
ETH Library

Dynamic simulation of legged
robots using a physics engine

Conference Paper

Author(s):
Belter, Dominik; Skrzypczyński, Piotr; Walas, Krzysztof; Fankhauser, Péter; Gehring, Christian; Hutter, Marco ; Hoepflinger, Mark
A.; Siegwart, Roland

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-a-010173667

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1142/9789814623353_0066

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-4285-4990
https://doi.org/10.3929/ethz-a-010173667
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1142/9789814623353_0066
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


April 17, 2014 21:34 WSPC - Proceedings Trim Size: 9in x 6in main

1

DYNAMIC SIMULATION OF LEGGED ROBOTS

USING A PHYSICS ENGINE

D. Belter, P. Skrzypczyński, K. Walas

Institute of Control and Information Engineering, Poznan University of Technology,

Poznan, 60-965, Poland

E-mail: dominik.belter@put.poznan.pl

www.put.poznan.pl

P. Fankhauser, C. Gehring, M. Hutter, M. A. Hoepflinger, R. Siegwart

Autonomous Systems Lab, ETH Zurich

Zurich, 8092, Switzerland

E-mail: pfankhauser@ethz.ch

This article presents an application for dynamic simulation of legged robots

based on a physics engine. In the presented application an iterative solver

is supported by analytical equations of the dynamics and software modules

for collision detection, environment modeling and visualization. The presented

application of the simulator allows for development and verification of control

algorithms before their implementation on the real robot.

Keywords: Legged robot; dynamic simulation; motion control

1. Introduction

Legged robots are complex mechatronics systems and the development of

motion control methods on a real walking robot requires significant effort.

The behavior of a legged robot is difficult to control because predicting

the interaction with the environment is notoriously challenging. Inaccurate

models of the ground might cause the robot to slip and fall, which can

damage the mechanics and electronics of the systems. The necessary main-

tenance effort is often very high and introduces significant delays in the

development process.

In another aspect, a well functioning control system requires reliable

information feedback from a multitude of sensors. The higher the quality

of the acquired map of the environment is, the better the control strat-

egy can perform. Additionally, the robot is required to localize itself in the



April 17, 2014 21:34 WSPC - Proceedings Trim Size: 9in x 6in main

2

environment in order to generate suitable motion. Both, localization and

mapping, are complex and still open research problems. We can avoid these

difficulties on the real robot by using an external motion capture system

which, however, only works in limited areas. By using a simulator of the

dynamics, one can focus on the development of control methods and miti-

gate the problems of self-localization and mapping6. Moreover, it is possible

to develop mapping algorithms with the simulator since the ground truth

data is easily available for the simulated system.

The advantages of working with a simulation of the dynamics are mul-

tifold. Besides protecting the real robot from damages during experiments

and providing ground truth data whenever required, a sufficiently fast sim-

ulator enables to run multiple simulation experiments in a short amount

of time to verify research hypotheses before the implementation on the

real robot. This can tremendously accelerate the research and development

phase of the robot control system.

The basis for simulating the dynamics of the system are mathematical

models, which for legged robots are generally nonlinear and discontinuous

due to the kinematic setup, intermittent contacts with the ground, and

gear backlash. These equations of motion cannot be solved analytically

and therefore numerical methods are applied. The numerical integration

methods used by physics engines are based on the approximation of the

area under the derivative curves. Thus, the dynamic behavior of a robot

obtained from a physics engine is always a simplified model.

Physics engines originally found their main application as game engines,

animation and modeling software. They are able to simulate rigid and soft

body dynamics, particles and detect collisions between objects4. As the

physics engines have become more sophisticated they have also found their

application in science and engineering. In our work, we use an open source

physics engine to obtain a simulation of the dynamics of a legged robot in

interaction with its environment. We support the simulation by providing

the output of the controllers and behavior of passive elements.

This paper introduces our simulator for legged robots based on a physics

engine and we present the techniques which allow us to obtain stable and

reliable simulations.

1.1. State of the Art

Many commercial simulators that allow to model legged robots are avail-

able: Webots, Gazebo, Robotics Studio, USARSim9. Some of the most

popular physics engines are the Open Dynamics Engine (ODE), PhysX,



April 17, 2014 21:34 WSPC - Proceedings Trim Size: 9in x 6in main

3

MATLAB SimMechanics Toolbox and Bullet3,4. Each of these solutions

has specific advantages and disadvantages for certain applications. As we

design our robots with specific mechanical and electronic structure, we have

designed our own simulator to ensure better control on the implementation

details.

We base our simulator on ODE10, as it performs well considering the

stability of multi-body robotics systems3. ODE can be used to approximate

the physical behavior of a robot at high fidelity6, as it can simulate multi-

body dynamics and contacts with a soft contact model. Furthermore, a

collision detection tool and a visualization are provided within the software.

There is no Graphical User Interface (GUI) from ODE, which increases its

efficiency.

The ODE environment is often used to simulate legged robots (e.g.

Sony AIBO7). The representation of a robot in simulation often consists

of boxes, spheres, and capsules which are connected by rotational joints.

Modeling friction in the joints increases the accuracy of the simulation. To

model a servomotor in a joint, P and PID controller implementations are

provided, which makes the behavior of the simulated robot more realistic.

The physics simulation is separated from the visualization. In spite of the

simplified model used for physics modeling, an independent, detailed model

can be used for the visualization.

Some issues are specific to ODE’s simulation approach. It is known

for performing poorly when simulating certain types of contacts and fric-

tion. Precise tuning of the parameters of the environment, like friction and

ground softness, are necessary. Better accuracy can be obtained by de-

creasing the simulation time-step, which on the other hand decreases the

simulation speed. It was already shown by Tanev et al.11 that appropriate

tuning of the model parameters in ODE allows to simulate a system whose

movement is friction-based, such as that of a snake-like robot.

2. The Simulator

The simulator is characterized by the modular design as depicted in Fig. 1.

The physics simulation (Simulated World) is separated from the control

system of the robot (Robot Controller). This setup allows to send the output

from the robot controller to the simulated or/and to the real robot without

modifications. The robot controller contains all modules which are required

to control the real robot. This includes the mapping algorithm, motion

planning, low-level gait control and modules which support the control and

motion planning such as stability and collision checkers.



April 17, 2014 21:34 WSPC - Proceedings Trim Size: 9in x 6in main

4

Fig. 1. Software modules of the simulator

The visualization of the robot model and the dynamic world is imple-

mented with OpenGL routines. Appropriate visualization eases the obser-

vation of the robot’s behavior. The robots as well as the ground are drawn

with triangle mesh models (cf. Fig. 1 and Fig. 3A and B).

An advantage of the simulator is the possibility to know perfectly and

instantaneously the full state of the robot during the experiments. The same

ground-truth is difficult to obtain on the real robot in real environment.

A custom library records and visualizes the state of the robot (position

and orientation of the platform, leg trajectories, planned path, etc.). The

recorded data can also be plotted during execution of the simulation and

written to a file for further analysis.

2.1. Environment Model

The environment model is created using an elevation (grid) map. We use

maps which were created during experiments on the real robot or we provide

noise-free maps with artificial obstacles such as steps, bumps, and stairs.

The elevation map is converted to a triangle mesh model and used by

visualization, dynamics engine and collision detection module. The robot

controller uses the original elevation map to plan the motion of the robot.



April 17, 2014 21:34 WSPC - Proceedings Trim Size: 9in x 6in main

5

2.2. Robot Model

The geometry of the simulated robot is created by using simple box prim-

itives, which keeps the computation cost low. Simplification of the robot

model makes the simulation faster by reducing time consumed for colli-

sion checking. Despite the reduced complexity of the model, the simulation

results are still reliable.

A B

C D

Fig. 2. Messor and StarlETH robot models

The ODE model for two legged robots, namely the robots Messor12 and

StarlETH5, are presented in Fig. 2. Each link of the robots is represented

by a cube with proper mass and inertia and the links are connected by

rotary joints. Each actuator is modeled as a proportional controller, with

the output u defined as

u = k · (φref − φcurr), (1)

where φref is the desired joint position, φcurr is the current joint position,

and k is the controller gain. The controller gain values are determined

experimentally in such a way that a speed similar to that of the real robot



April 17, 2014 21:34 WSPC - Proceedings Trim Size: 9in x 6in main

6

motor is achieved. The maximal torque value is limited according to the

real system.

We use the mathematical description of the controller instead of ded-

icated servomotors model included in ODE because it allows for higher

flexibility. The simple control rule (1) is sufficient for the Messor robot

which is build using simple servomotors. StarlETH as well as the new Mes-

sor II have more complex drives and we are going to update the controllers

to better approximate the real actuators.

2.3. Collision Detection Module

A B

Fig. 3. CAD models of the robots used for visualization and collision detection

The simulator is equipped with two collision checking modules. The first

one is the embedded ODE collision detector and the second is a separate

collision checker used by the robot controller. The collision detection module

used by the robot controller uses a CAD model of the robot’s frame, which

is shown in Fig. 3. The same CAD model is used for the visualization of

the robots.

The CAD model is converted to a triangle mesh. When two bodies

with triangle mesh collide, there exists a line which is common for two

triangles. To detect a collision, the triangle-triangle intersection test from

the Oriented Bounding Box (OBB) algorithm is used8. It is fast and reliable

when used to detect collisions between parts of the robot (the model is fixed,

only its configuration may vary). However, collision detection between the

robot and the ground is significantly slower, because the ground model

changes as the robot walks over the terrain. Thus, the collision detection

module is used only to prevent self-collisions of the robot.



April 17, 2014 21:34 WSPC - Proceedings Trim Size: 9in x 6in main

7

3. Applications of the Simulator

3.1. Evolutionary Gait Optimization

We applied the simulator to a method which allows to evolutionary optimize

the gait of a six-legged robot1. The simulator is used to test various solutions

(trajectories of the robot) found by the algorithm. Each optimization trial

consists of thousands of simulations. In this case the simulation speed plays

an important role, as with the default configuration a single optimization

would have lasted for several weeks.

To reduce the simulation time we increase the integration step. However,

increasing the integration time step decreases the accuracy of the simula-

tion and can even render the simulation unstable. To solve the stability

problem and preserve accuracy of the simulation, we first optimize for the

parameters of the simulation, and moreover, for the physical parameters of

the robot1. As a result, the parameters of the simulated world and robot

model differ from the real parameters. However, the simulation is fast and

still sufficiently accurate such that the results obtained in the simulator can

be applied to the real robot.

3.2. Motion Planning and Navigation

The simulator is also used to develop motion planning and navigation meth-

ods for walking robots2. In this case, the reliability of the simulation is of

high importance. We obtain sufficient accuracy for an integration step of

0.1 ms. This decreases the simulation speed, but for this application the

simulator needs to be run only once to execute the planned path.

One of the modules used for motion planning is a foothold selection

module. We use the simulator to learn the behavior of the robot during

contact with terrain templates2. Such experiments are difficult to perform

and time-consuming on the real robot. To increase the interaction between

the foot and the terrain template, we decrease the friction coefficient of the

ground. As a result, the robot learns a conservative behavior which acts as

a safety margin on terrains with higher friction.

4. Conclusions

This paper presents a simulator of legged robots, which allows to model the

behavior of robots with different number of legs and different morphologies.

We demonstrated our approach for a six and a four-legged robot and for

different applications. We presented various techniques which enable effi-



April 17, 2014 21:34 WSPC - Proceedings Trim Size: 9in x 6in main

8

cient modeling of the system dynamics. We use our simulator to develop

new control methods dedicated to legged robots.

Currently, we are improving the models of the StarlETH and Messor II

robots in the simulator and continue to develop and verify different control

strategies. Our long-term goal is to develop motion planning algorithms

which take the dynamic properties of the robot into account.

References

1. Belter D, Skrzypczyński P, A Biologically inspired approach to feasible gait
learning for a hexapod robot, International Journal of Applied Mathematics
and Computer Science, Vol. 20(1), pp. 69-84, 2010

2. Belter D, Skrzypczyński P, Posture Optimization Strategy for a Statically
Stable Robot Traversing Rough Terrain, IEEE/RSJ 2012 International Con-
ference on Intelligent Robots and Systems, Vilamoura, Portugal, pp. 2204–
2209, 2012

3. Boeing A, Braünl T, Evaluation of real-time physics simulation systems. In
Proc. of 5th Int. Conf. on Computer Graphics and Interactive Techniques,
pp. 281–288, 2007

4. Hummel J, Wolff R, Stein T, Gerndt A, Kuhlen T, An Evaluation of Open
Source Physics Engines for Use in Virtual Reality Assembly Simulations, Ad-
vances in Visual Computing, Lecture Notes in Computer Science, Vol. 7432,
pp. 346-357, 2012

5. M. Hutter, C. Gehring, M. Bloesch, M. A. Hoepflinger, C. D. Remy, R. Sieg-
wart, StarlETH: A compliant quadrupedal robot for fast, efficient, and versa-
tile locomotion, Adaptive Mobile Robotics (N. Cowan et al., eds.), Singapore,
World Scientific, pp. 483–490, 2012,

6. Kutter O, Hilker C, Simon A, Mertsching B, Modeling and Simulating Mobile
Robot Environments, Proc. 3rd Int. Conf. on Computer Graphics Theory and
Applications, Funchal, Portugal, pp. 335–341, 2008

7. Laue T, Spiess K, Röfer T, Simrobot - a general physical robot simulator
and its application in RoboCup, RoboCup 2005: Robot Soccer World Cup
IX. Lecture Notes in Artificial Intelligence, pp. 173–183, Springer

8. Möller T, A Fast Triangle-Triangle Intersection Test, Journal of Graphics
Tools, vol. 2, pp. 25–30, 1997

9. E. Van Noort, A. Visser, Extending virtual robots towards robocup soccer
simulation and @home, In: Proceedings of the 16th RoboCup Symposium.
Lecture Notes on Artificial Intelligence, Springer, pp. 332–343, 2013

10. Smith R, Open Dynamics Engine, http://www.ode.org, January, 2014
11. Tanev I, Ray T, Buller A, Automated Evolutionary Design, Robustness, and

Adaptation of Sidewinding Locomotion of a Simulated Snake-Like Robot,
IEEE Transactions on Robotics, vol. 21(4), pp. 632–645, 2005

12. Walas K, Belter D, Messor – Versatile walking robot for search and rescue
missions, Journal of Automation, Mobile Robotics & Intelligent Systems,
vol. 5(2), pp. 28–34, 2011


