
ETH Library

Three bits suffice: Explicit support
for passive measurement of
internet latency in QUIC and TCP

Conference Paper

Author(s):
De Vaere, Piet; Bühler, Tobias; Kühlewind, Mirja; Trammell, Brian

Publication date:
2018-11

Permanent link:
https://doi.org/10.3929/ethz-b-000311830

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000311830
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Three Bits Suffice: Explicit Support for Passive
Measurement of Internet Latency in QUIC and TCP

Piet De Vaere, Tobias Bühler, Mirja Kühlewind, and Brian Trammell
ETH Zurich, Switzerland

ABSTRACT
Passive measurement is a commonly used approach for
measuring round trip time (RTT), as it reduces band-
width overhead compared to large-scale active measure-
ments. However, passive RTT measurement is limited
to transport-specific approaches, such as those that uti-
lize Transmission Control Protocol (TCP) timestamps.
Furthermore, the continuing deployment of encrypted
transport protocols such as QUIC hides the information
used for passive RTT measurement from the network.

In this work, we introduce the latency spin signal as a
light-weight, transport-independent and explicit replace-
ment for TCP timestamps for passive latency measure-
ment. This signal supports per-flow, single-point and
single direction passive measurement of end-to-end RTT
using just three bits in the transport protocol header,
leveraging the existing dynamics of the vast majority
of Internet-deployed transports. We show how the sig-
nal applies to measurement of both TCP and to QUIC
through implementation of the signal in endpoint trans-
port stacks. We also provide a high-performance mea-
surement implementation for the signal using the Vector
Packet Processing (VPP) framework. Evaluation on em-
ulated networks and in an Internet testbed demonstrate
the viability of the signal, and show that it is resistant to
even large amounts of loss or reordering on the measured
path.

CCS Concepts
•Networks→ Network measurement; Transport proto-
cols;

1. INTRODUCTION
Round Trip Time (RTT) is a key metric in Internet mea-

surement for network operations and research. This mea-
surement is often performed actively, through the venerable
ping utility. However, due to the overhead that large-scale
active measurement introduces, measuring latency at scale
remains an area of active research [7]. Passive RTT measure-
ment can reduce these overheads, but is limited to transport-
specific approaches, such as those that utilize Transmission

Control Protocol (TCP) timestamps [15] or exploit the prop-
erties of commonly deployed congestion and flow control al-
gorithms [3].

In this work, we introduce the latency spin signal as a
transport-independent, more efficient, and simpler refine-
ment of the timing information primitive provided by TCP
timestamps. The latency spin signal requires three bits per
packet and adds negligible complexity to endpoint code, but
allows any on-path observer to extract the end-to-end RTT
from a flow with minimal state requirements. Its design fol-
lows the “Principles for Measurability in Protocol Design”
proposed by Allman et al. [1], aiming to provide an explicit,
visible, in-band and cooperative signal for passive two-way
latency measurement. The signal does not change trans-
port protocol dynamics, nor does it require the transmission
of packets that would otherwise not be sent by the proto-
col. It additionally allows endpoints to signal that a packet
is “delayed” (e.g. because the application protocol had no
data to send), a problem that leads to issues with existing
passive RTT measurement techniques [5]. More specifically,
assuming a transport protocol that generates feedback at
least once per RTT – an assumption that holds for the vast
majority of Internet traffic – an observer can extract one
RTT sample per RTT, whether observing one or both sides
of the flow.

Explicit support for passive measurability is especially im-
portant in the case of QUIC – a new, encrypted transport
protocol originally designed by Google that is currently un-
der standardization in the IETF. Google’s deployment of
a previous version of QUIC reached 35% of its external
traffic by the end of 2016 [9]. Though encapsulated in a
UDP header for deployability reasons, QUIC provides relia-
bility and congestion control comparable to TCP, and adds
features such as stream multiplexing for better support of
HTTP traffic. It also integrates TLS deep into its machinery,
running transport and security handshakes simultaneously,
and encrypting not only its payload but also as much as
possible of the transport control information. This makes it
fundamentally different from a passive measurement stand-
point: most of the information used by passive measure-
ment approaches for TCP is simply not visible to on-path
observers.

For example, while QUIC still uses acknowledgment (ACK)-
based feedback for reliability and congestion control, packets
carrying ACK information are indistinguishable from other
packets, as the ACK information is carried in the encrypted
part of the packet. During an active QUIC connection, pack-
ets flow in both directions as in TCP, however, there is no

way to correlate a packet in one direction with the packet
that triggered it in the opposite direction, as it can be done
with sequence and acknowledgement numbers in TCP. The
latency spin signal adds this correlation ability back to the
network-visible portion of the QUIC header [16, 17]. Though
the ACK remain invisible, the fact that QUIC produces a
minimum amount of feedback during each RTT for conges-
tion control purposes ensures that that the spin signal is
trigged once per RTT and thereby exposed the flow’s cur-
rent RTT to passive observers.

The latency spin signal is also useful in TCP, as the in-
formation it exposes has comparable utility on the wire to
TCP timestamps, with much less overhead and less inadver-
tent information exposure. As the spin signal is independent
of the internal transport machinery, it is less likely to lead
to ossification and, in contrast to timestamps, it does not
expose enough information about each endpoint’s clock to
lend itself to fingerprinting [19]. For passive RTT measure-
ments, the latency spin signal therefore represents a more
privacy-friendly method than the current state of the art.

We evaluate the latency spin signal with implementations
of the signal both in QUIC and TCP. Experimentation with
the QUIC implementation focuses on an emulated environ-
ment, as QUIC’s design and the maturity of implementation
is in a state of rapid flux due to the standardization process.
Experimentation with TCP focuses on results on the open
Internet from a variety of access networks.

With this paper, we make the following contributions:

• The definition of a novel and efficient method to signal
per flow RTT together with approaches to passively
measure this signal.

• The implementation of the latency spin signal in an
open-source QUIC library1 (implementing the draft-
05 version of QUIC) as well as in the Linux kernel’s
TCP stack2.

• The implementation of a device based on the Vector
Packet Processing (VPP)3 library that uses the latency
spin signal to measure application RTT.

• The evaluation of a QUIC latency spin signal against
related approaches in a wide variety of emulated net-
work conditions.

• The evaluation of a TCP latency spin signal against
TCP timestamps in an Internet testbed.

2. MECHANISM
The latency spin signal is composed of two parts: a spin

bit that changes onces every RTT, and a 2-bit VEC that
indicates the validity of the latency information between two
spin bit toggle events which are called edges. These three
bits appear on every packet sent by each side of a transport
connection. The generation of the signal does not require
the generation of additional packets not otherwise sent by
the transport, and does not interfere with the transport’s
own transmission scheduling algortihms. The mechanism is

1https://github.com/pietdevaere/minq
2https://github.com/mami-project/three-bits-suffice
3https://fd.io/technology/

1 spinnext, vecnext, tlast, PNmax ← 0, 1, 0, 0

2 Function OnPacketReceive():
3 if PN > PNmax then
4 if spinnext 6= spinrcv then
5 vecnext ← min(vecrcv + 1, 3)
6 tlast ← tsys
7 if is client then spinnext ← ¬spinrcv

8 else spinnext ← spinrcv

9 PNmax ← PN

10 Function OnPacketSend():
11 spinsnd ← spinnext

12 if tsys − tlast > delaymax then
13 vecsnd ← min(vecnext, 1)

14 else vecsnd ← vecnext

15 vecnext ← 0
Algorithm 1: Logic of the spin signal. tsys is the current
system time, PNmax the currently highest packet number.

(a) Client initiates connec-
tion

(b) Server echos spin

(c) Client inverts spin (d) Packet gets reordered

(e) Server echos spin (f) Reordered packets are
ignored

Figure 1: The spin bit mechanism: arrows indicate spin
values, filled packets have a non-zero VEC value, and dashed
lines indicate reordered packets.

lightweight, and can be added to a transport protocol with
minimal effort4.

2.1 The spin bit

The spin bit itself is the part of the spin signal that is used
to actually monitor the RTT of a flow, as it is toggling once
per RTT. A passive on-path observer can log the period
between two transitions and thereby extract a flow’s RTT.

This toggling behavior is illustrated in Figures 1(a) to 1(c).
When the client initiates a connection, it will start sending
packets with spin 0 (Figure 1(a)). Once the server starts
sending packets, it will echo back the spin value it last re-
ceived from the server (Figure 1(b)). Conversely, once the
client receives a packet from the server, it will set the spin
of its outgoing packets to the opposite of the spin value it
last received from the server (Figure 1(c)). This asymmet-
ric behavior will cause the transition point of the spin values
to ‘spin’ through the network, resulting in exactly one spin
edge per RTT at any point in the network and thereby ex-

4Our addition of the signal to minq touched approximately
80 lines of code.

Time

01⬇
00⬇
00⬇ 10⬇

00⬇

11⬆
00⬆
00⬆

01⬇
00⬇

(a) Increment VEC
(with edge loss)

Time

>ΔT

11⬇

11⬇

01⬆

(b) Reset VEC on in-
valid edge

Figure 2: The VEC mechanism: VEC values are represented
in binary format; spin values as arrows.

Table 1: Overview of VEC values and usage.

01 10 11 Spin bit transition can be used as

X X X Start of an RTT measurement
X X End of an RTT component measurement

X End of an RTT measurement

posing the flow’s RTT between two edges. Furthermore,
when logging the duration between two edges on different
flow directions, the delays from the observation point up-
and downstream to each of the endpoints can be measured
separately — we refer to these as component RTT. This part
of the algorithm is described in Lines 1, 7, 8 and 11 (yellow)
of Algorithm 1.

In order to provide resilience to packet reordering (Fig-
ure 1(d)), the algorithm ignores all packets that were re-
ceived out of order. Figures 1(e) and 1(f) illustrate how this
mechanism removes distortions in the spin bit sequence. In
Lines 3 and 9 (green) of Algorithm 1 we assume that every
packet has a unique, in-order sequence number (PN) which
is at least visible to the endpoints, such as the sequence
number in TCP or packet number in QUIC.5

2.2 The Valid Edge Counter (VEC)
While the endpoints can trivially detect reordering by ob-

serving the packet sequence number, this does not always
hold for on-path observers, as sequence information may be
encrypted (as it is the case with the QUIC packet number).
An observer considering only the spin bit would then incor-
rectly report two very short RTT samples when observing a
reordered packet, as illustrated in Figure 1(d). To address
this problem, we introduce the VEC, a two bit signal that
explicitly marks packets that carry a valid spin bit edge set
by the endpoint, and increases its value with the number of
non-distorted transitions of the spin signal. Figure 2(a) il-
lustrates this mechanism which is described in Lines 4, 5, 14
and 15 (blue) of Algorithm 1. Non-edge packet carry a VEC
of zero. All spin edge carry a nonzero VEC value, which is
set either to one plus the VEC value of the packet that trig-
gered the edge transision or at maximum three. Thereby,
the VEC indicates the number of network transitions dur-

5The correctness of the spin bit is shown in the following
thesis report [4].

ing which the spin signal has not been distorted. Observers
can use this information to decide if a spin edge can be used
to begin or end an RTT measurement as shown in Table 1.
As an example, a VEC of two (‘10’) can either be used to
start a new RTT measurement or end a RTT component
measurement as it indicates two network transitions during
which the spin signal was not distorted. With this mecha-
nism, even an observers that can only monitor one direction
of a flow can also detect distortions that occurred in the
other flow direction. In Section 3.1 we compare component
and full RTT measurements in more detail.

As observers estimate the validity of their measurements
based on the VEC, the end hosts can also use the VEC to
signal when they know that the spin bit does not carry valid
RTT information. This situation occurs when an endpoint
introduces excessive delay between receiving and transmit-
ting a packet carrying a spin edge (e.g. because of application-
limited traffic). This is done by the remaining (uncolored)
lines in Algorithm 1, and is illustrated in Figure 2(b). The
endpoint will reset the VEC to its initial value of ‘01’.

Endpoints can also explicitly indicate that they have opted
out of RTT measurement by setting the VEC to ‘00’ on all
packets, or control the sample rate by probabilistically mark-
ing an otherwise non-‘00’ edge as ‘00’.

2.3 Efficient Passive Measurement of the La-
tency Spin Signal

Our passive observer implementation is based on Vector
Packet Processing (VPP)6, a library for high-speed packet
processing in userspace. Our plugin adds a node to VPP’s
packet processing graph that processes all traffic in four
steps: (i) detecting spin-enabled transports, using User
Datagram Protocol (UDP) port pairs to detect QUIC, and
the spin bit in the SYN to detect TCP (as in Section 4) with
the spin signal7; (ii) retrieving or creating state for the
observed spin-enabled flows using the 5-tuple as hash key;
(iii) extracting the measurement bits from the header; and
(iv) estimating RTT using the spin bit, VEC and the pre-
vious values from the flow state. Our implementation either
writes per-packet RTT estimations to a file or alternatively
live stats of all active flows can be retrieved using CLI com-
mands (sudo vppctl spinbit stat).

Our observer implementation tracks flows based on the
5-tuple (source and destination Ip address and port as well
as IP protocol number) which results in 13 bytes of state for
IPv4-based flows (37 bytes for IPv6). In addition, the ob-
server saves the initial source port (2 bytes) to identify the
direction of the observed VEC, the current spin bit value
(1 bit) as well as the start time of the current RTT mea-
surement and the previous RTT value. In our implementa-
tion, we use two 64 bit variables to save these time values.
Rounding up, we need 32 bytes to measure the RTT of one
IPv4 flow, allowing an on-path device to measure the RTT
of roughly 32k concurrent flows per megabyte of memory.

The observer is also very lightweight in terms of computa-
tional complexity. Each observed packet results in retrieval
of associated flow state (e.g. via hash table lookup), fol-
lowed by at most three boolean comparisons to determine
the direction of the packet, to find a new spin bit value and
to validate the spin transition based on the observed VEC

6https://fd.io/technology/
7Note that our observer monitors all TCP traffic, for com-
parison with timestamp-based RTT measurements.

value. In case of a valid transition, we either save the start-
ing time or perform a single subtraction of two 64 bit values
to compute the observed RTT.

2.4 Sample Rate Analysis
The VEC increases the accuracy of the signal by allowing

observers to reject spin bit transitions that may result in
bad samples. In other word, it trades off sample rate for
accuracy. More precisely, given independent random packet
loss and reordering probabilities pL and pR and average flow
RTT RTT, Equation (1) gives a first order approximation
of the sample rate per flow direction.

sample rate =
(1− pL)3(1− pR)3

RTT
(1)

The numerator of Equation (1) represents the probability
that an endpoint generated spin transition caries a VEC
value of 3. That is, the probability that the spin signal has
not been disturbed by loss or reordering for at least three
network transitions. When measuring component RTTs, the
numerator is be squared rather then cubed.

Equation (1) shows once more that the maximal number
of RTT samples per RTT is limited to one (zero loss and
reordering probability) which enables an observer to track
changes in RTT due to e.g. congestion control adaptations
but at the same time filters out high frequency oscillations.

Of course the sample rate has an additional upper bound
of the sending rate of the underlying transport, as the la-
tency spin signal does not change the traffic pattern. This is
a property of all passive latency measurement: one cannot
measure what’s not there.

3. THE LATENCY SPIN SIGNAL IN QUIC
We added the latency spin signal to an open source QUIC

implementation. Because the QUIC header format was in
constant flux when we did these experiments, and for flexi-
bility of experimentation, we added an additional measure-
ment byte to the header. This byte carried — along with
other experimental signals — the spin bit and VEC. Because
a flow’s initial RTT can be measured based on handshake
semantics, the spin signal is only carried in the QUIC short
header (i.e. any packet after the initial QUIC version and
key negotiation which uses long headers).

3.1 Evaluation: Accuracy and Sample Rate in
Emulated Networks

We evaluated the QUIC implementation, enhanced with
the latency spin signal, on an emulated network using Mininet [10].
The emulated network has a base RTT (propagation de-
lay without queuing) of 40 ms (which we take as a typical
regional-continental internet RTT given the growing impor-
tance of content-delivery networks). In each of our tests, a
client continuously uploads data to a server with a constant
rate below the maximum link capacity, while various im-
pairments are introduced to the network. We only present
the results for non-adaptive traffic in this paper, as high loss
rates or high degrees of reordering reduces the sending rate
of adaptive traffic to a minimum, making the impact of these
impairments less visible.

We implemented four mechanisms to passively observe the
RTT, for comparison purposes:

Spin bit The observer monitors only the spin bit to get a
base measurement to rate the impact of reordering and loss.

Packet number The observer uses packet sequence infor-
mation to rejects reordered packets, similar to Algorithm 18.

Heuristic The observer monitors only the spin bit, but re-
jects RTT samples below one tenth of the current estimate.

VEC The observer observes the full spin signal, i.e. spin
bit and VEC, and rejects invalid edges based on the VEC
value.

The quality of the spin signal is evaluated using two met-
rics: error relative to client estimated RTT as per RFC
6298 [13], and the number of samples obtained per RTT.
Furthermore, we also consider how many samples can be
taken by the VEC observer when down- and upstream de-
lay or component RTTs are measured separately. Because
our observers can see both flow directions, they should ide-
ally measure two samples (one for each direction) per RTT.
However, spin bit transitions with VEC values below two
can lower the sample rate, while superfluous transitions can
increase it incorrectly.

3.1.1 Packet reordering
We first evaluate the tolerance of the spin signal to packet

reordering. We use NetEm [8] to randomly delay a config-
ured fraction of packets by 1 ms. The results are shown
in Figure 3.

Figure 3(a) shows the distribution of the RTT estimation
error at a 10% reordering rate. It can be seen that the
spin-bit-only observer often produces RTT estimates with
an error around -40 ms. As this corresponds to the net-
work’s RTT, this means that many near zero RTT samples
are taken. As can be seen in Figure 1(d), this is exactly what
is to be expected, as reordered packets cause rapid transi-
tions in the spin bit signal. Although this is a problem for
the basic spin bit observer, at this reordering rate, all other
observers are able to filter out this effect. However, as can
be seen in Figure 3(b), this does not hold anymore for higher
reordering rates. That is, for reordering rates above 10 %
the accuracy of the heuristic observer starts to deteriorate.

Although their error performance is similar, the VEC and
packet number observers are fundamentally different: when
the spin signal is disturbed, the VEC observer will drop
the sample, avoiding all samples that could lead to incor-
rect measurements. On the other hand, the packet number
observer continues to take RTT samples, leading to addi-
tional error in the sample. This effect is very pronounced
in Figure 3(c). This figure also shows that the VEC observer
rejects less samples when the up- and downstream RTTs are
measured separately as we can additionally use spin bit tran-
sitions with VEC values of two (compare Table 1).

3.1.2 Packet loss
To evaluate loss tolerance, we configured NetEm to emu-

late burst loss using the simple Gilbert model [6]. The good
reception periods have an average length of 100 packets. The
average length of the loss bursts is varied. The results are
shown in Figure 4.

Figure 4(a) shows that loss leads to overestimated RTTs.
This is because when a packet carrying a spin edge is lost,
the RTT measurement is not stopped until the next packet

8At the time of our experiments, QUIC’s packet numbers
were exposed in the unencrypted QUIC header. However,
at the time of this writing, the QUIC Internet-Drafts specify
encrypted packet numbers.

50 40 30 20 10 0 10
Observer estimate client estimate [ms]

0.00

0.25

0.50

0.75

1.00
EC

DF
Spin bit
Packet number
Heuristic
VEC

(a) Empirical Cumulative Distribution
Function (ECDF) for a 10% packet re-
ordering rate.

0 10 20 30 40
Packet reordering rate [%]

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 sa

m
pl

es
wi

th
 |e

rro
r|

<
10

 m
s

(b) The error in the observed RTTs for
increasing reordering rates.

0 10 20 30 40
Packet reordering rate [%]

1

2

3

Sa
m

pl
es

 p
er

 R
TT

VEC half-RTT

(c) The normalized number of RTT
samples for increasing reordering rates.

Figure 3: The effects of reordering on spin bit based RTT measurements of a flow with a 40 ms RTT.

10 0 10 20 30
Observer estimate client estimate [ms]

0.00

0.25

0.50

0.75

1.00

EC
DF

Spin bit
Packet number
Heuristic
VEC

(a) ECDF for an average burst length
of 10 packets.

0 5 10 15 20
Average burst length [packets]

0.8

0.9

1.0

Fr
ac

tio
n

of
 sa

m
pl

es
wi

th
 |e

rro
r|

<
10

 m
s

(b) The error in the observed RTTs for
increasing loss burst lengths.

0 5 10 15 20
Average burst length [packets]

0.5

1.0

1.5

2.0

Sa
m

pl
es

 p
er

 R
TT

VEC half-RTT

(c) The normalized number of RTT
samples for increasing loss burst
lengths.

Figure 4: The effects of burst loss on spin bit based RTT measurements of a flow with a 40 ms RTT.

with the new spin bit value is observed. The long tail in the
ECDF is caused by retransmission timeouts. Because these
timeouts are significantly larger than the network’s RTT,
they also reduce the number of RTT samples that can be
taken, as can be seen in Figure 4(c). Looking at Figure 4(b),
we see that only the VEC observer remains accurate under
burst loss, as the VEC indicates that the spin signal has
been disturbed, allowing the observer to reject the incorrect
samples.

4. THE LATENCY SPIN SIGNAL IN TCP
The latency spin signal was originally designed to ensure

that passible latency measurements remain possible when
using encrypted transport headers. However, its simplicity
and low overhead make it a suitable transport-independent
and explicit signal, regardless of whether or not encryption
is used. To demonstrate this, we added the signal to TCP.
Though TCP already supports passive RTT measurement
through the timestamp option [15], this approach is less effi-
cient (requiring eight bytes per packet, ten including options
overhead; as opposed to three bits for the latency spin signal,
or three bytes if implemented as a separate TCP option).

In addition to these efficiency gains, the VEC’s ability to
signal known bad samples addresses accuracy issues related
to acknowledgment optimizations in modern TCP imple-
mentations [5]. Furthermore, the timestamp option exposes
much more information about the operation of the endpoint
than it appears at first glance. TCP implementations sim-
ply drive the timestamp signal from the kernel’s interrupt
counter, and different endpoints generally have a character-
istic clock drift which can be used to determine which ad-
dresses belong to the same endpoint [14] and to fingerprint
endpoints [19]. In addition, discontinuities in the timestamp
sequence over long periods of time can be used to detect re-

boots or equivalent node replacements [2]. Currently, end-
points wishing to avoid these inferences have no choice but
to disable timestamps, losing passive RTT measurability at
the same time.

To explore the applicability of the latency spin signal to
TCP, we implemented the signal in a patch for Linux 4.9
and 4.15, using the the three reserved flag bits in the TCP
header for the spin bit and the VEC.

Compared to QUIC the TCP spin signal also appears on
handshake packets. The client initializes the spin value to
one on initiation, in order to quickly detect issues arising
from the use of the reserved bits during experimentation. In
addition, only packets with a sequence number greater than
or equal to the last seen (as opposed to the maximum packet
number) are considered. Our passive measurement device
(Section 2.3) required only minimal changes to support TCP
as well, accounting only for the fact that the bits are found
at a different offset in a different header.

4.1 Evaluation: Comparing Spin and TCP Times-
tamp RTT Measurement

We deployed virtual machines running our patched Linux
kernel on cloud nodes in seven networks with a global dis-
tribution9 on 25 May 2018, and set up a simple test web
server10 on each of them. All traffic between these nodes was
routed through an observation node running our VPP code
in our local, on-campus infrastructure11. This approach al-

9DigitalOcean VMs in regions NYC1, SFO2, AMS3, SGP1,
BLR1, FRA1, and LON1

10see https://github.com/mami-project/three-bits-suffice
11This routing was achieved by two-way network address
translation on the machine running the VPP measurement
observer, and has the effect of composing n×m paths from
each access network via ETH to each cloud network.

50

60

70

80
RT

T
[m

s]
a) DC to DCa) DC to DC TCP timestamps Spin signal

40

60

80

100

RT
T

[m
s]

b) Wired home network to DCb) Wired home network to DC

0 20 40 60 80 100 120
Time [s]

0

500

1000

RT
T

[m
s]

c) Wireless home network to DCc) Wireless home network to DC

Figure 5: Spin- vs. TS-based RTT estimation over time.

lows us to verify mid-path passive measurability while still
maintaining diverse link characteristics on legs from and to
our midpoint. From these measurements we have 49 traces
of 120 seconds each.

In addition, we accessed each server from five access net-
works in Europe12, also steering traffic past our measure-
ment node. On those networks where both wired and wire-
less endpoint connections were possible, we measured both.
This yielded 53 additional traces.

In Figure 5, we illustrate the operation of the latency spin
signal using traces of three examples of RTT measurements
taken using the latency spin signal, compared to per-packet
RTT measurements taken using TCP timestamps (TS). Sub-
figure (a) shows a typical inter-datacenter trace: the spin
signal measurement stays fairly close to the minimum of
the noisier TS measurement. Subfigure (b), taken from a
node connected via Ethernet to a residential access router,
shows a more typical situation with larger buffers. Subfigure
(c), from a wireless network with a bad case of bufferbloat,
shows an extreme situation with high delay and moderate
loss. Here, the latency spin signal’s sample rate reduces as
the RTT increases; yet, it still provides accurate enough in-
formation for rough intra-flow measurement.

Overall the relative errors between VEC- and TS-based
RTT measurements are small. As we do not have ground
truth for the end-to-end latency, we compare each TS-based
RTT sample to the latest value derived from the spin sig-
nal. As shown in the right-side (red) boxplots in Figure 6,
the median error for the inter-datacenter measurements is
-0.03% and -0.04% for the wired access case. For wireless
access, we observed a slightly higher median error of 1.04%,
because the spin signal overestimates the RTT measured by
TS. However, in wireless networks RTT is highly variable
and in some measurement runs we also observed fewer valid
samples due to reordering or loss. As shown by the left-side
(white) boxplots, the median number of samples per esti-
mated average RTT for wireless runs is still high with 1.94,
compared to 1.97 for the data center case. In the wired
case, one of our access nodes experienced a high amount of
packet reordering, probably due to traffic shaping, which led
to a relatively high number of invalid VEC edges and a me-
dian sample rate of 1.82 with high variance. This shows the
expected behavior: invalid samples are filtered out.

12We note that at least one of the involved access routers per-
formed TCP header manipulation that resulted in a man-
gled latency spin signal. Handling edge cases in on-path
TCP manipulation is a matter for future work.

a) DC to DC b) Wired to DC c) Wireless to DC
0.0

0.5

1.0

1.5

2.0

Sa
m

pl
es

 /
RT

T

10

5

0

5

10

Er
ro

r [
%

RT
T]

Figure 6: Sample rate per RTT (left plot/axis) and rel-
ative error between VEC- and TS-based estimation (right
plot/axis).

5. CONCLUSION
In this paper, we presented a three-bit latency spin signal,

explicitly enabling comparable passive RTT measurement
for both TCP and QUIC. Though this signal is necessary in
QUIC, to replace information lost through encryption of the
transport headers with respect to TCP, we show that it is
also a useful enhancement to TCP, providing equivalent pas-
sive RTT accuracy at a lower sample rate than timestamp-
based passive measurements, with lower overhead and less
potential for endpoint fingerprinting. As this is initial work
on an overarching approach to protocol measurability in the
spirit of Allman et al [1], we now look to future develop-
ments. The signal has a few limitations to address, which
ongoing work is focused on.

First, the simple RTT sample generation method sug-
gested by Table 1 will reject any RTT samples that experi-
enced a lost or reordered edge within 1.5 RTT, which may
result in an unacceptably low sample rate for precisely those
flows with interesting problems to debug. Simple heuristics
at the observer may allow edges with VEC 1 and 2 to be
used to generate full RTT samples, decreasing the impact of
loss and reordering on the sample rate.

Our implementation of the signal on TCP uses three re-
served bits in the TCP flags word; we chose this approach
as opposed to TCP options for reasons of efficiency, ease of
implementation, and comparable deployability of formerly
reserved flags [18] and new options [11, 12]. While our initial
experimentation noted no stripping of these bits or dropping
of packets based on them, middleboxes that handle these
bits in ad-hoc ways could lead to duplication of signals or
other oddities that a production-ready TCP implementation
would need to detect and correct.

As the signal is intentionally separate from the rest of
the transport machinery, any endpoint can simply refuse
to participate without negative consequences for end-to-end
connectivity. Any plan for Internet-scale deployment of the
signal on endpoints must therefore consider the incentives
for endpoints to participate by generating the signal.

Looking toward deployment, the Internet Engineering Task
Force (IETF) QUIC working group has approved experimen-
tation with the spin bit. Two independent implementations,
including one from a major operating system vendor, have
support for the spin bit, and one telecommunications opera-
tor and one network equipment vendor are actively working
on experimental measurements using the signal.

Acknowledgments: The one-bit portion of the latency spin

signal was initially proposed for QUIC by Christian Huitema, fol-

lowing discussions at the June 2017 interim meeting of the IETF

QUIC Working Group in Paris. Thanks to Christian and the

QUIC WG for input on the design leading to the mechanism de-

scribed in this paper. Thanks to Manya Ghobadi, our shepherd,

and the anonymous reviewers for their feedback, which signifi-

cantly improved the paper. This project has received funding

from the European Union’s Horizon 2020 research and innovation

program under grant agreement No 688421, and was supported

by the Swiss State Secretariat for Education, Research and Inno-

vation (SERI) under contract number 15.0268. The opinions ex-

pressed and arguments employed reflect only the authors’ views.

The European Commission is not responsible for any use that may

be made of that information. Further, the opinions expressed and

arguments employed herein do not necessarily reflect the official

views of the Swiss Government.

6. REFERENCES
[1] Allman, M., Beverly, R., and Trammell, B.

Principles for Measurability in Protocol Design.
SIGCOMM Comput. Commun. Rev. 47, 2 (May
2017), 2–12.

[2] Beverly, R., Luckie, M., Mosley, L., and
Claffy, K. Measuring and Characterizing IPv6
Router Availability. In Passive and Active
Measurement (Brooklyn, USA, 2015), J. Mirkovic and
Y. Liu, Eds., Springer International Publishing,
pp. 123–135.

[3] Carra, D., Avrachenkov, K., Alouf, S., Blanc,
A., Nain, P., and Post, G. Passive Online RTT
Estimation for Flow-Aware Routers Using One-Way
Traffic. In Proceedings of NETWORKING 2010
(Chennai, India, 2010), M. Crovella, L. M. Feeney,
D. Rubenstein, and S. V. Raghavan, Eds.,
pp. 109–121.

[4] De Vaere, P. Adding Passive Measurability to
QUIC. Master’s thesis, ETH Zürich, 2018.

[5] Ding, H., and Rabinovich, M. TCP Stretch
Acknowledgements and Timestamps: Findings and
Implications for Passive RTT Measurement.
SIGCOMM Comput. Commun. Rev. 45, 3 (July 2015),
20–27.

[6] Gilbert, E. N. Capacity of a burst-noise channel.
The Bell System Technical Journal 39, 5 (Sept 1960),
1253–1265.

[7] Guo, C., Yuan, L., Xiang, D., Dang, Y., Huang,
R., Maltz, D., Liu, Z., Wang, V., Pang, B.,
Chen, H., Lin, Z.-W., and Kurien, V. Pingmesh: A
Large-Scale System for Data Center Network Latency
Measurement and Analysis. In Proceedings of the 2015
ACM SIGCOMM Conference (New York, NY, USA,
2015), SIGCOMM ’15, ACM, pp. 139–152.

[8] Hemminger, S., et al. Network emulation with
NetEm. In Linux conf au (2005), pp. 18–23.

[9] Langley, A., Riddoch, A., Wilk, A., Vicente,
A., Krasic, C., Zhang, D., Yang, F., Kouranov,
F., Swett, I., Iyengar, J., Bailey, J., Dorfman,

J., Roskind, J., Kulik, J., Westin, P., Tenneti,
R., Shade, R., Hamilton, R., Vasiliev, V.,
Chang, W.-T., and Shi, Z. The QUIC Transport
Protocol: Design and Internet-Scale Deployment. In
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (Los Angeles,
CA, USA, 2017), SIGCOMM ’17, ACM, pp. 183–196.

[10] Lantz, B., Heller, B., and McKeown, N. A
Network in a Laptop: Rapid Prototyping for
Software-defined Networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in
Networks (New York, NY, USA, 2010), Hotnets-IX,
ACM, pp. 19:1–19:6.

[11] Paasch, C. Network support for TCP Fast Open.
Presentation at NANOG 67, January 2016.

[12] Raiciu, C., Paasch, C., Barre, S., Ford, A.,
Honda, M., Duchene, F., Bonaventure, O., and
Handley, M. How Hard Can It Be? Designing and
Implementing a Deployable Multipath TCP. In
Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (San
Jose, CA, 2012), NSDI’12, USENIX Association,
pp. 29–29.

[13] Sargent, M., Chu, J., Paxson, D. V., and
Allman, M. Computing TCP’s Retransmission
Timer. RFC 6298, June 2011.

[14] Scheitle, Q., Gasser, O., Rouhi, M., and Carle,
G. Large-scale classification of IPv6-IPv4 siblings with
variable clock skew. In Network Traffic Measurement
and Analysis Conference, TMA 2017, Dublin, Ireland,
June 21-23, 2017 (2017), pp. 1–9.

[15] Strowes, S. D. Passively Measuring TCP Round-trip
Times. Queue 11, 8 (Aug. 2013), 50:50–50:61.

[16] Trammell, B. A Transport-Independent Explicit
Signal for Hybrid RTT Measurement. Internet-Draft
draft-trammell-tsvwg-spin-00, IETF Secretariat, July
2018. http://www.ietf.org/internet-drafts/
draft-trammell-tsvwg-spin-00.txt.

[17] Trammell, B., and Kuehlewind, M. The QUIC
Latency Spin Bit. Internet-Draft
draft-ietf-quic-spin-exp-00, IETF Secretariat, April
2018. http://www.ietf.org/internet-drafts/
draft-ietf-quic-spin-exp-00.txt.

[18] Trammell, B., Kühlewind, M., Boppart, D.,
Learmonth, I., Fairhurst, G., and
Scheffenegger, R. Enabling Internet-Wide
Deployment of Explicit Congestion Notification. In
Passive and Active Measurement (Brooklyn, USA,
2015), J. Mirkovic and Y. Liu, Eds., Springer
International Publishing, pp. 193–205.

[19] Zander, S., and Murdoch, S. J. An Improved
Clock-skew Measurement Technique for Revealing
Hidden Services. In Proceedings of the 17th Conference
on Security Symposium (San Jose, CA, 2008), SS’08,

USENIX Association, pp. 211–225.

