
and C = AB . In such a case, we use the conventionC = 0n� m.

Relations and Inclusions

For x1; x2 2 Rx , we use the element-wise inequalityx1 � x2. We denote a closed range
with rectangular brackets, i.e.,[x1; x2] = f x j x1 � x � x2g. Consequently, the inclusion
x 2 [x1; x2] is understood element-wise.

With the de�nitions from above, we obtain �ve di�erent options to assemble vectors,
which we summarize below.

� (x1; x2) = f x i gi =1 ;2 2 Rx � Rx (tuple or sequence)

� f x i j i = 1; 2g � Rx (set)

� [x1; x2] =

"
x1

x2

#

2 R2x (vertical stack)

� [x1jx2] =
h
x1 x2

i
2 Rx� 2 (horizontal stack)

� [x1; x2] = f x j x1 � x � x2g � Rx (closed range)

For a symmetric matrix Q 2 Rx� x , we use the notationQ > 0 if Q is positive de�nite,
i.e., x> Qx > 0 for all x 2 Rxnf 0xg. If x> Qx � 0 for x 2 Rx , we say that Q is positive
semide�nite and write Q � 0. Whenever we useQ > 0 or Q � 0, we imply that Q is
symmetric.

Kronecker Products

For the matricesA 2 Rn� m and B 2 Rp� q, we use the Kronecker product

A 
 B =

2

6
6
4

a11B : : : a1mB
...

. . .
...

an1B : : : anmB

3

7
7
5 2 R(n+p) � (m+q) ; (1.3)

whereA = [ aij ].
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Chapter 1. Introduction

Iterations, Cluster Points, and Fixed Points

Given an operatorT : Rx ! Rx , the iteration xk+1 = T(xk), and the initial value x0,
we obtain the sequencef x0; x1; x2; : : : g. We call x? a cluster point of the sequence
f xkgk=1 ;2;::: if every neighborhood aroundx? contains in�nitely many sequence elements.
If x? = T(x?), we call x? a �xed point of T(�).

If we are not interested in intermediate sequence objects, we omit the indexk and
write x  T(x), which suggests that we overwrite the value ofx with T(x) in each
iteration.

Scaled Vector Norms

Given a positive de�nite matrix Q 2 Rx� x and a vectorx 2 Rx , we use the scaled norm

kxkQ = kQ1=2xk2 =
q

x> Qx; (1.4)

where Q1=2 is the unique and symmetric square root matrix ofQ [JOR01]. The scaled
norm is identical to the induced norm in a Hilbert space with the inner producthx1; x2i Q =
x>

1 Qx2.

Optimization Problems

We consider convex optimization problems of the form

x? 2 arg min
x

f (x) (1.5a)

s.t. x 2 C; (1.5b)

wherex 2 Rx is the decision variable,f : Rx ! (R [ f1g ) is the convex objective func-
tion, and C � Rx is the convex constraint set. We callx? a minimizer, optimizer, or so-
lution of (1.5). We use the simpli�ed notation x? = arg min x (: : : ) or x?  arg minx (: : : )
to suggest that we choose anyx? from the set of solutions. This notation also implies
that the solution set is nonempty.

In the context of feasible but suboptimal choices ofx, we use the termfeasible so-
lution. In this case, we avoid confusion with the optimizerx? by using the tautology
optimal solution.
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Indicator Functions

Given a closed setC � Rx , we use the indicator functionI C : Rx ! (R [ f1g ) with

I C(x) =

(
0 if x 2 C
1 otherwise.

(1.6)

For C = f x 2 Rx j Ax = bg, we also use the notationI C(x) = I Ax = b(x).

Projection Operators

Given x 2 Rx and a closed convex setC � Rx , we use the orthogonal projection

� C(x) = arg min
y

1
2ky � xk2

2 (1.7a)

s.t. y 2 C; (1.7b)

where� C(x) = y? is the projection ofx onto C.

Epigraphs

We consider a functionf : Rx ! (R [ f1g ). The epigraph off is

epi(f ) = f (x; t ) 2 Rx � R j f (x) � tg: (1.8)

The epigraph is nonempty iff (x) < 1 for somex, and it is closed iff is lower semicon-
tinuous [BV04].

Bachmann�Landau Notations

We use the Bachmann�Landau notationO(�) to relate the growth of the positive-valued
function f : Rx ! R+ to the growth of the prototype function g : Rx ! R+ . More
speci�cally, if there existsx0 2 Rx and M 2 R+ such that f (x) � Mg(x) for all x � x0,
we use the notation

f (x) = O (g(x)) : (1.9)

Eigenvalues, Singular Values, and Matrix Norms

We denote thek-th largest eigenvalue of a symmetric matrixA 2 Rn� n as eigk(A) 2 R.
The largest eigenvalue iseigmax (A) and the smallest eigenvalue iseigmin (A). Furthermore,
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Chapter 1. Introduction

we denote thek-th largest singular value ofA as � k(A) 2 R. The spectral radius� (A)
is the largest singular value. IfA � 0, then the singular values and eigenvalues are
identical [KL80].

For symmetric matrices, we can relate the spectral radius to the matrix norm, i.e.,

kAk2 = max
kxk2=1

kAxk2 = � (A): (1.10)
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CHAPTER2
ADMM

W E review basic ADMM formulations and selected modi�cations of the algorithm.
We limit our attention to aspects that are relevant in the remainder of this

thesis.

2.1 Standard ADMM

ADMM was introduced in 1975 [GM75] in the context of solving nonlinear Dirichlet
problems with �nite element approximations. There are many ways to motivate the
construction of ADMM as the algorithm is closely related or equivalent to a range of
other methods (see [Boy+11] or Section 2.3). We choose the most common approach,
where we introduce ADMM as a Lagrangian-based method that is used to solve splitting
problems.

2.1.1 Splitting Problem

ADMM solves problems where the decision variables are partitioned into two groups.
These so-called splitting problems typically have the form

min
y;z

f (y) + g(z) (2.1a)

s.t. Ay + Bz = 0; (2.1b)

where we use the objective functionsf : Ry ! (R [ f1g ), g : Rz ! (R [ f1g ) and
the coupling matricesA 2 Rm� y , B 2 Rm� z. The separation between the decision vari-
ablesy 2 Ry and z 2 Rz is called the splitting. We anticipate the ADMM convergence
requirements in Section 2.1.5 by requiring the epigraphs off; g to be closed, nonempty,
and convex, and by assuming that the solution set of (2.1) is nonempty and bounded.
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Chapter 2. ADMM

2.1.2 Augmented Lagrangian

The augmented Lagrangian of (2.1) is

L �

�
y; z; ��

�
= f (y) + g(z) + �� > (Ay + Bz) + �

2 kAy + Bzk2
2 ; (2.2)

where the Lagrange multiplier�� 2 Rm is associated with the coupling constraint (2.1b)
and � > 0 is a user-chosen penalty parameter that in�uences the convergence perfor-
mance. The augmented Lagrangian di�ers from a regular Lagrangian

L
�
y; z; ��

�
= f (y) + g(z) + �� > (Ay + Bz) (2.3)

by the regularization or penalty term �
2 kAy + Bzk2

2. The LagrangiansL and L � have
the same saddle points [Boy+11].

2.1.3 Optimality Conditions

As shown in [Boy+11], the necessary and su�cient conditions for(y?; z?; �� ?) to be an
optimal solution for (2.1) are

0 = Ay? + Bz? (2.4a)

0 2 @f(y?) + ( �� ?)> A (2.4b)

0 2 @g(z?) + ( �� ?)> B; (2.4c)

where@is the subdi�erential operator and + is the Minkowski sum. We call(y?; z?) a
primal solution and �� ? 2 Rm is a dual solution.

2.1.4 ADMM Iteration

ADMM is an alternating minimization scheme for computing a saddle point of the aug-
mented Lagrangian. The algorithm is composed of three steps. First,L � is minimized
with respect to y, then with respect to z, and �nally, a gradient step is performed to-
wards the maximum with respect to�� . Algorithm 2.1 shows the procedure, wherè is
the iteration counter.

In a typical ADMM application scenario, the minimization of L � with respect to y
and z is computationally less demanding than the joint minimization in the initial prob-
lem (2.1). In the third step of Algorithm 2.1, it can be seen that the penalty parameter�
determines the length of the gradient step for�� , which is why � is also called step size
parameter [RD14b; RD14a].
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Algorithm 2.1 ADMM

initialize z0 2 Rz, �� 0 2 Rm, � 2 R+ , ` = 0

repeat

1: y`+1 = arg min
y

L �

�
y; z` ; �� `

�

2: z`+1 = arg min
z

L �

�
y`+1 ; z; �� `

�

3: �� `+1 = �� ` + � @
@�� L �

�
y`+1 ; z`+1 ; ��

�

4: ` = ` + 1

until satisfaction of a stopping criterion

extract (y?; z?; �� ?) = ( y` ; z` ; �� ` )

In Algorithm 2.2, we rewrite Algorithm 2.1 in a simpli�ed form by inserting the de�-
nition of L � , by dropping the index`, and by neglecting the initialization and termination
procedures.

Algorithm 2.2 ADMM for (2.1)

repeat

1: y  arg min
y

f (y) + �� > Ay + �
2 kAy + Bzk2

2

2: z  arg min
z

g(z) + �� > Bz + �
2 kAy + Bzk2

2

3: ��  �� + � (Ay + Bz)

2.1.5 Convergence

To make a statement about the convergence of Algorithm 2.1 and equivalently Algo-
rithm 2.2, we require the following assumptions.

Assumption 2.1. The epigraphs off and g are closed, nonempty, and convex.

Assumption 2.2. The solution set of (2.1) is nonempty and bounded.

If Assumptions 2.1 and 2.2 are satis�ed, then for any initialization(z0; �� 0), and any
positive value of� , the following statements are true for Algorithm 2.1 [CST17, Thm. 4.1].

� �� ` ! �� ? as ` ! 1 , where �� ? is a dual solution for (2.1).
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� f (y` )+ g(z` ) ! f (y?)+ g(z?) as` ! 1 , where(y?; z?) is a primal solution for (2.1).

� Every cluster point of the sequence(y` ; z` ; �� ` ) is a primal-dual solution for (2.1).

As noted before, the solutions for Problem (2.1) satisfy the optimality conditions (2.4).
We speak of cluster points as Algorithm 2.1 can alternate between di�erent primal so-
lutions (y?; z?). To obtain a statement about convergence to a single �xed point, the
following additional assumption is su�cient.

Assumption 2.3. The functions f; g are � f ; � g-strongly convex, where� f ; � g � 0. The
conditions � f I + AA > > 0 and � gI + BB> > 0 are satis�ed.

If Assumptions 2.1 - 2.3 are satis�ed, then for any initialization(z0; �� 0), and any posi-
tive value of � , Algorithm 2.1 converges to a �xed point that is optimal for (2.1) [CST17,
Thm. 4.1],[BC17, Sec. 22.1].

Our assumptions for convergence are chosen for convenience. More general conver-
gence statements can be found in [CST17]. Assumption 2.1 is equivalent forf; g to be
closed, proper, and convex [Boy+11]. Assumption 2.2 implies that the Lagrangian (2.3)
has a saddle point, as required in [Boy+11]. Assumption 2.2 also implies that the opti-
mization problems in the �rst two steps of Algorithm 2.1 are solvable [CST17, Cor. 2.1]. If
we instead assume that a solution for each algorithm step exists, we can drop the bound-
edness criterion [CST17, Thm. 4.1]. Assumption 2.3 can be satis�ed even if� f = � g = 0,
for example in the case ofA = B = I , or any other full row rank choice ofA ; B. For the
special case whenf; g are quadratic functions, a suitable convergence statement can be
found in [RD14b].

2.1.6 Termination Criteria

We can observe the convergence progress of Algorithm 2.1 through the residual quantities

rp  A y + Bz (2.5a)

rd  � A > B(z � z� ); (2.5b)

where rp is the primal residual, rd is the dual residual, andz� is the value from the
previous iteration [Boy+11]. The primal residual is guaranteed to converge to zero if
Assumptions 2.1 and 2.2 are satis�ed (see Section 2.1.5). The dual residual is guaran-
teed to converge to zero if Algorithm 2.1 converges to a �xed point. Hence, a typical
termination criterion is

krpk2 � � p and krdk2 � � d; (2.6)
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where � p, � d 2 R are the convergence accuracies. The interpretation of the sizes of the
residuals is algorithm and problem speci�c, since they depend onA, B and the penalty
parameter � . Hence, the residuals are not suited to compare the convergence behavior
of di�erent algorithms and problem types.

For the purpose of analyzing the algorithm performance o�-line, we can precompute
an optimal solution y? 6= 0 and assess the convergence progress by evaluating

disty? (y)  
ky � y?k2

2

ky?k2
2

(2.7)

at each iteration. The convergence distance (2.7) is an absolute measure that describes
the solution precision. It can only be used if a unique �xed point is known a-priori.

In a real-time setting, where a �xed time interval for solving a problem is given, it is
reasonable to perform as many ADMM iterations as possible. This saves the computa-
tional cost of evaluating (2.5), (2.6) and results in the best-achievable solution precision.

2.1.7 Scaled Form

In many situations, a scaled ADMM formulation is easier to handle. We write the
augmented Lagrangian (2.2) as

L � (y; z; � ) = f (y) + g(z) + �
2 k� + Ay + Bzk2

2 � �
2 k� k2

2 ; (2.8)

where � = 1
�
�� is the scaled Lagrange multiplier. The equivalence of (2.8) and (2.2)

becomes clear by expanding the regularization termk� + Ay + Bzk2
2 to k� k2

2 +2� > (Ay+
Bz) + kAy + Bzk2

2. The reformulation leads to Algorithm 2.3, which is equivalent to
Algorithm 2.2.

Algorithm 2.3 ADMM for (2.1) in Scaled Form

repeat

1: y  arg min
y

f (y) + �
2 k� + Ay + Bzk2

2

2: z  arg min
z

g(z) + �
2 k� + Ay + Bzk2

2

3: �  � + Ay + Bz

For the scaled ADMM formulation in Algorithm 2.3, we observe that� does not
appear as a step size anymore, which is why we prefer the terminology of a penalty
parameter.
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2.1.8 Consensus Form

The consensus form is a special case of the splitting problem (2.1) whereA = I and
B = � I , i.e.,

min
y;z

f (y) + g(z) (2.9a)

s.t. y � z = 0: (2.9b)

In this case, we call (2.9b) the consensus constraint. For given values ofy and z,
we also cally � z the consensus gap. We show the scaled ADMM formulation for the
consensus form (2.9) in Algorithm 2.4.

Algorithm 2.4 ADMM for (2.9)

repeat

1: y  arg min
y

f (y) + �
2 k� + y � zk2

2

2: z  arg min
z

g(z) + �
2 k� + y � zk2

2

3: �  � + y � z

For consensus problems, Assumption 2.3 is always satis�ed, even if� f = � g = 0,
i.e., if f; g are convex but not strongly convex. Hence, according to Section 2.1.5, the
sequence generated by Algorithm 2.4 has at most one cluster point.

In Algorithm 2.4, we can interpret the Lagrange multiplier� as a pricing mechanism
as follows: In the third algorithm step, we see that� is determined by integrating the
consensus gapy � z, which leads to an increase of� if y > z . In the �rst and second
algorithm steps, the increased� provides an incentive to lowery and raisez. Therefore,
the consensus gapy � z reduces. The more di�cult it is to obtain a consensus solution,
i.e., the more misalignedf and g are, the larger the converged value� ? becomes.

2.2 Modi�cation and Acceleration Techniques

There exists a range of modi�cation and acceleration techniques for ADMM. Exam-
ples are over-relaxation [Boy+11], Nesterov acceleration [Gol+14], constraint condition-
ing [Gha+15; GB14a], metric selection [GB14b], prescaling [Rey+16; GB14b], optimal
penalty selection [Gha+15; GB14a; RD14a; RD14b], varying penalty selection [Boy+11],
matrix-valued parametrization [RHL18; GB14b], warm-starting [Boy+11], inexact opti-
mization [CHW15], multi-block extension [Den+17; Che+16], and regularization term
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modi�cation [Boy+11; Che+16]. We review a selection of these techniques, in particular
those that are relevant in the context of this thesis.

2.2.1 Optimal Penalty Selection

Several papers discuss the optimal choice of the ADMM penalty parameter, for exam-
ple [Gha+15; GB14a; RD14a; RD14b]. We focus on the technique in [RD14b] since
it is compatible with a prominent splitting choice for MPC problems (details follow in
Section 3.1).

Similar as in [RD14b], we consider the optimal penalty selection for a feasible and
convexquadratic problem(QP)

y? = arg min
y

1
2y> Qy + q> y (2.10a)

s.t. Cy = c (2.10b)

y 2 Y : (2.10c)

In Section 3.2, we will present a detailed analysis of QPs in the context of ADMM. For
the purpose of the optimal penalty parameter selection, it is su�cient to see that (2.10)
can be written in a consensus form (2.9) by usingy = z and

f (y) = 1
2y> Qy + q> y + I Cy= c (y) (2.11a)

g(z) = I Y (z) : (2.11b)

Hence, Algorithm 2.4 can be used to solve (2.10). To apply the optimal penalty param-
eter result in [RD14b], we require the following assumptions.

Assumption 2.4. The equality constraint matrix C 2 Rc� y has full row rank.

Assumption 2.5. The HessianQ is positive de�nite on the null space of the equal-
ity constraint matrix C, i.e., Z > QZ > 0, where the columns ofZ 2 Ry� y� c form an
orthonormal null space basis forC.

It is shown in [RD14b] that the worst-case convergence rate of Algorithm 2.4 for
Problem (2.10) is improved by choosing� to minimize kM̂k 2, where

M̂ = Z > M Z � 1
2 I; (2.12a)

M = Z
�
Z > 1

� (Q + �I )Z
� � 1

Z > : (2.12b)

Details on how these matrices are derived and how they in�uence the convergence rate
are shown in [RD14b]. By usingkM̂k 2 = max

kxk2=1
kM̂ xk2 = � (M̂ ), we determine the
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optimal penalty parameter choice with

� ? = arg min
�

� (M̂ ): (2.13)

We recognize that� k(M̂ ) = j eigk(M̂ )j, which is true sinceM̂ is symmetric and therefore
normal [KL80]. It is shown in [RD14b] that (2.13) has the closed-form solution

� ? =
q

eigmin (Z > QZ) eigmax (Z > QZ): (2.14)

The practical value of the optimal parameter (2.14) lies in its broad applicability and
in its sole dependence on the a-priori known quantitiesQ and C.

2.2.2 Varying Penalty Selection

As an alternative to a penalty parameter that is de�ned a-priori, the parameter can be
adapted during the ADMM iteration. A possible approach is shown in [Roc76; Boy+11],
where � is adjusted as a function of the primal and dual residuals. We use the residual
de�nitions from Section 2.1.6, i.e.,

rp = Ay + Bz (2.15a)

rd = � A > B(z � z� ); (2.15b)

where the variablesy; z, and z� are associated to Algorithm 2.2. The intuition is that a
large � reduces the primal residualrp as it penalizes the consensus gap in Algorithm 2.2.
A small � makes the algorithm progress with less `momentum', as it reduces the changes
in � and therefore also reduces the dual residualrd. By following this intuition, we
choose the update rule

�  

8
>><

>>:

� � if krpk > � krdk
1=� � if krdk > � krpk
� otherwise

; (2.16)

where� > 1 and � > 1 are tuning parameters. While a varying� provides good ADMM
convergence performance in practice [Ste+17], it still can have negative e�ects on the
algorithm execution. A typical example is when the optimization steps in Algorithm 2.2
have closed-form solutions, as these solution have to be adapted whenever� changes.

2.2.3 Matrix-Valued Parametrization

By rewriting the initial splitting problem (2.1), we obtain an ADMM version where the
penalty parameter� is replaced by a scaling matrixE, which results in more degrees of
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freedom. The procedure is closely related to constraint conditioning [Gha+15; GB14a]
and metric selection [GB14b]. We scale the consensus constraint (2.1b) with1p

� E � 1=2,
whereE 2 Ry� y is invertible. We obtain

min
y;z

f (y) + g(z) (2.17a)

s.t. 1p
� E � 1=2Ay + 1p

� E � 1=2Bz = 0; (2.17b)

which is equivalent to the initial problem (2.1). By following the procedure in Section 2.1,
we obtain the scaled augmented Lagrangian

L E (y; z; � ) = f (y) + g(z) + �
2



 � + 1p

� E � 1=2Ay + 1p
� E � 1=2Bz





2

2
� �

2 k� k2
2 : (2.18)

With � = 1p
� E � 1=2 �̂ and kE � 1=2xk2 = kxk2

E = x> Ex, we obtain

L E

�
y; z; �̂

�
= f (y) + g(z) + 1

2



 �̂ + Ay + Bz





2

E
� 1

2



 �̂





2

E
; (2.19)

where the penalty parameter� is replaced by a scaled norm that depends onE. Based
on (2.19), we obtain Algorithm 2.5.

Algorithm 2.5 ADMM for (2.1) with matrix-valued parametrization

1: y  arg min
y

f (y) + 1
2



 �̂ + Ay + Bz





2

E

2: z  arg min
z

g(y) + 1
2



 �̂ + Ay + Bz





2

E

3: �̂  �̂ + Ay + Bz

The scaling matrix E provides a larger degree of freedom than the penalty parame-
ter � , and therefore makes a tighter adaption to a given problem possible. ForE = �I , we
recover the original formulation. We show an application of a matrix-valued parametriza-
tions in Chapter 6.

2.2.4 Prescaling

We consider the same QP as in Section 2.2.1, and we useY = [ ymin ; ymax ]. As shown
in [Rey+16], prescaling is a linear change of variables�y = Py, where we use the invertible
scaling matrix P 2 Ry� y . Additional to the assumptions in Section 2.2.1, we assume
that the linear independence constrained quali�cation(LICQ) [NW06] is satis�ed at the
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solution. With the scaled variable�y as de�ned above, we obtain the problem

min
�y

1
2 �y> �Q�y + �q> �y (2.20a)

s: t : �C �y = c (2.20b)

�y 2 �Y; (2.20c)

where �Q = P> QP, �q = P> q, �Y = f P � 1y j y 2 Yg, and �C = CP. The solutions of the
scaled and the original problem directly relate to each other, i.e.,P �y? = y?. Hence, we
can solve any scaled problem in place of the original one.

As before, we consider the ADMM procedure in Algorithm 2.2. Our goal is to choose
the prescaling matrixP to improve the algorithm performance. By following [Rey+16],
we consider a structure-preserving set of matricesK � Ry� y , and we limit our prescaling
matrix choice to P 2 K such that the computational e�ort for projecting onto �Y does
not rise substantially. Similar to the handling of � ? in Section 2.2.1, we choose the
optimal prescaling matrix P? to minimize the norm of the contraction matrix kM̂k 2

that is de�ned in (2.12). The following proposition shows the result.

Proposition 2.1. The optimal prescaling matrixP? 2 K that minimizes kM̂k 2 satis�es

(P?; �Z ?; � ?) = arg min
P; �Z;�

� (2.21a)

s: t : I y� c � �H � �I y� c (2.21b)
�H = �Z > P> QP �Z (2.21c)

CP �Z = 0 (2.21d)
�Z > �Z = I y� c (2.21e)

P 2 K; invertible. (2.21f)

In Proposition 2.1, � 2 R is an auxiliary variable, the columns of�Z 2 Ry� y� c form an
orthonormal null space basis for�C 2 Rc� y , and �H is called the reduced Hessian. We show
a proof of the proposition in [Rey+16], where we also provide a more detailed discussion of
the interaction of P? with the worst-case convergence rate in [RD14a]. The optimization
problem (2.21) is a nonconvexpolynomial matrix inequality(PMI) problem [HL06], which
is intractable in many situations. The following corollary describes a simple case where
an analytic solution exists.

Corollary 2.1. If Q� 1=2 2 K, then the following statements are true.

(i ) P? = Q� 1=2 satis�es (2.21).

(ii ) The optimal penalty parameter(2.14) of the scaled problem is�� ? = 1.

22



2.3 Related Methods

We show a proof of Corollary 2.1 in [Rey+16]. Statement(ii ) provides an optimal
penalty parameter choice without having to compute a null space basis or eigenvalues
as required in (2.14). This is particularly useful insequential quadratic programming
(SQP) settings [BT95], where the equality constraint matrixC changes through succes-
sive linearization, which means that� ? has to be recomputed at every MPC iteration.
The same reasoning applies to the real-time iteration [Die+02].

2.3 Related Methods

ADMM is related to a range of optimization methods. We �rst discuss its classi�cation
as a �rst- or second-order method, and then set ADMM in context with prominent
representatives from each class.

2.3.1 First- and Second-Order Methods

Optimization algorithms for QPs are classi�ed as �rst- or second-order methods, de-
pending on their usage of the objective function's gradient and curvature information.
For standard techniques such as the gradient descent and the Newton method [NW06],
this distinction is particularly evident. Gradient descent is a �rst-order method as it
uses the gradient information only; the Newton method is a second-order method as it
additionally uses the curvature information. Typical properties that are associated with
�rst-order methods are their conceptual simplicity, their use of low-complexity opera-
tions, their applicability to large-scale problems, and their tendency for reaching medium
solution accuracies fast. However, �rst-order methods are also sensitive to scaling in the
problem data, and they usually require many iterations for converging to a high precision
solution. In contrast, second-order methods often show robust convergence character-
istics against variations in the problem data, and they reach high solution accuracies
after performing only a few iterations. On the downside, second-order methods typi-
cally require computationally expensive operations, such as recurrent matrix inversions.
These operations are challenging to execute on embedded devices, and the execution
e�ort increases markedly with the problem size.

It is possible to write ADMM as a composition of proximal operators [GB17], and a
proximal operator can be written as the resolvent of a subdi�erential [PB+14, Sec. 3.2].
Hence, ADMM only uses (sub-)gradient information and therefore is a �rst-order method.
Indeed, in Chapters 6 and 7, we observe that ADMM has �rst-order characteristics, e.g.,
it requires many but computationally simple iterations. In these cases, we use a splitting
where the �rst two optimization-based ADMM steps (see Algorithm 2.1) have a closed-
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form solution. In contrast, in Chapter 4 and Chapter 5, we rely on subordinate solvers
for evaluating the optimization steps. In these situations, we observe characteristics that
are close to a second-order method. In particular, we observe a convergence with few
but computationally expensive iterations.

2.3.2 Interior Point Methods

Interior point methods (IPMs) are second-order methods that have gained popular-
ity when they were shown to solvelinear problems (LPs) in polynomial time [Kar84;
Gil+86]. Later, they were generalized to solve a large class of convex optimization
problems [NN94]. IPMs solve an unconstrained optimization problem at each iter-
ation. This unconstrained problem uses smooth penalty functions that approximate
the original constrained problem with an increasing accuracy at each iteration [BV04].
Primal-dual IPMs show good performance for a wide range of problems [Wri97]. Due
to their second-order nature, they are invariant to scaling of the problem data. Also,
they typically require a similar number of iterations for di�erent instances of the same
problem type [Dom+12; DJ14]. These robustness properties make them an ideal choice
for general-purpose solvers, e.g., GUROBI [Gur16] and CVXGEN [MB12].

2.3.3 Fast Gradient Methods

Fast gradient methods (FGMs) are a Nesterov accelerated variant of theprojected gradient
method (PGM) [Nes83]. They are a popular algorithm choice due to their conceptual
simplicity. FGMs alternatingly perform a gradient descent step and a projection onto
the constraint set. They are typical �rst-order methods, and they share the suitability
for embedded implementation with ADMM [Jer+13]. FGMs have strong theoretical
guarantees, as for example a bound on the required number of algorithm iterations when
solving input-constrained MPC problems [Ric12]. Compared to ADMM, the range of
problems that e�ciently can be solved with FGMs is more restricted, e.g., they struggle
with convex but not strongly convex objectives and MPC problems with state constraints.
FGMs are used less often in general-purpose solvers, however, are often employed in
specialized algorithms, for example as in [Hau+17].

2.3.4 Splitting Methods

There exists a variety of optimization methods that address splitting problems similar
to (2.1). Prominent representatives are thePeaceman-Rachford splitting(PRS) [PR55]
and the closely relatedDouglas-Rachford splitting(DRS) [DR56]. When applied to the
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Fenchel dual [BC17] of Problem (2.1), DRS is equivalent to ADMM. There also exists
a generalized version of DRS [GB14a], which is equivalent to under- and over-relaxed
ADMM [Gis15]. The relation between both methods is used in literature to provide
ADMM with tight convergence rates and acceleration techniques [GB17; Gis15]. An-
other related splitting method is thealternating minimization method (AMA) [Tse91],
which only di�ers from ADMM by the absence of the regularization term in the �rst
step (see Algorithm 2.1). This di�erence makes it possible to relate AMA to a range
of existing algorithms, however, makes strong convexity off (x) a convergence require-
ment [Pu+14]. If AMA is applied to a dual problem formulation, it is equivalent to the
well-studied iterative shrinkage-thresholding algorithm(ISTA) [BT09; DDD04], which is
a special case of theforward-backward splitting(FBS) [Bru77; Pas79; CW05]. Similar as
ADMM is bene�ting from its relation to DRS, AMA inherits strong theoretical proper-
ties from ISTA [Pu+14]. Furthermore, for a certain problem class, ISTA can be seen as
a generalization of PGMs [BT09]. Same as there is a fast version of the gradient method
that uses Nesterov acceleration, there also exists afast alternating minimization method
(FAMA) [Pu+14] and a fast iterative shrinkage-thresholding algorithm(FISTA) [BT09].

25



Chapter 2. ADMM

26



CHAPTER3
Basic Applications

W E apply ADMM for three basic applications. The resulting algorithms serve as
prototype formulations for the remainder of this thesis. We start with an MPC

setting. We then analyze the more general QP setting, and �nally the most general
multi-agent problem.

3.1 Model Predictive Control

MPC [Mac02] is an optimization-based control method that is characterized by its �ex-
ibility and its ability to handle constraints.

3.1.1 Problem Formulation

In our MPC setting, we guide the states and inputs of a system along reference trajec-
tories while satisfying constraints. We use the system model

xk+1 = Ax k + Buk ; (3.1)

where xk 2 Rx is the state, uk 2 Ru is the input, A 2 Rx� x is the dynamics matrix,
B 2 Rx� u is the input matrix, and k = 1; 2; : : : is the discrete time step. MPC updates
the control input by solving an optimization problem at each discrete time step. We
consider MPC problems of the form

n
xk+1 ; uk

o?

k=1 ;:::;N
= arg min

f xk +1 ;uk g

NX

k=1

�
1
2



 xk+1 � r k

x





2

Q
+ 1

2



 uk � r k

u





2

R

�

(3.2a)

s.t. xk+1 = Ax k + Buk 8 k = 1; : : : ; N (3.2b)

(xk+1 ; uk) 2 X � U 8 k = 1; : : : ; N; (3.2c)

where r k
x 2 Rx and r k

u 2 Ru are reference trajectories for states and inputs,Q 2 Rx� x

and R 2 Ru� u are symmetric positive semide�nite tracking weights,X � Rx and U � Ru
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are constraint sets, andN 2 N+ is the prediction horizon. Typically, Problem (3.2) is
parametrized with x1, r k

x , and r k
u , which means that these parts of the problem data

change between MPC calls. A generalization to time-varying objective weights, system
matrices, and constraint sets is straightforward.

Algorithm 3.1 shows the MPC procedure, wherex(t) 2 Rx is the state measurement
from the controlled plant, u(t) 2 Ru is the currently applied input, and t 2 R is the
time.

Algorithm 3.1 MPC

for t = kTs; k = 1; 2; 3; : : : do

1: measure/obtain current statex0 = x(t) and input u0 = u(t)

2: predict x1 = Ax 0 + Bu0

3: parametrize (3.2) with x1, f r k
x ; r k

ugk=1 ;:::;N

4: solve (3.2), i.e., computef ukg?
k=1 ;:::;N

5: u(t + Ts)  (u1)?

In the second step of Algorithm 3.1, we predict the measurementx0 at time t by Ts

ahead, and we use the resultx1 to parametrize (3.2). The initial prediction is necessary
as we cannot neglect the time that is needed to solve the optimization problem. By
parameterizing (3.2) with x1 instead ofx0, we gain a time margin ofTs to perform the
optimization.

3.1.2 Stacking

To use ADMM in MPC, we stack the decision variables and thereby obtain a standard
QP formulation. We use the decision vector

y =
h
u1; x2; u2; x3; : : : ; uN ; xN +1

i
(3.3)

to rewrite Problem (3.2) as

min
y

1
2y> Qy + q> y + K (3.4a)

s.t. Cy = c (3.4b)

y 2 Y ; (3.4c)
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where

Q = I N 
 diag(R; Q) (3.5a)

r y =
h
r 1

u; r 2
x ; r 2

u; r 3
x ; : : : ; r N

u ; r N +1
x

i
(3.5b)

q = �Q r y (3.5c)

K = 1
2r >

y Q r y (3.5d)

h
C

�
�
� c

i
=

2

6
6
6
6
6
6
6
6
4

B � I � Ax 1

A B � I 0
A B � I 0

. . .
...

A B � I 0

3

7
7
7
7
7
7
7
7
5

: (3.5e)

The o�set K has no in�uence ony? and therefore can be neglected. The stacked MPC
problem is a QP, which we analyze in the context of ADMM in the next section.

3.2 Quadratic Problems

ADMM is used to solvequadratic problems (QPs) in [RD14a; RD14b; Gha+15]. Here,
we outline the approach from [RD14a], and we collect general implementation techniques
for this type of ADMM formulation.

3.2.1 Problem Formulation

We consider QPs of the form

min
y

1
2y> Qy + q> y (3.6a)

s.t. Cy = c (3.6b)

y 2 Y ; (3.6c)

where y 2 Ry , Q 2 Ry� y , q 2 Ry , C 2 Rc� y and c 2 Rc. The constraint set Y � Ry

is a convex polytope. We also assume that the HessianQ is positive semide�nite, and
hence Problem (3.6) is convex. Furthermore, we require that the solution set of (3.6) is
nonempty and bounded, and that the equality constraint matrixC has a full row rank.

3.2.2 Optimality Conditions

We associate the equality constraint (3.6b) and the inclusion constraint (3.6c) with
Lagrange multipliers � and � . According to [RD14b, Eqn. (2)], an optimal solution
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(y?; � ?; � ?) for (3.6) satis�es the optimality conditions

"
Q C> � I
C 0 0

#
2

6
6
4

y?

� ?

� ?

3

7
7
5 =

"
� q
c

#

(3.7a)

(� ?)> (�y � y?) � 0 8�y 2 Y (3.7b)

y? 2 Y : (3.7c)

3.2.3 Splitting

To obtain a partitioned problem formulation that is suited for ADMM, we duplicate the
decision variabley with the additional constraint y = z, which results in

min
y;z

1
2y> Qy + q> y (3.8a)

s.t. Cy = c (3.8b)

z 2 Y (3.8c)

y � z = 0: (3.8d)

We can write Problem (3.8) in consensus form (2.9) with

f (y) = 1
2y> Qy + q> y + I Cy= c (y) (3.9a)

g(z) = I Y (z) : (3.9b)

Our splitting (3.8) follows the procedure in [RD14a; RD14b]. Alternative splitting
choices can be found in [Gha+15; GB14a], wheref is required to be smooth and therefore
the equality constraint (3.8b) has to be handled di�erently than with the indicator
function in (3.9a). Another possible splitting choice can be found in [Ste+17], where
the equality constraint is used as part of the coupling constraint (3.8d). A variety of
splitting formulations is compared in [Man16] and [Vla16].

3.2.4 ADMM Formulation

The ADMM formulation follows from the splitting choice (3.8) as described in Sec-
tion 2.1.8. Algorithm 3.2 shows the resulting procedure.
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Algorithm 3.2 ADMM for (3.8)

repeat

1: y  arg min
y

1
2y> Qy + q> y + �

2 k� + y � zk2
2

s.t. Cy = c

2: z  arg min
z

�
2 k� + y � zk2

2

s.t. z 2 Y

3: �  � + y � z

According to Section 2.1.5, Algorithm 3.2 converges to a �xed point that is optimal
for (3.6). Below, we analyze the two optimization-based steps of the algorithm.

Analysis of the First Algorithm Step

The �rst algorithm step is an equality-constrained QP, which according to [NW06] has
a closed-form solution. We associate the Lagrange multiplier� 2 Rc with the equality
constraint Cy = c. As shown in [NW06, Sec. 16.2], an optimal solution(y?; � ?) satis�es
the optimality condition

"
1
� Q + I 1

� C>

C 0

# "
y?

� ?

#

=

"
� 1

� q � � + z
c

#

: (3.10)

We can solve (3.10) for(y?; � ?) with the Schur complement method in [NW06, Sec. 16.2].
The resulting assignment is

y? = M
�
� 1

� q � � + z
�

+ N c; (3.11)

which depends on the constant matrices

M = ( I � N C) P (3.12a)

N = PC> (CPC> )� 1 (3.12b)

P =
�

1
� Q + I

� � 1
: (3.12c)

We refer to [NW06, Sec. 16.2] for details on how these matrices are obtained. An
alternative calculation strategy for M and N can be found in [RD14a; RD14b], where
the null space method [NW06, Sec. 16.2] is used. The resulting equivalent de�nitions are

N =
�
I � M 1

� Q
�

C>
�
CC>

� � 1
(3.13a)

M = Z
�
Z > 1

� (Q + �I ) Z
� � 1

Z > ; (3.13b)
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where the columns of the semi-orthogonal matrixZ 2 Ry� y� c form an orthonormal basis
for the null space ofC, i.e., CZ = 0 and Z > Z = I .

The �rst step of Algorithm 3.2 often has a de�ning in�uence on the iteration com-
plexity. Hence, an e�cient implementation of (3.11) is important. Given that � remains
unchanged, the termN c can be precomputed and therefore does not a�ect the com-
putational complexity. The remaining part of (3.11) is dominated by a multiplication
with the matrix M , which through (3.12) is dominated by multiplications with P, C,
and (CPC> )� 1. The multiplication with P can be simpli�ed by choosing a diagonal
objective weight Q. Depending on the particular application, the matrix C often is
sparse, e.g., it is banded in MPC. The inverse(CPC> )� 1 does not change during the
algorithm iterations. Hence, we can precompute anLDL > factorization and perform a
low-complexity forward-backward substitution as in [GV12]. IfC is banded andQ is
diagonal, also theLDL > factorization is sparse [GV12, Sec. 3.1], which further reduces
the computational cost that is necessary to evaluate (3.11).

Analysis of the Second Algorithm Step

According to our initial de�nition in (1.7), the second step in Algorithm 3.2 is an or-
thogonal projection

� Y (� + y) = min
z

k� + y � zk2
2 (3.14a)

s.t. z 2 Y : (3.14b)

Since the projection ontoY has to be executed at each algorithm iteration, the split-
ting (3.8) is suited for cases where the projection can be performed with low computa-
tional cost. In the simplest case, the set consists of separate upper and lower bounds
for each decision variable. This situation is simple because the projection then reduces
to clipping each variable to its upper and lower limit. Other sets that come with com-
putationally cheap projection operations are hyperplanes, a�ne sets, halfspaces,2-norm
balls, 1-norm balls, simplexes, and second-order cones [Ric12, Tab. 5.1]. IfY is composed
of low-dimensional polyhedra, we can e�ciently evaluate the projection by precomputing
a parametrized piece-wise a�ne solution [BBM+02; Mer+15].

3.3 Multi-Agent Problems

We consider multi-agent problems as an assembly of QPs that are coupled through
an equality constraint. Each QP is associated to an agent that has a stake in the
overall problem. In Chapter 4, the agents represent cooperating energy consumers. In
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Chapter 5, they are autonomously navigating vehicles, and in Chapters 6 and 7, they
are connected system components.

3.3.1 Problem Formulation

We consider multi-agent problems withM agents. Each agenti has an individual ob-
jective function and constraint set. The multi-agent problem formulation is

min
y

MX

i =1

h
1
2y>

i Qi yi + q>
i yi

i
(3.15a)

s.t. yi 2 Y i 8i (3.15b)

Dy = d; (3.15c)

where the stacked decision vectory = [ y1; : : : ; yM ] 2 Ry contains the individual decisions
yi 2 Ry i from each agent. The objective functions are parametrized byQi 2 Ry i � y i

and qi 2 Ry i . We denote the individual constraint sets asYi � Ry i , which may contain
linear equality and inequality constraints. The coupling constraint (3.15c) withD 2 Rd� y

and d 2 Rd describes the relation between the agents. We assume that Problem (3.15) is
convex, i.e., each HessianQi is positive semide�nite and each constraint setYi is convex.
Furthermore, we assume that the solution set of (3.15) is nonempty and bounded, and
that the equality constraint matrix D has a full row rank.

3.3.2 Centralized Solution

In a centralized solution approach, we rewrite the multi-agent problem (3.15) as a stan-
dard QP. The reformulation is possible withQ = diag(Q1; : : : QM ), q = [ q1; : : : ; qM ], and
Y = f y = [ y1; : : : ; yM ] j yi 2 Y i g. The problem can then be solved with Algorithm 3.2.
Such a solution approach is centralized in the sense that a single computation unit
concentrates all problem information and carries the entire computational burden. In
many multi-agent settings, a distributed solution is more preferable, either to prevent
the concentration of information or to parallelize the computational e�ort. We show two
di�erent distribution strategies below, one that still has a central coordinator, and one
that is fully decentralized.

3.3.3 Aggregator-Agent Splitting

The aggregator-agent splitting leads to a distributed ADMM formulation that still has
a central computation unit, called the central aggregator. However, in contrast to a
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centralized solution, this aggregator only performs computationally simple tasks, and it
delegates the greater part of the computational e�ort to the agents.

Splitting

We decompose the multi-agent problem (3.15) with the splitting

min
y;z

MX

i =1

h
1
2y>

i Qi yi + q>
i yi

i
(3.16a)

s.t. yi 2 Y i 8i (3.16b)

Dz = d (3.16c)

y � z = 0; (3.16d)

where we associate the coupling constraint (3.16c) to the duplication variablez. The
general idea is that we want to separate the shared variablez from the individual vari-
ablesyi . To obtain a consensus form as in (2.9), we use

f (y) =
MX

i =1

h
1
2y>

i Qi yi + q>
i yi + I Yi (yi )

i
(3.17a)

g(z) = I Dz = d(z): (3.17b)

ADMM Formulation

By following Section 2.1.8, we obtain Algorithm 3.3, where� and z have the same
dimension and partition asy. The algorithm is guaranteed to converge to a �xed point
that solves (3.15) since Assumptions 2.1 - 2.3 are satis�ed.

The aggregator-agent splitting is chosen such that the �rst and third algorithm steps
are executed by each agent individually, and the second step is executed by a central
aggregator. The individual decision criteriaQi , qi , Yi remain private with each agent
and only the decisionyi is shared with the aggregator. The aggregator coordinates the
agents for satisfyingDy = d by responding toyi with the aggregation demandzi . The
aggregation demand is taken into account in the agent's decision through the regulariza-
tion term k� i + yi � zi k

2
2. The underlying communication graph has a star topology, as

illustrated in Figure 3.1.
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Algorithm 3.3 Aggregator-Agent ADMM for (3.16)

repeat

1: agent-individual decision update(8i )
yi  arg min

yi

1
2y>

i Qi yi + q>
i yi + �

2 k� i + yi � zi k
2
2

s.t. yi 2 Y i

send(yi ; � i ) to aggregator

2: aggregator step
z  arg min

z
�
2 k� + y � zk2

2

s.t. Dz = d
send eachzi to the respective agent

3: agent-individual Lagrangian update(8i )
� i  � i + yi � zi

Figure 3.1: Communication graph of Algorithm 3.3 for seven agents.

Closed-Form Solution of the Aggregator Step

According to our initial de�nition in (1.7), the second step in Algorithm 3.3 is an a�ne
orthogonal projection

� Dz = d(� + y) = min
z

k� + y � zk2
2 (3.18a)

s.t. Dz = d: (3.18b)
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The a�ne projection operation is an equality-constrained QP and therefore has a closed-
form solution. As for (3.11), we use the Schur complement method in [NW06, Sec. 16.2]
to obtain

z? = D(y � � ) + Ed; (3.19)

where the iteration matricesD; E are de�ned as

D = I � E D (3.20a)

E = D > (DD > )� 1: (3.20b)

We refer to [NW06, Sec. 16.2] for details on how to obtain these matrices. The availability
of a closed-form solution underlines that the aggregator only acts as a coordinator.
The agents carry the main computational burden, and ADMM acts as a coordination
protocol. We use aggregator-agent splittings in Chapters 4, 6, and 7.

3.3.4 Agent-Agent Splitting

The goal of using an agent-agent splitting is to obtain an algorithm that does not require
a central aggregator, i.e., that relies on agent-to-agent communication only.

Splitting

To obtain an agent-agent splitting, we interpret the occupation pattern of the coupling
constraint Dy = d in the multi-agent problem (3.15) as a graph. Each agenti = 1; : : : ; M
represents a node, and each node pair that shares a constraint inDy = d is connected
through an edge. We de�neNi � f 1; : : : ; M g as the neighborhood of each agent, i.e.,
the set of agents that it shares a constraint with. We decompose the coupling constraint
with

z � y = 0 (3.21a)

zj � wij = for eachi and j 2 Ni (3.21b)

D ii zi +
X

j 2 N i

D ij wij = di for eachi; (3.21c)

wherez = [ z1; : : : ; zM ] 2 Ry is a duplicate ofy. We use additional variableswij 2 Ry j ,
which we interpret as thei -th agent's duplicate ofzj . We obtain D ij and di from (D; d)
such that (3.21) is equivalent toDy = d. The agent-agent reformulation of the multi-
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agent problem (3.15) is

min
y;z;f wij g

MX

i =1

h
1
2y>

i Qi yi + q>
i yi

i
(3.22a)

s.t. yi 2 Y i 8i (3.22b)

D ii zi +
X

j 2 N i

D ij wij = di 8i (3.22c)

y � z = 0 (3.22d)

yj � wij = 0 8i and j 2 Ni ; (3.22e)

where we associate the agent-individual quantities toy and the coupling constraint toz
and wij .

Lagrangian and ADMM Formulation

From the splitting formulation (3.22), we follow the same procedure as for consensus
ADMM in Section 2.1.8. We use the augmented Lagrangian

L � (y; z;f wij g; �; f � ij g) =
MX

i =1

�

f i (yi ) + gi (zi ; f wij gj 2 N i )

+ �
2 k� i + yi � zi k

2
2 � �

2 k� i k
2
2

+
X

j 2 N i

�
�
2 k� ij + yj � wij k2

2 � �
2 k� ij k2

2

� �

; (3.23)

where the Lagrange multipliers� i are associated with (3.22d). Additionally, we use the
Lagrange multipliers� ij , which are associated with (3.22e). The objective functions are

f i (yi ) = 1
2y>

i Qi yi + q> yi + I Yi (yi ) (3.24a)

gi (zi ; f wij gj 2 N i ) = I Gi (zi ; f wij gj 2 N i ) ; (3.24b)

whereGi = f zi ; f wij gj 2 N i j D ii zi +
P

j 2 N i
D ij wij = di g. To obtain the �nal algorithm, we

use the identity
MX

i =1

2

4
X

j 2 N i

�
�
2 k� ij + yj � wij k2

2 � �
2 k� ij k2

2

�
3

5

=
MX

i =1

2

4
X

j 2 N i

�
�
2 k� ji + yi � wji k2

2 � �
2 k� ji k2

2

�
3

5 ; (3.25)

which states that we can �ip the indices in the last term of the Lagrangian. When we
use (3.25) for the �rst ADMM step, we obtain Algorithm 3.4.

According so Section 2.1.5, each cluster point of the iteration sequence generated by
Algorithm 3.4 is optimal for the multi-agent problem (3.15). Furthermore, all steps are
executed in parallel and no central aggregator is required.
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Algorithm 3.4 Agent-Agent ADMM for (3.22)

repeat

1: decision update(8i )

yi  arg min
yi

1
2y>

i Qi yi + q>
i yi + �

2 k� i + yi � zi k
2
2 +

P

j 2 N i

�
2 k� ji + yi � wji k2

2

s.t. yi 2 Y i

8j 2 Ni : sendyi to agent j

2: coordination update(8i )

(zi ; f wij gj 2 N i )  arg min
zi ;f wij g

�
2 k� i + yi � zi k

2
2 +

P

j 2 N i

�
2 k� ij + yj � wij k2

2

s.t. D ii zi +
P

j 2 N i
D ij wij = di

3: Lagrangian update(8i )

� i  � i + yi � zi

8j 2 Ni : � ij  � ij + yi � wij

8j 2 Ni : send(wij ; � ij ) to agent j

Algorithm 3.4 uses two rounds of communication per iteration. After the �rst algo-
rithm step, the agents exchangeyi in their neighborhoods. After the third step,(wij ; � ij )
is exchanged. We illustrate an example communication graph in Figure 3.2. The coupling
constraint in the multi-agent problem (3.15) determines the topology of the communi-
cation graph.

Figure 3.2: Example communication graph of Algorithm 3.4 for seven agents.

The second step in Algorithm 3.4 is an equality-constrained QP, and we can ob-
tain a closed-form solution similar to (3.19). The prime advantage of the agent-agent
formulation is the absence of a central computation unit. On the downside, the fully
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decentralized algorithm often requires more convergence iterations than a comparable
aggregator-agent formulation, which is due to the increased number of decision variables
and the decentral communication. In Chapter 5, we use a variation of Algorithm 3.4 for
the coordination of moving agents.
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CHAPTER4
Aggregated Bidding in

Energy Reserve Markets

O UR �rst specialized ADMM formulation is geared towards coordinating large
power consumers when they participate in an energy reserve marked. In such

a market, energy consumers o�er the potential to change their power consumption upon
request. The grid operator buys this contracted consumption variability from the market
and uses it to adjust the grid balance and frequency at a later point in time. The range
of the o�ered consumption change is called the energy or frequency reserve capacity.
On the consumer side, we focus on buildings that provide such a reserve capacity by
controlling their heating and cooling systems. To place a bid on the market, the build-
ings maximize the reserve capacity around their predicted consumption. We show that
buildings can make the most of their bidding capacity if they collaborate in aggregations
and place a combined bid on the market. The resulting aggregated bidding problem is
similar to the multi-agent problem in Section 3.3. The combined bidding problem calls
for a distributed solution, as it quickly becomes intractable. We choose a variation of
the aggregator-agent splitting in Section 3.3.3 to distribute the computational burden
over the buildings. The resulting ADMM formulation shows immediate synergies with
the overall setup, e.g., it protects building-private decision criteria, reduces the set-up
costs incurred by integrating previously independent buildings, and leaves only compu-
tationally cheap operations to a central computation unit. We advance the algorithm
formulation by exploiting structure in the bidding problem, which reveals that a central
facility can be avoided altogether. Furthermore, we show that it is possible to termi-
nate the ADMM procedure anytime, while we are still able to obtain a feasible (though
suboptimal) bid.

This chapter is based on the publication [Rey+18b].
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4.1 Introduction

Countries around the world are integrating renewable energy sources into their power
systems. The electricity production of weather-dependent renewable energy sources, such
as wind turbines and photovoltaics, is volatile. This increases the uncertainty in the grid
operation and challenges the balance of electricity supply and demand. To maintain the
active power balance and regulating the grid frequency, grid operators procure ancillary
services, such as reserved generation capacities [Reb+07]. Traditionally, these reserves
are provided by conventional generators. However, the rapid integration of renewable
energy sources calls for an increased balancing e�ort [Mak+09]. Recently, it has been
shown that if properly aggregated and controlled, �exible loads can be engaged to provide
frequency regulation at low cost and small environmental impact [CH11]. Consumers
with sizeable thermal storage, such as buildings, are particularly suited to contribute to
the grid balance as their electricity consumption can be shifted in time with negligible
impact on occupant comfort [Old+13; Pie+12].

In many regions, consumers provide frequency reserves by o�ering them to the grid
operator in a market setting. In Switzerland, the o�ered reserve size has to be constant
over the bidding period and exceed a certain minimum amount [17]. These requirements
reduce the coordination e�ort for the grid operator by simplifying the scheduling and
avoiding a large number of small bidders. The minimum bid typically ranges from 1 MW
to 10 MW, e.g., it is 5 MW in Switzerland [17, Section 2.3.1], which is too large for
a single building [CVH16]. To still participate in the reserve market, buildings can
cooperate [VOA16], which requires solving a large-scale optimization problem to obtain
a time-constant joint bid. A centralized solution of such a problem faces several issues:
(i ) a shared investment is necessary to establish and maintain a central computation
unit; (ii ) to solve the resulting large-scale optimization problem can be computationally
challenging, which e�ectively limits the aggregation size;(iii ) the building operators
need to share sensitive information, such as details on the construction material and
occupants' behavior; and(iv ), each local con�guration change has to be communicated
to the central unit.

We address these issues by using ADMM for distributing the original large-scale
optimization problem over the individual buildings. Each building then solves a localized
problem and participates in a global mediation process until a consensus solution is
reached. The distribution of the computational burden provides natural parallelism and
therefore makes it possible to use a simple central processing unit that only handles
coordination tasks. Further, we present a modi�ed communication scheme that avoids
a central unit altogether. We also show that increased privacy and �exibility follows
from the distribution of information, and we demonstrate that we obtain a joint bid that
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satis�es all constraints even if we terminate ADMM prematurely. Finally, given that a
reserve bid is accepted on the market, we show a reward distribution scheme that reduces
provision imbalance within the aggregation, which strengthens the group's capability to
provide reserves.

Related Literature

Frequency reserve provision by buildings receives considerable attention, both from the
power systems community [DPM17; Vre+14; CH11; Hao+13; Maa+14; VA16; VOA16;
Che+13; VA13] and the control community [Zha+14; Bal+14; Zha+15; Gor+15; CVH16;
Zha+17; BGJ17; Bil+16; Tah+17; Kra+14]. In [Vre+14; VOA16], the primary goal is
to determine the optimal reserve capacity that an aggregation of buildings can provide
while ensuring occupant comfort. In [Hao+13; Maa+14], frequency reserves are provided
by modulating the fan speed of air handling units in commercial buildings. However,
rather than giving a-priori guarantees on comfort constraints as in [Vre+14; VOA16],
the authors in [Hao+13; Maa+14] test constraint satisfaction a-posteriori through ex-
perimental trials. Our work follows [Vre+14; VOA16], and we use the mathematical
tools for robust constraint satisfaction from [Zha+14; Zha+17]. In contrast to [Vre+14;
VOA16], our leading objective is a distributed and decentralized solution of the multi-
building problem. As opposed to [VA13; WD15], where voltage regulation a�ects the
reactive power balance, we concentrate on frequency regulation and active power. Aside
from our focus on market bidding, [Tah+17; Kra+14; Che+13; Bil+16] analyze the real-
time balance in the power grid. In [Tah+17; Kra+14], the grid is modeled explicitly,
exceeding our work as we purely rely on the reserve demand as requested by the grid
operator. Incorporating such grid dynamics can be worthwhile, particularly for spatially
separated aggregations. While [Che+13] guides the demand response based on time-
varying energy prices, [Bil+16] considers a setup where previously agreed reserves are
utilized. Hence, [Bil+16] augments our work particularly well, as we focus on a market
where such reserve agreements are made.

In [Hou+17; Ver+16; DPM17; BM17], ADMM is studied in the context of demand
response. In [Hou+17], a distributed procedure coordinates di�erent temperature zones
inside a building. In [Ver+16], ADMM exploits the �exibility of several consumers for
shaping their combined power intake. In [DPM17], heterogeneous agents are aggregated.
Finally, in [BM17], small thermostatically controlled loads are orchestrated to participate
in real-time energy markets. We di�er from these publications by focusing on ahead-of-
time reserve bidding while the actual reserve request is still unknown. We further set
ourselves apart by developing additional tools that improve the conceptual utility of our
approach, such as a fully decentralized computation scheme, the permanent availability

43



Chapter 4. Aggregated Bidding in Energy Reserve Markets

of a feasible solution, and a pro�t allocation that reduces provision imbalance in the long
run.

4.2 Frequency Reserve Provision

We �rst introduce the model of a single building and describe the participation in the
reserve market. We then show the joint bidding procedure for aggregations of buildings.

4.2.1 Building Model and Reserve Market

Similar to [Old+12; Leh+13; VA16], we consider the building model

xk+1 = Ax k + B(uk + � uk) + Evk ; (4.1)

where we use the admissible statexk 2 X � Rn , the admissible input(uk + � uk) 2 U �
Rm , and the external disturbancevk 2 Rq. We use the discrete time indexk = 1; 2; : : : ; N
with horizon N . The state xk models temperatures in rooms, walls, �oors, and ceilings
across the building. We useX to model convex comfort constraints, e.g., to limit room
temperatures between21� C and 25� C. The system matrix A describes the temperature
di�usion with a thermal resistance-capacitance model as in [Old+12, Sec. 4.2]. The
actuation (heating, cooling, and ventilation) is described by a nominal inputuk and a
variable term � uk . The variable term is used later for adjusting the buildings' power
consumption. The convex setU models actuation limits and saturation. Finally, we
useEvk to describe the e�ect of external disturbances (occupancy, solar radiation, and
ambient temperature). Section 4.4 shows a simulation study with detailed modeling
examples. The mechanisms behind building-internal temperature regulation are specif-
ically addressed in [Old+12; Leh+13]. As we focus on the collaboration of di�erent
buildings, we su�ce ourselves with the abstracted building model (4.1). Indeed, any
linear systemA; B; E with convex constraintsX ; U is compatible with the subsequent
analysis. We also simplify the setup by assuming perfect prediction forvk , noting that
uncertainty can easily be integrated into our approach by using the robust control meth-
ods in [Old11; Zha+13; Dar+15]. With x = [ x2; : : : ; xN +1 ], u = [ u1; : : : ; uN ], and similar
de�nitions for � u; v (ranging from 1 to N ), we rewrite (4.1) as

x = A x1 + B (u + � u) + E v (4.2)

with x 2 X and (u+� u) 2 U. We assembleA ; B ; E ; X ; U from A; B; E; X ; U as shown
in [GKM06].
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In Switzerland, similar to most of Europe, reserve capacities are procured in a market
where reserve providers bid their capacity in weekly or daily blocks. We denote the
time-varying reserve bid asy = [ y1; : : : ; yN ], which describes the maximum-possible
change in active power consumption, measured in kilowatt. We focus on a day-ahead
market, and we consider a symmetric reserve range[� y; y], which means that the building
needs to shift its consumption equally in both directions. The limitation to symmetric
provision follows the current policy in Switzerland [17]; the extension to asymmetric
reserves is straightforward. We further require a constant bid over the bidding period,
i.e., y1 = y2 = � � � = yN , which is also standard in several countries. The restriction to
time-constant reserve simpli�es the scheduling for the grid operator and prevents an
imbalance over the bidding interval. Once a bid is accepted, the building receives a
reward of the form p> y, where p 2 RN is a price parameter that we assume to be
known, e.g., from previous market clearings. During actual runtime, the grid operator
then requests a reserve demands = [ s1; : : : ; sN ] 2 [� y; y], and the building is obliged to
adjust its power consumption accordingly. The challenge in ahead-of-time bidding is to
choosey while s is still unknown. Figure 4.1 summarizes the involved variables.

Figure 4.1: Decision variablesx, u, � u, y, which can be determined by the building, and
external variabless, v, which cannot be in�uenced.

After a bid is accepted at the reserve market, the building follows the requests by
appropriately changing its input from u to u + � u. More precisely, following [Old+12;
Zha+13; Dar+16], we use the conversion factor� 2 Rm for translating input quantities
(e.g., heating levels) into power consumption (measured in kilowatt). We choose the
variable input � u such that sk = � > � uk for all k. Figure 4.2 illustrates the separation
between reserve bidding and the actual provision procedure.

Our approach focuses on the bidding process, particularly on determining a satis�able
and �nancially pro�table bid for the reserve market. Additionally, our bidding method
results in a rudimentary procedure to follow the reserve request during runtime, which
means that we relate� u to s. Our provision procedure can be complemented with more
sophisticated and iterative reserve tracking techniques as in [Tah+17; Kra+14; Bil+16],
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Figure 4.2: Bidding process and reserve provision.Left: Ahead of time, the building
o�ers a bid y on the reserve market. If the bid gets accepted, it receives the rewardp> y.
The actual reserve requestsk remains unknown at this point. Right: During runtime,
the building follows the reserve requestsk within the previously o�ered range [� yk ; yk ]
by adjusting its variable input � uk .

which can exploit newly-available information or incorporate grid models to �ne-tune
the supply.

4.2.2 Individual Bidding Problem

Typically, buildings need to increase their nominal consumptionu for being able to react
to symmetric reserve requests [VOA16]. The building's objective is to optimally balance
the provision rewardp> y and the nominal electricity costc> u, i.e., it minimizes its overall
cost c> u � p> y. Here, the vectorc is composed of subvectorsck = ~ck � , where ~ck 2 R
is the electricity price, and � , as introduced before, converts input signals to power
consumption. Since the reserve requests 2 RN is unknown at the time of bidding, we
introduce recourse into the formulation by choosingu and � u to be closed-loop policies

u(�) : RN ! RNm s 7! u (4.3a)

� u(�) : RN ! RNm s 7! � u; (4.3b)

which are parametrized functions that determine the actual input only whens becomes
known during runtime [SM98; Löf03; GKM06]. In other words, instead of determin-
ing the static values u, � u that prepare for the worst-case requests, we try to �nd
the optimal functional relation of u; � u and s. Compared to the conventional strategy,
closed-loop policies o�er a larger degree of freedom and therefore potentially less conser-
vative reserve bids [Zha+15]. We choose the policies to be causal such thatuk ; � uk only
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depend ons1; : : : ; sk . The building-individual reserve provision problem is

min
u(�);y

c> u(0) � p> y (4.4a)

s.t. (u(�); y) 2 C (4.4b)

y1 = y2 = � � � = yN : (4.4c)

For simplicity, we use the nominal electricity costc> u(0), which is based on the
cases = 0 where the grid operator does not request any reserves. Due to� u(0) = 0 ,
the variable input is not part of the objective. Alternatively, it is possible to use the
expected costE

h
c> (u(s) + � u(s))

i
, provided that we have a probabilistic description

of the demanded reserves [Zha+15]. Further, we choose not to model the minimum
reserve constraintyk � ymin . To have such a constraint can lead to overall increasing
costs compared to not providing reserves at all. Instead, we purely maximize �nancial
pro�t, and we assume that the resulting bid is only placed at the market if it exceeds the
minimum size. To omit the minimum reserve constraint also bene�ts the construction
of the distributed setup, as we will clarify in Remark 4.2. The setC in (4.4b) captures
the building dynamics and the reserve provisioning mechanism as introduced before.
It encapsulates building-internal information, e.g., the statex, which in consequence
of (4.3) also becomes a policy. We de�neC as

C =
n

(u(�); y) 2
�
F � RN

� �
�
� 9 (� u(�); x(�)) 2 F � F s.t.

x(s) = A x1 + B [u(s) + � u(s)] + E v
(x(s); u(s) + � u(s)) 2 X � U

s = ( I N 
 � > )� u(s)

9
>>=

>>;
8s 2 [� y; y]

o
;

(4.5)

whereF , in the most general case, is the in�nite-dimensional space of causal functions
of type (4.3). Due to the optimization over policies and the in�nite number of con-
straints, solving (4.4) is intractable in general. However, if we restrictF to contain
linear functions only, we can reformulate (4.4) as a convex optimization problem with a
�nite number of constraints; see Appendix 4.6.1 and [Zha+17, Section 4] for an example.
Given such an appropriate choice ofF , the constraint setC and therefore the individual
bidding problem (4.4) is �nite-dimensional and convex. Indeed, �nite dimensionality and
convexity of C are the only requirements for the analysis below. Hence, our approach is
compatible with di�erent policy spaces and building models. Further, it can be used for
plug-in electric vehicles, house-mounted batteries, and any energy storage device that
has linear dynamicsA ; B ; E and convex constraintsX ; U.

Remark 4.1. In some markets, the pricep is also a decision variable, which increases
the computational cost signi�cantly. To keep the computation simple, we can solve(4.4)
for di�erent values of p, which results in a price-reserve curve that is bid on the market.
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4.2.3 Aggregated Bidding Problem

On their own, buildings are typically not able to meet the required minimum bid
size [VA16]. To overcome this, buildings can collaborate in an aggregation. We con-
sider M buildings, indexed byb= 1; : : : ; M , and we denote the reserve bids asyb, where
each building's bid has the formyb = [ y1

b; : : : ; yN
b ]. Similarly, we useub, cb, and Cb for

the individual input, cost function, and constraint set. Buildings are compatible as long
as they agree on the bidding horizonN , which means that they can use di�erent models
in Cb. We use non-calligraphic uppercase symbols for quantities associated with the entire
aggregation, e.g., we de�ne the aggregated reserveY =

P
b yb, whereY = [ Y 1; : : : ; Y N ].

The aggregated bidding problem is

min
Y;f ub(�);ybg

MX

b=1

h
c>

b ub(0) � p> Y
i

(4.6a)

s.t. (ub(�); yb) 2 Cb 8b (4.6b)

Y =
X

b
yb (4.6c)

Y 1 = Y 2 = � � � = Y N : (4.6d)

In the aggregated problem, the time-constant constraint (4.6d) applies to the aggre-
gated bidY, which gives each building the freedom of time-varying bidsyb as long as their
sum remains constant. This additional freedom increases the joint bid, as compared to
the trivial strategy of pooling individual bids obtained with (4.4). The potential increase
in Y comes at the cost of requiring a deeper collaboration between the buildings, as each
building has to shape its o�eryb while considering the bids of all other buildings. If the
time-constant constraints (4.4c) and (4.6d) were not present, then (4.6) would simply
decompose into separate instances of (4.4), i.e., there would be no need for collaboration.
When the buildings agree on a joint bidY that is also accepted at the reserve market,
then the grid operator can request his demands from the aggregation during runtime.
Each building then changes its consumption proportionally to its shareyb of the original
o�er Y. Beyond the scope of our work, it is possible to successively reallocate the provi-
sion responsibilities within the aggregation during runtime, which can be especially useful
when taking a grid model and therefore local imbalances into account [Tah+17; Kra+14].

A direct centralized solution of (4.6) as outlined in Section 3.3.2 has several down-
sides: (i ) Due to the large dimensionality, we require a powerful central processing unit,
which demands �nancial resources and restricts the aggregation size through limited
computational capabilities. (ii ) The buildings need to discloseCb, potentially including
sensitive information, which also implies that they cannot changeCb without informing
the central unit. (iii ) The buildings delegate the decision process, i.e., they have to rely
on the central unit for �nding a good solution to (4.6).
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4.3 Aggregated Bidding with ADMM

The aggregated problem (4.6) has the form of a multi-agent QP as in Section 3.3. By
using an aggregator-agent splitting, we decompose the problem into a sequence of smaller
problems, which results in conceptual bene�ts over a direct solution approach.

4.3.1 Aggregated Bidding with ADMM

As it was done for the multi-agent problem in Section 3.3, we partition the aggregated
bidding problem (4.6) to obtain a splitting form as in (2.1), i.e., we separate the decision
variables Y, f ub(�); ybg into two groups. Further, we need to associate each constraint
in (4.6) to one of the two groups, and we need to decide on a coupling relation. Our
goal is to associate the �rst group with the aggregation-speci�c variableY. The second
group then only contains building-individual variablesf ub(�); ybg. When pursuing such
a splitting, we struggle with assigning (4.6c) to one side, as it connects the aggregation-
speci�c and building-individual variables. We overcome this di�culty by making (4.6c)
depend on the auxiliary decision variablesf �ybg = f �y1; �y2; : : : ; �yM g, which we constrain
to be equal to f ybg. Later on, it will become clear that having these extra variables
does not increase the computational burden. The resulting problem partition, shown in
Figure 4.3, is an equivalent reformulation of (4.6).

min
f ub(�);ybg;Y;f �ybg

s.t.

P
b c>

b ub(0) � p> Y
(ub(�); yb) 2 Cb 8b

Y =
P

b �yb

Y 1 = Y 2 = � � � = Y N

�yb � yb = 0 8b
aggregation-speci�c

building-individual

Figure 4.3: Separation of (4.6) into building-individual and aggregation-speci�c terms,
where we use the auxiliary variable�yb = yb for b= 1; : : : ; M .

When comparing the partitioned problem in Figure 4.3 to the basic ADMM splitting
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problem (2.1), we obtain the de�nitions

f (Y;f �ybg) =
MX

b=1

h
c>

b ub(0) + I Cb (ub(�); yb)
i

(4.7a)

g(f ub(�); ybg) = I Y =
P M

b=1
�yb

(Y;f �ybg) + I Y 1= ��� = Y N (Y) � p> Y (4.7b)

f �ybg = f ybg; (4.7c)

where (4.7c) replaces the coupling constraint in (2.1). With (2.2) and Algorithm 2.1, we
obtain our proposed ADMM formulation for aggregated reserve bidding, which we show
in Algorithm 4.1.

Algorithm 4.1 ADMM for Aggregated Reserve Bidding

repeat

1 building-individual reserve proposition(b= 1; : : : ; M )
(ub(�); yb)  arg min

ub(�);yb

c>
b ub(0) � � >

b yb + �
2k�yb � ybk2

2

s.t. (ub(�); yb) 2 Cb

2 aggregation step

(Y;f �ybg)  arg min
Y;f �ybg

MP

b=1

h
� >

b �yb + �
2k�yb � ybk2

2

i
� p> Y

s.t. Y =
P

b �yb

Y 1 = Y 2 = � � � = Y N

3 Lagrangian mediation(b= 1; : : : ; M )
� b  � b + � (�yb � yb)

until satisfaction of the stopping criterion

Algorithm 4.1 alternates between a building-individual step1 , an aggregation-speci�c
step 2 , and Lagrangian mediation 3 . For the initialization, we set Y, �yb, and � b to
zero. Proposition 4.1 constitutes the use of Algorithm 4.1.

Proposition 4.1. If Cb is nonempty, �nite-dimensional, and convex for each build-
ing b, then Algorithm 4.1 converges to an optimal solution of the aggregated bidding
problem (4.6).

The proof of Proposition 4.1 follows from the convergence statement in Section 2.1.5.
We interpret Algorithm 4.1 as a negotiation process between the buildings and the ag-
gregator. In 1 , each building proposes a reserve capacityyb that maximizes its pro�t.
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4.3 Aggregated Bidding with ADMM

The aggregator, which receives these propositions, responds with the desired reserve
amount �yb, chosen in 2 for achieving a time-invariant total reserveY. The Lagrangian
update 3 forms a price mechanism that mediates between propositionyb and demand�yb

to reach a consensus. Figure 4.4 illustrates the information exchange.

Figure 4.4: Information exchange between the buildings and the aggregator within one
iteration of Algorithm 4.1. Illustrated is the case ofM = 2.

The ADMM-based approach shows conceptual advantages when compared to a cen-
tralized solution of (4.6). Due to the building-individual execution of 1 , the constraint
setsCb remain private, and the buildings can change them on their own. Also, the exe-
cution parallelizes naturally. Other bene�ts of Algorithm 4.1 derive from the simplicity
of its aggregation step, which is described in the following proposition.

Proposition 4.2. The aggregation step2 has the solution


 = 1
M

MX

b=1

(�y b � � b) (4.8a)

Y = M
�N 1N � N (
 + p) (4.8b)

�yb = 1
� (�y b � � b � 
) + 1

M Y 8b; (4.8c)

where
 is called the aggregate.

Proposition 4.2, which we prove in Appendix 4.6.2, makes it possible to replace the
aggregation step with a set of closed-form algebraic equations. This signi�es that the
computational complexity of 2 is negligible compared to the �rst (parallel) algorithm
step. As a consequence, the increased computational burden for large aggregations is
fully absorbed by the equally growing level of parallelism. The ADMM-based framework
also lowers the barriers to integrate new buildings into an existing aggregation. The
reason is the similarity between the individual problem (4.4) and the building-individual
step 1 in Algorithm 4.1, i.e., new buildings that switch from individual bidding practi-
cally keep performing the same optimization as before.

Remark 4.2. If we model a minimum bid constraintyk � ymin in (4.4), and accordingly
Y k � ymin in (4.6), then the aggregation step contains inequality constraints and therefore
does not have a closed-form solution anymore.
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4.3.2 Decentralized Computation

Algorithm 4.1 is �exible against con�guration changes, avoids concentration of private
information, and behaves well from a computational perspective. Still, the algorithm
requires the acquisition and maintenance of a central computation facility, which poses
an organizational burden. To overcome this issue, we recognize that in the aggregation
step (4.8), only the aggregate
 requires aggregation-global information. More speci�-
cally, we notice that when
 is available, then each building can evaluate the previously
centralized operations (4.8b) and (4.8c) individually. Towards utilizing this, we de�ne
the partial aggregate


 i = 1
M

iX

b=1

(�y b � � b); (4.9)

which we can accumulate by serially handing it from building to building. Each buildingb
then adds its own contribution 1

M (�y b � � b), assuming that the aggregation sizeM is
known. Once we have reached
 = 
 M , the buildings circulate the result back to make
it known to their neighbors. Figure 4.5 illustrates the communication procedure for the
case of four buildings. In general, we can use any connected communication graph that
covers the aggregation.

Figure 4.5: Decentralized information exchange to make the aggregate
 available to all
buildings. Illustrated is the case ofM = 4.

Algorithm 4.2 summarizes the resulting decentralized formulation. The algorithm
is obtained by applying the previously described decentralization procedure to Algo-
rithm 4.1, and by rotating its steps from 1 - 2 - 3 to 2 - 3 - 1 . The result is a grouped
building-individual step i and a serial communication step ii . Algorithm 4.2 is an
equivalent reformulation of Algorithm 4.1, i.e., both algorithms produce the same se-
quence of iterates when initialized the same. Therefore, all properties that are discussed
in this chapter equally apply to both algorithms. In subsequent sections, we again focus
on Algorithm 4.1, utilizing its more explicit aggregator-building composition to simplify
the arguments that follow.
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4.3 Aggregated Bidding with ADMM

Algorithm 4.2 Decentralized ADMM for Aggregated Reserve Bidding

repeat

i building-individual updates (b= 1; : : : ; M )

�yb  1
� (�y b � � b � 
) + 1

�N 1N � N (
 + p)

� b  � b + � (�yb � yb)

(ub(�); yb)  arg min
ub(�);yb

c>
b ub(0) � � >

b yb + �
2k�yb � ybk2

2

s.t. (ub(�); yb) 2 Cb

ii serial communication
accumulate
 i and circulate 
 as shown in Figure 4.5

until satisfaction of the stopping criterion

end obtain the aggregated bidY with (4.8b)

4.3.3 Feasible Extraction

During the iteration of Algorithm 4.1, the results of 1 and 2 satisfy their respective
constraints, however, are not compatible due toyb 6= �yb. In other words, ADMM only
�nds a solution that jointly satis�es all constraints in the limit, potentially requiring a
large number of iterations [RHL17a]. Here, we overcome this di�culty with a method
for extracting a jointly feasible solution after any number of ADMM iterations. This
extraction procedure has great value in practice as it makes it possible to terminate the
algorithm anytime, e.g., when we reach a given time limit. The following proposition
describes the procedure.

Proposition 4.3. Given f ub(�); ybg from any iteration of Algorithm 4.1, we obtain a
suboptimal solution

�
Y F ;

n
uF

b (�); yF
b

o�
that satis�es all constraints in (4.6) with

Y F = 1N � 1 min
k

� X M

b=1
yk

b

�

(4.10a)

�
yk

b

� F
=

�
Y k

� F

P M
j =1 yk

j
yk

b 8 b; k (4.10b)

uF
b (�) = arg min

ub(�)

n
c>

b ub(0)
�
�
�

�
ub(�); yF

b

�
2 Cb

o
8b: (4.10c)
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We show the proof of Proposition 4.3 in Appendix 4.6.2. According to (4.10a), we
obtain the feasible combined bidY F by clipping the accumulated reserve o�er to its
lowest value over time. With (4.10b), the individual reserve contributionsyb are scaled
down to yF

b , which then satisfy Y F =
P

b yF
b . In (4.10c), we reoptimize the input. Due

to yF
b � yb the previous policyub(�) also remains feasible; however is less e�cient. The

more algorithm iterations we perform before extracting a solution, the lower the overall
cost

P
b c>

b uF
b (0) � p> Y F . In Section 4.4.2, we empirically analyze how many iterations

are necessary to come reasonably close to the optimum.

4.3.4 Reward Distribution

When the grid operator accepts a reserve bidY, the aggregation receives the reward
R = p> Y. We can distribute this reward in proportion to the o�ered reserves, i.e.,
building b gets

rb = p> yb: (4.11)

Due to R =
P

b rb, we do not distribute more or less than the total reward. A drawback
of this approach is that it does not account for the relative importance of a reserve
contribution, which we clarify at the example in Figure 4.6.

Figure 4.6: Illustrative example where seven buildings place an imbalanced reserve bid
over a period ofN = 12 hours. During most of the time, six similar buildings (black)
jointly o�er reserves y1 = y2 = � � � = y6, while at k = kcrit a single building (red)
determines the total reserveY k = yk

7 .

In Figure 4.6, a single building determines the combined reserve o�er at the critical
time k = kcrit . We construct the example by using dynamic-free buildings and by
constraining the black buildings' provision capability to zero atkcrit . Due to the time-
constant constraint, the aggregation cannot provide any reserves if the red building
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4.3 Aggregated Bidding with ADMM

leaves the group. Conversely, if a black building exits the aggregation, the reserve o�er
decreases only marginally (if at all), since the remaining black buildings can compensate
for it. Hence, due to its provision atkcrit , the red building is more important. With the
rewarding scheme (4.11) however, the importance of provision during a particular time
instance is not taken into account. The red building even earns less than any of the black
buildings, e.g., for a time-constant pricep it only gets 6=11 of each black building's pro�t.
We propose a Lagrangian-based approach to devise a reward allocation mechanism that
better re�ects the contribution of each building to the performance of the aggregation.
As noted in Section 4.3.1, the Lagrange multipliers� b = ( � 1

b; : : : ; � N
b ) depend on timek,

building b, and they also change with each ADMM iteration. Within Algorithm 4.1,
they orchestrate the buildings for achieving a constant combined reserve o�er. For a
particular time instance, the intuition is that when the aggregation demand continually
exceeds a building's proposition, i.e.,�yk

b � yk
b > 0, then the Lagrangian update

� k
b  � k

b + � (�yk
b � yk

b)

accumulates� k
b towards a large value. The more di�cult the provision, the larger � k

b

grows before we reach a consensus. Figure 4.7 illustrates the mechanism for� k
b � 0.

In case of negative Lagrange multipliers, e.g., due to the initialization, it can be seen
from inspecting 1 and 2 in Algorithm 4.1 that we recover a non-negative Lagrange
multiplier quickly.

Figure 4.7: Lagrangian mediation for� k
b � 0. If �yk

b > y k
b , then � k

b increases by� � k
b

between ADMM iterations. This increase produces an incentive for raisingyk
b and low-

ering �yk
b , which reduces the gap between them. The amount of change inyk

b and �yk
b

depends on the remaining constraints and objectives.

According to the mechanism in Figure 4.7, the Lagrange multipliers indicate the
time instances where the reserve provision is di�cult. We use this e�ect to increase
the reward during such critical hours. More speci�cally, we de�ne the Lagrangian-based
reward allocation

r �
b = � > yb; (4.12)

where� 2 RN is an alternative price vector that replaces the static rewardp in (4.11). We
describe the relation between� and the Lagrange multipliers in the following proposition.
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Proposition 4.4. For Algorithm 4.1, the following is true.

(i ) After each algorithm iteration, all buildings have the same Lagrange multiplier,
i.e., � 1 = � � � = � M . We write � = � b for any b, where� = [� 1; : : : ; � N ].

(ii ) The Lagrangian update (step3 in Algorithm 4.1) can be written as�  �
M Y � 
 .

(iii ) For a converged solution(� ; Y;f ybg), the Lagrangian-based allocationr �
b = � > yb

satis�es
P

b r �
b = R.

(iv ) For a feasible suboptimal solution
�
Y F ; f yF

b g
�

that is obtained with Proposition 4.3,
and


 F = �
M Y F � � (4.13a)

� F = 1
N 1N � N

�

 F + p

�
� 
 F ; (4.13b)

where � is obtained from the last algorithm iteration, the reward allocationr �
b =

(� F )> yF
b satis�es

P
b r �

b = R.

We show the proof of Proposition 4.4 in Appendix 4.6.2. In(i ), we de�ne the alter-
native price vector� as the building-invariant Lagrange multiplier. While the Lagrange
multiplier is the same for all buildings, it still varies over the bidding time, indicating the
hours where provision is di�cult. In Statement (ii ), we provide a simple equation for� .
Statement (iii ) veri�es that the allocation scheme distributes not more or less than the
total reward R, and Statement(iv ) makes it possible to use Lagrangian-based allocation
after feasible extraction. We interpret the building-invariance of the Lagrange multi-
pliers as follows:� b mediates between building proposalyb and aggregator demand�yb.
However, the aggregator does not use any building-private information. In other words,
it decides on the reserve demand�yb without being able to di�erentiate between the build-
ings. Therefore, it always asks for the same change�yb � yb, which results in the same
multipliers.

The Lagrangian-based allocation provides an incentive to reduce provision imbalance.
Hence, it strengthens the group's capability for providing reserves, which means that the
aggregation grows more resilient against failures and con�guration changes. However, in
some situations, a pure utilization of the new allocation scheme can be overly extreme
for being economically acceptable, which becomes clear from Figure 4.8.

While the extreme reward concentration in Figure 4.8 is speci�c to the constructed
example, unrewarded hours can also occur in more generic setups. To alleviate this issue,
we can use a mixed reward� r b + (1 � � ) r �

b with an acceptable weight� 2 [0; 1].
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Figure 4.8: Lagrange multiplier� , which results from to the example in Figure 4.6.
The reward concentrates in one point as a constraint limits the reserve provision only in
a single time instant and the buildings are dynamic-free.

4.4 Simulation Study

We apply ADMM-based reserve bidding in simulation, considering a24-hour bidding pe-
riod with hourly discretization. We use a test set of300building models, each generated
by random perturbation from one of the following prototypes.

(i ) Small building, obtained from [Old11, Section 4.5]

� 3 states for temperatures, using comfort constraints between21� C and 25� C
when the building is occupied

� 4 constrained inputs for radiator, cooled ceiling, �oor heating, and mechanical
ventilation

� 3 modeled disturbances for outside temperature, solar radiation, and occu-
pancy

(ii ) Medium-sized building, obtained from [Dar+16]

� 33 states for temperatures, using comfort constraints between20� C and 28� C
when the building is occupied

� 5 constrained inputs: 4 for blinds and 1 for heating

� 7 modeled disturbances:1 for occupancy,2 for ambient and ground temper-
ature, and 4 for solar radiation

(iii ) Large building, obtained from [Dar+16]

� 113states for temperatures, using comfort constraints between20� C and 28� C
when the building is occupied

� 9 constrained inputs: 4 for blinds and 5 for heating
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� 11 modeled disturbances:5 for occupancy,2 for ambient and ground temper-
ature, and 4 for solar radiation

We classify the buildings in residential (mainly occupied during nighttime) and com-
mercial (mainly occupied during daytime). Usually, the buildings provide most reserves
while being unoccupied, as they are less restricted then. To obtain tractable bidding
problems, we use linear decision rules as in Appendix 4.6.1 and [Zha+17, Section 4]. We
use free licenses for Yalmip [Lof04], Gurobi [Gur16], Julia [Bez+17], and JuMP [DHL17].

4.4.1 Example Scenario for Six Buildings

We sample six buildings from the test set and obtain an aggregated reserve bid with
Algorithm 4.1. Figure 4.9 illustrates the resulting bidsy1 to y6 (bottom), and the
Lagrange multiplier � (top).

Figure 4.9: Example scenario of six buildings placing a joint reserve o�er by solving (4.6).
The horizontal axis shows the bidding period. The day-night provision pattern identi�es
three residential (blue) and three commercial (red) buildings.

In Figure 4.9, we show the bidsy1; : : : ; y6 as a fraction of the combined bidY (not
illustrated), which adds up to be time-constant. In a separate simulation, we solve the
individual problem (4.4) for each building, and we compare the result to the solution
of the aggregated problem as illustrated in Figure 4.9. We observe that aggregated
bidding with (4.6) yields a combined bidY that is 57% larger than the accumulation
of individual solutions from (4.4). This considerable aggregation advantage results from
having a mixed group of residential and commercial buildings, which complement each
other to satisfy the time-constant constraint. For the Lagrange multiplier, we see a
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day-night pattern that indicates a provision shortage at night. Hence, the commercial
buildings are under-represented, and Lagrangian-based allocation places an incentive for
more commercial buildings to join the group.

4.4.2 Analysis of the Necessary Number of ADMM Iterations

The feasible extraction scheme presented in Section 4.3.3 provides the opportunity to
terminate the algorithm before it converges to a feasible solution. Therefore, the decision
for algorithm termination only depends on the objective value

J (f ub(�)g; Y) =
MX

b=1

c>
b ub(0) � p> Y: (4.14)

Figure 4.10 shows how many ADMM iterations are necessary until the feasible-extraction
objectiveJ F = J

�
f uF

b (�)g; YF
�

comes within1%of its precomputed optimal valueJ ? > 0.

Figure 4.10: Required iterations of Algorithm 4.1 to reachjJ F � J ?j=J? � 1%, depending
on the aggregation sizeM . For each aggregation size, we sample ten combinations of
buildings from the building test set, and we show the average and range of the necessary
number of ADMM iterations.

In Figure 4.10, we observe:(i ) on average only18 ADMM iterations are needed
to come within 1% of the best-achievable objective;(ii ) the range between di�erent
instances of the same aggregation size is about� 7 iterations; and (iii ) the ADMM
convergence characteristics (average and range) are fairly constant with the aggregation
size. We expect the low number of iterations(i ) and the small range(ii ) as we have
concentrated the main computational e�ort into the building-individual updates, which
leaves a comparably simple and invariant task to the ADMM-based negotiation process.
For the invariance to the aggregation size(iii ), we note that the closed-form aggregation
step (4.8) only depends on averaged information
 . Hence, the mediation e�ort is
not expected to vary with the number of buildings that contribute to this average.
With feasible extraction and the observations from Figure 4.10, we can be con�dent
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to use the simplest possible ADMM termination criterion, namely just stopping after a
�xed number of iterations (e.g., 25). Besides being conceptually simple, this stopping
criterion also leads to a �xed number of communication rounds between the buildings,
which makes the entire decision process well-timed and easy to handle. In particular,
given that we impose a time-limit for solving the building-individual problem, the total
negotiation time that is required to obtain a joint reserve bid is constant.

4.5 Conclusions

We discuss how �exible energy consumers, particularly buildings, can collaborate to
provide frequency reserves in a reserve market setting. We show that when we use a spe-
cialized ADMM-based approach, we obtain conceptual bene�ts, such as low set-up costs,
fully decentralized computation, scalability, privacy, �exibility, and autonomy in the par-
ticipating buildings. These bene�ts make the specialization worthwhile, even in absence
of solution time pressure or hardware limitations. We also show that ADMM provides
a reward allocation scheme that reduces provision imbalance and therefore strengthens
the group's capability to provide reserves. Finally, we emphasize the practicality of our
approach by describing feasible extraction schemes that lead to a predictable stopping
criterion and therefore a constant time to obtain a joint reserve bid.

4.6 Appendices

In this section, we collect additional material and appendices that support and extend
the content of this chapter.

4.6.1 Tractable Formulation of Building Constraints

In [Zha+14; Zha+17], three steps are taken to obtain a tractable reformulation of (4.5).
First, the uncertain reserve requests 2 [� y; y] is represented through the normalized
disturbance � = [ � 1; : : : ; � N ] 2 [� 1; 1] � RN , such that s = s(� ) = diag(y) � . This
parametrization has the advantage that the normalized uncertainty set[� 1; 1] is inde-
pendent of the decision variabley, which simpli�es the maximization of the uncertainty
set [� y; y] [Zha+14, Section 3]. In a second step, the control policiesu(s) and � u(s) are
reparametrized with respect to the normalized disturbance as~u(� ) and �~u(� ), which
is still non-restrictive [Zha+14, Proposition 3]. In a third (restrictive) step, a�ne
parametrizations ~u(� ) = K� + � and �~u(� ) = F � are used, whereK; F 2 L � RNm � N ,
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L is the set of lower block-diagonal matrices, and� 2 RNm is a vector. The optimization
is then performed overK , F , � and y, which results in

C =
n

(u(�); y)
�
�
� 9 (K; F; �; ~u(�); �~u(�); x(�)) s.t.

~u(� ) = u(diag(y) � ) = K� + �; �~u(� ) = F �; K; F 2 L ;
x(� ) = A x1 + B [~u(� ) + �~ u(� )] + E v;

(x(� ); ~u(� ) + �~ u(� )) 2 X � U ;
y = ( I N 
 � > )F �

9
>>=

>>;
8� 2 [� 1; 1]

o
:

(4.15)

If F contains linear functions only, (4.15) is consistent with (4.5). Note that (4.15) still
has an in�nite number of constraints. By following the procedure in [Zha+17, Section 4],
the resulting problem can be written as an exact dual reformulation with �nitely many
constraints. While the problem is convex and �nite-dimensional, its solution remains
computationally challenging. The reason is that the parametrization of the input~u(�)
with the matrix K introduces a large number of decision variables. One way to reduce
the computational complexity, at the cost of an increasingly conservative solution, is to
impose structure onK . Popular strategies include restrictingK to be block-diagonal,
or even settingK = 0, which means that~u is preallocated and only�~u depends on the
actual reserve request.

4.6.2 Proofs

Proof of Proposition 4.2

To simplify the notation, we usey = [ y1; : : : ; yb] and similarly �y and � . The aggregation
step then is

min
Y k ; �y

� > �y + �
2k�y � yk2

2 � p> 1N � 1Y k (4.16a)

s.t. 1N � 1Y k = (1 1� M 
 I N )�y; (4.16b)

whereY = 1N � 1Y k , i.e., Y is parametrized by a single decision variableY k 2 R, which
ensures thatY 1 = Y 2 = � � � = Y N . To avoid confusion with the solution of Algorithm 4.1,
we denote the solution to (4.16) as(Y k ; �y ). According to [NW06, Section 16.2], this
solution satis�es the optimality conditions

0 = 11� N (� + p) (4.17a)

�y = y + 1
� (� � � (1M � 1 
 I N )� ) (4.17b)

1N � 1Y k = (1 1� M 
 I N ) �y ; (4.17c)
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where � is the optimal value of the Lagrange multiplier associated with (4.16b). By
using the Schur-complement method in [NW06], we show that the equation system of
optimality conditions is solved by

Y k = 1
�N (11� NM (�y � � ) + M 11� N p) (4.18a)

� = 1
M

�
(11� M 
 I N ) ( �y � � ) � � 1N � 1Y k

�
(4.18b)

�y = 1
M (M � 1M � M 
 I N )(y � 1

� � ) + 1
M I NM � 1Y k ; (4.18c)

where we can write (4.18c) component-wise. By using the aggregate


 = 1
M (11� M 
 I N )( �y b � � b) (4.19)

we conclude the proof.

Proof of Proposition 4.3

The feasible shared reserveY F satis�es the time-constant constraint (4.6d). From (4.10b)
we obtain

MX

b=1

(yk
b)

F
= Y F ;

i.e., (4.6c) is satis�ed. It remains to show that (4.10c) has a solution for allb. Due to
P M

b=1 yk
b � (Y k)F , equation (4.10b) ensures that(yk

b)F � yk
b . Hence, by construction ofC

in (4.5), (4.10c) is always feasible.

Proof of Proposition 4.4

By inserting (4.8c) in step 3 of Algorithm 4.1, we obtain � b = �
M Y � 
 for any b, which

proves (ii ). Statement (i ) follows asY and 
 are aggregated quantities. In(iii ), we
consider solutions with�yb = yb, which we combine with (4.8b), (4.8c) to

� = 1
N 1N � N (
 + p) � 
 :

Statement (iv ) gives the same relation for� F ; 
 F . In both cases, we multiply11� N from
the left and use 1

N 11� N 1N � N = 11� N . The result is 11� N � F = 11� N p. Statements(iii )
and (iv ) follow from writing 11� N as a sum and by multiplyingY F from the right.
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CHAPTER5
Decentralized Coordination

and Collision Avoidance

O UR second specialized ADMM formulation is a coordination and collision avoid-
ance protocol for moving agents. Similar to the previous chapter, the main drivers

for specializing the algorithm formulation are conceptual necessities given by the sur-
rounding problem setup. We consider an aggregation of agents where each agent is
tracking a target location while adhering to its dynamics constraint. The agents are
coupled through nonconvex collision avoidance constraints that enforce a minimum dis-
tance between each agent pair. We model the setup as a multi-agent problem, and we
employ a decentralized agent-agent splitting similar as in Section 3.3.4. The agent-agent
formulation leads to pure neighbor-to-neighbor communication without a central aggre-
gator. To handle the nonconvexity of the collision avoidance constraint, we propose a
successive linearization procedure which becomes part of the algorithm formulation. We
further reinterpret the algorithm by taking its focus from the overall aggregation towards
the point of view of a single agent. In this way, we obtain an action protocol for each
agent, such that all agents operate in local coordinates and interact with their direct
neighbors only. The resulting complete decentralization brings a large �exibility to the
setup, e.g., agents can join or leave self-organized, and they can autonomously change
their objectives and constraints. Additionally, we show modi�cations of the algorithm
that are speci�c to the moving agent problem, such as a deadlock protection mechanism
and the handling of uncooperative agents.

This chapter is based on the publication [Rey+18a].
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5.1 Introduction

A rising level of automation in multi-agent systems leads to a demand for scalable, versa-
tile, and fast coordination schemes. Prominent application areas are autonomous driving,
marine navigation, process line automation, and coordination of �ight vehicles, such as
quadcopters and drones. We advocate an optimization-based coordination method that
uses MPC and ADMM. The agents have linear dynamics and follow a position target,
while nonconvex constraints prevent collisions. We avoid a central coordination facil-
ity which would establish a single point of failure, limit the number of agents by its
computational capabilities, and require all agents' blind trust in assigning collision-free
trajectories. Instead, we devise a communication and control protocol where all agents
share the coordination e�ort. Our method stands out by evolving around the agents'
point of view, i.e., each agent navigates in a local coordinate system and communi-
cates with neighboring agents only. The agents participate equally and simultaneously
through frequent communication. This fully decentralized paradigm leads to a high level
of agent-autonomy, tolerates frequent setup changes, and promotes resilience against fail-
ures. We handle the nonconvex collision avoidance constraint through �rst-order Taylor
approximation at each ADMM iteration. While this linearization curtails the solution
space of the nonconvex problem, it results in a lightweight and therefore fast formulation
that guarantees collision avoidance upon convergence. As we linearize at each ADMM
iteration, we achieve a high adaptation rate, which reduces the negative in�uence of
the solution space curtailment. We show that our method handles static obstacles and
formation �ight, as well as uncooperative agents that do not communicate. Figure 5.1
illustrates the setup.

Figure 5.1: Illustration of the coordination setup in two dimensions, centered around the
point of view of a single agent.
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Related Literature

The review focuses on optimization-based coordination; an excellent overview of the
greater �eld is presented in [ZNL17]. In [RH02], collisions are avoided by partitioning
the space into convex safe-regions, which leads to a mixed-integer optimization problem.
By using the same mixed-integer models, [TRC14] advocates a distributed scheme where
agents take turns in modifying the planned trajectories. Compared to [RH02; TRC14],
we linearize the collision avoidance constraint, which avoids the substantial computa-
tional burden of binary decision variables. In [Rou+08; CHL10; CHL11], a hierarchical
approach is pursued, where collision avoidance is separated from other tasks, such as
satisfying local constraints. We follow a di�erent route by handling all coordination as-
pects simultaneously. Being closer related to our approach, [OG15] develops an e�cient
ADMM-based coordination method, however still uses partially centralized elements.
The same is true for [ZNL15; ZNL17], which devise a coordination procedure that re-
quires a central facility. Further, in [OG15; ZNL15; ZNL17], the linearization of the
avoidance constraint is performed only once per MPC call, which results in less frequent
adaptation and therefore potentially less reactive agents. On the other hand, [OG15;
ZNL15; ZNL17] go beyond our setup by including nonlinear agent dynamics. Another
related line of research is [MVP16; VP17c; MVP17], where an agent navigates through
an environment with moving obstacles by using spline-based trajectories. This setup
is extended in [VP16; VP17b; VP17a] to include multiple agents and inter-agent col-
lision avoidance. The most recent work [VP17a] contains an ADMM-based procedure
that is related to our approach. The di�erence lies in the convexi�cation of the collision
avoidance constraint, where our approach adheres more closely to the standard ADMM
framework. Another prominent di�erence is that we use discrete-time systems instead of
splines. The work in [VP17a] goes beyond our setup with thoughts on recursive feasibil-
ity and suboptimal algorithm termination. Conversely, we complement [VP17a] with the
use of local coordinate systems, a deadlock-protection mechanism, and a more rigorous
discussion of convergence guarantees. The entire line [MVP16; VP17c; MVP17; VP16;
VP17b; VP17a] contains excellent application examples.

5.2 Centralized Setup and Convex Formulation

In this section, we de�ne the coordination problem, and we present the linearization of
the collision avoidance constraint.
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5.2.1 Coordination Problem

We consider a setup whereM agents navigate in ann-dimensional space under the
presence of nonconvex collision avoidance constraints. We approach this problem in
a discrete-time MPC framework, where an optimization routine updates the planned
trajectories at each time step. At �rst, we focus on a centralized formulation that
coordinates all agents. The nonconvex coordination problem is

min
f x i ;vi ;ai gi

X M

i =1
Ji (x i ; ai ) (5.1a)

s.t. (x i ; vi ; ai ) 2 Ci 8i (5.1b)

hij (x i ; x j ) � 0 8i; j and j 6= i; (5.1c)

where we writef x i ; vi ; ai gi for f (x i ; vi ; ai ) j i = 1; : : : ; M g. We use the positionx i , ve-
locity vi , and accelerationai along the planned trajectory for agenti . Below, we de�ne
the parametrization (x i ; vi ; ai ), the objectivesJi , the dynamics Ci , and the nonconvex
avoidance constraintshij .

5.2.2 Agent Modeling

Trajectories and Dynamics

Each agenti has a current positionx0
i 2 Rn , velocity v0

i 2 Rn , and accelerationa0
i 2 Rn .

Initialized with these values, we predict its movement with constrained double-integrator
dynamics

xk+1
i = xk

i + Tvk
i

vk+1
i = vk

i + Tak
i

9
=

;
k = 0; 1; : : : ; N + 1 (5.2a)

(xk+2
i ; vk+1

i ; ak
i ) 2 (X i � V i � A i ) k = 1; : : : ; N; (5.2b)

where � is the Cartesian product andT > 0 is the discretization interval. The setsX i ,
Vi , and A i model static obstacles, as well as limits for velocity and acceleration. We
require these sets to be convex. The sets further can be changed between MPC calls,
e.g., in relation to the agent's position and orientation. We collectx i = [ x3

i ; :::; xN +2
i ],

vi = [ v2
i ; :::; vN +1

i ], and ai = [ a1
i ; :::; aN

i ], which are the free decision variables as illustrated
in Figure 5.2. For (5.1b), we then useCi = f (x i ; vi ; ai ) j (5.2) is satis�edg.

Individual Objectives

Each agent has the objective

Ji (x i ; ai ) = kx i � r i k2
Q + kai k2

R ; (5.3)
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5.2 Centralized Setup and Convex Formulation

Figure 5.2: Trajectory for N = 3. The free decision variables, which are not determined
by the initial conditions (x0

i ; v0
i ; a0

i ), are indicated in red.

where kx i � r i k2
Q is equal to (x i � r i )> Q(x i � r i ), r i is the target trajectory, and Q; R

are positive de�nite weight matrices. In combination with the termkai k2
R , the matrix R

adjusts the acceleration intensity. It is possible to chooser i relative to other agents,
which makes them move in formations.

Collision Avoidance

Agents prevent collisions by placing Euclidean spheres with safety radius� i around
themselves. For each agent pair(i; j ), this is encoded with

hij (x i ; x j ) = min
k=3 ;:::;N +2

kxk
i � xk

j k2 � � i : (5.4)

Neighborhoods

Towards a decentralized formulation, we introduce a concept of neighborhoods. We
de�ne

N i =
n
j 2 f 1; 2; : : : ; M gnf ig

�
�
� kx0

i � x0
j k2 � � dect

o
; (5.5)

where � dect > 0 is the detection distance that all agents have in common. We assume
that � dect is large enough, such that agents detect each other before they need coordi-
nation. In this case, we can enforce the collision avoidance constraint (5.1c) forj 2 N i

only, without changing the problem.

5.2.3 Convex Problem Formulation

We perform a �rst-order Taylor approximation of the avoidance constraint around nomi-
nal trajectories(�x i ; �x j ). The strategy to choose and update these trajectories is described
in Section 5.3.2. For the moment we assume them to be given. Similar to [ASD12], we
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use

gk
ij (xk

i ; xk
j ) = � k

ij
> �

(xk
i � xk

j ) � (�xk
i � �xk

j )
�

� � i (5.6a)

�hij (x i ; x j ) = min
k=3 ;:::;N +2

gk
ij (xk

i ; xk
j ) (5.6b)

� k
i =

(�xk
i � �xk

j )
k�xk

i � �xk
j k2

: (5.6c)

As illustrated in Figure 5.3, the linear functionsgk
ij are used to avoid collisions at

each step along the given nominal trajectories. The construction results in the convex
approximation �hij of the original nonconvex constrainthij .

Figure 5.3: Linearization around nominal trajectories at one time instance.

The problem formulation with the linearized avoidance constraint, including the con-
cept of neighborhoods, is

min
f x i ;vi ;ai gi

X M

i =1
Ji (x i ; ai ) (5.7a)

s.t. (x i ; vi ; ai ) 2 Ci 8i (5.7b)
�hij (x i ; x j ) � 0 8i and j 2 N i : (5.7c)

The feasible set of the linearized problem (5.7) is an inner approximation of the non-
convex problem's feasible set. This curtailment causes the trajectories that are obtained
from solving the linear problem to be more conservative. For this reason, the agents'
reactivity depends on the quality of the chosen linearization trajectories(�x i ; �x j ).

5.3 Decentralized Optimization with ADMM

In this section, we show the decentralized approach for agent coordination and we discuss
several extensions.
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5.3 Decentralized Optimization with ADMM

5.3.1 ADMM for Coordination of Moving Agents

The linearized coordination problem (5.7) is a variation of the multi-agent problem
in Section 3.3, where the coupling is an inequality instead of an equality constraint.
Despite this di�erence, we solve (5.7) with a similar agent-agent splitting as discussed
in Section 3.3. We usewi , which is an agent-local trajectory duplicate, andwi )j , which
is the i -th agent's duplicate of the j -th agent's trajectory. We interpret wi )j as the
trajectory proposal from i to j . The resulting equivalent reformulation of the linearized
coordination problem (5.7) is

min
f x i ;w i ;vi ;ai gi ;

f wi )j gi;j

X M

i =1
Ji (x i ; ai ) (5.8a)

s.t. (x i ; vi ; ai ) 2 Ci 8i (5.8b)
�hij (wi ; wi )j ) � 0 8i and j 2 N i (5.8c)

wi = x i ; wi )j = x j 8i and j 2 N i ; (5.8d)

where the collision avoidance constraint (5.8c) does not depend on the original trajec-
tories x i anymore. We write (5.8) in the form of the partitioned splitting problem (2.1)
by associating the agent-individual variablesf x i ; vi ; ai gi with y, and the coordination
variablesf wi ; wi )j gi;j with z.

Before we adapt Algorithm 2.1 to this setting, we shift our point of view from the
multi-agent problem to the perspective of agenti . We drop the index i from x i , Ji , �hij ,
Ci , and N i . Further, we write wj ) = wj )i and w)j = wi )j . Consistent with the previous
interpretation, wj ) is a proposal that the point-of-view agent receives from agentj .
Conversely,w)j is sent to agentj . Algorithm 5.1 shows the coordination method and
Proposition 5.1 describes how the algorithm is used to solve (5.7). We show details of
the algorithm formulation and the proof of the proposition in Appendix 5.6.1.
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Algorithm 5.1 Coordination procedure for each agent.

update N and initialize � , w, f � )j ; � j ); wj )gj 2N

repeat

1: prediction: update (x; v; a) with

arg min
x;v;a

J (x; a) + � > (x � w) + �
2kx � wk2

2 +
P

j 2N

h
� >

j )(x � wj )) + �
2kx � wj )k2

2

i

s.t. (x; v; a) 2 C

? communication: sendx to j 2 N ; receivef x j gj 2N

2: coordination: update (w; f w)j gj 2N ) with

arg min
w;f w )j gj 2N

� > (x � w) + �
2kx � wk2

2 +
P

j 2N

h
� >

)j (x j � w)j ) + �
2kx j � w)j k2

2

i

s.t. �hj (w; w)j ) � 0 8j 2 N

3: mediation: update (�; f � )j gj 2N ) with

�  � + � (x � w)
� )j  � )j + � (x j � w)j ) 8j 2 N

? communication:
send(� )j ; w)j ) to j 2 N ; receivef � j ); wj )gj 2N

Proposition 5.1. If all agents simultaneously use Algorithm 5.1, then they jointly con-
verge to an optimal solution of the linearized problem(5.7), as long as a �nite solution
exists.

Algorithm 5.1 contains steps for prediction, coordination, and mediation, as well as
two rounds of communication. In the prediction step, the agent plans a trajectoryx that
satis�es its dynamics and pursues its objective. While doing so, it remains close to its
collision-free trajectory w, as well as the trajectoriesf wj )gj that were proposed by its
neighbors. The plansx; f x j gj are then exchanged. In the coordination step, the agent
develops strategiesw; f w)j gj that orchestrate the neighborhood to become collision-free,
while remaining close to the previous plansx; f x j gj . We can execute the associated
optimization e�ciently since it separates along the prediction horizon. In the media-
tion step, Lagrange multipliers�; f � )j gj accumulate the gap between plansx; f x j gj and
collision-avoiding trajectoriesw; f w)j gj . By in�uencing the prediction and coordination
steps, the multipliers promote a consensus between all trajectories and agents. In the
�nal communication step, the agents exchange the Lagrange multipliers and trajectory
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5.3 Decentralized Optimization with ADMM

proposals. Figure 5.4 illustrates the communication procedure.

Figure 5.4: Communication of the point-of-view agent with agentj during one iteration
of Algorithm 5.1.

For the initialization of Algorithm 5.1, we use time-shifted trajectories from the
previous MPC call, as shown in [VP17a]. This warm-starting strategy potentially reduces
the computational burden, especially in slow changing environments.

5.3.2 Adaptive Linearization

We consider the curtailed solution space of (5.1) and the resulting conservative trajectory
choice as the most pressing limitation of linearization-based coordination methods. We
follow the rationale that the more often we update the linearization, the higher the
potential to reduce conservatism. Many existing approaches [OG15; ZNL15; ZNL17]
linearize around the results of the previous MPC call. To obtain a higher adaptation
rate, we instead utilize the iterative nature of ADMM to adapt the nominal trajectories in
each algorithm iteration. Modi�cation 5.1 and Proposition 5.2 constitute the procedure.
The proposition is true since the modi�cation is without e�ect once�hj reaches a �xed
point.

Modi�cation 5.1 Adaptive linearization for Algorithm 5.1.

+ To be added before thecoordination step:

update f �hj gj 2N based on (5.6) andx; f x j gj 2N

Proposition 5.2. If all agents use Algorithm 5.1 with Modi�cation 5.1, and the iter-
ations of all agents converge, then the solution is optimal for the successively adapted
linearized problem(5.7).

Proposition 5.2, as opposed to Proposition 5.1, does not guarantee convergence. In
fact, by adapting �hj during the ADMM iteration, we change (5.7) while solving it.
The regularization terms in the prediction and coordination updates curb the adaption
process, smoothening the change. Since all of our simulations behave well, we tolerate the
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absence of a convergence guarantee for the bene�t of potentially reduced conservatism.
In case a procedure is required that combines both, we use Modi�cation 5.1 for the
�rst K iterations only, which results in partially adaptive linearization while inheriting
the guarantees of Proposition 5.1.

5.3.3 Deadlock Protection

Even with adaptive linearization, the options of an agent can become much more limited
than with a nonconvex approach. A prominent example is a head-to-head encounter of
two agents, which results in a deadlock where both agents slow down and stop. Figure 5.5
illustrates the situation.

Figure 5.5: Frontal deadlock situation. Due to the linearized collision avoidance con-
straint, there is no option to move above or below.

We prevent a deadlock situation by modifying each local linearizationgk
i through

rotation of � k
j , which preserves the integrity of the collision avoidance constraint. We

use

� k
j  R' � k

j 8k = 3; : : : ; N + 2; (5.9)

where the matrix R' 2 Rn� n performs a rotation by the positive angle' . Modi�ca-
tion 5.2 describes the deadlock protection.

Modi�cation 5.2 Deadlock protection for Algorithm 5.1 with Modi�cation 5.1.

+ To be added after theadaptive linearizationstep:

if �hj unchangedand (xk � xk� 1) � � k
j = 0 8k

then rotate all � k
j by '

In Modi�cation 5.2, we �rst detect whether �hj remained unchanged in the last al-
gorithm iteration. We then use the cross product� to determine whether the normal
vectors f � k

j gk are in parallel with the current trajectory. In higher dimensions, we use
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the Hodge star operator. If all vectors are in parallel, we are in a locked situation, and
we break the tie as noted in (5.9). The released trajectories then converge around each
other by themselves; therefore, the actual value of' > 0 does not a�ect the result.
Figure 5.6 shows the release of the deadlock.

Figure 5.6: Release of the locked situation through rotation of� k
j by ' .

5.3.4 Local Coordinate Systems

So far, we have assumed that all agents navigate in the same coordinate system, which
con�icts with our notion of decentralization. Instead, it is desirable that each agent
operates and communicates in local coordinates. Towards this, we assume that all agents
have a common notion of orientation, e.g., they orient towards the magnetic north or any
other distant �xed point. Moreover, we assume that agents can determine the relative
position of their neighbors. Figure 5.7 illustrates the situation.

Figure 5.7: Local coordinate system at the position of the point-of-view agent. The
relative positions of the neighbors are shown in red.

We denote the relative position of thej -th neighbor asdj . To parse incoming com-
munication to the local coordinates, we use Modi�cation 5.3. The Lagrange multipliers
are translation-invariant and therefore una�ected.
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Modi�cation 5.3 Local coordinates for Algorithm 5.1.

+ To be added after the �rst communication step:

x j  x j + [ dj ; dj ; : : : ; dj ] 8j 2 N

+ To be added after the secondcommunication step:

wj )  wj ) + [ dj ; dj ; : : : ; dj ] 8j 2 N

5.3.5 Uncooperative Agents

Agents are uncooperative if they neither send nor accept trajectory proposals. The point-
of-view agent collects unresponsive neighbors inN u, leaving cooperative neighbors in
N c = N nN u. The agent does not receive(x j ; � j ); wj )) from its uncooperative neighbors,
and it expects that the coordination request(� )j ; w)j ) is not heard. To be able to handle
this situation, we require that the point-of-view agent detects the current position and
velocity (x0

j ; v0
j ) of uncooperative agents. By assuming a constant velocity, the agent

then constructs an expected trajectoryx j with (5.2a). Further, it uses wj ) = x, i.e., it
pretends that the uncooperative agent does not propose trajectory changes. Also, when
coordinating its neighborhood, the point-of-view agent adds the constraintw)j = x j ,
i.e., it assumes that it cannot a�ect the uncooperative agent. Figure 5.8 illustrates the
resulting procedure, and Modi�cation 5.4 shows the necessary changes to our algorithm.

Figure 5.8: Handling of an uncooperative agent as noted in Modi�cation 5.4.

Through Modi�cation 5.4, the Lagrange multipliers f � j )gj 2N u become irrelevant.
Proposition 5.3, proven in Appendix 5.6.2, constitutes the use of Modi�cation 5.4.

Proposition 5.3. We augment(5.7) with additional constraints that �x immovable tra-
jectories of uncooperative agents. If all uncooperative agents travel at constant velocity,
then Algorithm 5.1 with Modi�cation 5.4 converges to a solution of the augmented prob-
lem, as long as a �nite solution exists.
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Modi�cation 5.4 Information augmentation for Algorithm 5.1.

+ We execute bothcommunication steps forN c only

+ To be added after the �rst communication step:

measuref x0
j ; v0

j gj 2N u ; estimate f x j gj 2N u

+ To be added after the secondcommunication step:

wj )  x 8j 2 N u

+ We augment thecoordination step with the constraint:

w)j = x j 8j 2 N u

5.3.6 Algorithm Summary

We obtain the �nal coordination method by applying all modi�cations to Algorithm 5.1.
We show the result in Algorithm 5.2, where the adaptive linearization does not hin-
der convergence since it only a�ects the �rstK iterations. Hence, the statement of
Proposition 5.3 also applies for Algorithm 5.2.
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Algorithm 5.2 Coordination procedure, including Modi�cation 5.1� 5.4.

update N = N c [ N u, f dj gj 2N

initialize � , w, f � )j ; � j ); wj )gj 2N

repeat

1: prediction: update (x; v; a) with

arg min
x;v;a

J (x; a) + � > (x � w) + �
2kx � wk2

2 +
P

j 2N

h
� >

j )(x � wj )) + �
2kx � wj )k2

2

i

s.t. (x; v; a) 2 C

? communication: sendx to j 2 N c; receivef x j gj 2N c

x j  x j + [ dj ; dj ; : : : ; dj ] 8j 2 N c

+ information augmentation:

measuref x0
j ; v0

j gj 2N u ; estimate f x j gj 2N u

+ adaptive linearization: (only in �rst K iterations)

update f �hj gj 2N based on (5.6) andx; f x j gj 2N

+ deadlock protection:

if �hj unchangedand (xk � xk� 1) � � k
j = 0 8k

then rotate all � k
j by '

2: coordination: update (w; f w)j gj 2N ) with

arg min
w;f w )j gj 2N

� > (x � w) + �
2kx � wk2

2 +
P

j 2N

h
� >

)j (x j � w)j ) + �
2kx j � w)j k2

2

i

s.t. �hj (w; w)j ) � 0 8j 2 N
w)j = x j 8j 2 N u

3: mediation: update (�; f � )j gj 2N ) with
�  � + � (x � w)

� )j  � )j + � (x j � w)j ) 8j 2 N

? communication:

send(� )j ; w)j ) to j 2 N c; receivef � j ); wj )gj 2N c

wj )  wj ) + [ dj ; dj ; : : : ; dj ] 8j 2 N c

+ information augmentation: wj )  x 8j 2 N u
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5.4 Simulation Study

We consider four agents inR2 that approach a common intersection point. One of
the agents is uncooperative. Figure 5.9 shows the closed-loop trajectories where the
cooperative agents use Algorithm 5.2 to determine their trajectories. The individual
optimization problems are solved with Gurobi [Gur16].

Figure 5.9: Closed-loop avoidance scenario with four agents closing in around the origin.
The uncooperative agent is shown in red.

In the shown situation, the agents avoid collisions while they maintain their direction
of travel. Figure 5.10 shows one prediction from the closed loop simulation.

For the situation that is shown in Figure 5.10, Algorithm 5.2 converges without freez-
ing the linearization, which exceeds the given guarantees. Moreover, by using a noncon-
vex solver [WB06], we can verify that the converged result attains a local minimum of the
initial problem (5.1). Algorithm 5.2 reaches reasonable accuracy in60 iterations. Sur-
prisingly, we observe that adaptive linearization increases the average convergence speed.
A reason can be that the adaptation eases the linearized constraint, i.e., while moving
around another agent, the constraint retreats from the planned trajectory. The resulting
room for maneuvering may bene�t the convergence speed since ADMM is observed to
be particularly slow in heavily constrained situations [RHL17a].
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Figure 5.10: Left: Converged trajectory plans in the coordinate system of the point-of-
view agent when being close to the intersection point. Right: convergence ofx to its
�nal value x?.

5.5 Conclusions

We advocate an ADMM-based solution for coordination problems, which relies on adap-
tive linearization and results in a lightweight and therefore fast procedure. A high level
of decentralization characterizes our method, which we present as a communication and
action protocol from a single agent's point of view. If the adaptive linearization is
frozen after a �xed number of algorithm iterations, and a feasible solution exists, then
we guarantee that a consensus among all agents is reached. Motivated by the coor-
dination setting, we have introduced a range of algorithm modi�cations, and we have
demonstrated the viability of our method in simulation.

5.6 Appendices

In this section, we collect additional material and appendices that support and extend
the content of this chapter.

5.6.1 Formulation of Algorithm 5.1 and proof of Proposition 5.1

To connect to the notation of the basic splitting problem (2.1), we usezi = [ wi ; wi )j ; : : : ]
for j 2 N i , yi = [ x i ; vi ; ai ], z = [ z1; : : : ; zM ], and y = [ y1; : : : ; yM ]. A comparison
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with (2.1) yields

f (y) =
MX

i =1

h
Ji (x i ; ai ) + I Ci (x i ; vi ; ai )

i
(5.10a)

g(z) =
MX

i =1

hX

j 2N i
I �h ij (wi ;w i )j )� 0(zi )

i
: (5.10b)

We use the augmented Lagrangian

L � (y; z; � ) = f (y) + g(z) +
MX

i =1

h
M i +

X

j 2N i

M ij

i
; (5.11)

where

M i = � > � i + �
2k� i k2

2 (5.12a)

� i = x i � wi (5.12b)

� ij = x j � wi )j , and M ij = � > � ij + �
2k� ij k2

2: (5.12c)

By applying Algorithm 2.1, we obtain a basic form of Algorithm 5.1. Due toj 2 N i ,
i 2 N j , we obtain

P
j M ij =

P
j M ji . As describes in [VP17a], and similar as for the

agent-agent formulation in Section 3.3, we �ip the indicesi; j in the �rst algorithm step,
which is necessary to separate the agents. The resulting procedure converges if the
problem is convex and a �nite primal-dual solution exists [RD14b]. This is the case due
to the placed assumptions and sinceJi , Ci , and �hij are convex.

5.6.2 Proof of Proposition 5.3

Algorithm 5.1 with Modi�cation 5.4 resembles a convergent standard form of ADMM.
For i 2 N u, we add constraints in (5.2) such thatx j = �x j , where �x j is the immovable
trajectory. In (5.8), we add the constraintwi )j = �x j for j 2 N u, which is then included
in g. Further, we removewj )i for i 2 N u. Algorithm 5.1 with Modi�cation 5.4 is then a
convergent variation of Algorithm 5.1.
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CHAPTER6
Structure -Exploiting

ADMM for MPC

I N this chapter, we shift our attention from speci�c applications to a more general
class of structured MPC problems. More speci�cally, we consider MPC settings

where the controlled system possesses a particular type of structure, which allows for
a decomposition into so-called virtual subsystems that are coupled through virtual in-
puts. We develop an ADMM-based method for exploiting this structure, which mimics
the composition of the system by using an aggregator-agent splitting as in Section 3.1.
Our specialized algorithm is internally distributed in the sense that the computation is
executed on a single chip, i.e., there are no physically separated agents. By using a modi-
�cation of the aggregator-agent splitting we also make the distribution more �ne-grained,
which results in low-complexity algorithm steps. The internal distribution and the use of
simple operations make our method particularly suited for embedded implementation,
and we gain a signi�cant potential for parallel computation. We also show how each
virtual subsystem can be associated with an individual ADMM penalty parameter. We
present an optimal choice for these parameters, which is a generalization of the opti-
mal parameter selection presented in Section 2.2.1. Furthermore, we introduce a novel
measure to quantify our notion of system structure, called the separation tendency. We
underline the bene�t of having this type of structure by illustrating its positive e�ect on
the algorithm performance for several examples.

This chapter is based on the publications [RHL17b; RHL18].
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6.1 Introduction

In early applications, MPC [Mac02; CA13] was used in large and cost-intensive pro-
cesses, for example in the chemical industry [ML99]. In such settings, where the expense
of the control hardware in the overall process is small, we can use a generously-sized
computation device that is capable of hosting a general-purpose solver. In contrast, the
rapid advance of information technology brings MPC-based control techniques to mass
production [Di 12], e.g., in automotive industries and consumer electronics. In such large-
volume production settings, the pressure on cost-per-unit calls for high e�ciency, which
we can achieve through tailored hardware and specialized algorithms. ADMM makes a
natural �t for such a situation due to its large potential for problem-speci�c adaption.
On the hardware side, we consider embedded platforms, such as�eld-programmable gate
arrays (FPGAs) or application-speci�c integrated circuits (ASICs). As noted before,
ADMM suits embedded devices as it performs only simple and numerically stable oper-
ations [Jer+14]. In this chapter, our goal is to develop a procedure that increases the
synergy between the algorithm, platform, and problem, particularly by adapting ADMM
to �t the controlled system.

As introduced in Section 3.1, we consider MPC problems that are generally com-
posed of a control objective, system dynamics, and additional state and input con-
straints. When we conventionally apply ADMM as in Algorithm 3.2, the procedure
mediates between the system dynamics and the additional constraints. We go beyond
this conventional formulation by exploiting structure in the controlled system through
a decomposition intovirtual subsystems, connected throughvirtual inputs. The tailored
algorithm then mediates between all subsystems, reassembling the full system dynamics
only in convergence. Figure 6.1 illustrates the setup, where we also de�ne the overall
cost for executing the algorithm. Our numerical results show that the decomposition
typically increases the required number of iterations compared to the conventional ap-
plication of ADMM. However, the structure-exploiting method reduces the complexity of
each iteration and has a large parallelization potential. Overall, if the controlled system
is su�ciently structured, structure exploitation improves the performance in the sense
that the overall execution cost is lower than for conventional ADMM.

Similar to the previous chapters, we devise an ADMM procedure that mimics the
problem composition for raising the execution e�ciency. A central di�erence is that
we �rst use the virtual decomposition to make the problem structure explicit. Our
ADMM formulation appears to be similar to potentially non-convergent multi-block
extensions [Den+17; Che+16], however, it remains part of the standard ADMM fam-
ily [Boy+11; RD14b], which guarantees convergence.
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Figure 6.1: MPC setup with a controller running structure-exploiting ADMM.

6.2 MPC Formulation and System Structure

As in Section 3.1, we consider the MPC problem

min
f xk +1 ;uk g

X N

k=1

�
1
2kxk+1 � r k

x k2
Q+ 1

2kuk � r k
uk2

R

�
(6.1a)

s.t. xk+1 = Ax k + Buk 8 k = 1; : : : ; N (6.1b)

(xk+1 ; uk) 2 X � U 8 k = 1; : : : ; N; (6.1c)

with prediction horizon N , state xk 2 Rx , input uk 2 Ru, dynamics matrix A, and input
matrix B . Further, we use known tracking referencesr k

x ; r k
u , symmetric weightsQ; R,

and constraint setsX ; U. A generalization to time-dependent objective weights and
constraints is straightforward. We use the following assumption throughout the rest of
this chapter.

Assumption 6.1. The MPC problem(6.1) is convex and feasible.

Problem (6.1) is convex ifQ, R are positive semide�nite and X , U are convex.
The problem is feasible if there exist trajectoriesf xk+1 ; ukgk=1 ;:::;N that satisfy (6.1b)
and (6.1c), which can be guaranteed through recursive feasibility [Ros03]. Our approach
is particularly suited for problems where a projection ontoX ; U is computationally cheap,
as these projections will be used repeatedly. Examples for such low e�ort projections are
listed in Section 3.2.4.
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6.2.1 State and Input Partition

Our method exploits interacting components in the system(A; B ), which are densely
coupled groups of states in an otherwise loosely coupled environment. We formalize
the presence of such components with the state and input partitionxk = [ xk

1; : : : ; xk
M ],

uk = [ uk
1; : : : ; uk

M ]. We usexk
i 2 Rx i , uk

i 2 Rui with xi 2 N> 0, ui 2 N� 0,
P

i xi = x , and
P

i ui = u . We assume that states and inputs are ordered already, such that only consec-
utive elements are grouped. Hence, the dimensionsf xi ; ui gi =1 ;:::;M de�ne the partition.
In Figure 6.2, we show a system with an exemplary component pattern and introduce
the notion of internal and external elements.

Figure 6.2: Illustration of a structured system, where� is a placeholder for any non-zero
element. We choose the partition to best-resemble dense components, indicated by the
matrix occupation pattern. A suitable partition leaves few non-zero external elements,
while it still decomposes the system.

The partition decomposesA; B into submatricesA ij = Rx i � x j , B ij = Rx i � uj such that
A = [ A ij ], B = [ B ij ]. As ui � 0, empty submatrices can result from the decomposition
of B . Furthermore, we decomposeA; B into a sum ofinternal matrices

�

A;
�

B and external
matrices

�

A;
�

B , where A =
�

A +
�

A with
�

A = diag(A11; : : : ; AMM ) and B =
�

B +
�

B with
�

B = diag(B11; : : : ; BMM ).

Our aim is to partition Problem (6.1) along the same lines as the system. Towards
this, we require the following assumption.

Assumption 6.2. The partition f xi ; ui g can be used to decompose(6.1a) and (6.1c), i.e.,
we can writeQ = diag(Q1; : : : ; QM ), R = diag(R1; : : : ; RM ), X = f xk j xk

i 2 X i 8ig, and
U = f uk j uk

i 2 Ui 8ig.

We say the partition is admissiblefor (6.1) if Assumption 6.2 is satis�ed. Any par-
tition is admissible if Q; R are diagonal andX ; U are separable. Conversely, the trivial
partition M = 1 is admissible for any problem. If the external part of the partition is
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sparse, our approach will lead to computational bene�ts. In such a case, we call the
respective systemstructured. We present a better-quanti�ed structure measure in Sec-
tion 6.4. If a suitable partition cannot be determined by inspection, we can use spectral
clustering methods [AS00; FJ97; Hes04] to obtain a partition. The method in [Hes04]
also provides a suitable ordering for states and inputs.

6.2.2 Virtual Inputs and Subsystems

By using an admissible partition f xi ; ui g, we rewrite system (6.1b) asxk+1 =
�

Ax k +
�

Buk + vk with the virtual input

vk =
�

Ax k +
�

Buk ; (6.2)

which represents the external coupling. As
�

A;
�

B are block-diagonal, we can make the
decomposition more explicit by rewriting the system as a collection of virtual subsystems

xk+1
i = A ii xk

i + B ii uk
i + vk

i ; i = 1; : : : ; M; (6.3)

wherevk adopts the partition of xk . If
�

A;
�

B are sparse, then the virtual inputvk
i 2 Rx i

can take values in a lower dimensional space than suggested by its dimensionxi . To
make this explicit, we write the components in (6.2) as

vk
i =

X

j
A ij xk

j +
X

j
B ij uk

j ; (6.4)

where j 2 f 1; : : : ; M gnf ig. We pick a matrix Wi 2 Rx i � wi with wi � xi such that its
columns form a range space basis for the concatenated matrix

h
f A ij ; B ij gj 2f 1;:::;M gnf i g

i
2 Rx i � (x+u � x i � ui ) ; (6.5)

which we obtain from vectorizing the sums in (6.4). Hence,wi is the row rank of (6.5),
and the range space ofWi contains all values thatvk

i can attain. We then introduce the
dimension-reduced virtual inputwk

i 2 Rwi by replacingvk
i with Wi wk

i .

6.2.3 Partitioned Problem

By using an admissible partitionf xi ; ui g, we write (6.1) as

min
f xk +1 ;uk ;wk g

M;NX

i;k =1

�
1
2kxk+1

i � r k
x i

k2
Q i

+ 1
2kuk

i � r k
u i

k2
R i

�

(6.6a)

s.t. xk+1
i = A ii xk

i + B ii uk
i + Wi wk

i 8 (i; k ) (6.6b)

(xk+1
i ; uk

i ) 2 X i � U i 8 (i; k ) (6.6c)

Wwk =
�

Ax k +
�

Buk 8 k; (6.6d)
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where wk = [ wk
1 ; : : : ; wk

M ] 2 Rw and W = diag(W1; : : : ; WM ). Furthermore, with the
stacked variablesyk

i = [ uk
i ; wk

i ; xk+1
i ], yi = [ y1

i ; : : : ; yN
i ] 2 Ry i , and y = [ y1; : : : ; yM ] 2 Ry ,

we obtain

min
y

X M

i =1

�
1
2y>

i Qi yi + q>
i yi + K i

�
(objectives) (6.7a)

s.t. Ci yi = ci 8i (dynamics) (6.7b)

yi 2 Y i 8i (constraints) (6.7c)

Dy = d: (coupling) (6.7d)

We list the de�nitions of Qi ; qi ; K i ; Ci ; ci ; Yi ; D, and d in Appendix 6.7.1. Problem (6.7)
is equivalent to Problem (6.1). Problem (6.7) can also be rewritten as a multi-agent
problem (3.15) by including the system constraint (6.7b) in the individual constraint
set Yi . We keep the separation between these constraints as they contain di�erent types
of structure, which we can separately exploit in the sequel.

6.3 Structure-Exploiting ADMM

For M = 1, Problem (6.7) is equivalent to a standard QP as in (3.6). Hence, we
can use the conventional ADMM formulation in Algorithm 3.2 to solve the problem.
Algorithm 3.2 is based on a consensus splitting, where the constraint (6.7c) is associated
with a duplicate of y. To solve Problem (6.7) withM > 1, we use a doubled splitting
formulation that contains two duplicates of the original decision variabley. The resulting
structure-exploiting algorithm then utilizes the problem partition and therefore takes
advantage of the system structure.

6.3.1 Main Algorithm

We introduce two duplication variables(�; � ) by adding the constrainty = � = � to (6.7),
which results in the doubled splitting formulation

min
(y; �; � )

X M

i =1

�
1
2y>

i Qi yi + q>
i yi + K i

�

(individual objec- (6.8a)

s.t. Ci yi = ci 8i tives and dynamics) (6.8b)

� i 2 Y i 8i (individual constraints) (6.8c)

D� = d (coupling) (6.8d)

y = � = �: (variable duplication) (6.8e)

We show the resulting structure-exploiting ADMM formulation in Algorithm 6.1, and we
show a detailed derivation in Appendix 6.7.2. We use the Lagrange multipliers� � , � � ,
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6.3 Structure-Exploiting ADMM

which have the same size and partition asy. Further, we introduce subsystem-individual
penalty parameters� i > 0, a balancing parameter� 2 (0; 1], and the modi�ed projection
operation

�� D� = d(�) = E � 1=2
� �

DE � 1=2
� � = d

(E 1=2
� �); (6.9)

whereE � = (1 � � ) diag(� 1I y1 ; : : : ; � M I yM ). Proposition 6.1, proven in Appendix 6.7.2,
describes how Algorithm 6.1 is used in order to solve the original problem (6.1).

Algorithm 6.1 Structure-Exploiting ADMM

repeat

2.1 8i : yi  arg min
yi

1
2yi

>Qi yi + q>
i yi + � i

2

�

� kyi � � i � � � i k
2
2 + (1 � � )kyi � � i � � � i k

2
2

�

s.t. Ci yi = ci

2.2 8i : � i  � Yi (yi � � � i )
)

independent
execution2.3 �  �� D� = d(y � � � )

2.4

"
� �

� �

#

 

"
� �

� �

#

�

"
y � �
y � �

#

Proposition 6.1.

(i ) If � 2 (0; 1) and � i > 0 for all i , then Algorithm 6.1 converges to a �xed point that
satis�es y? = � ? = � ? and is optimal for (6.8) and (6.1).

(ii ) If M = � = 1 and � 1 = � , Algorithm 6.1 reduces to Algorithm 3.2.

In Appendix 6.7.2, we introduce� and � i through a metric selection technique [Ste+17;
GB17], which makes Algorithm 6.1 part of the standard ADMM family. The conver-
gence statement in Proposition 6.1 leaves out the case of� = 1, M > 1, for which the
algorithm is unsuited as it solves (6.7) without (6.7d).

6.3.2 E�cient Implementation and Computational Complexity

Step 2.1 is an equality-constrained QP. Similar as in Section 3.2, we use the Schur
complement method in [NW06, Sec. 16.2], and we obtain the closed-form solution

yi  M i

�
� 1

� i
qi + � (� � i + � i ) + (1 � � )( � � i + � i )

�
+ N i ci ; (6.10)
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where we use the constant matrices

N i = Pi C>
i (Ci Pi C>

i )� 1 (6.11a)

M i = ( I � N i Ci )Pi (6.11b)

Pi = � i (Qi + � i I )� 1: (6.11c)

An e�cient implementation of (6.10) exploits the MPC multistage structure [Dom+12],
i.e., it exploits the fact that Ci is banded (see Appendix 6.7.3 for details).

Similarly, the modi�ed a�ne projection in 2.3 can be written as an equality-constrained
QP. The resulting closed-form solution is

�  D (y � � � ) + Ed; (6.12)

where we obtain the iteration matrices from [NW06, Sec. 16.2] as

E = E � 1
� D > (DE � 1

� D > )� 1 (6.13a)

D = I � E D: (6.13b)

We see that 2.1 and 2.3 both have a closed-form solution. For2.1 , we also can exploit
the subsystem separation, which leads to a parallel evaluation of (6.10) for each subsys-
tem i . While 2.3 cannot be decomposed over the subsystems, a similar decomposition
is possible over the prediction time. Towards this, we consider a permutation matrixP
that sorts y for time, i.e.,

Py = �y = [�y1; : : : ; �yN +1 ] (6.14)

where the elements ofP are chosen such that

�y1 = [ u1; w1] (6.15a)

�yk = [ xk ; uk ; wk ] for k = 2; : : : ; N (6.15b)

�yN +1 = xN +1 : (6.15c)

In the permuted coordinates, we use�D = PDP> and �E = PE, which are then
block-diagonal. The reason for the block-diagonality is that the initial virtual input
de�nition (6.6d), which leads to D; d and ultimately D; E, is separate for each time
instancek. Hence, we can solve2.3 with

8k = 1; : : : ; N + 1: �� k  �Dk(�yk � ��
k
� ) + �Ekdk ; (6.16)

where �� � = P � � , �� = P � , and the partition in k matches �y1; : : : ; �yN +1 . A special case is
when each subsystem in�uences at most one other subsystem through a virtual input.
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In this case, �Dk and �Ek decompose further alongw1; : : : ;wM , as the virtual inputs are
independent of each other. Consequently, (6.16) can be executed withMN parallel
threads.

Table 6.1 shows the computational complexities of each algorithm step, justi�cations
are shown in Appendix 6.7.3. The Landau symbolO describes the order of required
scalar multiplications and additions. We denote the computational costs for projecting
onto X i ; Ui with c(� X i ); c(� Ui ). We consider two special cases: `box' denotes the case
where X i ; Ui are box constraints; and `out-1' denotes the case where each subsystem
a�ects at most one virtual input.

use case threads complexity of the longest threadO(�)

2.1 M N maxi x2
i

2.2 2MN maxi (maxf c(� X i ); c(� Ui )g)

2.2 box MN maxi xi

2.3 N w2

2.3 out-1 MN maxi w2
i

2.4 2MN maxi xi

Table 6.1: Complexities for each step in Algorithm 6.1.

Aside from the structure in the algorithm steps, the composition of Algorithm 6.1
also o�ers a large potential for parallelization:

� 2.1 and 2.2 are separate for each subsystem

� 2.2 consists ofMN separate projections ontoX i ; Ui

� 2.3 separates for each step along the prediction interval

� 2.2 and 2.3 are independent from each other.

We summarize the composition in Figure 6.3. Table 6.2 shows the complexity-per-
iteration of Algorithm 6.1. The caseM = 1, independent of� , has the same complexity
as conventional ADMM.
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Figure 6.3: Illustration of the composition of Algorithm 6.1. Each algorithm step exploits
di�erent types of structure, improving the computational e�ciency.

use case threads complexity of the longest threadO(�)

#1 M = 1, box 1 N x2 + N x

#2 box 1 N (M maxi x2
i + M maxi xi + w 2)

#3 box 2MN N maxi x2
i + max f maxi xi ; w2g

#4 box, out-1 1 MN (maxi x2
i + max i xi + max i w2

i )

#5 box, out-1 2MN N maxi x2
i + max i f xi ; w2

i g

Table 6.2: Complexity-per-iteration for Algorithm 6.1.

In Figure 6.4, we consider an example system to illustrate the complexities. We use
A ij 2 R2� 2 for all i; j . We assume that eachA i;i +1 has rank 1, i.e., wi = 1 for i 6= M .
For the last component, we assumewM = 2. We useN = 10 and we consider systems
with 1 to 15 diagonal components, i.e.,x 2 f 2; 4; 6; : : : ; 30g. In Figure 6.4 on the right,
we show the corresponding complexities. The case#1 resembles conventional ADMM.
The cases#4 ,5 only apply if A i;i +1 = 0 or AM;i = 0, i.e., the case `out-1' applies. We
see that structure exploitation compares favorably to conventional ADMM, even for a
single-thread implementation.
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Figure 6.4: Left: Occupation pattern of an example dynamics matrix.Right: Complex-
ities in Table 6.2 for a growing system size.

6.3.3 Parameter Choice

We denote the smallest and largest eigenvalues of a matrix witheigmin and eigmax . Fur-
thermore, we consider an orthonormal null space basis forCi 2 RN x i � y i , and collect the
basis vectors as columns inZ i 2 Ry i � N x i , which leads toCi Z i = 0 and Z >

i Z i = I N x i .

Proposition 6.2. We assume thatZ >
i Qi Z i is positive de�nite and � 2 (0; 1). The op-

timal penalty parameters for improving the worst-case convergence rate of Algorithm 6.1
are

� ?
i =

q
eigmin (Z >

i Qi Z i ) eigmax (Z >
i Qi Z i ); (6.17)

wherei = 1; : : : ; M .

We show a proof of Proposition 6.2 in Appendix 6.7.4, and we provide additional
details and technical considerations in [RHL18]. The proof also shows that� is canceled
out when we derive� ?

i , i.e., the parameters can be chosen independently. Proposition 6.2
suggests that individual penalty parameters are indeed useful, as their optimal choice is
di�erent from making them all the same. The optimal parameters (6.17) are valid for
any QP of type (6.7). For MPC problems in particular, and similar as for comparable
results [RD14a; RD14b; GB17], we observe that we often can improve the practical
performance further by increasing the penalties above� ?

i , which places an additional
weight on the regularization terms in 2.1 .

The parameter � 2 (0; 1] adjusts the balance between the regularization terms
in 2.1 , and therefore can a�ect the convergence speed. Both terms are equally weighted
for � = 1

2 . By increasing� we emphasize the in�uence of(� i ; � � i ) over (� i ; � � i ), and vice
versa. We can also adapt� during the algorithm iteration, similar to � in [Boy+11,
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Sec. 3.4.1]. However, our numerical results suggest that the e�ect of� is small for the
cases considered below. For this reason, we restrict our attention to the nominal values
� 2 f 1

2 ; 1g in the sequel. For� = 1
2 and M > 1, we speak of structure-exploiting ADMM.

With � = M = 1, we refer to conventional ADMM.

6.4 Separation Tendency

We derive a quantitative measure of system structure, called the separation tendency,
and we use it as a heuristic to anticipate the execution cost of structure exploiting
ADMM.

6.4.1 System Flow and Link Usage

Our goal is to quantify the interaction between system components. We �rst consider
the unpartitioned � -system

� xk+1 = A� xk + B� uk ; (6.18)

where � xk = xk � xk� 1, � uk = uk � uk� 1, k � 0, and we use the convention
(x � 1; u� 1) = (0 ; 0). The � -system describes the changes in the original system (6.1b).

De�nition 6.1. The system �ow � k = [� k
A j� k

B ] 2 Rx� (x+u) is composed of the state-to-
state and input-to-state �ow

� k
A = A diag

�
� xk

�
2 Rx� x (6.19a)

� k
B = B diag

�
� uk

�
2 Rx� u: (6.19b)

We use the operationA diag(� x) 2 Rx� x to analyze system-internal e�ects. With
A diag(� x)1x� 1 = A� x, it becomes clear that we can understandA diag(� x) as an in-
termediate step that leads to the matrix-vector productA� x. By following this relation,
we obtain

xk+1 = xk + � k1(x+u) � 1; (6.20)

which clari�es that � k describes the state transition. A central characteristic of the �ow
is that it details the transition contribution for each of the x2 state-to-state links andxu
input-to-state links.

The link usage, introduced in the following de�nition, measures the �ow moving
through each system link in response to a unit input impulse� k with � k=0 = 1 and
� k6=0 = 0.
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De�nition 6.2. The link usage� = [� A j� B ] 2 Rx� (x+u) is assembled element-wise with

� ij =
� X 1

k=0
j� k

ij j
2� 1=2

2 R; (6.21)

where� k =
h
� k

ij

i
, � = [� ij ], and the sequencef � kg results from uk = � k and x0 = 0.

The link usage analyzes the system �ow over time by using an element-wiseL 2

norm [Oku14, Chapter 2]. If � ij is large, then the respective system link is used inten-
sively.

6.4.2 Separation Tendency

The separation tendency compares the link usage for internal and external elements,
which provides a relative measure for the concentration of �ow inside and outside of vir-
tual subsystems. In contrast to the previous concepts, the separation tendency depends
on the systemand its partition.

De�nition 6.3. The separation tendencys 2 R is de�ned by

si =
1

#int i

P
j

�

� ij

1
#int i

P
j

�

� ij + 1
#ext i

P
j

�

� ij

(6.22a)

s = 1
x

xX

i =1

si ; (6.22b)

where� =
�

� +
�

� = [
�

� A j
�

� B ] + [
�

� A j
�

� B ] is an internal-external decomposition, and#int i ,
#ext i are the numbers of internal and external elements in thei -th row of � .

If s is large, then internal links predominantly in�uence the states, which signals
a clear subsystem separation. Ifs is small, then the system states are dominated by
external �ow, which signals that the chosen partition is unsuited.

Proposition 6.3.

(i ) s exists if the system(A; B ) is controllable, andA is semi-convergent, i.e.,limk!1 Ak

exists.

(ii ) If s exists, then0 � s � 1.

(iii ) s is invariant to diagonal state and input transformations.

We show a proof of Proposition 6.3 in Appendix 6.7.5. We use semi-convergence,
which is a weaker condition than asymptotic stability, but stronger than marginal sta-
bility. The existence ofs implies that � is �nite and that it does not contain zero rows,
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Figure 6.5: Empirical characterization of the separation tendencys 2 [0; 1].

which prevents the denominator in (6.22a) from becoming zero. Property(iii ) certi�es
that s is una�ected by transformations [x; u] = T[�x; �u] with T invertible and diagonal,
which is important as it makess invariant to simple state and input scaling. It is easy
to show that s = 0 for block-hollow systems ands = 1 for block-diagonal systems. Full
systems are placed in-between withs � 0:5. Figure 6.5 illustrates the range ofs. We
call a system structured if it can be partitioned with larges. An empirically reasonable
threshold between structured and unstructured systems iss = 3

4 .

Example 6.1. We consider the full system

xk+1 =

"
1=2 1=2

1=2 1=2

#

| {z }
A

xk +

"
1
1

#

|{z}
B

uk (6.23)

and a partition with f xi g = f 1; 1g and f ui g = f 1; 0g. We observe that the system matrix
is semi-convergent (it even is idempotent, i.e.,(A)k = A). The system is not controllable,
therefore s is not guaranteed to exist a-priori. For an input impulse� k , the system �ow
and the link usage matrices are

� k = � k 1
2

"
0 0 1
0 0 1

#

+ � k� 1 1
2

"
1 1 � 1
1 1 � 1

#

� =

2

4
1=2 1=2

p
2

1=2 1=2
p

2

3

5 ;

where we shade the link usage according to the partition. As all elements in� are non-
zero and �nite, the separation tendency exists. We obtains = 1

2 , which suggests that the
considered partitioned system is not suited for structure exploitation.

6.4.3 Algorithm Performance Indication

We show thats serves as an indicator for the performance of structure exploitation. More
speci�cally, we collect empirical evidence thats is related to the growth in required algo-
rithm iterations when we switch from conventional to structure-exploiting ADMM. We
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consider systems in six categories: full, sparse, lower-triangular, banded, lower-banded,
and star-topology; as described in [RHL18]. Additionally, we consider the dimensions
x 2 f 5; 10; 20; 40g, which results in24 combinations. For each combination, we generate
twenty pairs of system matrices, which leads to a test set of480dynamical systems. For
each system, we then generate twenty problems of type (6.1). For simplicity, and ass
only depends on the partitioned system, we setX = Rx and U = Ru. We solve the �nal
9600 problems with conventional and structure-exploiting ADMM. For the structure-
exploiting case, we choose a partition that �ts to the problem type and dimension as
described in [RHL18]. For the penalty parameters, we set� = � i = 1. We measure
the number of iterations that are necessary to converge within a certain accuracy of a
precomputed solution. We then compute the iteration increase factor when we switch be-
tween algorithms, and we average this factor over each system's twenty initial conditions.
Figure 6.6 illustrates the result. We observe that a large separation tendency indicates
a low iteration increase. Combined with the complexity results in Table 6.2, this makes
it possible to assess the algorithm performance as de�ned in Figure 6.1, particularly
without having to implement and benchmark the algorithm �rst.
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Figure 6.6: Iteration increase over the separation tendency. Each of the480dots repre-
sents an example system. For each system, we generate twenty problem instances, run
both algorithms, and depict the average increase.
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6.4.4 Related Concepts and System Properties

Several quantities that are used in the literature are related to� , � , and s. Spectral
clustering methods [AS00; FJ97; Hes04] interpret the system as a weighted graph, where
the elements of[AjB ] determine the edge weights. These methods can be used to deter-
mine a system partition by cutting possibly low-weighted edges. In contrast to the static
weights [A; B ], we use impulse-response-based dynamical links for� . We can assess the
value of this dynamical concept by redrawing Figure 6.6 while we use[AjB ] instead of�
to obtain s. We then observe that this static version ofs is signi�cantly less indicative
for the algorithm iteration growth. Furthermore, clustering methods are sensitive to
diagonal state and input transformations.

The similarity of A; B to block-diagonal matrices can be an intuitive structure mea-
sure as it directly relates to the sparsity of

�

A;
�

B . In [ACM17], a range of diagonality
measures is discussed; generalizations to block-diagonality are straightforward. Same as
before, these measures ignore dynamic interaction, are less indicative for the iteration
growth, and are sensitive to diagonal state and input transformations.

The computation of � is similar to the computation of the H 2 system norm, where
the L 2 norm is applied to the system's impulse response [Tos13, Eq. (2.37)], [Opp99,
Eq. (2.167)]. Two main di�erences separate the concepts. First,� is based on the
� -system, which makes it �nite for a wider range of cases. Second,� is matrix-valued,
which underlines the focus on the system-internal state-to-state and input-to-state links.
In contrast, the H 2 norm is scalar-valued, even if we use the full state vector as system
output [Tos13, Eq. (2.37)].

Another related concept is the balanced realization [Gu12, Sec. 4.2], which is a state
space system representation with identical and diagonal controllability and observability
Gramians. The diagonal elements then quantify the in�uence of each state on the input-
output behavior. The concept resembless in its quantitative description of system-
internal relations. However,s is based on� with x2 + xu elements, while the Gramians
only have x diagonal elements. Hence,� analyzes the system with a higher resolution.
Aside from that, another distinction is that � (and therefore s) focuses on the state
transition, while the Gramians relate to the input-output behavior.

6.5 Simulation Study

We apply structure-exploiting ADMM to a cascade system and a hydraulic system. In
both cases, our method leads to a substantial bene�t. We also show a negative example
of an unstructured system.
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6.5.1 Cascade System

A cascade system [Can+17] is characterized by a lower block-banded dynamics matrix
and a block-diagonal input matrix

xk+1 =

2

6
6
6
6
6
4

A11

A21A22
. . . . . .

AS(S� 1) ASS

3

7
7
7
7
7
5

| {z }
A

xk +

2

6
6
6
6
6
4

B11

B22
. . .

BSS

3

7
7
7
7
7
5

| {z }
B

uk ;

(6.24)

where we use the stagesi = 1; : : : ; S, each with a dynamics matrixA ii , input matrix B ii ,
and coupling matrix A i ( i � 1). Cascade systems are used for irrigation and drainage net-
works [LCW05; SC15], hydro-power systems [Lab04], and vehicle platoon control [GY11].
In [Can+17], an interior point method is developed to control such systems, where the
iteration complexity scales linearly inS and cubically in N . For structure-exploiting
ADMM, we associate each stage to a virtual subsystem, i.e.,M = S. Due to the simple
subsystem topology, the complexity results#4 ; 5 in Table 6.2 apply. Hence, for a single-
thread implementation, the iteration complexity scales linearly inS and N . Further,
when we use parallel computation, the complexity becomes constant inS.

We considerS = 20 stages, each withxi = 6 states andui = 1 input, which results
in a cascade system withx = 120 states and u = 20 inputs. The system matrices
are randomly generated as in [RHL18]. The stage couplingA i ( i � 1) has a rank equal
to 1. We use (6.1) withN = 5 and box constraints. Table 6.3 shows estimates for the
cost-per-iteration of Algorithm 6.1 in di�erent situations.

ADMM-type M threads cost cost=(i )

(i ) conventional 1 1 277676 100%

(ii ) structure-exploiting S 1 50220 18:09%

(iii ) structure-exploiting S 2MN 3125 1:13%

Table 6.3: Cost-per-iteration of Algorithm 6.1 for the cascade system (6.24).

In contrast to the analytical bounds in Table 6.2, we obtain the computational costs
by counting the scalar additions and multiplications in an actual implementation. This
counting strategy is more precise than complexity bounds and takes the remaining matrix
sparsity into account. For the parallel implementation(iii ), we count the operations in
the longest thread. We do not account for memory access or data exchange operations,
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which is justi�ed for many FPGA-type implementations where such operations can be
hard-coded. We see that structure exploitation signi�cantly reduces the computational
cost.

By using the methods in Section 6.4, we obtains = 0:975 for the cascade system.
We assess the required number of algorithm iterations by applying(i ) - (iii ) in a range of
control situations. More precisely, we generate200feasible instances of (6.1) as described
in [RHL18]. We compute� ?

i for each subsystem, and we increase the penalty parameters
with a factor of 90 for improving the MPC performance as discussed in Section 6.3.3.
Similar as it is done in Section 2.1.6, we analyze the algorithm convergence performance
relative to a precomputed nonzero solution(x?; u?) with

dist(x? ;u? )(x; u) =
k[x; u] � [x?; u?]k2

2

k[x?; u?]k2
2

; (6.25)

where (x; u) is the current estimate, extracted after each iteration. To precompute the
solution, we rely on free licenses for Yalmip [Lof04] and Gurobi [Gur16]. In Figure 6.7,
we show the growing solution accuracy with the number of performed iterations as a
statistic over the 200problem instances.
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Figure 6.7: Convergence of Algorithm 6.1 for the cascade system (6.24). The markers
indicate the geometric mean over200 control scenarios; the illustrated range includes
80%of all scenarios, excluding the best and worst10%.
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We compare the overall performance of(i ) - (iii ) by using three di�erent horizontal
axes, scaled with the computational costs in Table 6.3. For a given point along these
axes, we see how many iterations each method can perform while they use the same
number of sequential scalar operations. We observe that for the cascade system, the
exploitation of system structure results in faster convergence, even for a single-thread
implementation. When we use the full parallelization potential, high performance is
possible. By sequentially combining previously parallel threads, it is also possible to
obtain implementations that perform between(ii ) and (iii ) with less than2MN threads.

6.5.2 Hydraulic System

We consider the hydraulic system that is shown in Figure 6.8, where eight pumps move
a liquid through a tube system, and regularly placed reservoirs keep the tube pressure
constant. A more detailed description of the system can be found in [Rey17].

Figure 6.8: Hydraulic tube network. The connecting lines represent tubes that carry a
�uid. The open-ended reference points allow for in- and out�ow.

Our control objective is to track reference �owsr i at certain points in the system
while we satisfy constraints on all pumps and reservoirs. The reservoirs have the indices
i = 9; 10; 11 and are modeled as integrators of in- and out�ow, i.e.,

xk+1
i = xk

i + ( xk
in � xk

out ): (6.26)

The �ows xk
in , xk

out are determined by the topology in Figure 6.8. The pumps are two-
state SISO models (xi = 2 for i = 1; 3; 4; 5; 7; 8), except for the pumps2 and 6, which
require three states to capture the dynamical behavior (xi = 3 for i = 2; 6). We show
the resulting occupation pattern of the system matricesA; B in Figure 6.9.
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Figure 6.9: Occupation pattern of the system matrices for the hydraulic system.

For the hydraulic system model withx = 21 states andu = 8 inputs, a suitable parti-
tion has M = 11 subsystems (one for each pump and reservoir) and three virtual inputs
(one for each reservoir). By using a challenging test scenario, we have generated200
feasible instances of Problem (6.1). The prediction horizon isN = 5. A collection of the
used parameters and details on the simulation scenario can be found in [Rey17]. The
resulting computational iteration cost of Algorithm 6.1 is shown in Table 6.4.

ADMM-type M threads cost cost=(i )

(i ) conventional 1 1 13092 100%

(ii ) structure-exploiting 11 1 5496 41:98%

(iii ) structure-exploiting 11 2MN 836 6:39%

Table 6.4: Cost-per-iteration of Algorithm 6.1 for the hydraulic system in Figure 6.8.

We observe that in the case of the hydraulic system, the iteration cost of single-thread
structure-exploiting ADMM is less than half of the cost of conventional ADMM. By
following the procedures in Section 6.4, we obtain the high separation tendencys = 0:988,
which indicates a strongly structured system. We show the convergence performance in
Figure 6.10.
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Figure 6.10: Convergence behavior of standard ADMM compared to sequential and
parallel structure-exploiting ADMM. The iteration axes are scaled with the cost-for-
iteration ratio from Table 6.4, which results in a comparable computational e�ort along
the axis. The markers indicate the geometric mean, the range includes80%of all samples,
excluding the best and worst10%.

We see that even for a sequential implementation, the structure exploitation approach
provides a two orders of magnitude higher solution accuracy than the standard formu-
lation. Additionally, when we exploit the potential for parallelization, we can improve
the algorithm performance signi�cantly. Compared to the simulation study with the
hydraulic system in [RHL17b], we improve the performance by an order of magnitude
through subsystem-individual penalty parametrization as described in Section 6.3.3.

6.5.3 Unstructured System

We consider the system from Example 6.1 withf xi g = f 1; 1g and f ui g = f 1; 0g, i.e.,

xk+1 =

2

4
1=2 1=2

1=2 1=2

3

5xk +

2

4 1
1

3

5uk : (6.27)

The partition is unsuited as it does not align with any visible system structure. This
observation is re�ected in the low separation tendencys = 1

2 . We embed (6.27) in an
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MPC setting with diagonal objectives and box constraints, which makes the partition
admissible. Table 6.5 shows the numerical cost analysis.

ADMM-type M threads cost cost=(i )

(i ) conventional 1 1 878 100%

(ii ) structure-exploiting S 1 1329 151%

(iii ) structure-exploiting S 2MN 552 63%

Table 6.5: Cost-per-iteration of Algorithm 6.1 for the unstructured system (6.27).

We see that when we switch from(i ) to (ii ), the computational cost increases. For
a parallel implementation (iii ), the cost reduces again. However, further simulations
show that the overall performance remains worse than for conventional ADMM. Hence,
structure exploitation only performs well if the controlled system has structure.

6.6 Conclusions

We adapt ADMM to exploit structure in MPC. If the controlled system is su�ciently
structured, the resulting algorithm scales well, can be specialized with multiple penalty
parameters, is highly parallelizable, and shows improved overall performance. Our al-
gorithm reduces the cost-per-iteration, especially for large and structured systems. The
cost reduction comes with an increase in necessary algorithm iterations due to the vir-
tual decomposition of the system. We introduce the separation tendency, a measure of
subsystem independence, to relate the iteration increase to the level of structure in the
controlled system. Finally, we show a cascade system and a hydraulic system where our
structure-exploiting method signi�cantly outperforms conventional ADMM.

6.7 Appendices

In this section, we collect additional material and appendices that support and extend
the content of this chapter.
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6.7.1 Stacked Problem Formulation

Similar to the formulation in Section 3.1.2, we describe the stacked objective in (6.7)
with

Qi = I N 
 diag(Ri ; 0wi ; Qi ) (6.28a)

r yi =
h
r 1

u i
; 0wi � 1; r 2

x i
; : : : ; r N

u i
; 0wi � 1; r N +1

x i

i
(6.28b)

qi = �Q i r yi (6.28c)

K i = 1
2r yi Qi r yi : (6.28d)

The stacking of the equality constraint matrix is obtained with

[Ci jci ] =

2

6
6
6
6
4

B ii Wi � I � A ii x1
i

A ii B ii Wi � I 0
. . .

...
A ii B ii Wi � I 0

3

7
7
7
7
5

; (6.29)

where we understandCi 2 RN x i � y i such that A ii is always below� I . For the individual
constraints, we chooseYi such that (uk

i ; wk
i ; xk+1

i ) 2 Ui � Rwi � X i for all k. For the
coupling, we recognize that[

�

A;
�

B; W ] has a row rank defect ofx � w, and we obtain the
reduced form[

�

A r ;
�

B r ; Wr ] 2 Rw� (x+u+w) by removing linearly dependent rows. We use
the reordered variables�y = Py as in (6.16) and write (6.6d) as�D �y = d with

h
�D jd

i
=

" �

B r � Wr 0 0 �
�

A r x1

0 0 F 0(N � 1)w� x 0

#

2 RN w� (y+1) ; (6.30)

where F is the block-diagonal matrix I N � 1 
 [
�

A r ;
�

B r ; � Wr ]. We obtain the �nal form
Dy = d in (6.7d) with D = �DP .

6.7.2 Justi�cation of Algorithm 6.1 and Proposition 6.1

Similar to the procedure in Section 2.2.3, we rewrite the consensus constraint in (6.8) as

1p
� E 1=2

h
I ; I

i
y = 1p

� E 1=2
h
� ; �

i
; (6.31)

where E = diag(E � ; E � ), E � = diag(E � 1 ; : : : ; E� M ), and E � = diag(E � 1 ; : : : ; E� M ). The
individual scaling matrices areE � i = �� i I y i and E � i = (1 � � )� i I y i . We requireE to be
positive de�nite, which ensures that (6.31) is equivalent to (6.8e). Positive de�niteness
of E is given if and only if � i > 0 and � 2 (0; 1). When we use an augmented Lagrangian
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as in [RD14b], we obtain

L �

�
y;

"
�
�

#

; ��
�

= f (y) + g(�; � ) + 1
2k

"
y
y

#

�

"
�
�

#

�

2

4
�� �

�� �

3

5k2
E (6.32a)

f (y) =
X

i

�
1
2y>

i Qi yi + q>
i yi + I Ci yi = ci (yi )

�
(6.32b)

g(�; � ) =
X

i
I Yi (� i ) + I D� = d(� ); (6.32c)

where �� =
p

�E � 1=2� , kxkE = kE 1=2xk2 =
p

x> Ex, and I denotes an indicator function.
By abusing the notation, we replace�� with � . We obtain Algorithm 6.1 by applying
standard ADMM [Boy+11, Eqn. (3)] with (6.32). For �� D� = d(�), we obtain

�� D� = d(�) = arg min �

n
1
2kE 1=2

� (� � � )k2
2 s.t. D� = d

o
; (6.33)

which results in (6.9) through substituting �� = E 1=2
� � . Proposition 6.1-(i ) follows as

we have reduced Algorithm 6.1 to an application of standard ADMM [Boy+11]. The
algorithm converges to a single �xed point according to [RD14b, Thm. 2], which applies
to our formulation as shown in Appendix 6.7.4. Statement(ii ) follows from inserting the
parameters. We provide additional details on the algorithm formulation in [RHL18].�

6.7.3 Justi�cation of Table 6.1

We denote the cost of an operation withc(�). Based on (6.10), the largest subsystem
in 2.1 has O(maxi c(M i )) as N i ci can be precomputed and we neglect sum operations.
We usec(M i ) = O(c(Pi ) + c( Ci ) + c( Ci Pi Ci

� 1)) . The cost of multiplying Pi relates
to N -times applying the inverse ofQi + I and Ri + I , where the �rst part dominates
due to x � u. We precompute anLDL > factorization and perform a forward-backward
substitution as in [GV12, Sec. 3.1] inO(N x2

i ). The cost of multiplying Ci is dominated
by N multiplications with A ii , which results in O(N x2

i ). For c(Ci Pi Ci
� 1), we again use

LDL > , where L is 2xi -banded due to the bandedness ofCi . By following [GV12, Sec.
4.3], we getO(N x2

i ).

The result for 2.2 follows from the composition ofY of MN times X i ; Ui . In the case
of box constraints, the projection reduces to an element-wise clipping inO(2xi + 2u i ) =
O(x i ) for each subsystem and time instance. With2MN xi parallel threads, 2.2 can also
be executed inO(1).

By following (6.16), we useO(c( �D)) for 2.3 as we precompute�Ed and neglect permu-

tations and sums. We usec( �D) = O(c( �D)+c(( �D �E �
�D > )

� 1
) with �D from Appendix 6.7.1.

�D is dominated by N diagonal blocks �D k = [
�

A r ;
�

B r ; � Wr ]. For the largest block, we
require O(maxk(c( �D k) + c(( �D k �E �

k( �D k)> )� 1)) . We neglectc( �D k) as �D k is sparse if the
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system has structure. Forc(( �D k �E �
k( �D k)> )� 1)) , we use anLDL > factorization [GV12,

Sec. 3.1] inO(w2). In the `out-1' case,
�

A;
�

B only have one element per column, hence
we can reshu�e �D k �E �

k( �D k)> to become block-diagonal. The largest block then has the
sizemaxi wi .

Step 2.4 decomposes into2MN operations of sizeyk
i . The longest thread has a cost

in O(maxi f ui + w i + x i g) = O(maxi xi ). With 2MN xi parallel threads, this can also be
executed inO(1).

6.7.4 Proof of Proposition 6.2

Our result extends the convergence analysis in [RD14b] by including a scaled consensus
constraint. Instead ofy, w, Q, q, A, b, Y as used in [RD14b], we use the notation̂y, ŵ,
Q̂, q̂, Â, b̂, Ŷ, where (6.8) relates to [RD14b, Eqn. (3)] through

ŷ = [�y; y]; ŵ = [ � ; � ]; �̂ = [ � � ; � � ] (6.34a)

Q̂ = 1=2 diag(Q; Q); whereQ = diag(Q1; : : : ;QM ) (6.34b)

q̂ = 1=2 [q; q]; whereq = [ q1; : : : ; qM ] (6.34c)

Â =

"
I y � I y

0N x� y C

#

; whereC = diag(C1; : : : ; CM ) (6.34d)

b̂= [0 y� 1; c]; wherec = [ c1; : : : ; cM ] (6.34e)

Ŷ = f ŵ = [ � ; � ] j � i 2 Y i ; i = 1; : : : ; M; D� = dg: (6.34f)

In [RD14b], it is required that f ŷ j Âŷ = b̂g \ Ŷ 6= ; , Â has full row rank, andẐ > Q̂Ẑ is
positive de�nite, where Ẑ contains an orthonormal null space basis for̂A. With (6.34),
Ẑ = 1p

2
[Z ; Z ], and the assumptions made for the initial problem and Proposition 6.2,

these conditions are satis�ed. By using a scaling as in (6.31) and by following [RD14b],
we obtain Algorithm 6.2 and the de�nitions below.

Algorithm 6.2 ADMM as in [RD14b, Eqn. (5)]

repeat 3.1 ŷ  M̂ (ŵ + �̂ � E � 1q̂) + N̂ b̂

3.2 ŵ  T(ŷ � �̂ )

3.3 �̂  �̂ � ŷ + ŵ

M̂ =
h
I y ; I y

i
diag(M i )

h
diag

�
1
� i

E � i

�
; diag

�
1
� i

E � i

�i
(6.35a)

N̂ =
h
0(y+ N x) � y diag(N i )

i
(6.35b)

T(�) = E � 1=2� E 1=2 Ŷ (E 1=2�) (6.35c)
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In (6.35), we useM i and N i as in (6.10). To be consistent with [RD14b], we require
(i ) that M̂ is a contraction, and(ii ) that T(�) is �rmly nonexpansive [BC17], which is
equivalent to the properties noted in [RD14b, Eqn. (8), Lem. 3] by [BC17, De�nition 4.1,
Proposition 4.2]. For (i ), it is su�cient to check if all M i are contractions. Similar
to [RD14b, Eqn. (5)], we use the null space method in [NW06, Sec. 16.2] to obtain the
equivalent form M i = Z i (Z >

i ( 1
� i

Qi + I )Z i )� 1Z >
i . It can be shown that (i ) is satis�ed if

Ẑ >
i Q̂i Ẑ i is positive de�nite. Requirement(ii ) is true by [BC17, Proposition 4.8] asT(�) is

an orthogonal projection onto a convex set in a Hilbert space with inner producthx; yi E =
x> Ey. As (i ), (ii ) are satis�ed, the convergence analysis in [RD14b] applies. In [RD14b,
Sec. V], the worst-case convergence rate is optimized with� ? = arg min � k ~Mk 2, where
~M = Ẑ > M̂ Ẑ � 1

2 I N x , which becomes ~M = diag(Z >
i M i Z i � 1

2 I N x i ) in our case. As ~M is
block-diagonal, we choose separate� i in the same way as� is chosen in [RD14b], which
results in Proposition 6.2. We show a more detailed version of this proof in [RHL18].�

6.7.5 Proof of Proposition 6.3

For (i ), we show0 <
P

j � ij < 1 for all i . First, we consider (6.1b) withuk = � k , x0 = 0.
We obtain xk = ( A)k� 1B1u� 1 for k � 1. Given that A is semi-convergent,xk asymptoti-
cally converges toxeq = Ax eq, which implies that � xk asymptotically converges to zero.
Hence,

P 1
k=0 j� xk j2 is a sum over a squared-exponential tail, which is �nite [Bro+12,

Eq. (2151), p.1132]. Consequently, each� ij is �nite and
P

j � ij < 1 for all i . To show
P

j � ij > 0, we use that controllability implies that [B; AB; A 2B; : : : ; A x� 1B] has full
rank, which means that the sequencef xkg = f Ak� 1B1u� 1g spansRx . The same is true
for f � xkg. Also, controllability implies that A; B do not have a common zero row.
Hence, no row in� k is �lled with zeros for all times, and we obtain

P
j � ij > 0 for all i .

Statement (ii ) is clear from0 <
P

j � ij < 1 and (6.22a).

For (iii ), we use the diagonal state and input transformationT = diag( t1; t2; : : : ; tx+u )
with t i 6= 0. More speci�cally, we use[�xk ; �uk ] = T � 1[xk ; uk ]. For the transformed system,
we obtain �� k = T � 1� k and �� ij = jt i j� ij . The factors jt i j then cancel out in (6.22a),
which makess invariant to T. �
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CHAPTER7
Power Management in
Variable Speed Drives

I N the introduction of this thesis, we motivate the need for optimization-based control
techniques with their increased utilization in industrial applications. In this chapter,

we show such an application and we deploy the previously introduced structure-exploiting
ADMM framework. We consider avariable speed drive(VSD), which is a power elec-
tronics device that links an electrical machine to an energy grid. The VSD is used to
perform a frequency conversion and to manage the power �ow. We focus on the task of
power management, and we use MPC due to its ability to handle constraints. In this
setting, the motivation for structure exploitation is mainly driven by time pressure, as
the resulting MPC formulation has to operate at a sampling interval of only250�s . As
opposed to just looking at the algorithm specialization, we extend our focus and make
a case for the use of MPC in the �rst place. Furthermore, we show how to obtain a
simple and structured system representation, and we compare the novel procedure to a
conventionalproportional-integral (PI) control technique. We present a simulation study
where the MPC approach outperforms the conventional PI controller. On the algorithm
side, we show that structure-exploiting ADMM outperforms aninterior point method
(IPM) in open- and closed-loop, which supports the case for algorithm specialization.

This chapter is based on the publications [RHL17c; RHL17a].
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Chapter 7. Power Management in Variable Speed Drives

7.1 Introduction

VSDs link power sources and electric machines. They replace mechanical controls, e.g.,
throttles, and make variable and e�cient actuation at the machine load possible. Fig-
ure 7.1 shows the setup.

G M

recti�er inverterDC-link

low-level controllow-level control

high-level control

Figure 7.1: Setup of the VSD between an electricity grid (G) and an electric machine (M).
The recti�er and inverter perform an AC-DC-AC conversion. The DC-link bu�ers the
power �ow. Two control layers are applied to the drive.

At the power grid, the electrical energy is available at a �xed frequency, e.g.,50Hz.
The VSD recti�es the grid quantities to DC and stores the energy in the DC-link, before
it inverts them back to variable frequency for the machine. We consider both converters
(recti�er and inverter) to be active, which makes it possible to reverse the power �ow
and to feed energy from the machine back to the grid (e.g., for regenerative braking).
The two main tasks of the VSD are frequency conversion and power �ow regulation.
The frequency conversion is localized at each converter, where the electrical currents are
controlled by using pulse-width modulation (PWM). We call this part low-levelcontrol,
which can be implemented as in [Rod+05; Pöl+03] for the recti�er side, and in [Trz13]
for the inverter side. More recently, the low-level controllers were also implemented with
�nite control set (FCS) MPC methods [Rod+13; SGG17] and explicit MPC methods
[Bol+09; LK05]. In this chapter, we focus on the second VSD task, namely to manage
the power �ow. We call this part high-levelcontrol, as it relies on a functional low-level
architecture. In most conventional setups, e.g., in [PCA96], the inverter directly provides
the power that the machine operator demands. The recti�er monitors the DC-link
voltage and regulates it by using PI control. This uncoordinated control strategy relies
on a su�ciently large DC-link and fast reaction times of the recti�er to avoid undesirable
DC-link charging states. Hence, the DC-link and the recti�er are often over-sized to
provide a safety margin, which results in unnecessarily high production costs for the VSD.

To replace the conventional PI technique, we use MPC to enforce upper and lower
bounds on the energy that is stored in the DC-link. To achieve this, we coordinate the
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7.2 Drive Setup and Conventional Control

actions of the recti�er and the inverter to jointly manage the DC-link energy, which
avoids undesirable charging states and makes a reduction of the DC-link size possible.
Hence, instead of having an over-sized VSD, we get a more cost-e�cient drive that can
safely operate close to the bounds of its physical capabilities. Our VSD setup requires
sub-millisecond reactions to machine load changes, which makes the limitation of the
computational burden a central design requirement. More speci�cally, we aim for an
MPC procedure that can be executed with a sampling rate ofT = 250 �s , which means
that the optimization procedure has to terminate within that time interval.

On the modeling side, the key concepts that limit the computational burden are
rate-constrained prediction models and move-blocking. The rate constraints make it
possible to describe the converter behavior with a simple linear system, instead of a
nonlinear or switched-linear system approach. Move-blocking reduces the number of
decision variables in the MPC optimization problem. On the algorithm side, we use
structure-exploiting ADMM as introduced in Chapter 6. We also compare the approach
to conventional ADMM and an IPM.

7.2 Drive Setup and Conventional Control

In this section, we describe the drive setup and the control topology. We also present
the conventional PI technique for high-level control.

7.2.1 Control Setup

The recti�er and the inverter have separate low-level control structures, while the high-
level controller acts on both converters. Figure 7.2 shows the control hierarchy.

machine operator

high-level control

low-level control

reference valuer = [ �PM ; �EC ]

PI or MPC

target value u = [ �PR ; �PI ]

PWM and low-level PI
for current control

Figure 7.2: VSD control architecture. The machine operator issues reference values for
the machine power�PM and the DC-link energy �EC . The high-level controller assesses the
plant state and assigns target values for the recti�er power�PR and the inverter power �PI .
The low-level control determines the currents and drives the transistors.
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Chapter 7. Power Management in Variable Speed Drives

The low-level controllers handle fast actions in the range of a few microseconds. The
high-level controller focuses on more complex tasks, such as constraint satisfaction, and
reacts in the range of hundreds of microseconds. The detailed assembly of the VSD with
the high- and low-level control structures is shown in Figure 7.3. Below, we explain each
element in Figure 7.3 in more detail.

C
�

Vdc

�

M

PM

G

cos '

PWMPWM

PI
�VR

PI
�VI

+

�

I R

+

�

I I

VI

VOC
�I R

VG

FOC
�I I

 r ;!

�Q R � r

u 2

Vdc

�

VG I R

�

VI I I

HLC
PR E C P I

�PR �P I

�E C�PM

Figure 7.3: Detailed setup of the VSD. Recti�er (left) and inverter (right) consist of
six transistors each. The DC-link is a storage capacitor placed in-between. The grid is
denoted with `G', the machine with `M'. On both sides, the low-level controllers (blue)
drive the current I towards its reference�I by using a PI controller that determines
the voltage reference�V . The PWM translates this reference into transistor switching
signals. The desired recti�er current is obtained byvoltage oriented control(VOC),
while the inverter current is obtained by �eld oriented control (FOC), which makes it
possible to assign desired active power values�P independent of the demanded reactive
recti�er power �QR and the assigned machine rotor �ux � r . The high-level controller
(HLC), together with its peripherals, is shown in green. It is guided by the machine
power demand �PM and the nominal DC-link energy �EC , assigned by the VSD operator.
The HLC determines target power values�P for both converters, based on the operator
demand �PM , �EC and the measurementsPR , EC and PI .

7.2.2 Converter and Pulse-Width Modulation

Recti�er and inverter are identical voltage source active front ends as treated in [Rod+05],
which are mirrored around the DC-link as shown in Figure 7.3. The PWM blocks convert
the normalized voltage reference�V to the transistor gate signals. For both converters we
use asynchronous double-edge sinusoidal triangular carrier modulation. Details on the
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7.2 Drive Setup and Conventional Control

PWM can be found in [VI12]. The normalized voltage reference signals are determined
by a PI controller that acts on the di�erence between desired and measured current.

7.2.3 Grid and DC-Link

The grid is modeled as an ideal AC voltage source, followed by inductors to smoothen
the distortions that are caused by the recti�er switching. The DC-link capacitanceC has
the voltage Vdc and energyEC = C

2 Vdc
2. The operator assigns a (possibly time-variant)

energy reference�EC , which is then tracked through actuation of the high- and low-level
controllers.

7.2.4 Recti�er Current Control

Voltage oriented control(VOC), as treated in [MKT03], is used to determine the recti�er
current reference�I R . We express the voltage and current(V; I ) as vector components
(v; i) in a rotating dq0-coordinate system that is aligned with the grid voltage (vq = 0).
The 0-component is absent since the three-phase system is balanced. The resulting
dependencies are

vG = vd + ivq = vd (7.1a)

PR = 3
2 (vdi d + vqi q) = 3

2vdi d (7.1b)

QR = 3
2 (vdi q + vqi d) = 3

2vdi q: (7.1c)

From (7.1) we can derive the desired currents(�i d; �i q) by using the targeted active and
reactive powers( �PR ; �QR) and by measuring or estimating the grid voltagevG. VOC also
decouples the active powerPR from the reactive powerQR , which makes it possible to
leave the reactive power control to a separate control loop, e.g., to regulate the power
factor cos' = PR=

q
P2

R + Q2
R .

7.2.5 Electric Machine

We consider a squirrel-cage rotor induction machine that is modeled indq0-coordinates
aligned to the rotor �ux (  rq = 0). The rotor �ux angle which is necessary to establish
the dq0-system can be obtained by estimation [HH08]. The voltagev, current i and
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Chapter 7. Power Management in Variable Speed Drives

�ux  components for stator s̀' and rotor `r ' are coupled by

vsq = Rsi sq + _ sq + ! f r  sd (7.2a)

vsd = Rsi sd + _ sd � ! f r  sq (7.2b)

0 = Rr i rq + ( ! f r � ! s) rd (7.2c)

0 = Rr i rd + _ rd (7.2d)
"
 sj

 rj

#

=

"
L s Lm

Lm L s

# "
i sj

i rj

#

j 2 f q; dg; (7.2e)

where ! f r is the dq0-frame rotation, ! s is the synchronous electric speed andvrj = 0
due to closed rotor windings. The remaining parameters are motor constants which are
explained in [Trz13]. We model the mechanical part with

PM = Tel ! s (7.3a)
"
PI

Tel

#

= 3
2

"
vsq vsd

 sd �  sq

# "
i sq

i sd

#

(7.3b)

d
dt ! s = p

J (Tel � Tm ); (7.3c)

where (PI ; PM ) are the electrical inverter and mechanical machine power, (Tel; Tm ) are
electromagnetic and mechanical torque,p is the pole pair number, andJ is the moment
of inertia.

7.2.6 Inverter Current Control

The inverter current reference is determined by�eld oriented control (FOC), as shown
in [Trz13] or [GLN80]. We assume that_ rd � 0 and PI � PM . With (7.2) and (7.3), we
get PI = 3L m

2L r
 rd p ! m i sq and  rd = Lm i sd. Hence, the inverter current reference(�i sd; �i sq)

can be determined by the desired �ux and power values( � rd ; �PI ). For the rotor �ux
reference we choose� rd =

q
2=3 V n

a =wn , which is the nominal rotor �ux that is based on
the nominal phase voltageV n

a and machine frequency! n . Therefore, only the inverter
power reference�PI has to be determined by the high-level controller.

7.2.7 Performance without High-Level Control

The overall setup, as shown in Figure 7.3, is implement in Simulink by using the Simscape
Power Systems toolbox. We use the VSD parametrization noted in Table 7.1, and we
normalize power and energy to their nominal values.

We �rst analyze the open-loop performance of the lower control layer by deactivating
the high-level controller. For that purpose, the target values( �PR ; �PI ) are assigned stati-
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7.2 Drive Setup and Conventional Control

description symbol value

grid parameters (VG; f G) (6 kV;50Hz)

recti�er inductance L 100mH

DC-link capacitance C 120�F

DC-link nominal energy E n
C 19:44kJ

machine parameters (Pn
M ; wn ; V n

a ) (1:2MW; 2� Hz; 8kV)

PWM frequency f mod 1250Hz

Table 7.1: Parametrization used for the power grid, the VSD, and the electric machine.

cally without any feedback from the actual power and energy measurements. Figure 7.4
shows the simulated signals.

� 1

0

1

�PR

PR

� 1

0

1

�P I

P I
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0:9
1

1:1
1:2
1:3

time [ ms ]

�E C

E C

Figure 7.4: Upper two diagrams: normalized recti�er powerPR and inverter powerPI

that are driven by the low-level controllers to follow their target values�PR , �PI . Lower
diagram: normalized DC-link energyEC , which diverges from its reference�EC .
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Chapter 7. Power Management in Variable Speed Drives

In Figure 7.4, we see how the low-level controllers drive the active power of the
converters towards their target values. Other quantities, such as the reactive recti�er
power, the machine rotor �ux, and the grid and machine frequencies can be adjusted
separately within reasonable bounds. The PWM causes switching harmonics on both
power signals. The recti�er signal does not require �ltering as it is computed from the
smooth grid voltage. The inverter signal is based on the switched inverter voltage, which
makes additional �ltering necessary.

We also observe in Figure 7.4 that the recti�er moves the power level faster up than
down, whereas the opposite is true for the inverter (down is faster than up). In the
shown scenario, the peak DC-link energy deviation is23 %from its reference value. The
resulting high DC-link voltage level also prevents the inverter from reaching its target
value at 24ms, as it needs to work against a steeper voltage gradient. The main cause
for the DC-link deviation is the di�erent transient behaviors of recti�er and inverter.

7.2.8 Uncoordinated High-Level PI Control

The simplest high-level control approach is based on a PI technique. It is uncoordinated
in the sense that the inverter follows the machine demand�PI = �PM , regardless of the
recti�er state. The recti�er mimics the inverter behavior and additionally regulates the
DC-link deviation by using

�PR = �PI + K p( �EC � EC ) + K i

Z t

0
( �EC � EC ) dt ; (7.4)

whereK p and K i are positive constants. The idea behind the PI strategy is as follows:
With perfect low-level control, one would expect�PM = �PI = �PR andPI = PR . Hence, the
DC-link energyEC =

R
(PR � PI ) dt remains constant. Initial deviations and �uctuations

caused by noise are removed by the proportional and integral correction terms in (7.4). In
Section 7.5.1, we analyze the PI control performance in detail. However, from Figure 7.4
it can already be seen that the assumptionPI = PR is violated during transients. This
results in a large DC-link energy change and motivates, even without the demand for
strict DC-link constraints, the use of a di�erent control strategy.

7.3 Coordinated High-Level Control

We replace the PI controller as described in Section 7.2.8 by an MPC technique that
makes it possible to use recti�er-inverter coordination to enforce constraints on the
DC-link energy. We use a real-time MPC setting with a sampling timeT = 250 �s ,
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7.3 Coordinated High-Level Control

which requires that the optimization routine terminates in less thanT. In such challeng-
ing situations, explicit MPC techniques are often used, where the problem solutions are
precomputed [Bem+00]. However, our problem will turn out to be too large to handle
the exponentially growing memory demand of explicit MPC. Instead, we use an MPC
formulation that is as simple as possible and deploy structure-exploiting ADMM.

7.3.1 Prediction Model and Constraints

As shown in Figure 7.4, the recti�er trajectory exhibits di�erent up- and down-slopes.
Such behavior usually gives rise to a nonlinear or switched-linear prediction model, which
would signi�cantly increase the computational burden of solving the optimization prob-
lem. To keep the optimization simple, we propose to use a single linear model that we
augment with asymmetric state rate constraints. This novel concept is a key feature of
our MPC procedure, which will make accurate predictions possible while it maintains
fast execution times.

To model the VSD together with the low-level controllers, we de�ne the statex and
input u as

x = [ PR ; PI ; EC ] (7.5a)

u = [ �PR ; �PI ]: (7.5b)

We place state constraints that either resemble the capabilities of the low-level controllers
(e.g., a maximal and minimal power value caused by the limited PWM modulation
index), or they are used to obey actual physical constraints (e.g., maximal line currents
or energy limitations). These constraints can also change between MPC calls, e.g., to
model �xed line current limits while a fault changes the voltage.

For the recti�er and inverter power, we use simple �rst-order dynamics

_P = � aP + a �P

with di�erent time constants aI , aR for each converter. The time constants are chosen to
model the `fast' transitions in Figure 7.4, i.e., the up-slope of the recti�er and the down-
slope of the inverter. Additionally, we place asymmetric state rate constraintsmR ; mI for
the `slow' transitions. The DC-link is modeled by _EC = � (PR � PI ), where the constant
� = Pn

M =En
C accounts for the power and energy normalization. The resulting state and

115



Chapter 7. Power Management in Variable Speed Drives

rate constrained system is

_x(t) =

2

6
6
4

� aR 0 0
0 � aI 0
� � � 0

3

7
7
5

| {z }
A x

x(t) +

2

6
6
4

aR 0
0 aI

0 0

3

7
7
5

| {z }
B x

u(t) (7.6a)

_x1(t) � � mR (7.6b)

_x2(t) � mI (7.6c)

x(t) 2 [x lb; xub]; (7.6d)

where the constantsaR , aI , mR and mI can be identi�ed from the open-loop power
trajectories to aR = 1307 1

s , aI = 1280 1
s , mR = 330 1

s , and mI = 811 1
s . Figure 7.5 shows

the power signals compared to their open-loop prediction with model (7.6).
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Figure 7.5: Normalized power signalsP, which follows the target values�P, together with
the power predictionx from model (7.6). The rate constrains make it possible to model
asymmetric up- and down-slopes while we still use a linear system.

7.3.2 Model Discretization

The prediction model has to be discretized for MPC. We use the notationxk = x(kT)
and � xk = xk � xk� 1. Moreover, we assume that the inputu(t) does not change during
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the interval T. With exact discretization, model (7.6) becomes

xk+1 = � xk + Huk (7.7a)

� xk+1 2 [T _x lb; T _xub] (7.7b)

xk+1 2 [x lb; xub]; (7.7c)

where

h
_x lbj _xub

i
=

2

6
6
4

� mR 1
�1 mI

�1 1

3

7
7
5 (7.8a)

h
� jH

i
=

2

6
4

� R 0 0 1 � � R 0
0 � I 0 0 1� � I

� � R � I 1 �T + � R � �T � � I

3

7
5 (7.8b)

and � i = e� ai T , � i = �
ai

(� i � 1) with i 2 f R; I g.

7.3.3 Augmented Prediction Model in Standard Form

While formulation (7.7) elegantly approximates the behavior of the nonlinear system,
the formulation is unsuited for standard system analysis methods due to the presence
of state rate constraints. To circumvent this issue, we augment system (7.7) with
additional states, which will make it possible to write the rate constraints as normal
state constraints. To achieve this, we use the previous de�nition of� xk and similarly
� uk = uk � uk� 1. Given xk+1 = � xk + Huk , we obtain

� xk+1 = �� xk + H � uk ;

which makes it possible to use the augmented system
"
� xk+1

xk+1

#

| {z }
= :zk +1

=

"
� 0
� I

#

| {z }
= :A

"
� xk

xk

#

| {z }
= :zk

+

"
H
H

#

| {z }
= :B

� uk
| {z }
= :vk

; (7.9)

with xk+1 = � xk+1 + xk in the second row. The rate constraints onx become state
constraints onz, i.e.,

zk+1 = Azk + Bvk (7.10a)

zk+1 2 [zlb; zub]; (7.10b)

wherezlb = [ T _x lb; x lb] and we use similar de�nition forzub. The augmented model (7.10)
describes the same system dynamics as (7.7).
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7.3.4 Control Objective

MPC coordinates the recti�er and inverter to track the machine demand�PM with PI and
to keepEC close to �EC . To achieve this, we penalizekFzk+1 � r k2

Q whereF =
h
02� 4 I 2

i

and Q = diag(qM ; qC ). The state referencer is composed of�PM and �EC as de�ned in
Figure 7.2, and the positive weightsqM , qC balance the power and energy tracking.
In a more general setup, a time-varying reference can also be utilized, e.g., to pre-
charge the DC-link in anticipation of a machine load change. This would require preview
information of the future machine load behavior.

Furthermore, to avoid unnecessary control actions and to calm the response of the op-
timization routine against switching noise, we penalizekvkk2

R , i.e., the change� uk = vk

in the control input variable, whereR is a positive semide�nite weight matrix.

7.3.5 Move-Blocking

We model the VSD with (7.10). We use this model in the MPC procedure to pre-
dict N steps of the future state trajectory. To reduce the number of decision variables,
and therefore to increase the execution speed, we vary the time span between predic-
tions with move-blocking. We use the sequenceL = f l1; : : : ; lN g with l1 = 1 and lk 2 N,
k 2 f 2; : : : ; Ng to denote the spanlkT of each prediction. The new system matrices are

Ak = ( A) lk (7.11a)

Bk =
lk � 1X

k=0

(A)kB: (7.11b)

With the time-dependent matrices Ak ; Bk , we keep the number of predictions equal
to N , while the e�ective look-ahead grows fromNT to

P N
k=1 lkT. It should be noted

that temporal constraint violations between the enlarged prediction spans are possible,
whereas due tol1 = 1, the actually applied input always leads to a feasible state. Still,L
has to be chosen with care to prevent MPC from maneuvering into an infeasible situation.
The move-blocking prediction model is

zk+1 = Akzk + Bkvk : (7.12)
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7.3.6 MPC Problem

We assemble all ingredients from the previous sections to an MPC formulation similar
as in Section 3.1. The �nal MPC problem is

min
f zk +1 ;vk g

NX

k=1

h
kFzk+1 � r k2

Q+ kvkk2
R

i
(7.13a)

s: t : zk+1 = Akzk + Bkvk 8k (7.13b)

zk+1 2 [zlb; zub] 8k; (7.13c)

where onlyz1 and r change between two instances of the problem. Whiler is issued by
the VSD operator, z1 is constructed with

z1 =

"
� x1

x1

#

=

"
(� � I )x0 + Bu0

� x0 + Bu0

#

; (7.14)

where x0 = x(t) is the VSD state measurement andu0 = u(t) it the input assigned
in the previous sampling interval. Problem (7.13) yields the optimal input sequence
f (vk)?gk2N , whose �rst element(v1)? is used to recover the VSD input(u1)? = ( v1)? + u0

that is applied at the next discretization stepu(t + T) = ( u1)?.

7.4 Structure-Exploiting ADMM

The MPC formulation (7.13) is suitable for the structure exploitation approach presented
in Chapter 6, which is based on the standard MPC formulation (6.1). To make (7.13)
consistent with (6.1), the state tracking term can be written as a diagonally-weighted
norm. Furthermore, the time-variant system leads to changing matrices along the diag-
onal stack in (6.29). The matrices need to have the same structure as only one partition
can be chosen for all of them.

7.4.1 Partition Choice

Towards choosing a partition, we observe that allAk ; Bk have the occupation pattern

h
Ak jBk

i
=

2

6
6
6
6
6
6
6
6
6
6
4

� 0 0 0 0 0 � 0
0 � 0 0 0 0 0 �
� � � 0 0 0 � �
� 0 0 � 0 0 � 0
0 � 0 0 � 0 0 �
� � � 0 0 � � �

3

7
7
7
7
7
7
7
7
7
7
5

; (7.15)
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which follows from (7.8b) and (7.9). If we permute the state order fromf 1; 2; 3; 4; 5; 6g
to f 1; 4; 2; 5; 3; 6g, we obtain

h
�Ak j �Bk

i
=

2

6
6
6
6
6
6
6
6
6
6
4

� 0 0 0 0 0 � 0
� � 0 0 0 0 � 0
0 0 � 0 0 0 0 �
0 0 � � 0 0 0 �
� 0 � 0 � 0 � �
� 0 � 0 � � � �

3

7
7
7
7
7
7
7
7
7
7
5

: (7.16)

In the VSD notation, the �rst two states are PR , � PR , i.e., the recti�er power and its
change. The third and fourth states arePI , � PI , and the last two states areEC , � EC .
As suggested by the occupation pattern, we choose the state partitionf 2; 2; 2g and the
input partition f 1; 1; 0g. Hence, the partition resembles the composition of the VSD
into recti�er, inverter, and DC-link. We observe that the recti�er and inverter become
natural subsystems in the sense that they do not require virtual inputs. Only the virtual
subsystem for the DC-link has a virtual input.

7.4.2 Computational Complexity

So far, we have considered a VSD with one inverter and one recti�er. In the context of the
computational complexity, we can consider an extended drive that uses more thanp = 2
converters, i.e., more than one recti�er or inverter. The case ofp > 2 can represent a
VSD where several inverter-machine pairs share the same DC-link, or where the DC-link
is fed from di�erent energy sources. The modeling for such an extended VSD setup is
analogous to the casep = 2 and results in a system withp inputs and 2(p + 1) states.
The extended system dynamics matrix is a generalization of (7.16). It still has the two
coupling rows that represent the DC-link andp two-dimensional diagonal blocks that
represent the converters.

With the scalable VSD sizep, we analyze how the computational complexities of
di�erent algorithms compare. We consider the following methods.

(i ) interior point method (IPM) as in [RHL17c]

(ii ) conventional ADMM (Algorithm 3.2)

(iii ) single-thread structure-exploiting ADMM (Algorithm 6.1, M = p + 1, � = 1
2)

(iv ) (p + 1) -thread structure-exploiting ADMM (Algorithm 6.1, M = p + 1, � = 1
2)

For (ii )-(iv ), we use the ADMM formulations from Chapters 3 and 6. Method(iii )
follows [RHL17c] by using onlyp+1 parallel threads, as opposed to the maximum-possible
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parallelization with 2(p + 1) N threads. Table 7.2 shows the resulting complexities and
numerical cost estimates, measured in scalar multiplications and additions in the longest
computational thread.

optimization method (i ) ( ii ) ( iii ) ( iv )

iteration complexity O(�) Np3 Np2 Np N

iteration cost for (N; p) = (5 ; 2) 53640 2264 1556 656

(i ) / iteration cost for (N; p) = (5 ; 2) 1 24 34 82

Table 7.2: Computational complexities and costs for di�erent algorithms. The complex-
ities depend on the prediction horizonN and the number of convertersp.

In Table 7.2, the complexity of (i ) is obtained from [Dom+12; RHL17c]. The
corresponding single-thread iteration cost is obtained from the FORCES implementa-
tion [DJ14]. For the complexities of(ii )-(iv ), we use the results from Table 6.2. The
associated costs are numerical counts from an actual implementation, same as in Sec-
tion 6.5. We see that the ADMM variants scale favorably withp. Even for the case
of p = 2, an interior point iteration (i ) is 82 times more costly than an iteration of
parallel structure-exploiting ADMM (iv ).

7.5 Simulation Study

We �rst compare the performance of the conventional PI control approach with the MPC
formulation. Then, we focus on the MPC formulation and we compare the convergence
behavior of the IPM, a conventional ADMM approach as in Algorithm 3.2, and our
structure-exploiting ADMM formulation. Finally, we analyze the e�ect of the algorithm
choice on the closed-loop behavior.

7.5.1 PI Control Performance

The PI control approach, discussed in Section 7.2.8, is implemented as the high-level
controller for a VSD. We use the parametrization from Table 7.1. Further, we use a
constant DC-link reference�EC and the same machine power pro�le�PM as in the open-
loop simulation in Figure 7.4. The simulation result is shown in Figure 7.6.

121



Chapter 7. Power Management in Variable Speed Drives

� 2
� 1

0
1

�PR

PR

� 1

0

1

�P I

P I

5 10 15 20 25 30 35 40 45 50

0:9
1

1:1
1:2
1:3

time [ ms ]

�E C

E C

Figure 7.6: Normalized power and energy signals that are obtained by using high-level
PI control (7.4) to determine �PR . The PI controller recovers the nominal DC-link energy
in steady state.

In Figure 7.6, it can be seen that the DC-link deviation after a reference change still
reaches about23%of the nominal value, same as in the open-loop shown in Figure 7.4.
The reason is that between20 and 28ms, the recti�er power is not able to follow the
target value since it has a slower down-ramp and it saturates at� 130%when the low-
level PWM reaches its limit.

7.5.2 MPC Performance

To reduce the DC-link deviation, we need to coordinate the converters based on their
anticipated dynamics. In the simulation shown in Figure 7.6, this means that at20ms
the inverter needs to wait for the recti�er. We achieve this by using our MPC formula-
tion (7.13) and by restricting the DC-link energy to � 10% deviation from its nominal
value. We limit the recti�er and inverter power to � 125%and � 150%of the nominal
machine power. The recti�er has a tighter limit as it operates on a steeper voltage gradi-
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ent. For the blocked prediction, we useL = f 1; 3; 4; 5; 5g, i.e., we make predictions with
distanceT, 3T, 4T and twice 5T, summing up toN = 5 predictions. The resulting look-
ahead is4:5ms. For the objective, we useqM = 12, qC = 10, R11 = 2, and R22 = 100,
where we take the di�erent scales of rates and states into account.

We consider a solution with an IPM �rst. Due to the pulse-width modulation(PWM)
noise in the state measurements, there may appear infeasible problem instances. As
IPMs cannot handle such infeasible instances, we add slack variables to the constraints,
as described in Appendix 7.7.1. We create the solver with the code generation tool
FORCES [DJ14], same as in [RHL17c]. The55ms reference signal with an MPC sam-
pling interval of T = 250 �s results in 220 problem instances. We perform14 interior
point iterations for each problem. On an Intel Core i7 CPU (without using a real-time
operating system), the problems are solved in187�s on average and236�s at maximum,
which is well within the sampling interval ofT = 250 �s . Figure 7.7 shows the resulting
trajectories.

� 1

0

1

�PR

PR

Figure 7.7: Normalized power and energy signals when using MPC with an IPM. Con-
straints are shown in red.
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In Figure 7.7, we see that due to the recti�er-inverter coordination, the MPC routine
drives the inverter slower to prevent constraint violation. Thereby, it uses superior model
knowledge given by the rate constraints, e.g., between20and 30ms it drives the recti�er
only as fast as it is actually able to move. At23ms, the inverter waits for the recti�er
to prevent constraint violation in the DC-link. At 42ms, a similar e�ect (albeit less
visible) is observed when the recti�er moves slowly to help the inverter to keep track.
It stands to reason that slowing down the inverter is acceptable from the point of view
of the machine operator. Indeed, for the given setup where a DC-link deviation larger
than 10% is deemed critical, a slowed inverter response is the only option to drive the
maneuver at all. Hence, MPC operates the VSD close to its physical limits. The only
alternative to speed-up the response is to invest into a faster recti�er or a larger DC-link.

7.5.3 Algorithm Performance

Our goal is compare the convergence behavior of the IPM and di�erent variants of
ADMM. We consider the same algorithms as in Section 7.4.2, i.e.,

(i ) interior point method (IPM) as in [RHL17c]

(ii ) conventional ADMM (Algorithm 3.2)

(iii ) single-thread structure-exploiting ADMM (Algorithm 6.1, M = p + 1, � = 1
2)

(iv ) (p + 1) -thread structure-exploiting ADMM (Algorithm 6.1, M = p + 1, � = 1
2)

and we focus on(i ), (ii ), and (iv ).

As a test set, we use the220 optimization problems from Section 7.5.2. Figure 7.8
shows convergence traces for each method, i.e., it illustrates how the problems are solved
increasingly accurate with a growing number of iterations. The distance to the (precom-
puted) solution y? is measured by using the Euclidean norm. The iteration counts on
the x-axis are scaled with the iteration costs in Table 7.2. Hence, for a given point along
the horizontal axis, we see how many iterations each method can perform while using
the same number of scalar operations.

In Figure 7.8, we see that when we perform few iterations, both ADMM versions pro-
vide good approximations of the solution fast (around10� 2 precision). For a moderate
precision of10� 4, the parallel structure-exploiting ADMM formulation outperforms the
other methods. Compared to the parallel ADMM variant, the IPM has the advantage
of requiring only a single computational thread. On the other hand, the ADMM formu-
lations can be implemented with faster �xed-point arithmetics. The �gure also shows
that both ADMM methods have outliers in the convergence performance, i.e., there are
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Figure 7.8: Convergence traces for the problem instances generated by the closed-loop
simulation shown in Figure 7.7. The horizontal axes are scaled with the iteration costs
in Table 7.2.

some problem instances that converge much slower. When we analyze these instances,
we see that they are almost infeasible in the sense that the feasible region is very small.
We obtain these almost-infeasible instances when the initial conditions are perturbed by
the PWM noise. For the IPM, it seems as the slack variables prevent the performance
from being negatively a�ected. In a real-time MPC setting, we have to tolerate the
low solution accuracy of these outliers. We analyze the impact of the outliers on the
closed-loop behavior below.

7.5.4 Closed-Loop Performance

To assess whether the suboptimality of the previously discussed outliers can be tolerated,
we analyze the closed-loop performance with numerical metrics. We use the tracking
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performance

pt =
X

k

�
kx̂k � r kk2

Q + kûk � ûk� 1k2
R

�
; (7.17)

wherex̂ = ( PR ; PI ; EC ) and û = ( �PR ; �PI ) are measurements obtained from the simulated
plant, and r = (0; �PM ; �EC ) contains the reference values for the state. We assess the
constraint violation with

pc =
X

k

k� [x
	

;�x](x̂k) � x̂kk; (7.18)

where � is an orthogonal projection. The simulation shown in Figure 7.7 (where the
IPM with 14 iterations is used) results in(pt ; pc) = (32 :3; 0:077). For the comparison
to structure-exploiting ADMM, we use 450 iterations, i.e., 32 ADMM iterations for
each interior point iteration. According to Table 7.2 this is less than the single-thread
implementation of structure-exploiting ADMM is able to do in the corresponding time.
While the control trajectories (not shown for brevity) barely di�er from Figure 7.7,
the resulting control performance is(pt ; pc) = (31 ; 0:022), which shows a reduction in
tracking deviation as well as constraint violation when compared to the IPM. Hence, the
outliers do not noticeably deteriorate the overall control performance, and single-thread
structure-exploiting ADMM outperforms the IPM in closed-loop.

7.6 Conclusions

We show an MPC power coordination strategy that operates VSDs close to their physical
limits and outperforms conventional PI control techniques. We develop a lightweight
MPC formulation by using a low-complexity prediction model with asymmetric state-
rate constraints. We apply structure-exploiting ADMM, which results in an algorithm
that mimics the internal composition of the VSD to improve the execution e�ciency.
We �rst show that our method scales favorably to larger VSD setups. Then, we analyze
the convergence and closed-loop performance, and we show that the structure-exploiting
ADMM procedure outperforms the competing methods, even for a regular VSD with
only two converters.

7.7 Appendices

In this section, we collect additional material and appendices that support and extend
the content of this chapter.
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7.7.1 Slacked Problem Formulation

To handle infeasible problem instances with the IPM, we replace the bounds of the limit
constraints in the MPC problem (7.13) with

zsi
ub :=

 
Ts _xub

xub + 1 3;1si

!

; zsi
lb :=

 
Ts _x lb

x lb � 13;1si

!

; (7.19)

where a single slack variablesi is used for all three components inx to keep the number
of extra decision variables small. The rate constraints do not need to be slacked, given
that the state constraints have slacks. In the resulting optimization problem, we add the
constraint si � 0 and we penalizeksi +1 k2

S. We choose a large weightS = 103 to prevent
any incentive for makingsi larger than necessary.

A more rigorous implementation of slack variables contains a linear objective term
that guarantees an exact penalty reformulation as described in [KM00], i.e., it ensures
that the solution of the relaxed problem is the same as the solution of the original
problem, if the latter exists.
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CHAPTER8
Conclusions and Outlook

W E have presented several specialized ADMM formulations that use distributed
computation to exploit problem structure. Besides the contribution to the �elds

of the respective applications, the value of these formulations lies in showing the versa-
tility of ADMM. To conclude this thesis, we summarize the design choices and outcomes
for each formulation. At last, we present an outlook on future research directions.

Conclusions

We have applied ADMM-based strategies to energy marked bidding and to the coordi-
nation of moving agents in Chapters 4 and 5. In both cases, we have used ADMM as a
coordination protocol that orchestrates the participating agents. For the setting of en-
ergy markets, ADMM is based on a splitting that initially contains a central aggregator,
which we could remove due to the structure in the bidding problem. In the agent coordi-
nation setting, we could bene�t from pure neighbor-to-neighbor communication due to
the used agent-agent splitting. Hence, in both cases, we obtain distributed procedures
that operate without a central computation facility. The decentralization provides the
agents with privacy, autonomy, and �exibility. For the bidding setup, this means that
the participating buildings do not share their potentially sensitive decision criteria and
that we can integrate new buildings into existing aggregations with low set-up costs. For
the agent coordination setting, the implications of decentralization went even further.
The full decentralization did reshape the algorithm to be centered around an agent's
point of view, and therefore remove the notion of the greater aggregation altogether.

Besides the decentralization, we have established several conceptual features that
exploit the structure and the operating conditions in each setting. The structure in the
reserve bidding mechanism has made it possible to extract a guaranteed-feasible solution
after any number of iterations. Furthermore, we have used the Lagrange multipliers for
developing a pricing scheme to value the contribution of each building to the �nal bid.
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In the coordination setup, the nonconvexity of the collision avoidance constraint has
motivated a successive linearization scheme. Since this linearization curtails the solution
space, we have introduced additional techniques that reduce the conservatism of the
solution. The aggregated bidding problem (4.6) and the coordination problem (5.1)
are both similar to the multi-agent problem in Section 3.3. Still, the di�erent splitting
choices and specialization steps result in markedly di�erent algorithms. The resulting
procedures' diversity underlines the broadness of the ADMM framework.

Both ADMM formulations in Chapters 4 and 5 have algorithm steps that still contain
optimization problems. In the reserve bidding setup, the greater part of the computa-
tional burden is concentrated in the building-individual bidding step, which leaves a
comparably simple task to the ADMM-driven negotiation. Consequently, our ADMM
formulation for aggregated bidding only requires a few tens of iterations to converge,
independent of the aggregation size. In the coordination setting, we require about a
hundred ADMM iterations. The central aspects that increase the required number of
iterations are the agent-agent communication and the successive linearization.

In Chapter 6, we have introduced the structure-exploiting ADMM framework, which
moves the attention from speci�c applications to a general class of MPC problems. We
have focused on problems where the controlled system has densely coupled groups of
states in an otherwise loosely coupled environment. Similar to the previous utilizations of
ADMM, we have obtained bene�cial algorithm properties from exploiting this structure.
The resulting structure-exploiting ADMM procedure is based on an aggregator-agent
splitting. The algorithm forms a negotiation process between the system components
and it reassembles the original system only in convergence. A central di�erence to
the procedures in Chapters 4 and 5 is that the resulting algorithm is only internally
distributed in the sense that it operates on a single computational device. The internal
distribution leads to a large potential for parallel computation, which is analogous to
the sharing of computational burden in the previous chapters. Another di�erence to the
previous chapters is that we have relied on a more �ne-grained splitting, which breaks the
original problem into smaller parts and therefore avoids optimization problems without
closed-form solutions in the algorithm steps. The result is an algorithm that requires
many but simple iterations, which suits an embedded implementation. To achieve this
�ne-grained splitting, we have used a twofold variable duplication that adds an extra
algorithm step and results in a four-step ADMM procedure. The �nal di�erence to the
previous ADMM formulations is that we have introduced an algorithm modi�cation that
associates an individual penalty parameter to each component in the algorithm-driven
negotiation. This individual parametrization makes it possible to adapt the algorithm
closer to the problem at hand, which ultimately leads to a performance improvement.

In Chapter 7, we have completed the thesis with a power management application
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for VSDs, which joins several lines of thoughts from throughout the thesis. The VSD
is a typical example of an industrial application, which we have motivated as a driving
force for optimization-based control at the beginning of this thesis. Furthermore, the
VSD provides a strong case for the specialization paradigm, as the algorithm is executed
on dedicated hardware and the setup is subject to challenging timing requirements. As
opposed to the previous chapters, we have placed an additional emphasis on the system
modeling procedure, which illustrates the emergence of exploitable structure. We have
then utilized the structure-exploiting ADMM procedure from Chapter 6. Besides the
general bene�ts from structure exploitation, we have shown that subsystem-individual
penalty parametrization improves the convergence speed of ADMM in the given exam-
ple. Finally, we have concluded the chapter by comparing our specialized method to
conventional ADMM and an IPM, which leads to a favorable outcome that supports the
case for algorithm specialization.

Outlook

Our results inspire a range of promising future research directions. Below, we outline a
selection of them.

Aggregated Bidding in Energy Reserve Markets (Chapter 4)

We have shown how the ADMM Lagrange multipliers can be utilized for assessing the
value of each building's contribution to a �nal bid. The �nancial incentives give rise
to the question whether the buildings can unfairly in�uence the ADMM-driven decision
process to achieve a higher payo� for themselves. It is conceivable that buildings de-
liberately change their decision criteria during the ADMM iteration, or even respond
untruthfully, to gain a better outcome for themselves. Several publications address this
problem of incentive compatibility in optimization-based decision making. In [TLU18;
PS04; TFL17], mechanisms are presented that prevent fraudulent agent behavior. It is
a promising area of research to analyze whether such mechanisms can be applied to the
energy reserve market setup.

A related line of research follows from our considerations around the privacy of the
buildings that participate in the bidding process. It is imaginable that adversarial agents
infer parts of the private building information from the sequence of bids that are shared
during the ADMM negotiation. In [Pap17], initial research in that direction is performed,
which leads to the conclusion that it is di�cult to collect enough data to predict decision
criteria within a regular ADMM setting. However, by changing their decision criteria
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during an ADMM iteration, adversarial agents can stall the negotiation process to obtain
more data. Furthermore, they can steer the negotiation towards data points that are
particularly valuable to them. The risks that come with adversarial agents has also been
analyzed in [SG18]. Future research can focus on avoiding these types of manipulation
in the bidding process.

Another possible area for future work centers around the serialization procedure
that we have introduced to replace the central aggregator. We use this serialization
procedure to compute the aggregate quantity, which we obtain as a result of an averaging
operation. As an alternative to the serial computation, we can obtain the aggregate
with distributed and parallel averaging techniques [ELB16; XB04]. Furthermore, the
distributed averaging can be terminated after only one iteration, which means that we
rely on the successive improvement of the estimate with the jointly converging ADMM
procedure. We have collected promising empirical evidence which suggests that such a
combined procedure converges if the average is initialized properly. A future research
challenge is to provide a formal convergence proof for this modi�cation of ADMM.

Decentralized Coordination and Collision Avoidance (Chapter 5)

A characteristic feature of our ADMM-based coordination protocol is that the formu-
lation centers around an agent's perspective. Each agent is surrounded by a detection
sphere that de�nes the agent's neighborhood. If the neighbors do not change their
decision criteria between MPC calls, large parts of their optimal trajectories can be re-
constructed from a shifted version of the previous solutions. This reconstruction makes
it possible to warm-start the optimization procedure, which reduces the required number
of ADMM iterations. In e�ect, the agents then proceed along their already planned tra-
jectories and use the optimization routine only to adapt to newly available information.
Furthermore, by assuming that all agents move with limited speed, we can expect new
neighbors to appear close to the boundary of an agent's detection sphere. Given that the
detection sphere is large enough, a new neighbor will in�uence the end of the planned
trajectory �rst. Similar to [MVP16; VP16; VP17a; VP17b], we make use of this e�ect
by terminating ADMM prematurely, i.e., by only performing a few tens of ADMM iter-
ations for each MPC problem. Due to the warm-starting procedure, the improvement
from these few iterations will add up over the MPC iterations. In most situations, a
time instance added to the end of the planned trajectory will be suboptimal at �rst and
then accumulate precision as it moves through the planned trajectory towards execution.
As only the �rst element in the trajectory is applied, we can tolerate the suboptimality
in later elements. With such a heuristic early-termination ADMM procedure, we can
signi�cantly reduce the time that is reserved for the optimization procedure. This re-
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duction makes it possible to reduce the MPC sampling interval which would increase
the agents' responsiveness. As it is still possible that a suboptimal solution reaches the
beginning of the trajectory, the routine would need to be capable of preventing collisions
in such a case. More speci�cally, a procedure for constructing feasible solutions would
be required, which in essence would be an emergency braking mechanism.

Another area for future work is the incorporation of more complex prediction models.
Convex dynamics can be included in the agent-individual constraint set, which does
not require further modi�cations to the surrounding setup. Nonlinearities in the agent
model can be approximated by placing constraints on the acceleration, which is similar
to the use of asymmetric state-rate constraints in Chapter 7. Alternatively, successive
linearization techniques can be used for the dynamics as well, e.g., by linearizing the
system around the currently planned trajectory after each MPC call.

Structure-Exploiting ADMM for MPC (Chapter 6)

The choice of the system partition is fundamental to our exploitation of system struc-
ture. In the presented examples, a meaningful partition choice is visible from the system
matrix occupation pattern. However, especially for large-scale systems, an automated
partitioning procedure can be desirable. As mentioned in Section 6.2.1, such an au-
tomatic choice can be made with clustering procedures, e.g., the one in [Hes04]. It is
desirable to construct a procedure similar to [Hes04] that uses the separation tendency
(Section 6.4) as the clustering measure. Such a procedure would make sure that the best
partition for structure exploitation is chosen. Furthermore, it remains an open research
challenge to devise a procedure that �nds an optimal state and input transformation,
which would further emphasize the structure in the controlled system.

Another promising area for future work is to apply our concepts of system �ow and
link usage (Section 6.4.1) in the broader context of control system analysis. While these
concepts were developed with the separation tendency in mind, they describe general
e�ects that can provide new perspectives on the behavior of dynamical systems.

Power Management in Variable Speed Drives (Chapter 7)

In the VSD setup, a possible area for future work is to improve the handling of the PWM
noise in the MPC procedure. The PWM noise causes small constraint violations, which
result in aggressive control reactions if the input change is not penalized. If we use an-
other mechanism for handling this noise, the weight on the input change can be reduced,
which improves the overall responsiveness of the VSD. A promising approach to robus-
tify the procedure against PWM noise is tube-based MPC, as presented in [Lim+10].

133



Chapter 8. Conclusions and Outlook

Preliminary research in this direction can be found in [Kim16].

Overall, the setup for controlling the VSD is su�ciently mature to achieve the control
goals in simulation. A natural next step for future work is a practical implementation,
which will provide further arguments for the suitability of ADMM due to its amenability
for embedded platforms.
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Abbreviations

AC alternating current

ADMM alternating direction method of multipliers

AMA alternating minimization method

ASIC application-speci�c integrated circuit

DC direct current

DRS Douglas-Rachford splitting

FAMA fast alternating minimization method

FBS forward-backward splitting

FGM fast gradient method

FISTA fast iterative shrinkage-thresholding algorithm

FPGA �eld-programmable gate array

IPM interior point method

ISTA iterative shrinkage-thresholding algorithm

LICQ linear independence constrained quali�cation

LP linear problem

MPC model predictive control

PGM projected gradient method

PI proportional-integral

PMI polynomial matrix inequality

PRS Peaceman-Rachford splitting
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PWM pulse-width modulation

QP quadratic problem

SISO single-input-single-output

SQP sequential quadratic programming

VSD variable speed drive
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