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Abstract

Hydrologic systems are complex—constituting spatially distributed and temporally variable prop-
erties and processes. Such systems are generally modelled mathematically after some simplifying
assumptions, for example, by aggregating certain variable properties and neglecting many subpro-
cesses. These model structure deficits result in a mismatch between the real and the modelled
system response, which entails uncertain predictions. In addition to model structure deficits, the
presence of errors in model inputs and in the observations of system response contributes to the
uncertainty in the estimation of model parameters. For risk-based decision making and for statisti-
cal hypothesis testing using these models, their uncertainties need to be adequately and explicitly
stated. Furthermore, attempts need to be made to reduce these uncertainties.

The goal of this thesis is to improve the probabilistic descriptions of hydrologic modelling errors
and attain better constrained parameter estimates using such descriptions. To achieve this, several
statistical methods are investigated and tailored for hydrologic applications. The research work
starts with 1) the analysis of a data-driven method for reliable estimation of predictive uncertainty.
It proceeds to 2) reduce uncertainty through improved parameter estimation. And then seeks 3)
a more general mathematical description of error time series. Finally, it 4) discusses some philo-
sophical aspects of unbiased parameter estimation, given the simplified mathematical descriptions
used for complex hydrologic realities.

In part one (chapter 2 and 3), a conceptually simple and easy-to-implement data-driven method is
proposed for predictive uncertainty estimation; its applicability is demonstrated for different forms
of hydrologic forecasting. This method takes advantage of long time series of observations. It is
shown that the performance of this technique is comparable to more sophisticated post-processor
uncertainty estimators that employ fuzzy logic and non-linear regression for the same goal. Being
a post processor, this method is computationally efficient, as it avoids Monte Carlo simulations.
The technique is shown to work well for models with single as well as multiple output variables.

The second part of this work (chapter 4) investigates the reduction of uncertainty by incorporating
complementary information in the modelling exercise. A specific method is proposed that can
make use of censored and binary observations for the estimation of parameters. This part of the
work goes further than just quantifying uncertainties and allows learning from observations. In
order to make the uncertainties explicit, the method employs a state-of-the-art description of au-
toregressive and heteroscedastic error model used in hydrology and shows how to update the prior
of the parameters to a posterior, using nonconventional observations. Given the promise of large
quantities of data from Internet of Things and the availability of cheaper and more robust sensors,
this method enables parameter estimation using such data within a formal Bayesian framework.

In part three (chapter 5), the nature of rainfall-runoff time series, and in turn the error time series,
is further explored, disentangling the three main statistical properties a) autocorrelation b) het-
eroscedasticity and c) non-negativity. This examination seeks to make the probabilistic description
of the hydrologic models more representative of the observation generating process. The proposed
technique provides more flexibility in constructing probabilistic error models, with the potential
for a more reliable parameter estimation compared to the additive Gaussian-process error model.
Also, this description precludes the possibility of negative flow predictions.
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The fourth part (chapter 6), as an attempt at painting the big picture before the concluding re-
marks, is a philosophical appraisal of uncertainty quantification for hydrologic models. It consists
of a brief discussion on the epistemological paradigm that makes hydrology amenable to probabilis-
tic statements. The discussion, being exploratory in nature, moves on to the utility of uncertainty
analysis for both scientific inquiry and practical application in hydrology. It concludes with the
expectations of the hydrologic community from such an analysis.

This research work was, in part, motivated by the hydrology community’s demand for and enthu-
siasm towards proper uncertainty analysis tools. The problems of design and forecast in hydrology
need solutions that are robust. This requires a framework that does not just rely on the determin-
istic model output as the best guess. Assigning accurate probabilities to the space of all possible
outcomes enables such robust solutions. Beyond the technological considerations, there are many
scientific questions still open in hydrology. An improved treatment of model uncertainties greatly
facilitates finding reliable answers to these questions.
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Zusammenfassung

Hydrologische Systeme sind komplex—sie bilden räumlich verteilte und zeitlich veränderliche Ei-
genschaften und Prozesse ab. Solche Systeme werden mathematisch unter einigen vereinfachenden
Annahmen modelliert, beispielsweise durch das Aggregieren bestimmter Variableneigenschaften
und das Vernachlässigen einiger Teilprozesse. Diese Defizite in der Modellstruktur führen zu einer
Diskrepanz zwischen realem und modelliertem System, was zu Vorhersagen mit grösserer Unsi-
cherheiten führt. Weiterhin trägt das Auftreten von Fehlern in den Input-Parametern sowie in
den simulierten Resultaten zu Unsicherheiten bei der Schätzung von Modellparametern bei. Für
eine risikobasierte Entscheidungsfindung sowie für statistische Hypothesentests unter Verwendung
der Modelle müssen Unsicherheiten angemessen und explizit angegeben und langfristig reduziert
werden.

Ziel dieser Arbeit ist es, die probabilistischen Beschreibungen von hydrologischen Modellierungsfeh-
lern zu verbessern und dadurch bessere Parameterschützungen zu erzielen. Dazu werden verschie-
dene statistische Methoden untersucht und auf hydrologische Gebiete angewandt. Die Forschungs-
arbeit beginnt mit 1) der Analyse einer datengesteuerten Methode zur zuverlässigen Schätzung der
Vorhersageunsicherheit, gefolgt von 2) der Verringerung dieser Unsicherheiten durch eine verbes-
serte Parameterschätzung. Eine 3) allgemeinere mathematische Formulierung von Fehlerzeitreihen
wird vorgestellt. Schliesslich werden 4) einige philosophische Aspekte der unverzerrten Parame-
terschützung unter Berücksichtigung der vereinfachten mathematischen Beschreibungen, die in
komplexen hydrologischen Modellen verwendet werden, diskutiert.

Im ersten Teil (Kapitel 2 und 3) wird eine konzeptionell einfache und leicht zu implementieren-
de datengesteuerte Methode für Vorhersage von Unsicherheiten vorgeschlagen; die Anwendbar-
keit wird für verschiedene Formen hydrologischer Vorhersagen demonstriert. Diese Methode nutzt
lange Beobachtungszeitreihen. Es wird gezeigt, dass die Methode in ihrer Leistungsfähigkeit mit
komplexeren Post-Prozessor-Unsicherheitsschätzern, die Fuzzy-Logik und nichtlineare Regression
verwenden, vergleichbar ist. Als Postprozessor ist diese Methode recheneffizient, da Monte-Carlo-
Simulationen vermieden werden. Die Methode funktioniert gut für Modelle mit Einzel- als auch
Mehrfachausgangsvariablen.

Der zweite Teil dieser Arbeit (Kapitel 4) untersucht die Verringerung von Unsicherheiten durch
Einbeziehung komplementärer Informationen in die Modellierung. Eine spezifische Methode wird
vorgeschlagen, die zensierte und binäre Beobachtungen zur Schätzung von Parametern verwen-
det. Dieser Teil der Arbeit geht über die Quantifizierung von Unsicherheiten hinaus und erlaubt
es, aus Beobachtungen zu lernen. Zur Verdeutlichung von Unsicherheiten, verwendet die Methode
eine Beschreibung des in der Hydrologie üblicherweise angewandten autoregressiven und hete-
roskedastischen Fehlermodells und zeigt, wie sich A-priori-Wahrscheinlichkeiten an A-posteriori-
Wahrscheinlichkeiten anhand nicht-konventioneller Beobachtungen anpassen lassen. Angesichts der
zukünftigen Verfügbarkeit grosser Datenmengen aus dem Internet der Dinge sowie kostengünstiger
und robusterer Sensoren, ermöglicht diese Methode eine Parameterschätzung unter Verwendung
solcher Datenmengen in einem formalen Bayesschen Framework.

Im dritten Teil (Kapitel 5) wird die Art der Niederschlag-Abfluss-Zeitreihen und der Fehlerzeitrei-
hen weiter untersucht, wobei die drei wichtigsten statistischen Eigenschaften a) Autokorrelation b)
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Heteroskedastizität und c) Nicht-Negativität genauer betrachtet werden. Dadurch wird versucht,
die probabilistische Beschreibung der hydrologischen Modelle repräsentativer für den Beobach-
tungserzeugungsprozess zu gestalten. Die vorgeschlagene Methode bietet mehr Flexibilität bei der
Konstruktion von Wahrscheinlichkeitsfehlermodellen mit dem Potenzial für eine zuverlässigere Pa-
rameterschätzung im Vergleich zum additiven Gaussschen Prozessfehlermodell. Ausserdem schliesst
diese Beschreibung die Möglichkeit negativer Strömungsvorhersagen aus.

Der vierte Teil (Kapitel 6) dient als Versuch, das Gesamtbild vor den Schlussbemerkungen aufzuzei-
gen, und umfasst eine philosophische Bewertung der Unsicherheitsquantifizierung für hydrologische
Modelle. Es besteht zunächst aus einer kurzen Diskussion über das erkenntnistheoretische Paradig-
ma, das die Hydrologie probabilistischen Aussagen zugänglich macht. Die explorative Diskussion
geht auch auf den Nutzen der Unsicherheitsanalyse sowohl für die wissenschaftliche Forschung als
auch für die praktische Anwendung in der Hydrologie ein. Sie schliesst mit den sich aus einer sol-
chen Analyse ergebenden Erwartungen der hydrologischen Gemeinschaft.

Diese Forschungsarbeit wurde zum Teil durch das Interesse und die Begeisterung der hydrologi-
schen Gemeinschaft ür geeignete Werkzeuge zur Unsicherheitsanalyse motiviert. Die Probleme der
Konzeption und Prognose in der Hydrologie erfordern robuste Lösungen. Dies erfordert ein Fra-
mework, das nicht nur auf dem deterministischen Modell-Output als beste Schtzung beruht. Das
Zuweisen von genauen Wahrscheinlichkeiten zum Raum aller möglichen Ergebnisse ermöglicht sol-
che robusten Lösungen. Über die technologischen Überlegungen hinaus bleiben in der Hydrologie
noch viele wissenschaftliche Fragen offen. Eine verbesserte Behandlung von Modellunsicherheiten
erleichtert es, zuverlässige Antworten auf diese Fragen zu finden.
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1 The hydrologic process—an apology

Approximately 2.5 percent of the global water budget constitutes of freshwater. And within that
small fraction, it is estimated that just about 0.006 percent flows in rivers —the rest mainly consti-
tuting of polar ice, glaciers and groundwater (Trenberth et al., 2007). Notwithstanding their small
volumetric ratio, the dynamical interaction of surface and channel flows with the biogeosphere
is both substantial and vital. Flows in channels form and enable complex ecosystems (Abell et
al., 2008). On geological timescales, these flows cause morphodynamic evolution —carrying huge
amounts of sediment, sculpting new channel geometries and leading to delta formation (Ganti et
al., 2016). Specifically within the human context, rainfall-runoff has been a major actor in shaping
societies —influencing the location and structure of cities we live in and influencing their economics.
Most of the early civilizations were built in close proximity to rivers (Maisels, 2003). Artificial chan-
nel networks came into existence to support irrigation. Similarly, building of drainage networks,
considered one the greatest medical milestones (Ferriman, 2007), allowed for the conveyance of
waste water and storm water away from human settlements, in most cases into the nearest rivers.
Towards the end of the nineteenth century, hydroelectric plants, run by dammed streams, entered
the scene of power generation (Chech, 2005).

From an engineering standpoint, it is therefore important to understand the functioning of such
natural or engineered hydrologic systems, among other things, for seeking optimality in water
resources management, water-related risk management, infrastructure design and operation (Eggi-
mann et al., 2017; Werner et al., 2013). Overflowing drainage systems and swollen river systems
annually cost billions of dollars in damages (Ward et al., 2013). Around 40 percent of the economic
losses that were incurred from 1900 to 2015 due to natural catastrophes were ascribed to floods
(Daniell et al., 2016). And with the changing climate, extreme weather events, which include both
floods and droughts, are going to increase in frequency and intensity, depending on the geographic
location (IPCC, 2014; Milly et al., 2008). Therefore, unlike Hardy's apology for pure mathematics
(Hardy, 2012), we have to conclude that hydrology has to live with the ‘burden’ of being very
urgent and very useful.

Going beyond utility, there is another prominent, a purely scientific, standpoint in researching such
hydrologic systems. While the overarching causality that leads to the physical exchange of water,
the water cycle, was already discovered in the seventeenth century (Nace, 1974), scientists are
still busy trying to explain the myriad subprocesses that happen within this cycle. Understanding
such subprocesses in detail may not always be needed for making operational forecasts, however a
mechanistic understanding is important to draw causal inferences —to simply push the envelope
of knowledge. With process variability at several temporal and spatial scales, the mathematical
descriptions used to explain these hydrologic systems and understand their behaviour remain ap-
proximate. Additionally, system observations are not available at resolutions that can allow the
incorporation of all system variability. This makes hydrologic modelling a work in progress.

2 The hydrologic model

Mathematical models are used to simulate real hydrologic systems to an acceptable degree of
accuracy, depending on the task of the modelling exercise. The classical approach to hydrology, in
the context of rainfall-runoff, has been to use the basic governing rules of flow for formulating a
dependence of discharge on various input variables. The precipitation is generally one of the main
input signals. Within a hydrologic model, the geometric properties of the catchment—like its
elevation, land cover, soil conductivity etc—act on the precipitation signal and return the output
as discharge. The governing equations that are usually employed in hydrology can be presented in
some hierarchy, where the physics of the flow is captured with a decreasing degree of detail. Some
selective didactic examples, with brief descriptions, are mentioned below.

One of the most descriptive ways to model the motion of water in catchments would be to use
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Navier-Stokes equations. This set of nonlinear partial differential equations treats fluids as an
incompressible continuum, and balances their viscous forces with the variable pressure term, using
Newton's second law. Given their reliance directly on the first principles of classical motion, they
are considered quite fundamental. Additionally, the conservation of mass is enforced through a
continuity equation. One can compute the 3D spatial distribution of the velocity and pressure of a
fluid and track the evolution of this field in time. However, this level of detail is usually not needed
in hydrologic applications. A simplification of Navier-Stokes equations would be the shallow water
equations, which assume a 2D variability of the velocity of the flow and changes in pressure are
reflected through the changes in the height of the water column. In 1D these equations are called
Saint-Venant equations. (In Eq. 1 and 2, Q is the discharge at time t for the cross sectional area
A located at x, y is the depth and q is the lateral inflow. So and Sf are gravity and friction terms.
These equation capture conservation of mass and momentum, respectively.)

@Q

@x
+
@A

@t
+ q = 0 (1)
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If we are interested in just the discharge coming out of a catchment area, given a certain rainfall
input, the often called bucket or reservoir models provide an approximate description of the system.
Output of the system is not only dependent on the aggregate rain that falls in a catchment, but also
the way it falls. The bucket models consist of a system of ordinary differential equations, which
capture the dependence of discharge on the temporal structure of the rain. Also, catchments are
modelled as conceptual buckets that store water and give away more water as the storage increases.
This mathematical construction provides us an input-output relationship between precipitation and
discharge with components that have physical interpretability. (In Eq. 3, 4, and 5, Q and P are
discharge and precipitation at the time t. K and a are model parameters. Whereas, S1 and S2 are
storage variables.)

dS1

dt
= aP � S1

K
(3)

dS2

dt
=

S1 � S2

K
(4)

Q =
S2

K
(5)

The next in line simplification to model rainfall-runoff is the unit hydrograph convolution. It
assumes that the response of the catchment to instantaneous rainfall events in the past adds
up linearly to give the aggregate response. So summation, or in case of continuous variables
integration, over time can yield the expected discharge downstream of a catchment. (In Eq. 6, Q
and P (t) are the discharge and precipitation at a time t. A and k are model parameters.)

Q = A

Z
t

0

P (t� ⌧)ke�k⌧d⌧ (6)

Many hydrologic software packages employ a combination of the models mentioned above, with
some parts represented by conceptual or empirical equations, others by more physically descriptive
equations. They also have modules for evapotranspiration, snow melt, infiltration, land use, ground
water and flow routing in streams and drainage networks. This results in a highly parameterized
overall model description (Butts and Graham, 2005; Werner et al., 2013).
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3 Uncertainty in hydrologic models

3.1 Inverse and forward problem

In predictive hydrologic models, we plug the input variables in the model and get the output.
This is the forward simulation, where the question being answered is: given a certain input, what
is the expected output? However, to constrain the model outputs to our catchment conditions,
we first need to determine its parameters, that vary from case to case. Learning about these
parameters from observations of the system response is labelled as the inverse problem, where the
question being answered is: given a certain input and output, what values of parameters could
have produced it?

Deterministic paradigms: Most of the hydrologic modelling till the late twentieth century
happened using deterministic equations. For a given set of inputs and parameters, a unique set of
outputs is expected. The noise over and above the model, if the model is good enough, is neglected.
All we are after is the most likely output that we expect from a system. The model calibration
can then be carried out using certain optimization metrics like seeking the least squared error. To
prevent fitting the model to the noise, many cross-validation techniques are employed.

Probabilistic paradigms: If we are not only interested in the “best guess” about parameter
values and model output, but want to employ the whole distribution of the parameters and in turn
obtain the whole distribution of model output, we start with a mathematical framework that can
assign probabilities to our modelled system response.

3.2 Sources of uncertainty

While lumped conceptual models lose accuracy due to simplifying assumptions, models that de-
scribe the system in greater detail do not necessarily improve the predictive capability. Many other
factors play a role. An attempt at adding more subprocesses to the system description also requires
that the representation of those subprocesses is correct. Besides, more data is needed to feed these
models. So there is a tendency to accumulate errors. Therefore, hydrologic models tend to have
uncertainties associated with them irrespective of the detail with which they try to describe the
hydrologic system.

The main sources of uncertainty then can be summed up as:

• Model structure deficits: These arise from the fact that the equations used to describe the
hydrologic catchment are approximate.

• Observational errors: The measurement of the input, elevation and the system response itself
suffer from systematic and random deviations. These deviations may be stationary in time,
or show some dependence on external drivers.

• Parameter uncertainty: Given that many combinations of parameter values, the ones we have
not measured, can produce a certain time series of observations, to a comparable degree,
results in parameter uncertainty. Parameter uncertainty is usually a result of indeterminacy
in the deterministic paradigm, i.e. given an algebraic or differential equation, there are n data
points, depending on the nature of the equation, necessary to fully define the system. Having
fewer observations then results in parameter uncertainty. In the probabilistic paradigm,
parameter uncertainty is a consequence of the fact that different parameter values, once a
model is defined, can explain the same observational data with varying probabilities because,
as mentioned, observations have errors and models are imperfect. In an ideal world, for
example, for fitting a line, two observations with no noise will uniquely define its parameters.
However, the presence of random error allows us to fit many lines through the same data.
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Figure 1: Sources of uncertainty in hydrologic models. (adapted from Kavetski, 2018).

3.3 The value of making uncertainty explicit

Hydrology generally concerns itself with explaining processes happening out in the environment,
which many a times do not lend themselves to repeatable controlled experiments. As mentioned
before, given the conceptualizations and approximations that enter into the equations, we expect
a degree of mismatch between our model output and the true system response. Some contribution
to this mismatch can be from the frequentist tendencies of the modelled system e.g. the obser-
vation error of the instrument due to an aggregation of several fluctuations in the surroundings.
Measuring a time invariant value of a physical quantity using the same instrument should yield the
distribution of such a measurement noise. On the other hand, other substantial contributions to
uncertainty come from physical realities, like for example the infiltration parameter of the catch-
ment, that do not lend themselves to limits-of-frequency interpretations. Therefore, the Bayesian
framework comes to help, where the probabilities are not relative frequencies, but our degrees of
belief regarding the true value of physical quantities. In the Bayesian framework, as more informa-
tion becomes available, the belief gets updated using the calculus of probabilities, which assures
the logical consistency of the updating process.
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While it is easy to answer the question, given certain parameters, how would the system respond, it
is hard to formulate the conditioning the other way round—given a certain number of observations,
how are the parameter values distributed. Bayes' Theorem relates these two probabilities in its
equation. Knowing one allows us to compute the other. We put out prior understanding of the
system behaviour in the probabilistic model. We also have some prior belief about the values of the
parameters and, as soon as more observational data comes in, we update our belief. Furthermore,
we proceed to make predictions using these updated ranges of parameter values. Prediction then
is the evaluation of the probabilistic model given the data.

Evaluating and dealing with such probabilities can help in optimizing decision making (Hall, 2003;
Hall and Solomatine, 2008; Verkade and Werner, 2011; Reichert and Schuwirth, 2012). Given the
risk aversion of a community and the costs we are willing to incur to avoid a certain risk, design
and operation choices can be made accordingly. Besides, safety factors in design, which are hard
to justify in terms of their adequacy and economy, get replaced by quantified likelihood of failure.
For hydrologic phenomena that have a frequentist characteristic, e.g. annual flood extremes, the
evaluation of correct probabilities will lead to predictable aggregate effects. For hydrologic phe-
nomena where probabilities are purely representative of degrees of belief, decisions can be made
under consideration of risk tolerance and aversion. For example building an irrigation or drainage
network with a failure probability of p%. as opposed to 2p%. Similarly, hypothesis testing can be
done in more nuanced ways. In cases where the hypotheses closely explain the data, then assigning
probabilities to those hypotheses will prevent the false rejection or acceptance of one over the other,
till more differentiating data is obtained. In the absence of an explanation for the error, in a strict
Popperian sense, all hypotheses should be falsified as none will be able to explain the data with
zero error (Nearing et al., 2016; Popper, 2002).

4 Parameter and uncertainty estimation: previous work and
research gaps

Going beyond the manual tuning of model parameters, observational data of the hydrologic sys-
tem response is used to estimate appropriate parameter values. Broadly speaking, there are two
paradigms in hydrology within which parameter and uncertainty estimation is performed. 1) Post-
processors: In this scheme the best fitting parameter values are identified by minimizing a specific
cost function. Once the parameter values are established, uncertainty in model predictions is
quantified from model errors in the past. This paradigm generally cares about operational model
predictions and does not seek to disentangle uncertainty from various sources. There has been con-
siderable amount of research in identifying the pros and cons of this set of techniques for hydrologic
forecasts. Examples of techniques developed under this framework are Quantile Regression (Weerts
et al., 2011), UNEEC (Solomatine and Shrestha, 2009), DUMBRAE (Pianosi and Raso, 2012) etc.
2) Joint Inference: In this scheme, probabilities are associated with the whole range of parameter
values. Given a time series of observational data, both the parameters of the deterministic hydro-
logic model and the error model are inferred from the data. Within the Bayesian framework, such
a joint inference provides a consistent way to combine expert knowledge and information from the
data. Examples of techniques developed under this framework are Bayesian Total Error Analysis
(BATEA), bias as an autoregressive order 1 process, bias as a gaussian output dependent process,
bias as a result of a stochastic input process etc (Del Giudice et al., 2016, 2013; Kuczera et al.,
2006; Schoups and Vrugt, 2010). These techniques generally need Monte Carlo simulations and
can thus be computationally expensive.

For operational forecasts, not only is the reliability of the predictions important but the computa-
tional and conceptual costs also need to be acceptable. Monte Carlo simulation-based uncertainty
analysis techniques require a large number of model evaluations, which may not always be feasible.
Therefore, alternatives to Monte Carlo simulations for cheap estimation of predictive uncertainty
in situations of computational and operational constraints have always been very attractive for
flood forecasting models. The effect on the performance of such techniques due to their simplicity
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needs to be analysed in detail.

There are other studies that focus on specific sources of uncertainty in hydrology e.g. due to
parameters, model structure deficits or inputs. The formulation of representative error models,
which enable reliable prediction intervals and unbiased parameter inference, has been investigated
in the past two decades. The model errors are complex, with the properties of memory (i.e. they
are autocorrelated) and changing variance (i.e. they are heteroscedastic) (Renard et al., 2010).
The benefits of incorporating these properties have been studied. However, their incorporation
also comes with other challenges that have been delineated in previous research (Evin et al., 2013).
Updates in these descriptions are sought to bypass such problems and make the error models more
realistic.

Substantial attention has been paid in hydrology to make error descriptions more representative
of the rainfall-runoff process. In the research work mentioned above, several parameterizations
for the likelihood function have been proposed, for example, to capture heteroscedasticity (Evin
et al., 2013), skewness (Schoups and Vrugt, 2010), autocorrelated structural deficits through time
continuous processes (Del Giudice et al., 2013) etc. However, research gaps remain. Models in
hydrology are usually used to either hypothesize a phenomenon or make predictions. While for
predictive models the system understanding comes second to the performance of the model, for
explanatory studies, where we may be interested in the acceptance/rejection of a hypothesis, the
underlying process should also be representative. This means if we believe that the parameters
in our model correspond to a distributed or aggregated quantity which is actually a property of
the system, then we are interested in their “true” values, and not any values that can produce a
reasonable prediction. Also, more information about the behaviour of the system should increase
our confidence in the value of the parameters. And for predictions, the predictive uncertainty needs
to be computed, which is the conditional probability f(yfuture|yobserved, xinput).

There has also been a paradigm shift in hydrology where data from unconventional sources is be-
ing used to improve hydrologic models. Hydrologic data is being collected from CCTV cameras,
from crowdsourcing and from alternate sensors. However, the conventional parameter estimation
techniques in hydrology have been mostly developed keeping the data from flow meters or gauge
readings in mind. Given this data revolution, statistical techniques need to be investigated that can
get the maximum information out from hydrologic models used for both explaining and predicting.
With the advent of Internet of Things and the proliferation of unconventional data (Scheidegger
and Rieckermann, 2014; Eggimann et al., 2017; Ilja Van Meerveld et al., 2017; Mazzoleni et al.,
2018; Moy De Vitry et al., 2017), the classical parameter inference for hydrologic models needs
to be adapted to the changing nature of the observations. Ideally, if the parameter estimation is
done in the Bayesian framework, the likelihood function should be able to handle different types
of observational data.

5 Research questions addressed in this work
The objective of this PhD research is to investigate various statistical tools that can improve
the descriptions of uncertainties associated with hydrologic models. Besides, reduction in these
uncertainties is sought by improving the parameter estimation of models. This thesis addresses
three specific questions in the context of hydrologic modelling:

1. For operational hydrology, where Monte Carlo simulations can be computationally pro-
hibitive, evaluating the performance of a simple and easy-to-implement data-driven uncer-
tainty estimation technique that can be applied in the post-processing phase. What is the
comparative performance of such a technique?

2. Given the widely employed formulation of an additive random error for hydrologic model
outputs, how can we use censored observations for parameter inference? What is the in-
formation gain from such censored data? And what is the sensitivity of inference to sensor
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placement?

3. As additive error models have some constraints, for example in the choice of marginals
that can be used with autocorrelation, possibility of negative flows etc., are there other
formulations of error models possible that offer more flexibility? This flexibility can be then
used to incorporate properties like autocorrelation, heteroscedasticity, and non-negativity in
a better fashion.

6 Thesis outline
This thesis report is divided into seven main chapters and two appendix chapters. Apart from
Introduction and Concluding remarks, the main chapters are structured such that the techniques
with more operational value are discussed first. The focus then shifts more towards explanatory
analysis in the context of parameter and uncertainty estimation.

Chapter 2 starts with the description of a residual uncertainty estimator that provides reliable pre-
diction intervals, if large time series of observational data is available from the past. This chapter
is an investigation into the applicability of one of the easy-to-implement uncertainty estimation
techniques. A k nearest neighbour (kNN) search is used to resample errors and generate prediction
intervals. The sensitivity of the technique to the choice of search space, value of k, and systematic
deficits in model is explored. By comparing kNN resampling to other more sophisticated post
processors, its performance and reliability are ascertained.

Chapter 3 investigates the applicability of kNN resampling for distributed models with multiple
variable outputs. New metrics are also introduced to choose the components of the search space.
The discussion builds on the results and elaborates on the advantages of kNN resampling as a
robust technique for generating prediction intervals.

In Chapter 4 a formal likelihood function is suggested that incorporates censored observations,
while accounting for model structure deficits and uncertainty in input data. It is shown that the
parameter inference can be performed within the Bayesian framework for such nonconventional
data. The methodology is implemented on an urban catchment, where parameters of a hydro-
dynamic rainfall-runoff model are inferred from binary observations of water level. This work
demonstrates that censored observations can be valuable for learning about model parameters,
while retaining a probabilistic framework during parameter estimation.

Chapter 5 is an exploration into the properties of hydrologic times series i.e autocorrelation, het-
eroscedasticity, and non-negativity. An alternative to additive error models is suggested. Distri-
butions with a non-negative support are used in conjunction with copulas to define the likelihood
function of hydrologic models. Copulas capture autocorrelation in time. This scheme adds flexi-
bility to the formulation of an error description for specific hydrologic models, as mariginals and
copulas can be chosen separately. The effects of such a framework on parameter estimation and
model prediction are analysed.

Chapter 6 is a short essay on the philosophical basis and implications of employing probability
calculus for hydrologic modelling applications. The essay revisits the axiomatic basis of quantify-
ing uncertainty using probability theory. It soon after turns to the implications of using such a
framework and delineates some of the expectations of the hydrologic community from such usage.

The final take home messages of this thesis are synthesized and reiterated in chapter 7. The chap-
ter ends with an outlook on statistical tools presented in this thesis. Based on this work, some
recommendations for future research are also made in this chapter.

Appendix A and B contain two papers that contribute to the overarching theme of this thesis.
Appendix A is a comparative study and analysis of various transformational strategies that make
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rain gauge and radar data more normal, before merging them in kriging. The performance of
these strategies has a bearing on the performance of the final merged rainfall product, which in
turn affects hydrologic model forecasts. Whereas, Appendix B presents a new sediment wash-off
model for which parameter and uncertainty estimation is done within the Bayesian framework.
The improved performance of both the deterministic model and the associated prediction intervals
is demonstrated in the study.

This thesis report, being a cumulative dissertation, consists of published and submitted journal
papers. Chapters 2, 4, A, and B are published in peer-reviewed journals. Whereas, chapter 3 and
chapter 5 have been submitted. A statement on the contribution of authors is provided at the
beginning of each chapter.
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Abstract
A non-parametric method is applied to quantify residual uncertainty in hydrologic streamflow fore-
casting. This method acts as a post-processor on deterministic model forecasts and generates a
residual uncertainty distribution. Based on instance-based learning, it uses a k nearest neighbour
search for similar historical hydrometeorological conditions to determine uncertainty intervals from
a set of historical errors, i.e. discrepancies between past forecast and observation. The performance
of this method is assessed using test cases of hydrologic forecasting in two UK rivers: the Severn
and Brue. Forecasts in retrospect were made and their uncertainties were estimated using kNN
resampling and two alternative uncertainty estimators: quantile regression (QR) and uncertainty
estimation based on local errors and clustering (UNEEC). Results show that kNN uncertainty
estimation produces accurate and narrow uncertainty intervals with good probability coverage.
Analysis also shows that the performance of this technique depends on the choice of search space.
Nevertheless, the accuracy and reliability of uncertainty intervals generated using kNN resampling
are at least comparable to those produced by QR and UNEEC. It is concluded that kNN un-
certainty estimation is an interesting alternative to other post-processors, like QR and UNEEC,
for estimating forecast uncertainty. Apart from its concept being simple and well understood, an
advantage of this method is that it is relatively easy to implement.
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1 Introduction

Hydrologic forecasts for real-life systems are inevitably uncertain (Beven and Binley, 1992; Gupta
et al., 1998; Refsgaard et al., 2007). This, among other things, is due to the uncertainties in the
meteorological forcing, in the modelling of the hydrologic system response and in the initial state
of the system at the time of forecast. It is well accepted that, compared to a simple deterministic
forecast, additional information about the expected degree of accuracy of that forecast is valuable
and generally leads to better decision making (Krzysztofowicz, 2001). Various techniques have
therefore been developed to quantify uncertainties associated with the meteorological model input
(van Andel et al., 2013), the initial state of the model (Li et al., 2009) and the hydrologic models
themselves (Deletic et al., 2012; Coccia and Todini, 2011). Frameworks and guidelines have been
developed to incorporate uncertainty analysis of environmental models effectively in decision mak-
ing (Arnal et al., 2016; Reichert et al., 2007; Refsgaard et al., 2007). Broadly, there are three basic
approaches to uncertainty estimation: (i) explicitly defining a probability model for the system
response, e.g. Todini (2008), (ii) estimation of statistical properties of the error time series in
the post-processing phase of model forecast, e.g. Dogulu et al. (2015), and (iii) methods using
Monte Carlo sampling of inputs and/or parameters, aimed at getting a range of model outputs,
e.g. Beven and Binley (1992) and Freer et al. (1996). Other uncertainty estimation techniques
may employ a combination of these approaches (Del Giudice et al., 2013). Some techniques focus
on one source of uncertainty, such as the model parameter uncertainty (Benke et al., 2008) or
the model structure uncertainty (Butts et al., 2004), while others focus on combined uncertainties
stemming from model parameters, model structure deficits and inputs (Schoups and Vrugt, 2010;
Evin et al., 2013; Del Giudice et al., 2013). In this context, it is important to note that apart
from estimating uncertainty of model parameters during calibration, uncertainty estimation for
hydrologic forecasting requires quantification of predictive uncertainty, which includes uncertain
system response in addition to different combinations of model parameters (Renard et al., 2010;
Coccia and Todini, 2011; Dotto et al., 2012).

In this paper, we will restrict ourselves to the class of uncertainty estimators called post-processors.
These methods usually do not discriminate between different sources of uncertainty. They “aggre-
gate“ all sources into a so-called residual uncertainty. Post-processing methods assume the existence
of a single calibrated model with an optimal set of model parameters, and build a statistical or
machine learning model of the residual uncertainty. Typically, these techniques relate a combina-
tion of model inputs and/or outputs to the model error distribution. Various post-processors have
been developed and applied to hydrologic modelling, such as a meta-Gaussian error model (Mon-
tanari and Brath, 2004), UNEEC (Solomatine and Shrestha, 2009), quantile regression (Weerts
et al., 2011), and DUMBRAE (Pianosi and Raso, 2012). Quantile regression (QR) is a relatively
straightforward post-processing technique that relates the probability of residual errors to the
model forecast (the predictand) by a regression model that is derived from historical forecasts
and observations. QR has been successfully applied for uncertainty quantification in hydrologic
forecasts with various modifications (Weerts et al.,2011; Verkade et al.,2013; Roscoe et al.,2012,
;López López et al., 2014; Hoss and Fischbeck,2015), whereas UNEEC involves a machine learning
technique for building a non-linear regression model of error quantiles (Solomatine and Shrestha,
2009). UNEEC includes three steps: (1) fuzzy clustering of input data in the space of “relevant”
variables; (2) estimating the probability distribution function of residual errors for each cluster and
(3) building a machine learning model (e.g. an artificial neural network) of the prediction inter-
val for a given probability (Dogulu et al., 2015). Many other uncertainty estimation techniques,
such as DUMBRAE (Pianosi and Raso, 2012), HUP (Krzysztofowicz, 1999), model conditional
processor (Coccia and Todini, 2011), Bayesian revision (Reggiani et al., 2009) and Bayesian model
averaging (Raftery et al., 2005), make explicit assumptions about the nature of the probability
distribution function of error. This is not necessary for QR and UNEEC (López López et al., 2014;
Dogulu et al., 2015). Nevertheless, in QR and UNEEC assumptions need to be made about the
form of the regression function that is used to calculate the quantiles.

In an attempt to explore the utility of easier-to-implement post-processing techniques, we employ



16 2. Method

a simple nonparametric forecast method for residual uncertainty quantification. This method uses
kNN search to learn about the past residual errors, which avoids having to make explicit assump-
tions about the nature of the error distribution and tuning of distribution parameters. Instance-
based learning has been used in meteorology and hydrology before for resampling of precipitation
and streamflows, most notably by Lall and Sharma (1996), who used the k nearest-neighbour
(kNN) method for resampling of monthly streamflow sequences. kNN search has also been used
in a non-parametric simulation method to generate random sequences of daily weather variables
(Rajagopalan and Lall, 1999). They defined a weighting function for probability where the pre-
dictand is resampled from k values. Jules and Buishand (2003) used nearest-neighbour resampling
to generate multisite sequences of daily precipitation and temperature in the Rhine basin. Also,
instance-based learning has been used as a data-driven model for hydrologic forecasting (Solo-
matine et al., 2008; Solomatine and Ostfeld, 2008). Beckers et al. (2016) use nearest-neighbour
resampling to generate monthly sequences of climate indices and related precipitation and temper-
ature series for the Columbia River basin. Specifically in the context of error modelling, a version
of UNEEC that uses kNN instance-based learning as its basic machine learning technique to pre-
dict the residual error quantiles was compared to the original ANN-based UNEEC in Shrestha and
Solomatine (2008). However, kNN can also be used without the complicated UNEEC procedure
that includes fuzzy clustering. The application of kNN has recently been tested for forecast updat-
ing by constructing a deterministic error prediction model (Akbari and Afshar, 2014). Similarly,
it has been shown that model errors can be resampled using kNN, after explicitly accounting for
input and parameter uncertainty, to generate uncertainty intervals (Sikorska et al., 2015). In this
paper we extend the simplification of kNN resampling for uncertainty estimation. We present an
application of the kNN method to generate residual uncertainty estimates for a predictand, using
a fixed time series of input and fixed model parameters, and explore whether this approach, being
simpler than many other uncertainty quantification approaches mentioned above, is a useful or
even a better alternative.

To demonstrate its use, we employ a relatively simple configuration of kNN resampling to produce
uncertainty intervals for hydrologic forecasting. The next section explains the method in more de-
tail and describes the validation procedure, i.e. the performance indicators. In Sect. 3, the method
is applied to two case studies, each with a different system response (discharge and water level).
The performance of kNN uncertainty estimation as a function of forecast lead time is analysed in
the first case study. The second case study is used to further validate the performance of kNN
uncertainty estimation and analyse its sensitivity to the choice of search space and the value of k.
Also, the influence of systematic bias in the hydrologic model on the uncertainty intervals generated
by kNN search is explored in the second case study. For both case studies, performance indices of
kNN resampling are compared to those of QR and UNEEC. And finally in Sect. 4, we discuss the
usability of kNN search as a postprocessor uncertainty estimator in hydrologic forecasting.

2 Method

2.1 kNN error model
The kNN residual uncertainty estimator can be seen as a zero-order local error quantile model
built from a kNN search. Let us define a vector v in n-dimensional space of variables (the search
space) on which the residual uncertainty is assumed to be statistically dependent.

v = [v1, ..., vn] (1)

The cumulative probability distribution function C of residual errors at prediction time step t
conditioned on v = vt is defined as

Ct(e|v = vt) = Pt(E  e|v = vt) (2)
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Figure 1: Dependence of error samples on the value of k. For larger values of k, points are at a
greater distance from vt (the prediction step), thus compromising the conditioning of the residual
error probability distribution on vt (Eq. 5).

where P is the probability function and E denotes the random variable for residual errors. Residual
error is defined throughout this paper as the difference between the simulated values and the
observed values for a hydrologic system response f , like discharge or water level.

e = fsimulated � fobserved (3)

We are making the assumption of stationarity in time so that past error distributions are repre-
sentative of the future:

Ct(e|v = vt) = Cp(e|v = vt) (4)

The subscript p denotes historical time series. Therefore Cp is the cumulative distribution function
of residual errors from the past. In Eq. (4), Cp is being conditioned to the input variable vector at
time t . Nevertheless, as we only have single realizations of the error variable E for each historical
point, we relax the constraint of v = vt. Instead, we assume that the nearby neighbours of vt
in n-dimensional space will have a similar probability distribution of errors to vt and that these
historical errors are samples from Cp(e|v = vt). An empirical probability distribution can thus be
constructed using the kNN historical errors:

Ct(e|v = vt) ⇡ Cp(e|rp  rk) (5)

where rp is the Euclidean distance in n-dimensional space of input variables.

rk =

vuut[
nX

i=1

(vi
p
� vi

t
)2

�2

i

] (6)
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Figure 2: Upper Severn subcatchments with gauging stations (from López López et al., 2014).

vp is the input variable vector of the past data point in the cloud of such past data points v (Fig.
1) and rk is the distance to the kth nearest neighbour of vt. The choice of the input variable vector
is a problem in itself since it should include only the most relevant variables that determine the
forecast uncertainty. In this study, the input variable vector is chosen based on correlation between
the candidate variables and the past errors. If the correlation between the error time series and
a particular candidate variable is relatively high, then it can be included in the input variable
vector space. Other, more sophisticated methods involving the mutual information can be used
as well (Fernando et al., 2009). This will be exemplified in the case studies described in the next
section. To represent the relative importance of input variables used in the search, dimensions of
the input variable vector space can be suitably weighted in. Also, the model-based methods can
be used where models are built for each considered candidate input variable set, and the choice
is made based on their relative performance. These, however, were not explored in this study; it
rather focused on the usability of the kNN search in its most basic implementation for uncertainty
quantification. Nevertheless, we do demonstrate the sensitivity of the uncertainty intervals to the
choice of input variable vector.
In order to level variables with different magnitudes, they are normalized. If i represents the
standard deviation of input variable i calculated using the past data, then

rk = kvp � vtk =

vuut[
nX

i=1

(vi
p
� vi

t
)2] (7)

Once the input variable vector space is decided, the probability of non-exceedance of a forecast
error is calculated empirically by sampling from the conditional error distribution:

Ct(e|v = vt) ⇡ Cp(e|rp  rk) = j/k (8)

where j is the rank of value e (for which the probability of non-exceedance is being computed) in
the ascending array of k error values. The kNN search is thus employed to generate a sample and
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Figure 3: Dependence of the residual error probability function on the value of k for three didactic
values of vt (in each row in this plot). The probability is computed for error bins of size 0.005
units each. The graphs show that for k from around 90 to 120, the corresponding empirical error
distributions become almost identical.

to build an empirical error distribution for this predictive uncertainty quantification. Such a math-
ematical description does not employ explicit regression models for predicting quantiles, which can
be seen as a disadvantage in extrapolating outside available data. Also, as this configuration of
kNN used in this research generates residual error quantiles, which capture the mismatch between
measurement values and simulated values, the uncertainty in observational data is not considered.
The generated quantiles are aimed at capturing the measured system response and do not attempt
to capture the true response of the hydrologic system.

As one would expect, due to the nature of our sampling approximation (Eq. 8), the number of
nearest neighbours, k, will affect the empirical conditional probability distribution of errors. If k
is very large, many data points that are quite distant from vt (Fig. 1) will be selected and the
conditioning on the current forecast situation will not be valid. Large values of k will thus yield
error distributions with larger uncertainty intervals —resembling the marginal error distribution.
If k is small, the set of k errors will be small and subject to sampling error, so this set will not
adequately represent the uncertainty distribution at vt . The tail of a distribution is more prone to
sampling errors compared to its mean. Thus, to attain an acceptable degree of convergence, many
more samples are required for quantiles corresponding to bigger prediction intervals (van der Vaart,
1998). For improved performance, the value of k can be subject to optimization of some cost func-
tion: the optimal value of k could be the one that enables a reasonable estimate of the uncertainty
quantiles and additionally we may require that the sensitivity of the error distribution to k is small.
In this study, we carry out such optimization using quite a simple heuristic guideline —the value
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Figure 4: Prediction intervals for the Yeaton catchment using kNN resampling. The hydrographs
are shown for the two different lead times. The 50% prediction interval is the interval between the
25 and 75% quantiles of residual error, and the 90% quantile is the interval between the 5 and 95%
quantiles. The reporting time interval is 12 h.

of k is varied until the probability distribution of errors stabilizes and becomes less sensitive to the
value of k for a few model predictions. We also demonstrate the sensitivity of uncertainty intervals
to the value of k in one of the case studies. The choice of this relatively simple procedure for error
quantile generation using kNN resampling is a reasonable starting point to assess its potential for
residual uncertainty. This study explores the potential of uncertainty estimation using kNN in
as simple a way as possible, and then compares its performance to two other residual uncertainty
estimators. More advanced application of kNN, for example using fuzzy weights and kNN sampling
to assign prediction intervals (Shrestha and Solomatine, 2008) or through explicit consideration of
uncertainty in parameter and input by sampling them from their distributions, has been success-
fully shown (Sikorska et al., 2015). To summarize, the steps for uncertainty quantification using
kNN resampling are as follows.

1. Compose the input variable vector space (v) on which uncertainty will be conditioned. Corre-
lation analysis can help find the most relevant variables.
2. Set the number of neighbours k.
3. For a forecast at prediction time step t , identify the set of k nearest neighbours to the input
vector vt . This set represents the hindcasts (forecasts in retrospect) most similar to vt.
4. Use the residual errors from these k points to build an empirical error distribution for the
forecast at time step t .
5. Finally, identify the errors corresponding to the required quantiles (probabilities of non-
exceedance) from this empirical distribution (in this paper, we use the 5—95 and 25—75% quan-
tiles).
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a
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Figure 5: Plots of error samples and their autocorrelation (ACF). The error time series generated
using kNN resampling are in red. Black circles represent the observed errors, i.e. obtained after
measuring water level and comparing it to the simulated water level. M stands for measured and
S for simulated. The lead times for each row are (a) 3 h, (b) 24 h and (c) 48 h.
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2.2 Validation methods

Three statistical measures have been employed in this study to check the effectiveness of uncer-
tainty estimation techniques, namely prediction interval coverage probability (PICPPI), the mean
prediction interval (MPIPI) (see e.g. Shrestha and Solomatine, 2008; Dogulu et al., 2015) and the
Alpha Index (Renard et al., 2010). PICPPI represents the percentage of observations (C) covered
by a prediction interval (PI) corresponding to a certain probability of occurrence (in our case 90
and 50 %).

PICP90 =
Nin

Nobs

· 100% (9)

where Nin is the number of observations located within the PI and Nobs is the total number of
observations. These metrics are calculated using the following equations:

PICP90 =
1

n

nX

i=1

C90 · 100%, P ICP50 =
1

n

nX

i=1

C50 · 100% (10)

C90 =

(
1 if qi,0.05  qi  qi,0.95
0 else

, C50 =

(
1 if qi,0.25  qi  qi,0.75
0 else

(11)

where qi,0.95 and qi,0.05 are values with 95 and 5% probabilities of non-exceedance at time i. Thus
the region bound within these two values will have a confidence interval of 90%. Similarly, qi,0.75 and
qi,0.25 represent the boundaries for 50% C. The MPI is the average width of the confidence intervals
corresponding to a particular probability. It is a measure of the magnitude of the uncertainty.

MPI90 =
1

n

nX

i=1

qi,0.95 � qi,0.05, MPI50 =
1

n

nX

i=1

qi,0.75 � qi,0.25 (12)

We also quantify the reliability of the predicted error quantiles by comparing it to the observed
error quantiles. The mismatch between the observed (qobs,j) and predicted (j/100) error quantiles
can be summarized by the Alpha Index (↵).

↵0 =
1

100

100X

j=1

|qobs,j � j/100| (13)

↵ = 1� 2↵0 (14)

There have been discussions whether an isolated verification index can capture all the aspects that
make a probabilistic forecast good or bad (Laio and Tamea, 2007). The choice of a verification
index for an uncertainty estimation technique should also be dependent on the purpose of hydrologic
forecast. For example, Coccia and Todini (2011) evaluate the performance of model conditional
processors for flood forecasting using the predicted and observed probabilities of exceedance over a
threshold. Also, in their study predicted error quantiles are compared to observed error quantiles.
López López et al. (2014) and Dogulu et al. (2015) use PICP and MPI, among other verification
measures, to access the performance of QR and UNEEC. This study will limit the comparison of
kNN resampling with other techniques to PICP and MPI only, which give a reasonable assessment
of performance. Nevertheless, it does not preclude the possibility that the uncertainty estimation
techniques perform differently if evaluated using other indices.
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3 Case studies
The performance of kNN resampling was evaluated by applying the technique to hydrological
forecasting for several catchments in two different parts of England. The two case studies provide
two different hydrologic conditions for testing and include different models for prediction. Also,
different kinds of system responses are being predicted in the two case studies —water level and
discharge. The accuracy of the quantified prediction intervals was deduced by using validation
data sets. Also, the first case study was used to evaluate the impact of changing lead time on
uncertainty of hydrologic models and its quantification using kNN resampling.

3.1 Upper Severn catchment
Catchment description

The Upper Severn region is located in the Midlands, UK (Fig. 2). The River Severn, with a total
length of 354 km, is the longest river in the UK. Its course acts as a geographic delineation between
England and Wales, finally draining into the Bristol Channel. The overall River Severn catchment
area is 10 459 km2. Around 2.3 million people live in this region. The area is predominantly rural,
but there are also a number of highly urbanized parts. The area covering the upper reaches of
the River Severn, from its source on Plynlimon to its confluence with the River Perry upstream
of Shrewsbury in Shropshire, is called the Upper Severn catchment. The Upper Severn catchment
is predominantly hilly. It is dominated on the western edge by the Cambrian Mountains and a
section of Snowdonia National Park (River Severn CFMP; EA, 2009).

The Severn catchment has a diverse geology. The headwaters of the river rise on Silurian mudstones,
siltstones and grits and flow eastwards over these same rock formations. These rock formations do
not allow water to flow easily through them. Therefore they are classified as non-aquifers with only
limited potential for groundwater abstraction. Further west, in the Middle Severn section, the River
Severn encounters sandstones, which are classified as a major aquifer and are highly permeable,
highly productive and able to support large groundwater abstractions (River Severn CFMP; EA,
2009). The climate of the Severn catchment is generally temperate, experiencing modest to high
precipitation depending on topography. Welsh mountains can receive over 2500mm of precipitation
per annum, whereas the rest of the catchment receives rainfall similar to the UK average —less
than 700mm per annum. The test forecast locations used in this study are Llanerfyl, Llanyblodwel
and Yeaton. Table 1 lists the basin and hydrological information for these subcatchments (López
López et al., 2014).

Table 1: Basin information for Upper Severn subcatchments (EA, 2013; Marsh and Hannaford,
2008).

Catchment Area (km2) Mean annual rain (mm) Mean flow (m3s�1) Max water level (m)
Llanerfyl 125 1077 >10 3.59

Llanyblodwel 229 1267 6.58 2.68
Yeaton 180.8 767 1.6 1.13

Experimental set-up

The flood forecasting system for the River Severn is organized in a sequential manner, being
composed of a number of separate systems that are effectively linked. This forecasting system
works with a high degree of automation and efforts have been made to involve a minimum amount
of human intervention. The UK Environment Agency uses the Midlands Flood Forecasting System
(MFFS) to do flood forecasting and to help in warning operation. The MFFS in turn is based on
the Delft-FEWS (Flood Early Warning System) platform (Werner et al., 2013).Within the MFFS,
there are lumped numerical models for rainfall-runoff (MCRM; Bailey and Dobson, 1981) and
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Figure 6: Reliability diagram from Upper Severn subcatchments for (a) low, (b) high and (c) all
flows (Llanerfyl: blue; Llanyblodwel: green; Yeaton: red).

models for hydrologic (DODO; Wallingford, 1994) and hydrodynamic routing (ISIS; Wallingford,
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1997). The rainfall input for the MFFS is acquired from ground measurements via rain gauges,
from radar measurements or from numerical weather prediction data. The MFFS predicts ahead
in time the response of the Upper Severn subcatchments but, as expected, the quality of forecast
deteriorates with increasing lead time.

To do uncertainty analysis for the MFFS, hindcasting or reforecasting is done and then results
are compared to the observed data. All the input time series used for hindcasting are taken from
measured data. In this study, the reforecasting period was kept equal to the one employed in the
studies of López López et al. (2014) and Dogulu et al. (2015). The chosen period is from 1 January
2006 to 7 March 2013. Data in the period till 6 March 2007 are used for the model spin-up. The
remaining period is used for the calibration and validation of the uncertainty estimation techniques.
Forecasts are made on a 12-hourly basis —at 08:00 and 20:00 daily, up to a lead time of 48 h. kNN
resampling was applied for forecasts at 10 different lead times: 1, 3, 6, 9, 12, 18, 30, 36, 42, and 48
h. To choose an input variable vector for kNN resampling, correlation analysis was done between
residual error and contenders for input variable vector space, namely simulated water level (Hsim),
measured water level (Hobs) and residual error (Eobs) from various time steps t . The analysis was
done to assist in a manual selection of input variable vectors. The correlation between residual
error and water level reduces fast with time lag between the two time series. Therefore it is enough
to choose relatively simple and small dimensional input variable vector spaces. For lead times, l,
up to 6 h we chose

v = [Hsim

t
, Hobs

t�l
, eobs

t�l
] (15)

For higher lead times, uncertainty has only been conditioned on Hsim
t

as the residual error becomes
less and less correlated with variable values as measured several hours behind the prediction time.

v = [Hsim

t
] (16)

Ninety-nine values of residual errors were sampled from the nearest neighbourhood to generate an
empirical distribution at each prediction step. This allowed us to get the “resolution“ of 1 percentile
in the generated empirical distribution. To develop confidence in the chosen value of k, we checked
for a few prediction steps how sensitive the generated empirical distribution is to the value of k.
Four different instances of vt were chosen. Each instance represents a prediction step in the input
variable vector space (the red circle in Fig. 1), with different hydrologic conditions. The plots
of the cumulative mean square difference between probability density functions (pdfs) of varying
k were generated. Cumulative mean square difference (Eq. 17) serves as an index to show how
much the empirical pdfs change with changing k. We get a decreasing slope with increasing k. It
shows that the pdfs become almost identical for values of k around 100. If Pki(e) is the probability
density for a residual error e calculated through ki nearest neighbours using kNN resampling, for
probability functions corresponding to discrete bin size �e, the cumulative difference is defined as
cumulative difference

cumulative difference =
ki=kX

ki=10

last e binX

first e bin

[�e · Pki(e)��e · Pki�1(e)] (17)

The various values of ki that were tested are 10, 30, 50, 70, 90, 100, 110, 130 and 150. Using
the information from Fig. 3, a value of k=99 does not seem to be heavily affected by sampling
errors. Nevertheless, it is not a mathematically calibrated value of k and therefore is likely to be
sub-optimal. However, it should still be able to provide reasonably representative samples from
the error distribution, as is suggested by Fig. 3.

Results

Figure 4 shows two hydrographs for the same event, where model predictions were made at dif-
ferent lead times. From the graph of lead time 48 h it is evident that the error quantiles that
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kNN resampling produces are not forced to have zero mean. Therefore the model prediction can
sometimes lie outside the predicted quantiles. This is because kNN resampling learns from past
instances where the model has consistently underpredicted or overpredicted the flow, so it corrects
for this bias. The hydrographs capture the low flows and the peaks well. It can also be seen that
for high flows the errors are usually higher than for medium and low flows. The residual error
distribution is thus heteroscedastic, i.e. the variance depends on the magnitude of the predicted
flow. The autocorrelation can be checked by plotting errors versus time, whereas performance of
an error model with regard to heteroscedasticity can be estimated by plotting reliability diagrams
for different magnitudes of flow, which would mean different water levels in this case.The plotting
of error time series (Fig. 5) for various lead times shows some recurring trends across all three sub-
catchments. The errors are small for small lead time forecasts and the spread of error time series
increases with increasing lead time. Moreover, the errors do not look autocorrelated for smaller
lead times, whereas for the higher lead times autocorrelation becomes more prominent. This can
be ascribed to the memory of the hydrologic system. If the system response is higher than what the
model simulates for a particular lead time, then the system response is likely to be higher for the
next time step as well. As the errors become larger, they tend to lose their independence property.
This is captured by the error samples generated by kNN resampling as well. The rate at which
autocorrelation deteriorates for observed residual errors corresponds well to the kNN resampling
error samples‘ autocorrelation. It can be seen that kNN resampling preserves the autocorrelation
in the error time series without using an autoregressive model.

To check the performance of kNN resampling for various flow magnitudes, the simulation values
were divided into low and high flows —the lowest and highest 10% of water levels simulated in the
validation phase respectively. The reliability diagrams (Fig. 6) show that the overall performance
of error quantiles for all water levels is good for low and medium lead times. The reliability de-
creases with high lead times (24 h and above). The reliability plots show that kNN resampling
performs better for high flows compared to low flows, even for higher lead times. For low flows
and high lead times, the forecast probability of non-exceedance is higher than the observed relative
frequency. Nevertheless, from 0.90 probability of non-exceedance and above, the reliability curve
comes back to the desired 45 line. For flood forecasting it is important to model the high and
medium flows well. kNN resampling delivers quite reliable quantiles for such flow regimes. The
deteriorating model performance with higher lead times gets reflected in the performance of kNN
resampling quantiles as well.

To assess the performance of kNN resampling relative to other established post-processor uncer-
tainty estimation techniques, comparisons with QR and UNEEC have been carried out. The results
for QR have been taken from López López et al. (2014) and the results for UNEEC from Dogulu et
al. (2015). QR results for uncertainty estimation were available for all the lead times as done using
kNN resampling and, from UNEEC, only for lead times of 1, 3, 6, 9, 12, and 24 h. Values of PICP
and MPI are shown in Fig. 7, together with results from UNEEC and QR. The Alpha Index (↵) is
reported for several lead times in Table 2. As expected, the MPI of all the uncertainty estimation
techniques increases with increasing lead time. Comparison between kNN resampling and QR has
been made for three locations and 10 lead times in the validation period. Model simulations were
run two times each day. Verification indices for uncertainty analysis were calculated separately for
each lead time and each location. Considering the 90 and 50% quantiles as two prediction intervals,
this allowed for the evaluation of PICP and MPI 60 times (Fig. 7). kNN resampling has a higher
PICP in 67% of the cases and a smaller MPI for 73% of the cases. A comparison between kNN
resampling and UNEEC was made for three locations and five lead times for the validation. For
each location and each lead time, the 90 and 50% quantiles were generated, which allowed for the
evaluation of PICP and MPI 30 times (Fig. 7). The PICP of kNN resampling is higher in 60% of
the cases and the MPI is smaller in 36% of the cases. Based on these results we concluded that,
for this case study, kNN resampling generally produces narrower confidence bands and provides a
better coverage of the probability distribution than the other methods in the majority of forecasts,
especially showing better performance for the larger lead times.
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Figure 7: Reliability diagram from Upper Severn subcatchments for (a) low, (b) high and (c) all
flows (Llanerfyl: blue; Llanyblodwel: green; Yeaton: red).

3.2 River Brue
Catchment description

The River Brue, located in the south-west of England, has a history of severe flooding. The test
forecast location used in this study is Lovington, where the upstream catchment area is 135 km2

(Fig. 8). The catchment is predominantly rural and the soil consists of clay and sand. This kind of
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Figure 8: Brue catchment (from Shrestha and Solomatine, 2008).

soil and the modest relief give rise to a slowly responsive flow regime. The mean annual rainfall in
the catchment is 867 mm; the mean river flow is 1.92 m3 s1 and has a maximum flow of 39.58m3 s1.
This catchment has been extensively used for research on weather radar, quantitative precipitation
forecasting and hydrologic modelling.

Experimental set-up

For the Brue catchment the simplified version of the HBV rainfall-runoff model has been used
(Bergström, 1976). The HBV-96 model is a lumped conceptual model (Lindström et al., 1997).
Like most other conceptual models, HBV consists of subroutines for snow accumulation and melt,
soil moisture accounting and surface runoff, and employs a simple routing scheme. The input for
the HBV model consists of precipitation (basin average), air temperature and potential evapotran-
spiration (estimated by the modified Penman method using automatic weather data available).
Historical input data are available for a period of 1994-1996. Predictions are only made for 1 h
lead time. Uncertainty analysis is done for a chosen period from 24 June 1994 to 31 May 1996.
Hindcasts were made on a daily basis, using a warm state from a historical run. The hindcasts were
split into calibration and validation set at 24 June 1995 for the uncertainty estimation techniques.
The calibration data set was used to calibrate (train) UNEEC and QR, and for the resampling of

Table 2: Alpha Index (↵) for high flows corresponding to different lead times of Upper Severn
subcatchments.

Lead time (h) 1 12 24 48
Llanerfyl 0.92 0.87 0.79 0.64

Llanyblodwel 0.93 0.95 0.93 0.90
Yeaton 0.97 0.94 0.94 0.75
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errors using the kNN algorithm. The resampled errors were used to estimate prediction intervals
for the predictions from the validation data set. Each of the two data sets represents almost a full
year of observations. Three input variable vectors were chosen based on the results of correlation
analysis, from simple to complex. This allows us to study the dependence on the choice of search
space. Input variable vector (ivv) 3 for kNN resampling and UNEEC is the same for this compar-
ison, whereas QR only uses Qsim (Dogulu et al., 2015). The three input variable vectors used are
where R is the effective rainfall, Q is the discharge and e is the residual error. Considering t as
the prediction time, then the subscripts of the various input variables represent the time and the
superscripts sim and obs mean they are simulated and observed values respectively. The number
of nearest neighbours was chosen to be 99 and 199, to analyse its influence on uncertainty quan-
tification. Uncertainty analysis was done for a calibrated HBV model as well as a model with a
unit systematic bias. The bias was introduced to the simulation results of the calibrated model by
simple addition. The aim of a biased model for uncertainty quantification using kNN resampling
is to assess the performance of kNN resampling when the residuals are not zero mean.

v(ivv1) = [Qsim

t
] (18)
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Results

Table 3: Performance of various uncertainty estimation techniques for the Brue catchment. For
kNN resampling and UNEEC the same input variable vector is used (Eq. 20). For QR only Qsim

is used.
PICP (expected 90%) MPI (m3s�1)

UNEEC QR kNN UNEEC QR kNN
Calibration 91.19 90.00 86.30 1.58 1.69 0.51
Validation 88.29 82.33 84.42 1.37 1.39 0.21

kNN resampling was applied to a single historical simulation and compared to observations. The
simulated hydrographs for the highest discharge event with 50 and 90% prediction intervals are
shown in Fig. 9. The residual distribution of kNN resampling is generally a non-zero mean.
Therefore we see that the prediction intervals may sometimes deviate from the deterministic model
prediction quite significantly. The ability of kNN resampling to search for similar hydrologic
conditions, like rainfall, and discharge in the past, and to learn from the residuals, allows it to
make more representative error distributions. For example, in Fig. 9, the falling limb of the
hydrograph shows that the prediction band generated by kNN resampling captures the observed
flow for input variable vectors 2 and 3, even though the model shows a noticeable mismatch with
the measurements. This can be explained by considering the history of errors that the model
made during such hydrologic conditions in the past. And as kNN resampling learns that the model
consistently underestimates in such cases, the corresponding error distribution corrects for this
bias. The results of the PICP and MPI are shown in Table 3 together with results from UNEEC
and QR (Dogulu et al., 2015). As can be seen from the table, kNN resampling’s performance is
comparable to that of UNEEC and QR for this case study. The prediction intervals generated by
kNN resampling are smaller, compared to the other two uncertainty estimation techniques, while
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Figure 9: The 50 and 90% prediction intervals for the Brue catchment using kNN resampling. The
hydrographs are shown for two different k values (99, 199) and three different input variable vectors
given by (a) Eq. (18), (b) Eq. (19) and (c) Eq. (20). This is the largest event in the validation
time series. (The 50% prediction interval is the interval between the 25 and 75% quantiles of
residual error, and the 90% quantile is the interval between the 5 and 95% quantiles. MPI and
PICP correspond to the whole validation time series.)

the coverage probability is similar. It indicates that kNN resampling is able to learn well from past
data and condition the probability of residual errors well. The Alpha Index for the validation phase
is also high (0.96). We also notice that three different input variable vectors show different degrees
of performance (Fig. 9). The past errors, eobs

t�1
, seem to be informative in this case, providing very

narrow conditional error probabilities.

Apart from evaluating the usability of kNN resampling for calibrated models, the performance
of kNN resampling quantiles generated by kNN resampling for a model with systematic bias was
also checked. Figure 10 shows that the performance of kNN resampling does not diminish under
systematic bias. The reliability of the generated quantiles remains almost unfazed. As a systematic
bias will not affect the autocorrelation structure of the residual errors, the autocorrelation of error
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samples generated through kNN resampling also remains unchanged. Nevertheless, we see a shift
in the mean of the sample time series, which is roughly equal to unity. The reliability of quantiles
generated using kNN resampling for high flows (highest 10% in the validation period) is poorer
than for all flows. The invariance of kNN resampling performance to model bias makes it a
robust postprocessor technique; however, unlike in the case of Upper Severn subcatchments, the
technique’s performance diminishes for high flows.

4 Discussion and conclusions

The application of kNN resampling to two case studies shows that the forecast uncertainty intervals
are relatively narrow and still capture the observations well. The expected increase in uncertainty
for longer lead times is also reproduced well and the probability coverage of kNN resampling re-
mains good, as verified from historical observations. This is in accordance with previous research
(Sikorska et al., 2015). The error samples generated by kNN resampling reproduce two important
characteristics of residual errors in hydrologic models, namely autocorrelation and heteroscedastic-
ity. Also, for applications to flood modelling, the high flows are most important and the uncertainty
quantification by kNN resampling for the Upper Severn shows reasonable reliability for this high-
flow regime. For the Brue, the performance is poorer. This can be attributed to the inadequacy
of representative high flows in the calibration phase in combination with the choice of the input
variable vector. The highest flow in calibration time series is 15.4m3/s, whereas in validation time
series it is 29.9m3/s. It is also shown that the technique is generally robust to the performance
of the underlying deterministic model. If the model has systematic biases, kNN resampling learns
from the past errors of the model and recreates the systematic bias in the empirical error distri-
bution mean, thus maintaining the performance of prediction intervals. Our results on systematic
error correction by kNN resampling substantiate the findings from previous research on forecast
updating using kNN (Akbari and Afshar, 2014). These findings from this study are confirmed by
three quantitative indicators of forecast reliability. The comparison of kNN resampling uncertainty
estimates to those generated by QR and UNEEC shows that the mean prediction intervals (MPIs)
generated by kNN resampling are generally smaller. A significantly smaller MPI using kNN re-
sampling, as in the case of the Brue, is in part due to the conditioning on input variable vectors
as compared to UNEEC and QR. As the values of k in this study have been restricted to 99 and
199, the error distribution tends to be much narrower than the marginal error distribution. The
conditional distribution will turn into a marginal distribution when the number of k is equal to
the time steps in the calibration time series. A more quantitative dependence on the k value and
MPI will need further research. Apart from a narrow MPI, we also find that kNN resampling is
generally able to capture the expected ratio of observations within its intervals (PICP) most of the
time, or at least be close to the expected value.As in the case of all other data-driven methods, the
applicability of kNN resampling depends on the availability of sufficiently long and representative
historical forecasts and observations. The historical series should include several occurrences of
forecasting situations that are similar to the current situation. In extreme cases, the kind of kNN
search proposed here will select the most similar historical situations which may or may not be
representative of the current situation. In contrast to the methods like QR and UNEEC that build
explicit predictive regression models which are able to extrapolate for the data which are beyond
the limits of the calibration (training set), kNN resampling does not extrapolate. This could be
seen as a disadvantage. On the other hand, however, the extrapolation that is done by regression
techniques could also be seen as doubtful. It is not a given that the most extreme historical sit-
uations are less representative of the uncertainty of an extremely high flow than an extrapolated
result. The results in this paper show that kNN resampling has a good or poor reliability for the
highest values in the validation set, depending on the case study and the choice of input variable
vector. Due to the non-parametric nature of kNN resampling, the increasing variance of resid-
ual errors for higher values of predictands is generally adequately taken into account. As kNN
resampling, like other post-processors, learns about the residual error process from the past, the
historical records should be representative of the current forecast conditions. In changing condi-
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Figure 10: Effect on reliability of quantiles and autocorrelation of error samples on adding a
systematic bias to the model artificially. kNN samples, generated using input variable vector 3
(Eq. 20), are plotted in red, and observed errors in black circles. M stands for measured and S for
simulated.

tions, this may not be true. Changing conditions may be caused, for example, by climate change
or more local changes in the catchment like deforestation and dam building. This is a common
problem for all data-driven statistical estimators and is not unique to kNN resampling. Care needs
to be taken to use data time series which do not outright violate the assumptions regarding the
invariance of catchment and climate.

One of the few calibration parameters of kNN resampling is the number of nearest neighbours
k. In this study, k has been chosen by a simple heuristic technique. For optimal performance,
it would be advisable to calibrate k for each application in a more systematic way. We do show
for Brue that the sensitivity of the uncertainty intervals to the value of k is not significant, when
changing it from 99 to 199. However, we also expect that the optimal value of k will depend on
the length of the historical data series and on the uncertainty quantiles of interest. In the context
of search space, in this research, the input variable vector has been chosen by correlation analysis.
It can be recommended to use more sophisticated procedures for real-life applications, which can
capture the non-linear dependence between the error process and input variable vector candidates.
Improvements in performance can possibly be achieved by seeking a better set of input variables
for each forecast location and lead time of interest.

In conclusion, kNN resampling can be considered a relatively simple machine learning technique
to predict hydrologic residual uncertainty. The errors from the similar hydrologic conditions in
the past are used as samples for the residual error probability distribution and the samples are
collected by a k nearest-neighbour search. The application of this technique to case studies Brue
and Upper Severn subcatchments has shown promising results. In comparison to many other data-
driven techniques, kNN resampling has the advantage of avoiding assumptions about the nature of
the residual error distribution: the instance-based learning approach is non-parametric and non-
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regressive and requires little calibration. The method was shown to be able to quantify hydrologic
uncertainty to an accuracy that is comparable to other techniques like QR and UNEEC. Given the
relatively small effort in setting up the method, the performance of kNN resampling in uncertainty
quantification is more than acceptable when compared to other post-processor error models.
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Abstract
Regardless of the complexity of the hydrological model employed, uncertainty assessment (UA) is
predominantly performed for the aggregated catchment response discharge. For coupled integrated
models that simulate various hydrological states and fluxes on a grid cell basis, this represents a
severe shortcoming. In order to provide water resource management and decision makers with
an uncertainty estimate for spatially distributed hydrological variables, their uncertainty needs
to be assessed at interior catchment locations. In recent years, advances in terms of computer
power and algorithm efficiency have led to an increasing usage of UA techniques based on Monte
Carlo simulation that allow the disaggregation of uncertainty into its contributing sources. In
spite of this development, application of these techniques to the most complex coupled integrated
hydrological models commonly employed in operational hydrology remains a challenge because of
their exceptionally high computational demands. Therefore, we test a simple data-driven tech-
nique (k-NN resampling) to evaluate its ability to provide reliable residual uncertainty estimates
for the multi-variable (discharge, hydraulic head, soil moisture and actual evapotranspiration),
deterministic output of two coupled groundwater-surface water models with different complexities.
K-NN resampling can be applied to both manually calibrated and uncalibrated hydrological mod-
els. Being a nonparametric method, no explicit prior assumptions about the error distribution
of different hydrological variables are required. When conditioning the algorithm, we propose to
limit the number of error lags to be included based on inspection of the partial autocorrelation
function (PACF). Our results corroborate previous findings regarding reliability and robustness
of the k-NN technique: The 90% prediction intervals (PI) capture the observations in the testing
period satisfactorily for all hydrological variables (92.6-97.3%), while Alpha indices (0.84-0.95) in-
dicate very reliable PIs for all error quantiles. Differences in error structure between hydrological
variables are successfully inferred from historical data and reflected in the results. We conclude
that k-NN resampling represents a potent, cost-efficient UA technique for applications in opera-
tional hydrology, facilitating a near-simultaneous, easy uncertainty assessment for various outputs
of computationally heavy hydrological models.
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1 Introduction

The intricate dynamics of natural hydrological processes are difficult to reproduce using even the
most sophisticated, physically based hydrological models and model equations. As hydrological
models represent mere approximations of real-world systems, it follows that model predictions are
uncertain, cf. e.g. Keith Beven (2012). In order to provide a reliable basis for decision mak-
ers, model outputs need to be accompanied by an estimate of the uncertainties associated with
them. As research conducted in the past two decades ascertains, effectiveness and sustainability
of water resource management critically depend on a thorough uncertainty assessment (UA), see
for example K. Beven (2002), Refsgaard and Henriksen (2004), Wagener and Gupta (2005) and
Ajami, Hornberger, and Sunding (2008). Accordingly, quantification of uncertainties in hydrolog-
ical modeling is considered good scientific practice, e.g. Refsgaard, van der Sluijs, Hojberg, and
Vanrolleghem (2007).

Among the first to recognize the necessity of acknowledging the presence of uncertainty in hy-
drological model simulations were K. Beven and Binley (1992). They developed the Generalized
Likelihood Uncertainty Estimator (GLUE), which uses Monte Carlo (MC) simulation. The au-
thors coined the term “equifinality”, assuming that model imperfection and incomplete process
understanding entail that a potentially endless number of hydrological models and parameter com-
binations will result in equally acceptable model performance. However, GLUE has been shown
to have limitations due to the usage of an informal likelihood function for model parameter iden-
tification, cf. Mantovan and Todini (2006) and Stedinger, Vogel, Lee, and Batchelder (2008).

With the aim to quantify the contributions of different sources of uncertainty to predictive uncer-
tainty individually, a number of formal UA approaches based on Bayesian inference were intro-
duced. In this context, particular attention was given to the explicit consideration of input uncer-
tainty (rainfall). A prominent example is the Bayesian Total Error Analysis (BATEA) (Kavetski,
Kuczera, & Franks, 2006a, 2006b), in which uncertainty in rainfall is accounted for by means of a
rainfall multiplier. While often neglected, model structural uncertainty is a major source of pre-
dictive uncertainty, see for example Refsgaard, van der Sluijs, Brown, and van der Keur (2006) for
a comprehensive review on this matter. In contrast, Ajami, Duan, and Sorooshian (2007) devel-
oped the Integrated Bayesian Uncertainty Estimator (IBUNE) which allows combining the rainfall
multiplier concept with consideration of model structural deficiencies by using a variety of model
structures by means of Bayesian Model Averaging (BMA), see Hoeting, Madigan, Raftery, and
Volinsky (1999). However, finding an adequately representative likelihood function for hydrology
capturing autocorrelated, non-normal and heteroscedastic errors is a matter of ongoing research,
e.g. Schoups and Vrugt (2010), McInerney, Thyer, Kavetski, Lerat, and Kuczera (2017) and Han
and Zheng (2018).

Bayesian approaches and more generally speaking MC-based UA techniques require a vast number
of model evaluations (orders of magnitude of 103 � 105). The parameter samples generated during
inference need to be propagated through the hydrological model until convergence is diagnosed.
In operational hydrology, this can represent a serious obstacle for several reasons. For example,
when commercial software is employed to perform hydrological simulations, parallelization may
be limited by license availability. In addition, while Bayesian methods are often tested using fast,
conceptual rainfall-runoff models, computational costs are incrementally larger when applied to
complex coupled integrated hydrological models. Although likely only being a matter of time, this
currently still restricts their applicability, e.g. Juston et al. (2013).

For this reasons, computationally less demanding UA methods represent an attractive alternative,
especially for applications in operational hydrology. To this end, one possibility is to resort to
meta- modelling in which outputs of a complex hydrological models (simulator) are being approx-
imated through a surrogate model (emulator), cf. O’Hagan (2006). The emulator is obtained by
establishing a statistical relationship between the model outputs (Reichert, White, Bayarri, & Pit-
man, 2011). A recent example is given by Carbajal, Leitao, Albert, and Rieckermann (2017), who
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compared the performance of data-driven and mechanistic emulators in an urban drainage con-
text. Similarly, Miller, Berg, Davison, Sudicky, and Forsyth (2018) use polynomial chaos expansion
(conceptually being an emulator) for uncertainty quantification of an integrated surface-subsurface
hydrological model. Another possibility for more time-efficient UA is to apply post-processing tech-
niques to (deterministic) hydrological model runs. Post-processors are based on the assumption
that the model parameters are identifiable using optimization of a cost function, which entails an
implicit likelihood function. Uncertainty estimation is then based on the application of data-driven
techniques that require comprehensive historical data to generate anticipated model errors. This
would be equivalent to producing samples from a likelihood function, for a defined set of model
parameters. Post-processors have been applied in various hydrological modeling studies, mostly in
conjunction with short-term streamflow forecasts. Prominent examples include Quantile Regression
(QR) (Weerts, Winsemius, & Verkade, 2011), Estimation Based on Local Errors and Clustering
(UNEEC) (Solomatine & Shrestha, 2009) or the Dynamic Uncertainty Model by Regression on
Absolute Error (DUMBRAE) method (Pianosi & Raso, 2012). Despite their relative conceptual
simplicity, post-processors are generally robust, see for example Pokhrel, Robertson, and Wang
(2013). Evin, Thyer, Kavetski, McInerney, and Kuczera (2014) even report a post-processor ap-
proach to outperform a joint Bayesian technique in terms of robustness in the presence of error
heteroscedasticity and autocorrelation.

Among post-processing techniques, k-nearest neighbor (k-NN) resampling is comparatively simple
and easy to implement. Its univariate predecessor was introduced to the hydrological modeling
community by Karlsson and Yakowitz (1987), who used it as a tool to predict streamflow. K-
NN resampling is a nonparametric method, which implies that no explicit assumptions (Gaussian,
zero mean) about the nature of model error are made, see for example Hollander, A. Wolfe, and
Chicken (2015). Instead, the error structure is reproduced by sampling realizations from the space
of historical model errors, resulting in multiple local approximations of the complex target function
during prediction (Solomatine, Maskey, & Shrestha, 2008). Recent applications of k-NN in hydrol-
ogy include work by Anna E. Sikorska, Montanari, and Koutsoyiannis (2015), Beckers, Weerts,
Tijdeman, and Welles (2016) and Wani, Beckers, Weerts, and Solomatine (2017). Anna E. Siko-
rska et al. (2015) used k-NN resampling for uncertainty estimation while accounting for input
uncertainty (by means of an ensemble) and parameter uncertainty separately. The authors found
the method to outperform a formal statistical meta-Gaussian technique devised by Montanari and
Brath (2004). Beckers et al. (2016) adopted k-NN to select ensemble streamflow prediction (ESP)
traces from original ESPs based on climate index values, prior to generating new ensemble traces in
a resampling procedure. In Wani et al. (2017), k-NN resampling was applied to estimate residual
uncertainty for streamflow forecasting. A comparison with two more complex post-processors (QR
and UNEEC) showed that k-NN, in spite of its simplicity, performed well in terms of accuracy and
reliability of its uncertainty estimation. This work represent an application of the k-NN configu-
ration detailed in Wani et al. (2017).

In contrast to the majority of cases in which k-NN has been applied as a means of generating short-
term streamflow predictions in a forecasting context, we employ k-NN resampling in a hindcast-
ing exercise, in order to perform uncertainty analysis for a complex coupled groundwater-surface
water model. A major shortcoming common to the examples listed above is that UA is generally
restricted to the aggregated catchment response discharge. While this may suffice for flood fore-
casting applications, this is unsatisfactory for coupled integrated models that generate a multitude
of outputs. It is obvious that, in order to gain a deeper understanding of hydrological processes
that occur within the catchment, calibration and evaluation have to be extended by suitable hy-
drological variables that tell something about the model performance in the spatial domain, cf.
Pokhrel and Gupta (2011) and Koch, Siemann, Stisen, and Sheffield (2016). Accordingly, this
notion applies to UA as well.

Therefore, the main objective of this study is to test the potential of k-NN resampling regarding
the generation of reliable residual uncertainty intervals for the multi-variable output of a coupled
integrated hydrological model. The hydrological variables incorporated in the UA were discharge,
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hydraulic heads, soil moisture and actual evapotranspiration, which in addition represents model
response at interior catchment locations. In doing so, we take a step further towards fully ex-
ploiting the full potential of this class of hydrological models. This will furthermore allow the
communication of the associated uncertainties to public and end-users, which in turn may lead
to an increased level of trust in scientific results (Juston et al., 2013). Moreover, we contribute
to a formalization of the process of composing the k-NN input variable vector (ivv) by suggesting
a hierarchical approach that is primarily based on analysis of (partial) autocorrelation of model
errors. Using a flexible and fast post-processing technique coded in freely available software for
uncertainty quantification (R Development Core Team, 2018), we do our part to further establish
UA as a routine in hydrology (Pappenberger & Beven, 2006), especially with regard to complex
hydrological models whose computational costs preclude MC-simulation.

2 Study area
The study area is the 1055 km2 Ahlergaarde catchment on the Jutland peninsula in Western
Denmark (Fig. 1). The catchment is the headwater of the Skjern River, which has its source at
the Jutland Ridge towards the eastern boundary of the catchment and discharges into the North
Sea via RingkÃ¸bing Fjord. The annual mean discharge is 37 m3/s (Ovesen et al., 2000), making
the Skjern the largest river in Denmark in terms of discharge volume. Geologically, the Ahlergaarde
catchment is a former glacial outwash plain. The surface is largely made up of Quaternary sandy
sediments, while the subsurface geology predominantly consists of pre-Quaternary clay which in
several locations contains Miocene sand lenses (Scharling, Rasmussen, Sonnenborg, Engesgaard,
& Hinsby, 2009). The topography is mostly flat, with a maximum elevation at 130 m.a.s.l. in
the east of the catchment. The climate is temperate maritime with an annual mean temperature
of 8.2�C, annual precipitation of 1050 mm and annual reference evapotranspiration of 570 mm
(Stisen, Sonnenborg, Hojberg, Troldborg, & Refsgaard, 2011). Due to its topographical, geological
and climate characteristics, the Ahlergaarde catchment exhibits high groundwater recharge rates
and a hydrogeological system that is mostly groundwater controlled. The Ahlergaarde catchment
is part of the Danish Hydrological Observatory HOBE (Jensen & Illangasekare, 2011).

3 Methodology

3.1 Hydrological models
We employ two hydrological models in this study, both of them based on the MIKE SHE code
(Abbott, Bathurst, Cunge, Oconnell, & Rasmussen, 1986; Graham & Butts, 2005). Both models
belong to the class of fully integrated, spatially distributed hydrological models and feature fully
coupled modules describing 3D groundwater flow, overland flow, river routing and land surface
processes. Their model setup is largely based on the National Water Resources model of Denmark
(DK-Model), which was developed and is maintained by the Geological Survey of Denmark (Ho-
jberg, Troldborg, Stisen, Christensen, & Henriksen, 2013). Climate data are provided as 10⇥10
km grids for rainfall and 20⇥20 km grids for reference evapotranspiration and air temperature.
The gridded rainfall product represents dynamically corrected rainfall, accounting for undercatch
(Stisen et al., 2012). The two models (henceforth referred to as “Model 1” and “Model 2”) are
characterized by two different levels of complexity, translating into notably diverging simulation
run times (Tab. 1). Moreover, the models represent two different calibration paradigms: a tra-
ditional (calibration based on discharge and hydraulic heads) versus a multi-objective calibration
scheme (calibration additionally based on spatially distributed soil moisture, remote sensing based
evapotranspiration and soil surface temperature, Tab. 1). While testing the capability of k-NN
resampling to perform uncertainty assessment for multiple hydrological model outputs, we also
intend to answer the question of whether or not k-NN performs equally good for both hydrological
model set-ups. Specifically, we are interested in comparing k-NN performance for hydrological
variables that were not part of calibration in Model 1.
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Figure 1: Ahlergaarde catchment and locations of the observational sites used in the present study.

Model 1 (simple)

In Model 1, the unsaturated zone is assumed 1D and described by MIKE SHE’s gravity flow solver,
where only wilting point and field capacity as given by the soil water retention curves are utilized.
The effects of capillary forces on the movement of water through the soil column are ignored. The
saturated zone is described by 3D flows using a vertical discretization of the permeable part of the
subsurface (around 500 m) into seven layers. Actual evapotranspiration is calculated adopting the
approach presented by Kristensen and Jensen (1975), where reference evapotranspiration and leaf
area index (LAI) are used as forcing data and soil moisture as a depending variable. In order to
avoid a long warm-up period and to ensure stable initial conditions, a hot start file was generated
by performing a simulation covering the years 1990-2006. The hydrological model was then subject
to a sensitivity analysis. Seventeen parameters were included in the sensitivity analysis; the initial
parameter values were taken from a structurally similar and previously optimized hydrological
model. Sensitivity analysis was performed using PEST (Doherty, 2016). To reduce dimensionality,
we selected only the five most sensitive parameters (cf. Tab. 2) for subsequent calibration.
Calibration was performed for the years 2007 - 2010 using PEST’s “SCEUA_P” utility, which is an
implementation of the SCE (Shuffled Complex Evolution) global optimization algorithm (Duan,
Sorooshian, & Gupta, 1992). Calibration targets were discharge from a set of gauges and hydraulic
head in the layers of the geological model. RMSE (root mean square error) and PBIAS (percent
bias, cf. section 3.3) were used as objective functions.

Model 2 (complex)

In Model 2, unsaturated zone dynamics were calculated using the full 1D Richards’ equation as
implemented in MIKE SHE. In contrast to Model 1, actual evapotranspiration was simulated using
the SW-ET model, an energy balance module requiring hourly climate input data (Overgaard,
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Table 1: Differences in model conceptualization, calibration and simulation between Model 1 and
Model 2.

Model 1 (simple) Model 2 (complex)
Conceptualization

Unsaturated zone
Gravity flow
Reduced vertical discretization of soil
profiles (9 cells between 0-2 m depth

Richards’ equation
Original vertical discretization of soil
profiles (17 cells between 0-2 m depth)

Saturated zone 7 layers 9 layers

Evapotranspiration Based on reference evapotranspiration
after Kristensen and Jensen (1975)

Simulated by the energy-balance model
SW-ET (Overgaard, 2005) using hourly

climate data
Calibration
Period 2007 - 2010 2007 - 2010

Algorithm Shuffled Complex Evolution (SCE),
implemented in PEST (Doherty, 2016)

CMA-ES (Covariance Matrix Adaptation
Estimation Strategies), implemented in
PEST (Doherty, 2016), calibrated by Stisen
et al. (2017)

Dimensionality 5 parameters (cf. Tab. 2) 11 parameters

Targets Discharge, hydraulic head
Discharge, hydraulic head, spatially
distributed soil moisture, remotely sensed
ET patterns and land surface temperature

Simulation
Period 2011 - 2016 2011 - 2016
Run time ca. 5 min ca. 150 min

Table 2: MIKE SHE model parameters that were optimized using the PEST SCEUA_P utility,
Model 1.
Name Description Module

Kx1_ss Horizontal conductivity of sand
units Saturated zone

Drain Drainage time constant Drainage

Khsat_a_JB1 Saturated hydraulic conductivity
for soil type JB1, top layer

Unsaturated zone/soil
surface parameters

vG_n_a_JB1 van Genuchten parameter n for
soil type JB1, top layer

Unsaturated zone/soil
surface parameters

Kx2_ler Horizontal conductivity of clay
units Saturated zone
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2005). Due to this modification, Model 2 is classified as a coupled subsurface-surface-atmosphere
model.

Especially the coupling with the SW-ET model are the reason for the significantly longer run
times of Model 2 (Tab. 1). Representing a rare example of a rigorous inverse calibration (not
least due to the immense computational demands), the model had been calibrated in a previous
study (Stisen et al., 2017) using a multi-objective calibration approach. Calibration was carried
out using a global optimizer (CMA-ES, Covariance Matrix Adaptation Evolution Strategy), five
different calibration targets (Tab. 1) and eleven objective functions. This ensured both a balanced
calibration and the finding of a Pareto optimal solution as defined in e.g. Madsen (2003).

3.2 Uncertainty estimation: k-NN resampling

k-NN resampling, as the name suggests, resamples historical errors made by the model. This
technique is based on the assumption that the response of a hydrological system is documented
by a sufficiently long record of observations and thus, if the system is stationary, that the sta-
tistical properties of errors can be inferred from a comparison between historical data and model
predictions (Anna E. Sikorska et al., 2015). The foundations of the approach used in this study
were recently presented by Wani et al. (2017). We adopt this approach while suggesting improve-
ments to the workflow, which involves the consideration of error autocorrelation upon choosing the
variables that control the identification of nearest neighbors by the k-NN algorithm. The k-NN
resampling procedure is illustrated by the flow chart given in Fig. 2 and described systematically in
the following. For a detailed mathematical description the reader is referred to Wani et al. (2017).

Step 1. Split data record: The data record is split into two periods. The first period represents a
repository for the sampling of past errors. In other words, the k-NN algorithm “learns” about the
typical response of the hydrological system under different hydrological conditions. The second
period is a testing period for which the k-NN algorithm predicts residual uncertainty based on
the error samples collected from the repository. The error e is defined as the difference between
simulated and observed hydrological system response at any time step.

Step 2. Inspect ACF & PACF: In order to establish which variables are suitable to condition the
245 estimation of residual uncertainty on, we suggest a hierarchical approach. We propose to first
focus on the error time series and check whether there is evidence for an autoregressive process
(AR) of order p. The order p would then be equivalent to the number of error lags to be included
in the input variable vector (ivv). This can be achieved by plotting and (visually) examining
the autocorrelation function (ACF) and partial autocorrelation function (PACF) (Box, Jenkins,
& Reinsel, 2008). For an AR of order p, the ACF will exhibit an exponential decay, while the
PACF will have significant nonzero correlation coefficients for lags smaller than or equal p and
cut off thereafter, being essentially zero (Box et al., 2008). It is worth noting that we are not
actually suggesting to fit an AR model to the data but merely use ACF and PACF as guidance
regarding the selection of ivv candidates. Subsequently, dependence between the error time series
and other hydrological variables is investigated. This can be useful if the analysis of ACF and
PACF is inconclusive or in order to find supplementary variables for the ivv. To also be able to
capture nonlinear association between error and other variables (which manifests in heteroscedas-
tic residuals), we additionally employ the distance correlation metric (Szekely, Rizzo, & Bakirov,
2007). Another possible solution to choose ivv candidates for k-NN is to employ the concept of
partial information (Sharma & Mehrotra, 2014) but will not be further addressed here. To ensure
that potential differences in units or amplitude between the error and hydrological variables do not
affect the analysis, standard scores need to be calculated a priori. Viable ivv candidates are then
selected based on the strength of their interdependence with the error time series, only including
those with a high statistical dependence (here: user defined threshold of Pearson’s r > 0.5) and
keeping the number of ivv elements to a minimum.
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Figure 2: Flow chart illustrating the five steps in k-NN resampling.

Step 3. Compile ivv: assemble the input variable vector using error (number of lags included equals
p) 266 and possibly auxiliary hydrological variables such as simulated discharge (Qsim) etc. with
high 267 explanatory power as identified in the step before.

Step 4. Sample k errors: The k-NN algorithm is used to sample k historical errors from the repos-
itory to estimate residual uncertainty for the testing period. Determining an appropriate number
of k is not straightforward and will be addressed in the discussion. The error sampling works
as follows: for each day within the testing period, the input variable vector points to a specific
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location in n-dimensional ivv-space. The algorithm then searches the repository and identifies k
days with the most similar conditions, therefore being closest to that location in n-dimensional
ivv-space (nearest neighbors). Usually, the Euclidean distance is used to determine proximity. To
avoid having to standardize variables, usage of the Mahalanobis distance represents an alternative,
cf. Yates, Gangopadhyay, Rajagopalan, and Strzepek (2003).

Step 5. Prediction intervals: The k historical errors associated with the k nearest neighbors define
an error distribution, which - under the assumption of stationarity and hence considering them as
being representative for the testing period - provides an estimate of residual uncertainty for each
day of the testing period. Mathematically, this can be expressed as

Ct(e|v = vt) ⇡ Cp(e|rp  rk) = j/k (1)

where Ct is the cumulative distribution function (CDF) of residual error at time step t conditioned
on ivv = ivvt (similarity of input variable vector ivv). Ct is being approximated empirically by
Cp, the CDF composed of k historical errors that satisfy rp  rk, where r is the Euclidean distance
and p stands for “past”. Then, by calculating the 5th and 95th quantiles (qi,0.05, qi,0.95) of the error
sample, 90% prediction intervals for each day of the testing period can be generated, their width
being defined by the difference between the percentiles.

3.3 Metrics
Metrics for assessing hydrological model performance

• Nash Sutcliffe efficiency (NSE), Nash and Sutcliffe (1970)
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• Root mean square error (RMSE)
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• Percent bias (PBIAS)
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Pn

i=1
(yi

obs
� yi

sim
) ⇤ 100P

n

i=1
yi
obs

�
(6)

where n is the number of data pairs, yi
obs

are the observations, yi
sim

the simulations at each
time step i.

Metrics for verification of uncertainty estimate

In order to assess the performance of k-NN resampling for uncertainty prediction, and analogous to
Wani et al. (2017), three validation metrics were calculated: the prediction interval coverage prob-
ability (PICPPI), the mean prediction interval (MPIPI) see for example Shrestha and Solomatine
(2008), and the Alpha Index (↵), cf. Renard, Kavetski, Kuczera, Thyer, and Franks (2010).

• Prediction interval coverage probability (PICP90): The PICP90 is the percentage of in-
stances (C90) for which an observation is contained within the limits of the 90% prediction
interval:

PICP90 =
1

n

nX

i=1

C90 · 100% (7)

C90 =

(
1 if qi,0.05  qi  qi,0.95
0 else

(8)

• Mean prediction interval (MPI90): The mean prediction interval allows expressing uncer-
tainty as the average width of the 90 % prediction interval based on the k-NN error distri-
bution. The 90% prediction interval is defined by the difference between the 5th and 95th

quantile (qi,0.05 and qi,0.95 respectively) of the k-NN error distribution at every time step i:

MPI90 =
1

n

nX
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qi,0.95 � qi,0.05 (9)

• We further test the reliability of quantiles of k-NN-based error prediction by plotting them
against the quantiles of observed error in a reliability diagram. Additionally, the Alpha Index
(↵) provides a numerical measure of reliability, as it relates to the area ↵0 that is defined by
calibration function and identity line.

↵0 =
1

100

100X

j=1

|qobs,j � j/100| (10)

↵ = 1� 2↵0 (11)

where ↵0 is the area between calibration function and identity line, qobs,j are the quantiles of
observed errors and j/100 gives the quantiles of predicted errors.

3.4 Experimental set-up
k-NN resampling was applied to model outputs from deterministic simulations by Model 1 and
Model 2, both covering the historical period January 2011 to August 2016. Repository for the k-
NN resampling was the entire period (provided data were available) apart from the year 2014 which
was selected as the testing period. This enables direct comparability of results with a related study
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Table 3: Input variable vector composition by hydrological variable and hydrological model
Hydrological variable Observations from-to (n in days) Model 1 Model 2
Discharge (gauge 250082) 01-01-2011 31-08-2016 (2070) et�1, et�2, et�3 et�1, et�2, et�3

Soil moisture (nw_2.1) 01-01-2011 31-08-2016 (2070) et�1, et�2 et�1, et�2

Hydraulic head (well 8014) 08-11-2012 31-08-2016 (1393) et�1 et�1

Actual ET (Gludsted) 01-01-2011 07-09-2015 (1711) et�1, et�2 et�1

[reference] involving the propagation of input and paramater uncertainty through a hydrological
model equal to Model 2. Despite excluding 2014 from the k-NN resampling, the repository was
treated as if it was continuous. K-NN resampling was carried out using the RANN package (Arya,
Mount, Kemp, & Jefferis, 2015) implemented in the scientific progamming environment R (R
Development Core Team, 2018).

Eight individual k-NN input variable vectors were established, one for each of the four hydrological
variables discharge, hydraulic head, soil moisture and evapotranspiration and each of them for the
two hydrological models. The input variable vectors for the k-NN models were composed based
on analysis of ACF and PACF. Additionally, correlations and distance correlations were calculated
in order to test whether there were (non) linear dependencies between the error time series and
a set of additional hydrological variables which potentially could impact errors. The hydrological
variables that were analyzed in this context were observed and simulated discharge (soil moisture,
hydraulic head, actual evapotanspiration, respectively), observed rainfall (both at catchment and
at single grid cell scale), observed soil moisture, hydraulic head and actual evapotraspiration. In all
cases, (distance) correlations (not shown here) with other hydrological variables were found to be
relatively weaker as compared to error autocorrelation. Potential commensurability issues (Keith
Beven, 2012) will be addressed in the discussion. Therefore, we decided to restrict the conditioning
to observed error, including as many lags as the analysis of ACF and PACF suggested. An overview
of the input variable vector composition derived based on the considerations detailed in section 3.2
is given in Table 3.
For the period of interest regarding the application of k-NN resampling (2011 - 2016), observational
data were retrieved from the HOBE database (locations of observational sites are shown in Fig.
1). Discharge observations (daily mean in m3/s) were collected by a gauge located at the outlet
of Ahlergaarde catchment, while the soil moisture observations were made by a Decagon ECH2O
data logger (ID nw_2.1, depth of 22.5 cm) (Bircher, Skou, Jensen, Walker, & Rasmussen, 2012).
Hydraulic head observations stem from a groundwater well (ID 8014) and actual evapotranspiration
from an eddy covariance flux tower (Ringgaard et al., 2011) at the forest site in Gludsted (Fig. 1).
While the HOBE database contains a vast amount of data for a variety of hydrological variables
measured at numerous sites within the catchment, the measurement sites used in this study were
selected based on the criterion of longest possible gap-free observational record; however, there
are differences in the lengths of these records (cf. Table 3). The number of k (i.e. the number of
nearest neighbors to be sampled from the repository) was chosen to be 199.

4 Results

4.1 Hydrographs and residual uncertainty - Model 1 (simple)
Hydrographs (simulated by Model 1) for discharge as well as equivalents for soil moisture, hydraulic
head and actual evapotranspiration in the testing year 2014 are presented in Fig. 3. While the k-
NN prediction intervals look different depending on the hydrological variable, PIPC90 is generally
close to the expected value of 90 % (88.2 / 87.4 / 93.4 / 90.7 % for Q / SM / h / ET). With regard
to discharge, the resulting prediction interval, while being overall relatively constant (MPI: 4.03
m3/s, Table 5), is slightly wider during low-flow conditions and slightly narrower during high-flow
conditions. This corresponds well with the fact that the largest mismatch between observations
and simulation is indeed found during low-flow conditions throughout the summer period, while
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the model reproduces observed peak flow relatively well. Around day 200, the prediction interval
departs from the simulation, successfully encapsulating most of the observations. This is exemplary
for a situation where k-NN resampling leads to an error distribution that effectively corrects for
systematic over- or underprediction by the model assocated with similar hydrological conditions
in the past. Compared to discharge, the prediction interval for soil moisture is highly unsteady,
exhibiting an erratic structure and a partly extremly wide prediction interval (MPI: 0.104, Table
5). Although PICP90 (87.9 %) is near the expected value, k-NN was clearly unable to obtain
informative error samples from the repository. This may be linked to the choice of using “gravity
flow” as unsaturated zone solver, resulting in a failure of the model to reproduce soil moisture
content and dynamics for most parts of the testing year (crude overestimation up to day 100
and past day 225, underestimation between day 125 and 225; especially depletion of soil moisture
during spring / summer is not reproduced). As for hydraulic head, the prediction interval is
very narrow (MPI: 0.32 m, Table 5) with a number of local expansions. The PICP90 (93.4 %)
slightly exceeds the expected value. The substantial bias between observations and simulation is
successfully corrected for by k-NN resampling. A visual assessement of the prediction interval for
actual evapotranspiration is impeded by the large fluctuations of simulation and observations from
day to day, especially during the summer period. Generally, the prediction interval is relatively
wide (2.2 mm/d), while the PICP90 is very good (90.7%).

4.2 Hydrographs and residual uncertainty - Model 2 (complex)

Hydrographs (simulated by Model 2) for discharge as well as equivalents for soil moisture, hydraulic
head and actual evapotranspiration in the testing year 2014 are presented in Fig. 4. The PIPC90
is close to but consistently exceeds the expected value of 90% (94.0 / 97.3 / 96.2 / 92.6% for Q /
SM / h / ET). With regard to discharge, the resulting prediction interval is narrower (MPI: 3.28
m3/s, Table 5), varies notably more and generally seems to be better fitted than its counterpart
obtained for Model 1. Contrary to what was observed before, the prediction interval is narrowest
during low-flow conditions, wider for high-flow conditions and has its maximum width in the
transitionary period between winter and spring (ca. day 75 to 100), coinciding with the largest
difference between observations and simulation. Apart from a short period in summer (around day
200), the prediction interval effectively only extends in an upward direction. Heteroscedasticity
is captured, as illustrated by the increasing width in MPI for different discharge flow categories
(cf. Tab. 5). When looking at soil moisture, the prediction interval is distinctly less erratic and,
on average, narrower (MPI: 0.048, Table 5) than the one obtained using Model 1. However, the
prediction interval shows little differences in width thoughout the testing year. In comparison to
Model 1, the usage of the Richards’ equation as unsaturated zone solver clearly led to an improved,
although biased, simulation of the soil moisture dynamics. While k-NN resampling results in
error prediction intervals that contain more than the expected 90% of all observations (PICP90 of
97.2%), they do correct for the systematic deviation of simulation and observations (overestimation
by the model). With regard to hydraulic head, the k-NN- based prediction interval is yet again
very narrow (MPI: 0.34 m, Table 5). However, it appears to be systematically wider for the first,
systematically narrower for the second half of the testing year. The PICP90 (96.2%) moderately
exceeds the expected value. As seen for Model 1, the bias between observations and simulation is
successfully corrected for by k-NN resampling. When comparing the graphs for Model 1 and 2, it
appears that the hydraulic head simulation for Model 2 shows somewhat larger fluctuations; this
is very likely connected to the different unsaturated zone solvers. As was the case for Model 1,
the prediction interval for actual evapotranspiration is difficult to assess as the large day-to-day
fluctuations of simulation and observations prevents this. It is worth noting that simulated actual
evapotranspiration for Model 2 is derived using the SW-ET model. The prediction interval is
relatively wide (3.05 mm/d), while the PICP90 is rather good (92.6%).
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Figure 3: Hydrograph for discharge and equivalents for soil moisture, hydraulic head and actual
evapotranspiration in the testing year 2014, Model 1. The residual uncertainty is characterised by
90% prediction intervals using k-NN resampling (k = 199).
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Figure 4: Hydrograph for discharge and equivalents for soil moisture, hydraulic head and actual
evapotranspiration for Ahlergaarde catchment in testing year 2014, Model 2. Residual uncertainty
as given by 90% prediction intervals using k-NN resampling (k = 199). Input variable vector
composition is presented in Table 3.

4.3 Reliability diagrams
The performance of k-NN resampling regarding the reliability of the error quantiles for all flows is
evaluated by generating realiability diagrams (Fig. 5) and calculating the Alpha Index (Tab. 5).
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Table 4: Performance metrics for hydrological simulation in the testing year 2014 linked to Figure
2 (Model 1) and Figure 3 (Model 2).

Hydrological variable NSE RMSE ME Pearson’s r PBIAS
(%)

Model 1
Discharge 0.91 - m3/s 0.57 m3/s 0.96 3.41
Soil moisture - 0.06 - 0.02 - 0.81 14.17
Hydraulic head - 3.97 m 3.96 m 0.65 8.30
Actual evapotranspiration - 0.99 mm/d -0.001 mm/d 0.72 -0.08

Model 2
Discharge 0.94 - m3/s -1.01 m3/s 0.98 -6.07
Soil moisture - 0.07 - 0.06 - 0.83 47.52
Hydraulic head - 3.19 m 3.19 m 0.76 6.67
Actual evapotranspiration - 0.95 mm/d 0.10 mm/d 0.77 -6.07

With regard to discharge, the reliability diagram for Model 1 suggests high reliability of the error
quantiles, as nearly all points fall along the identity line. The Alpha Index of 0.94 supports this
conclusion. Above a probability of non-exceedance of ca. 0.5, a slight trend towards overprediction
(probabilities too high; deviation of calibration function to the right of the 1:1 line) is detectable.
The corresponding reliability diagram for Model 2 shows a slight downward deviation of the cali-
bration function from the 1:1 line for probabilities of non-exceedance of ca. 0.05 to 0.3, yet again
indicating overprediction. However, the graph returns back to the identity line thereafter. Overall,
the reliability of the error quantiles can be considered very high (Alpha Index of 0.93).

As for soil moisture, the points of the calibration function for the error quantiles of Model 1 are
close to the identity line up to a non-exceedance probability of 0.5. For larger probabilities, the
graph begins to deviate from the identity line in an upward direction (underprediction), with the
largest deviation found at a probability of non-exceedance around 0.7. The graph eventually re-
turns to the desired 45 degree line around a probability of non-exceedance of 1. The Alpha Index
is 0.89. In comparison, the reliability diagram for error quantiles of Model 2 despicts a calibration
function that shows comparatively smaller but constant deviations from the identity line between
probabilities of non- exceedance of > 0.2 and up to nearly 1, before returning to the 1:1 line; the
Alpha Index is equal to 0.93 and thus notably better than that of Model 1.

The reliability diagrams for error quantiles of hydraulic head represent the ones with the strongest
deviations from the identity line, and therefore lowest reliability. For both Model 1 and Model 2,
there is an overprediction up to a probability of non-exceedance of about 0.4, above which there
is a transition towards underprediction (with peaks at a probability of non-exceedance of 0.7 and
0.6, respectively). The graph eventually returns to the identity line around 1. According to Wilks
(2006), the reliability diagrams have good resolution but are underconfident. The Alpha Index is
equal to 0.86 and 0.84 for Model 1 and Model 2, respectively, suggesting reasonable reliability.

Finally, the reliability diagrams for error quantiles of actual evapotranspiration suggest a very re-
liable error prediction for both Model 1 and Model 2. As for Model 1, a slight underprediction (at
probability of non-exceedance of 0.1 to 0.2, respectively) is followed by an equally minor overpre-
diction (probability of non-exceedance of 0.5 to 0.8), while the scatter is still located very closely
to the identity line. Regarding Model 2, there is a slight overprediction around a probability of
non- exceedance of 0.3 while the remaining calibration function largely falls along the identity line.
Alpha Indices of 0.93 and 0.95 indicate high reliability.

In summary, the reliability diagrams in Figure 4 show that the k-NN error quantiles are indeed
reliable for all hydrological variables and both models. When looking at the Alpha Indices, re-
liability of the k-NN error quantiles appears to be slightly higher for Model 2 in the case of soil
moisture and actual evapotranspiration, while being higher for Model 1 in the case of discharge
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Figure 5: Hydrograph for discharge and equivalents for soil moisture, hydraulic head and actual
evapotranspiration for Ahlergaarde catchment in testing year 2014, Model 2. Residual uncertainty
as given by 90% prediction intervals using k-NN resampling (k = 199). Input variable vector
composition is presented in Table 3.
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Table 5: Alpha Index (↵) and mean prediction interval width (MPI) for discharge (all flows),
soil moisture (entire variable range), hydraulic head (all states) and actual ET (all fluxes) of
Ahlergaarde catchment.

Model 1
Variable ↵ MPI for different flow categories Unit

All flows <10% 10-25% 25-75% 75-90% >90%
Discharge 0.94 4.03 3.22 3.28 3.87 4.83 5.48 m3/s
Soil moisture 0.89 0.103 0.143 0.138 0.091 0.084 0.092 -
Hydraulic head 0.86 0.32 0.33 0.35 0.35 0.26 0.22 m
Actual ET 0.93 2.34 2.16 2.00 2.23 2.57 3.19 mm/d

Model 2
Discharge 0.93 3.28 1.80 2.25 3.28 4.12 4.49 m3/s
Soil moisture 0.93 0.048 0.071 0.051 0.050 0.040 0.039 -
Hydraulic head 0.84 0.34 0.27 0.24 0.33 0.43 0.43 m
Actual ET 0.95 3.05 3.31 3.31 3.07 3.32 3.88 mm/d

and hydraulic head. However, the numerical differences are minimal.

4.4 Reproduction of error ACF
Figure 5 compares autocorrelation functions for observed and k-NN predicted errors in the testing
year 2014. Given that the respective ivv (cf. Tab. 3) informed the k-NN algorithm well and the
historical record held sufficient examples of relevant hydrological conditions, the ACF of observed
errors should be reproduced by the ACF of k-NN sampled errors. A look at the ACF for dis-
charge (Fig. 6, first row) shows that the autocorrelation function is only roughly repoduced for
both models. In both cases, the k-NN based ACF exhibits correlation coefficients with a higher
magnitude than found in the observed ones. However, the overall decline in autocorrelation with
increasing lag is reflected to some extent. For Model 2, the increase in correlation at lag 6 to 8
can be found in the k-NN based ACF. When looking at the ACFs of soil moisture, it seems that
the k-NN based ACF agrees well with the ACF of observed errors. For Model 1, the continuous
decline in correlation is well reproduced; for Model 2, both the decline as well as the increase of
correlation around lag 25 are mirrored in the k-NN based ACF. As for hydraulich head, k-NN re-
sampling appears to have performed better with regard to Model 2: the k-NN based ACF matches
the one of observed errors quite well in terms of slope of the decline in correlation and magnitude of
correlation coefficients; for Model 1, this is clearly not the case. Finally, the k-NN based ACFs for
actual evapotranspiration are well reproduced for both models even though they are very different
in appearance; while the ACFs associated with Model 1 exhibits correlation coefficients, which
are significant for all lags, Model 2 shows considerably lower correlation, including insignificant
peaks from at e.g. lag 2 to 5. Hence, it can be concluded that, on average, k-NN resampling was
able to reproduce observed error autocorrelation well. This is true for both models, albeit that
the k-NN based ACFs obtained for Model 2 appear to agree a bit better with the observed error
autocorrelation than those of Model 1.

5 Discussion and conclusion
In this study, we employed a nonparametric method called k-NN resampling to perform uncertainty
assessment for two deterministic simulations carried out using two configurations of a coupled
integrated hydrological model. The two model configurations were characterized by differences in
structural complexity, process description and calibration data. While previous applications in
hydrological literature are limited to prediction of streamflow (Lall & Sharma, 1996; Souza & Lall,
2003) or e.g. weather variables (Rajagopalan & Lall, 1999), our study presents an application
with a multi-site, multi-variable prediction. We simultaneously quantify residual uncertainty for
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multiple model outputs (soil moisture, hydraulic head and actual evapotranspiration in addition to
discharge). Despite a number of differences between the two employed models, the results show that
k-NN resampling is capable of producing reliable prediction intervals for this class of hydrological
models. Consideration of error autocorrelation led to smooth PIs for discharge (highest order p,
longest memory), which is in line with observations made by Evin et al. (2014). For all four
examined hydrological variables, k-NN based prediction intervals achieved coverage probabilities
that were close to but mostly exceeded the expected value of 90%. Similar results were obtained by
Anna E. Sikorska et al. (2015) (using k-NN; PICP coverage of 97.9% compared to expectation of
95%) and Montanari and Koutsoyiannis (2012) (using a Meta-Gaussian approach; PICP coverage
of 90.3% compared to expectation of 95%). As demonstrated by Fig. 6, k-NN rather successfully
mimicked the autocorrelation of errors observed in the testing period (year 2014). Systematic
biases in the hydrological model simulation such as observed for hydraulic head (cf. Fig. 3 and
Fig. 4) are accurately estimated resulting in narrow prediction intervals that encapsulate most of
the observations and error quantiles that achieve high reliability. This is in line with findings by
Wani et al. (2017) who showed that the reliability was not impeded when imposing an artificial bias
on the simulation. Learning from past errors, k-NN accounts for systematic deviations, resulting
in prediction intervals that may depart significantly from the deterministic model prediction. This
would not be possible if e.g. using a parametric method, which assume zero mean normally
distributed residuals. We proposed to exploit information contained in the error time series by
analyzing ACF and PACF to determine the order of the autoregressive process and formalize input
variable vector composition for cases where conclusive. Demonstrably, the performance based on
error alone was very good.

As noted before, the identification of suitable ivv candidates might be problematic due to com-
mensurability issues (Keith Beven, 2012). Good examples to illustrate this are soil moisture and
hydraulic heads: While the observations are point measurements representative of very limited
volumes, the simulated values are grid cell averages; therefore, the two quantities are technically
not comparable. When it comes to error itself, K-NN successfully compensates for this mismatch
prediction because it learns from past errors. However, this might still be problematic in case
of e.g. rainfall. Owing to a lack of rain gauge observations, rainfall (based on the 10 km input
grid) was extracted from the grid cell that contained the respective observation. This is certain to
fail representing the pronounced small-scale spatial variability of rainfall (Wood, Jones, & Moore,
2000), which, however, will likely be reflected in the soil moisture measurement. Therefore, it is
not surprising that the correlation between the extracted rainfall and error (the difference of a
point measurement observation and a grid cell average) was found to be negligible.
Part of this study was dedicated to the comparison of k-NN performance for two different config-
urations of the same hydrological model. Both PICP and Alpha Index allowed no clear conclusion
regarding the question for which model k-NN performs better. However, the MPIs for discharge
and soil moisture are considerably smaller for Model 2 than for Model 1 (cf. Tab. 5) and are
generally better defined; reliability for the error quantiles is higher for Model 2 (0.93 vs. 0.89).
As for soil moisture, this is likely a result of the superior simulation using the Richards’ equation
(Model 2) instead of gravity flow (Model 1) and possibly, because soil moisture had been included
into the calibration of Model 2. While correlation is only slightly better for Model 2 (r = 0.83
vs. 0.81), a visual inspection indicates that Model 2 recreates soil moisture dynamics significantly
better than Model 1. While PICP is good for both models, the resulting PI of Model 1 looks very
inconsistent, while the one of Model 2 gives a notably better impression. As for hydraulic head,
a notably improved correlation can be seen for Model 2 (r = 0.76 vs 0.65). This is probably a
consequence of the more 563 complex, physically more realistic soil moisture simulation, therefore
leading to simulated hydraulic heads that are in better accordance with the observed heads. How-
ever, as compared to other hydrological variables, the Alpha Index suggests an inferior reliability
of the predicted error quantiles 566 (0.86 and 0.84, the only ones below 0.9). Possibly, the k-NN
resampling is at a disadvantage for this particular variable, due to comparatively short length of
the observational data set for hydraulic heads (n=1393) and the fact that both observation and
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Figure 6: Autocorrelation functions of observed error (black lines) and k-NN resampling based
error (red lines) for testing year 2014 for discharge, soil moisture, hydraulic head and actual
evapotranspiration.

simulation time series do not fluctuate much (i.e. errors tend to be very similar basically every-
where). When looking at actual ET, the reliability of the error quantiles is better for Model 2
(Alpha Index = 0.93 vs. 0.95), yet the MPI is significantly wider. As the energy balance model
SWET is involved here, the ET simulation might still be superior in Model 2 (higher correlation,
0.72 vs 0.77). The quality of the prediction intervals, while PICP is good, is difficult to judge in
this case.

With regard to k-NN resampling, we kept the value of k in this study at 199 for all four hydrological
variables. A rule of thumb to obtain a robust number of k (Sivakumar, 2017) is to take the square
root of the number of available observations,

p
N which would have resulted in a value of k around

45. Given the relatively short length of the observational records (ranging from 1393 to 2070 days,
Tab. 3) as compared to other applications of k-NN and the PICP coverage exceeding the expected
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value, this number is possibly too high, hence introducing a high number of not-so-similar error
samples into the uncertainty prediction. For example, Anna E. Sikorska et al. (2015) use 10 years
for error sampling and 10 years for testing, while Wani et al. (2017) use 6 years (but at a resolution
of 12 hours) for error sampling and testing for their Upper Severn catchment case study. Anna E.
Sikorska et al. (2015) found the value of k (when varied between 5 and 100) to have little impact on
the prediction intervals. As k is effectively a smoothing parameter (Sivakumar, 2017), the resulting
empirical error distributions might be close to the marginal distribution of the error associated with
the respective hydrological variable. This, in turn, might result in prediction intervals that have a
rather constant width, regardless of hydrological conditions. Indeed, in order to provide the k-NN
algorithm with sufficient information to learn from, the historical record should contain several
examples for all hydrological conditions found in the testing period and for which error prediction
is desired (Wani et al., 2017). Particular characteristics of each hydrological variable regarding
recurrence of certain signals should also be considered. While seasonality might be factoring into
this equation as well, there is a distinct difference in the dynamics of e.g. discharge or hydraulic
head and actual ET, ergo possibly requiring individually adjusted k values. As Wani et al. (2017)
points out, the determination of a more rigorous approach of finding an optimal k value would
require further research efforts. The application of k-NN resampling requires the data to be sta-
tionary. However, the stationarity assumption for catchment response holds only if environmental
conditions remain stable - an illusory assumption (K. Beven, 2016). Anthropogenic alterations
that affect e.g. river flow volume (extractions, temporary damming) or the timing of flow peaks
(weirs) but also soil moisture content (drainage) and changing climatic conditions would render
data-driven techniques such as k-NN effectively worthless. The whole notion of errors observed
in the past giving an indication of errors in the period for which uncertainty prediction is carried
out would lose its justification. In this context, it was of advantage that the current project used
data from a multi-disciplinary research project (HOBE) collected in a relatively small catchment.
Therefore, continuity and quality of observational data can be considered relatively constant. In
addition, no change in human impacts (land use groundwater abstraction) occurred during the six
years study period.

The application of k-NN in this paper demonstrated that the technique works well with a complex
coupled integrated hydrological model. The method is very flexible and allows near-simultaneous
UA (time-efficient, < 1 min per hydrological variable as opposed to several weeks for MC-based
UA on a standard desktop computer). Theoretically, k-NN can also be used in combination with
other methods 610 to explicitly account for specific uncertainty sources expicitly, e.g. input and
parameter uncertainty (Anna E. Sikorska et al., 2015) or rating curve uncertainty (A. E. Sikorska
& Renard, 2017). However, as Verkade, Brown, Davids, Reggiani, and Weerts (2017) showed,
source-based UA is not necessarily superior to its lumped counterpart. Furthermore, the choice of
a suitable UA method should depend on the purpose of the application (Refsgaard et al., 2007).
While knowing the relative contributions of individual sources of uncertainty to overall uncer-
tainty might be insightful when aiming for an enhanced process understanding or the devleopment
of strategies to reduce predictive ucnertainties, an aggregated estimate may be sufficient when its
purpose is to provide orientation for decision making. It needs to be emphasized that the communi-
cation of uncertainty and limitations in modeling results to end users has the potential to increase
trust in scientific products (Juston et al., 2013). The well-known limitation of being unable to
predict outside the observed range can be overcome using innovations to perturb the observations
(Rajagopalan & Lall, 1999) or using a Kernel density estimator (Sharma, Tarboton, & Lall, 1997).

While k-NN resampling is a comparative lightweight amongst UA methods in terms of mathe-
matical sophistication, its strengths are its robustness in the face of model bias and the ease with
which in can be implemented and set-up to carry out UA for multiple model outputs. The latter
property renders it a potent tool for applied hydrology and situations where uncertainty assessment
is to be performed for multiple hydrological model outputs individually, thus providing decision
makers with valuable information about uncertainty of secondary model outputs. Shifting focus
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away from discharge-only oriented UA will help fully exploiting the enormous potential of complex
hydrological models. This paper is seen as a contribution to further advance the establishment of
UA in operational hydrology.
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Abstract
Observations of a hydrologic system response are needed to accurately model system behaviour.
Nevertheless, often very few monitoring stations are operated because collecting such reference
data adequately and accurately is laborious and costly. It has been recently suggested to use
observations not only from dedicated flow meters but also from simpler sensors, such as level
or event detectors, which are available more frequently but only provide censored information.
Binary observations can be considered as extreme censoring. It is still unclear, however, how to
use censored observations most effectively to learn about model parameters. To this end, we suggest
a formal likelihood function that incorporates censored observations, while accounting for model
structure deficits and uncertainty in input data. Using this likelihood function, the parameter
inference is performed within the Bayesian framework. We demonstrate the implementation of
our methodology on a case study of an urban catchment, where we estimate the parameters of a
hydrodynamic rainfall-runoff model from binary observations of combined sewer overflows. Our
results show, first, that censored observations make it possible to learn about model parameters,
with an average decrease of 45% in parameter standard deviation from prior to posterior. Second,
the inference substantially improves model predictions, providing higher Nash-Sutcliffe efficiency.
Third, the gain in information largely depends on the experimental design, i.e. sensor placement.
Given the advent of Internet of Things, we foresee that the plethora of censored data promised to
be available can be used for parameter estimation within a formal Bayesian framework.
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1 Introduction

Traditionally, mathematical models of river catchments and urban drainage systems are calibrated
on uncensored observations of physical variables, such as discharge or water levels (Gupta et al.,
1998; Madsen, 2003; Refsgaard, 1997; Westerberg et al., 2011). By uncensored observations we
mean that the monitoring device used has an adequately large measurement range i.e. it can
measure any physically possible value of the hydrologic variable. However, the installation and
management of such monitoring devices for hydrologic systems is generally laborious and costly
(Maheepala et al., 2001). Therefore, typically only a few locations are equipped with such sensors.
There are other types of sensors and observation equipment that collect data only within a certain
range, and the value of any system response beyond an interval cannot be measured (Borup et al.,
2015). Also, recent advances in sensor and data transfer technology development reveal a trend
towards more cost-efficient sensors, which simply detect the occurrence of overflow events (Ras-
mussen et al., 2008) or detect only the exceedance after some critical water levels, thus providing
binary information. Within this context, it has even been suggested to specifically develop binary
monitoring devices based on robust and low-cost sensors such as temperature probes (Hofer et al.,
2014; Montserrat et al., 2016, 2013), motion detectors (Siemers et al., 2011) and electrical switches
(Rasmussen et al., 2008). Also, even though learning about the depth and velocity of flow from the
footage of CCTV cameras during floods may be challenging, they easily capture the inundation
and the duration of an event (Le Coz et al., 2016; Lo et al., 2015). In the context of Internet of
Things, we are witnessing a growing trend where more real-time information related to hydrologic
systems is available from hitherto unconventional sources (Eggimann et al., 2017; Kerkez et al.,
2016).

Availability of any kind of relevant information related to the output of a modelled system should
theoretically be able to reduce uncertainty in the parameters, allowing us to update our prior
assumptions about their values (Riggelsen, 2006; Rinderknecht et al., 2014). As model predictions
for hydrologic systems can be highly sensitive to various parameters (Gamerith et al., 2013; Song
et al., 2015), the reduction in parametric uncertainty and identification of better parameter values
has a direct bearing on the performance of models. It is therefore desired that in the future all
types of data from different sensors, a) uncensored and b) censored, should help to calibrate hy-
drologic models within one consistent and general mathematical framework.

The underlying idea that many less accurate sensors may provide as much information about a
complex hydrologic system as a few very accurate ones is very compelling. The first step to test
this hypothesis can be to evaluate the value of binary observations in isolation, which can be seen
as the most extreme case of censored data. While there has been research on modifying data assim-
ilation techniques, like ensemble Kalman filtering, in order to handle censored data for updating
the system state (Borup et al., 2015), the next logical step is to explore techniques that can infer
model parameters from censored observations as well. However, so far only ad-hoc approaches
to model calibration and parameter estimation using censored data have been suggested and it is
currently not clear what the information content of such observations is and how we can use them
most efficiently to learn about the system. Rasmussen et al. (2008) used the binary information
measured during the occurrence of combined sewer overflows (CSO) to estimate the hydrologic
reduction coefficient based on the mismatch between the predicted duration of the overflow and
its observed duration. Similarly, measurements of overflow duration have been successfully used
for calibration in other studies (Montserrat et al., 2016). Aronica et al. (2002) used a scalar per-
formance measure and mapped it to the parameter space of the model with an informal likelihood
function. The performance measure gives an aggregated indication of the performance of the in-
undation model. Thorndahl et al. (2008) applied similar mathematical framework for calibration
of an urban drainage model and the quantification of parametric uncertainty using data on CSOs.
In these two studies, those parameters that perform well on the chosen performance measure were
identified as good and those which perform below a defined value were termed non-behavioural and
not considered for model simulations. However, in the authors’ opinion, this inference procedure
is limited by the usage of an informal likelihood function (Stedinger et al., 2008). First, the cri-



64 2. Method and material

terion of acceptance/rejection of various parameter values is ad-hoc (Dotto et al., 2012). Second,
having more observations does not reduce parametric uncertainty (Mantovan and Todini, 2006).
And third, it assumes a perfect model structure and error-free input data, which is often not the
case in rainfall-runoff studies (Del Giudice et al., 2015). To incorporate relevant error-generating
processes, we need a formal likelihood function, which generally is lacking in the current treatment
of censored observation. In this paper, we therefore suggest a likelihood function which makes it
possible to estimate parameters from censored signals, while accounting for uncertainties in input
variables, such as rainfall or land use, and model structure deficits. Based on the results from
a case study, we demonstrate that censored data is surprisingly effective in reducing parametric
uncertainty of rainfall-runoff models. Although uncensored observations are comparably more in-
formative than censored data, our results are still quite promising, because they show the way
towards using all forms of available information in model calibration, which is often not done.

In the following sections, we first present the mathematical formulation of our likelihood function.
We then demonstrate its application in inferring parameters and discuss why it requires a Bayesian
framework (Section 2.1). The proof of concept is given through parameter estimation experiments
for a real-life case study (described in Section 2.3). For this, we first infer parameters for a hy-
drologic model using binary data collected in our dedicated measurement campaign and then test
the sensitivity of inference to experimental design and choice of priors (Section 2.4). In the same
section, we also conduct tests on synthetic data from a simple linear model to facilitate repro-
ducibility of this research. Finally, we present the results from simulation experiments (Section 3),
provide a critical overview of this technique’s limitations and interpret the results (Section 4). At
the end, we draw our main conclusions (Section 5).

2 Method and material
In this section we lay out the mathematical formulation of our likelihood function. Once the
likelihood function is defined, we discuss how Bayesian inference can be used to combine censored
information and prior belief about the parameter values to update the probabilities of parameters.
We then describe the case study and the simulation experiments carried out on it. The simulation
experiments first show the performance of the inference procedure on binary observations. Finally
we describe the sensitivity analysis to the threshold and prior.

2.1 Parameter estimation
Likelihood function

The explicit consideration of structural deficits and input errors in computer models, during the
inference procedure of parameters, has been extensively discussed in literature (Higdon et al., 2004;
Kennedy and O’Hagan, 2001; Todini, 2008). Reichert and Schuwirth (2012) propose to describe
true system response Yt at time t of an environmental system as the sum of a deterministic model
mt and a stochastic process Bt (see also Fig. 1):

Yt = mt(x,✓
m) +Bt(✓

m) (1)

We use the convention to represent random variables with capital letters and write vectors in bold.
In Eq. (1), the stochastic process B represents the bias of the model due to structural limitations
and input errors. The model inputs are denoted with x and parameters with ✓ = (✓m,✓B),
where the superscript m denotes the model parameters and B stochastic process parameters.
It is reasonable to assume that observations Y o = (Y o

1
, Y o

2
, ...) of the system response contain

observation errors, which are modelled by an independent additive error term (Et):

Y o

t
= Yt + Et(✓

E) (2)
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For parameter inference, the probability (density) distribution of the observations given the param-
eters and input, pYo(yo|✓,x) the so called likelihood function, is required. It has been suggested
to represent the bias B as a Gaussian process and consider independent normally and identically
distributed observation errors E (Kennedy and O’Hagan, 2001). This makes it possible to write
the likelihood function as a multivariate normal distribution with mean m and covariance matrix
⌃:

µ = m(x,✓) (3)

⌃ = ⌃B + (✓E
1
)2I with (✓B

1
)2 · exp

⇣
� 1

2✓B
2

|ti � tj |
⌘

(4)

where I is the identity matrix, ✓E
2

, ✓B
1

are standard deviations of the two error processes E, B
and ✓B

2
captures the degree of error correlation in time. However, the observation model in Eq.

(2) is only adequate for uncensored observations. This prohibits using sensors providing censored
observations, for example, measuring the system response only within lower and upper thresholds
[y, y]. An observation of such a sensor can be described as (see also Fig. 1):

Zt =

8
><

>:

AT if Y o
t
� y

Y o
t

if y < Y o
t
< y

BT if Y o
t
 y

(5)

i.e. the observation is either a measurement of the system response or it is “censored” and takes one
of the special values : AT (above threshold) or BT (below threshold). Instead of discarding this
information, the likelihood function defined by a multivariate normal distribution can be adapted
to censored observations Z with an approach similar to what is used in survival analysis (e.g. Klein
and Moeschberger, 2003). This is achieved by integrating the likelihood function over all possible
values corresponding to either AT or BT (shaded areas in Fig. 1)

pZ(z|✓,x) =
ZZZ 1

�1
pY o(yo

1
, ..., yo

n
|✓,x)g(z1, yo1)...g(zn, yon)@yo1...@yon (6)

where, n is the number of observations and

g(z, y) =

8
><

>:

H(y � y) if z = AT

1�H(y � y) if z = BT

�(y � z) else

(7)

is a helper function to ensure the correct limits of integration. The Heaviside function H(x) equals
to zero for negative x and one otherwise,� denotes the Dirac delta function. Although the integrals
in the likelihood function Eq. (6) are known to be analytically intractable for normal distributions,
a very efficient numerical solution has been suggested (Genz, 1992). In this formulation, binary
observations, such as those which we later use in our case study, are a special case of censored
observations for which the upper and the lower threshold fall together, i.e. y = y.

Bayesian inference

When the likelihood function is comprised of a deterministic model and an additive stochastic
process to capture the remaining bias, a maximum likelihood estimation is not advisable. This is
because the data can, in principle, be modelled equally well with both components, which leads to
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Figure 1: Schematic representation of likelihood estimation for censored data. Integrals of bias
distribution (shaded orange) need to be computed in the censored regions (below y and above y),
whereas the probability density is computed in between (red line).

identifiability problems (Reichert and Schuwirth, 2012). This dilemma can be solved by introducing
our prior beliefs on the parameters, for example that the bias has a high probability for a zero
mean. This is possible via Bayesian inference, where our belief is formally expressed as the prior
probability distribution of the parameters. In inference the posterior is proportional to the product
of the prior probability and likelihood of observing the data, given the hypothesized model:

p✓(✓|z,x) / pZ(z|✓,x)p✓(✓) (8)

2.2 Performance assessment
To gauge the performance of the best parameter estimates prior to inference and posterior to
inference, we compute their corresponding Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe,
1970). This performance index, which is a popular assessment tool for model performance in the
hydrologic modelling community, captures the degree of mismatch between model prediction and
uncensored observations. The absolute value of NSE after inference is limited by the performance
of the underlying deterministic model. An inference technique can perform well even when the
deterministic model is not capturing the system response with adequate accuracy. However, the
improvement in NSE from prior parameters to posterior parameters does capture the performance
of an inference technique. A performance index, based on similar philosophy as NSE, can be
calculated for the binary system response, which tells us to what degree do the binary observations
match with the binary predictions. Percentage Matching Binary Observation can be defined as
the number of time steps where binary predictions match binary observations divided by the total
number of time steps. As we calibrate the model using binary observations, this index is expected
to improve in the calibration phase. To quantify the reduction in the parametric uncertainty from
the prior to the posteriors, we check the reduction in the spread on the marginal distribution of
parameters. For informative data, posteriors are expected to be narrower than priors. Therefore, we
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analyse the ratio of the standard deviation of prior to posterior parameter marginal distributions.
This contraction in the probability distribution of parameters gives an indication about how much
has been learned about the parameter values using the new data of the system response. For a
deterministic model, the posterior standard deviation of parameters should decrease as the time
series of system response observation becomes longer.

2.3 Case study
We demonstrate the potential of censored observations by using them to calibrate a hydrodynamic
rainfall-runoff model for a small urban subcatchment in the Wartegg city district of Lucerne,
Switzerland.

Figure 2: Schematic outline of the experimental setup in the Wartegg subcatchment in the city of
Lucerne, CH.

Catchment description

The investigated catchment is a typical Swiss residential area with single to two-story housing of
moderate density, including typical public infrastructure, such as a shopping centre, parking lots,
and a school complex. The catchment area is drained by separate and combined sewers with a
network length of 11.2 km, where an area of 30.2 ha is connected to the combined system. A CSO
structure consisting of a side-flow weir and a retention tank with a storage capacity of about 100
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m3 is located in the lower part of the catchment (see Figs. 2 and 3). In case of heavy rainfall, the
CSO structure diverts excess discharge of combined sewage into Lake Lucerne. In this study, only
the combined sewer system is considered.

Figure 3: Schematic of the experimental setup at the CSO structure in the Wartegg subcatchment:
1) H1 sensor: ultrasonic measurements (uncensored observations). 2) S1 and S2 TOMST moisture
probe: binary observations. 3) Threshold is the weir crest. When the water level overtops the
threshold, the S1 and S2 sensors capture the signal.

Uncensored data

We obtained the routine surveillance data from the utility, which operates an ultrasonic water
level sensor positioned in the flow-through chamber of the overflow structure (H1, Fig. 2). The
recordedwater level H1, hereinafter referred to as uncensored data, is used as a benchmark for
the binary data (S1 and S2, Fig. 2). In order to back up the operators’ water level data H1, we
additionally performed a targeted flow monitoring with two independent flow sensors about 200
m downstream of the overflow structure (carryon flow) from July 2014eJune 2015. Further details
on this monitoring setup and instrumentation can be found in Peleg et al. (2017).

Rainfall data is obtained from a rain gauge located about 2 km west of the pilot catchment. The
rainegauge is operated by MeteoSwiss, the Swiss Federal Office of Meteorology and Climatology.
It records rainfall heights at 10 min intervals with a precision of 0.1 mm, which we validated by
hourly data provided through MeteoSwiss.

Binary data

At the overflow structure, two identical low-cost, multiparameter sensors (TMS-3 data logger;
TOMST, 2017) were installed, perpendicularly hanging above the weir crest to record temperature,
moisture, and movement (S1 and S2 in Figs. 2 and 3). The moisture signal (capacity-related
measurement technique) clearly shows elevated levels when the sensor head is submerged, i.e.
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when the water level exceeds the threshold (Fig. 3). In the present study, the raw moisture signal
was classified into either ‘dry’ (BT e no overflow) or ‘submerged’ (AT � overflow) conditions. The
autarkic battery-powered sensors were permanently operated for two months from April until the
end of May 2015, after their performance had been thoroughly tested and optimized at various
locations over a period of several weeks. The recording interval was set to 1 min to sufficiently
cover process dynamics.

Rainfall-runoff model

A hydrodynamic sewer model was developed based on infrastructure data from the municipal-
ity’s cadaster. The drainage system is modelled with EPA SWMM, version 5.1.009 (EPA, 2015)
employing a conceptual hydrologic surface runoff model and routing the discharge in sewer pipes
using the full set of Saint-Venant equations. The model physically consists of 158 subcatchment
units, 167 junction nodes, and 174 conduit links, which overall corresponds to a rather detailed
catchment representation. For parameter estimation, we first performed a sensitivity analysis to
identify the most influential parameters: i) multiplicative factor for subcatchment width (✓m

1
), ii)

maximum infiltration rate (✓m
2

), iii) and infiltration decay (✓m
3

), (both for HORTON infiltration
method), which is in agreement with previous work e.g. (Liong et al., 1991). We then inferred
these SWMM parameters together with those of the error model. The SWMM reporting step was
chosen to be 5 min.

2.4 Simulation experiments
To be able to better interpret the performance and applicability of our inference technique, we
performed simulation experiments for parameter estimation using the likelihood function described
in Section 2.1 on 1) a simple linear model 2) and then on the case study described in Section 2.3.
3) We also conduct analysis to understand the dependence of inference on the value of threshold
and the choice of priors.

2.5 Preliminary proof of concept using linear regression
As a preliminary test for the validity of this technique, we used a simple linear model with known
“true” parameters. This model has been used before to compare the performance of various likeli-
hood functions (Stedinger et al., 2008):

Q = aP + b (9)

where Q is the model output, P is the model input and (a,b) are the model parameters. Using
the bias description from Eq. (1) to Eq. (4), we defined a likelihood function where the value
of parameter vector (a, b, ✓E

1
, ✓B

1
, ✓B

2
) is (1,1,0.1,0.3,3). To generate synthetic uncensored obser-

vations, we used a sinusoidal P , sin(t/10) + 1, and sampled from the likelihood function. We
then get binary observations by fixing a threshold of 2.5 for the uncensored observations. Data
was generated for a thousand t values, from 1 to 1000. The prior belief for (a, b, ✓E

1
, ✓B

1
, ✓B

2
)was

defined using normal truncated distributions, having (1.5,1.5,0.08,0.2,2) as means, (1,1,0.1,0.3,1)
as standard deviations and with the lower and upper bounds of (0.25,0.25,0,0,0.1) and (4,4,0.2,2,4)
respectively. Parameter inference was done for the first five hundred binary observation values as
the calibration event, and the inferred parameters were verified on the remaining time series.

Parameter estimation for the case study

We conduct parameter inference using real binary data obtained from our dedicated measurement
campaign (see Section 2.3). These binary observations can contain false positives and negatives,
and allow studying the quality of inference for real measurements as well as the robustness of the
technique to noisy data. Based on the duration of our monitoring campaign for binary data, three
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rainfall events were used to assess the ability of binary likelihood function in inferring the model
parameters, for which binary observations were available. The model was calibrated on one event,
from 03/05/ 2015 12:00 to 05/05/2015 00:00, and then tested by predicting water levels for two
different events, from 25/05/2015 03:00 to 27/ 05/2015 00:00.

For simplicity, while doing the inference, we only focus on B (Eq. (1)) and do not consider E
(Eq. (2)). In our view, this is reasonable because i) model structure deficits and input errors
are supposedly much more influential than random observation errors, i.e. detect/ non-detects,
ii) detectors of threshold exceedance are very simple devices which in turn are rather robust and,
at least in our case, show very little randomness. While the optimization is done on posterior
probability density of the parameters, we also compared the Nash-Sutcliffe efficiency (NSE) of the
model that has been calibrated on the binary dataset to the NSE of prior parameters. As variables
in hydrological systems, such as water levels in this case study, are often non-negative and errors
are often positively correlated with the magnitude of the variable, e.g. large uncertainties with
high flows/water levels, it is more realistic to first transform the system response with a function f,
and then to apply Eq. (6) in the transformed space. This also requires transforming the thresholds
f(y), f(y). For simplicity, we here suggest the Box-Cox transformation (Box and Cox, 1964)

f(y) = a
y� � 1

�
(10)

which is commonly applied in many hydrologic case studies (Bates and Campbell, 2001; Del Giudice
et al., 2013; Frey et al., 2011; Sikorska et al., 2012). Depending on the individual application,
other transformations might be more realistic (Wang et al., 2012). The values for the Box-Cox
transformation parameter was suitably chosen from the past experience in similar urban hydrologic
studies (Del Giudice et al., 2013). The value of 0.35 produced satisfactory results for inference
in the preliminary analysis. In this simulation, the model parameters that we calibrate are i)
multiplicative constant for the width of the subcatchments (mult.width) and ii) the maximum
infiltration rate (maxrate).We assume a prior distribution for our parameter space, capturing our
best guess about the system. However, the prior distribution is kept wide so that we can learn
from our measured data.

Table 1: Information on priors used in the sensitivity analysis. All the priors of elements of q are
normal truncated. The vector in the table give the values for mean, standard deviation, lower limit
and upper limit of the prior for each parameter in our inference. ✓m represents model parameters
and ✓B the bias parameters in the transformed space (Eqs. (1) and (4)).

✓m
1
(mult.width) ✓m

2
(max.rate) ✓m

3
(decay) ✓B

1
(sd.B_Q) ✓B

2
(corrlen)

prior 1 [3,1,0.01,7] [0.54,0.54,0,108] [0.05,0.05,0.01,0.01]
prior 2 [0.1,0.5,0.01,7] [0.54,0.54,0,108] [0.05,0.05,0.01,0.01]
prior 3 [3,1,0.01,7] [90,30,10,100] [0.54,0.54,0,108] [0.05,0.05,0.01,0.01]
prior 4 [0.1,0.5,0.01,7] [37,5,30,10,100] [0.54,0.54,0,108] [0.05,0.05,0.01,0.01]
prior 5 [3,1,0.01,7] [90,30,10,100] [2,2,1,7] [0.54,0.54,0,108] [0.05,0.05,0.01,0.01]
prior 6 [0.1,0.5,0.01,7] [37,5,30,10,100] [2,2,1,7] [0.54,0.54,0,108] [0.05,0.05,0.01,0.01]

Sensitivity to threshold and prior

The effect of different priors was studied when inferring parameters. The standard deviation
and mean of the prior was changed to gauge its impact on the inference procedure. The prior
distributions should describe the knowledge of the analyst on model and error parameters, which
also has to satisfy physical constraints, e.g. that negative pipe roughness or imperviousness values
are impossible. Therefore, normal truncated distribution was used as the probability density
function for priors, and five sets were chosen for the bounds, mean and the standard deviation for
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each simulation. We do not analyse the effect of using different types of probability distributions
as priors e.g. lognormal, uniform etc. As in practice, different analysts often do not have the same
level of expertise or available databases for different parameters, so we also alter the dimensionality
of parameter space, by increasing the number of calibration parameters from 1 to 2 and then to
3, with different specifications of prior distributions (Table 1). The prior 1, 3 and 5 overestimate
the peaks, whereas prior 2, 4 and 6 underestimate them. The uncertainty in the prior belief about
parameter values is captured by the spread of the prior distribution. Wide as well as narrow priors
were tested. The use of priors can help eliminate unrealistic parameter estimates and allows for
the incorporation of accumulated knowledge about a system like a river catchment or a drainage
network. As it is challenging to formulate the priors of the error model parameters, we have
good experiences with defining them based on preliminary analysis of residuals of past observation
periods. Besides, it is safe to assume that bias is unlikely to be higher than the standard deviation
of the system response itself.

Apart from doing a sensitivity analysis on priors, the general ability of the likelihood function to
infer parameters for different thresholds was also tested using synthetic binary data. Simulations
were conducted for the Lucerne catchment and the synthetic binary observations were constructed
from the uncensored observations of water level H1 and five different thresholds (Fig. 3). Our prior
knowledge on the model parameters was formulated as prior 1 (Table 1), then parameter inference
was done using synthetic binaries corresponding to various thresholds. The effect of the threshold
choice on parameter inference was studied using this preliminary analysis.

Implementation

We implemented the inference in the programming language R (CRAN, 2015) and used the
pmvnorm function of the package mvtnorm (Genz et al., 2015) to compute integrals of the likeli-
hood function. The mode of the posterior distribution in Eq. (8) can be estimated with an effort
comparable to the use of an informal objective function. If the whole distribution is of interest,
Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior (Vihola,
2012).

To speed up the inference, we constructed a fast surrogate of the SWMM model, a so-called “em-
ulator” and used it instead of the original SWMM model in the calibration phase (Carbajal et al.,
2017). Although a single run of our SWMM simulator only takes about 20 s, this translates into
an inference time of more than 55 h for an MCMC chain of 10,000 runs. In addition, the eval-
uation of the likelihood function requires numerical integration for each data point, which costs
additional 10 s for each evaluation. To alleviate this cost, we followed the recipes in Carbajal et
al. (2017) and built a data-driven emulator using the non-negative matrix factorization approach
(more information in supplementary material). We produced 500 simulations with parameter val-
ues randomly drawn from the prior distributions and use the first 250 as training examples. The
emulator prediction was evaluated in the remaining 250 simulations, achieving relative root mean
square errors below 2%. The emulator demands 0.04 s per simulation, 500 times faster than the
simulator, and reduces the simulation cost of the mentioned MCMC chain from about 30 h to 5
h, given the same overhead computational costs for both simulator and emulator to evaluate the
integral in Eq. (6).

3 Results

3.1 Parameter estimation for the linear model
We found that the synthetic binary data was able to guide the inference procedure towards the
true parameter values. The maximum prior probability density parameter values that had a poor
NSE (0.94) were updated to parameter values that produce a significantly better NSE (0.84), after
inference where five hundred data points were used (Fig. 4). The maximum posterior density
parameter vector produced after inference is closer to its true values (a = 1.03, b = 0.97, ✓E

1
=
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Figure 4: The improvement in the model performance in the validation phase after inference using
five hundred binary data points. The dashed blue line is the model prediction with the prior
best estimate of parameters and the red line with the posterior best estimate. The y band (light
grey area) represents the 90% interval generated after sampling from the posterior parameter
distribution. The dark grey band and dashed black lines represent the 50% and 90% intervals
respectively for y + B. Refer to Eq. (1).

Figure 5: Bivariate posterior distribution of model parameters a and b. The negative correlation
that is not assumed by the prior gets captured in the posterior.

0.075, ✓B
1

= 0.29, ✓B
2

= 2.03). We found that the dependence in the joint density of parameters a
and b was captured, showing a negative correlation (Fig. 5). We were also able to reproduce the
decrease in parametric uncertainty with increasing time series of binary data used for inference
(from hundred to thousand data points), with a decrease of around 20% in the standard deviation
of posterior marginal distribution of the model parameters.
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Figure 6: The improvement in the model performance for the calibration phase after inference
using binary data.

3.2 Parameter estimation using the case study
The main aim of this simulation experiment was to analyse the potential of binary data in directing
us from poor prior estimates of parameters (fully uncalibrated model) towards better posterior
estimates using real binary data (Fig. 6).

Table 2: Comparison of NSE for maximum prior and maximum posterior density parameter vec-
tors (Table 1). Comparing the prior and posterior NSEs for the validation period shows the
improvement in model performance after inference.

Calibration Period Validation Period

NSE NSE NSE NSE
(Max. Prior) (Max. Posterior) (Max. Prior) (Max. Posterior)

prior 1, one parameter 0.56 0.83 -0.61 0.32
prior 2, one parameter 0.47 0.82 -0.01 0.55
prior 3, two parameter 0.65 0.75 -0.61 0.46
prior 4, two parameter 0.65 0.64 -0.02 0.04
prior 5, three parameter 0.65 0.78 -0.61 0.43
prior 6, three parameter 0.52 0.74 0.00 0.33

For this model, we see that the parametric uncertainty reflects itself much more pronouncedly in
the peaks of the water levels, and does not influence the base levels much. The prior parameters
grossly overestimate the water level peaks in the validation phase (Fig. 7).We see that the posterior
obtained using uncensored data is narrower than the posterior using binary data, which is in turn
narrower than the prior (Fig. 8a). The shrinkage in posterior captures the information gain in
parameter values, and we also see that the joint distribution captures the dependence between
various parameters (Fig. 8b). After calibration, the parameter estimates are taken away from
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Figure 7: The improvement in the model performance for the validation phase after inference using
binary data.

regions which grossly overestimate the water level and higher probability is given to sections of
parameter space which make model predictions that are in conformity with binary observations. We
also see that the uncertainty bands stay wide as the inference is not provided with the uncensored
data, therefore staying underconfident in defining the uncertainty intervals. Parametric uncertainty
can be further reduced by utilizing newly obtained observations. The posterior distribution from
one calibration event can be used as a prior during further inference on new events.

Posterior (binary)
Posterior (uncensored)
Prior

Figure 8: Posterior distribution of model and bias parameters; (a) Marginal from binary and
uncensored data, (b) Bivariate from binary data.

3.3 Sensitivity to threshold and prior
We find that for both calibration and validation periods, predictions based on the posterior outper-
form predictions based on prior knowledge. However, the quality of parameter inference is sensitive
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to the prior, i.e. the knowledge of or information available to the analyst. This is an expected
result in Bayesian inference, as posterior probability distribution is, by definition, proportional to
the product of prior and the likelihood.We find that the parameter posteriors are always narrower
than their priors, thus greatly reducing the uncertainty in parameters (Fig. 9).

The inference leads to better parameter values, even when multiple parameters are inferred simul-
taneously (Table 2). This dependence on priors is expected to be pronounced for short calibration
periods; theoretically, as longer and longer time series of data is used for inference, the impact of
the likelihood function should outweigh the impact of priors in determining the posterior. Also, the
posterior distribution generated gets narrower with increasing time series. However, as expected,
inference using uncensored data for the same calibration period is much more informative than the
binary data, especially in narrowing down the posteriors. Given the fact the binary information
does not capture the detailed dynamics of a system response, the uncertainty intervals stay under-
confident.

For varying threshold, the maximization of posterior distribution from the calibration event using
synthetic binary data shows that the NSE of the posterior is higher for those thresholds which
have a proportionate ratio of positives and negatives (Figs. 1 and 11). Thresholds which always
(or never) indicate elevated water levels are less informative, or, in other words, virtually “blind”
and thus do not contain much information to discriminate between likely and unlikely parameter
values. The experiment was done using six different threshold values of water level; the observed
maximum, minimum, and average water level for the event being 81 cm,16 cm, and 32 cm respec-
tively. This means that the threshold value below 16 cm will have only AT as binary observations
and the threshold value above 81 cm will have only BT as binary observations. Given the fact that
we have a fixed model structure, and we introduce a specific rainfall time series as input, the range
of parameter combinations that can produce a particular sequence of binary signals is not wide.
Therefore, while the information content of the signal containing only BT or AT is limited (Eq.
(5)), the likelihood function is surprisingly useful to learn some information about the parameter
values.

Uncensored data
Binary data

Figure 9: Sensitivity to different priors and the gain of information from binary observations.
The graph depicts the ratio of the posterior standard deviation to the prior standard deviation of
parameters.



76 4. Discussion

Figure 10: Percentage Matching Binary Observation using the maximum probability density prior
parameters and the maximum probability density posterior parameters. Inference in the calibration
phase yields a noticeable increase in the model output matching with the binary observations.

4 Discussion
The results of this research are in accordance with the theoretical framework that we employed.
We expected noticeable improvements in model performance and our results confirm this. The
main aim of this research was to formulate a formal Bayesian framework in which censored data
can be used for parameter inference. It is difficult to properly associate probabilities to parameter
values using ad-hoc methods. Also, it has not yet been suggested how to combine uncensored
and censored observations using such non-Bayesian inference procedures for hydrologic models.
In the following sections, we examine the performance of a likelihood function that can integrate
the inference procedure for uncensored and censored data in one consistent framework. i) We
specifically discuss the information gained with respect to parameter values and the performance
of the model with maximum posterior parameters. ii) We discuss the ability of censored data in
the quantification of model uncertainty. iii) We interpret our findings vis-a-vis the dependence of
inference on the choice of the threshold.We discuss the effect of priors on inference. iv) We also
discuss the accuracy of binary observations.Towards the end of the discussion, we talk about the
big picture and make some recommendations on data collection and sensor placement so that data
collected is better suited for calibration exercises.

4.1 Information gain from binary observations
As a simple validation of the likelihood function, Figs. 4 and 5 show that, for a linear model,
inference using synthetic binary observations is able to reproduce the true parameter values rea-
sonably well. For the real case study, where the assumptions of the likelihood function are only
approximately valid, inference is still able to provide improved parameter estimates. Table 2 and
Fig. 9 show that, despite the fact that the information content of censored data is inferior to
uncensored observations, censored data in combination with a rigid model structure (SWMM in
this study) and a well-defined input in the form of a rainfall time series allow us to learn about
better parameter values. From all the different parameter combinations that the prior distribution
allow, only a limited range of parameter values would produce the model output that agrees with
the observed censored signal. Thus, the maximum posterior parameter values perform noticeably
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Figure 11: The sensitivity of NSE to placing a binary sensor at different threshold levels in the cross-
section. Results correspond to the parameter values at maximum posterior probability density in
the calibration phase. Performance for thresholds that only contain AT or BT signals is poorer
compared to other thresholds. Synthetic binary data corresponding to different thresholds were
generated from the original uncensored observations.

better than the maximum prior parameter values. In the presence of uncensored observations, our
description of likelihood function evaluates the probability of observing a particular series of data,
given the chosen SWMM and error model, for a specific combination of parameters. Whereas,
when we have censored signals, the same description of likelihood evaluates the probabilities while
taking into account a) the amount of exceedance/non-exceedance and b) the duration of that
exceedance/non-exceedance. For example, the top of Fig. 6 shows an example of a binary signal
and its duration. We see that the best estimate of parameter values after inference reproduce the
observed binary signal more accurately than the uncalibrated model (Figs. 6 and 10). We also see
that the calibration phase narrows down the parameter range after exploring the parameter space
(Fig. 8). Parameters that cause longer durations of exceedance or shorter durations of exceedance
are assigned smaller probabilities than those which correspond closely to the observed binary sig-
nal. Therefore, rainfall events that result in multiple instances of flow over the threshold will lead
to better parameter estimation.

4.2 Ability of censored data in the quantification of model uncertainty

Given a stochastic model, identification of the “true” parameters using a finite set of samples of
the system response always comes with uncertainty. As the number of observations increases, the
posterior probability distribution becomes narrower. This was also observed during the inference
of the linear model parameters. The availability of censored data, in the absence of uncensored
observations of the system response, still allows us to narrow down the parameter space and,
interestingly, capture their dependence with each other, as it can be seen in Fig. 8. For hydrologic
forecasting, the parametric uncertainty is usually found to be smaller than the model structure and
input uncertainty when there is adequate reference data to calibrate the model (Del Giudice et al.,
2015). Fig. 7 shows the uncertainty bands generated by sampling the parameters from the posterior
distribution and running simulations using those parameter samples, labelled “90% y”, referring
to the quantile and the deterministic model without bias respectively. As the binary observations
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are insufficient to assess the mismatch of model predictions and the actual system response, the
standard deviation of the bias process is not reduced drastically through the inference procedure.
This is expected, as binary data provides very little information about the actual system response,
thus forcing the error model to prevent overconfident intervals. This results in uncertainty bands
that are wide. In our view, it therefore seems best to combine binary and uncensored data to
reduce prediction uncertainty or utilize longer time series of data for inference.

4.3 Sensitivity to prior knowledge and threshold

The analysis also shows that the posteriors are sensitive to priors. Theoretically, this should
be the case, especially if the event duration used for calibration is small. Bayesian probabilities
represent the degree of belief and the posterior represents the combined effect of prior beliefs and
the updating as a result of new information. Fig. 9 shows the reduction in parametric uncertainty
after inference, for various priors. We see that different priors lead to different amounts of shrinkage
in the density function of parameters, however, it does not hamper the inference procedure and the
binary data is still able to guide us towards better posterior distribution. As far as deciding the
prior distributions isconcerned, we recommend not to exclude regions of parameter space that can
potentially contain the sought parameter vector even though it is not highly likely, while choosing
truncated distributions. As far as the sensitivity to the choice of threshold is concerned, it is clear
that signals with only BTs or ATs are the least informative. However, it is difficult to analytically
formulate an exact relationship between the “value” of the censored signal in providing better
parameter estimates and the ratio of BT and AT. This is because other factors, such as proximity
of the actual system response to the threshold or the number of threshold crossovers, play a role.
Our results show that the ability of the likelihood to learn about model parameters does depend
on the threshold (Fig. 11). This can be explained, in part, by the high information content that
crossing the threshold has. As the model has to be near the threshold when the observations flip
from one side of the threshold to the other, the model learns more about the parameters which
allow for such a model response. Thus, the ratio of positives and negatives and the number of
cross overs in a binary signal will have a bearing on the information content of the data. In a
real hydrologic network, different thresholds would correspond to installing an electrical switch or
motion sensor, at different heights in the cross-section. Although in most real applications, binary
sensors would detect overflow events at a certain weir with given height or a predetermined critical
levels that, for example, would lead to local flooding, we conclude from our first set of simulation
experiments that the placement is most informative when a proportionate amount of BTs and
ATs are detected. In real systems, the parallel installation of several sensors at different threshold
heights may address this dependency. This seems most relevant regarding the experimental design
for an entire network, where the information content from multiple threshold detectors can be
maximized by installing them at different points and at different levels. In practical applications,
the information content also depends on the state, i.e. level. For a utility manager, it is probably
interesting to install all sensors at levels that correspond to 80% or 90% pipe capacity. Thus,
continuously observing “no detects” in the entire network shows her/him that the network has
sufficient hydraulic capacity.

4.4 Accuracy of binary observations

The performance of the binary sensors applied in this case study must be considered imperfect
regarding sensor operation and accuracy. This holds true despite the fact that we installed two
sensors of the same type in parallel (redundant application). The given binary observations are
afflicted with noise, which is expected to influence the calibration performance. In this research,
we did not include a specific error model of the binary observation instrument E, because a
normal distribution is not necessarily a good error model for the noise. A dedicated error model
incorporating an explicit false positive or a false negative rate for binary signals is relatively easy to
formulate, however, the computational effort scales with 2n, where n is the number of observations.
Also, because the bias process B is generally capable of capturing remaining uncertainty, for
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example from noisy output observations, we do not see a practical need for greater detail in
the error model. Ongoing tests with alternative low-cost sensor applications show that more
accurate observations can be obtained compared to the accuracy of the data used in this study.
This underlines the future potential of censored signals, in particular, when combined with low-
power wireless data transfer techniques. For measurement campaigns, we recommend obtaining a
combination of uncensored and censored data. That can be a good trade-off between having only
expensive accurate observations or only less informative censored signals. An optimal experimental
design with binary sensors, however, has to consider their spatial location in the hydrologic network
and the desired threshold levels. This goes beyond the scope of the article and requires further
investigation.

5 Conclusion
We see that monitoring the dynamic response of hydrologic systems is often constrained by in-
adequately available manpower, technology and financial resources. Data from traditional flow
and water level observation devices is hence limited. In the future, Internet-of-Things type com-
munication platforms will also make it possible to operate low-power sensors that can transfer
comparably little and often aggregated or censored data, such as the duration of an overflow or
whether a threshold was exceeded or not. In this study, we suggest a suitable likelihood func-
tion to optimally use such sensor data in model calibration. This likelihood function can handle
both uncensored and censored observations, without having to alter the underlying mathematical
description of errors due to model structure and input. Based on theoretical considerations and
the results from a real case study, where we predicted urban rainfall runoff, we draw our main
conclusions:

• Given current developments in sensing, increasingly more sensors are becoming available,
which often provide only censored observations. We suggest a likelihood function that is able
to reliably learn about model parameter values from censored data.

• As our models and input data are always prone to deficiencies, we recommend choosing a
likelihood function that can capture such deficiencies. One possibility is the usage of additive
autocorrelated error models, which capture remaining uncertainties. Furthermore, using a
Bayesian inference framework will help to avoid identifiability problems.

• Our results from a real-world case study in the city of Lucerne demonstrate that parameter
estimation using censored data is beneficial, because the predictions are significantly better
than the prediction with priors, with a change in NSE from 0.61 to 0.46.We also find that the
posterior parameter distributions are substantially narrower than the priors, thus reducing
the model parametric uncertainty (standard deviation) on average by around 45%.

• We demonstrate that the inference procedure is sensitive to the choice of priors, which is
expected when little or comparably less informative data is used.

• Using a likelihood function makes it possible to construct prediction intervals, which have a
sound probabilistic interpretation. Although the uncertainty bands of the calibrated model
are seemingly wide, they can be much narrower than those of the uncalibrated model. This
is because a relatively short time series of binary signals should not be able to reduce the
uncertainty in the model predictions significantly as only little information about the system
is available. The likelihood takes that into account and keeps the bands wide.

• We find that, for having informative censored observations, a proper experimental design is
crucial. This is because the location of the sensor, in the hydrologic network as well as within
the cross-section (i.e. the resulting level of the threshold), affects the ability of the model to
learn from such data. For model calibration, thresholds are advised to be chosen such that
proportionate ratio of positive and negative signals can be observed.
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To summarize, this research delineates a formal Bayesian framework so that we can utilize censored
information, representing a variety of data types, for model parameter inference. We validate this
concept using a synthetic and a real case study. The results show that the parameter estimation
using censored data works quite well.

Supplementary data
Supplementary data related to this article can be found at
http://dx.doi.org/10.1016/j.watres.2017.05.038.

Acknowledgement: We gratefully acknowledge the help of Tobias Doppler (Eawag, VSA) during
the field monitoring in Lucerne.We thank MeteoSwiss, the Swiss Federal Office of Meteorology and
Climatology and the city of Lucerne for providing us with the precipitation and infrastructure data.
We furthermore would like to thank the Engineering Consultants from HOLINGER AG, Bern for
assisting us with details on the hydraulic model and extracting operation data from the central
operator database. We acknowledge the work of a group of master’s students from ETH Zürich
who supported the initial phase of the case study analysis. We thank H. Badger and Candace
Chow for proofreading. Finally, we extend our thanks to the editor and two anonymous reviewers
whose comments helped to improve the manuscript. Part of this study was supported by the EC
FP7 project QUICS (Quantifying Uncertainty in Integrated Catchment Studies), grant agreement
no. 607000.



Chapter 5

Exploring a copula-based alternative
to additive error models—for
non-negative and autocorrelated
time series in hydrology

Omar Wani1,2, Andreas Scheidegger2, Francesca Cecinati3,Gabriel Espadas1,4, Jörg Rieckermann1

1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
2 Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
3 Department of Architecture and Civil Engineering, University of Bath, Bath, UK
4 (formerly at) Seminar for Statistics, ETH Zürich, Zürich, Switzerland

Journal: Journal of Hydrology

Submission date: 27th August 2018

Author contributions: OW, with contributions from AS, FC, and JR, wrote and structured the
main text. OW, with inputs from AS, GE, FC, and JR, conceptualized the methodology. OW,
AS, FC, and GE ran simulation experiments. JR and AS supervised the research. All authors
reviewed the paper.

81





Chapter 5. Exploring a copula-based alternative to additive error models—for non-negative and
autocorrelated time series in hydrology 83

Abstract
Inaccurate description of uncertainty in the error models can cause biases in parameter estimation.
For example poor accounting of low flow errors can lead to poor prediction for high and medium
flows. When the parameters of the deterministic model and the error model are inferred jointly
from the observations, the posterior converges to regions which reflect the processes in both high
and low flows. If the nature of errors in low and high flows is different to the extent that the same
error description cannot be used for both, biases in inference are introduced. In such cases, the
parameter posterior will adjust to region of the hydrograph with longer proportionate presence in
the calibration time series. In this paper we demonstrate that the autoregressive order 1 (AR1)
description of errors can lead to sub-optimally performing predictive models if the calibration period
has substantial sections of inadequately modelled flows. Inference is performed within the Bayesian
framework. We show this for a synthetic example as well as a case study. We also see that the
predictive uncertainty bands that we get using the AR1 description can be overconfident and also
admit negative values. To mitigate this, we analyze an alternative to additive error models. We use
a distribution with a non-negative support, gamma in this study, reflecting the uncertainty in the
system response at every time step. The gamma distribution is conditioned on the deterministic
model output, which determines its mode and standard deviation. We capture autocorrelation in
time using copulas. Given that copulas can capture dependence between different marginals, we
use different specifications of the marginal distribution for high and low flows. The results show:
1) Biases in parameter estimation can be reduced if a representative error description is attained
using the flexibility of a copula-based likelihood 2) the non-negative support allows to make more
realistic uncertainty intervals for low flows. 3) We see that the autocorrelation parameter in copulas
severely interacts with the model and heteroscedasticity parameters. 4) While the formulation, in
principle, should be of added value for parameter inference, in case of less informative priors, the
flexibility of this description can produce non-robust inference.
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1 Introduction

Due to the complexity of hydrologic processes like rainfall-runoff, deterministic modelling proves to
be inadequate for efficient decision making (Krzysztofowicz, 2001; Verkade and Werner, 2011). Use
of probability theory helps quantify uncertainty in such predictions (Gupta et al., 1998; Honti et
al., 2013; Kuczera et al., 2006; Refsgaard et al., 2007). Specifically within the Bayesian framework,
to further constrain the range of parameters values that seem feasible for a catchment a prioiri,
observations of the system response are used for parameter probability density updating. The
physical understanding of the system, as well as the understanding of errors is put in formulating
the conditional probability density of system response, p(yo|x, ✓), given parameters (✓) and input
forcing (x). This reflects our assumption about the system as the observation generating random
processes. Bayes’ theorem is then used to invert the conditioning and get the probability density
of parameters given some observations of the system i.e. p(✓|x, yo) (Hall et al., 2011; Kavetski,
2018; Kennedy and O’Hagan, 2001).

However, like the assumptions about the deterministic model, our assumptions about the errors
should be representative to an adequate degree so that inference gives meaningful parameter es-
timates. The rainfall-runoff time series usually has these properties: 1) scaling with rainfall, 2)
autocorrelation in time, and 3) heteroscedasticity i.e. changing variance and 4) non-negativity.
While the deterministic rainfall-runoff models provide information about the aggregate tendencies
of the flow, for an unbiased parameter estimation and accurate uncertainty estimation, the hydro-
logic error model should be able to reproduce the other stochastic properties to an adequate degree
(Del Giudice et al., 2016). However, it is not straight forward to reproduce all of these properties
in the formulation of the likelihood function without some further simplifying assumptions, for
example allowing the possibility of negative flow predictions in additive error models (Sun et al.,
2017). Also, the structural deficits in many hydrologic models may come from very systematic
biases which may not lend themselves adequately to one single probabilistic description for the
entire hydrologic time series. Data from different hydrologic regimes, like low and high flows, may
appear to be a result of different data generating random processes that need their own unique
probabilistic model, e.g different autocorrelation (Ammann et al., 2018). Generally the modeler
prioritizes one property over the other depending on the task for which the model is being designed.

To make error descriptions more representative of the rainfall-runoff, several parameterizations
for the likelihood function have been proposed, like for example, to capture heteroscedasticity
(Sorooshian, 1981) , skewness (Schoups and Vrugt, 2010), autocorrelated structural deficits through
time continuous processes (Del Giudice et al., 2013) etc. Beyond using probabilistic description
of errors to perform parameter inference for the model, these descriptions have also been utilized
to just quantify predictive uncertainty, given a hydrologic model with fixed parameters (Weerts et
al., 2011).

Flexibility in the description of errors has been sought for a more representative parameter es-
timation and a more reliable predictive uncertainty estimation, be it within a formal Bayesian
framework or as a post-processor where parametric uncertainties are neglected e.g (Dogulu et al.,
2015; Pianosi and Raso, 2012; Wani et al., 2017). However, especially for inference, it has been
challenging to suggest a probabilistic description of errors that is effective for all different catch-
ments and all different models (McInerney et al., 2017). One of statistical tools to capture more
complex multivariate probability densities in hydrology, be it data or modelling, is copulas (Bár-
dossy and Hörning, 2016; Sadegh et al., 2017; Salvadori and De Michele, 2004). Especially in the
context of uncertainty analysis, copulas have been used to model the residual uncertainty in the
post-processing phase of the model (Klein et al., 2016; Liu et al., 2018). The ability of copulas
to model dependence between random variables, regardless of the nature of their marginal distri-
butions, gives us the choice to construct the description of marginals and dependence separately.
One of the limitations of exploring more representative marginals of errors to construct likelihood
functions is the loss of temporal autocorrelation. Copulas can then be used to model such time
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series dependence e.g (Borgomeo et al., 2015; Salvadori and De Michele, 2004).

In this paper, we describe and analyze a relatively general formulation of likelihood function for
hydrologic models. This formulation employs copulas, which offer much more flexibility, for ex-
ample by allowing the parameterization of errors separately for low and high flow, while having
the possibility to represent autocorrelation and non-negativity. The additive AR1 Gaussian error
model can be seen a special case of this general formulation. Using results from simulation experi-
ments, we move on to show the effects of inadequately modeled low flows on parameter inference.
We do this using a synthetic data and real data. We also show that the flexibility in the proposed
formulation allows the modeler to choose different parameterized marginals for high and low flows
and discuss the benefits and shortcoming of this formulation.

2 Method and material

2.1 Error model
If we expect to observe a hydrologic system response Yo, given input time series x and a model
output ym with parameters ✓, the classical description of additive autoregressive Gaussian error B
gives us (vectors in bold, and random variables in capital letters):

Yo(x, ✓, ) = ym(x, ✓) +BM (x, ) (1)

Where  is the error model parameter vector. The conditional probability density of t number of
observations, given a certain input and given parameters can be then written as:

p(yo|x, ✓, ) =
(2⇡)�

t
2

p
det(

P
(x, ))

exp
⇣
�

1

2
[yo�ym(x, ✓)]T

X
(x, )�1[yo�ym(x, ✓)]

⌘
(2)

Samples from this probability density give us “candidate” time series of observations. We expect
the observation to be like those samples. And the whole range of the samples constitutes the pre-
dictive distribution of the hydrologic system response, for a certain value of inputs and parameters.
Then suitable quantiles from this distribution can be chosen to provide uncertainty bands.

One of the short comings of having additive normal noise in the description of Yo(x, ✓, ) is the
choice it offers for the marginal densities of errors. Only few such analytical descriptions are ca-
pable of capturing dependence in time. Also, as it is additive, one cannot guarantee non-negative
model realizations. On the other hand, using gamma or lognormal distribution as marginal of
the observations makes the incorporation of the autocorrelation structure difficult. Ammann et
al., 2018, address this problem by transforming the real observation space, which does not admit
negative values, to a space in which the distribution is expected to be normally distributed and
then they model the autocorrelation using the standard Gaussian process. In this study, we used
a generalized formulation of an autocorrelated time series, by employing copulas that capture the
rank correlation, and make the usage of gamma and similar non-negative distributions feasible as
marginals.

An m-dimensional copula is a cumulative probability distribution function defined over a unit cube
in some m-dimensional space, such that the marginal density over each dimension is uniform. The
idea is that the deterministic model for rainfall-runoff can provide the mean or mode of the prob-
ability density of observations at each time step and the temporal correlation between consecutive
steps can be captures using suitable copulas. If c(u,v) is the copula density corresponding to the
copula C(u,v), Eq. (3) follows from Sklar’s theorem, which states that for all multivariate distri-
butions, we can find a copula that captures the dependence structure, in the integral transformed
space.

p(yo | ym) = c
⇣
F0(yo,1 | ym,1), ..., Ft(yo,t | ym,t)

⌘ tY

i=1

fi(yo,i | ym,i, ) (3)
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fi() in Eq.(3) is any univariate probability density, and Fi() is its corresponding cumulative prob-
ability distribution. The copula can be simplified if a Markov property is assumed for the time
series. For example with an order one Markov property we can write Eq. (3) as.

p(yo | ym) =
tY

i=2

c
⇣
Fi(yo,i | ym,i), Fi�1(yo,i�1 | ym,i�1)

⌘ tY

i=1

fi(yo,i | ym,i, ) (4)

Eq. (4) is effectively an AR1 process, if the marginal are taken as normally distributed and
a Gaussian copula is used to model the autocorrelation. In this study Frank copula, which is
symmetric for low and high quantiles, is used to capture autocorrelation. Archimedean copulas,
like in this case Frank, have few parameters, and therefore do not increase the dimensionality of
parameter space by much. Frank copula is defines as:

C(u, v) =
1

↵
ln
h
1 +

(e�↵u � 1)(e�↵v � 1)

(e�↵ � 1)

i
(5)

And its density function is defined as:

c(u, v) =
@C(u, v)

@u@v
(6)

c(u, v) = ↵
(1� e�↵)(1� e�↵(u+v))

((1� e�↵)� (1� e�↵u)(1� e�↵v))2
(7)

Figure 1: (a) Copula density of Frank copula with different alpha values. (b) Samples from the
corresponding copula.

To assure non-negative output yo as defined by Eq. (4), we use a gamma distribution as marginals
(fi()), given by Eq. (8), where �() is the gamma function.
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fi(y) = gamma(y|shape, scale)) = 1

scaleshape�(shape)
y(shape�1)e�(

y
scale ) (8)

Figure 2: Univariate gamma distribution with different shape and scale parameter values.

We assume a threshold that separates low flows and high flows called base (as a single valued
parameter). For low flows, we assume that the model has deficits that cause it to have errors such
that it follows exponential distributions. So for this regime of flow we assign a shape factor of
1 and get the scale from the model output. For flows higher than base, the assumption is made
that the deterministic model output is the mode of the observational distribution (Fig. 2). This
differentiates the observation generating process for low and other flows.

In this research, the change in standard deviation (sd) of Yo as a function of the deterministic
model output is incorporated by the explicit equivalent of Box-Cox with � = 0.5 (Eq. (5.9)).

sd ⇡ sd.transform⇥ (ym)1�� (9)

Where sd.transform is the standard deviation of the random variable in the Box-Cox transformed
space. This result can be arrived using the truncated approximation of a Taylor series (McInerney
et al., 2017). Numerical results from repeated sampling also confirm this (Fig. 3). Eq. (10) defines
how the variance should scale in the untransformed scale, if a random variable, E, is normally
distributed with a standard deviation sd.transform in the transformed space.

Y �
o
� 1

�
� y�

m
� 1

�
= E gives var[Yo � ym] = var[(y�

m
+ �E)1/� � ym] (10)

Given this equivalence, we define the standard deviation of Yo as:

sd ⇡ rate.sd⇥ (ym + sd.min)0.5 (11)

Defining the standard deviation dependence explicitly makes the formulation of priors for the error
model more intuitive, compared to the transformed space. Where rate.sd and sd.min are constants
to be inferred (The name ‘rate.sd’ as a name reflects the multiplicative nature of this parameter
and ‘sd.min’ reflects the fact that it will be the minimum standard deviation of the process). Once
the gamma is defined this way, we get:

Yo ⇠
(
gamma

�
y|shape = 1, scale = sd

�
if ym < base

gamma
�
y|shape =

�
ym

scale
+ 1
�
, scale =

�p4sd2+y2
m

2
� ym

��
otherwise

(12)
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The definition of shape parameter and scale parameter for ym � base in Eq. (12) assures that the
mode of the distribution is ym and its standard deviation is sd.

Given the general formulation as described in Eq. (4), we are free to pick and choose different
autocorrelation structures (similar to Eq. (6)), heteroscedasticity structures (similar to Eq. (11))
and marginal structures (similar to Eq. (12)). Each of these three components can be employed
independently of the other, with its own parameterization.

Figure 3: The change in standard deviation of the error in untransformed space, when the error
is assumed to be homoscedastic (with a fixed standard deviation = sd.transform) in the Box-
Cox transformed space. (Eq. 9 and 10) This graphs helps understand the implicit dependence of
standard deviation of the output when using box cox. Using Taylor approximation this dependence
is sd = sd.transform(ym)(1��).

2.2 Bayesian inference

The expressions in Eqs. (2) and (4) turn into a likelihood function when a given set of observations
y0
o

are put into them and the parameter values are varied. These expression is not a probability
density in the parameter space (✓), but only in the observation space (yo), hence referred to
as a function of (✓). (As likelihood function gets defined uniquely once we define the probability
model for Yo, therefore, in this paper ‘copula-based probability model’ and ‘copula-based likelihood
function’ refer to the same mathematical description as defined in section 2.1).Once the likelihood
function is specified, in combination with the prior, we use Bayes’ theorem to get the posterior. An
adaptive Markov Chain Monte Carlo (MCMC) sampling scheme is employed to get the parameter
samples (Vihola, 2012). The samples represent the updated belief in the parameter values, given
the observed data.

p(✓, |y0
o, x) =

p(y0
o|x, ✓, )p(✓, )R

p(y0
o|x, ✓, )p(✓, )d✓d 

(13)

These samples are then run through the probabilistic model to generate the prediction bands.
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2.3 Rainfall-runoff model

For analysis using synthetic data, we use a linear model and with input P and (a,b) as model
parameters.

ym = aP + b (14)

This model gives flexibility and speed to facilitate preliminary analysis and provide proof of con-
cept.

To analyze the ability of this likelihood formulation on real data, we use a simple conceptual model
with deficits which do not take infiltration, evapotranspiration and rainfall variability into account.
A unit hydrograph convolution is used which defines the input-output relationship between dis-
charge and precipitation. Such models have been used before for capturing discharge relationship
of catchments (Betterle et al., 2017). The model assumes an exponentially decaying response to a
unit of instantaneous rainfall. Given this formulation, the response of a time series of rainfall can
be obtained by integrating the response corresponding to each time slice of the rainfall.

ym(t) = A

Z
t

0

P (t� ⌧)ke�k⌧d⌧ (15)

Parameter A represents the effective area of the catchment, and k represents the dependence on
the rainfall at past time steps. The motivation here is to use fast and simple rainfall-runoff models
with overt deficits so that the performance of the error description can be evaluated.

Figure 4: The Rawthey catchment in England.
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2.4 Case study

The study area is the catchment of the River Rawthey, North of England, in the Yorkshire Dale
National Park, an affluent of the River Lune. It covers 219 sq.km, and collects waters from a
terrain that ranges from 675m to 85m of elevation. The catchment is primarily a Natural Park,
with very limited human intervention in terms of agriculture and urban land use. The rainfall data
used in this work is obtained from a rain gauges from the Environment Office. Data was available
from a set of 203 tipping bucket devices with a resolution of 0.2 mm, available at 15 minutes
resolution, then accumulated at hourly resolution for two years, from January 2009 to December
2010. The study area, the rain gauges and the flow gauge are represented in Fig. 4. Rainfall time
series are obtained with block kriging (Chiles and Delfiner, 2014). Block kriging is a technique
that integrates the values obtained through ordinary kriging over an area. Apart from this, we
also use a rainfall multiplier, named b, as a parameter for inference. This is done to alleviate the
systematic errors due to the fact that none of the rain gauges used to generate the rainfall time
series lie within the catchment area.

2.5 Simulation experiments

Parameter estimation for synthetic data:
A) We first show using a didactic example why incorporating autocorrelation and heteroscedasticity
is important for unbiased parameter estimation and predictive uncertainty estimation. We do
this using synthetic data generated from a linear model (Eq. (14)), feeding it with a sinusoidal
rainfall. The error is assumed to be heteroscedastic, following Eq.(11), and autocorrelated (AR1),
with a correlation parameter rho. Inference is done using flat priors. The parameter values for
(a, b, rate.sd,min.sd, rho) used to produce data are (1,5,2.5,2,0.9). Inference is done using P as,
30sin(x)+30, with x from 0 to 100, spaced at 0.1. Verification time series is generated as a second
sample using same probability model specification.

B) Preliminary proof of concept: To facilitate reproducibility, we again do parameter inference
using the new copula-based formulation of likelihood and synthetic data generated through same
linear model. Inference is done using flat priors. Eqs. (11) and (14) is used to generate synthetic
data. We use two precipitation time series

P.high = 30sin(x) + 30, P.low = 10sin(x) + 10 (16)

A sequence of x from 0 to 100, spaced at 0.1, is used to generate P at discreet time steps. We then
combine first 220 points from P.low and the other 780 from P.high to get the precipitation for the
calibration time series. And combine first 420 points from P.low and the other 580 from P.high to
get the precipitation for the validation time series. The parameters (a,b) used for the high flow are
(1,5) and for the low flow (0.1,5). This gives us observation generated by two separate processes.
rate.sd and rho is 0.3 and 0.9 respectively.

Parameter estimation for real case study: For the case study we use two time series of observation
for calibration and validation. As there are substantial sections of the time series that are low flows,
we see the effect of such flows on the inference of the parameters and on the predictive uncertainty.
The inference is done using two priors. Informative priors and wide priors. We use an hourly time
series of discharge and precipitation. We calibrate the model on 2000 data points, from 01.01.2009
00:00 to 25.03.2009 07:00, and then validate the results for 3000 data points, from 08.09.2009 00:00
to 10.01.2010 23:00. Both the calibration and validation time series contain sections of high and
low flows. As the model used is in this study has substantial deficits, we expect the prediction
intervals to be wide. The model has two inference parameters A and k (Eq. (15)). The priors used
for the inference are mentioned are presented in table 1. And the ratio high and low flows in the
calibration and validation time series is presented in Table 2.
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Figure 5: Effect of various assumptions regarding the likelihood on the inference of linear model
parameters when the error generating process is alike for low and high flows. 1) Predictive uncer-
tainty estimated using correlated and heteroscedastic (True) Likelihood 2) Predictive uncertainty
estimated using uncorrelated and homoscedastic (i.i.d) Likelihood. 3) and 4) are the corresponding
posteriors.

3 Results

As it is evident from Fig. 5, when data that is generated from an autocorrelated and heteroscedas-
tic process is used to infer parameters for a linear model, the inference results in underestimation of
parametric (given by the spread in the posterior) and predictive uncertainties (given by the width
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Table 1: Normal truncated distributions were used to define the priors for the parameters in
simulation experiments for the case study. The vector in the table give the values for mean,
standard deviation, lower limit and upper limit of the prior for each parameter in our inference.

For copula-based likelihood function

mn.sd rate.sd Alpha(↵) b k base
(5,2,0,30) (0.4,0.3,0,5) (5,10 ,0,50) (16000,10000, 12000,100000) (1.5,1, 1,5) (0.2,0.5, 0.08,3) (50,3, 40,60)

For AR1 likelihood function

mn.sd rate.sd rho b k base
(5,2,0,30) (0.4,0.3,0,5) (0.9,0.3,0,1) (16000,10000, 12000,100000) (1.5,1, 1,5) (0.2,0.5, 0.08,3)

Table 2: High and low flows in calibration and validation time series.
Calibration Validation
Highest flow No. of observations Number of observations Highest flow No. of observations No. of observations

(m3/s) below 30 m3/s above 150 m3/s (m3/s) below 30 m3/s above 150 m3/s
259 1901 12 279 2607 14

Figure 6: Model deficits in low flows inducing biased parameter inference can be avoided by using
the flexibility of copula based likelihood during inference (synthetic data). 1) Prediction using the
copula based probability model. 2) using AR1 probability model.

of prediction intervals for high flows). Also, in the predictive phase the high and low flows do
not get captured adequately. For example in this case, the prediction intervals using independent,
identically distributed (i.i.d) model are narrower for high flows and wider for lower flows, compared
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to actual distribution of observation in these flow regimes. Also, the posteriors of parameters from
i.i.d are narrower than the posterior from autocorrelated model. This didactic example establishes
the operational need to capture the autocorrelation and heteroscedasticity of a hydrologic time
series.

Apart from heteroscedasticity and autocorrelation in the hydrologic time series, errors in high and
low flows can be generated by different deficits in the model, and therefore it may not be reasonable
to treat them with the same marginal error distribution. Fig. 6 depicts the inference of the linear
model which systematically overestimates low flows. This bias in the model causes severe biases in
inference if we use the AR1 processes. The model parameters tend to underestimate flows during
high rainfall, so that they can fit better the base flows. One way to overcome this problem is
use different nature of marginal distribution, which can capture such a tendency of the modelling
errors. The error description, as suggested in Eq. (12), is more tolerant towards the biases in the
low flows and thus allows the model to fit for high flows Also, we see that the non-negativity of
the flow is avoided.

Similar underestimation of high flows is seen for the real case study. Whereas copulas-based
likelihood description is able to save the inference procedure from the underestimation of high
flows (Fig. 7). We use the maximum posterior density parameters to generate the plots. Given we
anticipate that model does not capture the infiltration process well, and may overestimate runoff
from small rainfall events, we put this understanding in Eq. (12), where low flow predictions are
more likely to overestimate flow. This makes the probability model lenient towards such errors
in low flows, giving the inference procedure the flexibility to search for parameters that take the
prediction closer towards the high flow observations. Many other formulation, different than Eq.
(12), can be used to incorporate more complex error structures.

From the analysis of the real case study, we find that around 62% of observational time steps for the
validation time series have prediction intervals going into negative flows. No such negative flows are
seen using the copula-based likelihood function description. Also, for 95% prediction interval, the
mean width of the copula-based likelihood is higher, and it thus captures more observations within
it. AR1 captures 81.7% and copula-based probability model 92.1% observation in the validation
phase. For the high flow regime (flows higher that 150 m3/s), the relative mean error of model
prediction corresponding to maximum posterior parameter values is 33.2% for AR1 and 14.2% for
copula-based likelihood function.

4 Discussion

The results of the simulation experiments demonstrate that, akin to the accuracy of the determin-
istic hydrologic model, our description of the errors should also be representative of the modelled
process. A departure from this can lead to non-trivial biases in the parameter estimation (Fig. 5
and 6). We also show that the disproportionate presence of low and high flows affects how the
parameter inference would perform (Fig. 6 and 7). Manually choosing only high events from the
past time series to calibrate the model is not always a desirable alternative. We may also be inter-
ested in the prediction of low flows using the same model. Then the error description needs to be
flexible enough to capture both high and low flows adequately. There can be cases where the errors
in the low flows are skewed, with the model having some systematic tendencies to depart from the
observations. It is intuitive that the tendency of the model to overestimate and underestimate
would not be symmetric for flows closer to zero. The errors have to truncate such that the real
flow is always positive. In order to prevent such complex errors undesirably influencing the whole
inference procedure, we can describe these errors with heavy-tail or exponential distributions (Eq.
(12)). The results show that AR1, due to its inflexibility with the autocorrelation is not able to
capture non-negative support and skewed distributions simultaneously. We use copulas to capture
this and see a noticeable improvement in inference. Copulas allow us to capture the temporal
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dependence and we are free to choose the marginals. However, we also found that this flexibility,
while in principle desirable, in practice still does not guarantee unbiased parameters. As we can
see from Fig. 7 (3), the alpha (< alpha) parameter tends to go towards the upper extreme value,
and is only bound by the hard prior. While this is not the case for the synthetic case studies, where
the error structures are known, real case studies have more complex errors and these interactions
between error model parameters and deterministic model parameters become more severe. So this
description of error, as defined in Eq. (4), just makes an unbiased inference potentially achievable,
if we are able to define the adequately representative marginal distributions using this flexibility,
and have informative priors, for example in the case of Fig. 6. More concrete guidelines to choose
such representative marginals still need to be researched. And it is not possible to formulate a
unique description of errors that is representative of all the hydrologic time series.

We find that copula-based likelihood functions prefer a high correlation value,as such parameter
values produce peaky densities at the edges of the unit cube (Fig. 1). These edges correspond
to high and low quantiles. In principle, high copula density values at these edges should be com-
pensated by corresponding low values of marginal densities, hence avoiding parameter biases. As
the likelihood is a product of copula densities and the marginal densities (Eq. (4)), if copula
densities have high value for extreme correlations, the low values of marginal should bring down
the product and we should still have low likelihood values. However, this is not always achieved
- the observations are not always described adequately by the selected probability model, so the
compensation of the marginal is not guaranteed to suffice in avoiding very high parameters values
of copulas. In many cases the posterior can converge to a high autocorrelation, at the expense
of taking the deterministic model away from the observational data. One way to avoid this is by
having informative priors where we know for sure that the autocorrelation of the process cannot be
more than a certain amount and the standard deviation of the error cannot be more than a certain
amount, representing the model understanding and the local hydrology of that particular case
study. Nonetheless, more robust schemes which allow the model to go closer to the observations
even when the priors are uninformative need to be formulated. The desirable formulation an error
model would be such that small inaccuracies in the error models only lead to small inaccuracies in
inference. Priors, however, can be used to exclude unreasonable parameter spaces.

As far as the improved performance of copula-based likelihood function over the AR1 is concerned,
one of the reasons why this is seen in both synthetic and the real case studies of this work is that
the peaky low flows are poorly represented by the chosen hydrologic models. The rainfall produces
a flow signal in the model which is not seen in the real catchment. This effect is a combination of
several sub-effects. First, the rainfall itself is measured by rain gauges that do not lie within the
catchment (Fig. 4). The biases in the precipitation input, with overestimation and underestima-
tion of rainfall induce high relative errors in the low flows. Also, in the absence of an infiltration
mechanism, all the rainfall is converted into surface runoff by the model. These deficits lead to
peaky errors in low flows every once in a while. As these errors will have very low probability to
occur, in case of an AR1 process, they get penalized heavily, distorting the parameter inference.
Hence, it is recommended, before choosing the marginal of this coupla-based probability model,
to ascertain the regions of the hydrograph where high errors can be tolerated and where relatively
better predictive capacity of the model is desired. This way during inference, the likelihood func-
tion will not produce low probability values for parameters that perform poorly only in low flows
but perform adequately well for other sections of the hydrograph.

In case of systematic model deficits, for example Fig. 6, the AR1 likelihood function tends to
either assume that the observations have been produced by a process with high standard deviation
of errors and high autocorrelation, instead of a process that has relatively low autocorrelation.
To mitigate the effect of such interaction between the parameters, we assume that low and the
high flows are generated by different marginal, and demonstrate that such an assumption improves
parameter estimation. Such flexibility allows the error model to ascribe a different variance to the
base flows, as opposed to the high flows, when there is rainfall (Fig. 7).
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Figure 7: Comparing inference using copula based likelihood and AR 1 likelihood. 1) and 2) are
the predictions. And 3) and 4) are the bivariate posteriors for copula based likelihood and AR1
respectively.
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We also find that non-negativity in the predictions is easily achieved using the formulation of
marginals used in this work. Even though there are substantial deficits in the low flows, we know
that the observations cannot be negative. Therefore, the errors are generally from a skewed distri-
bution. The use of shape parameter as 1 in our case reflects that the error tend to be skewed in low
flows, and the model, as in our case, is more likely to overestimate the flow than to underestimate
it.

Regarding the robustness of this error model formulation, even though this description is flexible,
and can be used to formulate more sophisticated error models, with different marginals, and still be
able to capture the autocorrelation, the flexibility is not a guarantee for convergence to meaningful
posteriors. The description of the error model still needs to incorporate the relevant knowledge of
the modeler about the kind of deficits they expect in their models. Also, the method can perform
poorly in cases where the autocorrelation parameter and the heteroscedasticity parameters do not
have proper prior constraints. There is no guarantee that a small approximation in the choice
of copula or marginal will not diverge the inference from parameter spaces that actually reflect
the hydrology of the modeled system. To attain this robustness in inference using copula-based
likelihood function, more research is needed.

5 Conclusions
Biases in parameter and predictive uncertainty estimation arise from poorly modelled errors in
hydrologic time series. We show that the parameter inference can be skewed in many situations if
we always stick to the state-of-the-art AR1 process as the error model. To curtail that we propose
a flexible formulation of the likelihood function that allows for different choices of marginal for the
time series and takes care of the autocorrelation using copulas. From the results and discussion
we conclude:

1. Capturing both non-negativity of the hydrologic system response and the autocorrelation in
time is not straight forward.

2. We can use copulas with non-negative marginals to define a probability model for hydrologic
time series.

3. Given Sklar’s theorem, this description allows for more flexibility in choosing the marginals.
For example, we can have different error structures for low and high flows.

4. If the right marginal densities are chosen, we show that this likelihood formulation provides
better parameter and predictive estimates, where additive error models would otherwise
perform poorly.

5. However, if the copula likelihood function is not fully reflecting the underlying data generating
process, for example, by choosing wrong marginals or wrong heteroscedastic dependence, or
having uninformative priors, we again run into issues of non-robustness during inference.

6. Just like in the case of AR1 probability model, the posterior can converge to unrealistic
parameter spaces.

This research extends the suite of mathematical descriptions available in hydrology to model time
series. Given that such a description is flexible, we foresee that it can be useful for many problems
related to parameter inference and model prediction. The analysis is intended to add to the body
of literature on representative likelihood functions. It brings forth some benefits and challenges of
using a copula-based likelihood function.
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Given the unique trajectory and assimilation of uncertainty analysis in the field of hydrology, there
are community-specific expectations about what should such an analysis cater to. One may call
it a scientific (sub)paradigm that reflects a somewhat aggregate attitude towards and a somewhat
aggregate interpretation of uncertainty analysis within the hydrologic community. Having this in
mind, the motivation of this essay is, first, to provide a didactic axiomatic sketch of probability
theory and its usage for uncertainty quantification, with hydrologic modeling as a working exam-
ple. After the theoretical considerations, a brief overview of the current expectations of uncertainty
analysis in the hydrologic community is presented. This chapter contains speculative and subjec-
tive aspects, which should be read as such.

1 Probability theory and uncertainty quantification
Axioms: Probability theory, devoid of any interpretation, can be seen as just a collection of
axioms, and the resulting theorems, about a mapping between two sets. The mapping goes from
a set F, called the event space, into another set P, which contains elements from the set of real
numbers. The event space in turn is the set of all subsets that can be formed using the elements
of another set called the sample space, denoted by ⌦. The sample space can for example contain
finite categorical elements like letters of the alphabet, countably infinite elements like integers,
or uncountably infinite elements like the real numbers. This gives us three distinct sets (⌦,F,P),
collectively called the probability space. The definitions and axioms in probability theory put
special constraints on these three sets and the mapping F!P. This mapping assigns an element in
P to every element in F. The usual notation of the mapping is P(!), which signifies the element
in set P corresponding to the element ! in F. The three probability axioms, as formulated by
Kolmogorov, can then be stated as:

P (!) � 0 8! 2 F (1)

(called the axiom of non-negativity)

P (⌦) = 1 (2)

(called the axiom of unitarity)

P
�[

i

!i

�
=
X

i

P (!i) !i \ !j = � 8i, j (3)

(called the axiom of �-additivity)

Given these axioms, the total probability mass of 1 gets divided over all the elements of the sample
space. Also, using these axioms, a whole suite of corollaries and theorems can be derived (Terenin
and Draper, 2015). So far nothing has been said that makes probability theory a fitting math-
ematical framework for uncertainty. It is just a collection of deductive statements about some
abstract mathematical object. However, given its deductive nature, once we accept the axioms,
probability calculus is the only consistent way to evaluate changes within this framework (Nearing
et al., 2016).

Adding interpretation to probabilities: Probability theory rendered as a complete mathemat-
ical abstraction is one of the modern developments and was done to formalize it. It is, however,
quite ahistorical, as the earlier developments of probability theory were all motivated by the need
to explain real world problems, e.g. games of chance (Mlodinow Leonard, 2008).
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Figure 1: Schematic for the mapping between the set F and the set P.

Kolmogorov also presented the justification of his axioms when probability is viewed as a limit of
the relative frequency of an event. This lays the groundwork for the frequentist perspective. One
of the Bayesian interpretations of probability, as objective belief, is attributed to Cox. Cox, and
then Jaynes (Cox, 1946; Jaynes, 2003), extend the reasoning of Boolean algebra, where proposi-
tions are either true or false, to cases where there is uncertainty about the truth-value of such
propositions. Given the formulation of Cox and Jaynes, any proposition is still either true or false
but we don’t have complete information which one it is. It has been shown that if the plausibility
of a proposition is defined such that it:

1. Is a scalar

2. Reflects common sense (i.e (a) if the belief in the truth of a proposition increases, its associ-
ated plausibility increases and (b) the plausibility of two propositions, A and B, being true
should be a function of the plausibility that A is true given B is true and the plausibility
that B is true.)

3. Is consistent with Boolean algebra

then Kolmogorov’s axioms (apart from some formal caveats) can be derived from this logical
system. This, called Cox’s Theorem, shows that true-false logic under uncertainty is isomorphic to
probability theory (Terenin and Draper, 2015). Given 2 (b) in Cox’s postulates and the property
of associativity from Boolean algebra, conditional probability, P (A|B) (i.e. probability of A given
B), is defined as

P (A \B) = P (B \A) = P (A|B)P (B) = P (B|A)P (A) 8A,B 2 F (4)

Equation 4 can be rewritten to get the famous Bayes’ theorem:

P (A|B) = P (A \B)/P (B) = P (B|A)P (A)/P (B) (5)

2 Relevance of Bayesian probability in hydrology
In case of hydrology, we may be interested in hypothesis testing, perhaps in the form of two
competing model structures, or parameter inference once a model structure is decided. Given the
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understanding of the model, and given the data, we would like to know where do our parameter
values lie? While sensitivity analysis of parameters has been a part of hydrologic modelling for
decades now, it only gives some quantitative understanding of the robustness of model results,
if the parameter values are tweaked. However, the use of highly parameterized models to make
design and forecast decisions, when one is not sure about the parameter values used, confronted the
modeller with the challenge of uncertainty. The next logical step by the modelling community was
to use the entire range of parameters and produce the entire range of model outputs. Ensemble
outputs are produced this way. This helped capture the non-linear interactions of the model
parameters in the model for forward simulations. Apart from this, once the observations of the
system response increase, we would like this information to be reflected in parameter ranges that
are admitted in Monte Carlo simulations. This updating procedure, as mentioned earlier in the
axiomatic basis of probability theory, can only happen consistently using Bayes’ theorem, given
probability density of parameters represents our beliefs.

Unless we are willing to reformulate the axiomatic structure of the theory or report plausibility
by metrics other than probability, formal Bayesian updating cannot be avoided (Nearing et al.,
2016). Therefore, when there were efforts in hydrologic community to capture the uncertainty
of parameters using informal likelihood functions, formally speaking, such evaluations did not
yield posterior parameter distributions, p(✓|yobserved, xinput), or the final predictive distributions
p(yfuture|yobserved, xinput), where y represents the system response and ✓ the model parameters
(Mantovan and Todini, 2006; Stedinger et al., 2008). However, it has been pointed out that the
probability models used to describe hydrologic modelling errors are often simplistic and many a
times could lead to inadequate description of uncertainty, and, notwithstanding the formality of
Bayesian inference, lead to biased parameter estimation and biased model prediction. While this
is certainly the case, it does not qualify as an argument against Bayesian updating per se. As
an analogy, the deficit in the simplistic differential equations used to model hydrologic time series
does not qualify as an argument against calculus. Both Bayesian updating and calculus are based
on deductive results, given some axioms. Either we replace the axioms with others that may be
more representative of the reality we are trying to model, or we have to accept the theorems that
ensue from the default axiomatic structure.

3 Expectations in hydrologic community from uncertainty
analysis

One of the recurrent expectations from the uncertainty bands is that the observations should lie
within them with a certain frequency. However, by the very definition of Bayesian probability, that
is neither guaranteed nor even expected. What we are after is our updated belief in parameter
values given the data, and our belief in how the system will respond in the future given the data
(the conditional predictive distribution). The only case where that would correspond to bands
that capture observations with a certain frequency is if we have converged to a dirac posterior in
parameter space and the remaining uncertainties are aleatoric i.e random.

Another expectation from an inference scheme is that it should penalize the parameter values
proportionate to the errors they produce in the model output. However, the convergence of the
posterior to a certain (premeditatively) desirable parameter space is contingent on the choice of
the likelihood function. Also, if the data that we throw at the inference problem is not generated
by the process we expect it to be generated from, then we don’t get, for all practical purposes,
any meaningful posteriors. What we even lose is the pragmatic robustness of a least squared error
(LSE) estimate. While the least squares would guarantee to take the model towards the data, no
such guarantees exist if the probability model is complicated and flexible enough that it produces
high probabilities for regions of parameter space that are not even close to the true parameter
values. So the danger is that small approximations in the likelihood functions may not always
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lead to small approximations in meaningful posteriors. Thus, if the likelihood function is chosen
carefully, we have the great benefit of assigning probabilities to parameter space, and not just
accept the best guess value of the parameter vector. However, in cases of a poorly representative
likelihood function even the consolations of having a predictive model, which functions just well,
can be taken away. And then one may ask, what is the point of the added complication anyway,
what Klemeš calls mathematical prestidigitations (Klemeš, 2000). To avoid this (1) we can restrict
unreasonable parameter spaces using priors, (2) not use observations during inference from sections
of time series that may not be representative of the error model or (3) devise likelihood functions
that are robust and only approximately digress from the sought solution, when there are meta
uncertainties.

The critiques against Bayesian updating are therefore implicit critiques against the simplistic prob-
abilistic description of errors. It seems that there is no unique description of hydrologic errors that
can be used off the shelf. While we put the system understanding in formulating the deterministic
model for hydrologic systems, we also have to invoke our understanding to formulate a represen-
tative description of the modeling errors. And just like adequate deterministic models vary from
case study to case study, adequate error models vary too.

Post script: This essay should not be misconstrued as a claim on the superiority of Bayesian tech-
niques in hydrology. Depending on the task of the modeling exercise, Bayesian techniques might
not be needed or may even prove to be inefficient. For example, if a modeler is interested in having
a predictive model, has large amounts of data, and does not plan to extrapolate beyond the past
observations, fitting an artificial neural network may perform very well for the task. Additionally,
if the modeler wants to report the results by assigning probabilities to the model output, then he
or she needs to define a probability model, which is possible using post-processing techniques. It
is only when he/she wants to assign probabilities to elements of his/her model that do not have
a frequentist interpretation, like assigning probabilities to parameters, he/she naturally enters the
domain of Bayesian statistics. Bayesian statistics is necessitated when one wishes to talk about
beliefs as probabilities and update those beliefs as new data comes in. If one wishes not to use
Bayesian statistics, then, as explained in this chapter, epistemic uncertainties need to be reported
with a mathematical framework other than probability theory. If one wants to work with the latter
for these uncertainties, one has to employ the former.
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Reporting hydrologic model outputs along with the associated uncertainties allows for risk-based
decision making, where the whole range of possibilities is considered. Also, this paradigm of hydro-
logic modelling, where model outputs are assigned probabilities, allows for statistical hypothesis
testing. Such a paradigm works with degrees of belief in different hypotheses, updating the belief
once more data becomes available. Akin to the proper formulation of the deterministic elements
of hydrologic models, research is needed on the stochastic elements of these models so that all the
representative properties of these elements get reproduced by the model. Additionally, for any
meaningful application of hydrologic models, the associated uncertainties should not be so large
that no information can be extracted from model outputs. In this thesis several methods were
proposed to both quantify and reduce uncertainties in hydrologic modelling, thus, overall, leading
to improved predictions. The findings of this thesis can be summarized as follows:

1 For uncertainty estimation using kNN resampling
1. For models that have been calibrated in the deterministic paradigm or the parameters have

been manually set, prediction intervals can be generated in the post-processing phase. A
simple, computationally inexpensive method that uses instance-based learning can be used
to provide reliable estimates of residual uncertainty. The method relies on the established
k nearest neighbour search algorithm. It looks for hydrometeorological conditions similar to
the model output in the past and learns from the errors made by the model in those instances.

2. This method does not employ parametric distributions and relies on empirical distributions.
This allows for flexibility in the face of different error structures. The technique is also able
to capture more systematic errors and correct the deterministic model for such deviations.
We show that the method produces reliable prediction intervals, and the heteroscedasticity of
errors is reflected in the intervals. Furthermore, this technique performs well for both single
and multiple output models.

3. The method is sensitive to the choice of search space and the value of k. While we have
shown that the method works well, even when the simplest search space is chosen and the
value of k is calibrated, further research is needed to establish guidelines for optimal selection
of the search space and the value of k.

2 For parameter estimation using censored and binary ob-
servations

1. Substantial research has gone into the formulation of likelihood functions that capture the
error properties of hydrologic models. Nevertheless, these likelihood formulations are only
used when uncensored observational data is available for parameter inference. We extended
the description of a likelihood function so that censored observations can be used to estimate
parameters. We showed its application on a synthetic and a real case study, where a rainfall-
runoff model was calibrated using binary signals, which can be considered as an extreme form
of censoring.

2. The method allows the usage of censored observations which otherwise would have been
discarded. The inference is done in the Bayesian paradigm, so the technique is amenable to
sequential updating. As longer time series of binary data becomes available, the parameter
uncertainty can be further reduced. Given this framework, the observational data from
unconventional sources, like CCTV cameras, binary sensors etc, can be used to update the
parameter values. The method allows to disentangle the contribution of uncertainty from
the parameters and from the model structure. Given this method, accurate measurement
instruments can be supplemented with cheap and robust binary sensors to attain an optimal
combination of observations for efficient model calibration.
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3. We were able to show that the inference improves the model prediction in cases where the
parameter priors produce poor model outputs. The added utility of binary observations in
improving a model which already has an acceptable performance has not been researched yet.
Besides, in cases where the formulation of the probabilistic model that is supposed to generate
the observations is incorrect, the nature of biases that inference can impose on parameters
need to be researched further. For instance, the autocorrelation parameter interacts heavily
with the deterministic model parameters. For exploratory analysis we have constrained the
autocorrelation parameters in the prior, however, in cases where we do not have any prior
understanding of the autocorrelation of the error process, this might lead to biases in the
parameter estimation.

3 For non-negative heteroscedastic autocorrelated process us-
ing copulas

1. The probabilistic description of the error in hydrologic models has generally been additive.
Apart from that, the heteroscedasticity is modelled either by assuming a dependence explic-
itly on input/output or first stabilizing the error variance through transformations. To move
from error generating process towards observation generating process, we investigated the
use of marginal distributions of the observations that do not result in negative flows. The
temporal dependence was captured by using copulas.

2. We demonstrate that the flexibility of this description can be used to capture complex error
structures, leading to better predictions. However, we also find that there is a strong interac-
tion between the marginal distribution and hydrologic model parameters. Results show that
copula parameters have a tendency to go to extreme values during the inference process.

3. The challenge to make the inference of the copula parameters robust still remains open. In
hydrographs with long sections of flows that do not fit the probabilitic description of our
model, and in the absence of informative priors, the likelihood function would try to evaluate
high probabilities based on the fit for that section, in many cases leading to incorrect model
predictions for other more interesting sections of the flow regime. Therefore, robust inference
using the flexibility of a copula-based likelihood function needs further scientific investigation.

Outlook and recommendations for future research
The work presented in this thesis is intended to become an enabling factor for other questions posed
in hydrology, and facilitate the research with better calibrated models and reliable uncertainty
estimates. It is important to have the big picture in sight, and ask what purpose does uncertainty
analysis serve. In the context of scientific inquiry, the interesting questions about hydrologic
systems per se, beyond the modelling exercise itself, need to be posed and answers sought. However,
a proper statistical treatment of uncertainties puts these answers on a firmer ground.

For such a proper treatment, many open questions and challenges remain. The probabilistic models,
that attempt to capture the uncertainty in deterministic models, are themselves approximate. This
introduces meta-uncertainties in model predictions. There need to be further investigations into
the nature of hydrologic modelling errors. The likelihood functions need to be robust in the sense
that if there are small errors in the description of the likelihood function, they should only lead to
small errors in the inferred parameters. Highly biased parameter estimation should be prevented,
like the one resulting from the interactions of deterministic model and error model elements during
inference. Also, while we deal with the censored data of a specific kind in this thesis, more generic
likelihood functions, that can capture other kinds of censored data need to be formulated and
analyzed. As an example, CCTV cameras not only capture the inundation during floods, they
also provide information on whether the water depth is increasing, decreasing or stagnant. Such
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observations should contribute to parameter inference. In the context of data-driven hydrologic
modelling, research is needed to enhance the spatial accuracy of models by utilizing censored data.
Distributed hydrologic models are mostly calibrated on observational data gathered from one of
the downstream outlets of the entire network. As it is not possible to decompose the contributions
to discharge from various subsections of the network, it leads to identifiability problems during
parameter inference. In many cases, the parameters of the distributed models have a physical
interpretation. Inference using only spatially limited data can lead to unrealistic or simply incorrect
values of these physical realities. To avoid the model predicting the right output for the wrong
reasons, i.e with biased parameters, further research is needed to quantify the benefits of sampling
campaigns that collect spatially distributed data. A detailed investigation into understanding
the nature of biases that a single observation source can induce during calibration will have high
scientific value. Besides, the added utility of such spatially-explicit censored data to the calibration
exercise needs to be quantified in the form of some easily interpretable metrics.

As suggested by the overarching theme of this work as well as the specific techniques presented
here, we believe that hydrologic models benefit from the employment of the probabilistic paradigm.
Notwithstanding the diversity of the cases—be they, for example, from catchment-scale hydrology,
operational flood forecasting or urban water management—availability of observational data should
enable us to improve our models. Additionally, we should have a quantitative awareness of the
uncertainties involved. We hope that this work is a step forward in this direction.
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Abstract
Merging radar and rain gauge rainfall data is a technique used to improve the quality of spatial
rainfall estimates and in particular the use of Kriging with External Drift (KED) is a very effective
radar-rain gauge rainfall merging technique. However, kriging interpolations assume Gaussianity
of the process. Rainfall has a strongly skewed, positive, probability distribution, characterized
by a discontinuity due to intermittency. In KED rainfall residuals are used, implicitly calculated
as the difference between rain gauge data and a linear function of the radar estimates. Rainfall
residuals are non-Gaussian as well. The aim of this work is to evaluate the impact of applying
KED to non-Gaussian rainfall residuals, and to assess the best techniques to improve Gaussianity.
We compare Box-Cox transformations with � parameters equal to 0.5, 0.25, and 0.1, Box-Cox with
time-variant optimization of �, normal score transformation, and a singularity analysis technique.
The results suggest that Box-Cox with �=0.1 and the singularity analysis are not suitable for KED.
Normal score transformation and Box-Cox with optimized �, or �=0.25 produce satisfactory results
in terms of Gaussianity of the residuals, probability distribution of the merged rainfall products,
and rainfall estimate quality, when validated through cross-validation. However, it is observed
that Box-Cox transformations are strongly dependent on the temporal and spatial variability of
rainfall and on the units used for the rainfall intensity. Overall, applying transformations results
in a quantitative improvement of the rainfall estimates only if the correct transformations for the
specific dataset are used.





Appendix A. Comparing approaches to deal with non-gaussianity of rainfall data in
kriging-based radar-gauge rainfall merging 115

1 Introduction

Accurate spatially distributed estimates of precipitation are desirable in many water-related fields,
like hydrology, water quality monitoring and water resources management. Merging weather radar
rainfall estimates and rain gauge data has proved to be a successful solution compared to the
use of a single source of information [Wilson, 1970; Haberlandt, 2007; Schuurmans et al., 2007;
Goudenhoofdt & Delobbe, 2009; Jewell & Gaussiat, 2015]. Several techniques have been developed
for merging radar and rain gauge data, many of which are based on kriging interpolation methods
[Goudenhoofdt & Delobbe, 2009; Li and Heap, 2011; McKee and Binns, 2015]. In many com-
parative studies, kriging with external drift (KED - also known as universal kriging, or regression
kriging) is reported to be one of the best performing merging methods [Goudenhoofdt & Delobbe,
2009; Velasco-Forero et al., 2009; Li and Heap, 2011; Jewell & Gaussiat, 2015; Nanding et al.,
2015; Boudevillain et al., 2016]. Other methods that perform comparably well, usually require
considerably more computational effort, making use of large covariance matrices or Monte Carlo
methods [e.g. Todini, 2001; or Scheidegger & Rieckermann, 2014] and this high computational
cost is an obstacle for their operational usage, especially for large areas, or for long time series. In
spite of the good performance of KED, the method has some limitations that may introduce errors
in the rainfall estimates. One of the limiting factors of many kriging-based merging techniques
is their applicability only to Gaussian variables [Diggle and Ribeiro Jr, 2007; MÃ¼ller, 2007]. In
particular KED requires the residuals between the rainfall process and its mean (or drift, modelled
as a linear function of the radar estimate) to be Gaussian. Although in many rainfall data merg-
ing applications the Gaussian approximation is adopted [e.g. Schiemann et al., 2011; Delrieu et
al., 2014; Verdin et al., 2015], rainfall intensity and accumulation have a strongly non-Gaussian,
skewed, probability distribution, with only positive values and a discontinuous peak for the value
zero. The residuals are not known a priori, but can be approximated by the difference between
rain gauge values (assumed as the true rainfall at point locations) and a linear function of the
radar values at rain gauge locations, derived from a linear regression [Delrieu et al., 2014]. Since
the difference between two Gaussian variables results in a Gaussian variable, often Gaussianity
of residuals is achieved applying Gaussian transformations on rain gauge and radar rainfall data.
This leads to the use of transGaussian kriging methods, i.e. to the application of kriging to vari-
ables transformed with analytical or numerical Gaussian transformations [Cressie, 1993]. Various
transformations can be applied to rainfall, like square root [Sideris et al., 2014], fourth root [Van
De Beek et al., 2011], Box-Cox with variable � parameter [Erdin et al., 2012], logarithmic [Sinclair
and Pegram, 2005], or normal score transformation [de Wit et al., 2008; Germann et al., 2009;
Villarini et al., 2014]. Beyond transGaussian kriging, some other approaches can be used to ad-
dress non-Gaussianity of rainfall data. A possible approach is to separate the wet areas from the
dry ones at each time step and do the merging only in the wet ones, in order to eliminate the
discontinuity in the probability distribution corresponding to the zero values [Barancourt et al.,
1992; Braud et al., 1994; Schleiss et al., 2014]. The extension of this approach is to separate differ-
ent rain intensity intervals and krige them separately. Indicator kriging transforms the continuous
variable in a categorical one, allowing to krige separately the values in different intervals, thus
approximately reproducing the original cumulative density function [Remy et al., 2012]. It has
been applied to KED, but an improvement is not always observed [Haberlandt, 2007; Berndt et
al., 2014]. Disjunctive kriging uses a non-linear formulation, based on Hermite polynomials, to in-
clude a non-linear bijective relationship between the actual variable and a normal one [Yates et al.,
1986a, 1986b, 1986c]. It has been applied to co-kriging merging, with good results, but the method
is complex, computationally intensive, and its application to KED is not straight-forward, given
the different ways that radar and rain gauges are integrated in KED [Azimi-Zonooz et al., 1989].
The local singularity analysis (SA) proposed by Wang et al., [2015], separates the non-Gaussian
features in the spatial field (local singularities), and performs kriging only on the non-singular part,
approximately Gaussian, recovering the singularities on the merged result. It has been applied to
the Kalman filter - Bayesian merging technique proposed by Todini, [2001], but it has not been
applied to Kriging with External Drift so far. The methodology is used to deal with the smoothing
in rainfall fields due to the application of Gaussian merging methods.
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Although many methods of different complexity are available, not much work has been done on
the comparison between them and on the uncertainty reduction deriving from their application.
Kirstetter et al., [2010], showed that the probability distribution of rainfall residuals conditioned
on the rainfall intensity is not as far from Gaussian as the probability distribution of rainfall, sug-
gesting that a transformation of rainfall may be not necessary at all for KED application. Erdin
et al., [2012] studied the effects of using Box-Cox transformations in KED merging, comparing
the use of different � parameters. The work acknowledges that the rainfall is best transformed
to a normal variable using a transformation close to logarithmic (� ! 0), but, at the same time,
an almost logarithmic transformation introduces biases in the back transformation, therefore the
study recommends a parameter close to �=0.2, and proposes a Bayesian approach to infer the
best parameter at each time step. It must also be noticed that the logarithmic transformation
cannot be applied to rainfall data, because of the impossibility of transforming the zero values,
therefore low values of � need to be tested instead. Although Erdin et al.’s findings are particu-
larly significant to the aim of this work and are compared to the outcome of it, the study does not
compare Box-Cox transformations with numerical transformations or alternative methods. The
Normal Score Transformation (NST), also known as Normal Quantile Transformation (NQT), is a
technique widely used in hydrology [Montanari, A., & Brath, 2004; Weerts et al., 2011; Bogner et
al., 2012; Villarini et al., 2014]. It is based on the idea of finding an empirical transformation to
convert the quantiles of the available dataset probability distribution, to the quantiles of a standard
normal distribution. Its application to rainfall presents some difficulties that need to be addressed.
The application of NST should be done on variables with a strictly increasing, and continuous
distribution [Kelly and Krzysztofowicz, 1994; Herr and Krzysztofowicz, 2005]. When this is not
the case, like in the case of rainfall, numerical approximations need to be introduced. For example,
the discontinuity of the rainfall probability distribution in zero is addressed by Lien et al., [2013],
or the back-transformation of values outside the observed domain is addressed by Bogner et al.,
[2012]. Similar solutions are addressed and discussed in the methodological part of this paper.
The objectives of this work are:

1. To compare different rainfall products generated using different approaches to address the
rainfall non-Gaussianity problem:

1.1. Radar without merging,
1.2. Ordinary Kriging,
1.3. KED without transformations,
1.4. KED with Box-Cox with �=0.1 (almost logarithmic),
1.5. KED with Box-Cox with �=0.25 (fourth root),
1.6. KED with Box-Cox with �=0.5 (square root,
1.7. KED with Box-Cox with time-variant optimization of �,
1.8. KED with Normal Score Transformation,
1.9. KED with an adaptation of the Singularity Analysis technique approximation problem

in radar-gauge rainfall merging.

2. To understand the advantages and the issues in addressing the Gaussian approximation
problem in radar-gauge rainfall merging.

This work provides a comprehensive comparison of the most popular methodologies to address the
Gaussian approximation in radar-gauge rainfall merging and the results are of practical use for the
scientific community and operational agencies. The work confirms and expands the limited litera-
ture existing in this field. A broader comparison, both in terms of methodology and investigation
techniques, is implemented. The results reinforce the validity of previous findings, also thanks to
the application to a different case study and to different datasets, and show more insight into the
applicability of the different methodologies. Additionally, some important considerations on the
variability of the optimal transformation with time and space variant rainfall intensity and used
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units are included.

The document is organized as follow: the case study and the used datasets are presented in Sec-
tion 2; Section 3 presents all the tested methods to correct for Gaussianity; Section 4 introduces
the techniques used for the evaluation of the results; the results obtained by the application of
the methods to the case study and the quantitative and qualitative evaluations are presented in
Section 5 and discussed in Section 6; the conclusions are drawn in Section 7.

2 Datasets and case study
The proposed case study is based on 9 months of data, from January 2016 to September 2016, in
the UK. The data represents different weather conditions: In January, February and the beginning
of March the rainfall events were mainly stratiform; in June, July and August, strongly convective
events occur; in April, May and September rainfall is characterized by a mix of frontal rainfall and
convective precipitation. The analysis is conducted only on “wet hours” defined as those hours in
which both the rain gauges and the radar recorded rainfall in the studied area, the mean of all the
radar pixels is greater than 0.001 mm/h and at least the 1% of pixels record rainfall. The thresholds
are empirical, based on the specific case study and resulted in 3968 hours of data available for the
study.

Figure 1: Study area. The figure shows the position of the rain gauges, the radars, and the
considered study area extent.

The considered area is a large portion of Northern England, 200 km by 200 km wide. The area
covers flat and hilly orography, as well as more urban environment in the South and more nat-
ural in the North. The area contains 212 tipping bucket rain gauges from the Environment
Agency, with a tipping resolution of 0.2 mm. The dataset is freely available upon request(
national.requests@environment-agency.gov.uk) under the Open Government Licence. The dataset
was accumulated to hourly time steps. The dataset was quality checked, to eliminate the stations
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that reported an excessive number of missing values, and to eliminate those presenting suspicious
behaviors (signs of blocking, strong and consistent disagreement with neighboring stations and
the radar, or unrealistic prolonged dry spells). This operation was performed manually and expert
judgment was used to recognise errors. The Environment Agency rain gauge network is represented
in Figure 1. The radar rainfall data mosaic is provided by the UK Met Office at 5 minutes resolu-
tion on a 1 km by 1 km grid [Met Office, 2003]. The study area is covered by three C-band weather
radars: Hameldon Hill, High Moorsley, and Ingham. The radar rainfall product is provided by the
UK Met Office through the BADC (British Atmospheric Data Centre) portal already corrected
for beam blocking, clutter, attenuation, anomalous propagation, vertical reflectivity profile, bright
band, and orographic enhancement; it is also bias-corrected with rain gauge measurements [Har-
rison et al., 2000, 2009]. The rain gauge network used by the UK Met Office for bias correction is
different and independent from the one used in this work, managed by the Environment Agency. In
2016, the Hameldon Hill and the Ingham radars were already converted to polarimetric, while the
High Moorsley radar still used single-polarisation. The data, as provided by the UK Met Office, is
at 5-minute resolution and presents some gaps over time. Any missing 5-minute resolution radar
scans were interpolated by advecting the rainfall radar field with a nowcasting model (maximum of
3h), and the 5-minute radar data are accumulated at hourly time steps. However, the nowcasting
interpolations represent less than the 0.8% of the data. A residual 0.6% of radar data remains not
available.

3 Methods
Starting from the same dataset, different rainfall products are obtained by applying different
techniques to correct the rainfall non-Gaussianity. The transformed rain gauge and radar data are
then merged and back transformed. The original radar data and an ordinary kriging interpolation
of rain gauges without the use of radar data are added to the comparison as references. The
methods and the products are then compared under different aspects, presented in Section 4. The
compared products are:

Figure 2: Example of the method used to transform with NS the nonunique values, in this case
applied to the zero value. All the values equal to zero in the data set are transformed to NST (0),
which is the median of the corresponding values in the Gaussian space.

1. Radar only —RD

2. Ordinary Kriging (using only rain gauges) —OK
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3. KED with no transformation applied —NO

4. KED applying Box-Cox transformation with �=0.1 (almost logarithmic) —BC 0.1

5. KED applying Box-Cox transformation with �=0.25 (fourth root) —BC 0.25

6. KED applying Box-Cox transformation with �=0.5 (square root) —BC 0.5

7. KED applying Box-Cox transformation with time-variant optimization of � —BC opt

8. KED with Normal Scores Transformation —NS

9. KED with Normal Scores Transformation —NS

10. KED with adapted Singularity Analysis —SA

The proposed methods aim at transforming the rainfall data sets to be merged and back transform
the results of the KED merging. The KED merging algorithm is therefore not affected and is
the same for all the products. We use the formulation included in the gstat R package, based on
Cressie (1993).

3.1 Ordinary kriging (OK)

Ordinary Kriging (OK) is one of the most popular interpolation methods and can be summarized
as a weighted average interpolation, where the weights are a function of the distance between
the rain gauge observations and the estimated point, and of the correlation characteristics of the
modelled phenomenon as observed from the available data. OK does not use radar information for
the interpolation. In this work, a global average is used, i.e., all the rain gauge observations are
used to estimate each point on a 1 km by 1 km grid. The rainfall is estimated in a generic point
x0 as follow:

R̂OK(x0) =
nX

↵=1

w↵·R(x↵), (1)

where R̂OK(x0) is the estimated rainfall in a generic point x0, R(x↵) are the measured values
in the rain gauge locations x↵, n is the number of observations, and w↵ are the kriging weights,
estimated minimizing the variance under unbiased conditions, which results in solving the kriging
system (Cressie, 1993):

(P
n

↵=1
w↵ = 1

P
n

↵=1
w↵ · C(x� � x↵) + µ1 = C(x� � x0) � = 1, ..., n

(2)

Where C(d) is the covariance function at distance d, x↵ and x� are generic rain gauge locations,
and µ1 is a Lagrange parameter (Cressie, 1993). In this paper, the covariance function is estimated
at each time step as illustrated in section 3.7. When the kriging system is solved, the optimized
kriging variance for each point x0 is equal to:

�2(x0) = c� µ1 �
nX

↵=1

w↵ · C(x↵ � x0), (3)

where c is the sill parameter, explained in section 3.3.
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3.2 Kriging with external drift (KED)
Universal kriging, as opposed to ordinary kriging, considers the mean of the studied field R(x)
nonstationary in space:

R(x) = m(x) + �(x), (4)

where m(x) is the mean and �(x) is a zero-mean stationary random process (Cressie, 1993). Kriging
with External Drift (KED) is a special case of universal kriging, in which the mean is considered a
linear function of external factors. In the presented case, the mean of the rain gauge interpolation
is considered a linear function of the radar rainfall estimate:

m(x) = a+ b · r(x), (5)

where r(x) is the radar rainfall estimate at location x, whereas a and b are linear coefficients to be
determined.
KED equations are very similar to the ones for OK. The rainfall estimation at location x0,
R̂KED(x0), is derived from equation (3) but the weights are calculated as follows:

8
><

>:

P
n

↵=1
w↵ = 1

P
n

↵=1
w↵ · C(x� � x↵) + µ1 + µ2 · r(x�) = C(x� � x0) � = 1, ..., n

P
n

↵=1
w↵ · r(x↵) = r(x0),

(6)

where r(x) is the radar observation in a point x and µ2 is a second Lagrange parameter. Similarly,
the kriging variance equation for each point x0 is modified as follows:

�2(x0) = c� µ1 � µ2 · r0 �
nX

↵=1

w↵ · C(x↵ � x0). (7)

3.3 Variogram and covariance functions
The correlation characteristics of the modelled processes are estimated at each time step after the
data set transformation. However, KED requires the variogram to be estimated on the rainfall
residuals, which are not known a priori, therefore a four-passage process is followed to estimate
the residual variogram.

1. The rainfall variogram is estimated at each time step using a subset of the wet radar pixels.
Radar estimates are used instead of rain gauges, to have a sufficient number of observations
at each time step. In particular, if less than 1,000 wet pixels are available, all of them are
used (however, at least 400 pixels - 1% of the total - need to be wet to consider the time step
“wet”), otherwise the subset is limited to 1,000 pixels randomly selected, to limit the required
computational time. The empirical variogram is calculatedusing 1 km bins, and then fitted
with an exponential function:

�(d) =

(
0, for d = 0
c0 + c

⇣
1� exp

⇣
� 3d

2

h2

⌘⌘
, for d > 0.

(8)

where h is the range parameter, c0 is the nugget, and c is the sill.

2. OK is performed on the rain gauges as illustrated in section 3.1, obtaining the field R̂OK(x).

3. The residuals are estimated as the difference between the OK field and a linear function of
the radar estimate:

y(x) = R̂OK(x)� (a · r(x) + b), (9)

where a and b are estimated fitting a linear model between the OK field R̂OK(x) and the
radar field r(x).
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4. An empirical variogram is calculated as in point 1, using the residual field y(x instead of the
radar field.

The covariance function C(d) is directly derived from the variogram function �(d), thanks to the
assumption of stationary random function:

C(d) = c+ c0 � �(d). (10)

3.4 Box-Cox with fixed �

The Box-Cox transformation is one of the most well-known analytical transformations used to im-
prove the Gaussianity of a given data set. The transformation is dependent on only one parameter
�:

y⇤ =

(
y
��1

�
� 6= 0

log(y) � = 0
, (11)

Figure 3: The evaluation of the studied methods is done in three stages, at three different phases
of the radar-gauge rainfall merging process.

where y is a nontransformed variable of interest and y⇤ is the variable after transformation.
In this work, three fixed � parameters are tested. �=0.1 is used to test an almost-logarithmic
transformation, since the logarithmic one with �=0 cannot be applied to the rainfall data set,
because of the presence of zero values. �=0.25 corresponds to a fourth root of the variable,
i.e., to a square root - square root transformation. Finally, �=0.5 corresponds to a square root
transformation of the variable. The same transformation is applied to both the radar and the rain
gauge data set before merging. KED provides us with mean and variance of the merged field, in
the transformed domain. For the square root and for the fourth root transformations, there is an
analytical formula to obtain the mean and the variance in the untransformed space. Nevertheless,
for consistency with all the other methods that do not have an analytical back-transformation, the
back-transformation is accomplished applying the inverse of the analytical transformation function
to 99 quantiles and calculating the mean of the back-transformed quantiles. This is done for each
pixel at each time step, based on the kriging mean and variance.

3.5 Box-Cox with time-variant optimal �
The Box-Cox transformations with a fixed � parameter assume that the probability distribution
of rainfall is stationary in space and time. While we have no means to estimate separately the
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probability distribution of the different points in space, it is possible to assess at each time step
what is the best transformation to apply. Erdin et al. (2012), propose a method to estimate the
optimal � parameter at each time step using Bayesian inference.

The assumption that in the transformed space rain gauge measurements should be equal to a linear
function of the radar measurements (drift) plus an additive normal noise that is independent and
identically distributed is used to construct a likelihood function. This likelihood function is used
to arrive at the posterior distribution of �; and the value at the maximum posterior probability
density is chosen.

In our analysis, we prefer to use a different objective function for two reasons. First, maximizing
the posterior density does not ensure to maximize the Gaussianity of the sample. Second, posterior
probability tends to be highly sensitive to the choice of our prior distribution, given the limited
number of spatial observations at each time step.

We use an approximation of negentropy as objective function. Negentropy tests are based on the
information theory principle that, given a certain variance, entropy is maximum for the Gaussian
distribution (Cover & Thomas, 1991). Negentropy, defined as differential entropy, is zero for Gaus-
sian variables, and larger than zero otherwise, but it requires knowledge of the variable probability
distribution to be calculated. Approximations of negentropy are therefore used instead. Here, we
use an approximation based on the use of nonquadratic functions (Hyvärinen & Oja, 2000):

J(y) / Ja(y) = (E{G(y)}� E{G(z)})2, (12)

G(u) = � exp

✓
�u2

2

◆
. (13)

Where E{�} represents the expected value operation, J(y) is the negentropy of the normalized
residual variable y; Ja(y) is its approximation, z is a normal variable, and G is a nonquadratic
function, in this case exponential. The approximation of negentropy Ja(y) ranges between zero
and +1, and for Gaussian distributions it is equal to zero. Therefore, we select the � that, applied
to rain gauge and radar data, minimizes the approximation of negentropy of the residuals. As in
Erdin et al. (2012), the tested � values are limited to the interval [0.2, 1.5]. To avoid skewing
the residual distribution using an ordinary kriging interpolation of the rain gauges, the residuals
are calculated only at rain gauge locations. However, to ensure that at each time step a sufficient
number of points is available to optimize �; a time window centered in the time step of interest is
used, so that at least 500 points are available. The time window for this case study is never larger
than 11 h.

3.6 Normal score transformation
Normal score transformation (NST) is an empirical transformation method, that associates each
quantile of a given probability distribution to the corresponding quantiles of a standard normal
probability distribution, thanks to multiplicative factors (scores, Bogner et al., 2012). The method
is simple and very effective, but requires the data set to transform to have a continuous strictly
increasing cumulative distribution. Rainfall data sets do not respect these conditions and therefore
the method has to be modified, and some approximations need to be done.
In particular, two problems are here addressed:

1. The data sets contain a large number of zeros, meaning that the cumulative distribution
has an initial jump for the value zero. Additionally, the same problem appears for values
multiples of 0.2 mm because the rain gauges have a tipping bucket resolution of 0.2 mm;
therefore, the data set is not strictly continuous. This results in the fact that equal values
in the nontransformed domain are associated to multiple different values in the transformed
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domain. The method used to solve the problem is similar to the one proposed by Lien et al.
(2013): to all the equal values in the nontransformed domain is associated the median of all
the different values that would have been obtained in the transformed domain applying NST
without correction. Figure 2 illustrates the problem and the adopted solution for the zero
value as an example.

2. The KED interpolation may generate values outside the observation domain. For those
values, an extrapolation method is necessary. In the presented case, a different approach
is used for the values falling outside the domain on the negative side, and the ones falling
outside the domain on the positive side. For the former issue, all the values below the zero
threshold are converted to zero. For the latter issue, the values are extrapolated with a
simple linear regression using the last two observed values.

Considering both solutions, the normal score transformation is applied as follow:

1. At each time step, both the radar and the rain gauge data sets are considered, and all the
values are sorted in increasing order.

2. The corresponding number of quantiles from a standard normal distribution are calculated.

3. A lookup table is created matching the quantiles from the original distribution to the corre-
sponding quantiles of the standard normal distribution.

4. Both the radar and the rain gauge data sets are transformed using the lookup table.

5. The maximum normal quantile corresponding to zero NS0,max is recorded, before applying
the correction method for repeated values presented above. All the values in the trans-
formed domain corresponding to equal values in the original domain are substituted with
their median.

At this point the KED merging can be performed, resulting in a probabilistic estimation of rainfall
on a grid in the transformed domain, described by a mean value and a variance for each pixel. The
back transformation is calculated as follow:

1. For each pixel, given the mean and the variance obtained from the KED merging, 99 quantiles
are calculated.

2. For each quantile, if it is lower than the zero threshold NS0,max, it is back-transformed to
zero, otherwise, the two values above and below are found in the lookup table. If the value
is larger than all the scores in the lookup table, the two maximum values in the lookup table
are used. The two values are used to linearly interpolate/extrapolate the back-transformed
value for that quantile.

3. The mean of the back-transformed quantiles is calculated and assigned to the pixel.

3.7 Singularity analysis
The singularity analysis method, introduced by Cheng et al. (1994) to identify geochemical anoma-
lies, was adapted to identify and separate singularities in rainfall by Wang et al. (2015). According
to Wang et al. (2015 the term singularity refers to “an anomalous amount of energy release or
mass accumulation [· · · ] often associated with structures depicting fractality or multifractality.” It
must be noted that the aim of the method is not strictly to obtain a Gaussian field, but to separate
singularities, which are characteristic of non-Gaussian structures and carry information relative to
moments beyond the second. However, removing singularities in the merging phase has also the
effect of obtaining a field closer to Gaussian; recovering the singularities in the merged products
should help reconstruct a field with a probability distribution similar to the one of the original
data.
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Rainfall singularities are characterized by the fact that the areal averaged rainfall centered in x
follows a power function of the area (Wang et al., 2015):

⇢(x, ✏) = cSA(x)✏
↵SA(x)�ESA , (14)

where ✏ = I/L, i.e., the side of the square under consideration I divided by the side of the maximum
considered square L; ⇢(x, ✏) is the average rainfall intensity in a square centered in x with side I,
cSA(x) is a constant intensity value, ↵SA(x) is the singularity index, and ESA is the Euclidean
dimension. The squares considered for each pixel are selected to have I=1, 3, 5, 7, 9 km.
cSA(x) and (↵SA(x) � ESA) can be calculated as the intercept and the slope of a line fitting
log(⇢(x, ✏)) as function of log(✏). Then, cSA(x) can be considered the nonsingular rainfall value.
In reality, to reach stability, the process needs to be iterated

ck�1

SA
(x) = ck

SA
(x)✏↵

k
SA(x)�ESA , (15)

where c�1

SA
(x) is the original value and k=0, 1, ...n. A number of iteration equal to 5 (k=4) is

selected, as it should be sufficient to remove the singularities (Wang et al., 2015).
Wang et al. (2015) applied the singularity analysis to the Kalman filter, Bayesian radar-gauge
merging technique (Todini, 2001). The Bayesian merging technique does not require to remove the
singularities from rain gauge data, because a block kriged rain gauge field is used to be merged with
the nonsingular radar field, which already produces a smoother and more Gaussian field. In kriging
with external drift, instead, the rain gauge point measurements are used directly, without previous
interpolation. The main limiting factor for the application of the singularity analysis method to
KED is that the singularity removal cannot be applied to rain gauge data, because they lack the
areal characteristics necessary to apply the method. The singularity identification and removal is
therefore only applied to radar. An attempt to modify rain gauge values using the same factor of
the radar pixel containing the rain gauge was made, but the results were not satisfactory, due to
the very large representativeness difference between the point measurement and the 1 km by 1 km
radar pixel value, especially for the convective events that generate the most intense singularities.
The removed singularities are reintroduced by multiplying the nonsingular KED rainfall estimation
R̂KED,SA(x) by the ratio between the calculated nonsingular radar field rSA(x), and the original
radar field r(x):

R̂KED = R̂KED,SA(x) ·
rSA(x)

r(x)
. (16)

4 Evaluation techniques
The studied methods are evaluated under three points of view, as reported in Figure 3. The first
evaluation stage is based on the ability to transform the rainfall residuals in Gaussian variables.
The second evaluation stage is based on the ability to reproduce the original probability distribution
after back-transformation of the merged products. The true probability distribution of rainfall is
not known, but it is assumed that the radar Probability Density Function (PDF) is proportional
to it, and therefore this test is done comparing the radar data and the back-transformed KED
product with QQ-plots. Finally, the most important evaluation stage assesses the quality of the
final product. The KED rainfall estimates are validated with “leave one out” cross-validation.
Figure 3 illustrates when each evaluation technique is used in the merging process, as well as what
questions it aims at answering.

4.1 Gaussianity of the residuals
Although transformations are applied to radar and rain gauge rainfall, KED requires rainfall resid-
uals to be Gaussian. A Gaussianity test is applied at each time step to the residuals, as calculated
in section 3.5. There are several methods used in literature to assess the Gaussianity of a data set.
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Two of the most used indicators are kurtosis and skewness, which give a measure of the “tailed-
ness” and asymmetry of a distribution, respectively. Both are informative measures, but are not
univocally indicators of Gaussianity (Joanes & Gill, 1998), since they measure the fourth and the
third moment, respectively. A third method, the approximation of negentropy, is based on the
notion that entropy is maximum for a Gaussian variable, for a given variance. The presentation
of the three indicators together gives a more complete overview of the data set Gaussianity. The
indicators are calculated at each time step, using a time window as illustrated in section 3.5. The
values are then averaged over each month.

Kurtosis

Kurtosis is a measurement of the fourth standardized moment, and has been proposed in different
forms. In this work we adopted the formulation used in many statistical software packages, like
SAS, SPSS, and EXCEL (Joanes & Gill, 1998):
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where yi are the available residual values, ȳ is their mean, and n is the number of samples. Kurtosis
G2(y) ranges between �1 and +1, and for Gaussian distributions it is equal to zero.

Skewness

Skewness is a measure of asymmetry of the distribution and is defined as the third standardized
moment. The formulation adopted here is the one adopted in statistical packages, similarly to the
kurtosis one, (Joanes & Gill, 1998):
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Skewness G1(y) ranges between �1 and +1, and for Gaussian distributions it is equal to zero.

Approximation of negentropy

The approximation of negentropy is a fast and robust method to estimate the Gaussianity of a
variable. The formulation in section 3.5 is used to evaluate the Gaussianity of the residuals as well.

4.2 Coefficient of determination R2 of QQ-plots
The second mean of evaluation of the studied methods is the comparison between the original rain-
fall probability distribution, and the probability distribution of the merged rainfall products after
backtransformation. Since the probability distribution of the true rainfall is not known, the prob-
ability distribution of the original radar data set is compared to the probability distribution of the
KED back-transformed rainfall estimates. Although rain gauges are assumed to be representative
of the true rainfall, we decided to use the radar data for two reasons:

1. Radar rainfall is a continuous measurement, while rain gauge data is discretized due to the
bucket resolution equal to 0.2 mm.

2. Rain gauge data points are available at given locations only, and they may miss the extremes
of the distribution.

The 99 quantiles of the radar PDF are plotted against 99 quantiles of the KED products. Since
bias may be present in the radar data and may have been adjusted through the merging process,
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we do not expect the data to lay on a x = y line, but rather on a generic straight line. For this
reason, a linear model is fit to the QQ-plots and a coefficient of determination R2 is calculated
using the fitted line. R2 ranges from 0 to 1, with 1 indicating perfect correlation. If the R2 is close
to 1, regardless of the slope and intercept of the fitted line, the method is assumed to reproduce
the probability distribution of the original rainfall data.

4.3 Rain gauge validation

The ability of a method to produce Gaussian residuals and to back transform the final merged
rainfall products to the original probability distribution are important for the kriging application,
given the Gaussianity assumption underlying the method. Nevertheless, the primary purpose of
the Gaussianity correction is to improve the quality and the reliability of the final rainfall estimates.
For this reason, the most important evaluation is the validation of the final merged products.

A cross-validation exercise is carried out. The KED estimation is performed leaving one rain gauge
out, and estimating the value in its location. Then the exercise is repeated for each rain gauge. The
KED estimations at rain gauge locations are compared to the rain gauge values. Two indicators
are used to quantitatively compare the KED estimates and the rain gauge measurements: mean
root transformed error and bias. The estimators are calculated at each time step and presented
averaged monthly, to compare the different performance over the change of season and rainfall
conditions

Mean root transformed error

The Mean Root Transformed Error (MRTE) is a measurement of the difference between observa-
tions and modeled data that is preferred in meteorology to the more common Root Mean Square
Error (RMSE) because of the lower weight given to high intensity rainfall errors. Its values range
from 0 to +1, with optimal value equal to zero. It is calculated as:

MRTE =
1

n

nX

i=1

⇣q
R̂KED(xi)�

p
R(xi)

⌘2
, (19)

where R̂KED(xi) is the KED prediction at rain gauge location xi, R(xi) is the corresponding rain
gauge observation, and n is the number of rain gauges.

Bias

To measure the bias in the estimated rainfall, the mean of the difference between the estimated
value and the observed value is calculated. The bias value defined this way can range from �1 to
+1, with optimal value equal to 0:

BIAS =
1

n

nX

i=1

R̂KED(xi)�R(xi) (20)

5 Results

The three evaluation passages shown in Figure 3 and explained in section 4 are used to evaluate the
performance of all the tested kriging methods applied to the case study. The results are reported
in this section. Additionally, a qualitative evaluation is reported.
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Figure 4: The histograms of rainfall, as estimated by the radar, and the corresponding residuals,
approximating the empirical probability distributions, are presented with and without transforma-
tions for a case study at 04:00 of the 28 March 2016. The black line represents the corresponding
Gaussian distribution with same mean and variance. The optimal k for this time step is equal to
0.38. Note that the units of rainfall and residuals after transformation are no longer (mm/h).

5.1 Gaussianity of the residuals
The first evaluation stage assesses how well the methods perform in transforming rainfall residuals
to a Gaussian variable. Although the transformations are applied to radar and rain gauge rainfall
data, their effects are expected to improve also the Gaussianity of the residuals. For a qualitative
understanding of the rainfall and the residuals probability distributions, Figure 4 shows the his-
tograms of radar rainfall and residuals, approximated as explained in section 3.5, with and without
transformations, for an example time step at 04:00 of the 28 March 2016. For the specific time
step, the Box-Cox transformation with optimized parameter used an estimated � = 0.38. To quan-
titatively evaluate how effective the transformations are in producing Gaussian residuals, tests of
Gaussianity are applied to the residuals. Figure 5 shows how the methods compare to each other
and to the untransformed data, in terms of the three selected indicators: kurtosis, skewness, and
approximation of negentropy.

The results show that all the methods improve the Gaussianity of the rainfall residuals. The SA
is performing worst, probably affected by the impossibility of transforming rain gauge data. The
best performing method is the NS, but satisfying results are obtained also with Box-Cox with a
fixed � = 0.1, � = 0.25, and with the optimal �. The optimized Box-Cox transformation does
not perform as well as � = 0.1, because it is limited in the range [0.2, 1.5]. In accordance to the
results published by Erdin et al. (2012), the majority of the parameters are close to the lower limit
of � = 0.2 as shown in Figure 6. This explains why the results for the fixed � = 0.25 and the
time-variant � are very similar.

5.2 Coefficient of determination R2 of QQ-Plots
The second evaluation stage assesses the ability of each method to reproduce the original rainfall
probability distribution, approximated by a linear function of the radar probability distribution.
The 99 quantiles from the KED distribution are plotted against 99 quantiles from the original radar
distribution. To account for possible radar biases, the methods are compared using the coefficient
of determination R2 relative to a linear regression fitting the QQ-plots, regardless of the slope and
intercept. Example QQ-plots for the same time step considered in Figure 4, 04:00 of the 28 March
2016, are presented in Figure 7, while the quantitative comparison of the R2 for the whole study,
averaged on each month, is reported in Figure 8.

The results of the second evaluation stage show that all methods achieve a satisfactory reproduction
of the original rainfall probability distribution, resulting in R2 values for the QQ-plots above 0.8 in
all analyzed cases, and very little differences can be noticed across the studied methods. Ordinary
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Figure 5: Performance of the tested methods in terms of the ability to transform the rainfall resid-
uals into a Gaussian variable. Three indicators are shown: Kurtosis, Skewness, and Approximation
of Negentropy, for the studied 9 months. The methods’ acronyms are the ones introduced in section
3.

Kriging is included in the comparison as well. The Box-Cox transformation with � = 0.1 shows
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worse results overall, while the use of no transformation achieves comparably good results in
this evaluation stage, meaning that the use of transformations does not bring particular benefits
in terms of reproducing the original rainfall probability distribution. The reproduction of the
original probability distribution by KED products seem more effective in winter months, when
more stratiform precipitation is observed.

5.3 Rain gauge validation
The last, but most important stage of evaluation assesses the quality and the reliability of the
merged products. Validation of the results is performed with cross-validation. The performance is
evaluated with two indicators, namely the Mean Root Transformed Error (MRTE) and the bias.
The comparison between the performance of the radar without merging, the OK results, the KED
merged product without Gaussianity corrections, and the KED with the different tested correction
methods are reported in Figure 9.

The results confirm that KED, even without transformations, produces better results compared to
the noncorrected radar rainfall estimates. Nevertheless, OK performs better than KED without
transformation. The use of a Box-Cox transformation with � = 0.1, produces significantly worse
results. The use of Box-Cox with: � = 0.5 and of the Singularity Analysis produce nonsatisfactory
results as well, comparable to the use of no transformation. Improvements are instead observed
using the optimized Box-Cox, Box-Cox with fixed � = 0.25 and the normal score transformation,
both in terms of MRTE and bias.

Figure 6: Frequency of the optimal lambda values over time.

5.4 Qualitative evaluation
In addition to the skill scores used to quantitatively assess the performance of the studied methods,
an example of a visual comparison of the different rainfall estimates is reported in Figure 10. The
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presented rainfall estimations are relative to the same example presented in Figures 4 and 7, on
04:00 of the 28 March 2016. The visual comparison of the results provides additional information
about the features of each method that may not be obvious looking only at the performance indi-
cators. The original radar and OK are compared to the KED results without transformations and
with the application of the analyzed methods. In addition, the rain gauge values are superimposed,
to understand how well the merging process reproduces the observed rainfall. The example was
selected because it presents at one time many characteristics that appear in other cases as well
and can be discussed: radar artifacts, evidence of spatially heterogeneous radar bias (the radar
overestimates the rainfall intensity in the south part of the image and underestimates it in the
north part), and spatial variability of rainfall. In the radar image, some artifacts are evident: it is
possible to identify some partial radar beam blockage in the north east part of the domain; there
is also high reflectivity values in the south-east part of the image, not observed by the rain gauge
network; on the contrary, the intensity in the north part is underestimated; there are patches of
lower reflectivity in the north part of the image, and finally it is possible to identify where the
acquisitions from the three radars are joined in one composite, resulting in a sharp change of re-
flectivity along three straight lines cutting the image in three sectors. These effects are partially
corrected in most of the KED results.

Figure 7: Example of QQ-plots between the merged product distribution and the radar distribution
for an example event at 04:00 of the 28 March 2016.

As expected, all the KED rainfall estimates with and without transformations show a better
agreement with rain gauges than the radar. The ordinary kriging is designed to show perfect
agreement where the rain gauges are available, and shows a smoother behavior elsewhere. However,
the high rain gauge density allows OK to reproduce remarkably well the spatial features of the
rainfall field. The KED with SA shows enhanced spatial features compared to the rest of the
products. BC 0.1 presents higher intensity values, compared to the other products.
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Figure 8: Coefficients of determination R2 relative to the linear models fitting the QQ-plots. The
R2 is considered an indicator of the ability for each method to reproduce the original rainfall
probability distribution. The methods’ acronyms are the ones introduced in section 3.

6 Discussion

Figure 4 shows that residuals do have a more Gaussian distribution compared to rainfall, as ob-
served by Kirstetter et al. (2010), but the application of transformations to rainfall can benefit
the residuals as well. In particular, for the specific time step, the necessary transformation is well
addressed by the optimized BoxCox transformation and the normal score transformation. From
the results in section 5.1, showed in Figure 5, the ability of the different methods to transform
the rainfall residuals in a Gaussian variable is assessed. All the tested methods improve the Gaus-
sianity of the residuals. However, poor results are achieved by KED with the Singularity Analysis
(SA). In the SA, the residuals are calculated between the untransformed rain gauge data and the
transformed radar data and this results in a non-Gaussian distribution, which affects all the KED
rainfall methods and the quality of the results. The results in section 5.3 do not show a significant
improvement in using SA compared to no transformations. For this reason, the SA is considered
not appropriate for KED merging, because of the impossibility to apply a transformation to point
measurements, and also because the method is computationally very expensive.

As concerns the other tested methods, they all significantly improve the Gaussianity of the residu-
als. The results confirm that the Box-Cox transformations tend to perform better in transforming
rainfall data to Gaussian with a lower �. Nevertheless, transformations with a low � present prob-
lems in the backtransformation phase, and therefore in the evaluation phases presented in sections
5.2 and 5.3 in this paper. The results are in agreement with the conclusions of Erdin et al. (2012).
The normal score transformation, being explicitly designed to produce Gaussian residuals, achieves
the best results overall.

The second evaluation stage assesses the ability of the methods to reproduce the original rainfall
probability distribution back-transforming the KED merged products. The results are presented
in Figure 8, section 5.2. It is remarkable that all the methods perform well, with R2 values above
0.8, especially OK and KED without transformations. Only the Box-Cox with � = 0.1 shows an
appreciable lower performance due to the exponential “stretch” in the back transformation. In fact,
what is called an introduced bias in Erdin et al. (2012), is actually not uniform on the rainfall
intensity scale, and therefore noticeable in the QQ-plot linear fit. In Figure 7, the QQ-plots for an
example time step are reported. The plot corresponding to BC 0.1 has the lowest R2 values and
accentuates the deviations from the linear regression. As concerns the other methods, it seems
that KED, especially when transformations are applied, is particularly beneficial in winter months
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Figure 9: Comparison between the different products, in terms of the quality of the rainfall es-
timates, based on the cross validation. The skills are measured with two indicators: Mean Root
Transformed Error (MRTE) and bias.

rather than in the summer. This is probably due to the fact that during convective events, the
spatial variability of rainfall at subpixel scale causes the rain gauges and the radar to disagree
often, therefore the KED finds a weaker correlation between the rain gauges and the radar. When
this happens, the radar spatial information is not used to improve the estimates correctly. The SA
performs well in terms of reproducing the radar probability distribution, being able to reintroduce
all the singularities that the KED merging process would remove. Nevertheless, this is not always
a positive feature, as illustrated later in this section.

The exponential stretch effect in Box-Cox with � = 0.1 is evident in the results of the third eval-
uation stage too, presented in Figure 9 and section 5.3. The third evaluation stage is the most
important, because it assesses the quality of the resulting merged products: the purpose of merging
is indeed to improve the quality and the reliability of rainfall estimates, while the probability dis-
tributions of the transformed and back-transformed variables are important only if they lead to a
higher-quality final product. Indeed, transforming radar and rain gauge data sets with a Box-Cox
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Figure 10: The original radar, the KED product without transformations, and the KED products
with different tested transformations are compared for an example hourly time step at 04:00 of the
28 March 2016. The values of the rain gauges are superimposed.

transformation with � = 0.1 leads to a good transformation of the variables to Gaussian, but fails
in producing a high-quality back-transformed rainfall product, as can be observed in the results
of both the second and third evaluation stages; the KED products obtained with the Box-Cox 0.1
transformation shows larger error (MRTE) and larger bias. KED with square root transformation
(BC 0.5) or with the Singularity Analysis performs better, but still worse than the other presented
methods and do not bring significant advantages compared to the use of KED without transfor-
mations. Ordinary Kriging produces outstanding results in this evaluation stage. This may be
due to the high-density EA rain gauge network, and also partially due to the rain gauge-based
cross-validation method. The KED without transformations performs well, as shown by all the
indicators used in the third phase of evaluation (MRTE and BIAS) and it improves the results
of the uncorrected radar, which confirms that KED merging, even without transformations, is a
positive and reliable practice to improve the quality of radar rainfall estimates. Some transforma-
tion methods do improve the results, compared to KED without transformations. The results for
the optimized Box-Cox and Box-Cox with � = 0.25, show remarkably similar results, with a lower
MRTE and a lower bias compared to KED without transformations. In fact, as shown by Figure
6, the optimal � is close to the 0.2 lower boundary in the majority of the cases. However, it is
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important to note that the optimal Box-Cox transformation is very case-specific. In particular,
the Box-Cox function has the power to stretch the probability distribution for values below 1 and
compress the probability distribution of values above 1. This has two important consequences:
(1) the optimal � is a function of the units and (2) the optimal � is a function of the temporal
accumulation. It is important therefore to be very careful in selecting the optimal Box-Cox trans-
formation for the specific case study. The use of the Box-Cox optimization method is; therefore,
recommended over the use of the � = 0.25 case, although in this specific case study they work
comparably well.

The Normal Score transformation, instead, is not affected by the used units or temporal accu-
mulation. It produces interesting results overall: it shows low MRTE and bias, and performed
very well in the transformation and the back-transformation evaluation stages. The qualitative
comparison in Figure 10 gives an overview of the methods’ characteristics. In particular, it is easy
to note the differences between the Box-Cox methods, the Normal Score Transformation, and the
Singularity Analysis. As mentioned before, the Singularity Analysis is very good in reconstructing
and enhancing the small-scale features. Nevertheless, it is not able to discern between the rainfall
field features and the radar artifacts. Methods like the Box-Cox with � = 0.5 and � = 0.25,
and the Normal Score, have a different way to preserve the spatial structures, which can better
eliminate the radar artifacts and maintain the rainfall field structures (for example they partially
mitigate a lower intensity sector in the top-right corner, or they improve the sharp intensity jump
between the different radar composite). The way Box-Cox and Normal Score methods preserve
the spatial features is using the transformed radar image as a drift, and adjusting it with the rain
gauge observations. The spatial features that have a good agreement with rain gauge measure-
ments are maintained, while the ones that are in disagreement with the ground measurements (like
the artifacts) are smoothed. In the singularity analysis, instead, the radar field is smoothed before
merging, and all the singularities are reintroduced after, without the possibility to compare them
with the ground reference.

7 Conclusion

Kriging merging methods are among the most popular and effective methods to improve radar
rainfall estimates and, among them, KED proved to be effective and reliable. Kriging methods
are based on the assumption of Gaussianity, and one could argue that their application to rainfall
data sets could introduce errors. The objectives of this paper are to understand how significant
the uncertainty introduced by the Gaussian approximation is, and what are the best methods to
correct it.

Starting from the latter, some methods are identified to be not suitable for KED applications.
In particular, Box-Cox transformations with a k close to zero, approximation of the logarithmic
transformation, introduces a “stretch” in the back transformed value, resulting in unrealistic high
intensities of rainfall. This result is consistent with the results of Erdin et al. (2012). The Singular-
ity Analysis does not produce particularly positive results as well, and two reasons are identified.
On the one hand, the method relies on a transformation based on areal rainfall characteristics; since
the KED merging scheme uses point rain gauge measurements, the method cannot be applied to
correct rain gauge data and is applied only on the radar fields, which are used only as a drift. This
may limit its effectiveness in improving the merging process. On the other hand, the transformed
radar images that are used to preserve the rainfall spatial characteristics in KED are smoothed
by the transformation, and therefore during the merging process; the local singularities, i.e., the
spatial details, are then reintroduced only after the merging process. This does not allow to com-
pare the spatial features with the ground measurements and therefore to distinguish between the
real rainfall features and the radar artifacts, due for example to radar beam blockage, attenuation,
clutter, or radar compositing, which are preserved and even enhanced in the merged product.

It is fair to say that the Met Office is currently upgrading all weather radars in the UK to dual-
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polarization weather radars. This will enable better identification of nonmeteorological echoes
(Rico-Ramirez & Cluckie, 2008), improvements of attenuation correction algorithms (Bringi et al.,
2001; Rico-Ramirez, 2012), and better rainfall estimates in the presence of partial beam blockage
(Lang et al., 2009). The SA method could be more effective in the absence of these weather radar
artifacts.

The Normal Score Transformation produces overall positive results in all the stages of the analysis.
It is effective in transforming the variables to Gaussian and back-transforming the KED products.
The final KED rainfall estimates have a low MRTE and a low bias compared to other methods.
However, the method is not as simple to implement for rainfall data as it is when applied to dif-
ferent data sets. The application to rainfall data, with a noncontinuous, not strictly increasing
cumulative distribution introduces some challenges, and the back transformation requires a linear
interpolation/extrapolation for each pixel, for a sufficient number of quantiles (in this case 99),
which results in a computationally slow method. Nevertheless, the Normal Score Transformation
has the advantage of being independent on the variable values, and therefore independent on the
units or on the temporal accumulation of rainfall.

In terms of Box-Cox transformation, instead, it is necessary to be careful in identifying the optimal
transformation for the specific case study. In case units in millimeters per hour are used, like in
this case, the majority of the rainfall values fall below the threshold of 1 mm/h in most of the
considered time steps, therefore the optimal Box-Cox parameter tends to be low. The Box-Cox
transformation with � = 0.25 produce positive results, under all the examined points of view.
It is effective in transforming the rainfall residuals to more Gaussian variables before merging,
and to back-transform the merging results to the original distribution; it generates good-quality
merged rainfall estimates, with low MRTE and bias. The advantage in selecting this transfor-
mation method is that it has an analytical back transformation, although in this work the back
transformation is done using the mean of the back transformation of 99 quantiles in order to be
consistent with the other studied methods (Sideris et al., 2014).

Therefore, the use of Box-Cox transformation with � = 0.25 is usually a good solution, when
[mm/h] are used as rainfall units, but this transformation needs to be used carefully, due to its
dependency on the rainfall numerical values. An optimization of the � parameter can be beneficial
and the method proposed in this paper is simpler and faster than the Bayesian approach by Erdin
et al. (2012). Nevertheless, the Normal Score Transformation is preferable to Box-Cox transforma-
tions, being independent on the rainfall values. This work illustrates how to overcome the limits
of its applicability only to variables with continuous strictly increasing cumulative distributions.

Finally, as concerns the impact of the Gaussian approximation on the final rainfall estimate uncer-
tainty, the quantitative evaluation shows that the use of a transformation can improve the KED
estimates, if the transformation is correctly selected.
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Abstract
Exponential wash-off models are the most widely used method to predict sediment wash-off from
urban surfaces. In spite of many studies, there is still a lack of knowledge on the effect of external
drivers such as rainfall intensity and surface slope on wash-off predictions. In this study, a more
physically realistic “structure” is added to the original exponential wash-off model (OEM) by
replacing the invariant parameters with functions of rainfall intensity and catchment surface slope,
so that the model can better represent catchment and rainfall conditions without the need for
lookup tables and interpolation/extrapolation. In the proposed new exponential model (NEM),
two such functions are introduced. One function describes the maximum fraction of the initial
load that can be washed off by a rainfall event for a given slope and the other function describes
the wash-off rate during a rainfall event for a given slope. The parameters of these functions are
estimated using data collected from a series of laboratory experiments carried out using an artificial
rainfall generator, a 1 m2 bituminous road surface and a continuous wash-off measuring system.
These experimental data contain high temporal resolution measurements of wash-off fractions for
combinations of five rainfall intensities ranging from 33 to 155 mm/h and three catchment slopes
ranging from 2 to 8%. Bayesian inference, which allows the incorporation of prior knowledge, is
implemented to estimate parameter values. Explicitly accounting for model bias and measurement
errors, a likelihood function representative of the wash-off process is formulated, and the uncertainty
in the prediction of the NEM is quantified. The results of this study show: 1) even when the OEM
is calibrated for every experimental condition, the NEM’s performance, with parameter values
defined by functions, is comparable to the OEM. 2) Verification indices for estimates of uncertainty
associated with the NEM suggest that the error model used in this study is able to capture the
uncertainty well.
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1 Introduction
Urban surface sediment’s ability to act as a transport medium to many contaminants makes it
one of the major source of pollutants in an urban environment (Collins and Ridgeway, 1980;
Guy, 1970; Lawler et al., 2006; Mitchell et al., 2001). Hence there is an increasing interest in
being able to better predict the sediment wash-off from urban surfaces. But, modelling sediment
wash-off is not a straightforward exercise as it requires the understanding of complex interactions
between external drivers with a highly variable nature such as rainfall, catchment surfaces and
particle characteristics (Deletic et al., 1997; Egodawatta and Goonetilleke, 2008; Sartor and Boyd,
1972). Currently, the most widely used wash-off models are originally developed using laboratory
experiments and consequently include empirical parameters without clear physical interpretations.
The exponential wash-off equation (Eq. (1)) proposed by Sartor and Boyd (1972) is one such
model whose performance is highly dependent on the accurate estimation of parameter k:

wt = w0

�
1� e�kRt

�
(1)

Where wt is the total transported sediment load up to time t; w0 is initial load of sediment on the
catchment surface; Rt is cumulative rainfall depth at time t, i.e. itt where it is average rainfall
intensity over time t; and k is an empirical wash-off coefficient.

Equation (1) has widely been used in several software packages (e.g. SWMM) with or without
modifications (e.g. Zug et al., 1999; Huber and Dickinson, 1992). Since rainfall is the main driver
of the wash-off process (Deletic et al., 1997; Egodawatta et al., 2007; Sartor and Boyd, 1972;
Shaw et al., 2010), understandably most of these modifications are focused on the effect of rainfall.
Recently, Egodawatta et al. (2007) suggested an introduction of a ‘capacity factor’ which gives
a more physical interpretation to the empirically calibrated original model shown in Eq. (1).
According to Eq. (1), if the rainfall continues for long enough, it can wash off all the sediment
available at the beginning of the event regardless of the rainfall intensity of the event. In other
words, the maximum washoff fraction (wt/w0) is always one. But Egodawatta et al. (2007) showed
that a storm event has the capacity to wash-off only a fraction of sediments available and once this
maximum fraction is reached the wash-off becomes almost zero, even though a significant fraction
of sediment is still available on the surface. They suggested the introduction of an additional term
referred to as the ‘capacity factor’ (CF ) to replicate this finding in the model equation as shown
is Eq. (2)

wt

w0

= CF

�
1� e�kRt

�
(2)

Although the above modification was shown to be a meaningful refinement, CF was investigated
against rainfall intensity in isolation in Egodawatta et al. (2007). Muthusamy et al. (2018) further
showed that CF also varies with catchment surface slope in addition to rainfall intensity. Despite
surface slope’s direct impact on main underlying processes of sediment wash-off which are impact
energy from rainfall drops (Coleman, 1993) and shear stress from overland flow (Akan, 1987; Deletic
et al., 1997), there is a clear lack of attention given to surface slope in the literature. Results from
Muthusamy et al. (2018) showed that the surface slope has a significant effect on the wash-off load
and this effect should not be neglected in the prediction of wash-off.

In spite of the modifications suggested by various studies including Egodawatta et al. (2007) and
Muthusamy et al. (2018), the calibration parameters k and the newly introduced CF still need
to be calibrated for the conditions of each catchment. In general, this is achieved by using a
combination of look up tables/charts and interpolation/extrapolation of existing data. However,
with the absence of such commonly accepted look up tables/charts, the modellers are forced to use
a constant value for parameters regardless of catchment conditions. This calls for an alternative
and a more transparent way of estimating the calibration parameters.
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Furthermore, none of the abovementioned studies include any information on the uncertainty in
the estimation of the calibration parameters and their dependency structure which needs to be
accounted in the prediction of wash-off using these parameters. Although adequate treatment of
propagation of uncertainties in model prediction is a currently heavily researched area in hydrology,
there are only a few studies on uncertainty related to wash-off modelling (e.g. Sage et al., 2016;
Dotto et al., 2012). In this regard, Dotto et al. (2012) compared a number of uncertainty techniques
applied in urban water stormwater quality modelling and found that a Bayesian approach, although
computationally demanding, to be one of the preferable uncertainty assessment technique. A
Bayesian approach helps to identify different sources of uncertainty such as parameter uncertainty,
model bias and measurement noise and consequently, helps to separately analyse them, though
this requires knowledge about the error process (Dotto et al., 2012). In this regard, Sage et al.
(2016) discussed the consequences of using a wrong error model in the prediction of uncertainty in
wash-off modelling and called for more attention to be paid for the selection of error model.

Figure 1: Sketch of the experimental setup.

Considering the above research gaps in the current modelling approach of sediment wash-off, this
study aims:
a) To add a more physically realistic “structure” to Eq. (2) by replacing the calibration parameters
with functions of external drivers associated with catchment surface and rainfall characteristics
and compare its performance with the original model.
b) To identify different sources of uncertainty associated with the new wash-off model developed
in (a) and estimate reliable prediction intervals using a suitable error model.

2 Material and methods

2.1 Wash-off data
Data used in this study were collected from a series of laboratory experiments carried out using an
artificial rainfall generator, a 1m2 bituminous road surface and a continuous wash-off measuring
system (Fig. 1). This data contain sediment wash-off data measured against different combinations
of rainfall intensity, catchment surface slope and initial sediment load. The road surface was
prepared using bituminous asphalt concrete and had a mean texture depth index of 0.4 mm.
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Figure 2: Selected results from Muthusamy et al. (2018): Variation of wash-off fraction for different
combinations of rainfall intensity and surface slope.

The D10, D50 and D90 of the sand used in the experiment are 300 µm, 450 µm and 600 µm
respectively. Five intensities ranging from 33 to 155 mm/h, four slopes ranging from 2 to 16% and
three initial loads ranging from 50 to 200 g/m2 were tested in these experiments. For more details
on the experimental setup, selection of experimental conditions and data collection the readers are
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referred to Muthusamy et al. (2018). As reported in Muthusamy et al. (2018) the effect of initial
load on wash-off process was found to be negligible. Hence in this study, experimental results from
a constant initial load of 200 g/m2 as presented in Fig. 2 were used. This figure shows the variation
of cumulative wash-off fraction (Fw = wt/w0) against rainfall intensity and surface slope.

Note that the 16% slope was eliminated from the data, given that such slopes on road surfaces are
extreme scenarios and exist only in rare locations. For example, the Department of Transport in
the UK suggests a maximum gradient of 10% for roads other than in exceptional circumstances
(Manual for Streets, 2009). Since one of the aims of the study is to develop a single model with
a fixed set of parameters, the inclusion of results from such an extreme scenario in the calibration
may affect the performance of the model for more general cases.

2.2 The modified wash-off model structure and its rationale
The main objective is to replace the calibration parameters in Eq. (2) with functions of surface
slope and rainfall intensity, consequently adding a more physically realistic structure to the model.
This should make the model robust to new combinations of rainfall intensity and surface slope. To
do so, the properties of the model that are sensitive to such parameters need to be identified and
understood. From Eq. (2) there are two parameters which define the characteristics of a wash-off
curve. The first parameter, CF , defines the highest wash-off fraction for a given combination of
rainfall intensity and a slope. The second parameter, k, defines how fast the wash-off curve reaches
the maximum fraction for a given surface slope and rainfall intensity, and hence reflects the erosion
rate from the catchment surface. Hence, CF and k were proposed to be replaced with functions of
surface slope and rainfall intensity, as shown in Eq. (3) and (4).

CF = c1i
c2
m
sc3 (3)

k = c4s (4)

Where c1, .., c4 are constants,1 im is the representative rainfall intensity of a rainfall event (e.g. in
this case the constant rainfall intensity set during the experiment, please refer to section 3.4 for
discussion on the use of representative rainfall intensities), s is the catchment surface slope. The
following criteria were considered when defining Eq. (3) and (4), while also trying to keep these
functions as simple as possible to reduce the number of constants:

• CF - as explained before CF is a capacity factor which defines the maximum fraction from
the initially available sediment that can ever be washed off from a rainfall event for a given
slope. Hence, CF ranges from 0 to 1 and increases with both surface slope and (representative)
rainfall intensity of the event. When either of the representative rainfall intensity or slope is
zero CF is zero.

• k - k defines the wash-off rate and it also increases with rainfall intensity and surface slope.
But it should be noted that Rt in the exponential term is cumulative rainfall depth at time
t, i.e. itt which is already a function of average rainfall intensity over time t, it . Hence k
was taken as a (linear) function of slope only. The complete exponential term reads as c4sitt
which is function of both rainfall intensity and surface slope.

Hereafter this new exponential model will be referred to as NEM and the original exponential
model as shown in Eq. (1) will be referred to as OEM.

2.3 Estimation of model parameters and associated uncertainty
Bayesian inference was used to estimate the parameter probability distribution, which allows prior
knowledge on the parameters to be incorporated in the estimation and also formally quantifies
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uncertainty in the estimation (Dotto et al., 2012; Freni and Mannina, 2010; Del Giudice et al.,
2013). In addition, it also helps to capture the dependence structure between parameters (Dotto
et al., 2012). Bayesian inference requires the definition of the likelihood function and the prior
distribution of the parameters.

The likelihood function

In addition to finding the best estimate of the parameters, we are also interested in the uncertainty
associated with the parameter estimation and consequently the uncertainty in the prediction of the
wash-off fraction. One way of doing this is to include the error terms which represent the dominant
sources of uncertainty explicitly in the likelihood function.We used an error model which accounts
for errors due to the model structural deficit (model bias, BM ) and measurement noise (E). BM

is modelled as an autoregressive stationary random process and E modelled as an independent
identically distributed (IID) normal noise. Hence, an observed output, Yo can be formulated as

Yo(x, ✓, ) = ym(x, ✓) +BM (x, ) + E( ) (5)

Where x is the external drivers, ✓ is deterministic model parameters,  error model parameters and
ym(x,✓) is deterministic model output. In this case, Yo is observed wash-off fractions (Fw) and
ym is the deterministic model output predicted from the NEM (fw). x represents rainfall intensity
and surface slope. ✓ represents parameters c1, ..., c4.  represents error model parameters sd.B,
sd.E and l in which sd.B and l are standard deviation and the correlation length respectively that
characterise the autoregressive stationary random process and, sd.E is the standard deviation of the
measurement noise. Given the error description of Eq. (5), we define BM (x, ) as a multivariate
Gaussian distribution with covariance matrix ⌃(x, ) and E( ) as independent, identical normal
noise. Therefore, the analytic formulation of the likelihood function with n number of observations
can be formulated as

p(yo|x, ✓, ) =
(2⇡)�

n
2

p
det(

P
(x, ))

exp
⇣
�

1

2
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X
(x, )�1[yo�ym(x, ✓)]

⌘
(6)

The covariance matrix ⌃(x, ) was formulated using an OU process (Uhlenbeck and Ornstein,
1930). For hydrological applications, OU process is a simple description of the underlying mech-
anisms with an exponential decay of correlation in time (Del Giudice et al., 2013; Sikorska et al.,
2012; Yang et al., 2007). A detailed description of the formulation of covariance matrix using
OU process can be found in Del Giudice et al. (2013). An autoregressive error model represents
model structural deficit better than IID as it accounts for the “memory” in the error time series
(Del Giudice et al., 2013). This autoregressive bias error model was originally suggested in other
generic statistical applications (Bayarri et al., 2007; Craig et al., 2001; Higdon et al., 2004; Kennedy
and O’Hagan, 2001) and later adapted for environmental engineering applications (Reichert and
Schuwirth, 2012).

Table 1: k values from the literature.
Reference Land use/catchment type Value k (mm�1)
Alley (1981) Urban catchment 0.036-0.43
Nakamura (1984) Various 0.05-10
Nakamura (1984) Various 0.05-10
Huber and Dickenson (1992) General 0.04-0.4
Miller (1999) Residential 0.21
Egodawatta (2007) Concrete and asphalt roads 5.6⇥ 10�4-8.0⇥ 10�4
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Figure 3: Comparison of the model performance.

Prior distribution of parameters and constraints

Since the introduced parameters c1, ..., c4 are all new, there is no previous estimation of the exact
parameters, but a possible range for some parameters can be derived using our knowledge of the
wash-off process, observational data, and the prior belief about values of CF and k.

Values of c4 were derived from previous estimations of k as c4 equals to k/s. The list of k values
derived from previous studies is given in Table 1. From the table, the range of 0-10 were selected
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for k. In the absence of any information on slope in most of these studies, same range for c4 was
used considering a minimum slope of 1%. Hence a uniform prior with the range 0-1000 was used
as a prior distribution for c4. A uniform prior distribution of model parameters can be used when
there is not enough evidence available to choose a different type of distribution (Dotto et al., 2012;
Freni and Mannina, 2010).

As discussed previously, the range of CF is 0-1 because wash off fraction cannot be more than 1.
This leads to the constraint 0  c1imsc3  1 . The implication of this constraint in the definition
of prior probability is not straightforward as it involves three parameters, hence this constraint
was used during the estimation of likelihood probability.

It is challenging to define prior distributions for the error model parameters (sd.B, sd.E and l)
especially in the case of wash-off modelling as examples from such applications in literature are
currently lacking. Out of the three parameters, some information on the measurement noise repre-
sented by sd.E can be obtained by frequent tests, i.e. repeating the experiments sufficiently large
number of times. However, this is not always possible given the limitation in allocated resources
and time. In the absence of much information on any of the error parameters, a uniform prior with
the range from 0 to 1(= maximum wash-off fraction) was used for both sd.B, sd.E and a uniform
prior with the range of 0-200 min was used for correlation length. This range was selected as error
correlation is expected to be insignificant beyond such time length.

Bayesian inference

Once the prior distributions (the probability of deterministic and error model parameter, ✓ and  
without considering the observed output, yo), p(✓, ) and the likelihood function (the probability
of seeing the observed output, yo, as generated by a model with deterministic and error model
parameter ✓ and  ), p(yo|x,✓, ), are defined, the posterior distribution of the deterministic and
error model parameters (the conditional probability of ✓ and  once the observed output, yo has
been taken into account) can be formulated as,

p(✓, |yo, x) =
p(yo|x, ✓, )p(✓, )R

p(yo|x, ✓, )p(✓, )d✓d 
(7)

Since the direct analytical calculation of p(✓, |yo,x) is generally not possible, numerical tech-
niques such as Markov Chain Monte Carlo (MCMC) simulations have to be applied to generate
samples for this distribution. MCMC techniques generate a random walk through the parameter
space which will converge to the posterior distribution. In this study, we used robust adaptive
Metropolis MCMC sampler presented in Vihola (2012) which is implemented in an R package,
adaptMCMC (Scheidegger, 2017).
Experimental data with 2% and 8% slopes (two-thirds of the total data) were used for calibration
of NEM and the data from the 4% slope (one-third of the total data) were used for verification.
The optimal value of each parameter c1...c4 obtained during the calibration stage was then used
for validation. Furthermore, the performance of the NEM was compared against the OEM during
both calibration and validation stages. In the case of the OEM, the k value was calibrated for
each and every combination of surface slope and rainfall intensity during the calibration stage.
Linear interpolation of these calibrated k values was then used to obtain new k values during the
validation stage for a new surface slope condition.

In addition to deterministic prediction, prediction uncertainty of the NEM was also obtained during
both calibration and validation stages. Parameter uncertainty and total predictive uncertainty
(parameter uncertainty + model bias + measurement noise) were predicted by sampling from
posterior multivariate distributions of parameters c1, ...c4. Parameter uncertainty was estimated
by using deterministic model (ym(x, ✓)) runs and predictive uncertainty was estimated by using
the deterministic model together with error model components.
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Figure 4: Parameter distribution and bivariate correlation.

3 Results and discussion

3.1 Model performance

Figure 3 shows the model output with the optimal values for c1, ..., c4 (Table 2) with maximum
posterior probability density, i.e. the most probable values given the prior and the observed data.
It can be seen from Fig. 3 that with calibration data, the NEM with fixed values of parameters
c1, ..., c4 , corresponding to the maximum posterior probability density, performs as well as the
OEM which was calibrated for each and every combination of surface slope and rainfall intensity
separately. From Table 3, it can be seen that the difference in sum of root mean square error
(RMSEOEM � RMSENEM) from the ten calibrated set of data is -0.07 (Wash-off fraction). However,
the robustness of the NEM over the OEM can be seen during the verification stage where the NEM
performs better than the OEM in several cases. The difference in sum of root mean square error
(RMSEOEM � RMSENEM) from 5 sets of data during verification stage is 0.09 (Wash-off fraction).
The drawback with the OEM is that for a set of new catchment conditions where the OEM has
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not been calibrated before, k value needs to be calculated using interpolation/ extrapolation. This
might lead to the underperformance of the OEM during validation stage as shown in Fig. 3.
Considering the overall performance, the NEM with only 4 parameters (c1, ..., c4) performs better
than the OEM with 15 parameters (k1, ..., k15). Hence, the NEM does not only avoid the need of
interpolation to predict the calibration parameter values, it also performs as well as the calibrated
OEM.

Table 2: Optimal values of constants of Eq. (3) and (4).
c1 c2 c3 c4
3.99 0.672 1.99 0.208

Table 3: Performance of OEM and NEM.
Model Sum of root mean square error (RMSE)

Calibration Verification
OEM 0.11 0.20
NEM 0.18 0.11

3.2 Parameter distribution and correlation
This section discusses the posterior distribution of parameters and their multivariate behaviour.
Figure 4 shows posterior distributions and a bivariate matrix of the deterministic and error model
parameters. The most likely value of sd.B and sd.E are 0.02 (2%) and 0.002 (0.2%) respectively,
showing that most of the uncertainty in the wash-off estimation can be explained by the model
bias and that uncertainty due to measurement noise is negligible. Although these are approximate
representations of the actual system and corresponding uncertainty, we believe that the experi-
ments were conducted with as high a quality as possible. This is one of the reason why a road
surface as small as 1 sq.m was selected as it gives a better control over the experimental set-up.
For example, the smaller surface area keeps the spatial variability of the rainfall to the minimum.
Furthermore, it also keeps the sediment loss during the experiment to insignificant. The maximum
sediment loss observed during an experiment was less than 2% which is an indication of the good
quality control.

3.3 Performance assessment
Looking at the bivariate plots, there is a strong positive correlation between parameters c1 and c3
which indicates that these two parameters compensate each other in order to maximise the posterior
probability. This can also be seen between parameters c2 and c3, but to a lesser extent. Similarly,
the strong positive correlation between sd.B and l means that these parameters compensate each
other in order to fit the autoregressive error model BM . Bayesian inference helps resolve such
identifiability issues by allowing for informative priors. Therefore, for real cases, where we have
reasons to believe that one of the two parameters should be more constrained, the other parameter
value will automatically come out to be constrained after joint inference.

3.4 Estimation of parameter and predictive uncertainty
Figure 5 shows the uncertainty associated with the estimation of the wash-off fraction. Parameter
uncertainty was estimated by using deterministic model (ym(x, ✓)) runs and predictive uncertainty
was estimated by using the deterministic model together with error model components. Since the
latter also includes the uncertainty due to model bias and measurement noise these bands are wider
than the parameter uncertainty. The total predictive uncertainty which accounts for parameter
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Figure 5: Uncertainty associated with the prediction of wash-off fraction using the NEM.

uncertainty, model bias and measurement noise accounts for ⇠0.1 (10%) uncertainty in the wash-
off fraction. This constant trend of predictive uncertainty is a reflection of the fact that the error
model used here is not explicitly input-dependent bias model, but rather it is a constant variance
model. On the other hand, parameter uncertainty increases with increasing wash-off fraction as the
variance of parameter uncertainty proportionally increases with mean prediction. The parameter
uncertainty accounts for a maximum of 0.06 (6%) wash-off fraction when 95% predictive interval
is considered.

To check the reliability of the uncertainty estimation, prediction interval coverage probability
(PICP, Ref Eq. (8)) which measures the probability that the observed values lie within the esti-
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mated prediction intervals (Shrestha and Solomatine, 2006) was used.

PICP =
1

n

nX

i=1

R · 100% whereR

(
1, PLu

t
 Ot  PLl

t

0, otherwise
(8)

Where, PLu
t

and PLl
t

are upper and lower boundary of the considered prediction interval at time
t for a given slope and rainfall intensity, Ot is corresponding measured wash-off fraction at time t.
For a better performance, PICP should be close to the considered prediction interval, which is 95%
in this case. The calculated PICP during validation stage is 82%, so the corresponding accuracy
of the uncertainty estimation is around ⇠85% which essentially means that the error model is able
to predict the uncertainty reasonably well.

3.5 General discussion
IID is the most commonly used form of error model in urban hydrology (Breinholt et al., 2012;
Dotto et al., 2011; Freni et al., 2009; Sage et al., 2015) mainly because of its simplicity. How-
ever, it requires the absence of a serial correlation in the error distribution, which can lead to
underestimation of uncertainty and biased parameter estimates (Del Giudice et al., 2013). Error
process of hydrological phenomena, such as sediment wash-off, are shown to be temporally auto-
correlated and assumption of independence is not satisfied (Schoups and Vrugt, 2010; Sage et al.,
2016). A likelihood function based on an uncorrelated error model generally leads to narrower
posterior probability densities, which results in overconfident parameter estimates and unreliable
uncertainty intervals. An autoregressive model helps in preventing such biases both during infer-
ence and prediction. Unlike IID, where each data point is a sample of the error distribution, an
autoregressive process takes the whole time series of errors as one sample realisation of the pro-
cess, (in an n-dimensional space), therefore avoiding overconfidence in parameter estimation. For
example, Sage et al. (2015) acknowledged that their assumption to model error process associated
with wash-off modelling as IID was found to be invalid. Further, Sage et al. (2016) showed that
the use of IID to represent the structural deficit of sediment wash-off models violates the statistical
properties of the structural deficit and it may result in unreliable estimation of model parameters
and total predictive uncertainty. An autoregressive model accounts for this autocorrelation of the
error. Hence, it represents the structural deficit better.

This error model can be further improved by accounting for non-normality of the structural bias.
However, this adds more complexity. Such added complexity could be an acceptable compromise
when there is a very large number of data points to learn about the error model parameters. In our
case, the current description of errors seems adequate as suggested by verification measures that
show around 85% accuracy of the error models in capturing the uncertainty. Further, we assumed
a constant bias to keep this autoregressive error model simple. Nevertheless, it is also possible to
describe it as an input - dependent bias (Del Giudice et al., 2013) where bias can be a function of
both slope and intensity. The advantage of such bias description still needs to be investigated in
the uncertainty analysis of wash-off modelling.

Note that in addition to rainfall intensity and surface slope, other parameters such as sediment
size and surface texture will also affect the sediment wash-off, but due to the limitations in the
data used in this study, the NEM does not include the effect of these parameters. With smaller
sediment sizes and smoother surfaces, the wash-off is expected to be higher. For example, Ego-
dawatta et al. (2007) in a similar experimental study used a larger range (0-1000 µm) sediment
resulting in a relatively higher wash-off fraction. Further, Hong et al. (2016) in their studies used
a sediment range of 0-400 µm and showed that most (>90%) of the finest particles are removed at
the beginning of a rainfall event, with about 10%-20% of medium-size particles are removed over
the later part of the even. These studies show that selection of sediment size affects the sediment
wash-off process significantly. Hence, the application of the NEM needs to be checked against
different sediment sizes and also against different surface textures. It is expected that the values of
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c1, ...c4 will be different for different particle size distribution of the road sediment and/or different
surface roughness. The inclusion of the effect of these parameters explicitly might introduce more
complexity in the equation. Nevertheless, such an equation can be applied globally regardless of
individual catchment conditions. This is one of the research areas in sediment wash-off modelling
that requires to be investigated in detail.

While experimental set-ups like the one used in this study give great flexibility to replicate the real
hydrological processes such as sediment wash-off, there are still some limitations which need to be
taken into account. The exponential wash-off model was improved based on experimental results
which were obtained from rainfall events with constant rainfall intensity throughout the duration of
an event. Keeping the rainfall intensity constant makes it easier to understand the physical wash-
off process and to consequently modify the wash-off model. In fact, most of the previous studies
used a constant intensity rainfall event to understand the wash-off process and consequently apply
the results to develop and improve the wash-off equations. These studies include Sartor and Boyd
(1972) where the exponential model was originally proposed and Egodawatta et al. (2007) where
the capacity factor was first introduced in the exponential wash-off. However, constant intensity
rainfall events are never the case in reality. Nevertheless, the equation proposed by Sartor and
Boyd (1972) and the consequent refined version (e.g. Egodawatta et al., 2007) were all shown to
be applicable for real case studies too. For example, Brodie and Egodawatta (2011) on a follow-up
study on Egodawatta et al. (2007) showed that the use of mean rainfall intensity of a real rain-
fall event as a representative intensity to derive CF produces reliable predictions. In this regard,
application of the NEM also needs to be checked against wash-off events that resulted from real
rainfall events. Such validation also needs information about surface slope.

It can also be noted that the rainfall intensities used in this experiments are generally high compared
to rainfall intensities observed in the real world. However, the minimum intensity of ⇠30 mm/h
was selected based on the trial experiments to produce measurable sediment wash-off amounts
from the surface. For example, at 2% slope, even the rainfall intensity of 155 mm/h produced only
6 g wash-off total wash-off at the end of 60 min. In addition to selected sediment size and surface
roughness, surface size also a deciding factor in the amount of washed off sediment as the larger
surface will have a proportionally higher initial sediment load. On the other hand, unlike sediment
size and surface roughness, surface size does not affect the underlying physical process and as a
result, the wash-off fraction (= washed off load/initial load) will remain same. This provides the
flexibility in choosing the surface size for similar wash-off experiments. The small surface size such
as the one used in this study (1⇥1 m2) provides a degree of flexibility to change the experiment
conditions (e.g. surface slope, initial load) and makes it possible to run such a large number of
experiments. Also, it helps to keep the rainfall intensity fairly uniform over the surface. Similar
sized experimental surfaces have been used in recent studies to take advantage of the abovemen-
tioned points (Egodawatta et al., 2007; Al Ali et al., 2017). However, the trade-off is the physically
lesser amount of washed off sediment from the surface and consequently the limitation in testing
very mild rainfall conditions in these experiments. Hence, an optimal surface size needs to be
selected in future studies which take into account the flexibilities in the experimental setup and
the minimum rainfall intensity that can produce a physically measurable sediment wash-off with
limited measurement error. However, rainfall intensities used in these experiments are compara-
ble to rainfall intensities used in similar previous wash-off studies. For example, Egodawatta et
al. (2007) used a rainfall intensity range of 40 mm/h - 133 mm/h and 20 mm/h - 133 mm/h in
their experiments to study the wash-off behaviour. Recently Al Ali et al. (2017) used a constant
rainfall intensity of 120 mm/h in similar experimental settings to study the wash-off behaviour
from different surfaces. Due to the practical difficulty in covering a large range of rainfall intensity
in an experimental set-up, extrapolation of the equation/model outside the experimental condi-
tions is often used. Even the most widely used exponential model was originally developed for
much narrower intensity range of 8 mm/h - 20 mm/h (Sartor and Boyd, 1972) and has been used
widely for rainfall intensities that are well outside this range. One of the reasons why this is an
accepted practice could be that the pattern of observations from previous studies indicate that the
underlying physical transport process of wash-off are quite similar, even outside the experimental
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conditions that are tested. For instance, the inclusion of a capacity factor as a function of rainfall
intensity and slope would be valid for smaller rainfall intensities as even higher intensities have a
maximum capacity in wash-off load as seen from the experimental results. Hence, although the
NEM has not been calibrated against smaller rainfall intensities, we believe the model structure
of the NEM would still be applicable to smaller rainfall intensities. Nevertheless, this should be
verified in future studies.

4 Conclusions
In this study, we proposed an improved exponential wash-off model where a more physically realis-
tic structure was added to the original exponential model by replacing the calibration parameters
with functions of external drivers associated with catchment surface and rainfall characteristics.
This improvement avoids the need for empirical look-up table/charts and interpolation/ extrapo-
lation and introduces some transparency in the parameter estimation which is otherwise a “black
box” approach. Further, replacing the invariant calibration parameters with functions of external
drivers (i.e. rainfall intensity and surface slope) makes it easier to investigate the propagation of
errors in the external drivers (e.g. rainfall intensity) as these external drivers are now explicitly
defined in the new equation. This new exponential model (NEM) was calibrated and verified using
the experimental data collected for different combinations of surface slopes and rainfall intensi-
ties. Bayesian inference, which allows the incorporation of prior knowledge, was implemented to
estimate the distribution of the parameters of the newly introduced functions. In addition, by
statistically describing model bias and measurement noise, different sources of uncertainty in the
prediction of the NEM were separately estimated.

During calibration, the NEM with a fixed set of parameter values performs as well as the OEM
which is calibrated for each and every experimental condition separately. At validation, the NEM’s
performance improves over the OEM, reflecting the ability of the NEM to perform better under
new catchment conditions. Verification measures show the uncertainty estimates associated with
the NEM predictions are plausible, indicating that the use of two error terms, autoregressive error
and independently identically distributed error, to represent model bias and measurement noise
respectively was a reasonable representation of the error process associated with sediment wash-off
modelling. The total uncertainty in the prediction of wash-off fraction - which accounts for both
model bias and measurement noise - was found to be ⇠0.1 (10%) when 95% predictive interval is
considered, out of which a maximum of 0.06(6%) was due to the parameter uncertainty.
It should be noted that the optimal values of c1, ...c4 in the NEM needs to be checked against dif-
ferent sediment sizes and different surface roughness as these are two other major external drivers
which would affect the sediment wash-off. Nevertheless, the model structure of the NEM would be
applicable for any sediment size and surface texture as the underlying physical processes will be
the same as those on which the model structure of the NEM was developed.
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