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Unsupervised Identification and Prediction of Foothold Robustness

M. A. Hoepflinger, M. Hutter, C. Gehring, M. Bloesch, and R. Siegwart,Fellow, IEEE

Abstract— This paper addresses the problem of evaluating
and estimating the mechanical robustness of footholds for
legged robots in unstructured terrain. In contrast to approaches
that rely on human expert knowledge or human defined criteria
to identify appropriate footholds, our method uses the robot
itself to assess whether a certain foothold is adequate or not.
To this end, one of the robot’s legs is employed tohaptically
explore an unknown foothold. The robustness of the foothold
is defined by a simple metric as a function of the achievable
ground reaction forces. This haptic feedback is associatedwith
the foothold shape to estimate the robustness of untouched
footholds. The underlying shape clustering principles aretested
on synthetic data and in hardware experiments using a single-
leg testbed.

I. I NTRODUCTION

Over the past years, legged robotics has made impressive
progress with respect to locomotion on irregular and highly
unstructured terrain. Walking systems have started to be able
to navigate in surroundings in which they can actually show
their inherent advantages in comparison to wheeled vehicles.
Such locomotion in rough terrain is extremely challenging
and poses a great number of problems in the areas ofplan-
ning, perception, andcontrol. For example, it requires sophis-
ticated balance controllers, adaptive gait patterns, as well as
reliable foothold selection methods. The latter is particularly
critical, since it determines the robustness and achievable
speed of legged locomotion in rough terrain. Groundbreaking
research results in this domain were recently achieved within
the DARPA Learning Locomotion Challenge. In this project,
the participants had to traverse a terrain sample with a small
quadrupedal robot (LittleDog from Boston Dynamics, [1]) as
fast as possible. The outcome of the competition therefore
strongly depended on the appropriate selection of footholds.
The small number of terrain samples anda priori knowledge
about the possible shape allowed to employ human expert
trained or off-line tuned foothold selection methods. One
team [2] used hard-coded, human defined criteria such as
distances between the foothold center and cliffs or holes, as
well as geometric properties that have been hand-tuned to
optimize the performance. Other methods characterized the
quality of footholds based on decisions of human experts.
In [3], for example, an approach is presented in which
a set of foothold templates and a corresponding ranking
function has been learned based on expert demonstrated
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footholds, and in [4], a number of pairs of terrain samples
have been evaluated against each other by a human expert.
Based on the preferences of the expert, the system learned
a cost function and applied the knowledge for footstep
planning. However, apart from the tedious process to train
such systems by a human expert, it is often not obvious if
the decision made by this expert is the optimal choice from
the perspective of the robot. With increasing complexity of
the robot and a growing diversity of the terrain samples,
it is getting nearly impossible for humans to predict all
possible cases such that the robot can select an optimal
foothold solely based onpre-programmed knowledge. For
this reason, legged robots should possess the ability to assess
the quality of a given foothold by themselves without using
additional human input. This will eventually allow the robots
to continuously learn from their own experience and to
adapt to unknown and unpredicted environmental challenges,
which was extensively studied for wheeled service robots
and rough-terrain vehicles ([5] - [8]). As a step towards
transferring these capabilities to legged systems, this paper
presents a method for automatic foothold characterization,
and illustrates the application of this strategy on a robotic leg.
The haptically identified foothold robustness is associated
with the geometrical properties, which is fundamental to
predict the robustness of distant footholds. This project builds
upon our previous work on classification of different surface
types [9] and ground geometries [10], and will eventually
lead to an automated vision guided process that can utilize
on-line machine learning to perpetually identify appropriate
footholds.

II. M ETHOD

When unsure about the mechanical robustness of a
foothold, humans tend to use their swing leg to explore the
uncertain spot. After this haptic exploration, we are able to
estimate the robustness of the foothold and decide whether
to step on this location or not. The acquired knowledge
combined with the visual interpretation additionally helps
us for future decisions. This methodology can be adapted
for robotic devices. This requires, on one hand, the estab-
lishment of the physical interaction with the terrain and
the introduction of appropriate metrics for the quality of
the footholds. On the other hand, once the quality of the
foothold is evaluated, the haptic information has to be related
to other characteristics of the foothold, such as appearance.
This allows to predict the foothold quality without exploring
every single footstep and is especially useful for planning
future foothold locations. The process can be referred to as
near-to-far learning: High-resolution data fromshort-range



Fig. 1. The upper row contains plots of the six different footholds that are
contained in the synthetic foothold data set: flat ground, inclined plane (50
deg), wedge, inverted wedge, convex and concave spherical surface. The
lower row illustrates the variations of each foothold (e.g.the wedge). The
footholds are rotated and white noise is added.

(e.g. [11]) or data of a different sensor modality (e.g. [5])are
mapped to low-resolution data from a sensor withextended
range.
To combine the haptic information with other properties
of the footholds, appropriate features that allow to clearly
characterize the footholds are required. The first part of
the paper deals with the selection of features that permit
to distinguish the footholds according to their geometrical
properties. The features have to represent the foothold under
following invariance criteria: Since we employ a (symmetric)
spherical foot, the features have to be rotation invariant as
well as invariant to certain level of noise that could be
induced by the process of acquiring the foothold properties.
To simplify the process of evaluating the effectiveness of
those features, a simple synthetic data set of footholds is
applied. The data set consists of six different foothold shapes
with a total of eight variations such as rotations (to evaluate
the invariance to rotations) and corrupted by white noise
(Figure 1).

Based on the calculated features, a clustering algorithm is
used to group the footholds into distinct categories with sim-
ilar characteristics. The application of unsupervised learning
methods allows to deal with categories that are not a priori
defined. To examine the quality of the clustering, internal
cluster validation techniques (e.g. [12]) are applied. On the
one hand, this helps to evaluate how well the features and
clustering methods distinguish the different footholds. On the
other hand, it allows to identify the number of clusters that
are required to well separate the data.

As a last step, the mechanical robustness of the foothold
that is identified by haptic exploration is assigned to the
individual clusters respectively the groups of footholds.
This step links the geometric properties to the robustness
of the foothold and hence allows to predict the quality
of unexplored terrain samples purely based on geometric
information.

A. Features

An individual foothold shape is represented as a regularly
spaced digital elevation model (DEM) with a resolution of
1 mm and an edge length, that corresponds to the robotic
foot diameter of 4 cm. To consider different spacial scales,

the elevation maps of potential footholds are divided into
rectangular sub-regions with different edge length (for the
experiments: 1, 2, 3 and 4 cm). For every sub-region, local
features are computed based on the following approaches:

• Feature setF1: The first set of features is calculated
based on features similar to [13] and consist of the
standard deviation of the heights, the average slope in
x and y direction, and finally the minimum/maximum
height relative to the center of the foothold. This leads
to a total of 20 features per foothold.

• Feature setF2: The second set of features is based
on the computation of the central moments of the
elevation map. The central moments are defined as
µpq =

∑

x

∑

y(x−xc)
p(y−yc)

q ·h(x, y), with h(x, y)
the height at coordinates x,y, andxc, yc the components
of the center of gravity. The sum of the heights, the
distance between the center of gravity and the center
of the foothold (Euclidean norm), the minimal/maximal
eigenvalue of the inertial tensor, as well as an indicator
for the eccentricityǫ =

(µ20−µ02)
2
−4µ2
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(µ20+µ02)2
are used as

features. This results in a total of 20 features, that are
computed per foothold.

• Feature setF3: A further set of features is computed
based on Tamura features [14]. The Tamura features
are related to human visual perception and reflect the
coarseness, contrast, directionality, line-likeness, regu-
larity, and roughness.

B. Clustering algorithm

Clustering techniques separate data sets into groups with
certain similarity. Clustering is an unsupervised method and
does therefore not require any prior class identification. To
this end, we employ three different algorithms: two hard
partitioning methods, namelyK-means and K-medoid, and
one fuzzy partitioning method, namelyFuzzy C-means. The
hard partitioning methods separate a data set into subsets
that are disjoint, not empty, and do not contain the complete
data set. Each data point is associated to a cluster in order
to minimize the “within-cluster distance” with respect to
a cluster center. The difference between theK-medoid
clustering method and the K-means is the selection of the
center that is defined by the nearest data point to the mean
of the cluster data in case of theK-medoid algorithm. In
fuzzy clustering such asFuzzy C-means, a so-calledC-
means functional is minimized [15]. This objective function
describes the total variance of the difference between the
data object and a potential cluster center.

C. Internal cluster validation

Since the structure of the data is not known in advance,
internal cluster validation methods (e.g. [16]) are applied to
examine how well the data set is separable with respect to
its geometrical properties. These are quantitative validation
methods that, compared to external validation methods, do
not require external information, such as class labels. The
evaluation helps to decide on the optimal cluster number



as well as on other parameters such as on the distance
norms or the feature sets. Jain et al. [17] describe the overall
process of clustering as a feedback loop, where clustering
validation methods are applied to influence the clustering
(e.g. by determining an optimal cluster number). To this end,
the results of the clustering step are fed back to improve
the feature selection as well as the method for clustering
validation.
Since objects within the same cluster are required to be
similar and objects in different clusters distinct, the vali-
dation measures can be outlined by thecompactness and
the separation of the clusters.Compactness is a measure
to express how close the objects of the same group are.
The variance as an example, is a common measure for
compactness. Theseparation metric expressed how widely
separated the clusters are. Typically, the distances between
the cluster centers, the distances between the most distant
or closest objects are considered in the computation of a
separation metric.
To evaluate the performance of the hard clustering methods,
such asK-means and K-medoid, the following validation
metrics were applied:

• the Calinski-Harabasz index (CH) [18] that character-
izes the separation and compactness based on the aver-
age of the sum of squares within-cluster and between-
cluster distances,

• the Dunn’s index (DI) [15] that uses the minimum
pairwise distance between objects in different clusters
for separation evaluation and the maximum distance
among all clusters for compactness,

• the Silhouette index (S) [19] that validates the cluster-
ing based on the pairwise difference of within-cluster
distances and between-cluster distances, and

• the Xie-Beni index (XB) [20] that defines the inter-
cluster separation as the minimum square distance be-
tween cluster centers and the compactness as the mean
square distance between the data points and their cluster
center.

To evaluate the performance of the fuzzy clustering methods,
we additionally applied:

• the Partition Coefficient (PC) [21] that reflects the
amount of overlap between clusters and

• the Classification Entropy (CE) that indicates the fuzzi-
ness of the clusters.

D. Haptic exploration

To determine the robustness of a foothold, a robotic foot
is brought into contact with the terrain, and the magnitude
and direction of the contact force is altered up to a certain
predefined level or until slippage is detected by means of
kinematic measurements. Interpreting the contact forces as
well as the foot position then allows to assign a robustness
measure to the foothold. Ideally, the applied contact forces
during haptic exploration should be comparable with the
forces that are actually generated during walking. Figure 2
illustrates the exploration process. During the first phaseof a

Fig. 2. Upper plot: Example plot of the three phases of the foothold
evaluation principle: a) making contact, b) haptic exploration phase, and
c) retraction phase. As soon as ground contact is detected, the leg starts
the haptic exploration process. Lower plot: The introducedmetric µF to
characterize the quality of the sample foothold.

measurement cycle, the foot approaches a selected foothold
(a). Once in contact, the ground contact force in gravitational
direction (force componentFz in our setup) of the robot is
increased (b1). After reaching the magnitudeFzmax = 25N,

a tangential forceFT =

(

Fx

Fy

)

is introduced and its mag-

nitude is raised over time, while the tangential orientation
of the force vector is altered (b2). The measurement process
is aborted as soon as substantial foot slippage is detected or
if the selected foothold could withstand its examination. To
characterize the quality of the terrain samples, we introduce

the simple metricµF =
+
√

F 2
x+F 2

y

Fz
∀ Fz > 0. This

value is similar to the coefficient of friction or even equal
to the coefficient on flat ground, and a high value indicates
a mechanically robust foothold. Together with the known
Fzmax, this metric gives a conservative guess about the
maximal allowed magnitudes of normal and tangential forces
(with respect to a global horizontal plane) that can be applied
at the examined foothold.

E. Test setup

To collect foothold quality estimates and geometric in-
formation of the terrain samples, the test-setup depicted in
Figure 3 has been used. It is composed of a single robotic leg
([22]) with 3 degrees of freedom that is mounted to a fixed
frame (a). To reduce the position error mainly determined by
the backlash in the gears of the leg, a further camera was used
to track the foot position. To reliably measure the ground
contact forces, the leg was equipped with a force/torque
sensor (ATI Mini45) that is integrated in the shank segment.
The leg is controlled in two different modes: During swing
phase, the leg is kinematically controlled. In ground contact,



Fig. 3. Left side: A picture of the complete test-setup with the part a)
to haptically explore the terrain samples and part b) to record the elevation
map of the terrain samples. Right side: Close up of the robotic leg and the
attached markers for the external position tracking.

Fig. 4. Pictures of the three different terrain sample typesfor the
experiments ( (a) adjustable incline for preliminary testing, (b) terrain
sample with simple geometry and (c) naturally inspired sample with a
complex shape.

force control is applied by adjusting the motor current as
a function of the force sensor feedback. The foot element
itself is a spherical rubber ball with a diameter of 4 cm
and relatively high coefficient of friction. The testbench is
further equipped with and Microsoft Kinect RGB-D-Camera
to collect depth information of the terrain samples (b).

III. E XPERIMENTS

Experiments were conducted on three different types
of terrain samples (Figure 4). First, to characterize
the repeatability of the measurements under simplified
conditions, an adjustable incline was used (a). The second
sample type consisted of terrains with very simple geometry
made of wooden blocks with different slope angles (b). The
complex samples (c) were produced from NASA elevation
data (Elevation data from the Shuttle Radar Topography
Mission 30-arcsecond data (SRTM30)) and scaled so that
the maximal difference in height was about double the
foot diameter. In contrast to the other two sample types,
the terrain were rapid prototyped with high precision. This
allowed to compare the reconstructed terrain with the model
data used for the production.

IV. RESULTS

A. Geometric clustering

The synthetic terrain data with a known cluster number
(e.g. six in our case) was used to evaluate the three different
clustering methods,K-means, K-medoid andFuzzy c-means
clustering. The data set was based on the features computed
through the moments of the height map, feature setF2 .

N XB CH DI S

3 7.4299 119.8584 0.70909 0.22104
4 7.4444 146.7819 0.4715 0.1536
5 852.6972 14.1122 0.4715 0.19894
6 857.1201 9622.8888 9.3502 0.16104
7 NaN 2490.4064 0.043059 0.1421
8 NaN 13105.8625 0.099595 0.12383
9 NaN 94266.0248 0.04565 0.074619

max max max max

TABLE I

K-MEANS CLUSTERING

N PC CE XB DI S

3 0.85152 0.28503 2.3459 0.70909 0.23575
4 0.8126 0.35437 1.9359 0.71818 0.24816
5 0.89401 0.20238 3.4004 1.0188 0.12288
6 0.99928 0.0031533 3.5327 9.3502 0.16489
7 0.97237 0.04893 3.2895 0.12438 0.085801
8 0.98047 0.033434 3.9603 0.35471 0.12387
9 0.9642 0.065387 3.6655 0.19966 0.089678

max min max max max

TABLE II

FUZZY C-MEANS CLUSTERING

Table I contains the results forK-means clustering where
seven different cluster sizes (from three to nine clusters)
were proposed to the clustering method. While the Calinski-
Harabasz (CH) index as well as the Silhouette (S) index
indicated an incorrect number of clusters for the given data
set, the other validation methods, Xie-Bin (XB) and Dunn’s
index (DI), came up with the actual cluster number as
optimal solution. The last row of the table indicates whether
the maximum or minimum identifies the optimal number of
clusters for the specified validation metric.
Table II shows the results of the validation metrics for the
Fuzzy C-means clustering method. The Silhouette index
once more indicated the wrong number of clusters, as well
as the Xie-Bin method. All other methods identified the
correct number of clusters. Assuming a similar structure of
the underlying data, those results indicate which internal
validation method perform best to determine the required
cluster number to separate the data set.

To evaluate the effect of the different feature sets to
represent the footholds, the clustering result (of the fuzzy
clustering) are visualized by a Silhouette plot (Figure 5),
where each data point is represented by a bar that ranges
from -1 to +1. Values close to +1 indicate that the data point
is similar to others within the own cluster and distinct to
points belonging to other clusters. It is obvious that data
based on image statistic features is clearly separable, while
the other two feature sets lead to data that is poorly separated.

B. Validation of the repeatability of the quality measurement

The experiments on the adjustable incline allowed to
validate the proposed haptic exploration under very simple
conditions. For each of the selected slope angles of the



Fig. 5. Silhouette plots to visualize the results of the clustering process of
the artificial foothold set (Left: Results for the feature set F1 that is based
on the average slope angle, the relative height and the variance of the height.
Middle: Results for the clustering on features based on the central moments
(feature setF2). Left plot: Results for the Tamura features (feature setF3).

Fig. 6. Plot illustrating the distribution of the approximatedµF for different
angles of the adjustable incline. The dashed line represents the computed
coefficient of frictionµ of the foot/incline.

adjustable inclination (0,10,20,30, and 40 degrees), 100
measurement cycles were performed.

The box plot in Figure 6 illustrates the distribution of the
measurements. Each box represents the data within the first
and the third quartile, and the line the median of the ap-
proximatedµF . The whiskers of the plot point out the range
of measurements that are still within± 1.5 times the inter-
quartile range (difference of the third and the first quartile).
Samples plotted as crosses mark the outliers. At 40 degrees,
the leg started to slip before the tangential force could be
applied for all the 100 measurements. As an indicator of the
correctness of the measurements, the coefficient of friction
µ of the adjustable incline with angleα was calculated:
F

′ = RF̃, so thatµ = sin(α)+cos(α)·µF

cos(α)−sin(α)·µF
, where the vector

F
′ denotes the force components normal/perpendicular to

the slope,R the 2D rotation matrix and̃F the measured
force components in robot body coordinates. Ideally, when
slipping in the direction of the slope, the computedµ should
be identical for all the inclination angles. The dashed linein
Figure 6 shows a plot of the computed friction coefficient
for the slope angles smaller than 40 degrees.

C. Real terrain samples

Figure 7 illustrates the haptically measured foothold qual-
ity at the different locations of the simple (left) and the
complex (right) ground geometry sample. We will refer to
this as haptic ground truth data. As expected, flat ground
and concave structures show the best quality. Furthermore,
also hilltop areas represent good quality as the relatively

Fig. 7. Plot of the terrain samples and the quality metric forthe footholds
based on the haptic exploration (used as ground truth) (Left: Terrain with
simple geometry, right: naturally inspired terrain).

Fig. 8. Plot of the terrain for testing with thepredicted quality measure
(Top left plot: 4 clusters, bottom left: 19 clusters, top right: 25 cluster,
bottom right: 46 clusters).

compliant ball foot deforms such that high tangential forces
can be applied.

We further use thek-means algorithm to cluster the
footholds according the terrain geometry and assign a single
haptic quality measure to each cluster. This quality ’label’
is determined by computing the mean quality measure of
all the explored footholds of the corresponding cluster (one
half of the ground truth footholds were used for this quality
labeling process). The determination of the cluster number
(19 for the simpler terrain and 46 for the naturally inspired
terrain) is based on the interpretation of the Dunn’s index as
internal cluster validation method.
The top left plot of Figure 8 shows the testing results for
a cluster number of four. The mean absolute error of the
foothold quality estimate and ground truth is about 0.2592,
and is reduced to 0.1042 for 19 clusters. The right side of
the Figure 8 shows the same for the terrain with naturally
inspired geometry. Here, if 25 clusters are used, the mean
error of µF is about 0.0996. Figure 9 visualizes the results
of a robustness prediction for a haptically unexplored shape.
The blue regions are unknown - no haptic label could be as-
sociated to the shape of the region (the ground truth footholds
were used for this quality labeling process). Intuitively,the
results of the prediction seem to make sence - flat regions
are more robust, the robustness decreases with increasing
slope angle at the boarders and the unknown footholds are
not represented in the ground truth data.



Fig. 9. Visualisation of the robustness prediction for a ’haptically unknown’
terrain (1m2).

V. CONCLUSION

In this paper, an unsupervised method to estimate the
foothold quality by only knowing the foothold geometry
has been presented. First, possible footholds are clustered
according to features that are based on geometrical properties
of the terrain. Second, haptic information that is recorded
during ground contact of a robotic leg is assigned to the
clusters (sets of footholds). In the study, three different
sets of features, three different clustering algorithms and
various cluster validation methods were examined based
on synthetic and real terrain data. The synthetic data has
been used to evaluate the usefulness of the feature sets
as well as the cluster validation methods. This helped to
identify feature sets that are invariant to rotation and to a
certain level of noise. Features based on the central moments
(feature setF2) of the elevation map proved to describe
the applied data set most accurate. Further, a method has
been presented to evaluate the quality of footholds without
human intervention or expert knowledge. Instead, the quality
of a potential foothold is determined by the experience
from foot/ground interaction of the robot. The method has
been validated repeatedly on a adjustable incline with low
variance. Geometric foothold clustering and haptic quality
identification was finally successfully applied to different
simple and complex geometries. Even if experiments with
real terrains and real robotic legs have been performed, so far,
the effect of different mechanical terrain material parameters
(such as shear strength, coefficient of friction or ductility) are
neglected. Further investigation will be required to address
this subject.

In comparison to existing work, the presented method is
not based on human intuition but generates foothold labels
that directly correlate to the maximal forces that can be
applied without slipping. This renders the method especially
useful for unknown terrain, where the mechanical robustness
can not be determined by human experts anymore. This
illustrates that a robot-centric perspective on foothold quality
can be highly advantageous and emphasizes the usefulness
of the approach.
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