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Abstract
This paper presents improved deterministic distributed algorithms, with O(logn)-bit messages,
for some basic graph problems. The common ingredient in our results is a deterministic dis-
tributed algorithm for computing a certain hitting set, which can replace the random part of a
number of standard randomized distributed algorithms. This deterministic hitting set algorithm
itself is derived using a simple method of conditional expectations. As one main end-result of this
derandomized hitting set, we get a deterministic distributed algorithm with round complexity
2O(
√

log n·log log n) for computing a (2k − 1)-spanner of size Õ(n1+1/k). This improves consid-
erably on a recent algorithm of Grossman and Parter [DISC’17] which needs O(n1/2−1/k · 2k)
rounds. We also get a 2O(

√
log n·log log n)-round deterministic distributed algorithm for computing

an O(log2 n)-approximation of minimum dominating set; all prior algorithms for this problem
were either randomized or required large messages.
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1 Introduction and Related Work

We present improved deterministic distributed algorithms in the CONGEST model for graph
problems including spanners and dominating set. Let us first recall the model definition.

The CONGEST model [28] of distributed computing. The network is abstracted as a
simple n-node undirected graph G = (V,E). There is one processor on each graph node
v ∈ V , with a unique Θ(logn)-bit identifier ID(v), who initially knows only its neighbors
in G. Communication happens in synchronous rounds. Per round, each node can send one,
possibly different, O(logn)-bit message to each of its neighbors. At the end, each node should
know its own part of the output. For instance, when computing spanners, each node should
know whether each of its edges is in the computed spanner (a computed subgraph of G, to
be defined later) or not. We note that the variant of the model where we allow unbounded
size messages is known as the LOCAL model [24,28].
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1.1 Our Contributions

1.1.1 Spanners

Graph spanners are a fundamental graph concept with a wide range of applications in
distributed computing [4, 29]. For a graph G = (V,E), a subgraph H = (V,E′) is an
α-stretch spanner if each pairwise distance in H is at most an α factor larger than the same
distance in G. Ideally, we want spanners with small stretch and small number of edges. It is
known that any n-node graph admits a (2k− 1)-stretch spanner with O(n1+1/k) edges [4,29],
and this tradeoff is optimal conditioned on a widely-believed girth conjecture of Erdős [14].

Baswana and Sen [8] gave a randomized algorithm in the CONGEST model for computing
a (2k− 1)-stretch spanner with O(kn1+1/k) edges in O(k2) rounds. Notice that k ∈ [1, logn].
Hence, this is a poly(logn) round randomized algorithm with spanner size within a logarithmic
factor of the optimal. There was a series of works that eventually led to a poly(logn) or even
just O(k) round deterministic algorithm with a similar spanner size [10–12] but all these
algorithms use large messages. Currently, there are only three deterministic algorithms that
work in the CONGEST model. One is the work of Barenboim, Elkin, and Gavoille [7], which
runs in poly(logn) rounds, but has a considerably weaker stretch-size tradeoff: it computes a
spanner with stretch O(logk−1 n) and size O(n1+1/k) in O(logk−1 n) rounds. The other two
results obtain a near-optimal stretch-size tradeoff but their round complexity is considerably
higher. Derbel, Mosbah, and Zemmari [13] gave an algorithm with round complexity
O(n1−1/k) for computing a (2k − 1)-stretch spanner with size O(kn1+1/k). Finally, very
recently, Grossman and Parter [18] gave an algorithm with round complexity O(2kn1/2−1/k)
for computing a (2k − 1)-stretch spanner with size O(kn1+1/k).

Our first result considerably improves on this line of work, leading to a sub-polynomial
round complexity for a nearly optimal stretch-size tradeoff:

I Theorem 1. There is a distributed deterministic algorithm in the CONGEST model that
computes a (2k − 1)-stretch spanner with size O(kn1+1/k logn) in 2O(

√
log n log log n) rounds.

1.1.2 Minimum Dominating Set

Minimum Dominating Set is another problem that has been central in the study of distributed
algorithms for local problems, see e.g. [22]. Given a graph G = (V,E), a set S ⊆ V is a
dominating set of G iff each node v ∈ V is either in S or has a neighbor in S. Jia et
al. [19] gave a randomized O(log ∆)-approximation in O(logn log ∆) rounds of CONGEST
model. Kuhn and Wattenhofer [22] gave a randomized distributed algorithm that computes
an O(

√
k∆1/

√
k log ∆)-approximation in O(k) rounds, e.g., an O(log2 ∆) approximation in

O(log2 ∆) randomized rounds of CONGEST model. Later, Kuhn et al. [21] gave an O(log ∆)
randomized approximation in O(logn) rounds. Lenzen and Wattenhofer [23] pointed out
that obtaining efficient deterministic algorithms for approximating minimum dominating set
remains open. The only known result afterward is an algorithm of Barenboim et al. [7], which
computes an O(n1/k)-approximation in O(logk−1 n) rounds; however this algorithm uses large
messages. The complexity of deterministic CONGEST-model algorithms for approximating
minimum dominating set remains open.

Our second result provides the first answer to this question, by providing a sub-polynomial
round complexity for poly-logarithmic approximation.
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I Theorem 2. There exists a distributed deterministic algorithm in the CONGEST model
that computes an O(log2 n) approximation of minimum dominating set in 2O(

√
log n log log n)

rounds.

We remark that while it might be possible to improve this round complexity to 2O(
√

log n),
improving it further and especially to poly(logn) would imply a major breakthrough in
distributed graph algorithms: A result of Ghaffari, Harris, and Kuhn [17, Theorem 7.6] shows
that obtaining a poly(logn) approximation of minimum dominating set within poly(logn)
rounds is conditionally hard (even if we allow unbounded messages), because it would lead
to a poly(logn)-round deterministic algorithm for all locally checkable problems that admit
poly(logn) round randomized algorithms. This includes problems such as Maximal Indepen-
dent Set (MIS) and (O(logn), O(logn))-network decomposition. Getting a poly(logn)-round
deterministic algorithm for these would resolve several well-known open question of distributed
graph algorithms including that of Linial from 1987 about polylogarithmic deterministic
MIS [24], and many of the open problems in the book of Barenboim and Elkin [6].

1.1.3 Network Decompositions and Neighborhood Covers
Network decompositions, first introduced by Awerbuch et al. [3], have been a key tool
in developing efficient (deterministic) distributed algorithms for a variety of distributed
algorithms. Given an n-node graph G = (V,E), a (d(n), c(n))-network decomposition of G
partitions it into a c(n) vertex-disjoint subgraphs, known as blocks of the decomposition (and
indicated via different colors), such that in the subgraph induced by each block, each connected
component (which is known as a cluster of this block) has a diameter at most d(n). See Section
2 for the more formal definition. Awerbuch et al. [3] gave a deterministic algorithm with
round complexity 2O(

√
log n log log n) for computing a (d(n), c(n))-network decomposition with

d(n) = c(n) = 2O(
√

log n log log n). This was later improved by Panconesi and Srinivasan [27]
to a 2O(

√
log n)-round LOCAL algorithm for decomposition with d(n) = c(n) = 2O(

√
log n).

While the algorithm of [3] works in the CONGEST model, that of [27] requires large messages.
See also the work of Barenboim et al. [7, Corollary 5.4], where a generalized tradeoff of
network decomposition in the CONGEST model is presented.

All of these decomposition algorithms [3,7,27] fail to work in the CONGEST model when
we need a larger separation between the clusters of the same block, i.e., when their distance
should be two or more hops. This is actually something that significantly limits the power of
these network decompositions for CONGEST model algorithms (e.g., for the applications in
spanners and dominating sets).

As our third contribution, we present a CONGEST model network decomposition algorithm
that can be used to compute a decomposition such that clusters of the same block are at
least k hops apart. The statement of the result is presented below as Theorem 3, the proof
of which is deferred to the full version [15], due to space limitations.

I Theorem 3. Let G = (V,E) be an n-node graph and let k ≥ 1 be an integer. There
is a deterministic CONGEST-model algorithm that computes a strong diameter k-hop (k ·
f(n), f(n))-decomposition of G in k · f(n) rounds, where f(n) = 2O(

√
log n·log log n).

In the above theorem, k-hop indicates that the clusters of the same block are at least k hops
apart. See Section 2 for the more formal definition. The above theorem leads to the first
efficient deterministic CONGEST model algorithm for neighborhood covers, another basic
and central graph structure, which was introduced by Awerbuch and Peleg [5]. We refer to
Section 2 for the related technical definition.

DISC 2018



29:4 Derandomizing Distributed Algorithms with Small Messages

I Corollary 4. Assume that we are given a strong diameter 2k-hop (d, c)-decomposition
of a graph G. One can compute a c-sparse k-neighborhood cover of diameter d + k in
O(c(d + k)) rounds in the CONGEST model on G. Consequently, for every k ≥ 1, one
can deterministically compute a 2O(

√
log n·log log n)-sparse k-neighborhood cover of diameter

k · 2O(
√

log n·log log n) of an n-node graph G in k · 2O(
√

log n·log log n) rounds of CONGEST.

1.2 Our Method in a Nutshell, and Comparison with Prior Methods

Our spanner and minimum dominating set algorithms are developed also via network
decompositions. We depart from the standard methodology in two parts. To outline
these changes, we first review the standard methodology of algorithms that use network
decompositions. We then comment on its shortcomings and outline how we go around each
issue.

The standard method for (deterministic) algorithms via Network Decomposition. A
standard technique in developing (deterministic) distributed algorithms for local graph
problems (formally including Locally Checkable Labelings [26] and any other problem that
can be formulated similarly using local constraints) is via the concept of (d(n), c(n))-network
decompositions. The generic way to use them is to process the blocks sequentially in c(n)
phases. In the ith phase, for each connected component of the ith block, one gathers the whole
topology of the that component (and perhaps some extra information about neighboring
nodes) in an elected center of the component, make that node decide about all (local)
decisions of the nodes of the component, and deliver this information back to the nodes.
Since different components are disconnected from each other, their decisions do not influence
each other and thus can be performed in parallel.

Shortcomings of the Generic Method via Network Decompositions for CONGEST. The
method is perfect for the LOCAL model with large messages. However, when it comes to
using small messages – i.e., in the CONGEST model – the method has two shortcomings:

Issue 1 – decompositions on power graphs. For many local problems, the constraints are
not only about the direct neighbors of a node but a small neighborhood of a distance r ≥ 2.
For instance, as we will see, in the case of spanner computations this radius r can be as large
as O(logn). In such cases, we need to ensure that connected components of each block are r
hops away from each other, instead of just not being adjacent. This is (almost) the same as
computing a network decomposition of Gr, which denotes the graph with an edge between
two vertices if their distance is at most r hops1. The algorithm provided by Awerbuch
et al. [3] for computing network decompositions does not seem to extend to computing a
decomposition for Gr, because of the congestion that the algorithm creates2. We present
a CONGEST-model algorithm for network decompositions of power graphs Gr; the formal
statement is Theorem 3.

1 Almost! Technically, we need that the components of each block are also connected in the base graph G
so that we can run CONGEST model algorithms in each component independently, i.e., each edge of G
has to pass messages for one component.

2 We note that this is not a small technicality: The CONGEST model complexity of problems can be
significantly different between G and even G2. For instance, the problem of each node knowing the its
degree in G and G2 are very different. The former has a single-round CONGEST-algorithm, while there
is no known o(n)-round algorithm for the latter.
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Issue 2 – gathering topology in each component. The generic method of using network
decompositions, each component is solved by gathering the whole topology of the component
(and some neighborhood outside) and then solving the problem in a brute-force centralized
manner. One can argue that this brute-force centralized computation is quite a stretch for
the notion of having a distributed method of solving the problem.

The method we use to go around this issue is a derandomization of randomized distributed
algorithms, which can typically solve the local problems that we are considering in poly(logn)
rounds. We outline the method here. Most parts are generic and applicable to various
problems, except the last part, which is specific to the constraints of each problem. We
observe that for many problems, including spanners and dominating set, the corresponding
efficient randomized algorithm can be made to work with only poly(logn) bits of randomness,
using concepts such as k-wise independence. We refer to these bits as the seed of randomness.
Then, derandomization is just a matter of determining a deterministic assignment to these
poly(logn) bits while preserving certain properties of the output of the randomized algorithm.
For that purpose, following an approach of Luby [25], we use the method of conditional
expectations to fix the bits one by one. The only remaining piece of the algorithm is to check
whether a bit should be 0 or 1. This requires us to be able to learn, or estimate, the expected
number of unsatisfied local constraints. This last part will be done using a method specific
for each problem, depending on its constraints.

Comparison with the methods of Censor-Hillel, Parter, and
Schwartzman [9] and Grossman and Parter [18]

We note that this second part of our contribution as described in issue 2 above – namely, the
method of conditional expectation applied on a random algorithm that uses only poly(logn)
bits of randomness overall – is inspired by the work of Luby [25] in parallel algorithms and
the recent work of Censor-Hillel, Parter, and Schwartzman [9] in distributed CONGEST and
CONGESTED-CLIQUE model algorithms. Let us explain how our approach differs from that
of [9], thus allowing us to improve on the bounds of [18].

Censor-Hillel et al. [9] give an O(D log2 n)-round CONGEST algorithm for maximal
independent set (MIS), by derandomizing the randomized MIS algorithm of [16], using a
method of conditional expectation close to Luby [25]. The key difference there is that (1)
the complexity depends on the global diameter D, (2) for MIS, each of the constraints in
the method of conditional expectation spans only the neighbors of one node and therefore,
computing an upper bound on the score/cost function is much easier. In our case, we
want a complexity that is considerably sublinear in the diameter, which calls for network
decompositions. Moreover, for spanner and dominating set (and presumably many other
local problems), the constraints span k-hop neighborhoods for some k ≥ 2, instead of direct
neighborhood. This causes two challenges: (A) we need a network decomposition of the
power graphs, which prior to our work was not known in the CONGEST model, as explained
above in issue 1. (B) Even computing each part of the cost function now spans k-hop
neighborhood for some k ≥ 2, and evaluating it with CONGEST-model messages requires a
different method.

Censor-Hillel et al. [9] also give a derandomzied spanner algorithm in the CONGESTED-
CLIQUE model, where all node-pairs can communicate with each other, exchanging O(logn)
bits per round. This also follows a derandomization method inspired by that of Luby [25].
However, again there two differences, which limit that result from extending to our setting: (A)

DISC 2018



29:6 Derandomizing Distributed Algorithms with Small Messages

this derandomization does not need to work with network decompositions and especially power-
graph network decompositions, because everything is within one hop in the CONGESTED-
CLIQUE and one can share the seed of randomness to all nodes, (B) computing the score/cost
function, which spans k-hop neighborhoods, is much easier in the CONGESTED-CLIQUE,
because this model does not suffer from the locality constraint.

In both cases above, both of the issues appear quite non-trivial to us. Indeed, Censor-Hillel
et al. [9] comment that the best deterministic CONGEST algorithm for spanners takes barely
sublinear time, O(n1−1/k) rounds to be precise. That is much higher than the sub-polynomial
time that we achieve. This O(n1−1/k) bound was improved to nearly O(

√
n) – O(n1/2−1/k ·2k)

rounds to be precise – in the simultaneous work of Grossman and Parter [18], using a special
and well-crafted deterministic method for constructing spanners, and particularly without
attempting a derandomization. We now show that the derandomization techniques can be
extended and improved, along with the strengthened power-graph network decomposition,
to achieve a round complexity 2O(

√
log n·log log n) rounds.

Some Other Related Work. Ghaffari, Harris, and Kuhn [17] also use some variant of
a method of conditional expectation to obtain derandomized distributed algorithms, but
for all of their results, locality is the main topic, and their algorithms use large messages.
Kawarabayashi and Schwartzman [20] present distributed derandomizations for some other
problems, including max cut and max k-cut. These work by turning a sequential process to a
distributed process by going through the colors of a certain (defective) graph coloring one by
one. However, those methods cannot extend to the problems that we consider as there the
score/cost functions are very local (spanning single neighborhoods), whereas in our case, the
constraints span up to logn-neighborhood, which means a suitable coloring would require
even up to polynomial many colors.

2 Model and Definitions

Mathematical Notation. For a graph G = (V,E) and two nodes u, v ∈ V , we define dG(u, v)
to be the hop distance between u and v. For an integer k ≥ 1, we define Gk = (V,E′) to
be the graph with an edge {u, v} ∈ E′ whenever dG(u, v) ≤ k. Given a node v ∈ V , we
use NG,k(v) := {u ∈ V : dG(u, v) ≤ k} to denote the set of nodes within distance k of v in
G. For a node set S ⊆ V , we use the shorthand notation NG,k(S) :=

⋃
v∈S NG,k(v) and

we drop the subscript G if it is clear from the context. Throughout, we use ln(·) to refer
to natural logarithm and log(·) to refer to logarithms to base 2. Moreover, for a graph
G = (V,E), integers a ≥ 1 and b ≥ 0 and a node set V ′ ⊆ V , a set of nodes S ⊆ V ′ is called
a (a, b)-ruling set of G w.r.t. V ′ [3] if (A) for any two nodes u, v ∈ S, we have dG(u, v) ≥ a,
and (B) ∀u ∈ V ′ \ S, there is a node v ∈ S such that dG(u, v) ≤ b. If V ′ = V , S is simply
called an (a, b)-ruling set of G.

Network Decomposition. A network decomposition of a graph G is given by a clustering
of G and a coloring of the graph induced by contracting each cluster. We therefore first
define the notion of a cluster graph.

I Definition 5 (Cluster Graph). Given a graph G = (V,E) and an integer parameter d ≥ 1,
an (N, d)-cluster graph G = (V, E) of G is a graph that is given by a set of N ≥ 1 clusters
V := {C1, . . . , CN} ∈ 2V such that (a) the clusters C1, . . . , CN form a partition of V , (b)
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each cluster Ci induces a connected subgraph G[Ci] of G, (c) each cluster Ci has a leader
node `(Ci) that is known by all nodes of Ci, and (d) inside each cluster, there is a rooted
spanning tree T (Ci) of G[Ci] that is rooted at `(Ci) and has diameter at most d. There is
an edge {Ci, Cj} between two clusters Ci, Cj ∈ V if there is edge in G connecting a node in
Ci to a node in Cj . The identifier ID(Ci) of a cluster Ci is its leader’s ID.

Given a cluster graph G = (V, E) of G and an integer k ≥ 1, we say that two clusters
C,C ′ ∈ V are k-separated if for any two nodes u and v of G such that u ∈ C and v ∈ C ′,
we have dG(u, v) > k. A strong-diameter k-hop network decomposition of a graph G is then
defined as follows.

I Definition 6 (Network Decomposition). Let G = (V,E) be a graph and let k ≥ 1, d ≥ 0,
and c ≥ 1 be integer parameters. A strong diameter k-hop (d, c)-decomposition of G is a
(N, d)-cluster graph G of G for some integer N ≥ 1 together with a coloring of the clusters of
G with colors {1, . . . , c} such that any two clusters with the same color are k-separated.

Sparse Neighborhood Covers. The notion of sparse neighborhood covers as introduced by
Awerbuch and Peleg [5] is closely related to network decompositions.

I Definition 7 (Sparse Neighborhood Cover). Let G = (V,E) be a graph and let k ≥ 1, d ≥ 1,
and s ≥ 1 be three integer parameters. A s-sparse k-neighborhood cover of diameter d is a
collection of clusters C ⊆ V such that (a) for each cluster C, we have a rooted spanning
tree of G[C] of diameter at most d, (b) each k-neighborhood of G is completely contained in
some cluster, and (c) each node of G is in at most s clusters.

As we explain in the proof of Corollary 4, any 2k-hop (d, c)-decomposition leads to a
c-sparse k neighborhood cover of diameter d+ k.

3 Hitting Set

In this section, we define an abstract problem, which we call the hitting set problem. This
problem, which can be solved easily using randomized algorithms, captures a variety of the
usual applications of randomness in distributed algorithms. In this section we provide a
deterministic algorithm for solving this hitting set problem. In the later sections, we see how
to use this deterministic subroutine to develop deterministic algorithms for other problems
such as spanners and minimum dominating set, primarily by replacing their randomized
parts with this deterministic hitting set subroutine.

Our main formulation of the hitting set problem (which is presented below in Definition
8 and solved in Lemma 9) is tailored to its usage in our spanner result. At the end of
this section, in Lemma 10, we provide an alternative formulation and the corresponding
deterministic algorithm, which are more suitable for our minimum dominating set result.
The proofs are quite similar.

I Definition 8 (The Hitting Set Problem). Consider a graph G = (V,E) with two special
sets of nodes L ⊆ V and R ⊆ V with the following properties: each node ` ∈ L knows a set
of vertices R(`) ⊆ R, where |R(`)| = Θ(p logn), such that distG(`, r) ≤ T for every r ∈ R(`).
Here, p and T are two given integer parameters in the problem. Moreover, there is a T -round
CONGEST algorithm that can deliver one message from each node r ∈ R to all nodes ` ∈ L
for which r ∈ R(`). We emphasize that the same message is delivered to all nodes ` ∈ L.

DISC 2018



29:8 Derandomizing Distributed Algorithms with Small Messages

Given this setting, the objective in the hitting set problem is to select a subset R∗ ⊆ R
such that (I) R∗ dominates L – i.e., each node ` ∈ L has at least one node r∗ ∈ R∗ such that
` ∈ R(r∗) – and (II) we have |R∗| ≤ |R|/p.

I Lemma 9. Given a 2T-hop (d, c)-decomposition of the graph G of the hitting set problem,
there is a deterministic distributed algorithm that in Õ(c(d+ T )) rounds solves the hitting
set problem.

Proof. The trivial randomized algorithm includes each node of R in R∗ with probability
1/(2p). It is easy to verify that this satisfies the requirements (I) and (II), with high
probability. In this proof, we develop a deterministic algorithm for solving the hitting set
problem, effectively by derandomizing this randomized process. This derandomization has
four aspects, which we discuss one by one.

Point 1 – Transforming the Requirements to One Cost Function. We try to capture the
requirements (I) and (II) with one cost function. In particular, we define a cost function for
any fixed set R∗ ⊆ R as follows. Consider the following indicator (random) variables: for
each node ` ∈ L, define x` = 1 iff R(`) ∩ R∗ = ∅. Moreover, for each node r ∈ R, define
yr = 1 iff r ∈ R∗. Define the cost function as Z =

∑
`∈L x` +

∑
r∈R yr. Notice the value is

clearly a function of the choice of R∗ ⊆ R. Furthermore, it is easy to see that in the natural
randomized algorithm that includes each node of R in R∗ with probability 1/(2p), we have
E[Z] ≤ |R|/(2p)+1/n2. This is because E[

∑
r∈R yr] =

∑
r∈R E[yr] =

∑
r∈R 1/(2p) = R/(2p).

Moreover, for each ` ∈ L, we have E[x`] = Pr[x` = 1] = (1− 1/(2p))Θ(p log n) ≤ 1/n3, which
implies E[

∑
`∈L x`] ≤ 1/n2.

During the next three points presented below, we will describe a deterministic process
for selecting R∗ such that the related cost is at most |R|/(2p) + 1/n. Notice that this still
does not mean that R∗ satisfies (I). To take care of that issue, we perform the following
clean up step, which has round complexity T , at the end: Suppose we have already chosen
a subset R∗ ⊆ R such that the cost Z =

∑
`∈L x` +

∑
r∈R yr of this selected set R∗ is at

most |R|/(2p) + 1/n. The number of nodes ` ∈ L for which R(`) ∩R∗ = ∅ is
∑

`∈L x`. By
definition, these are exactly the vertices for which requirement (I) is not satisfied. For each
such node `, we mark one node r ∈ R(`) arbitrarily and add the marked nodes to R∗. This
can be done in T rounds by reversing the communication from R to L, now delivering one
bit to each node r ∈ R of whether any of the nodes ` ∈ L for which r ∈ R(`) marked r or not.
These marked nodes, which are added to R∗, increase the size of R∗ by at most

∑
`∈L x`.

Thus, the total new size of R∗ is at most
∑

r∈R yr +
∑

`∈L x` ≤ |R|/(2p)+1/n ≤ R/p. Hence,
now we have a set R∗ that satisfies all the requirements (I) and (II).

Point 2 – Limited Independence Suffices. Next, we describe how we deterministically
select a set R∗ with cost at most Z ≤ |R|/(2p) + 1/n. To be able to pick such a set R∗
deterministically, it is helpful to have a randomized process that uses only a small number
of random bits. For this reason, we first explain how to replace the fully random process
of selecting R∗ nodes with another random process that uses less randomness, in a certain
sense to be formalized, but still provides the same guarantee on the expected cost. We will
then derandomize this randomness-efficient random process.

Let us think of the decisions of whether a node r ∈ R is included in R∗ or not as
a function f : R → {0, 1, 2, . . . , 2p − 1} where f(r) = 0 means r ∈ R∗ and all other
values mean r /∈ R∗. Notice that if for each r ∈ R, f(r) is chosen uniformly at random
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from {0, . . . , 2p − 1}, then we have Pr[r ∈ R∗] = 1/(2p), as desired. Following standard
terminology, we say that a family F of functions f : R → {0, 1, 2, . . . , 2p − 1} is k-wise
independent if for any set S = {s1, s2, . . . , sk} ⊂ R with |S| = k and any choice of values
b1, b2, . . . , bk ∈ {0, 1, 2, . . . , 2p− 1}, we have that

Pr
f∈UF

[f(s1) = b1& . . . f(sk) = bk] = (1/(2p))k.

That is, upon selecting a function f uniformly at random from F , the probability of the
values of f over set S is exactly the same as in the fully random function. The advantage of
k-wise independent functions is that the corresponding family is quite small and thus, we
can choose one function in the family using considerably less randomness. This is made more
clear in the next point. Moreover, they still provide many of the nice behaviors expected
from truly random functions. In particular, using the extensions of standard Chernoff bound
to functions with limited independence [30], we can see that if the selection function for
choosing R∗ out of R is k = Θ(logn)-wise independent (i.e., if it is chosen randomly from
a k-wise independent family), then we still have a concentration within a constant factor
what would be implied by the standard Chernoff bound. More concretely, we still have
Pr[x` = 1] ≤ 1/n3 for each ` ∈ L. Hence, even with a k-wise independent selection function
f , we have that the expected cost is small as desired, i.e., E[Z] ≤ |R|/(2p) + 1/n2.

Point 3 – Defining a k-wise Independent Selection Process. To define a k-wise indepen-
dent selection function in a manner that is suitable for our network decomposition, we use
an independent function for the vertices of each cluster C of the decomposition. Hence, we
have full independence among different colors and even among clusters of the same color.
However, inside each cluster C, the selections are made using one k-wise independent function
g(C) : R ∩ C → {1, 2, . . . , 2p}. One can easily see that such a combination of independent
random functions, each of which is k-wise independent, is also a k-wise independent function.

To select a k-wise independent selection function for cluster C, we rely on classic con-
structions of k-wise independent functions. It is known [1] that there is a family G of nO(k)

deterministic functions such that if we pick one function from G uniformly at random, we
have a k-wise independent random function. This family can be known to all nodes of the
cluster; they can all construct it by following the deterministic sequential construction of [1].
To randomly and uniformly sample one member of this family G, which has nO(k) members,
merely O(k logn) bits of randomness suffice. Hence, by using a random function defined via
O(k logn) = O(log2 n) bits of randomness for each cluster, we can define a random selection
function for vertices of R which ensures that E[Z] ≤ |R|/(2p) + 1/n2.

Point 4 – Fixing the Bits of Randomness. We now fix the bits of randomness in the above
random selection of R∗, in c phases. In the ith phase, we decide about the vertices of R that
are in the ith color of network decomposition, whether to include each of them in R∗ or not.
This gradual process will be such that, at each point of time, the conditional expectation of
the cost function, conditioned on the already decided vertices, is at most |R|/(2p) + 1/n2.
Hence, once we finish the process, a set R∗ is selected with cost at most |R|/(2p) + 1/n2.

Fix a color i. We fix the bits of randomness in each cluster of color i. Since clusters
of this color are at least 2T hops apart in G, each variable x` or yv in the cost function
Z =

∑
`∈L x` +

∑
r∈R yr is influenced by the randomness fixing of at most one cluster. Hence,

each cluster C can fix its own randomness independent of the other clusters.
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Let us focus on one cluster C in color i. We have a family of G of nO(k) deterministic
functions for the selection of the R∗-nodes among R ∩ C. We pick one function from G by
fixing the corresponding bits of randomness one by one, in a manner that does not increase
the conditional expectation of Z, given prior assignments. Imagine that all the functions
in the family G are indexed with numbers from 1 to nO(k), and suppose that these indices
are written as binary numbers with O(k logn) bits. Consider the process of fixing the first
bit; the next bits are similar. Break the family G of nO(k) assignment functions into two
subfamilies, G0 which are those that their function index starts with bit 0, and G1 which
are those that their function index starts with bit 0. For each subfamily, we compute the
conditional expectation of Z over the variables in NT (C) – i.e., the T -hop neighborhood of
cluster C – when the assignment function is chosen uniformly at random from this subfamily.
We then fix the first bit of randomness according to whichever leads to a smaller expectation,
i.e., that is, we zoom in to one of subfamilies G0 and G1, in our search for a deterministic
assignment function. We next explain why the expectation of Z over the variables in NT (C)
can be computed in O(d+ T ) time.

We first spend T rounds to deliver one message from each node r ∈ R to all nodes ` ∈ L
for which r ∈ R(`). In this message, node r reports its color and cluster center ID, and
whether node r has been put in R∗ or not if the color of r was some j < i. Thus, each node
` in NT (C) ∩ L can learn whether it is already hit or not, i.e., whether any of the nodes in
R(`) in the previous color clusters has been fixed to be in R∗ or not. If there is already some
such node r ∈ R(`)∩R∗, then x` = 0 and it will not change. If not, the expectation of x` can
change by the assignments in C. In this case, node ` can exactly compute E[x`] = Pr[x` = 1]
because it knows all the nodes in R(`), those of colors less than i that their decisions have
been made in the previous phases, the identifiers of those that are being decided in this
phase, the colors and cluster identifiers of those with colors greater than i which will be
decided in the next phases, and also the subfamily G0 or G1 in consideration. Similarly, each
node r ∈ R ∩ C can compute E[yr] because that only depends on the identifier of the node
r and the subfamily G0 or G1 in consideration. Then, we can spend d rounds to perform
a convergecast on the tree of cluster C to gather the summation of these expectations at
the root3.

Once these two expectations are gathered at the root of the cluster C, we go with the
smaller one and zoom into the corresponding subfamily, among G0 or G1. This fixes the first
bit of randomness in C but does not increase the conditional expectation of the cost function
compared to when the assignment function was chosen from G. We then proceed to the next
bit. After going through all the O(k logn) = O(log2 n) bits, which takes O(d log2 n) rounds,
we have fixed all the bits and thus we have chosen a deterministic assignment for the R
vertices of cluster C in a manner that did not increase the conditional expectation of the
cost function. This finishes the process for one color. We then proceed to the next color and
perform a similar process. After going through all colors, which takes Õ(c(d+ T )) rounds,
we have found a set R∗ ⊆ R such that the cost Z =

∑
`∈L x` +

∑
r∈R yr of this selected set

R∗ is at most |R|/(2p) + 1/n. As described in point 1 above, this set R∗ can be augmented
to satisfy all the requirements of the hitting set problem, in T additional rounds. J

3 We note that in the CONGEST model, we may not be able to convergecast the full precision of
the expectation, but may need to truncate it to Θ(log n) bits of precision. This would increase the
expectation by at most 1/ poly(n). This is negligible even over all the at most n iterations that we
perform such a convergecast and subfamily selection.
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A Modified Variant of Hitting Set. We can use a similar method to solve a slightly
modified variant of the hitting set problem, as stated in the following lemma. The proof is
deferred to the full version. We use this variant in our dominating set algorithm.

I Lemma 10 (An Alternative Hitting Set Lemma). Let H = (L∪R,E) be a bipartite graph and
let p ≥ 1 be an integer parameter. Further assume that there is a spanning tree of diameter
D that spans all nodes of H and that we can use the edges in E and the spanning tree edges
for communication. There is a deterministic Õ(D)-time CONGEST-model algorithm that
selects a subset R∗ ⊆ R of the nodes in R such that the following conditions hold:
(a) For all nodes u ∈ L, the number of neighbors in R∗ is at most O(deg(u)/p+ logn).
(b) For all nodes in u ∈ L with deg(u) ≥ cp logn for a sufficiently large constant c > 0, at

least one neighbor of u is in R∗.

4 Spanners

Here, we present the proof of Theorem 1, i.e., we develop a deterministic distributed algorithm
for computing spanners by derandomizing the algorithm of Baswana and Sen [8], using our
hitting set. We first briefly recall the algorithm of Baswana and Sen.

Baswana-Sen’s Spanner Algorithm. The algorithm has k levels, where we gradually build,
and sometimes dissolve clusters. At level i, each cluster induces a tree of depth at most i− 1
rooted at the corresponding cluster center. Initially, each node is one cluster. In the ith level
for i ∈ {1, 2, . . . , k− 1}, each cluster of the previous level is active with probability n−1/k and
inactive otherwise. This randomized decision is made by the corresponding cluster center.
Then, inactive clusters get dissolved and their nodes either join other clusters or get dropped
from the algorithm permanently. For each node v in an inactive cluster, if it has a neighbor
in an active cluster, then v joins the cluster of one such neighbor u, and adds the edge {v, u}
to the tree of that cluster. If v has no neighbor in an active cluster, then v gets dropped
from the rest of the algorithm. But just before that, for each inactive cluster C that contains
a neighbor of v, node v adds to the spanner one edge to some neighbor in C. Moreover, for
each cluster of this level, we add the corresponding tree rooted in the cluster center to the
spanner. This finishes level i, and we then proceed to the next level. In the very last level,
all clusters are considered inactive and we act accordingly.

Properties of the Spanner algorithm of Baswana and Sen.
(1) Round Complexity: Clearly, the ith level can be implemented in O(i) rounds of the

CONGEST model and thus the whole algorithm takes O(k2) rounds.
(2) Stretch: Eventually, all clusters are dissolved. For each edge {v, u} in the graph, suppose

without loss of generality that v gets dropped from the clustering no later than u. Then,
an edge is added to the spanner from v to some node w in the cluster of u. If w = u,
edge {v, u} is in the spanner. Otherwise, there is a alternate route to go from v to u in
the spanner by going to w and then using the cluster tree of u at that level; potentially
going from w to its cluster center and then coming back to u. Since the tree has depth
at most i− 1 ≤ k − 1, the whole path has length at most 2k − 1. That is, edge {v, u}
has stretch at most 2k − 1.

(3) Spanner Size: The total number of cluster tree edges, over all levels, is O(nk). Each node
gets dropped in some level, when it has no active neighboring cluster, and then adds one
edge connecting it to each (inactive) neighboring cluster to the spanner. If the node has
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more than Θ(n1/k logn) neighboring clusters, w.h.p., it will have an active neighboring
cluster. So the number of added edges per node is with high probability no more than
Θ(n1/k logn). This is also true for the last level as there the total number of clusters
is Θ(n1/k), w.h.p. Hence, the total number of edges in the spanner is O(kn1+1/k logn),
w.h.p.4.

Derandomization – Abstracting the Properties of the Random Selection. The only part
of this algorithm that relies on randomness is the step of selecting active clusters. As
can be seen in the analysis, it suffices that this (random) selection satisfies the following
two properties, per level: (1) nodes that have more than d = Θ(n1/k logn) neighboring
clusters will have at least one active cluster, (2) if the number of clusters in this level is
R ≥ Θ(n1/k logn), the number of active clusters is at most R ·n−1/k. The former ensures that
the number of edges added per node in a level i ∈ {1, 2, . . . , k − 1} is at most Θ(n1/k logn).
The latter follows from Chernoff bound. Because of having this property in all levels, it
follows that the total number of clusters at the last level is O(n1/k logn). Hence, the number
of added edges per node in that level is O(n1/k logn).

Derandomization via Deterministic Hitting Set Computations. We can formulate the
above two properties as a direct instance of the hitting set problem discussed in Definition 8,
as follows: We set p = n1/k and T = i+ 1 ≤ O(logn). Moreover, we make each node that
has at least d = Θ(n1/k logn) neighboring clusters be one node in L and each cluster center
one node in R. Clearly, each node ` ∈ L can know Θ(p logn) nodes of R that are within its
i+ 1 ≤ k+ 1 ≤ O(logn) hops, these are the vertices in R(`). We can also deliver one message
from each r ∈ R to all vertices ` ∈ L for which r ∈ R(`) in T rounds. For that, we simply
do a broadcast in the cluster centered at r and then pass it on to all neighboring nodes
including `. These provide all that we need to set up the hitting set problem. Moreover,
we also use a 2T -hop (d, c)-decomposition of graph G, for d = c = 2O(

√
log n·log log n), which

can be computing using Theorem 3 in 2O(
√

log n·log log n) rounds. We can now invoke the
deterministic hitting set algorithm of Lemma 9, which runs in 2O(

√
log n·log log n) rounds. That

provides a subset R∗ ⊆ R with size at most R/p = R · n−1/k such that each node ` ∈ L
has at least one node in R∗ ∩ R(`). That is, each node that has more than Θ(n1/k logn)
neighboring clusters will have at least one active cluster. These satisfy the two properties
abstracted above, thus providing us with a deterministic selection of active clusters in each
iteration of Baswana-Sen, hence completing the proof of Theorem 1.

5 Minimum Set Cover and Dominating Set

Consider a set cover instance (X,S) consisting of a set X of elements and a set S ⊆ 2X of
subsets of X such that

⋃
A∈S A = X. The objective of the minimum set cover problem is to

select a subset C ⊆ S of the sets in S such that
⋃

A∈C A = X and such that the cardinality
of C is minimized. As standard (see e.g., [2]), we model the set cover instance (X,S) as
a distributed graph problem by defining a bipartite network graph that has a node ux for
each element x ∈ X and a node vA for each set A ∈ S and that contains an edge {ux, vA}
whenever x ∈ A. We also note that one can solve the distributed minimum dominating set

4 With slightly more care, one can show that this number is actually O(kn1+1/k), with high probability.
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Algorithm 1: Distributed Set Cover Algorithm.
C := ∅ // start with an empty set cover ;
for stage i := 1, 2 . . . , dlogne do

for phase j := 1, 2, . . . , dlogne do
for step c := 1, 2, . . . , c(n) do
Si,c :=

{
A ∈ S : δ(A) ≥ n/2i and A is in cluster of color c

}
;

Xi,j,c :=
{
x ∈ X : s(x, c, n/2i) ≥ n/2j

}
;

Select S ′ ⊆ Si,c such that;
a) ∀x ∈ Xi,j,c : ∃A ∈ S ′ : x ∈ A;
b) ∀x ∈ X : x uncovered =⇒ |{A ∈ S ′ : x ∈ A} | = O(logn);

C := C ∪ S ′ // add S ′ to the set cover

problem on a graph G = (V,E) by using a distributed set cover algorithm and applying it
to the corresponding set cover instance (where each node v ∈ V represents an element and
a set and where the set corresponding to a node u contains u, as well as all neighbors of u
in G). The network graph of the set cover instance for the dominating set problem on G is
given by the bipartite cover of G and a CONGEST-model algorithm on the bipartite cover of
G can be run on the CONGEST model on G in the same time.

In the following, we assume that we are given a set cover instance (X,S) and that
G = (VX ∪ VS , E) is the bipartite n-node graph corresponding to the given set cover
instance. We further assume that for some d(n) ≥ 1 and c(n) ≥ 1, a strong diameter 2-hop
(d(n), c(n))-decomposition of G is given. Recall that for d(n) = c(n) = 2O(

√
log n log log n),

such a decomposition can be computed in 2O(
√

log n log log n) rounds on G (cf. Theorem 3).
We first describe the algorithm to compute a small set cover of (X,S). The algorithm

can be seen as a distributed variant of the well-known sequential greedy algorithm. The
algorithm starts with an empty set cover and it consists of a sequence of steps in which
several sets of S are added to the set cover in parallel. Throughout the algorithm, we trace
some properties of the subproblem that still has to be solved. For every set A ∈ S, we use
δ(A) to denote the number of uncovered elements of A (i.e., at the beginning of the algorithm,
we have δ(A) = |A| and at the end, we need to have δ(A) = 0). Further, for every element
x ∈ X, for each of the colors c ∈ {1, . . . , c(n)} of the given 2-hop decomposition of G, and for
some parameter d ≥ 1, we define the degree-d, color-c support s(x, c, d) of x as follows. If x is
already covered, we have s(x, c, d) = 0, otherwise, s(x, c, d) is defined to be the number of sets
A ∈ S such that x ∈ A, A is in a cluster of color c, and δ(A) ≥ d. The algorithm consists of
dlogne stages i = 1, 2 . . . , dlogne and each stage consists of dlogne phases j = 1, . . . , dlogne.
The algorithm guarantees that throughout stage i ∈ {1, . . . , dlogne}, for all sets A ∈ S, it
holds that δ(A) < n/2i−1, i.e., in each stage, the upper bound on the maximum remaining set
size is halved. Further, for each stage i ∈ {1, . . . , dlogne} and each phase j ∈ {1, . . . , dlogne},
it holds that s(x, c, n/2i) < n/2j−1 for all x ∈ X and all c ∈ {1, . . . , c(n)}. Further, each
phase consists of c(n) steps. The pseudocode of the whole set cover algorithm is given by
Algorithm 1.

I Lemma 11. For all i, j ∈ {1, . . . , dlogne} and all cluster colors c ∈ {1, . . . , c(n)}, through-
out stage i and phase j of Algorithm 1, it holds that
(a) for every A ∈ S, we have δ(A) < n/2i−1,
(b) for every x ∈ X, we have s(x, c, n/2i) < n/2j−1,
(c) at the end of step c, for every x ∈ X, we have s(x, c, n/2i) < n/2j.

DISC 2018



29:14 Derandomizing Distributed Algorithms with Small Messages

Proof. We prove (a)–(c) by induction on i, j, and c. First, note that (a) holds for i = 1
because the bipartite graph G representing the set cover instance has n nodes. Because there
needs to be at least one set and at least one element in every set cover instance, we thus
have |S| < n and |X| < n. Further note that if (a) is true for some stage i, then (b) holds
for the given stage i and j = 1 for the same reason. Also note that (b) and (c) always hold
for all covered elements x because in this case we defined s(x, c, n/2i) to be 0.

We next prove that (b) implies (c). Step c of stage i and phase j guarantees that for
each element x ∈ Xi,j,c (i.e., for each element for which s(x, c, n/2i) ≥ n/2j), there is a set
A ∈ S ′ such that x ∈ A. Consequently x is covered after the step and thus s(x, c, n/2i) = 0.
By condition (c), after all the c(n) steps of stage i and phase j, we have s(x, c, n/2i) < n/2j

and thus if j < dlogne, condition (b) also holds for stage i and phase j + 1. To also prove
the induction step for condition (a), consider the end of phase j = dlogne of stage i. By
(c), we have s(x, c, n/2i) < n/2dlog ne ≤ 1 and thus s(x, c, n/2i) = 0 for all x ∈ X and all
c ∈ {1, . . . , c(n)}. This implies that there is no set A ∈ S left with δ(A) ≥ n/2i. J

I Lemma 12. Given a strong diameter 2-hop (d(n), c(n))-decomposition of G, Algorithm 1
can be implemented deterministically in Õ(d(n) · c(n)) rounds in the CONGEST model on G.

Proof. The algorithm consists of O(logn) stages, O(logn) phases per stage, and c(n) steps
per phase. The total number of steps is therefore O(c(n) log2 n) = Õ(c(n)). To prove the
claim of the lemma, we thus need to show that each step can be implemented in Õ(d(n))
rounds in the CONGEST model on G. Consider some stage i, some phase j, and some step
c in stage i and phase j. Recall that Si,c ⊆ S contains all sets A ∈ S that are in clusters
of color c of the given network decomposition and for which δ(A) ≥ n/2i at the beginning
of step c of phase j of stage i. Let Xi,c be the set of uncovered elements of the sets in Si,c.
Consider the subgraph Gi,c of the set cover graph G that is induced by nodes corresponding
to the elements in Xi,c and the sets in Si,c. Note that for some element x ∈ Xi,c, s(x, c, n/2i)
is the degree of the corresponding node in Gi,c. The algorithm needs to select a subset S ′
of the sets in Si,c such that for each x ∈ Xi,c, the number of selected sets containing x is
at most O(logn) and for each x ∈ Xi,j,c, there is at least 1 set containing x selected. On
the graph Gi,c, this translates into selecting a subset of the nodes vA corresponding to the
sets A ∈ Si,c such that for each x ∈ Xi,c, the corresponding node ux has at most O(logn)
neighbors selected and if ux has degree at least n/2j , it has at least 1 neighbor selected.
From Lemma 11, we further know that all nodes ux in Gi,c have degree at most n/2j−1 and
all nodes vA have degree at most n/2i−1. Selecting the subset of sets S ′ therefore exactly
corresponds to the solving the problem given by Lemma 10 on graph Gi,c with parameter
p = n/(γ2j logn) for an appropriate constant γ > 0. Further note that because we are given
a 2-hop (d(n), c(n))-decomposition, the parts of the graph Gi,c corresponding to different
clusters of color c are disjoint. We can therefore solve the problem of selecting nodes in
Si,c separately for each cluster of color c. Because each such cluster has a spanning tree of
diameter d(n), Lemma 10 implies that each step can be implemented in Õ(d(n)) rounds. J

I Lemma 13. Algorithm 1 computes a solution for a given set cover instance that is with
an O(log2 n)-factor of an optimal solution.

Proof. The algorithm always computes a valid solution (i.e., a solution that covers all the
elements): For i = j = dlogne, condition (c) of Lemma 11 implies that s(x, c, 1) = 0 for all
x ∈ X and all c ∈ {1, . . . , c(n)}. This can only be true if all elements x ∈ X are covered.
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To prove the bound on the approximation ratio, we use a standard dual fitting argument
(see e.g. [31, Chapter 13]). In the step that covers an element x ∈ X, we assign a dual
variable yx > 0 to x such that at the end of the algorithm

∑
x∈X yx = |C|. Consider some

step c of stage i and phase j and assume that the sets in S ′ are added to the set cover
C. Let X ′ ⊆ X be the set of elements that were uncovered before step c of stage i and
phase j and which are covered by the sets in S ′. For all x ∈ X ′, we set the dual variable
yx to yx := |S ′|/|X ′|. This clearly implies that at the end

∑
x∈X′ yx = |S ′| and thus at the

end
∑

x∈X yx = |C|. Note that for all sets A ∈ S ′, we have δ(A) ≥ n/2i. Because for each
uncovered element x ∈ X, there are at most O(logn) sets A ∈ S ′ for which x ∈ A, we have
|X| = Ω(|S ′| · n/(2i logn)). Because by condition (a) of Lemma 11 for all A ∈ S, we have
δ(A) ≤ n/2i−1, for all x ∈ X ′ ∩A, we have yx = O(logn)/δ(A). At the end of the algorithm,
we thus get that for every set A ∈ S,

∑
x∈A

yx = O(logn) ·
|A|∑
`=1

1
`

= O(log2 n).

Dividing all yx-variables by O(log2 n) gives a feasible solution to the dual LP of the standard
set cover LP relaxation. By LP duality, the obtained set cover is within an O(log2 n) factor
of the optimal solution. J

I Theorem 14. A O(log2 n)-approximation for the distributed set cover problem can be
computed deterministically in 2O(

√
log n·log log n) rounds in the CONGEST model.

Proof. We can compute a 2-hop (2O(
√

log n·log log n), 2O(
√

log n·log log n))-decomposition deter-
ministically in 2O(

√
log n·log log n) rounds in the CONGEST model, using Theorem 3. Having

this, the theorem then directly follows from Lemmas 13 and 12. J
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