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Summary

Recent years have testified unprecedented advances in the field of molecular systems biology.
The increasing amount of data produced from disparate sources is giving us the possibility
to study biological systems from a wide variety of angles at an incredibly fine scale. In this
context keeping up with the pace of data production and fully exploiting the availability of
information from multiple modalities is fundamental.

In this work, methods to extract information from different data types are investigated and
developed in order to improve complex diseases understanding and develop explainable per-
sonalized models for patient stratification. The different data modalities considered ranging
from molecular data, such as genomics, transcriptomics, and proteomics to data from the liter-
ature, either in form of natural language from publications or structured data from databases.
The common denominator to handle these different modalities is machine learning based on
graph topologies summarizing molecular interactions that provide a high-level representation
of the molecular processes governing cells behavior. The main focus is the study of these
molecular interaction networks and their potential applications to personalized medicine.

The thesis is structured around three main pillars: network reconstruction, integration of
network information in interpretable machine learning algorithms and the development of per-
sonalized models. Network reconstruction is analyzed on two data modalities: on molecular
data by implementing state-of-the-art inference models and investigating consensus strategies
to ensure robust prediction and on natural language proposing a novel deep learning-based
methodology. Integration of network information into machine learning models is tackled by
making use of a multiple kernel learning algorithm that exploits pathway-induced kernels, a
concept introduced in this work. Going towards patient personalized models, networks are
also exploited in a dynamic perspective to perform large-scale logical modeling through the
implementation of a framework for accelerated attractor analysis. Model personalization is
also tackled at genomic level by considering two data modalities: copy number alterations
and somatic mutations. These data are used to feed a novel inference algorithm, implemented
during this work, to estimate patient-specific phylogenetic trees.
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Zusammenfassung

Die letzten Jahre haben beispiellose Fortschritte auf dem Gebiet der molekularen System-
biologie gezeigt. Die zunehmende Menge an Daten aus unterschiedlichen Quellen gibt uns
die Möglichkeit, biologische Systeme aus einer Vielzahl von Blickwinkeln und in einem un-
glaublich feinen Maßstab zu untersuchen. In diesem Zusammenhang ist es von grundlegender
Bedeutung, mit der Geschwindigkeit der Datenproduktion Schritt zu halten und die Verfüg-
barkeit von Informationen aus mehreren Modalitäten vollständig zu nutzen.

In dieser Arbeit werden Methoden zur Extraktion von Informationen aus verschiedenen Da-
tentypen untersucht und entwickelt, um das Verständnis komplexer Krankheiten zu verbessern
und erklärbare personalisierte Modelle für die Patientenstratifizierung zu entwickeln. Die ver-
schiedenen Datenmodalitäten reichen von molekularen Daten wie Genomik, Transkriptomik
und Proteomik bis hin zu Daten aus der Literatur, entweder in Form natürlicher Sprache aus
wissenschaftlichen Publikationen oder strukturierter Daten aus Datenbanken. Der gemeinsa-
me Nenner im Umgang dieser unterschiedlichen Modalitäten ist maschinelles Lernen auf der
Grundlage von Graphentopologien, mit welchen molekulare Wechselwirkungen zusammen-
gefasst und eine hochrangige Darstellung der molekularen Prozesse, welche das Verhalten
von Zellen steuern, ermöglicht werden. Der Schwerpunkt liegt auf der Erforschung dieser
molekularen Interaktionsnetzwerke und ihrer möglichen Anwendungen für die personalisierte
Medizin.

Die Arbeit gliedert sich in drei Hauptpfeiler: Netzwerkrekonstruktion, Integration von Netz-
werkinformationen in interpretierbare maschinelle Lernalgorithmen und die Entwicklung per-
sonalisierter Modelle. Die Netzwerkrekonstruktion wird an zwei Datenmodalitäten analysiert:
an molekularen Daten durch Implementierung modernster Inferenzmodelle und Untersuchung
von Konsensstrategien, um eine robuste Vorhersage zu gewährleisten, und an natürlicher Spra-
che, mit einer neuartigen auf Deep Learning basierender Methodik. Die Integration von Netz-
werkinformationen in maschinelle Lernmodelle wird durch die Verwendung eines Multiple-
Kernel-Lernalgorithmus mit Integration von Signalweg-induzierten Kerneln angegangen, ein
Konzept, das in dieser Arbeit eingeführt wurde. Mit Blick auf personalisierte Patientenmodel-
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le werden Netzwerke zudem in einer dynamischen Perspektive genutzt: Durch die Implemen-
tierung eines Frameworks für eine beschleunigte Attraktoranalyse wird eine umfangreiche
logische Modellierung ermöglicht. Die Personalisierung von Modellen wird auch auf geno-
mischer Ebene angegangen, indem zwei Datenmodalitäten berücksichtigt werden: Kopienan-
zahlveränderungen und somatische Mutationen. Diese Daten werden mit einem neuartigen
Inferenzalgorithmus, der während dieser Dissertation implementiert wurde, verarbeitet, um
patientenspezifische phylogenetische Bäume zu schätzen.
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Part I.

Introduction and Background





1 Introduction

Philosophy [i.e., physics] is written in this grand book — I mean the

Universe — which stands continually open to our gaze, but it cannot

be understood unless one first learns to comprehend the language and

interpret the characters in which it is written. It is written in the lan-

guage of mathematics, and its characters are triangles, circles, and

other geometrical figures, without which it is humanly impossible to

understand a single word of it; without these, one is wandering around

in a dark labyrinth.

– Galileo Galilei, The Assayer

In recent years molecular biology research has seen a continuos transformation, especially
from the late nineties onwards, with the advent of systems biology, the study of biological
systems by means of mathematical and computational models has started to be widely adopted.
This is testified by the proliferation of consortium efforts that aim to collect large amounts of
data in order to be able to identify and measure all the actors and their complex interactions in
a molecular system. Some of the most prominent examples of this trend are: 1000 Genomes
Project [1], Encode [2], Roadmap Epigenomics Project [3], Blueprint [4] or more recently The
100000 Genomes Project [5].

The ability to measure molecular entities in a high-throughput fashion at multiple omic
levels, together with the increasing availability of publicly available datasets has allowed us to
improve our understanding of complex cellular processes governing cell behavior. Modeling
approaches are believed to be fundamental in the study of complex diseases, such as cancer [6],
diabetes [7] or Alzheimer’s disease [8]. Cancer research consortium efforts, like TCGA (The
Cancer Genome Atlas) [9] or CPTAC (Clinical Proteomic Tumor Analysis Consortium) [10],
provide the community with an extremely valuable source of data that has helped to improve
the understanding of key mechanisms behind the disease’s development.

The knowledge generated as a by-product of these large consortium studies, by the project
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Chapter 1. Introduction

itself and from all the subsequent works, represents another priceless source of information
and deserves to be considered as an additional data source. These data are divided in two
broad categories corresponding to different modalities: natural language, in the form of pa-
pers or research reports, and databases (e.g., molecular interaction databases, drug databases,
mutation databases, etc.).

In this context of multiple data availability the need for integrative approaches able to com-
bine disparate data sources guaranteeing robustness to noise is becoming fundamental.

The research work presented here aims to leverage current existing methods in heteroge-
neous data integration and proposes new holistic methodologies, with a focus on network
approaches for interpretable patient stratification and precision medicine.

Thesis outline

This cumulative dissertation is structured around a selection of manuscripts that are either in
the preparation phase or already submitted to peer-reviewed journals. The common link be-
tween all the works is the integration of data modalities and network approaches to answer
specific biological questions related to systems biology research with a strong focus on cancer
research. This thesis begins with a description of the research fields where the different sci-
entific contributions are made. The scientific contributions are grouped and are presented by
including the related manuscripts adapting their pre-print version.

The first chapters report the research conducted on network reconstruction from multi-
modal data sources. In Chapter 2, the COSIFER (Consensus Interaction Network Inference
Service) manuscript is included. COSIFER is a service that implements a selection of state-of-
the-art methods for network reconstruction from molecular data and implements various con-
sensus strategies to integrate predictions from different algorithms and/or data types. Chap-
ter 3 includes the INtERAcT (Interaction Network Inference from Vector Representations of
Words) manuscript. INtERAcT is a novel approach based on vector representation of words
obtained through deep learning that allows an accurate estimation of molecular interactions
from topic-specific text corpora.

In the following chapters a novel method and a technical achievement, exploiting interac-
tion network topologies for patient stratification and personalized modeling respectively, are
presented. In Chapter 4, the PIMKL (Pathway Induced Multiple Kernel Learning) paper is
included. PIMKL is an algorithm based on multiple kernel learning that introduces the con-
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Chapter 1. Introduction

cept of pathway-induced kernels to classify a phenotype (e.g., stratify patients), allowing us
to recover single pathway contributions in the problem considered and ultimately providing,
depending on the meaning of the selected pathways, an interpretable classification frame-
work. Chapter 5 includes a manuscript describing the technical work performed in hardware
acceleration for logical modeling simulation and attractor analysis exploiting FPGA cards.
The computational architecture proposed enables Boolean model simulations to be potentially
scaled up to network including thousands of nodes, permitting the simulation of genome-wide
patient profiles and the analysis of personalized responses to network perturbation. The last
manuscript included, in Chapter 6, presents a pure personalized medicine approach called
Chimaera for patient-specific tumor clonal architecture estimation using multiple biopsies.

Concluding remarks are divided into three chapters. A discussion regarding the major re-
sults obtained and lessons learned during this research project, with considerations about fur-
ther extensions of the most promising methodologies, is presented in Chapter 7. Chapter 8
describes, in detail, contributions and copyright notes for each manuscript included. Finally
in Chapter 9, the Appendix, the list of figures and tables included in the thesis are reported.

Background

This section presents the current state of the fields that have been the subject of investigation in
this thesis work and describes how the research activities carried out during this PhD propose
to overcome current limitations and to provide algorithms and services that are useful for the
whole systems biology community.

Network reconstruction

Molecular processes are regulated by the coordinated action of multiple factors. Genomics,
transcriptomics and proteomics are the three main layers that are orchestrated to determine
cellular function. The ways in which these different levels interact with each other and within
themselves determine many aspects of cell behavior: from cell proliferation to cell death,
from cell cycle to cholesterol metabolism. These interactions can be summarized in a graph-
ical structure, in what is called an interaction network. Representing interactions between
macromolecules, like gene sequences, proteins, metabolites can appear as a mere simplifica-
tion of a complex cellular environment, but provides us with a high-level view of the system
that can help us in discovering and understanding molecular processes happening in a living
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Chapter 1. Introduction

cell.

Network approaches can also help us to study in a holistic way phenomena beyond a single-
cell system, scaling up to arbitrarily elaborate systems, like human diseases [11]. In an ef-
fort to collect multi-layer interactions in so called "interactomes" we have seen, in recent
years, a large number of databases being published and made accessible to the community:
STRING [12], OmniPath [13], Reactome [14, 15], KEGG [16–18] or Pathway Commons [19],
to name a few. These resources condense a tremendous amount of knowledge coming from
experimental validation through manual curation of literature and text mining approaches.

Besides these efforts of collecting known interactions in structured sources, the need to
infer unknown interactions in a more or less automatic way has pushed many researchers
into investigating the problem of inferring molecular interactions from different data types.
This problem is also known as network reconstruction or network inference, and is based on
building a graph of interacting entities based on evidence collected from the data. Data used
in network inference can come from different modalities, for example: a set of single/multi-
omic measurements, like RNASeq or CNV data, a representation obtained from text sources,
via text mining, or structural molecular properties, like nucleotide sequences or amino acid
sequences.

In this thesis the focus is on unsupervised methods to infer networks from molecular mea-
surements (Figure 1.1) and from natural language (Figure 1.2).

Inference from molecular data

The advent of high-throughput technologies, such as SWATH-MS or RNASeq, made available
large scale, i.e., genome-wide or proteome-wide, measurements of molecular entities provid-
ing a high resolution portrait of a cell’s internal state. Inferring how genes, transcripts and
proteins interact from these datasets is a daunting task that many consortiums and research
groups have tackled over the last decade. A tangible proof of this interest is the Dialogue
on Reverse Engineering Assessment and Methods (DREAM) project that through its chal-
lenges gathered the efforts of a multitude of research groups to infer both relevance and causal
networks from in silico and cancer cell line datasets [20, 21].

Several methodologies have been proposed over the years, methods based on correlations
with FDR (False Discovery Rate) correction [22], on mutual information [23–25], on regres-
sion [26, 27] on functional hypothesis testing [28] or on ensemble learning on trees [29, 30].
In this work the focus is on reconstruction of relevance networks, represented as undirected
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Figure 1.1: Reconstructing networks from molecular data. Schematic representation of
a network reconstruction problem from molecular data. Samples generated with different
experimental designs are measured and used to compile data tables fed to network inference
models.

weighted graphs, given their flexibility to summarize relations between entities, and the large
availability of suitable data to use in the inference. Indeed any high-throughput omic dataset
can be used to infer the topology in a specific condition, as opposed to causal networks where
a time series or perturbation experiments are needed to recover the directed topology.

COSIFER 1, presented in Chapter 2, represents an attempt to collect, in a single open access
web-service, the most effective algorithms for relevance network inference and to provide the
community with a platform that eases the access to these resources, something that is currently
missing and might be used advantageously by many researchers. COSIFER also implements
multiple consensus strategies to integrate the networks reconstructed using the single methods:
Wisdom of Crowds (WOC) as adopted in Marbach et al. [20], a modification of the WOC pro-
posed in our work and SUMMA [31] an unsupervised methodology for aggregating weighted
contributions from inference algorithms.

1https://sysbio.uk-south.containers.mybluemix.net/cosifer/, as of November 2018
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Inference from publications

Interaction network

 
Publications

Clinical records

Books

Model

NLP

Manual curation

Expert knowledge

Figure 1.2: Reconstructing networks from literature. Schematic representation of a net-
work reconstruction problem from literature. Heterogenous sources of knowledge are avail-
able and different approaches can be adopted to feed models for network inference.

Advances in measurement technologies have led to a better understanding of how molecular
systems behave and regulate cell functions. Indeed, the development in data acquisition tech-
nologies has directly translated into a large amount of newly annotated interactions reported
in as many publications We can observe how many papers are indexed on PubMed 1 [32] for
topics like cancer (3,743,058) or diabetes (642,967) to have a rough idea of the number of
publications produced. A thorough manual curation of all the research produced is clearly
unfeasible and this is the main reason behind the proliferation of text mining and natural lan-
guage processing (NLP) approaches.

In recent years different methodologies to semi-automatically extract interaction from lit-
erature have been proposed. Most methodologies fall into three broad categories: machine
learning-based, usually characterized by supervision or semi-supervision [33, 34]; terms co-

1https://www.ncbi.nlm.nih.gov/pubmed/, as of November 2018
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occurrence-based, unsupervised but lacking semantic information [35–38]; and rule-based [39].
The main issue with most of the aforementioned approaches is the need for supervision or
semi-supervision coming in the form of manual or semi-automatic annotation steps that re-
quire expert or domain-specific knowledge. This pitfall partially defies the purpose of skipping
manual curation by moving the burden to manual annotation.

INtERAcT [40], see Chapter 3, overcomes this problem by leveraging recent advances in
deep learning text analysis [41, 42] and exploits vector representation of words generated on
a corpus of interest to score interactions between molecular entities in a completely unsuper-
vised way. The metric proposed in this work can be used on corpora of limited sizes and makes
use of word vectors to add contextual information to words representing genes and proteins,
exhibiting a high agreement with prior knowledge coming from STRING [43]. To ease the
accessibility of the algorithm, INtERAcT has been deployed as an open access web service on
IBM Cloud 1.

Interpretable patient stratification

Building interpretable models for patient stratification based on molecular data is an increas-
ingly popular topic nowadays. Developing models with an high level of interpretability to-
gether with robustness to noise is a fundamental step towards adoption in a clinical setting.
Stable models can also enable complex biomarker identification and, in the case where ex-
plainable approach is used, help shed light on molecular processes characterizing a specific
phenotype, such as cancer grade or patient survival (see Figure 1.3).

Particularly successful models in this respect are the ones that make use of existing prior
knowledge to inform their predictions and drive the selection of most relevant features [44].
An approach usually adopted to represent this prior knowledge is making use of molecu-
lar interaction networks to encode relations between the measured entities in the model by
means of the underlying graph topology. These methods leverage known interactions between
molecular features to create meta-features usually related to a specific set of molecular enti-
ties or pathways, thus providing two main advantages. Firstly, we have a direct link between
phenotypic traits and well defined mechanisms, considerably increasing our understanding of
predicted outcomes. Secondly, we aggregate and transform features by reducing the number
of parameters to be estimated. This aspect is extremely valuable in tackling a common issue in
patient stratification using molecular measurements: fitting models on datasets characterized

1https://sysbio.uk-south.containers.mybluemix.net/interact/, as of November 2018
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Figure 1.3: Interpretable patient stratification. Schematic representation of prior
knowledge-informed patient stratification. Predictive models able to integrate knowledge
about gene-gene, gene-protein or protein-protein interactions with molecular data to stratify
patients into relevant groups.

by few observations, usually in the order of hundreds samples, and a large number of features,
in the order of thousands like RNASeq (~17,000-20,000 genes) or SWATH-MS (~3,000-5,000
proteins).

An interesting benchmark of these models was assembled by Cun and Fröhlich [45], where
a selection of machine learning algorithms exploiting pathway annotation and molecular in-
teraction information have been compared in terms of predictive performance and molecular
signature stability. The benchmark’s results highlight how the way prior knowledge is inte-
grated doesn’t have a major impact on performance in terms of sensitivity and specificity, but
has a great influence on the robustness of the molecular signature estimated. Another aspect
to examine for the considered models is the lack of a natural extension to integrate multi-omic
data, or more in general multi-modal data.

With PIMKL [46], see Chapter 4, we propose a model able to integrate prior knowledge
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on molecular interactions that at the same time is capable of increasing prediction perfor-
mance and integrating data from multiple modalities. PIMKL achieves this goal by using
multiple kernel learning [47], an approach that has been already successfully adopted for drug
sensitivity prediction [44] and that is extremely effective in integrating heterogeneous data
modalities [48]. In the paper we introduce the concept of pathway-induced kernels and we
implement a high performance implementation of EasyMKL [49], to handle arbitrarily large
numbers of kernels. PIMKL has been made available to the community as an open access
service 1.

Modeling for precision medicine

Precision medicine is an emerging field that is attracting the interest of many researchers. The
term is used to indicate a therapeutic approach consisting in tailoring treatment to patient sub-
populations, or even to a single patient, see Figure 1.4. The idea of precision or personalized
medicine is that by collecting information at various omic levels for a patient we are able to
determine specific traits that help designing an optimal therapy, that maximizes efficacy and it
is cost effective.

In the last few years we have witnessed a trend of investing in this field, an example is
the Precision Medicine Initiative, announced in January 2015 by former U.S. president Pres-
ident Barack Obama [50], now named All of Us Research Program 2. The study’s goal is
to gather data from more than one million U.S. citizens and make it available for a broad
research community, in an effort to better define the variability between individuals and accel-
erating adoption of personalized medicine approaches in clinical practice. Precision medicine
has been proven successful in increasing our understanding of multiple diseases [51]: cystic
fibrosis [52–55], melanoma [56–58], head and neck squamous cell carcinoma [59], prostate
cancer [60].

Various modeling approaches have been proposed in a precision medicine perspective. In
this work the focus is on logical modeling, specifically acceleration of Boolean model simu-
lations, and clonal composition inference from tumor biopsies.

1https://sysbio.uk-south.containers.mybluemix.net/pimkl/, as of November 2018
2https://allofus.nih.gov/, as of November 2018
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Model

Personalized therapy

Figure 1.4: Precision medicine paradigm. Schematic representation of a precision medicine
approach. Characterizing variation between patients using omic data and appropriately iden-
tifying the sub-type or sub-population of origin inform models to define a personalized treat-
ment.

Boolean models

Boolean models are used to simulate dynamics in directed interaction networks. They are
a good compromise between static network analysis and more complex ODE-based mod-
els [61]. In some cases they have also been able to reproduce results in close agreement
to more complex ODE-based models [62]. Boolean models are mostly parameter-free, this
makes them extremely flexible in providing useful insights about regulatory dynamics [63]
and experiment design [64]. In addition to simulation of a biological system Boolean mod-
els also enable attractor analysis. By analyzing a model’s steady states, it has been shown
how we can improve our understanding of specific phenotype traits observed in the system of
interest [65, 66].

The logical modeling community is currently active in increasing the size and the range of
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the systems analyzed, since this can really increase our understanding of complex biological
systems behavior. Unfortunately, simulation and attractor analysis in logic-based models are
two problems strictly dependent on the size, in terms of nodes and edges, of the interaction
network considered. Most of the currently available software tools are not capable of handling
the computational burden imposed by simulating system dynamics in large networks (over
hundreds of nodes).

To tackle this problem, in Chapter 5, a Boolean model simulation accelerator based on
FPGA is presented. By leveraging the massive parallelism of the problem considered and the
architecture of an FPGA card, the computational framework presented exhibits a consistent
speedup compared to software simulations and attractor analysis. The results obtained on
published models presented show, in principle, how our approach can extend analysis capa-
bility up to genome-wide scale solving one of the main issues that is currently present in the
field.

Clonality inference from tumor biopsies

Advances in sequencing technologies helped to identify genetic mutations that recur in differ-
ent tumor types [67]. Despite finding these mutations becoming easier, interpreting them is an
open challenge. Deciphering tumor heterogeneity through clonal evolution can help us iden-
tify alterations responsible for tumorigenesesis, refractory and proliferative subclones [68, 69].
Information about clonal composition and evolution helps in understanding tumor’s potential
for metastasis or drug resistance, since they are subclone dependent and play an important role
in patient survival [70]. Models to infer a tumor’s clonal structure are therefore fundamental
in determining a personalized treatment that targets specific subclones and may significantly
alter, positively, a patient’s disease prognosis. These methods can be divided into two broad
categories depending on the data they rely on: single-cell-level mutation data or tumor-level
mutation data.

In this work we focus on the second category of methods. The aim is to reconstruct clonal
evolution from single-nucleotide somatic variants (SNVs) by deconvolving mutation frequen-
cies from molecular profiles. A commonly used approach is to sequence multiple biopsies
from the same tumor across time [71] or across spatial locations [70, 72], and find co-occurring
mutations that can be associated with subclones consistently appearing in different biopsies.
One of the main limitations of this approach comes into play when dealing with extremely
unstable genomes, characterized by the presence of strong copy number alterations (CNA), a
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behavior observed in many tumors, like prostate cancer or hepatocellular carcinoma. In these
cases mutation frequencies might be wrongly estimated and cause inaccurate estimations of
the clonal composition.

In Chapter 6, a manuscript presenting our methodology to perform clonality inference in
unstable genomes, Chimaera [73], is included. Chimaera corrects SNVs frequencies by ac-
counting for copy number alterations when determining tumor subclones. Validation on dif-
ferent synthetic datasets to compare our method with other methodologies [74–77] proves its
efficacy in estimating tumor clonal composition independently from the genomic instability.
Chiamera has also been applied to different tumor types exhibiting its potential to provide
patient-specific therapeutic indications. Chimaera is available as an open access service on
IBM Cloud 1.

1https://sysbio.uk-south.containers.mybluemix.net/chimaera/, as of November 2018
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Abstract

Molecular interaction networks regulate every cellular process such as evolution, prolifer-
ation and cell death. When these mechanisms fail, normal cell behavior is compromised
and different diseases, like cancer, may occur. The complexity of these networks resides
in the large number and variability of the molecular interactions involved. Advent of high-
throughput technologies such as microarrays and RNA sequencing provided researchers with
whole-transcriptome measurements and made available a snapshot of the internal regulatory
apparatus of a cell. However, network inference and key regulators detection is a daunting
task, that pushed international consortia to intensively work on the development of compu-
tational methods. Despite the efforts to compare and develop gene regulatory network in-
ference methods, easy to access inference tools available to everyone are still missing in the
research community. COSIFER is a web-based platform providing a service for the infer-
ence of molecular networks using a consensus between state-of-the-art methodologies given
high-throughput molecular measurements and a list of molecular entities of interest.

COSIFER integrates a set of network inference methods with different theoretical approaches

1In preparation. See Chapter 8 for details about contributions and copyright.

19



Chapter 2. COSIFER: Consensus Interaction Network Inference Service

as well as robust consensus methodologies. COSIFER is validated by extensively benchmark-
ing it on synthetic data generated from a known network topology exhibiting stability in pre-
diction accuracy. To test the potential of the tool, a study at pathway level of two separate
breast cancer cohorts (TCGA-BRCA and METABRIC) is conducted, showing how COSIFER
can be used to generate new insights in the mechanisms underlying complex diseases.

2.1 Introduction

Gene regulatory networks govern every kind of cellular decision such as differentiation, prolif-
eration and apoptosis and when these control mechanisms fail, cancer and other diseases may
arise [1]. The complexity of these networks originates from the large number of molecules
involved and the wide range of interactions occurring between them. High-throughput tech-
nologies, like microarrays and RNA sequencing, provide measurements of the transcriptome
and enable insights into internal regulatory mechanisms of a cell. However, inferring the
topology of these networks and identifying its key regulators is a challenging problem and in-
ternational consortia have intensively worked on the development of computational methods
tackling this problem [2]. The Dialogue on Reverse Engineering Assessment and Methods

(DREAM) project assessed the performance of over 30 network inference methods on in sil-

ico, Escherichia coli, Saccharomyces cerevisiae and Staphylococcus aureus microarray data.

Despite the effort of comparison and development of gene regulatory network inference
methods, the research community still lacks easy to access inference tools available to every-
one. Many method implementations are unavailable to researchers and performing network
inference on a larger gene set requires computational resources not readily available. In this
work we introduce COSIFER (Consensus Interaction Network Inference Service), a web based
platform providing a service for inferring relevance networks from uploaded molecular data.
Given inferred networks, it is possible to detect central genes, gene communities, analyze
network topology and discover further inherent features.

To reconstruct networks with high precision and accuracy, algorithms with various method-
ological foundation are developed. Basic approaches simply compute the correlation of ex-
pression patterns between network components, while other algorithms apply information
theoretic approaches, solve regression problems or apply Bayesian heuristics [13]. Being
predominantly based on unsupervised learning algorithms, COSIFER integrates a subset of
these methods which proved reliable network reconstruction performance and are based on
various theoretical concepts (see Table 2.1).
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Method Source
Correlation
Pearson’s correlation coefficient [3]
Spearman’s correlation coefficient [3]
Mutual Information
Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) [4], [5]
Context Likelihood of Relatedness (CLR) [6], [5]
Minimum Redundancy/Maximum Relevance Networks (MRNET) [7], [5]
Regression
Graphical LASSO (GLasso) [8]
Trustful Inference of Gene Regulation Using Stability Selection (TIGRESS) [9]
Other Approaches
Joint Random Forest (JRF) [10]
Functional χ2-Test (FunChiSq) [11]
Gene Network Inference with Ensemble of Trees (GENIE3)∗ [12]

Table 2.1: Implemented methods. List of methods implemented in COSIFER web applica-
tion.

Since every method to infer molecular networks has its advantages as well as limitations
and given different conditions such as varying data sources, noise levels and underlying net-
work topologies, methods might complementary outperform others. Thus, combining the
results of individual methods into a consensus network might be a promising strategy to ob-
tain robust and accurate results. This approach have been successfully applied in different
fields [2, 14]. Marbach et al. further showed that a consensus approach between various
methods outperforms a consensus between similar algorithms as well as the performance of
single methods [2]. We denote as WOC and WOC (hard) consensus strategies inspired to
these works. Besides these standard consensus approaches a novel method based on rank ag-
gregation called SUMMA (Unsupervised Evaluation and Weighted Aggregation of Ranked
Predictions) is considered [15].

Next to single method implementations, COSIFER applies the introduced consensus al-
gorithms on a set of methods chosen by the user, providing a an inference result robust to
different biological as well as experimental setting.

In the following we introduce the web application COSIFER and evaluate the methods’
performance as well as the robustness of the consensus approach on different noise models,
sample and network sizes. Additionally, COSIFER is applied to breast cancer gene expression
data. For this analysis, we consider gene expression profiles in breast tumors from Molecular

Taxonomy of Breast Cancer International Consortium (METABRIC) as well as the The Can-

cer Genome Atlas (TCGA) [16, 17]. In a subsequent analysis we detect central genes for each
hallmark pathway [18] in both cohorts in an effort to define common potential regulators. The
detection of central genes can help to cast light on potential disease mechanisms of this cancer
type that can be subsequent tested in further experimental studies.
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2.2 Results

COSIFER web application integrates basic functionality such as: data upload, method and
network entity selection and interactive network visualization using bokeh [19], see Figure 2.1.
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Figure 2.1: COSIFER workflow. Once molecular data are uploaded, difference infer methods
can be selected. COSIFER integrates single method predictions into a consensus network that
can be visualized or downloaded by the user for further analysis.

The user is able to upload a dataset as well as an additional list of gene on which the
consensus network inference is performed. If no list containing gene identifiers is given, the
network is predicted using the all genes of the uploaded dataset. The consensus network
can be visualized in the web application and/or downloaded in a tabular format and used for
subsequent network analysis steps.

Applying unsupervised methods to infer gene regulatory networks is convenient because no
prior knowledge about the network to be inferred is required and the training step necessary
for supervised algorithms can be skipped.

To this moment, the COSIFER web app comprises ten methods and provide as a result
a network inferred using SUMMA as a consensus approach on single algorithms outcomes.
The selection of this set of methods is based on different criteria: we selected methods for
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which previous studies reported superior accuracy [2, 13, 20] as well as methods with varying
theoretical foundations to capture a broad variety of approaches. Thus, COSIFER comprises
methods based on correlation, including Pearson as well as Spearman correlation, mutual
information, regression, tree ensembles and functional χ2-test based methods. The whole list
of methods as well as their original publications are presented in Table 2.1. Details on the
theoretical foundations as well as the default parameters used for every method are reported in
Section 2.4. The list of methods can be easily extended and further methods can be included
into the web application.

2.2.1 Evaluation of COSIFER on in silico benchmark datasets

To evaluate the performance of different unsupervised methods as well as their consensus for
reverse engineering of molecular networks, COSIFER is applied to in silico gene expression
data for which the underlying network structure is known. This artificial datasets are generated
using an open-source simulator called GeneNetWeaver, a tool intensively used in the DREAM
challenge providing researchers benchmark datasets to validate their work [21]. Originating
from S. cerevisiae the generated gene expression data comprise of a differing number of sam-
ple set sizes (100, 500, 1000 and 2000) as well as several network sizes (100, 500, 1000 and
2000). By varying the noise model underlying the simulation, we analyze the robustness of
each method to different noise sources (Gaussian noise, lognormal noise as well as microar-
ray noise) [22]. Therefore, each method as well as the consensus approach are analyzed in 48
different settings, repeating each simulation 10 times.

Figure 2.2a shows the result of the evaluation of COSIFER, i.e., the consensus approach,
as well as all integrated inference methods. The performance of the methods strongly dif-
fers and ranges from an average area under the receiver operating characteristic (ROC) curve
(AUC) of 0.53 to 0.75. The best performing methods are based on computing the mutual in-
formation matrix or the correlation matrix between the expression profiles of each network
component. In terms of variability information theoretic methods performed slightly better
than correlation-based methods, a behavior already observed during the DREAM study [2].
The accuracy of the single methods highly varies with a AUC ranging from ∼ 0.3 to ∼ 0.9.
Especially in settings, where the number of samples from which the prediction is made is low,
methods such as GLasso, TIGRESS, JRF or GENIE3 perform slightly better than a random
guess (see Figure 2.4 center). The size of the network to be inferred has a weak positive
influence on best performing methods, while it is more evident in the cases of worst perform-
ing ones, where inference with more entities exhibits reduced performance for the majority
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Figure 2.2: Evaluation of COSIFER performance. AUC values of each network inference
method as well as the consensus (SUMMA, WOC (hard), WOC; different shades of green)
under different noise models, sample and network sizes (48 settings) over ten simulations. (a)
Boxen plot (Letter-value plot) of the AUC values. (b) Box plots grouped by different noise
types.

of them (see Figure 2.4 top). All methods are robust to different sources of noise and thus,
the accuracies of the methods’ prediction do not vary strongly between in silico expression
data generated using the Gaussian, lognormal and microarray noise model (see Figure 2.2b
Figure 2.4 bottom).

Next to the AUC, the methods differ in the computation time they take for the inference.
Despite the quadratic complexity of computing pairwise mutual information as well as corre-
lation between all network entities, methods based on information theoretical principles such
as ARACNE, CLR and MRNET as well as Pearson and Spearman correlation based methods
are the fastest. FunChiSq, GLasso, TIGRESS, GENIE3 and JRF are slower and for networks
exceeding the size of 1000 nodes the latter three methods do not scale properly.

As shown in Figure 2.2, consensus approaches exhibit similar or superior median perfor-
mance compared to best performing methods. Furthermore the variance in their predictions
is slightly lower compared to the mutual information and correlation-based algorithms and
is not heavily influenced in its performance by methods, performing poorly on the inference
task. Overall SUMMA performs better than WOC (hard) and WOC in terms of median AUC
as reported in Figure 2.2.
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2.2.2 COSIFER on breast cancer potential regulators detection

This section describes results for COSIFER consensus inference application to datasets from
TCGA-BRCA and METABRIC cohorts (summary reported in Table 2.2). COSIFER is used
to identify potential regulators that characterize the disease by applying it on each dataset
separately and by merging the inference results in a consensus network from both cohorts
using SUMMA.

Specifically, the proposed approach, is applied to infer pathway-wise network topologies
in both datasets, with the goal of finding common central genes that potentially characterize
the disease regardless the cohort considered. The main hypothesis is that a central node in
the network can be considered as a proxy for a potential regulator, since highly central nodes
represent genes that are strongly connected with multiple neighbors.

The decision of applying COSIFER at single pathway level is mainly due to two aspects.
First, inference in networks of limited size is computationally more efficient (some of the con-
sidered methods were not able to produce an output for large number of genes). Secondly,
comparing inferred topologies at single pathway level between the datasets enables to find
pathways that are consistently reconstructed between the independent cohorts. Similar path-
ways indicate aspects that are common to both datasets and ideally identify disease-specific
features.

To define pathways, 50 hallmark gene sets [18] from MSigDB are considered. By analyz-
ing the adjacency similarities (see 2.4.7) between TCGA-BRCA and METABRIC estimated
networks for each pathway, it is possible to determine a ranking that defines which gene sets
are reconstructed in a comparable fashion independently from the dataset (for the complete
list of ranked pathways see 2.5).

TCGA-BRCA METABRIC
data type RNASeq mRNA
number of genes 4303 4135
number of samples 1100 1905

Table 2.2: Data statistics. Data considered for breast-specific network reconstruction.

Epithelial-Mesenchymal Transition(EMT) emerges as the most relevant gene set. This is
not surprising, since EMT plays an essential role in regeneration of tissue and cell devel-
opment and its activation has been associated with breast cancer progression and metastatic
behavior [23, 24]. In Figure 2.3 betweenness centrality values and a network representation
for EMT are shown.

25



Chapter 2. COSIFER: Consensus Interaction Network Inference Service

G
A

S
1

FS
T
L1

W
IP

F1
D

P
Y
S
L3

P
LO

D
1

C
T
G

F
N

N
M

T
D

C
N

LO
X

P
LA

U
R

C
O

L5
A

2
E
C

M
2

P
LO

D
3

M
Y
LK

S
E
R

P
IN

H
1

B
M

P
1

G
E
M

P
D

G
FR

B
H

T
R

A
1

C
D

H
1
1

C
O

L6
A

3
G

LI
P
R

1
C

O
L1

A
2

P
R

R
X

1
C

O
L3

A
1

LE
P
R

E
1

T
H

B
S
2

IT
G

A
5

M
M

P
2

C
A

LD
1

LU
M

A
C

T
A

2
FA

P

0.00

0.02

0.04

0.06

0.08

0.10
B

e
tw

e
e
n
n
e
ss

Potential Regulators

Known Transcription Factors

Genes

(a) (b)

Figure 2.3: COSIFER inferred consensus network for Epithelial-Mesenchymal Transi-
tiongene set. This Figure describes the analysis of high confidence regulatory interactions
(pruning edges using a threshold t = 0.9) for the most stable hallmark set, Epithelial-
Mesenchymal Transition. The network has been obtained using the consensus network es-
timated after merging the results from both TCGA-BRCA and METABRIC cohorts. In Panel
(a) potential regulators, sorted using betweenness measure, are reported. The legend shows
the colors associated with the different genes based on their source. The known transcription
factors are recovered from TFcheckpoint [25] (green). The genes reported have a centrality
betweennes above the 75th percentile of the centrality distribution while the ones highlighted
as potential regulators (blue) above the 95th percentile. In Panel (b) a graph reporting all the
high confidence interactions is shown. Edge width is a function of the intensity, node size
depends on their betweenness and the color scheme is the same used in Panel (a).

The network is obtained by merging the topologies reconstructed in single cohorts using
COSIFER consensus approach. The highlighted potential regulators are selected by analyzing
the pathway-wise distributions of the centrality values and by considering extreme values
(see 2.4.8).

The same procedure is repeated for each considered pathway and a list of 239 potential
regulators has been compiled.

To validate the set of genes obtained, a pathway enrichment analysis is performed. We
use Enrichr [26, 27] to test whether regulation-specific processes among GO Biological Pro-
cesses [28, 29] are significantly enriched by the list of potential regulators found.

The results reported in Table 2.3 show how among the significantly enriched processes
(adjusted p-value ≤ 0.05), the majority is composed by regulatory ones. Not surprisingly,
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GO Biological Process Overlap Adjusted p-value
Negative regulation of apoptotic process (GO:0043066) 17/323 4.19E-04
T cell activation (GO:0042110) 6/35 1.83E-03
Positive regulation of ubiquitin protein ligase activity (GO:1904668) 4/11 2.25E-03
Signal transduction (GO:0007165) 26/861 3.92E-03
Sister chromatid cohesion (GO:0007062) 8/97 4.71E-03
Negative regulation of mitotic cell cycle (GO:0045930) 4/18 7.33E-03
Positive regulation of epithelial to mesenchymal transition (GO:0010718) 5/34 7.33E-03
Cellular response to lipopolysaccharide (GO:0071222) 6/55 7.33E-03
Leukocyte migration (GO:0050900) 10/198 1.41E-02
Positive transcription regulation from RNA polymerase II promoter (GO:0045944) 21/712 1.41E-02
Angiogenesis (GO:0001525) 7/93 1.41E-02
Positive regulation of cell proliferation (GO:0008284) 13/326 1.47E-02
Protein destabilization (GO:0031648) 4/26 2.05E-02
Actin filament bundle assembly (GO:0051017) 4/27 2.21E-02
Positive ubiquitin-protein ligase regulation in mitotic cell cycle (GO:0051437) 6/77 2.34E-02
Protein phosphorylation (GO:0006468) 12/309 2.49E-02
Anaphase-promoting complex-dependent catabolic process (GO:0031145) 6/80 2.54E-02
Negative regulation of cell proliferation (GO:0008285) 11/276 3.12E-02
Mitotic cell cycle (GO:0000278) 6/86 3.35E-02
Negative regulation of neuron apoptotic process (GO:0043524) 5/60 4.11E-02
Positive regulation of DNA binding (GO:0043388) 3/16 4.41E-02

Table 2.3: Pathway enrichment analysis of the potential regulators. The set of potential
key regulators across all hallmark pathways have been extracted. The list is then used for an
enrichment analysis to extract GO Biological Processes enriched for the provided list of genes.
The second column indicates the number of genes that were overlapping with the pathway and
the last column indicates the p-value after correction for multiple testing.

positive regulation of epithelial to mesenchymal transition is present with a high significance.
It is interesting to notice also the presence of multiple processes related to proliferation, sug-
gesting that the potential regulators estimated with COSIFER networks analysis might play a
fundamental role in breast cancer development and onset.

2.3 Discussion

Gene regulatory network inference is an important task toward understanding biological sys-
tems and a variety of methods can be applied to reconstruct them from high-throughput data.
It has been observed that no single inference method performs optimally across all datasets.
While each method has advantages and limitations, all methods suffer from weaknesses either
in terms of robustness or precision across heterogeneous datasets, which are characterized by
different error sources, noise levels as well as origin and biological processes covered.

The wisdom of crowds (WOC) is a powerful approach to use the collective knowledge
of a community instead of individual knowledge [30] and has demonstrated robustness and
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superior performance across species and datasets [2]. In this paper, we have applied this
concept and developed a Consensus Interaction Network Inference Service (COSIFER) to
address one of the long-standing challenges in molecular and computational biology, which is
to uncover and model gene regulatory networks.

COSIFER integrates a wide range of network inference methods that have been selected for
their reported superior accuracy as well as their diverse theoretical foundation, so to capture
a broader range of the true signal. Furthermore, COSIFER implements different consensus
strategies, including the Wisdom of the Crowds [2] (WOC) and the more recently published
method SUMMA, which exploits a weighted rank aggregation approach [15].

We have tested COSIFER on a collection of in silico benchmark datasets, generated using
GeneNetWeaver, an open-source molecular data simulator, for which the underlying interac-
tion network structure was known. We observe that while the size of network slightly influ-
ences the performance of the methods, with higher variability observed in worse performing
methods, all tested methods show robustness to the different sources of noise investigated, i.e.,
Gaussian, lognormal and microarray noise models. Overall, all consensus methods returned
networks of high accuracy and are robust to weak inference results of less precise methods.
Thus, the wisdom of the crowds (WOC and WOC (hard)) and weighted rank aggregation
approaches (SUMMA) represent a promising strategy to accurately reconstruct networks of
biological systems.

We have also applied COSIFER to reconstruct the network topologies of two different breast
cancer datasets, namely the TCGA-BRCA and METABRIC cohorts. The inferred networks
were useful to detect potential cancer regulators and central genes whose dysregulation might
produce strong perturbations in cellular homeostasis without using any prior knowledge on
known transcription factors-targets associations.

We examined inference robustness across both datasets at a pathway level, using for this
task a collection of 50 hallmark gene sets from MSigDB [18]. We identified the Epithelial-
Mesenchymal transition (EMT) gene set as the pathway with the highest reconstruction simi-
larity between cohorts, which reflects the central role of this pathway in breast cancer etiology
and a higher content of disease–specific information compared to other pathways.

In conclusion, COSIFER is an useful service to automatically reconstruct molecular net-
works using a consensus approach. Currently COSIFER includes ten different inference meth-
ods exploiting very different theoretical approaches, and three different consensus approaches.
We have demonstrated COSIFER performance in a synthetic dataset and in two breast cancer
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cohorts. To facilitate its use, we have implemented COSIFER as a web service freely available
to the scientific community.

2.4 Methods

2.4.1 Web Application

COSIFER is available as a service on IBM Cloud for the community. Access to the applica-
tion is free and credentials can be obtained registering on http://sysbio.uk-south.
containers.mybluemix.net/cosifer. The currently deployed version of the appli-
cation can estimate a consensus network given an expression matrix (samples on rows and
genes on the columns) and a list of gene names. The maximum supported network size at
the moment is 250 nodes. The consensus network estimated can be interactively visualized in
the web app or downloaded in tabular format within 24 hours from it is creation for further
analysis.

2.4.2 Network Inference Methods

This section presents a variety of unsupervised methods whose implementations are provided
by COSIFER.

Correlation

Basic correlation based approaches such as Spearman and Pearson correlation are used to
infer a relevance network where an interaction between network components is present if
their expression levels are significantly correlated. The commonly used Pearson correlation
coefficient is a measure of linear correlation and defined as:

corr(Xi, Xj) =
cov(Xi, Xj)

σ(Xi)σ(Xj)
,

where X is the expression level of gene i or j, respectively, σ(·) the standard deviation and
cov(·, ·) the covariance. Spearman’s correlation coefficient simply is Pearson’s correlation
coefficient between the rank values of two variables and thus assesses monotonic relationships.
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Both correlation-based approaches are corrected for multiple testing using Benjamini-Hochberg

procedure [31].

Mutual Information

To infer interactions between network components the concept of mutual information can be
applied as well. This measure assesses the mutual dependence between two expression levels
Xi and Xj and is defined as:

I(Xi, Xj) =
∑
xi∈Xi

∑
xj∈Xj

P (xi, xj)log
P (xi, xj)

P (xi)P (xj)
,

where P (xi, xj) is the joint probability distribution of Xi and Xj , while P (xi) is the marginal
distribution of Xi.

Several algorithms are based on mutual information measure. So is the Context Likelihood

of Relatedness (CLR) algorithm, which predicts an interaction between network components
based on their mutual information but takes the background distribution of I(Xi, Xj) into ac-
count [6]. MRNET uses the subset selection algorithm Minimum Redundancy Maximum Rele-

vance (MRMR) to infer the regulators of each gene based on the pairwise mutual information
between target and regulator genes [7]. The Algorithm for the Reconstruction of Accurate

Cellular Networks (ARACNE) is another technique based on pairwise mutual information as
well as the Data Processing Inequality (DPI) [4]. DPI states that:

I(Xi, Xk) ≤ min (I(Xi, Xj), I(Xj, Xk))

if a gene Xi interacts with Xj through gene Xk. The weakest edge of a triplet is removed if
the interaction triangle violates the DPI beyond a specified tolerance threshold ε (ε = 0.2).
The idea behind using the DPI is that it allows us to remove edges containing redundant
information. ARACNE, CLR and MRNET are all implemented in the R/Bioconductor
package minet [5].

Regression

Trustful Inference of Gene Regulation using Stability Selection (TIGRESS) is next to GE-
NIE3 and FunChisq the only method which is able to predict interaction directions of the
network [9]. The principle of feature selection is applied to infer the regulators of a gene.
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For this, the Least Angle RegreSsion (LARS) combined with stability selection is used. If the
expression levels of genes are correlated, the performance of LARS is significantly reduced.
Thus, stability selection is conducted by applying a randomized LARS many times on ran-
domly perturbed data. Each feature is scored with respect to the number of times it is selected.
This score then quantifies the evidence that a target gene is regulated by another gene. We
perform 1000 runs of the stability selection to compute the scores (score=’area’), and 5 LARS
steps, as well as α = 0.2 which controls the random re-weighting of each expression array in
each stability selection run.

The method graphical Lasso (GLasso) estimates the sparse inverse covariance matrix with
a `1-penalty [8]. The inverse covariance matrix represents partial correlations between gene
pairs in the associated network. GLasso’s objective function for estimating the sparse inverse
covariance matrix Θ is thus defined as:

max
Θ

log(det(Θ))− tr(SΘ)− ρ‖Θ‖1,

where S is the sample covariance matrix computed for the dataset. The problem can also be
easily extended to the case that uses a penalization matrix P to exploit prior information on
the network to be estimated:

max
Θ

log(det(Θ))− tr(SΘ)− ‖P ∗Θ‖1.

The penalization matrix entries correspond to relations between entities and can be set to
arbitrary low values for well known interactions and high values for entities that are known
to be unrelated. Once the sparse inverse covariance Θ is estimated it is possible to compute
partial correlations between all pairs of variables and build a graph defined by:

Gij =

−
Θij√
ΘiiΘjj

i 6= j

1 otherwise
.

Other Approaches

Similarly to TIGRESS, Gene Network Inference with Ensemble of Trees (GENIE3) transforms
the task into a feature selection problem assuming the expression of each gene to be a func-
tion of the noisy expression of the other genes in the network. So each sub-problem is a
supervised, non-parametric regression problem solved using regression trees. Two tree-based
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ensemble methods based on randomization are used, namely Random Forests (RF) and Extra-

Trees (ET) [12]. For this inference task, RF is used as tree-based ensemble method. The
expression of each target gene k is modeled as a function of all other genes. A score Ij→k
quantifies the importance of each regulatory event (j → k). The individual rankings obtained
from each sub-problem are then aggregated to get a global ranking of all regulatory links.
Since the splitting variable at each node of a decision tree is chosen from a randomly sampled
data subset and each decision tree of the RF is constructed from a random subset of sample,
the result is not deterministic and varies between runs. GENIE3 uses 1000 trees as default
parameter for the inference. The square root of the total number of candidate regulators is
used as the number of candidate regulators randomly selected at each tree node.

Like GENIE3, Joint Random Forest (JRF) is based on RF [10]. Unlike other network
inference methods, this approach simultaneously estimates multiple co-expression networks
by integrating different data sources such as protein and gene expression data By requiring
the class-specific RFs to use the same genes for the splitting rules, information between gene
and protein expression data is borrowed. COSIFER applies the inference only to one data
type and thus, JRF reduces to GENIE3. Due to differences in the implementation, GENIE3
outperforms JRF, even though they are based on the same theoretical approach. JRF uses 500
trees as default parameter for the inference.

FunChiSq bases its inference on a functional χ2 test. To run the algorithm the data have to
be processed to discretize each variable. This has been implemented as described by Zhang
et al. [11]. The discretization is achieved using k-means clustering, where k is estimated
using a Gaussian mixture model that optimizes the Bayesian Information Criterion (BIC). The
minimal value k can take is 3, its maximum is 7. Then, a χ2-test is performed for every pair of
genes given the contingency table of size ni× nj , where n is the number of estimated clusters
of a gene. The χ2

ij-statistic indicates evidence for the existence of a functional interaction from
gene i to gene j. The predicted interactions are directed.

For the above methods, no parameter optimization is performed but instead the default
parameter preferences are used for subsequent inference if not stated differently.

Consensus Methods

Given that the methods to be integrated into a consensus prediction and so the rank of one spe-
cific interaction determined by a method are statistically independent, a consensus approach
outperforms individual results. The central limit theorem of probability theory states that the
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more predictions are averaged, the distribution of average ranks will approach a normal distri-
bution whose variance shrinks with increasing number of integrated methods [2].

WOC and WOC (hard) have been implemented to combine individual network predictions
in an analogous fashion. The weighted adjacency matrices are scaled to obtain a comparable
interaction score between methods. Thus, for each method, the weights are scaled between
0 and 1 by applying feature rescaling. Next, the scaled interaction scores are summed and
an unweighted rank average over all methods is taken. WOC ignores methods not providing
predictions in the rank average while WOC (hard) considers a zero contribution. The score
obtained is the interaction score of the resulting consensus network.

Similarly SUMMA, combines scores from weighted adjacency matrices but weights the
rank contribution from each method proportionally to its AUROC (Area under the Receiver
Operating Characteristic) [15]. Under the assumption of mutual conditional independence be-
tween predictions from different methods such weights can be computed from the covariance
matrix of the ranked prediction in a completely unsupervised fashion. The score computed by
SUMMA is the interaction score of the resulting consensus network.

2.4.3 In Silico Data

The gene expression data have been generated using GeneNetWeaver, a tool for in silico

benchmark generation and performance profiling of network inference methods [21]. Gene-
NetWeaver extracts sub-networks from known transcription networks such as those of S. cere-

visiae and E. coli. By applying detailed dynamical models of gene regulatory networks emu-
lating transcription and translation with ordinary and stochastic differential equations, in silico

data are generated.

In the following, ODE based simulations of S. cerevisiae sub-networks of varying network
component numbers (100, 500, 1000 and 2000) with differing number of samples (100, 500,
1000 and 2000) each have been adopted. The subsets have been randomly extracted from a
network based on well-studied pathways in S. cerevisiae containing 4441 nodes with 12873
edges [32]. The ODE simulations include both, transcription and translation processes. Gene-
NetWeaver implements measurement noise independently from molecular noise and provides
different noise models such as Gaussian noise, lognormal noise as well as a noise observed
in microarrays [22]. Steady state rather than time series expression data of the wild-type (un-
perturbed network) have been used to validate network inference. For each dataset, variables
have been standardized to mean zero and unit variance.
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2.4.4 Breast Cancer Data

COSIFER has been applied to two different breast cancer cohorts: METABRIC and TCGA-
BRCA.

In METABRIC case, the proposed approach is used to analyze 1905 samples where Illu-
mina Human v3 microarray (mRNA) measurements have been considered. All primary data
of the METABRIC study are provided at the European Genome-phenome Archive (EGA) un-
der study accession number EGAS00001001753. The gene expression data of the patients
from the original METABRIC publication are freely available 1. The data were normalized as
described by Margolin et al. [33].

In TCGA-BRCA case, Illumina HiSeq 2000 RNA Sequencing Version 2 data of breast
tumor samples have been obtained from FireBrowse web API 2 using data version 2016_01_-

28. The level 3 gene expression data have been processed using two analysis pipelines [34,
35].

For each dataset, variables have been standardized to mean zero and unit variance.

2.4.5 Performance Evaluation

The precision accuracy of each algorithm is measured by comparing the topology of the in-
ferred network with the true network. Since most of the performed methods predict undirected
rather than directed interactions, self-interactions and interaction direction are ignored for the
accuracy assessment of the methods. Measurement of inference accuracy is based on how
many edges are correctly inferred given a threshold and is assessed using Receiver Operating

Characteristic (ROC) curves.

To draw the ROC curve, the false (FPR) and true positive rate (TPR) are needed. The false
positive rate is defined as

FPR =
FP

TN + FP

and the true positive rate as

TPR =
TP

TP + FN

1https://www.synapse.org/#!Synapse:syn1757063, as of November 2018
2http://firebrowse.org/api-docs/, as of November 2018
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also known as recall or sensitivity, where TP are true positives, TN true negatives, FP are
false positives and FN are true negatives. The ROC curve is quantified by the Area under the

Receiver Operating Characteristic curve (AUROC). The area under a curve is defined as

AUC =
1

2

n∑
i=1

(Xi −Xi−1)(Yi + Yi−1)

where Xi is the false positive rate and Yi the true positive rate for the i-th output in the ranked
list of predicted edge weights. While an AUC of 1.0 indicates perfect prediction, an AUC of
0.5 indicates a performance comparable to a random estimator.

2.4.6 Key regulator detection

In order to detect important regulators of the network, the centrality of each network com-
ponent is computed. A betweenness centrality metric [36] for all the genes contained in the
networks has been calculated. Most central genes, with respect to this metric, should rep-
resent the main actors in regulatory events given their high-intensity interactions and strong
connectivity [37]. The betweenness centrality is defined as

δB(v) =
∑
s 6=v 6=t

σst(v)

σst
,

where σst(v) is the number of shortest geodesic paths from node s to node t passing through
v and σst the total number of shortest geodesic paths between s and t.

2.4.7 Graph similarity analysis

To quantify the similarity of each pathway inferred from two different cohorts, the weighted
adjacency similarity between the two inferred pathway networks is computed. Adjacency sim-
ilarity is the sum of equal entries in the adjacency matrix, given a vertex ordering determined
by the vertex labels. It’s a weighted count of the number of edges which have the same source
and target labels in both graphs. For undirected weighted graphs, it is defined as

S(A1, A2) = E − d(A1, A2),
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where

d(A1, A2) =
∑
i<j

|A(1)
ij − A

(2)
ij |

is the distance between graphs, Ak with k ∈ {1, 2} are the weighted adjacency matrices of
the graphs considered, and E =

∑
i<j |A

(1)
ij | + |A(2)

ij |. The weights are normalized using
S(A1, A2)/E.

2.4.8 Gene Enrichment Analysis

Gene enrichment analysis was performed using Enrichr [26, 27] through gseapy 1. The selec-
tion of potential regulators tested for enrichment has been performed analyzing the distribution
of the betweenness centrality in each gene set. For each pathway, genes with a betweenness
centrality value above the 95th percentile, considered as extremely central, have been com-
bined in a list of 239 candidates.

Declarations

Acknowledgments

The project leading to this application has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement No 668858.

Author contributions

See Chapter 8 for details about contributions and copyright.

Competing financial interests

The authors declare no competing financial interest.

1https://github.com/BioNinja/GSEApy, as of November 2018

36

https://github.com/BioNinja/GSEApy


Chapter 2. COSIFER: Consensus Interaction Network Inference Service

Availability of data and materials

Networks inferred and potential regulators produced and presented in this work are avail-
able via download link 1. COSIFER is freely available and can be accessed via http:

//sysbio.uk-south.containers.mybluemix.net/cosifer. A set of anony-
mous credentials can be created for reviewers.

1https://ibm.box.com/s/o6glkb7lrlgrmlng0dr6ft6eivmdzknz, as of November 2018

37

http://sysbio.uk-south.containers.mybluemix.net/cosifer
http://sysbio.uk-south.containers.mybluemix.net/cosifer
https://ibm.box.com/s/o6glkb7lrlgrmlng0dr6ft6eivmdzknz


Chapter 2. COSIFER: Consensus Interaction Network Inference Service

2.5 Supplementary information

Synthetic data evaluation
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Figure 2.4: Evaluation of the performance of COSIFER with repsect to simulation pa-
rameters. AUC values of each network inference method as shown in Figure 2.2a, with each
subplot showing the data in respect to a certain parameter. top Boxen plot (Letter-value plot)
of the AUC values with respect to network size. middle Boxen plot of the AUC values with
respect to sample number. bottom Boxen plot of the AUC values with respect to noise type.

38



Chapter 2. COSIFER: Consensus Interaction Network Inference Service

Pathway similarity between cohorts
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Figure 2.5: Pathway similarities between cohorts. Similarity analysis of gene regulatory
networks estimated with COSIFER for the hallmark gene sets between the METABRIC and
TCGA-BRCA cohorts. Pathways with high similarity between cohorts are expected to con-
tain a higher degree of breast cancer–specific information compared to pathways with low
similarity where the cohort effects are influencing the network. The most similar cancer hall-
mark pathways across cohorts is the pathway Epithelial-Mesenchymal Transition, highlighted
in light blue.
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Abstract

In recent years, the number of biomedical publications has steadfastly grown, resulting in
a rich source of untapped new knowledge. Most biomedical facts are however not readily
available, but buried in the form of unstructured text, and hence their exploitation requires a
time-consuming manual curation of published articles. Here we present INtERAcT, a novel
approach to extract interactions from a corpus of biomedical articles related to a broad range
of scientific domains in a completely unsupervised way. INtERAcT exploits vector repre-
sentation of words, computed on a corpus of domain specific knowledge, and implements a
new metric that estimates an interaction score between two molecules in the space where the
corresponding words are embedded.

An extensive validation of INtERAcT against other commonly adopted similarity metrics
varying embedding and algorithm parameters is performed. We evaluate INtERAcT using
STRING database as a benchmark and training embeddings on PubMed abstracts and full text
papers. We show that our proposed approach gives accurate estimates of the network topology

1In revision, pre-print available [1]. See Chapter 8 for details about contributions and copyright.
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and it is highly robust to parameter choices. INtERAcT performs especially well in the regime
of small corpus sizes. To demonstrate the capabilities of INtERAcT, we reconstruct the molec-
ular pathways of ten different cancer types using a corpus of disease-specific articles for each
cancer type. Our metric outperforms currently adopted approaches for similarity computation
in the word-space and identifies known molecular interactions in all studied cancer types. Fur-
thermore, our approach does not require text annotation, manual curation or the definition of
semantic rules based on expert knowledge, and hence it can be easily and efficiently applied to
different scientific domains. To conclude, INtERAcT helps summarize the understanding of
a specific disease using the published literature in an automated and completely unsupervised
fashion. INtERAcT is freely available as a web service.

3.1 Introduction

As the number of scientific publications continues to grow exponentially, search engines
such as PubMed 1 provide an unprecedented amount of information in the form of unstruc-
tured written language. With the accelerating growth of available knowledge, particularly in
biomedical literature, and the breakdown of disciplinary boundaries, it becomes unfeasible to
manually track all new relevant discoveries, even on specialized topics. As an example, recent
advances in high-throughput experimental technologies have yielded extensive new knowl-
edge about molecular interactions in the cell; however most of this knowledge is still buried
in the form of unstructured textual information only available as written articles.

As of October 2017, PubMed comprises more than 27.8 million references2 consisting of
biomedical literature from MEDLINE, life science journals, and online books. Most refer-
ences include links to full text content from PubMed Central R© (PMC 3), a free full text archive
of biomedical and life sciences journal literature, or publisher web sites. Currently 14.2 mil-
lion PubMed articles have links to full text articles, 4.2 million of which are freely available.
The numbers remain high even when focusing on specific fields such as prostate cancer. For
instance, a simple query 4 for prostate cancer related papers on PMC returns 143,321 publica-
tions5.

While a fraction of the information currently available in biomedical publications can be

1https://www.ncbi.nlm.nih.gov/pubmed/, as of November 2018
2The current size of the database can be obtained by typing "1800:2100[dp]" into the search bar.
3https://www.ncbi.nlm.nih.gov/pmc/, as of November 2018
4https://www.ncbi.nlm.nih.gov/pmc/?term="prostate+cancer", as of November 2018
5Number obtained as of 12 October 2017
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extracted from public databases, the rate at which new research articles are published greatly
exceeds the rate at which this information can be currently processed, resulting in an ever
wider gap between available knowledge and easily accessible information, e.g., information
stored in a database. Clearly the development of novel methodologies that can automatically
analyze textual sources, extract facts and knowledge, and produce summarized representations
that capture the most relevant information are needed more than ever.

We present here a novel approach to automatically extract knowledge from biomedical pub-
lications. Our approach is generic and can be applied to any knowledge domain, but we focus
here, as a proof of concept, on the problem of identifying and extracting Protein–Protein In-
teractions (PPIs) from the biomedical literature related to prostate cancer (PC), a complex
disease with multi-factorial etiology.

PC is the second most common cancer type and the fourth leading cause of cancer death in
men worldwide [2]. Despite the large number of newly diagnosed cases, the majority of them,
in older men, are clinically insignificant, meaning that the life expectancy of the patient is
shorter than the time required by the disease to manifest any symptoms [3]. However a small
fraction of new cases are aggressive cancers that require intervention. The current prognostic
factors are not sufficient to precisely stratify these two groups [4], and thus PC is prone to
overdiagnosis and treatment associated with debilitating side effects[5].

While various approaches to automatically extract PPIs information from unstructured text
are already available, many of these methods require feature engineering and expert-domain
knowledge for good performance, hence preventing full automation. Commonly proposed
methodologies exploit machine learning approaches [6, 7], data mining tools [8], co-occurrences [9–
12], or rules-based text mining [13].

Recently, word embedding techniques based on deep learning have been proposed as a more
advanced approach to process textual information in an unsupervised fashion. Word embed-
ding is a term used to identify a set of methods for language modeling and feature learning,
where words in a vocabulary are mapped into vectors in a continuous, high dimensional space,
typically of several hundred dimensions [14]. In this representation, words that share a simi-
lar context in the corpus are located in close proximity in the word embedding vector space.
Besides representing words’ distributional characteristics, word vectors can capture the se-
mantic and positional information of a word in a text, providing a richer vector representation
than frequency-based approaches. Word vector representations have gained broad recognition
thanks to the recent work of Mikolov et al. [15, 16], who demonstrated that word embeddings
can facilitate very efficient estimations of continuous space word representations from huge
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datasets (~1.6 billion words).

Since this seminal work, word embeddings based on neural networks have been adopted
to address different tasks of natural language processing. For instance, word embeddings
have been used for the task of event trigger identification [17], i.e., to automatically detect
words or phrases that typically signify the occurrence of an event. Zhou et al. [18] used a
combination of features extracted from a word embedding plus syntactic and semantic context
features to train a support vector machine classifier for the task of identifying event triggers.
Such approaches have been shown to be efficient in identifying the semantic and syntactic
information of a word and incorporate it into a predictive model. Word embeddings have
also been used as token features, i.e., semantic units of words and characters extracted from a
corpus for further processing, to extract complete events represented by their trigger words and
associated arguments [19]; to build knowledge-regularized word representation models that
incorporate prior knowledge into distributed word representations for semantic relatedness
ranking tasks [20]; and to simultaneously analyze the semantic and contextual relationship
between words [21]. Finally, alternative deep learning approaches based on autoencoders and
a deep neural network have been proposed to extract PPIs, where the features are extracted
by a Named Entity Recognition (NER) module coupled to a parser and principal component
analysis [22]. While these methodologies have shown the versatility of word embeddings to
support text analysis through current natural language processing tools, approaches that can
automatically information from unstructured text in a completely unsupervised manner are
still missing. To bridge this gap we present our methodology hereby referred as INtERAcT
(Interaction Network infErence from vectoR representATions of words).

Our approach can be summarized as follows. We first create a word embedding from a
corpus of interest. Next, we cluster the learned word vectors in the embedded word space and
find groups of words that convey a close semantic and contextual similarity. Then we develop
a novel similarity measure based on the Jensen-Shannon divergence to predict interactions
from the embedded word space. As a proof of concept, we focus on proteins and predict PPIs
using a biomedical corpus of cancer-related publications.

We benchmark INtERAcT against known similarity metrics for word vectors, such as the
Euclidean metric, cosine and correlation distances, using the STRING 1 database [23] as a
ground truth. We test the performance of INtERAcT on a wide range of parameters using
embeddings built both using article abstracts and full texts. Our method exhibits a strong ro-
bustness against parameters choices and good accuracy, especially in the small corpus regime.

1https://string-db.org/, as of November 2018
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To demonstrate the potential of our approach in this regime, INtERAcT is applied to mul-
tiple sets of publications related to 10 different cancer types showing superior performance
compared to the other considered metrics.

3.2 Results

3.2.1 Applying INtERAcT to prostate cancer publications

Building a word embedding specific for prostate cancer

In the following section we describe the application of INtERAcT to the problem of recon-
structing a prostate cancer pathway. Text pre-processing and building of the word embedding
follows the methodology described in Section 3.4. Briefly, a text corpus is assembled by
downloading the XML version of ~140,000 PubMed Central publications matching the query
"prostate cancer". Only abstracts are processed, as we find they provide a concise and cleaner
summary of the article’s main findings than the article full text (see Figure 3.7), while sub-
stantially reducing the computational cost associated with building the embedding.

Rare words and bi-grams occurring less than 50 times in the corpus are removed. The
remaining sentences are tokenized, i.e., segmented into linguistic units, and used to build a
word embedding. After processing (see Section 3.4.1), our dictionary is composed of ~21,000
single words and common bi-grams, e.g., prostate_cancer, cell_proliferation and gene_expres-
sion. Using this dictionary, we build a word embedding using a vector representation of 500
dimensions and a context window of nine words (4 words to the right and 4 to the left of each
target word). These parameters have been chosen as those leading to optimal performance
after extensive space parameter exploration (see Section 3.4.4 and Figures 3.5 and 3.6).

Applying INtERAcT

The word vectors are clustered into groups conveying similar semantic meaning using K-
means with 500 clusters. We next identify the k-nearest neighbors of each protein as described
in Section 3.4. The neighborhood size is set to k = 500. These parameters are also selected
making use of the results obtained in Section 3.4.4.

We use neighbors’ cluster assignment distribution of selected words to calculate a pairwise
similarity scores based on the Jensen–Shannon divergence (JSD) as shown in Equation 3.5.
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This last step is performed on a subset of words, in this example, a list of molecular entities
defined using UniProt [24]. We interpret this JSD-based distance metric as the likelihood of a
PPI. See Section 3.4 and Fig. 3.1 for details.
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Figure 3.1: Schematic representation of INtERAcT. Text is used as input to generate a word
embedding. The word vectors are clustered into groups of similar semantic meaning and
the distributions of each word’s neighbors across clusters are used to compute and predict
interactions between molecular entities.

To benchmark the inferred network we focus on the list of molecular entities reported in
the prostate cancer pathway as defined by the Kyoto Encyclopedia of Genes and Genomes 1

(KEGG) [25, 26] and apply INtERAcT to the task of reconstructing the connectivity between
these entities. Out of the 87 molecular entities that constitute the KEGG pathway, 67 are found
in the embedding, and thus can be used as a validation set.

We interrogate INtERAcT and query the interactions between the 67 proteins of our vali-
dation set. Fig. 3.2a graphically shows the top-50 inferred interactions in our prostate cancer
gene validation set. The full set of interactions with similarity scores can also be found as

1http://www.genome.jp/dbget-bin/www_bget?pathway+map05215, as of November 2018
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a table in the Supplementary Material 3.2. Please, notice that while KEGG provides a well-
established reference for function-specific pathways, KEGG merges gene family members in
a single node-entity (e.g., AKT1, AKT2 and AKT3 become AKT), and hence a direct compar-
ison between KEGG prostate cancer pathway and INtERAcT inferred results is not possible.

Comparing INtERAcT to STRING

The results from INtERAcT with a prostate cancer specific embedding are compared to other
metrics by benchmarking against STRING (version 10.5). For the purpose of benchmarking,
we use the combined score provided by STRING, as using a variety of interaction evidences
approximates better the true network connectivity than confidence scores predicted using a
single method (see Section 3.4.4).

Figure 3.2b reports a summary of our findings. The Receiver Operating Characteristic
(ROC) curve for the INtERAcT score (red curve), a cosine distance-based score (orange
curve), a correlation-based score (blue curve) and an Euclidean distance-based score (green
curve) are comparatively shown. INtERAcT achieves a 0.72 AUC, significantly better than
both cosine and correlation scores, which achieve a 0.61 AUC. The Euclidean based distance
measure performs closely to a random predictor with an AUC value of 0.50. This poor per-
formance is expected as the Euclidean distance, and more generically, Lk norms, tend to map
pairs of points to uniform distances in high dimensional spaces [27].

The curves’ trends reinforce the intuition that a neighborhood-aware metric is better able to
capture functional associations from unstructured text than methods that limit their analysis to
the positions of word vectors in the embedding.

As an additional measure of agreement, we also compute the rank correlation between IN-
tERAcT and STRING scores. To compute the correlation values, all predicted interactions by
INtERAcT and STRING have been used without applying any confidence cut-off. INtERAcT
and STRING scores used to compute the correlations are provided as additional supplementary
tables. The resulting correlation value is positive and very significant (ρ = 0.39, p = 3.2e−68),
and is higher compared to the correlation obtained using cosine, correlation and Euclidean
distance-based metrics (ρ = 0.30, p = 4.0e−39, ρ = 0.30, p = 2.9e−39, and ρ = 0.19,
p = 1.3e−16 respectively). INtERAcT outperforms again cosine, correlation and Euclidean
distance-based metrics.

We note that while the correlation values obtained for INtERAcT and correlation-based or
cosine-based scores seem to be relatively close, their difference is highly significant with a p-
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value of p = 0.001 when the number of interaction scores used to compute the correlations is
taken into account (number of interactions = 1825). The significance of the difference of two
correlation values can be computed using the Fisher z-transformation [28], which transforms
the Spearman correlation values into normally distributed variables whose difference can be
evaluated using a standard t-test.
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Figure 3.2: (a) Top 50 prostate cancer protein-protein interactions inferred by INtER-
AcT. The prostate cancer gene set has been defined according to the Kyoto Encyclopedia
of Genes and Genomes (KEGG) prostate cancer pathway, and includes molecular entities
known to be important in prostate cancer onset and development. The interactions and associ-
ated scores have been computed using a word embedding trained on ~140000 prostate cancer
open-access abstracts from PubMed Central and INtERAcT. Node size is proportional to node
degree while edge width is proportional to the intensity of the interaction. (b) Performance
of INtERAcT on a prostate cancer gene validation set compared to other distance mea-
sures using STRING as a ground truth. We use ROC (Receiver Operating Characteristic)
curves to quantify the accuracy of the inferred interactions in a set of prostate cancer-related
genes. INtERAcT (red curve) significantly outperforms alternative, commonly used metrics
on a word embedding such as a cosine distance-based similarity (orange curve), correlation-
based similarity (blue curve) and a similarity score based on the Euclidean distance (green
curve).

3.2.2 Applying INtERAcT on other cancer pathways

We next focus on investigating the generalization of INtERAcT to other knowledge domains.
For this task, we extend our analysis to nine additional cancer types: acute myeloid leukemia,
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bladder cancer, chronic myeloid leukemia, colorectal cancer, glioma, small cell lung cancer,
non-small cell lung cancer, pancreatic cancer and renal cell carcinoma.

The gene sets for each cancer type are taken from their respective cancer-specific pathway
as annotated in KEGG. These cancer types are selected according to two criteria: first, there
is a cancer-specific KEGG pathway to define a gene set, and second, we could retrieve at
least 10000 cancer-specific publications in PubMed Central. The second criterion is needed in
order to obtain a corpus size that guarantees a good reconstruction of the word vectors when
building the word embedding. We then defined new query words specific to each cancer type
and repeated the procedure described in 3.2.1. The full list of used query words for each
cancer type can be found in the Supplementary Material (Section 3.5.5),

In Figure 3.3 we report the average ROCs for the four considered distance metrics: INtER-
AcT (red curve), cosine (orange curve), correlation (blue curve) and Euclidean (green curve)
metrics. In order to obtain a confidence for the curves using the different pathways considered,
we built empirical confidence intervals (CIs). The CIs are generated performing an empirical
bootstrap on the different pathways. Namely, for each false positive rate level, values are sam-
pled with replacement from the true positive rate values obtained from the different pathways
to generate an empirical distribution and build the intervals. The CIs at level 68% are reported
(one standard deviation from the mean) in Figure 3.3.

Finally, we compare the similarity of scores predicted by INtERAcT and STRING by com-
puting the Spearman rank correlation between both sets of scores. The values are shown in
Table 3.1. For all analyzed pathways, the correlations are positive with a strongly significant
p-value (the p-values range from 10−08 to 10−70).

Our findings suggest that while having a large corpus is of paramount importance to ob-
tain accurate word vector representations, INtERAcT is still able to find strong correlations
with STRING score used as ground-truth even when the size of the corpus is reduced (see Ta-
ble 3.1). For instance, the highest correlation value 0.55 is found in colorectal cancer, which
has the second highest number of publications used to build the embedding. However, prostate
cancer only shows a moderate correlation of 0.39, while having the largest number of publi-
cations used. We hypothesize that while having a large corpus of publications is beneficial to
build a high quality embedding, very active fields of research where a high number of pub-
lications are available may also be prone to having a high rate of noisy publications. Here
noise can take the form of low quality publications that report inconsistent results, or studies
based on high-throughput analyses with a high false discovery rate. We also note that in tak-
ing STRING as ground truth we are implicitly absorbing its false and true discovery rates into
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Figure 3.3: INtERAcT performance compared to other distance measures using STRING
as a ground truth. We use ROC (Receiver Operating Characteristic) curves to quantify the
quality and performance of inferred interactions. The curves here reported refer to the in-
ference performed on the KEGG cancer pathways considered in the analysis. Using naive
approaches such as a similarity based on the Euclidean distance (green curve) between word
vectors led to poor results. Other methods such as cosine-based similarity (orange curve) or
correlation-based similarity (green curve) showed an improvement. INtERAcT (red curve)
achieved the best performance predicting interactions reported in STRING. The confidence
intervals (CIs) at level 68% are reported (one standard deviation from the mean). To generate
the empirical distribution we used sampling with replacement at different false positive rates
of the true positive rates given by the different pathways. The confidence intervals reported
are at level 68% (one standard deviation from the mean)

our error rates. For instance, interactions reported by STRING that might occur in a different
context but not in cancer (e.g., mouse interactions not occurring in cancer) will get penalized
as false negatives if INtERAcT correctly predicts them as a non-interaction.

Taken all together and within the limitation of not having an unbiased ground truth to eval-
uate our predictions, INtERAcT shows a good agreement with the information reported by
STRING. Our results indicate that our unsupervised approach is able to recapitulate to a large
extent the knowledge obtained through manual curation of scientific literature.

3.3 Discussion

We have presented, INtERAcT, a fully unsupervised method to automatically extract context-
specific information from a corpus of biomedical publications, without any doubt, the fastest
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Pathway Correlation p-value Proteins Papers

KEGG Acute Myeloid Leukemia 0.401425 1.06e-19 34 34532
KEGG Bladder Cancer 0.436745 1.67e-19 30 35331
KEGG Chronic Myeloid Leukemia 0.386765 1.50e-09 23 14247
KEGG Colorectal Cancer 0.550515 1.75e-70 48 118336
KEGG Glioma 0.359502 1.20e-18 36 64712
KEGG Small Cell Lung Cancer 0.315544 1.68e-08 28 32233
KEGG Non Small Cell Lung Cancer 0.406438 1.27e-17 31 67048
KEGG Pancreatic Cancer 0.372069 6.40e-30 47 62668
KEGG Prostate Cancer 0.392346 3.20e-68 67 132357
KEGG Renal Cell Carcinoma 0.436745 1.67e-19 30 37169

Table 3.1: INtERAcT-STRING rank-correlation on KEGG’s cancer pathways. The table
reports the Spearman correlation and p-values of INtERAcT predictions and STRING-derived
scores for different KEGG pathways. The number of proteins in each pathway, as well as the
number of papers used to build each embedding is also reported. For all analyzed pathways
and cancer types, the correlation is positive and highly significant.

growing source of scientific information. As a proof of concept, we have focused on the
problem of extracting protein-protein interactions from cancer-specific corpora, although our
approach can be easily applied to other scientific domains and research questions. The strength
of INtERAcT lies in being completely unsupervised: no time-consuming manual curation,
expert knowledge or labelling of the text is required for knowledge extraction.

We have described the steps to reconstruct a context-specific pathway from prostate cancer
publications. When comparing the inferred interactions to STRING, our method outperforms
other scores built on commonly used metrics (cosine, correlation and Euclidean metric). On a
more extensive validation on multiple cancer pathways, the results remain consistent and we
have a significant agreement on the information reported by STRING. We would like to high-
light that STRING predicts interactions using a combined score that integrates information
from many disparate data sources including genomic proximity, gene fusion events, phyloge-
netic co–occurrences, homology, co–expression, experimental evidence of interaction, simul-
taneous annotation in databases and automatic text-mining, where text-mining is done using
a combination of co-occurrences and natural language processing based on a rule-based sys-
tem [29]. Opposed to this, our methodology is a completely unsupervised approach that does
not require expert knowledge or rules setting. When focusing on reconstructing a prostate
cancer pathway, we achieved a 0.72 AUC score using STRING as benchmark. We notice that
the choice of benchmark is likely overpenalising the evaluation of the precision and recall of
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our method, as STRING reports many interactions that are not cancer-specific.

We have also performed a systematic exploration of the space of parameters in order to iden-
tify those leading to an optimal performance. Remarkably, on the large corpus size regime (~4
millions freely available publications in PubMed), INtERAcT is very robust to changes in pa-
rameters at the price of a small decrease in performance compared to the peak performance
of other metrics. This is in stark contrast to other similarity metrics that, while achieving a
peak performance slightly superior to INtERAcT, show very variable results as a function of
parameters. This variability would require a very computational intensive parameter optimiza-
tion for any new application of those metrics to a different text corpus. On small corpus sizes,
~10,000-100,000, characteristic of disease-specific literature, INtERAcT performance clearly
surpasses the other similarity metrics.

To summarize, we expect INtERAcT to be highly relevant for a variety of state-of-the-art
text-mining methods. Especially, we are convinced that the proposed methodology can be
used to generate hypotheses for detection of biological processes relevant to common and
complex diseases and can establish a novel, unsupervised and high-throughput approach to
drive drug discovery and advance the frontier of targeted therapies. In order to facilitate the
exploitation of INtERAcT, we have developed an open access web service to freely access
INtERAcT.

3.4 Methods

In this section we present the elements that constitute INtERAcT and describe the approach
adopted to automatically build a network of molecular interactions starting from a domain-
specific text corpus.

3.4.1 Text processing

We begin by using a basic and lightweight pipeline for text processing. First, we filter out
non-informative words such as extremely common words (e.g., a, the, and other stop-words),
rare words (low occurrence in the corpus), non-informative characters like punctuation or
isolated numbers and convert text to lower-case. Please, notice that we only remove isolated
numbers in order to leave intact and be able differentiate gene names (e.g., AKT1, AKT2
and AKT3). We next identify n-grams, i.e., sequences of words that often appear together
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and thus are considered a single entity (e.g., New_York), by summing up the occurrences of
words appearing sequentially together in the corpus and setting a threshold of the minimal
number of occurrences. The names of a gene, its aliases and corresponding protein are treated
as synonyms and mapped to a single name entity using a dictionary obtained from UniProt 1.
Sentences are generated using an English language tokenizer from nltk [30] before punctuation
is removed. The result of this process is a corpus of sentences that can be used for further
analysis.

3.4.2 Word embeddings

Word embeddings are the output of a family of methods that produce, starting from raw text,
a real vector representation of each word and phrase contained in the original text corpus. In
this work we build the embedding using the Word2Vec implementation proposed by Mikolov
et al. [16], a shallow, two-layer neural network based on a skip-gram model. Briefly, the skip-
gram model aims to predict the surrounding words, i.e., the context, of a target word given as
an input (see Fig. 3.4). In practice, a word’s context is defined by considering a window of
an arbitrary size to the left and the right of each target word. Each pair target-context word
is then fed into the neural network with a single hidden layer of dimension d that is trained
to optimize the probability of predicting context words given a target word as input. It has
been reported that the quality of the word embedding increases with the dimensionality of the
internal layer that produces the vector representation, d, until it reaches a critical point where
marginal gain diminishes [15]. Hence this parameter has to be appropriately chosen according
to the size of the vocabulary and text corpus.

The word embedding learning process is naturally optimized to capture the contextual asso-
ciations between words: If two words tend to appear in similar contexts, they will be mapped
into similar word vectors. In practice, it has been shown that word embeddings outperform
methods based on counting co-occurrences of words on a wide range of lexical semantic tasks
and across many parameter settings [31].

1ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/idmapping/by_organism/HUMAN_9606_idmapping.dat.gz, as of
November 2018
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…and  some mutations destabilise  PTEN  and promote PI3K  pathway…

PTEN

some

mutations

destabilise

and

promote

PI3K

Figure 3.4: Description of the skip-gram model. Skip-gram model used in Word2Vec to find
an optimal representation to predict the surrounding context of a target word. The example
highlights the window around PTEN, a gene implicated in many cancer processes. The target
word, PTEN, is linked to each of its neighboring words and the pairs are fed into the network.
The learning process optimizes the probability of predicting the contextual words of PTEN.

3.4.3 Extracting interactions from the embedding

Once the embedding is built, our aim is to design a methodology that can predict PPIs based
on the distribution of word vectors in the word embedding. We exploit the idea that molecular
entities that interact with each other and are involved in similar biological processes are likely
to appear in similar word contexts, and thus will be mapped to neighboring positions in the
word vector space. It is hence possible to predict functional similarities between molecular
entities based on their mapping and proximity in the word embedding.

Our task is therefore to find optimal ways of measuring proximity in the word embedding.
A first, obvious approach to define proximity between two word vectors is to use the Euclidean
distance and a distance threshold: molecular entities within this threshold can be considered
similar and thus predicted to interact. However, the use of the Euclidean metric, and more
generically, the use of Lk norms, is problematic as the high dimensionality of the space can
make certain regions of the space too sparse. In addition, in high dimensional spaces Lk
norms map points to uniform distances from each other, and hence the concepts of proximity,
distance or nearest neighbor are not quantitatively meaningful [27].
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INtERAcT exploits an alternative approach that does not rely on the direct use of Lk norms,
but instead defines similarities between words by looking at the distributional properties of
their neighbors. Specifically, we predict PPIs by comparing the neighborhoods of words
representing molecular entities. To do so, we first need to cluster the word vectors of the
embedding.

Clustering words

We start by defining W as the set of n words present in the embedding E ∈ Rn×d where
d is the embedding dimension, which corresponds to the dimension of the neural network’s
hidden layer used to build the embedding. We cluster the word vectors in the embedding space
using a K-means algorithm with C clusters. The number of clusters is chosen according to
the vocabulary size in order to have both a fine grained word representation and a sufficient
number of words per cluster. Each word is hence associated with a cluster according to the
following mapping:

CL :W → {1, . . . , C} (3.1)

.

The obtained clusters group together words that are close in the vector representation space
and hence tend to appear in similar contexts in the corpus. These clusters can then be used to
build fingerprints of each entity in the embedding and to convey the semantic meaning of a
word based on the cluster membership of its neighbors.

Finding nearest neighbors

In order to build word fingerprints, our algorithm requires the identification of the nearest
neighbors of each target word. An efficient method to retrieve the topological neighbors with-
out having to compute all pairwise distances at each query is k-d trees, a space-partitioning
data structure that can be used to organize points in a k-dimensional space [32]. A nearest-
neighbor-search can then associate every word in the embedding with a set N of K nearest
neighbors in the embedding:

KNN :W → N (3.2)

The optimal number of neighbors depends on the number of clusters C, and it is chosen
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as a trade-off between the benefit of having enough cluster assignment variability among the
neighbors, while keeping the neighborhood of each word small when compared to the total
word count of the embedding. The mapping KNN can be used to efficiently retrieve the
shortest paths between two words and identify their nearest words.

Word distribution

We are now able to associate each word in the embedding with a discrete probability distri-
bution that can be computed by analyzing the cluster membership of the nearest neighbors.
The number and cluster occupancy of the neighbors can then be interpreted as a discrete
probability distribution conveying the semantic meaning of each target word. Furthermore,
pair-wise comparisons of these distributions enable us to define similarities between words
(see Fig. 3.1).

The pseudo-code used by the described algorithm can be found in the Supplementary Ma-
terial, Section 3.5.2. The output of the algorithm is a matrix of probability distributions
D ∈ Rn×C where each row contains the cluster assignments of each target word.

Computing similarity scores

We can finally compute the functional association between words of interest by computing the
similarities between the neighbors’ cluster assignments of protein entities in the embedding.
We use a score based on the Jensen-Shannon divergence (JSD), defined as follows:

JSD(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (3.3)

where M =
1

2
(P +Q) and DKL is the Kullback-Leibler divergence for discrete probability

distributions:

DKL(P ||Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
(3.4)

.

The choice of the JSD as a scoring function is motivated by its useful properties. In addi-
tion to providing a symmetrized version of the Kullback-Leibler divergence, JSD is a finite
value comprised in the interval [0, log(2)] [33], the lowest bound being reached when two dis-
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tributions are identical. Furthermore, the square root of the Jensen–Shannon divergence is a
metric [34], and thus JSD is an appropriate function to capture similarities between distribu-
tions.

Here we take advantage of the non-negativity of JSD to define the similarity Sij between
words i and j as follows:

Sij = exp(−αJSDij + β) (3.5)

where JSDij = JSD(Di||Dj) and α and β are a scaling and an offset parameters respec-
tively. Here, we set the offset parameter β = 0. Under the transformation defined by Equa-
tion 3.5, two identical distributions have a score equal to 1 and substantially different distri-
butions (with a divergence close to the JSD upper bound) have a score ∼ 0.0. While larger
values of α can bring this theoretical minimal value closer to 0, a very high α will make
Sij decay too steeply, shrinking the regime where Sij can effectively rank pairs of words ac-
cording to their similarity. We found that the choice of α = 7.5 and β = 0.0 is empirically
efficient at capturing similarities between words given the theoretical bounds for the JSD (see
Supplementary Material Figure 3.8).

Equipped with the similarity score as defined in Equation 3.5, we are now in a position to
build a weighted interaction graph where the nodes are the chosen entities (proteins in our
case) and the edges are weighted by the similarity value of the nodes they connect.

3.4.4 Benchmarking INtERAcT against STRING

In order to assess the quality of our predictions, we use STRING database [23] as a benchmark.
STRING is a comprehensive protein interaction database currently including experimental
data from DIP 1 [35], BioGRID 2 [36], IntAct 3 [37], and MINT 4[38], and curated data
from BioCyc 5 [39], GO 6 [40], KEGG 7 [25, 26], and Reactome 8[41]. STRING provides
a confidence score that integrates information about genomic proximity, gene fusion events,

1http://dip.doe-mbi.ucla.edu/dip/, as of November 2018
2https://thebiogrid.org/, as of November 2018
3http://www.ebi.ac.uk/intact/, as of November 2018
4http://mint.bio.uniroma2.it/, as of November 2018
5https://biocyc.org/, as of November 2018
6http://www.geneontology.org/, as of November 2018
7http://www.kegg.jp/, as of November 2018
8http://www.reactome.org/, as of November 2018
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phylogenetic co-occurrences, homology, co-expression, experimental evidence of interaction,
simultaneous annotation in databases and automatic text-mining [42].

Importantly for the sake of comparing STRING and INtERAcT results, STRING text-
mining uses a combination of co-occurrences and natural language processing based on a
rule-based system [29]. Throughout this publication, we have used the combined STRING
score as the ground truth, as a combination of independent evidences is likely to provide a
more accurate and robust network topology.

To quantitatively evaluate the goodness of INtERAcT predictions, we employ the Area Un-
der the receiver operating characteristic Curve (AUC metric [43]) using STRING interactions
as a ground truth, and compare our JSD-based score (Equation 3.5) with other similarity scores
commonly used in the literature, namely scores based on correlation, cosine and Euclidean
distance.

Parametric analysis

The results of the multiple benchmarks presented in the work depend on the ground truth used
to compare against, i.e., using the STRING combined score or the text-mining STRING score,
as shown in Figure 3.5. Using the STRING text-mined interactions naturally results in higher
performance for all four considered similarity metrics, as all of them exploit information avail-
able in text corpora. The STRING database suggests three levels of confidence, with lower
scores resulting in lower measured performance for metrics considered.

Though INtERAcT extract information from a word embedding, its performance is largely
insensitive to the choice of embedding parameters (Figure 3.5). This is in contrast to other
distance metrics, for which the performance deteriorates with increasing dimensionality of the
word embedding, especially in the Euclidean metric case. This is important as typical word
embeddings sizes are usually in the regime where INtERAcT achieves comparable perfor-
mance to the other metrics, and higher stability (Figure 3.5 bottom left panel and Figure 3.6
right).

Regarding the parameters defining clusters and neighborhoods within the embedding, IN-
tERAcT performs better with larger cluster sizes (Figure 3.6 left), has a slightly better per-
formance for moderately sized neighborhoods (500 neighbors) and, as mentioned above, is
largely independent from the dimensionality of the embedding.
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Figure 3.5: Exploration of the influence of word embedding parameters on AUC for
different methods and ground truths. Many word embeddings with parameters min_-
count , n-grams, size and window have been trained. Each embedding has been used for
inference with the four studied methods. The inferences have been evaluated using two dif-
ferent ground truths: STRING text-mined interactions and STRING interactions predicted
through a combined score integrating diverse computational and experimental evidences. In
both cases, ground-truth interactions are color-separated (blue, orange and green) according
to the STRING confidence score. Each such combination results in a single data point in
the Figures 3.5 and 3.6, except for INtERAcT, which has additional parameters (clusters and
neighborhood sizes), making it appear denser. Each of the four panels investigates variation
of a single parameter: (a) min_count, the minimal allowed occurrence of words in the en-
tire corpus to be included in the embedding; (b) n-grams, prior substitution of bi-grams or
tri-grams as single tokens. (c) size, the dimensionality of the embedding vector. (d) window,
the size of the window surrounding each target word to be predicted during the learning of
the embedding. INtERAcT is largely insensitive to the choice of embedding parameters, with
small gains in performance for larger values for min_count and window size.
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Figure 3.6: Parametric dependency of INtERAcT using STRING as a ground truth. AUC
for different word embeddings compared to STRING with a confidence score of 700. Word
embeddings for both bi-grams and tri-grams, window sizes of 9 and 11 as well as sizes (di-
mensionality) 100, 250 and 500 with fixed parameter min_count=50 are shown here. Word
embeddings were used varying the cluster size and number of neighbors. Left Increasing
the number of clusters representing similar context in the corpus improves performance of
INtERAcT. Middle The number of neighbors has a small effect on the performance of INtER-
AcT. Right The size (dimensionality) of the word embedding has no noticeable influence on
INtERAcT.
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1https://ibm.box.com/s/njtqm1alrkq1dxm5jtdnqm8vei4uo58m, as of November 2018
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3.5 Supplementary information

3.5.1 Parametric analysis
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Figure 3.7: Word embedding source comparison. Full text versus abstract. AUC for differ-
ent word embeddings compared to two ground truths obtained by STRING with a confidence
score of 700. Word embeddings for both bi-grams and tri-grams, window sizes of 9 and 11
as well as sizes (dimensionality) 100, 250 and 500 with fixed parameter min_count=50 are
shown here. Left Text-mining ground truth. Right Combined ground truth.

3.5.2 Word distributions

Algorithm 1 Word distributions
1: procedure WORDDISTRIBUTIONS.(W , CL,KNN )
2: D ← {} . Define a matrix to store distributions
3: for w ∈ W do . For all the words
4: D ← [] . Define a vector to store w neighbors cluster
5: NE ← KNN(w) . Getting K neighbors
6: for ne ∈ NE do
7: append CL(ne) to D
8: H ← histogram(D)
9: append row H to D

10: return D
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3.5.3 Score analysis
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Figure 3.8: INtERAcT score analysis. The curves reported describe how the divergence
values are mapped into scores by Equation 3.5 setting β = 0.0 and for different α values. The
orange line corresponds to the selected value of α = 7.5. Other α values don’t map properly
the divergence values in a [0,1] interval.
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3.5.4 prostate cancer scores

Protein Protein Score

CREBBP EP300 0.78

MAPK1 MAPK3 0.76

PIK3CD PIK3R1 0.73

E2F2 E2F3 0.71

CCNE1 CCNE2 0.68

AKT1 MAP2K1 0.68

AKT1 MTOR 0.68

NFKB1 RELA 0.68

MAP2K1 MAPK3 0.67

MAP2K1 MAPK1 0.66

AKT1 AKT3 0.66

AKT1 PIK3CD 0.65

MAP2K1 RAF1 0.61

AKT3 RAF1 0.61

AKT1 RAF1 0.60

MTOR PDPK1 0.60

MAP2K1 PIK3R1 0.60

MTOR PIK3CD 0.59

CCND1 CDKN1A 0.59

AKT1 PIK3R1 0.59

MAP2K1 PIK3R2 0.59

E2F1 E2F3 0.59

AKT1 PIK3CG 0.58

GRB2 PIK3R2 0.58

E2F1 FOXO1 0.58

Protein Protein Score

CDKN1A CDKN1B 0.58

MDM2 TP53 0.58

BAD BCL2 0.58

KRAS NRAS 0.57

MAPK1 PIK3CG 0.57

PIK3CA PIK3CD 0.57

EGFR IGF1R 0.57

AKT3 MTOR 0.57

MAPK3 PIK3CG 0.57

CDK2 CDKN1B 0.56

CCNE2 E2F1 0.56

CCND1 CDKN1B 0.56

MAP2K1 PIK3CD 0.56

PDGFB PDGFD 0.56

AKT1 PDPK1 0.55

AKT1 MAPK3 0.55

AKT1 PIK3R2 0.55

MAP2K1 PIK3CG 0.54

E2F1 E2F2 0.54

MTOR PIK3R1 0.54

E2F3 FOXO1 0.53

AKT3 MAP2K1 0.53

EGFR PDGFRB 0.52

AKT2 AKT3 0.52

PIK3CB PIK3CD 0.52

Table 3.2: INtERAcT top-50 scores for KEGG prostate cancer pathway. Top-50 interac-
tions predicted from KEGG prostate cancer pathway using INtERAcT corresponding to the
edges of the graph shown in Figure 3.2a.
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3.5.5 PubMed Search Queries

Query on PubMed

KEGG Acute Myeloid Leukemia "acute myeloid leukemia"
KEGG Bladder Cancer "bladder cancer"
KEGG Chronic Myeloid Leukemia "chronic myeloid leukemia"
KEGG Colorectal Cancer "colorectal cancer"
KEGG Glioma "glioma"
KEGG Small Cell Lung Cancer "small cell lung cancer"
KEGG Non Small Cell Lung Cancer "non small cell lung cancer"
KEGG Pancreatic Cancer "pancreatic cancer"
KEGG Prostate Cancer "prostate cancer"
KEGG Renal Cell Carcinoma "renal cell carcinoma"

Table 3.3: PubMed Search queries for KEGG’s cancer pathways. In the Table we report
the search query that was used for each KEGG cancer pathway. We used the quotation marks
to increase specificity.
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Abstract

Reliable identification of molecular biomarkers is essential for accurate patient stratification.
While state-of-the-art machine learning approaches for sample classification continue to push
boundaries in terms of performance, most of these methods are not able to integrate different
data types and lack generalization power, limiting their application in a clinical setting. Fur-
thermore, many methods behave as black boxes, and we have very little understanding about
the mechanisms that lead to the prediction. While opaqueness concerning machine behavior
might not be a problem in deterministic domains, in health care, providing explanations about
the molecular factors and phenotypes that are driving the classification is crucial to build trust
in the performance of the predictive system.

We propose Pathway Induced Multiple Kernel Learning (PIMKL), a novel methodology
to reliably classify samples that can also help gain insights into the molecular mechanisms
that underlie the classification. PIMKL exploits prior knowledge in the form of a molecular
interaction network and annotated gene sets, by optimizing a mixture of pathway-induced ker-
nels using a Multiple Kernel Learning (MKL) algorithm, an approach that has demonstrated
excellent performance in different machine learning applications. After optimizing the combi-

1In revision, pre-print available [1]. See Chapter 8 for details about contributions and copyright.
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nation of kernels for prediction of a specific phenotype, the model provides a stable molecular
signature that can be interpreted in the light of the ingested prior knowledge and that can be
used in transfer learning tasks.

4.1 Introduction

Designing reliable and interpretable predictive models for patient stratification and biomarker
discovery is a daunting challenge in computational biology. A plethora of methods based
on molecular data have been proposed throughout the years, many of which exploit prior
knowledge about the molecular processes involved in the regulation of the phenotype to be
predicted. Prior knowledge is frequently encoded as a molecular interaction network, where
nodes represent genes or proteins and edges represent relationships between the connected
nodes. Supporting the development of such methods, the number of databases reporting
protein-protein interactions has seen an unprecedented growth in recent years, and databases
such as STRING [2], OmniPath [3], Reactome [4, 5], IntAct [6], MINT [7], MatrixDB [8],
HPRD [9], KEGG [10–12] or Pathway Commons [13], just to name a few, provide an incredi-
bly useful resource for designing models informed about the underlying molecular processes.

Several studies have focused on comparing prior knowledge-based classification methods.
For instance, Cun and Fröhlich [14] evaluated 14 machine learning approaches to predict the
survival outcome of breast cancer patients. The methods included, among others: average
pathway expression [15], classification by significant hub genes [16], pathway activity clas-
sification [17], and a series of approaches based on Support Vector Machines (SVMs), such
as network-based SVMs [18], recursive feature elimination SVMs [19], and graph diffusion
kernels for SVMs [20, 21]. The study concluded that, while none of the evaluated approaches
significantly improved classification accuracy, the interpretability of the gene signatures ob-
tained was greatly enhanced by the integration of prior knowledge.

A more recent benchmarking effort was provided by a collaboration between the National
Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods
(DREAM) project [22]. The NCI-DREAM challenge aimed to identify the top-performing
methods for predicting therapeutic response in breast cancer cell lines using genomic, pro-
teomic, and epigenomic data profiles. A total of 44 prediction algorithms were scored against
an unpublished and hidden gold-standard dataset. Two interesting conclusions emerged from
the challenge. First, all top-performing methods modeled nonlinear relationships and incor-
porated biological pathway information, and second, performance was increased by including
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multiple, independent datasets. Interestingly, the top-performing methodology, Bayesian Mul-
titask Multiple Kernel Learning, exploited a multiple kernel learning (MKL) framework [23].

MKL methods aim to model complex and heterogeneous datasets by using a weighted com-
bination of base kernels. While in more traditional kernel methods the parameters of a single
kernel are optimized during training, in MKL, the weights of each kernel are tuned during
training.

Compared to single-kernel methods, the advantages of MKL are two-fold. First, different
kernels can encode various levels of information (e.g., different definitions of similarity or
different types of data) endowing the algorithm with the flexibility required to model hetero-
geneous or multi-modal datasets. Second, after optimizing the combination of kernels, the
weights associated with each kernel can provide valuable insights about the sets of features
that are most informative for the classification task at hand.

In this paper, we seek to augment the predictive power and interpretability of MKL methods,
by supplementing them with the use of prior knowledge. Towards this end, we introduce
Pathway Induced Multiple Kernel Learning (PIMKL), a supervised classification algorithm
for phenotype prediction from molecular data that jointly exploits the benefits of MKL and
prior knowledge ingestion. PIMKL uses an interaction network and a set of annotated gene
sets to build a mixture of pathway-induced kernels from molecular data, whose mixture is then
optimized with an MKL algorithm, see Figure 4.1.

After PIMKL is trained, the weight assigned to each kernel provides information about the
importance of the corresponding pathway in the mixture. As a result, a molecular signature
characterizing the phenotype of interest is derived.

While there are currently many approaches that take advantage of the known graph structure
of a molecular system [20, 24], or use collections of annotated gene sets as prior knowledge to
reduce the dimensionality of molecular profiles and enable the analysis of tumor profiles [25,
26], to our knowledge PIMKL is the first methodology that integrates both levels of prior
knowledge, molecular networks and collections of pathways, with state-of-the-art machine
learning approaches. We demonstrate that the use of MKL enhances classification perfor-
mance, and the use of prior knowledge ensures that the results are interpretable and shed light
on the molecular interactions implicated in the phenotype.

This paper is structured as follows. We first describe PIMKL and validate it by predicting
disease-free survival for breast cancer samples from multiple cohorts. We benchmark PIMKL
by comparing it with the methods analyzed in [14]. To evaluate its generalization power,
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Figure 4.1: PIMKL concept. Given a network topology describing molecular interactions,
relevant sub-networks can be extracted to generate a mixture of pathway-induced kernels.
The combination of kernels is then optimized to predict a phenotype of interest. The weights
of the mixture provide a measurement of the importance of each pathway, thereby shedding
light on the molecular mechanisms that contribute to the phenotype.

we use a PIMKL-generated molecular signature to predict disease-free survival on a different
dataset, the METABRIC breast cancer cohort [27]. Finally, we test PIMKL robustness against
noise and its capabilities to integrate distinct data types by simultaneously using METABRIC
gene expression (mRNA) and copy number alteration (CNA) data for the same classification
task.

Our analysis suggest that PIMKL provides an extremely robust approach for the integration
of multiple types of data with prior knowledge that can be successfully applied to a wide range
of phenotype prediction problems.

4.2 Results

In the following sections, we discuss the application of PIMKL to different breast cancer co-
horts. First, in Section 4.2.1, PIMKL is compared to a previous study by Cun and Frölich [14]
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where different algorithms for phenotype prediction and gene selection using prior knowl-
edge were compared. Later, in Section 4.2.2, PIMKL is applied to gene expression and
copy number data from the METABRIC cohort [27] with two purposes: first, we aim to test
whether transfer learning between different studies is possible, and, second, we want to eval-
uate PIMKL performance in the analysis of multi-omics analysis in the presence of noise or
uninformative data.

4.2.1 PIMKL on breast cancer microarray cohorts

PIMKL is tested on microarray gene expression data from six breast cancer cohorts (see Sup-
plementary Table 4.1 for details about the cohorts). The classification task consists in strati-
fying breast cancer samples according to occurrence of relapse within 5 years. To ensure the
fairest possible comparison, we use the same interaction sources as in the study by Cun and
Fröhlich, namely a merge between KEGG pathways and Pathway Commons. As access to
older releases of KEGG is restricted, the most recent versions from both sources are used. A
collection of 50 hallmark gene sets from the Molecular Signatures Database (MSigDB) ver-
sion 5.2 [28] is used to define the sub-graphs considered for pathway induction, generating
P = 50 kernels. The classification performance is evaluated by means of the Area Under the
receiver operating characterstic Curve (AUC). We closely follow the same data processing
procedures and the cross-validation scheme as proposed in the original study (for details, see
Supplementary Algorithm 2).

The results of PIMKL compared to the 14 algorithms considered by Cun and Fröhlich are
reported in Figure 4.2. Overall AUC values for the 6 cohorts over the cross-validation rounds
for all considered methods are shown in Figure 4.2a. AUC values for the single cohorts can
be found in Supplementary Figure 4.7, where PIMKL exhibits the highest median value and
consistently outperforms the other methods or is in the top performers group on single cohorts.

Results are consistent when other gene sets are used, even when we use randomized ver-
sions of functionally related gene sets (see Supplementary Figure 4.8). These results prove that
PIMKL performance does not depend on the specific selection of pathways, and that through
the MKL optimization we can identify the informative gene sets in disparate collections of
genes. Notice, however, that while choosing random gene sets does not worsen PIMKL per-
formance, interpretation of the molecular signatures, as we will discuss next, is only possible
when the sets have a well defined biological function.

As discussed in Section 4.4, PIMKL generates a molecular signature given by the weighted
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contribution of each kernel. Each weight represents the relative importance of each hallmark
pathway used for pathway induction to explain the phenotype. To evaluate the stability of
the signature, the pathway weight distribution over cross-validation rounds is analyzed. Our
baseline is the case where all kernels have the same weight: wb = 1

P
, representing a situation

where no pathway contributes more than the others to the phenotype prediction.

To find whether a pathway is significant for the phenotype, the distribution of the kernel
weights with median above wb is tested against the baseline using a one-sample Wilcoxon
signed-rank test.

p-values at significance level 0.001 were corrected for multiple testing using Benjamini-
Hochberg (for details see Supplementary Figure 4.9). Pathways where the significance was
achieved in at least four of six cohorts are reported in Figure 4.2b.

Interestingly, heme metabolism pathway is significant in all cohorts. This pathway is in-
volved in the metabolism of heme and erythroblast differentiation. A possible explanation is
that heme metabolism might reflect an active vascularization of the samples, a phenomenon
widely observed in cancer progression [29]. A more intriguing hypothesis is a possible as-
sociation between elevated heme metabolism and cancer progression, as has been reported in
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Figure 4.2: PIMKL cross-validation results. (a) Box plots for AUC values over all cohorts
for the methods considered. PIMKL results are reported in red, while other methods’ results
are colored in blue. Box plots are obtained from ten (repeats of) mean AUC values over
10-fold cross-validation splits, see algorithm 2. (b) Heat map showing significant pathways
selected by PIMKL across the different cohorts considered in the study. Significant pathways
are highlighted in red, while non-significant are colored in blue.
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non-small-cell lung cancer cells and xenograft tumors [30]. It is also interesting to look at the
pathways that are significant in at least five cohorts: KRAS signaling, myogenesis, allograft
rejection, coagulation, P53 pathway and peroxisome. All of these pathways are associated
with breast cancer. For instance, activation of KRAS signaling has been reported to promote
the mesenchymal features of basal-type breast cancer [31, 32]. Myogenesis, or the process
of formation of muscular tissue, is commonly disrupted in cancer [33]. Allograft rejection
might reflect an immune-mediated tumor rejection signature following administration of im-
munotherapeutic agents [34]. Several studies have suggested a role for blood coagulation pro-
teins in tumor progression [35–37]. P53 is the most commonly mutated protein in cancer [38,
39]. Finally, peroxisomes are small, membrane-enclosed organelles that contain enzymes in-
volved in a variety of metabolic reactions, including several aspects of energy metabolism.
Altered peroxisome metabolism has been linked to various diseases, including cancer [40,
41].

Finally, Figure 4.3 reports the correlation of PIMKL molecular signatures estimated across
multiple cohorts and highlights their stability across different studies, suggesting that a cohort-
independent disease free survival signature for breast cancer has been learned.

4.2.2 PIMKL on METABRIC cohort

To test PIMKL applicability to multi-modal datasets, we use our methodology to predict dis-
ease free survival in METABRIC breast cancer cohort, consisting of 1890 samples profiled
with Illumina Human v3 microarray data (mRNA) and Affymetrix SNP 6.0 copy number data
(CNA), see Supplementary Table 4.2 for details.

In order to validate the generalization power of PIMKL-generated molecular signatures,
we first focused on the analysis of METABRIC microarray data. Our hypothesis here is that
the underlying molecular mechanisms associated with disease free survival are the same in
different cohorts and, as such, knowledge learned in one cohort can be transferred to another
one.

After computing the pathway-induced kernels with the same procedure adopted in Sec-
tion 4.2.1, a set of pathway weights was defined using the median of the weights obtained
in the six previously analyzed cohorts. Figure 4.4 shows the results obtained by training a
KOMD classifier using the weights transferred from the six independent cohorts and by learn-
ing METABRIC-specific pathway weights (for details see Section 4.4 and Supplementary
Algorithm 3). It is evident that both molecular signatures perform very similarly. Indeed, the
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two signatures are highly correlated (Pearson correlation ρ = 0.72, p-value = 3.34 · 10−9,
Figure 4.10). It is important to notice that the variance of the prediction results is also con-
sistently reduced, probably due to the newer microarray technology used by the METABRIC
study.

GSE2034 GSE11121 GSE1456 GSE2990 GSE4922 GSE7390

GSE2034

GSE11121

GSE1456

GSE2990

GSE4922

GSE7390 0.8

0.4

0.0

0.4

0.8

Figure 4.3: Correlation in molecular signatures. Heat map reporting the correlation of the
molecular signature estimated across multiple cohorts. Correlation values are reported in the
lower triangular part of the heat map (since it is symmetric) on blue to red scale, white squares
indicate non significant correlations. All cohorts exhibit a positive correlation, significant in
most cases, proving the stability of the molecular signature obtained with PIMKL.

To test PIMKL capability to integrate multi-omic data, both the mRNA and CNA data from
the METABRIC cohort are jointly utilized in the same predictive task. A set of additional
kernels are generated using the copy number data and then used in two ways: first, the CNA
kernels are independently optimized with PIMKL, and second, a mixture of CNA and mRNA
kernels are jointly optimized.

From Figure 4.5, it is evident that the CNA data are not as predictive as mRNA regarding
disease free survival. However, it is interesting to notice that PIMKL is able to discard noisy
kernels, associated with CNA data, to achieve similar levels of performance when using the
more informative mRNA data and when using a mixture of CNA and mRNA data. This sug-
gests that the application of the proposed algorithm is feasible even when no prior knowledge
about the information content of each single omic type is available.
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Figure 4.4: PIMKL performance on METABRIC. Box plots of the performance of PIMKL
over the six cohorts used to benchmark the method (left of the dashed vertical line) and its
application on METABRIC for disease free survival prediction (right of the dashed vertical
line). Optimized weights at training by EasyMKL (blue); provided weights from taking the
pathway-wise median weights of the six signatures obtained during benchmarking (red).

4.3 Discussion

We have presented here PIMKL (Pathway Induced Multiple Kernel Learning), a novel, effec-
tive and interpretable machine learning methodology for phenotype prediction using multi-
modal molecular data. PIMKL is based on a multiple kernel learning (MKL) framework,
a kernel-based method that has demonstrated excellent capabilities to integrate multi-omic
datasets [22]. In addition, PIMKL also exploits prior knowledge in the form of molecular
interaction networks and sets of annotated pathways with known biological functions to build
a mixture of pathway-induced kernels. The main novelty introduced in this work is the defi-
nition of multiple interaction-aware kernel functions, which enables us to encode information
about the molecular prior knowledge related to a phenotype, and facilitates the interpreta-
tion of the results in terms of known biological functions or specific molecular interactions.
We achieve this by using such kernels to map samples into the space of network edges, i.e.,
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Figure 4.5: PIMKL performance on METABRIC multi-omics. Box plots for AUC values
obtained applying PIMKL on different data types and their integration. CNA only results are
reported in blue, mRNA ones in green and their integration in red.

molecular interactions, recovering a direct biological interpretation. The kernel weights are
later optimized to classify a phenotype or a clinical variable of interest.

In this work, PIMKL has been extensively tested in the context of predicting disease-free
survival from breast cancer samples. We have demonstrated that the resulting weighted combi-
nation of kernels can be interpreted as a phenotypic molecular signature and provides insights
into the underlying molecular mechanisms.

As a benchmark, a well-studied set of cohorts previously analyzed using a range of stratifi-
cation methods has been adopted [14]. The quality and the stability of the obtained signatures
has been thoroughly investigated, and we have shown that PIMKL outperforms other methods
and finds stable molecular signatures across different breast cancer cohorts. We also inves-
tigated the generalization power of the found signatures by testing them on unseen mRNA
breast cancer data from the METABRIC cohort and the associated disease-free survival data.
The obtained results have confirmed that the algorithm can be used to effectively gain insights
into disease progression and that this knowledge can be transferred to other cohorts without
loss of performance.

Furthermore, PIMKL can be seamlessly applied to integrate data from different omic layers.
Its intrinsic capability to discard noisy molecular features has been demonstrated by applying
it on METABRIC, where it was possible to integrate multiple types of data with varying pre-
dictive power. Even when non-informative data were mixed with informative data, PIMKL

80



Chapter 4. PIMKL: Pathway Induced Multiple Kernel Learning

was able to discard uninformative kernels and achieve similar levels of performance. Evi-
dently, PIMKL is not restricted to breast cancer, the specific omic data types or the sources of
prior information used in this work. Its application is open to other disease types using any
available combination of data together with any suitable prior network and sets of genes.

Besides being capable of using different types of prior knowledge, the proposed approach
is also highly flexible with regard to the number and nature of the selected kernels. Indeed,
PIMKL has been developed by making use of an efficient implementation of EasyMKL [42],
an extremely scalable MKL algorithm with constant memory complexity in the number of
kernels. This efficiency can potentially allow the user to define smaller pathways, leading to a
more fine-grained characterization and understanding of the molecular mechanisms involved
in disease progression with limited performance drawbacks.

Finally, possible extensions of PIMKL, such as optimizing the kernel mixture using semi-
supervised or unsupervised multiple kernel learning methodologies [43], may help discovery
phenotype-independent pathway signatures and will be explored in the future. To summarize,
PIMKL provides a flexible and scalable method to translate prior knowledge and molecular
data into actionable insights in a clinical setting. In order to ease the usage of PIMKL, the
algorithm has been made available as an open access web service.

4.4 Methods

PIMKL is a methodology for phenotype prediction from multi-omic measurements (e.g.,
mRNA, CNA, etc.) based on the optimization of a mixture of pathway-induced kernels. Such
kernels are generated by exploiting prior knowledge in a dual fashion. First, prior knowledge
is injected in PIMKL in the form of a molecular interaction network, and second, as a set of
annotated gene sets or pathways.

A key aspect of PIMKL is pathway induction, a method to generate similarity functions
using the topological properties of an interaction network. In practice, we use pathway gene
sets with well-defined biological functions to define sub-networks from which we generate
pathway-induced kernels. This mixture of pathway-induced kernels is then optimized to clas-
sify a phenotype of interest, and in doing so, each pathway is assigned a weight representing
its importance to explain the phenotype. The established link between kernels and pathways
enables PIMKL to identify which molecular mechanisms are important for the prediction of
the considered phenotype, as shown in Figure 4.1.
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4.4.1 Pathway Induction

PIMKL encodes information from the topology of each pathway’s sub-network. The approach
of integrating pathway information into interaction-aware kernel similarity functions is here
termed pathway induction. Specifically, we design kernel functions by utilizing a positive
semidefinite (PSD) matrix that encodes the topological properties of a graph. Given any PSD
matrix M , a valid kernel can be induced through the following weighted inner product [44]:

k(x, y) = xTMy

Hence, in order to have a pathway-induced kernel, we only need to define M such as it
encodes the graph topological information of the pathway.

In this work, an encoding based on the symmetric normalized Laplacian matrix is adopted.
Pathways are defined as weighted undirected graphs P = (V,E,W ), with Nv = |V | nodes,
Ne = |E| edges and a diagonal weight matrix W ∈ RNe×Ne , representing respectively the
molecular entities (e.g., genes, proteins, etc.), their interactions and the weights associated
with them.

For any pair of samples x, y ∈ RNv , we define a pathway-induced kernel using the following
similarity function:  kL(x, y) = xTLy = xTSSTy = Π(x)TΠ(y)

S = D−
1
2SW

1
2

where L ∈ RNv×Nv ,D ∈ RNv×Nv and S ∈ RNv×Ne are respectively the normalized Laplacian,
the diagonal degree matrix and an ordered incidence matrix for graph P associated with a
pathway (see Supplementary 4.5.1 for a detailed explanation about the formulation and the
design of the kernel function).

The normalized Laplacian can be interpreted as a discrete Laplace operator representing a
diffusion process over graph nodes. A pathway induction process based on it introduces a
mapping Π from the original space of the Nv molecular measurements to an Ne-dimensional
feature space, where each pathway interaction is a dimension, and the value along the edge
is the discrete diffusion potential between the nodes that the edge connects. A schematic
illustration of the mapping introduced using pathway induction can be seen in Figure 4.6.
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4.4.2 Pathway Induced Multiple Kernel Learning
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Figure 4.6: Pathway induction.
Given a pathway adjacency matrix, it
is possible to map sample measure-
ments from their original space, the
space of the nodes, to the space of the
interactions between the molecular
entities. The example above shows
how the mapping using pathway
induction transforms the considered
samples.

PIMKL makes use of the concept of pathway induc-

tion, defined in 4.4.1, to implement a multiple kernel
learning classifier.

Consider a network that recapitulates a comprehen-
sive set of known molecular interactions represented
by a graph G = (V,E,W ) with Nv = |V | nodes,
Ne = |E| edges and a set of molecular measurements
X ∈ RN×Nv with associated labels for a relevant phe-
notype y.

Given a selection of pathways P (e.g., gene sets
from ontologies or inferred via community detection),
it is possible to extract for each pathway p ∈ P , a
corresponding sub-graph Pp = (V p, Ep,W p) ⊂ G
with Np

v = |V p| nodes, Np
e = |Ep| edges and a sub-

selection of measurements corresponding to the genes
contained in the pathway Xp ∈ RN×Np

v .

For every pathway, a Gram matrix Kp can be used
to represent the pathway-induced kernel, where Kp is
computed for each pair of samples i and j as follows:

Kp
ij = kLp(xi, xj)

In the above equation, xi, xj ∈ RNp
v and Lp is the nor-

malized Laplacian for Pp ∀p ∈ P .

For the problem of finding the optimal mixture of
kernels over the different pathway-induced kernels,
any supervised MKL algorithm can be used. In this
work, a custom version of EasyMKL [42] has been
implemented as it achieves high performance at a low computational cost. EasyMKL is based
on the Kernel method for the Optimization of the Margin Distribution (KOMD) [45] and fo-
cuses on optimizing a linear combination of kernels:
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K =
P∑
p=1

wpK
p, wp ≥ 0

In PIMKL, the weights obtained are divided by their sum, as we are interested in evaluating
the relative contribution of each kernel. This normalization does not affect the quality of the
kernel mixture, which is invariant under positive scalar multiplication. In addition, to account
for differences in sub-graph sizes we force the kernel matrices to have equal trace, ensuring
comparable Gram matrices between different pathways.

It is important to note that PIMKL formulation enables a seamless integration of multi-
omics data. Kernels from different data types can be easily generated and added to the mix-
ture. The same applies to multi-modal data integration: kernels generated from other data
modalities associated with a specific sample (e.g., histopathology images or clinical records)
can be added to the mixture and weighted accordingly to their contribution in the classification
problem.
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4.5 Supplementary information

4.5.1 Pathway induction

Similarity functions can be designed by making use of a PSD matrix to induce a weighted
inner product:

k(x, y) = xTMy ∀x, y ∈ RN

represents a valid kernel if matrix M ∈ RN×N is PSD [44], indeed this ensures the existence
of a matrix U :

M = UTU

φ(x) = Ux

where φ is a mapping describing a transformation in the feature space.

By making use of a PSD matrix encoding the topological properties of a graph representing
a pathway, it is possible to design interaction-aware kernels.

Let’s consider an undirected graph representing a pathway:

P = (V,E)

with Nv = |V | nodes and Ne = |E| edges representing the genes/proteins and their interac-
tions respectively. Such a graph is defined by a symmetric adjacency matrixA ∈ {0, 1}Nv×Nv :

Aij = 1 ∀(i, j) ∈ E

1https://ibm.box.com/s/ac2ilhyn7xjj27r0xiwtom4crccuobst, as of November 2018
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and its diagonal degree matrix D ∈ RNv×Nv :

Djj =
∑
i

Aij

For such a graph, the Laplacian matrix L ∈ RNv×Nv is computed using the following:

L = D − A

The Laplacian is a PSD matrix and therefore represents a suitable candidate for induction

of a weighted inner product based on a pathway topology. This can be shown by defining
an ordered incidence matrix S ∈ RNv×Ne for P that by construction satisfies the relation
L = SST . As in [46], after introducing an index set E for the edges E, S can be defined as:

Sne =


1 if n = i ∧ i ≤ j

−1 if n = j

0 otherwise

where e ∈ E corresponds to edge (i, j) ∈ E and n ∈ V

Moreover, the Laplacian can be interpreted as a discrete Laplace operator. Indicating with
X ∈ RN×Nv a set of N samples, a discrete diffusion process over graph nodes is described as:

LXT = SSTXT (4.1)

where the term STXT computes the discrete diffusion potential (a difference) along the edges
and Equation 4.1 describes how the flow of this potential is effected, aggregating incoming
and outgoing flows on the nodes.

Decomposing the Laplacian using an ordered incidence matrix shows how samples X are
mapped from the original space with measurements for Nv molecular entities into an Ne-
dimensional feature space, where each interaction from the pathway is a dimension and the
value along the edge is the discrete diffusion potential between respective node’s measure-
ments.

The inner product in this space is the resulting similarity function defined as:

kL(x, y) = xTLy = xTSSTy ∀x, y ∈ RNv
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Similar considerations can be applied to weighted graphs with non-negative weights. Given
a weighted undirected graph P = (V,E,W ), indicating by W ∈ RNe×Ne its diagonal weights
matrix, the Laplacian L is defined as:

L = SWST

Lij =

di −We if i = j

−We otherwise

where e ∈ E corresponds to edge (i, j) ∈ E

To ensure an equal contribution from all the nodes in the considered pathway, the degree-
normalized version of the Laplacian L can be adopted:

L = D−
1
2SWSTD−

1
2

Lij =


1− We

di
if i = j and di 6= 0

− We√
didj

if i and j are adjacent

0 otherwise

where e ∈ E corresponds to edge (i, j) ∈ E

This pathway encoding directly leads to the definition of pathway induction used in this
work. Given any two samples measurement x, y ∈ RNv :

kL(x, y) =xTLy =

=xTD−
1
2SWSTD−

1
2y = xT (D−

1
2SW

1
2 )(W

1
2STD−

1
2 )y =

=xTSSTy = Π(x)TΠ(y)

with:

Π(x) =



√
We

xi√
di

if i = j and di 6= 0

√
We(

xi√
di
− xj√

dj
) if i and j are adjacent

0 otherwise

where e ∈ E corresponds to edge (i, j) ∈ E
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A similar concept was proposed [47] at the complete network level. The normalized Lapla-
cian was used as a regularizer to constrain the optimization problem when training an SVM.
In PIMKL, we arrive at a similar formulation of the problem by introducing a feature mapping
instead of using the Laplacian as a regularizer. We define a kernel function which allows easy
application to any kernelized method and any further kernel transformation (e.g., polynomial,
Gaussian, etc.). The decomposition of L can be derived from the graph but is implicit, and can
be easily extended to the multiple kernel learning case, allowing us to work at pathway/sub-
network level.

It should be noted that in PIMKL the individual pathway-induced kernels are set to equal
trace (equal average self similarity of the samples) to learn fair relative weights independent
of the sub-network size.

4.5.2 Breast cancer microarray cohorts

GEOid [48] Patients dmfs/rfs ≤ 5 years dmfs/rfs > 5 years

GSE2034 [49] 286 93 183

GSE1456 [50] 159 34 119

GSE2990 [51] 187 42 116

GSE4922 [52] 249 69 159

GSE7390 [53] 198 56 135

GSE11121 [54] 200 28 154

Table 4.1: Breast cancer benchmark cohorts. Brief description of sample counts in the
different classes for the cohorts considered in [14] (all Affymetrix Human Genome U133A
Array). In GSE4922 and GSE11121 metastasis free survival (dmfs) is considered, in other
cohorts relapse free survival (rfs).

Data types Patients Recurred/Progressed DiseaseFree

Illumina Human v3 microarray (mRNA) 1890 647 1333

Affymetrix SNP 6.0 copy number (CNA)

Table 4.2: Breast cancer METABRIC cohort. Brief description of sample counts in the
different classes for the considered data types in the METABRIC (Molecular Taxonomy of
Breast Cancer International Consortium) cohort [27].
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Algorithm 2 PIMKL Cross-validation on [14]. Cross-validation analysis of PIMKL for each
of the breast cancer cohorts as suggested in [14] (with internal optimization of parameters).
Given as input: X gene expression measurements with related clinical labels y, a set of P
pathways and a set of hyper-parameters Λ = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0} for EasyMKL.

1: for i← 1, 10 do
2: for (Xtrain, ytrain), (Xvalidation, yvalidation)← stratified 10-fold split X, y do
3: learn feature-wise normalization on Xtrain and apply to Xvalidation

4: for (Xλ
train, y

λ
train), (Xλ

test, y
λ
test)← stratified 3-fold split of Xtrain, ytrain do

5: for λ ∈ Λ do
6: train PIMKL(λ) on {kLp(Xλ

train, X
λ
train) : p ∈ P} and yλtrain

7: record prediction accuracy on
∑P

p=1 kLp(Xλ
train, X

λ
test)

8: λ∗ ← argmax(mean prediction accuracy over cross-validation)
9: PIMKL(λ∗) on {kLp(Xtrain, Xtrain) : p ∈ P} and ytrain

10: report kernel weights w
11: report area under the curve for prediction on

∑P
p=1wpkLp(Xtrain, Xvalidation)

12: report mean area under the curve over 10-fold splits . for figure 4.7 and 4.2a

Algorithm 3 PIMKL Cross-validation on METABRIC. Cross-Validation on METABRIC
single omics or multi-omics. Given as input: X molecular measurements comprised of a
selection of data types T (CNA, mRNA or both) with related clinical labels y, a set of P
pathways with a respective pathway for each data type in T and λ = 0.2 for EasyMKL.

1: for 100 folds with 20 samples per class in (Xtrain, ytrain) do
2: for type in T do
3: learn feature-wise normalization on Xtype,train and apply to Xtype,validation

4: train PIMKL(λ) on {kLp(Xtrain, Xtrain) : p ∈ P} and ytrain
5: report kernel weights w
6: report area under the curve for prediction on

∑P
p=1wpkLp(Xtrain, Xvalidation)
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Figure 4.7: PIMKL cross-validation AUC. Box plots of the AUC values for the methods
analyzed in [14] (blue) and PIMKL (red). PIMKL clearly outperforms other methods in four
out of six datasets. For GSE1456 is performing close to other methods average while for
GSE11121 is in the top group. Results are presented as in [14], where each box is drawn from
ten (repeats of) mean AUC values over 10-fold cross-validation splits, see algorithm 2.
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Figure 4.8: PIMKL cross-validation AUC for different gene sets. Box plots of all 100
AUC values (overall 600) for pathway induced MKL obtained by algorithm 2 with different
gene sets to define the pathways given the same aforementioned interactions. In addition to
the 50 previously introduced hallmark gene sets, results for 186 KEGG gene sets from the
Molecular Signatures Database (MSigDB) version 5.2 [28] and also respective randomized
gene sets are reported. For randomization, the same number of gene sets is created, each set
with random size between 50 and 250 genes by sampling from the union of all gene sets. The
quartiles are comparable within each cohort proving the stability of the methods towards gene
sets selection.
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Figure 4.9: PIMKL cross-validation weights. Significance of weights over 100 cross-
validation folds for the 50 hallmark pathways are reported. Significant pathways are colored
in red, while non-significant in blue.
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Figure 4.10: Regression between trained and transferred signature. Regression of the
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Abstract

Boolean models are a powerful abstraction for qualitative modeling and analysis of gene reg-
ulatory networks dynamics. With the development of advanced high-throughput technolo-
gies, the availability of experimental data about the molecular interactions within the cell has
reached unprecedented volumes and accuracy, and hence modern Boolean models are increas-
ing in size and complexity. Unfortunately, current software simulation tools have not scaled
at the same speed and hence cannot handle properly complex Boolean models of large size.

Field Programmable Gate Arrays (FPGAs) are powerful reconfigurable integrated circuits
that can offer massive performance improvements. Due to their highly parallel nature, FPGAs
are extremely well suited to simulate complex molecular networks. We present here a new
simulation framework for Boolean models, which first converts the model to Verilog, a stan-
dardized hardware description language, and then connects it to an execution core that runs
on an FPGA coherently attached to a POWER8 processor. We report an order of magnitude

1Submitted. See Chapter 8 for details about contributions and copyright.
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speed up over a multi-threaded software simulation tool running on the same processor on
a set of state-of-the-art Boolean models. An analysis of a T-cell large granular lymphocyte
(T-LGL) network is performed to show how the implemented framework can help to obtain
biological insights with its consistent performance improvements. In addition, we show that
our framework allows to perform attractor detection at an unprecedented speed, exhibiting a
speedup ranging from one to three orders of magnitude compared to a software solution.

5.1 Introduction

Genes do not work in isolation, but exert their function in complex and tightly connected gene
regulatory networks (GRNs) [1]. At the very basis, understanding complex diseases amounts
to unravelling normal and dysregulated behavior of GRNs. However due to their complex-
ity and the lack of quantitative knowledge about most kinetic parameters governing molecu-
lar interactions, an exact analysis of GRNs, usually based on ordinary differential equations
(ODEs), is in most cases not possible.

Boolean models [2, 3] are an attractive alternative approach for the study of GRNs that
are consistently used in the systems biology community [4–12]. Boolean models provide a
qualitative description of a GRN, where chemical species concentrations or activities are rep-
resented using a finite set of discrete values. In a Boolean model, a node corresponds to a
species (e.g., gene, protein, etc.) and an edge represents an interaction between species. In
its simplest form, a gene can be ON (1) or OFF (0), and its interactions with other genes are
defined by means of a Boolean function of its parent nodes in the GRN. Time is represented
by discrete steps after which the Boolean functions are evaluated following an update scheme
and assigned to their corresponding genes [13]. Various update schemes can be adopted. In
the synchronous scheme [14], all genes are simultaneously evaluated and updated, resulting in
a fully deterministic and computationally tractable system, although often biologically unre-
alistic. Conversely, the asynchronous scheme [15] randomly chooses a gene and updates it to
its next value. The asynchronous scheme provides a stochastic, and hence more realistic, de-
scription of a GRN, although at the price of greatly increasing the computational complexity
and running time of the model. In addition, as the model is stochastic, it has to be run multiple
times in order to resolve the mean dynamical behavior. Although a Boolean model cannot
provide the level of detailed information that an experimentally well-characterized ordinary
differential equation (ODE) system can achieve, it can produce a qualitative description of
the most salient features of a dynamical system. For instance, Boolean models can be very
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useful to identify steady states, cyclic states or attractors – cycles of states A such that no
trajectory entering in A can leave A. These model predictions can provide valuable insights
about observed phenotypes and the molecular processes underlying them [16–18].

One of the main goal of Boolean network analysis is the determination of attractors (steady
states and/or cycles), which can provide valuable information about the underlying mecha-
nisms associated with complex diseases, such as cancer [19]. However, the problem is known
to be characterized by a high computational complexity, mostly depending on the number of
network nodes. Furthermore, the number and the size of the attractors of a system is known to
change dramatically with the update scheme [20]. Some types of attractors, such as self-loops
and simple loops, are common to both update schemes and hence can be computed using the
less expensive synchronous update scheme. However, in the most general case, the characteri-
zation of the attractors landscape of a model requires using asynchronous updates, resulting in
high complexity in the number of states conforming the attractor, as well as lengthy transitory
states leading to an attractor [13].

Generally speaking, the computational problem of finding all the attractors in a Boolean
model is extremely hard. Even the simpler problem of finding the steady states in a Boolean
model is NP-hard [21, 22], indicating that it is not possible to efficiently, i.e., in polynomial
time, find all attractors in the analysed system. However, we have shown in a previous work
that it is possible to provide scalable solutions that are fast enough [23]. Namely, we proposed
a hardware accelerated simulation framework based on the use of FPGAs for synchronous
and asynchronous simulation of Boolean models. Due to the highly parallel nature and ever-
increasing capacity of FPGAs, our approach scaled efficiently, showing a significant speedup
compared with BoolNet [24], a popular R package for the construction and analysis of Boolean
networks.

In this paper, we extend our FPGA simulator to perform attractor detection. The acceler-
ator is seamlessly integrated with a POWER8 processor, greatly increasing the usability of
the proposed framework. We demonstrate the performance of our accelerator using six state-
of-the-art Boolean models from literature, including models for T-cell large granular lympho-
cyte leukemia [25], castration resistant prostate cancer [7], signaling pathways involved in
cancer [8], colon cancer [5], Fanconi anemia and breast cancer [26], and the MAPK path-
way [9]. Firstly, we compare runtime performance of our framework with multi-threaded
implementations of two commonly used software tools: BoolNet and BooleanNet [27], run-
ning on a POWER8 processor; and with an existing accelerator proposed by Miskov-Zivanov
et al. [28]. Our framework demonstrates an order of magnitude speedup over BoolNet, which
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already runs significantly faster than BooleanNet; and exhibits better performance compared
with the existing accelerator. We also include an analysis of the dynamic behavior of the T cell
type of large granular lymphocyte (T-LGL) model [25]. Secondly, we measure performance
of our accelerator in attractors detection. By considering BoolNet as a baseline, we observe a
speedup ranging from one to three orders of magnitude.

This paper is organized as follows. An overview of existing hardware accelerated solutions
and basics of GRN and Boolean models are reported next. Results and discussion are provided
in Sections 5.2 and 5.3, respectively. Details about the framework and its implementation are
described in Section 5.4.

5.1.1 Comparison with existing literature

Boolean GRNs can be studied with simulators, such as BooleanNet [27] and BoolNet [24].
However, simulation of Boolean models on conventional computers, especially, asynchronous
simulation, usually results in prohibitively long execution times due to the intrinsic disparity
between the sequential steps executed by a microprocessor program and the highly parallel na-
ture of information flow within biochemical networks [29]. We observe similarly long running
times on multi-threaded simulations running on a POWER8 processor.

Regarding the computation of attractors, common methods start with randomly selected
initial states and perform exhaustive searches of the state space of a network. However, the
time complexity of these methods grows exponentially with the number of nodes in the net-
work, and hence, techniques to reduce the complexity of the state space have been proposed.
For instance, the entire network state space can be appropriately broken down into selected
subspaces that can be exhaustively searched [30]. However, this approach is not scalable and
it is currently limited to networks containing up to 150 nodes. Network reduction techniques
that conserve the fixed points and complex attractors of general asynchronous Boolean models
have been developed [31]. A systematic removal of state transitions, to render the state transi-
tion graph acyclic, transforms all attractors into fixed points that can be enumerated with little
effort [20]. Finally, a mathematical model of a pruned portion of the state space, followed by a
randomized traversal method to extract the steady states in the remaining state space, has also
been proposed to increase speed and scalability [32].

When approximate solutions are not desirable, symbolic approaches can be efficient as they
do not perform explicit traversal of the state space. Reduced ordered binary decision diagrams
(ROBDDs) use directed acyclic graphs to represent large Boolean functions in a space-efficient
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manner, and are computationally suitable for complex Boolean operations (e.g., logical AND,
OR, etc.) and set operations (e.g., union, intersection, etc.) [13, 33]. Still, BDDs have gen-
erally unpredictable memory requirements. Satisfiability solvers, usually more scalable than
BDDs, are also popular in attractor computation [34, 35]. But with increasing number of
genes and length of unwinding these approaches become inefficient. Analysis of Networks
through TEmporal-LOgic sPEcifications (Antelope) uses model checkers, a collection of tech-
niques for automatically verifying properties of discrete systems, for analyzing and construct-
ing Boolean GRNs [36]. Unlike simulators, model checkers can prove properties of a set
of infinitely many paths. In addition, they can handle new, unforeseen properties by simply
adding temporal-logic formulas, while simulators require the incorporation of such properties
in their program code. Despite these properties, one common disadvantage of symbolic ap-
proaches in comparison with explicit approaches is that the attractors are available at the very
end of the computation which can take a prohibitively long time.

Explicit approaches are not scalable but can present results as and when available. A prac-
tical solution is to accelerate them using highly parallel Field programmable Gate Arrays
(FPGAs). Hardware accelerated biological network simulators have been proposed in the
past [29, 37], where reprogrammable FPGA hardware has been applied to efficiently simulate
the stochastic behavior of biological systems. These early works demonstrated the suitability
of FPGA technology for the simulation of variants of the Gillespie algorithm, achieving a per-
formance 20 times faster than a competing general purpose CPU. Here we apply FPGAs to
the simulation and analysis of Boolean networks. An FPGA-based accelerator framework for
Boolean models has been demonstrated by Miskov-Zivanov et al. [28, 38]. This framework
performs asynchronous updates and does not perform attractor analysis. To the best of our
knowledge, the framework is not fully integrated with the host system limiting its accessibil-
ity by the user software. Buttons are used to manually start and stop the simulation on the
FPGA. The state of the network is displayed using 7-segment LED displays. This prohibits
any further analysis of computed results. The framework we propose in this paper is seam-
lessly integrated with a POWER8 processor greatly increasing its usability and integration
with other software tools.

5.1.2 Simulating biological networks

The central dogma of biology explains the transfer of information between genes (DNA), tran-
scripts, and proteins. Genes are used as templates to create mRNAs through a process called
transcription. In turn, mRNAs get translated to proteins. Some proteins act as transcription
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Figure 5.1: Partial Network of FA-BRCA pathway. Sub-network representing part of the
Boolean model for Fanconi Anemia/Breast Cancer (FA/BRCA) pathway proposed by Ro-
dríguez et al..

factors and can up-regulate or down-regulate the expression of other genes. Collecting evi-
dence from molecular data, either from high-throughput technologies or from literature, can
help us to reverse engineer biological systems.

We can formally divide models for gene regulatory networks in two main categories: static

and dynamic. Static models represent a network as a graph (set of nodes connected by edges),
which is analysed using graph-theoretic approaches. Figure 5.1 depicts a static network from
the FA-BRCA pathway [26]. Each circular node is a gene. Edges indicate the direction of
the regulatory interaction between genes and its type, namely, activation or inhibition. In
Figure 5.1, the gene ICL is suppressed by the gene DSB (DSB —• ICL), whereas the gene
XPF activates the gene DSB (XPF→ DSB).

Dynamic models instead, describe how gene expression values change over time. These ap-
proaches can be further divided in continuous/quantitative and discrete/qualitative [39]. Con-
tinuos or quantitative models represent concentrations of constituents as continuous functions
of time and their dynamics is represented using ordinary differential equations or stochastic
equations. The downside of quantitative models is that they require an accurate knowledge
of the kinetic parameters which are not easily obtainable (e.g., growth rate, decay rate, etc.).
Though these models can represent detailed interactions between constituents, their use is
limited.
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In qualitative or discrete models, each constituent is assumed to take discrete values and the
interactions between constituents are modeled by discrete functions. It is common knowledge
that discretizing continuous-time data results in loss of information. However, these models
can be a suitable choice when only the gene network topology and partial qualitative informa-
tion is known due to the complexity of the network. Popular quantitative models are: Boolean
networks [2, 3], multi-valued models [40, 41], and Petri nets [42]. In this work we focus on
Boolean models.

5.1.3 Boolean models

A Boolean model of a GRN including n genes assigns a Boolean variable gi to each gene i.
If a gene i is active or expressed, the corresponding variable gi = 1. If a gene i is inactive,
the corresponding variable gi = 0. Figure 5.2 depicts a general Boolean model for a set of
genes g1, g2, · · · gn. The next state of a gene i is determined by a Boolean function dependent
on the current values of its neighboring genes with incoming connections in gi. The Boolean
function consists of logical operators (AND, OR, and NOT).

g2g1 gn

Figure 5.2: A general Boolean model. Genes in the model are connected using different types
of Boolean gates describing the action of a logical operator. As in a circuit the next value for
each node is dependent on the values of all the incoming connections carrying the current
value of neighboring nodes.

Table 5.1 illustrates how regulatory functions of some genes in Figure 5.1 can be expressed
as Boolean functions. For example, the second row indicates that the genes ICL and CHKREC
regulate gene FANCM. The corresponding Boolean function is ICL and not CHKREC, i.e.,
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Gene Name Regulatory Function
ICL ICL and not DSB

FANCM ICL and not CHKREC
DSB (DSB or FAN1 or XPF) and not (NHEJ or HRR)

CHKREC not ICL and not DSB and not CHKREC

Table 5.1: Updated rules for some nodes of the network from Figure 5.1. Given a static
network with information about activation and inhibition we can build updated rules for every
node. An update rule or Boolean function computing the state of a node must only depend on
the values of neighbors connected with incoming edges.

the gene FANCM is active only when ICL is active and CHKREC is inactive.

Update order

In Boolean models, variables are updated only at discrete/fixed times. The state of a Boolean
model at a time t is a set of gene values. Depending on the order in which next state values are
assigned to gene variables, various update schedule/schemes are possible. All genes simulta-
neously get the next values in a synchronous scheme. Such a synchronous update scheme is
largely unrealistic as biological processes are known to be characterized by different reaction
rates. Asynchronous schemes take in to account time diversity and different reaction rates
of biological systems by updating variables in a non-synchronous order. These schemes can
be stochastic, in this case each variable is updated with a certain probability. There are sev-
eral flavors of stochastic asynchronous updates. One general variant involves updating one
randomly selected node/variable at each time step. Another variant, known as, random order

asynchronous update involves generating a random of permutation of variables each time and
updating the variables in that order. A combined strategy [28] has been also proposed, where
variables are ranked and grouped according to the rank. Groups are then updated in the order
of the rank following a random asynchronous update of all variables in the group. This results
in a ranked asynchronous order.

Attractors

Representing continuous-time data as two discrete values 0 and 1 results in a loss of precise
quantitative information. Despite the drawbacks caused by this discretization, Boolean models
are still extremely useful for analyzing long term behavior, namely, cycles of states arising
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Figure 5.3: Cycles types. Schematic depiction of different types of cycles.

from the possible feedback loops in the network. Figure 5.3 illustrates different types of
cycles.

A set A of states is an attractor if A is strongly connected (all the states in A are reachable
from each other) and no transitions starting in A can leave A. An attractor A is a simple
attractor if every state has exactly one successor. The cycles S9, S10, S9 and S7, S7 are simple
attractors. The cycle S1, S2, S5, S6, S3, S4, S1 forms a non-simple, also defined as complex,
cycle.

Different update schemes may result in different types of attractors [13]. Simple attractors
of a Boolean model can be reached by using a synchronous update strategy, while complex
attractors can only be reached by applying asynchronous updates. In the following we focus
on analyzing runtime performance of Boolean model simulations using asynchronous updates
and simple attractor detection by using a synchronous update scheme.

5.2 Results

The performance of our accelerator framework is evaluated on six published models with var-
ious number of nodes and complexity. T-LGL, a Boolean model proposed in [25] for T-cell
large granular lymphocyte leukemia (here we consider a simplified version of the model from
the set of examples that are provided with BooleanNet). CRPC, a model by Hu et. al [7]
including relevant pathways for castration resistant prostate cancer. Fumia, a model inte-
grating the main signaling pathways in cancer [8]. CAC, a model for the development of
colitis-associated colon cancer integrating the extracellular environment and intracellular sig-
naling pathways [5]. FA-BRCA, a Boolean model describing Fanconi Anemia/Breast Cancer
(FA/BRCA) pathway [26]. MAPK, comprehensive model of MAPK pathway [9].
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5.2.1 Asynchronous simulation

Runtime analysis

Software simulations of BoolNet and BooleanNet constitute the baseline and are performed
on the same POWER8-based server node that hosts the FPGA accelerator. The server has 20
physical cores running at 2.29 GHz and a total of 512 GB DDR3 RAM. The simulations are
run using the BooleanNet simulation package for Python and BoolNet for R. The benchmarks
processed all simulation jobs with 20 worker threads simultaneously to fully utilize the server
node.

Our framework uses the Xilinx Kintex UltraScale KU060 FPGA and the target frequency
is 250 MHz. The measurements include the time for transferring the parameters to the FPGA
and transferring the results from the FPGA to the main memory. Only one software thread has
been used to perform the memory management and control for the FPGA.

We ran our accelerator for asynchronous simulations on the following models: T-LGL,
CRPC and Fumia. Table 5.2 summarizes the results for each case study. All possible input
combinations are generated as individual simulation jobs (number of simulations in Table 5.2).
Each job is then simulated by BooleanNet, BoolNet, and the FPGA. Only for the CRPC model
the number of simulations has been limited due to the long runtime. Each simulation job has
been simulated in asynchronous mode on the models for 100 time steps and repeated 100
times.

Number of Number of Number of runtime runtime runtime Time per sim. Time per sim. Time per sim.
Model inputs outputs simulations BooleanNet BoolNet FPGA BooleanNet BoolNet FPGA
T-LGL 4 47 16 90.1s 0.88s 0.12s 5.6s 0.043s 0.007s

CRPC 22 69 64 580.5s 3.51s 0.23s 9.1s 0.043s 0.003s

Fumia 6 92 64 7895.7s 3.52s 0.30s 123.4s 0.044s 0.004s

Table 5.2: Asynchronous simulation benchmark. Summary of the execution times for eval-
uated models: T-LGL, CRPC and Fumia. Results for 100 time steps and 100 repetitions in
asynchronous mode are reported.

Compared to BooleanNet and BoolNet, the FPGA accelerator exhibits a speedup of 750.8x
and 7.3x respectively for the T-LGL model. For the CRPC model, it takes a prohibitively
long time to generate all inputs in case of software simulations and hence, the number of
simulations is limited to 64. While BooleanNet apparently struggles to simulate the CRPC
model, BoolNet runtime is dominated by the number of simulations. In this case the speedup
obtained is 2523.9x compared to BooleanNet and 15.2x compared to BoolNet. The FPGA
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accelerator demonstrates a speedup of 26,319x and 11.7x times respectively over BooleanNet
and BoolNet in Fumia case.

Comparison with Miskov-Zivanov et al. [28]. A runtime of 0.019s for the T-LGL model
for 200 repeats and 15 time steps using an FPGA accelerator has been previously reported [28].
These experiments have been conducted on a standalone FPGA board at 50 MHz. Adjusting
this number for 100 time steps, 100 iterations, and a frequency of 250 MHz, such a simulation
would take 0.012s. This is 68% slower than the presented architecture and has roots in the
generation of the random update order. The runtime of the architecture is non-deterministic
due to its reliance on the random order generated by the linear-feedback shift register (LFSR).

Dynamic behavior analysis of T-LGL

Analysis of the dynamic behavior of the T-LGL leukemia network has identified a funda-
mental role for the Apoptosis node [43]. When this node is ON a single steady state where
programmed cell death is normally occurring is found. When it is instead stabilized at OFF
two additional fixed points for which the disease is active appear. This criterion is used to
group steady state behavior into the T-LGL leukemia class (disease) and into the apoptosis
attractor class (normal). We now present our simulation results related to the nodes Apoptosis
and BID, one of the Fas-induced apoptosis pathway elements.

For a given set of initial states, asynchronous simulations necessitate repeating simulation
runs several times each time updating the nodes in a random order. We compute the number
of times a node is 1/0 at specific time points in all the repetitions. If a simulation is repeated
few times, the activation frequencies do not converge as depicted in Figure 5.4. The frequency
curve for apoptosis for 10 or 100 repetitions is not smooth. A similar unstable curve can be
observed for BID as well. As the number of repetitions are increased, the curves start to look
smoother.

The order of magnitude speedup achieved by our hardware accelerator framework enables
large number of repetitions of the simulations for the given initial states. The larger the num-
ber of repetitions of a simulation, the more accurate and smoother are the estimates of the
evolution of node states frequencies over the time steps. This aspect plays a major role when
analyzing the dynamics of the system, since node activation frequencies convergence can be
considered as an indicator of the presence of an attractor. Figure 5.4 shows how increasing
the number of repetitions for a given initial state changes the activation frequency estimates in
T-LGL. The curves reported for the different repetitions numbers tend to converge after 1000
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Figure 5.4: Frequency at different number of repetitions. Line plots for different number
of repetitions of a simulation with a fixed initial state in T-LGL are reported. In the two
panels the activation frequencies for Apoptosis (left) and BID (right) are shown. The increased
number of repetitions smooth the curves resulting in more accurate frequencies estimates that
consistently capture the system dynamic.

repetitions. The curves for the Apoptosis node illustrate how estimates change their evolution
over the time steps: fewer repetitions underestimate the steepness. This exhibits how higher
number of repetitions capture the dynamics of the system in a more consistent fashion. For
the node BID, we observe that the dynamics captured with higher number of repetitions tends
to converge towards a curve with a maximum that is consistently estimated only when the
simulation is repeated over 1000 times. This example shows that an efficient simulator helps
to better capture the dynamic of a biological system by enabling high number of repetitions
with low runtime requirements.

5.2.2 Attractor analysis

BooleanNet has been excluded from the benchmark for attractor analysis given its poor perfor-
mance. BoolNet does not perform exhaustive attractor analysis if the number of nodes in the
model is greater than 29. All models considered in the benchmark exceed this limit. Hence,
the method for finding the attractors has been set to chosen so that the attractor analysis is
limited to selected initial states.

Attractor search is performed by running multiple synchronous simulations using different
start states. The time to generate the start states is excluded from timing measurements. The
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Model #nodes Tool #Start states Time Time per state #attractors

T-LGL 51
BoolNet 212 0.12 s 32 us 3

FPGA 228 6.46 s 0.024 us 5

CRPC 91
BoolNet 216 13.43 s 205 us 1

FPGA 220 1.64 s 1.56 us 135

Fumia 98
BoolNet 216 15.62 s 238 us 4

FPGA 220 0.59 s 0.56 us 26

CAC 70
BoolNet 216 20.17 s 307 us 4

FPGA 225 1.59 s 0.047 us 6

FA-BRCA 28
BoolNet 228 214.8 s 0.8 us 1

FPGA 228 4.31 s 0.016 us 1

MAPK 53
BoolNet 216 12.12 s 184 us 4

FPGA 224 13.01 s 0.7 us 10

Table 5.3: Attractor search benchmark. Summary of the evaluated models and results for
the synchronous attractor search comparing BoolNet and our framework.

number of start states has been selected such that the runtime for a specific model is sufficiently
long (>10 s) to avoid side effects for short runs.

Table 5.3 summarizes the evaluated models and the measured runtime for both BoolNet and
our accelerator framework. The number of start states is different for the FPGA and BoolNet
runs to adjust for different performance characteristics. When we used the same number of
start states for both, it often happened that either BoolNet ran for too long or the accelerator
was too fast resulting in a short runtime.

As the overall runtime is dependent on the number of start states that have been used for the
attractor search, Table 5.3 includes a runtime per state column to make the tools comparable.
The speedup factors of the FPGA framework range from 50x to 6,531x over BoolNet. An
observation can be made on the FA-BRCA model which is the smallest model in terms of
number of nodes. For BoolNet the runtime per state is significantly better compared to the
other models. This is probably due to the fact that in this regime it can perform an exhaustive
search of all states.
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Performance projections

As we run BoolNet only on a single core, a single accelerator core has been used on the
FPGA for a fair comparison. The accelerator consumes only 2 % of the overall resources
available on the FPGA. This allows the accelerator core to be replicated at least 20 times on
a single FPGA card, resulting in a further speedup of 20x. The server system allows to plug
in an additional coherent accelerator processor interface-based (CAPI-based) accelerator to
further increase performance and adjust for a multi-threaded software implementation. When
utilizing all cores of the POWER8 processor the performance of the software should increase
linearly and be 20 times faster as well.

Comparison with boolSim [44]

We also ran boolSim, a symbolic ROBDD-based tool for attractor analysis on our models.
Synchronous attractor computation for T-LGL (51 nodes) on an Intel Xeon processor running
at 3.5GHz was performed in ~80 seconds and 71 attractors were reported.boolSim took 10
seconds to finish the analysis for MAPK (53 nodes). However, we observed that boolSim is
unable to finish the attractor analysis in a reasonable time as the number of nodes increases.
Some of the runs of boolSim had to be killed after running for a long time. For the Fumia
model (98 nodes), boolSim kept running for >5317 minutes (approximately 4 days). The
run time for both CRPC (91 nodes) and CAC (70 nodes) is >8352 minutes (approximately 6
days). We chose to stop boolSim after running for such a long time. As is observed in all
symbolic approaches, no response/feedback has been presented to the user during this time.
Our approach, though exhaustive, presents the results faster with the help of FPGAs. We
ran into problems using the state-of-the-art software tool geneFAtt [45]. The source code is
publicly available but seems to be incomplete. The compilation failed not only on the POWER
system but also on an x86 system.

5.2.3 Further improvements

FPGA utilization

The simulation core is rather small leaving the FPGA resources under utilized. Each model re-
quires around 7,200 to 7,400 look-up tables (LUTs) which is about 2% of the overall resources
available on the KU060 FPGA. The BlockRAM requirements are higher due to the collector
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Model LUTs BRAM LUTs (%) BRAM (%)
T-LGL 7227 43 2.1 4.0

CRPC 7345 75 2.2 6.9

Fumia 7405 75 2.2 6.9

PSL 54945 281 16.5 26.0

Table 5.4: FPGA resources requirements. Required FPGA resources for the core per model
and the property specification language (PSL).

module. The entire core requires 43 BlockRAM instances for the T-LGL model. Each of the
larger models requires 75 instances which is about 7% of all BlockRAMs on this FPGA chip.
The POWER Service Layer and the interconnecting modules require far more logic resources
and BlockRAMs. These are necessary to connect the accelerator to the host system. Table 5.4
summarizes the required resources.

Performance enhancements

As the core requires little resources on the FPGA, multiple instances can be used to further
reduce the processing times. This will more efficiently utilize the available bandwidth towards
the processor. More results can be sent back concurrently. Since results are sent back only
after all simulation repetitions are complete, a single core requires a high bandwidth. The
experiments indicate a utilization of less than 1% of the available bandwidth of CAPI. Recent
research has demonstrated the use of network-attached FPGAs to accelerate applications [46].
Boolean network simulations can leverage such an architecture by distributing the simulations
across multiple FPGAs. This will allow to scale the models even further without sacrificing
performance.

5.3 Discussion

In this work we have presented our FPGA-based framework for simulation of Boolean models
and computation of attractors. We show that our accelerator can be used to more efficiently
simulate network dynamics with asynchronous updates compared to existing software solu-
tions. The proposed framework exhibits an order of magnitude speedup over existing multi-
threaded software tools. We also leverage the speedup offered by our accelerator to perform a
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massive number of repetitive asynchronous simulations of the T-LGL model. Our framework
successfully computes simple attractors of large and complex Boolean models, exhibiting one
to three orders of magnitude speedup over existing software solutions.

The results reported show that our solution enables analysis of Boolean models with un-
matched performance. The low utilization of the FPGA observed in the models analyzed,
shows that there is enormous room for improvement in terms of speed. A straightforward
way to achieve additional speedup is to synthesize multiple instances of the Boolean model
on the FPGA. In addition, simulations can also be distributed across multiple FPGAs if fur-
ther speedup is necessary. Gaining speed helps us to get rid of current existing limitations for
Boolean models in terms of number of nodes and model complexity. Being able to simulate
and analyze larger and more complex Boolean networks, up to thousands of nodes, allows us
to consider a more comprehensive description of a biological system and to fully exploit the
potential of high-throughput molecular data.

Besides performance improvement, our framework can be easily extended to use other up-
date strategies, such as random ranked updates. This will increase its ability to explore the
state space, hence improving attractor detection. Additionally, another intriguing extension
consists in implementing complex attractor computation on FPGAs to enable fast analysis of
the reachable states of a Boolean model.

The integration of the accelerator with a POWER8 processor via CAPI greatly simplifies
its usage. We believe that this is a fundamental feature in making our framework a valuable
tool for the whole scientific community, offering the possibility to seamlessly integrate it in
software applications.

5.4 Methods

This section describes our accelerator framework detailing its architecture and system integra-
tion.

Host processor and FPGA integration

The host is an IBM POWER8-based server system with the ability to coherently connect an
FPGA via the coherent accelerator processor interface (CAPI). This enables the FPGA to act
as part of a software process and access virtual memory locations just as a regular processor
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core. Also, it allows the FPGA to access all of the system’s main memory that has been
allocated by the software process owning the accelerator. This solution proposed allows a
seamless integration of the FPGA and the host processor. Fig. 5.5 provides an overview of the
overall system architecture.

Figure 5.5: System architecture overview. Overall system architecture with the FPGA top-
level. Communication between the FPGA card and the POWER8 processor is performed
through CAPI.

Input arguments

The end-user is required to provide a Boolean model definition, a list of states to analyze, a
number of time steps to simulate and a flag indicating whether to perform attractor analysis.
In case of asynchronous updates the number of simulation repetitions has to be provided.

Hardware acceleration process in details

Once the arguments are received, our framework performs the following steps. First, the host
converts the Boolean model into a hardware description language (HDL) model (Verilog).
Second, the host creates a bit stream and configure the FPGA card for the computation. Af-
terwards, simulation parameters are transferred from the host to the FPGA. The simulation is
then started on the FPGA using either a synchronous or asynchronous update strategies. Op-
tionally, if enabled, the FPGA card checks for attractors. As soon as the results are processed
the FPGA reports them to the host. Once the results are in the host they can be either displayed
via a graphical user interface (GUI) or written on disk for further analysis.

FPGAs are essentially semiconductor devices that are based around a matrix of config-
urable logic blocks (CLBs) connected via programmable interconnects. FPGAs can be re-
programmed to desired application or functionality requirements after manufacturing. FPGA
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Figure 5.6: Execution core scheme. Here are included the top-level modules used in the
execution core to implement: synchronous and asynchronous simulations as well as attractor
detection.

vendors provide tools that accept a model written in an HDL to create a bit stream and config-
ure the logic blocks and interconnects on the FPGA using this bit stream. The first two steps
on the host take care of this.

Execution core

We have put two types of logic modules on the FPGA, namely, communicating modules (to-
and-from host) and core modules. The core module contains the Boolean model and is re-
sponsible for simulation and analysis. Fig. 5.6 illustrates the top-level of the core with its
main components.

The Boolean model is embedded in the Boolean network model circuit (BMC). In addition,
the execution core all the necessary components to perform simulations of the Boolean model
and further analyze the results. The core receives a start signal together with a set of arguments
listed before. The implemented computational core is capable of performing synchronous or
asynchronous simulations of the Boolean model and can detect simple attractors. The random
enable generator takes care of selecting the node update order accordingly.

For asynchronous mode, a simulation is run for a given number of time steps and the simu-
lations can be repeated for a specified number of times. The core captures the states reached
in the multiple simulation iterations. It computes the fraction of simulations that had a certain
gene node activated (1/ON) at a given time step.
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The execution core is also capable of performing an exhaustive search for attractors in the
Boolean model. The attractor detection unit collects the states that have been visited during a
simulation. If a state is already in the list of visited states then the simulation stops. The states
of the attractor are stored in a local memory. The core then moves on to the next initial state
supplied to it.

Reporting simulation results

Due to the deterministic nature of synchronous updates, a state of a Boolean model has only
one successor state. For a given input and its two simulation repetitions, the value of a par-
ticular output at a particular time step remains the same. This being the case, it is feasible to
report all the states reached during simulation to the host/software.

This is not the case for asynchronous updates. For a fixed input and two simulation repe-
titions, the generated sequences of random permutations/updates is potentially different. Dif-
ferent sequences of update orders most likely result in different outputs. Hence, outputs at
the same time step can be different for different simulation iterations. We present the results
of such simulations in a meaningful manner. We record how often a particular node is active
at a given time step. We then divide the value by the number of simulation repetitions. This
gives us the percentage of simulations in which a node was active at a given time step. We
perform this calculation for every time step. The collector module in the core is responsible
for keeping track of the number of times an output has become active at each time step.
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Abstract

Knowledge about tumor clonal evolution can help interpret the function of genetic alterations
by pointing out initiating events and mutations that contribute to the selective advantage of
proliferative, metastatic, and drug-resistant tumor subclones. Clonal evolution can be recon-
structed from estimates of the relative abundance (frequency) of subclone-specific alterations
in tumor biopsies, which, in turn, informs on the cellular composition of each tumor sub-
clone. However, estimating these frequencies is complicated by the high genetic instability
that characterizes many cancers. Models for genetic instability suggest that copy number al-
terations (CNAs) can dramatically alter mutation-frequency estimates and thus affect efforts

1In preparation, previous version pre-print available [1]. See Chapter 8 for details about contributions and
copyright.
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to reconstruct tumor phylogenies.

Our analysis suggests that a detailed accounting of CNAs is required for accurate muta-
tion frequency estimates, and that such accounting is impossible for many cancer types using
molecular profiling of one biopsy per tumor. Instead, we propose an optimization algorithm,
Chimaera, to account for the effects of CNAs using profiles of multiple biopsies per tumor.
Analyses of simulated data and profiles of a prostate cancer patient and an hepatocellular carci-
noma cohort suggest that Chimaera estimates are consistently more accurate than previously-
proposed methods, resulting in improved phylogeny reconstructions, and the discovery of
recurrent initiating mutations and key tumorigenesis events.

6.1 Introduction

Pan-cancer tumor profiling has identified recurrent alterations that are associated with tumor
etiology at the loci of thousands of genes but the interpretation of genetic alterations remains
a major challenge [2–4]. Knowledge about the clonal evolution of tumors can point to genetic
alterations that both contribute to tumorigenesis, indicate prognostically-relevant intra-tumoral
variability, and point to refractory tumor subclones [5–7]. Specifically, clonal evolution, de-
picted as a phylogenetic tree in Figure 6.1a, can help identify alterations that play a role
in tumor initiation as well as those that confer a selective advantage to altered tumor cells.
Moreover, information about its subclonal composition is important for predicting the can-
cer’s potential for drug resistance and metastasis, which vary across tumor subclones [8] and
are the key determinants of patient survival. Consequently, tumor-subclone characterization
is essential for designing personalized therapies that target all tumor subclones and may hold
the key to predicting tumor progression, drug sensitivity, and patient outcome.

Current methods that rely on DNA-profiling to reconstruct clonal evolution of tumors can
be classified into two categories: methods that primarily rely on single-cell profiles [9–12]
and those that computationally resolve mixtures of subclones from molecular profiles of tu-
mors, i.e., profiles of pools of cells that originate from a common malignant lesion [7, 13–15].
Single-cell DNA sequencing can produce more definitive estimates of the proportion of tumor
cells that contain each genetic alteration (alteration frequencies) and more complete profiles
of tumor subclones, including information about the co-occurrence of alterations within each
subclone. Its primary disadvantage is operational given the low availability of high-quality
tumor samples that permit single-cell isolation and profiling, and accuracy and cost associated
with parallel sequencing DNA from a multitude of cells per tumor. Alternatively, single-cell

120



Chapter 6. Inferring clonal composition from multiple tumor biopsies

WT

1

2 3 4

5

Dominant subclones

Initiating mutations

Proliferative clones

(a) (b) (c)

0
0.1
0.2
0.3
0.4
0.5

I II III IV

0
0.1
0.2
0.3
0.4
0.5

I II III IV

1 2 3 4 5

Genomic instability affects
subclone signatures

0.1
0.1
0.1

0.3

0.4

Biopsy I

WT 1 2 3 4 5

0.05

0.1
0.1

0.5

0.25

Biopsy II

WT 1 2 3 4 5

0.1
0.05

0.05

0.20.6

Biopsy III

WT 1 2 3 4 5

0.2
0.05
0.05

0.6

0.1

Biopsy IV

WT 1 2 3 4 5

(d)

Figure 6.1: Footprint of clonal evolution across tumor biopsies. (a) Tumor phylogeny com-
posed of five dominant tumor subclones and wildtype (WT) cells, with no somatic mutations,
that make up the cellular composition of four tumor biopsies (b). Subclones 3 and 5 were
more proliferative, i.e., the proportion of these subclones (cellularity) in containing biopsies
is greatest. (c) Failure to account for genetic instability can skew cellularity estimates be-
cause fractions of reads (mutated-read fractions) presenting each mutation in WES depend
on the copy numbers of the alleles in both mutated and non-mutated cells. Consequently, in
genetically-stable tumors, biopsies from (b) will have mutated-read fractions that differ from
those of (d) genetically unstable tumors with the same cellularities.

RNA sequencing or protein profiling can be used to define tumor subclones, but these do not
directly point to key driving genetic alterations. Moreover, the accuracy of single-cell muta-
tion profiling is an issue due to limited material availability in single cells [16], and this is not
likely to improve as future sequencing technologies focus on profiling formalin-fixed paraffin-
embedded (FFPE) tumor samples [17, 18]. Focusing on single-nucleotide somatic variants
(SNVs; or simply mutations), we seek to reconstruct clonal evolution from mutation profiles
of genetically-unstable cancers. This entails deconvolving mutation frequencies, alteration-
subclone associations, and copy number alterations (CNAs) from molecular profiles, includ-
ing whole-exome sequencing (WES) assays, that produce average estimates across cellular
ensembles (see Figure 6.1b). One approach to improve the accuracy of such deconvolutions is
to profile multiple biopsies from the same tumor across time points [19] or across regions [8,
20]. This approach relies on the assumptions that genetic alterations that are specific to the
same tumor subclone are expected to co-occur with the same frequency across biopsies and
that the clonal composition across time or heterogeneous regions varies; i.e., multiple sam-
pling will allow for the aggregation and deconvolution of the frequencies of most mutations
with improved power. It’s important to note that mutations that underwent convergent evolu-
tion [21] will not be aggregated with other mutations form the same tumor subclone because
of differing frequency estimates across biopsies. A central challenge for aggregating and esti-
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mating mutation frequencies in tumors with unstable genomes is accounting for the influence
of CNAs in mutated-read fractions, i.e., the frequencies of observed alternative alleles in the
profiling assay. Specifically, CNAs can alter contributions from reference alleles in mutation-
free cells, as well as both alternative and reference alleles in mutated cells (see Figure 6.1c). In
turn, errors in mutation-frequency estimates can prevent accurate phylogeny reconstructions
(see Figure 6.2).
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Figure 6.2: Impact of mutation frequencies on the inference of the ancestral relations.
Small variations in mutation frequency estimates can impact the inference of ancestral rela-
tions. (a) Simulated tumor phylogeny, (b) subclone cellularities, and (c) frequencies of sub-
clonal mutations across biopsies. (d) Ancestral relations between subclones can be inferred
from comparisons of their frequency vectors: Subclone 4 frequencies are greater than those
of subclone 3 across all biopsies, but (e) errors in frequency estimates (red) can violate this
relationship and complicate tumor-phylogeny reconstruction efforts.

Here, we introduce a model for the effects of CNAs on mutated-read fractions in WES.
We use this model as a basis for simulations with CNA distributions that are compatible with
observations from The Cancer Genome Atlas (TCGA) primary breast cancer (BRCA) and
hepatocellular carcinoma (HCC) samples [22, 23]. Data were simulated using synthetically
generated phylogenies followed by the duplication or loss of sequencing reads according to
simulated effects of copy number variations (CNVs).

Several methods are available in the literature to estimate mutation frequencies and clonal
compositions. ABSOLUTE [24] infers tumor purity and malignant cell ploidy directly from
the analysis of somatic DNA alterations, by fitting estimates of copy-ratio of both homolo-
gous chromosomes with a Gaussian mixture model, with components centred at the discrete
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concentration-ratios implied by an initial frequentist estimation. AncesTree [14] provides
a combinatorial characterization of the clonal evolution of a tumor by assuming than in an
error-free data mutations can be described by a perfect phylogeny matrix, which is found
using integer linear programming; the problem is extended to real data using a probabilistic
model for errors. EXPANDS [25] clusters mutations based on their cell-frequency probability
distributions; clusters are next extended by members with similar distributions, and pruned
based on statistical confidence by comparing the cluster maxima and peaks observed outside
the core region. PhyloWGS [26] reconstructs phylogenies based on a model for simple so-
matic mutations in addition to a correction for CNAs, all based on a single biopsy per tumor.
SCHISM [15] takes as input mutation cellularity estimations and mutation clustering inferred
by other methods, and uses a generalized likelihood ratio to infer lineage precedence and lin-
eage divergence. A genetic algorithms is then used to build phylogenetic trees. Attempts
to estimate the frequencies and cellularities of mutations and subclones using ABSOLUTE,
AncesTree, EXPANDS, PhyloWGS, and SCHISM revealed variable success rates, with some
methods showing consistently poor accuracy. EXPANDS and PhyloWGS, which were de-
signed for phylogeny reconstruction using profiles of one biopsy per tumor, and ABSOLUTE,
which is best known and most effective for estimating tumor purity, had consistently poor
accuracy in our simulations. While SCHISM and AncesTree, which do not explicitly account
for the full range of observed CNAs in tumors, were less accurate on simulations with CNAs.
Like PhyloWGS, we concluded that explicit accounting for CNAs is required in order to ap-
proximate mutation frequencies accurately. However, more than one biopsy per tumor are
required for accurately approximating mutation frequencies and CNAs at mutated loci.

To address this challenge and improve mutation-frequency and CNA estimations from WES
of tumors with genetic instability, we developed Chimaera: clonality inference from mutations
across biopsies. In our methodology we define the clonality problem as that of associating
mutations with subclones and inferring ancestral relations between subclones. The goal of
the resulting set-theoretic formulation, for each tumor, is to aggregate co-occurring mutations
across biopsies, estimate the frequency of each aggregate in every biopsy, and identify par-
tial orders across aggregates that are consistent across biopsies. When viewed in this way,
each tumor subclone can be associated with a frequency vector that describes the proportion
of cells containing its mutations in each biopsy. Establishing ancestral order between two
subclones then depends on (probabilistic) comparisons between their corresponding mutation
frequencies. Hence, Chimaera relies on multiple biopsies for the same tumor to, first, ap-
proximate CNAs and mutation frequencies; then, identify mutations with similar approximate
frequencies and associate them with subclones; and, finally, to estimate the true frequencies of
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these mutations and the associated subclones. As is the case for estimates made by SCHISM,
ABSOLUTE and other methods, Chimaera is not able to produce frequency estimates for all
mutations, but compared to existing methods is able to process and determine true frequencies
for more variants, exhibiting more power in identifying potentially tumor initiating mutations
and disease drivers. Finally, to demonstrate that Chimaera is able to reconstruct subclones
from tumor profiles we produced Chimaera-inferred subclones and resulting phylogeny from
profiles of ten biopsies taken from a castration-resistant prostate cancer (CRPC) tumor and a
set of profiles extracted from five different tumor areas from a cohort of hepatocellular carci-
noma patients [27].

6.2 Results

We describe our efforts to evaluate method accuracy on simulated data and to reconstruct
phylogenies from real tumors: ten biopsies from a CRPC patient and multi-area biopsies from
an HCC cohort.

6.2.1 Accuracy of mutation-frequency estimation based on
simulated data

We compared the accuracy of EXPANDS, ABSOLUTE, SCHISM, AncesTree, and Chimaera
on simulated data, as described in Section 6.4. Phylogeny reconstruction success and clonality-
inference accuracy by EXPANDS and ABSOLUTE were the lowest. EXPANDS relies on
single biopsies, and when evaluated on phylogenies that were composed of as few as three
tumor subclones, EXPANDS-reconstructed phylogenies from profiles of same-tumor biopsies
(both simulated and collected from the clinic including the CRPC reported on here) had few
common ancestral inferences and performance was poor in every tested simulated instance. In
contrast, SCHISM-reconstructed phylogenies from synthetic constructions with three tumor
subclones were accurate in 100% of the tested instances. ABSOLUTE can process profiles of
multiple biopsies per tumor and has good accuracy for inferring tumor purity in our synthetic
data. However, when using default parameters, errors in ABSOLUTE frequency-inferences
were more than double those of SCHISM. Parameter optimization through human interven-
tion consistently improved its accuracy, but it remained less accurate than SCHISM. More-
over, the degree of human intervention that this required was not compatible with large-scale
benchmarking. Consequently, we focused on accuracy comparisons between inferences by
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SCHISM, AncesTree, and Chimaera (as given in Figure 6.3), and excluded EXPANDS and
ABSOLUTE from further analyses. AncesTree accepts no external input when estimating
mutation frequencies, but SCHISM and can be guided by externally-inferred mutation clus-
ters. SCHISM’s implementation includes its own selected clustering methods, and these were
also used to compare accuracy. We clustered mutations with tclust [28] based on five iterative
optimization methods to determine the appropriate number of subclones: an elbow method
based on intra-cluster sum of square (ElbowSSE), a method based on intra-cluster entropy
(Entropy), a method based on the standard deviation index (SDIndex), and two approaches
based on gaussian mixture models (GMD, Mclust) [29–32].

We compared the accuracy of methods and pipelines on 2000 simulated assays, including
both simulated assays with and without modelled genetic instability (varying mutation copy
numbers). The accuracy of SCHISM estimates was better on average than that of AncesTree,
but it was relatively sensitive to clustering optimization methods, with SDIndex outperforming
other methods, including those included in SCHISM’s implementation. Comparatively, Chi-
maera estimates were less dependent on clustering methods and significantly outperformed es-
timates by SCHISM with SDIndex (p < 1e−16 by U test). We note that many mutations were
eliminated from the evaluation by both the SCHISM and Chimaera pipelines with tclust-based
clustering algorithms. In total, only ∼ 60% of mutations were assigned frequencies by both
methods. For this reason we also run Chimaera using hdbscan [33] as a clustering algorithm,
since it showed a less strict criterion for outlier detection. While this combination exhibited
slightly lower performance compared to other Chimaera runs (see Figure 6.3a), it showed an
increasing power in the percentage of mutations used to estimate the frequencies (see Fig-
ure 6.3b), thus making it more appealing compared to other settings. Combining SCHISM
with hdbscan was not considered a valid option given the poor error estimates observed using
stricter clustering algorithms (see Figure 6.3a). Inference accuracy, for both SCHISM and
Chimaera, was anti-correlated with the level of genetic instability, which followed truncated
normal distributions with varying means and variances (see Figure 6.3c, see Section 6.4 for
data generation). To better understand mutation-level behaviour, as opposed to the genome-
level comparisons in Figure 6.3c, we rescued individual mutations from each simulation and
compared accuracy, mutation by mutation, as a function of their simulated copy numbers (see
Figure 6.3d).

The result suggests similar Chimaera accuracy across copy numbers, testifying the efficacy
of accounting for copy number alterations. While Chimaera assigned frequencies to all clus-
tered mutations, SCHISM did not successfully estimate mutation frequencies for some sim-
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Figure 6.3: Accuracy on simulated data. (a) Accuracy of mutation-frequency estimates by
AncesTree (purple), SCHISM (red) and Chimaera (green and blue) on simulated WES data
from genomes with varying mutation copy numbers; SCHISM and Chimaera were evaluated
using multiple clustering methods with SDIndex (SCHISM) and ElbowSSE (Chimaera) pro-
ducing top accuracy, respectively, in blue are reported estimates for Chimaera using hdbscan.
(c) Percentage of mutations processed applying the three different algorithms. It is evident
how Chimaera using hdbscan outperforms clearly other methods, being able of considering
over 80% of the mutations considered. (b) Accuracy was inversely correlated with genetic
instability, which was measured here as the coefficient of variation of the distributions used
to simulate CNVs in each simulated WES profile; SCHISM with SDIndex clustering out-
performed AncesTree inferences. (d) Evaluated independently, mutation copy numbers had
relatively little effect on Chimaera accuracy. We report results for Chimera using hdbscan and
SCHISM with SDIndex (a representative that resembles results with other clustering meth-
ods). Standard errors are reported. Mean Error is the mean of the L1 distances between true
and estimated mutation frequencies after normalizing for the number of biopsies.

ulated genomes. Accuracy comparisons in Figure 6.3 were made using only those mutations
that had assigned frequencies by all methods. In its totality, our analysis suggests that, at least
under our model, mutation frequency estimation is more challenging for genomes with high
copy-number variability. Chimaera shows high inference accuracy for simulated genomes
where all mutations had consistently low or consistently high copy numbers was relatively
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high. This is in part due to Chimaera’s iterative process, where success in mutation clustering
is followed by an optimization process that can correct for consistently high or consistently
low mutation copy numbers.

6.2.2 Phylogeny inference in CRPC

To test our ability to infer mutation frequencies and ancestral relations between subclones us-
ing clinical data, we profiled ten biopsies of a single castrate-resistant prostate cancer (CRPC)
tumor (see Figure 6.4). CRPCs are high-risk prostate tumors that are known to have high
genomic instability [34]. Each of these biopsies was profiled and analyzed as described in
Section 6.4, producing a total of 356 mutations that were used as input to SCHISM, ABSO-
LUTE and Chimaera. SCHISM did not produce frequency estimates for any of the mutations.
ABSOLUTE, following repeated parameter optimization steps, produced frequency estimates
for 21 mutations, resulting in four predicted subclones; mutations in three of these subclones
had high frequencies in at least one biopsy, but ancestral relations between these subclones
could not be inferred.

Figure 6.4: Profiled CRPC regions. Overview of four hematoxylin-eosin stained histology
slides with 10 profiled areas (left); and zoomed-in versions (right) that portray the histological
heterogeneity of this tumor. These CRPC regions were profiled by deep WES.

Chimaera combined with hdbscan was able to infer frequencies for 275 mutations that were
clustered into four subclones. Using the frequency estimates provided by Chimaera we were
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able to build a consistent phylogenetic tree supported by most of the biopsies (8/10), see
Figure 6.5. Chimaera inferred potentially initiating mutations that targeted 29 genes, and
identified a chain of three subclones that followed in a later stage in tumor evolution. In-
terestingly, the analysis identified genes that were targeted by multiple mutations, with these
mutations inferred from multiple subclones at different stages of the evolution (TBC1D22A
and TMEM131).
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Figure 6.5: Reconstructed CRPC phylogeny. (a) Chimaera inferred four CRPC subclones
that implied a chain phylogeny, clones are colored after the average frequency in the inferred
mutations from red (high) to green (low). (b) Schematic representation of mutation frequen-
cies across biopsies in each subclone.

6.2.3 Phylogeny inference in HCC

HCCs are high-risk liver tumors that are known to have high genetic instability [23]. To further
validate Chimaera, we studied the profiles of nine hepatitis B virus-positive (HBV-positive)
HCC patients, with each tumor profiled in five areas [27]. In total, we obtained mutated-
read fractions and CNV estimates for 1, 424 mutation candidates in nine tumors and 43 tumor
samples, while seven tumors were profiled in five areas each, profiles from only four areas of
tumors HCC5647 and HCC8716 passed quality control (see Section 6.4 part describing CRPC
profiling for details about the quality control).

Chimaera inferred frequencies estimates for 60% (858/1424) of all mutations, reconstruct-
ing phylogenetic trees for each tumor sample and predicting initiating clones and clones that
are associated with a proliferative advantage; see representative trees for three patients in Fig-
ure 6.6.
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Figure 6.6: Representative phylogenetic trees for three HCC patients. A selection of rep-
resentative trees reconstructed using Chimaera clonality inference. HCC6046 and HCC6952
exihibit a similar structure where, after a chain of two clones a branching event takes place.
In HCC9716 Chimaaera identified two clones organized in chain. In the red boxes we report
mutated genes, included in WNT-signaling pathway, assigned to each patient’s root clone.

Interestingly, 78% (7/9) of the tumors included predicted initiating mutations in WNT-
signaling pathway genes (p < 0.05 after FDR correction). An examination of 102 TCGA-
profiled HBV-positive HCCs suggested that 74% (75/102) of samples carried mutations in
WNT-signaling pathway genes, and the majority of these samples (76%) had WNT-signaling
pathway mutations with mutated-read fractions above 25%, thus corresponding to mutations
that are potentially present in the majority of cells. To test whether WNT-signaling path-
way genes were enriched for mutations, and particularly mutations with mutated-read frac-
tions above 25%, we calculated the proportion of tumors with such mutations in each of 186
KEGG [35, 36] pathways in MSigDB [37] and performed a permutation testing (see Sec-
tion 6.4 for details). The top ten pathways by p-value and mutated-sample fraction is given in
Table 6.1, and highlight a significant enrichment of WNT-signaling supporting the hypothesis
of the involvement of this pathway in HBV-positive HCC initiation.

6.3 Discussion

We sought to develop a methodology to improve the accuracy of tumor phylogeny reconstruc-
tion from tumor WES data by improving mutation-frequency estimates when multiple profiles
of the same tumor are available. Mutation-frequency estimates are particularly challenging
in the face of high genetic instability, which is characteristic to many tumor types, includ-
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Enriched KEGG pathways Genes Patients with mutations p-value Excluding WNT-signaling genes
KEGG WNT SIGNALING PATHWAY 151 57% 0.001 Frequency p-value
KEGG PROSTATE CANCER 89 54% 0.001 23% >0.1
KEGG COLORECTAL CANCER 62 52% 0.001 12% >0.1
KEGG ENDOMETRIAL CANCER 52 51% 0.001 17% >0.1
KEGG BASAL CELL CARCINOMA 55 50% 0.001 9% >0.1
KEGG CALCIUM SIGNALING PATHWAY 178 60% 0.002 56% 0.002
KEGG ECM RECEPTOR INTERACTION 84 44% 0.003 44% 0.004
KEGG PATHWAYS IN CANCER 328 68% 0.016 51% >0.1
KEGG MAPK SIGNALING PATHWAY 267 64% 0.021 58% 0.020
KEGG FOCAL ADHESION 201 58% 0.023 52% 0.042

Table 6.1: Pathway enrichment analysis of the potential regulators. The ten most enriched
pathways for mutations with mutated-read fractions greater than 25% (high-frequency muta-
tions) in TCGA-profiled virus-positive HCCs. Pathways were sorted by p-values followed
by the proportion of patients with a high-frequency mutations in at least one pathway gene.
p-values were estimated using permutation testing based on all expressed genes in 186 KEGG
pathways; here, for each pathway and given the number of pathway gene, each permutation
test selected that number of genes uniformly at random and calculated the fraction of patients
with a mutation in one of these genes. The same test was conducted after excluding WNT-
signaling genes to establish independence from WNT-pathway signaling.

ing the high-risk prostate cancer tumor whose profiling was reported on here. Our proposed
method, Chimaera, is suitable for analyzing tumor profiles across multiple time points and
across multiple tumor regions and can be easily modified to process both types of data, but
here we focused the discussion on the latter. In addition, while we focused on single nucleotide
variants, our methods can be extended to consider other types of genetic alterations.

We outlined the challenges involved in estimating mutation frequencies from WES of genomes
with high genetic instability—where the copy numbers of mutations can widely vary. We
showed that, even for EXPANDS, which uses the copy number of mutations to infer clonal
composition, the accuracy of mutation frequency estimates and cellularities using single biop-
sies was very poor. Our own investigation suggests that the task is often impossible on simu-
lated assays with varying mutation copy numbers. Consequently, we elected to rely on multi-
ple biopsies per tumor to improve mutation-frequency estimation. We showed that even when
profiles of multiple biopsies are available, methods that do not explicitly account for the full
range of copy number variability produce inconsistent results with often poor accuracy.

Chimaera is able to improve mutation-frequency estimates by harnessing added information
from multiple profiles and by directly accounting for the influence of CNVs on observations
from WES. In synthetic data, Chimaera’s performance was the most consistent, and the great-
est both in terms of accuracy and percentage of mutations assigned to subclones. Interestingly,
while Chimaera was able to estimate mutation frequencies with relatively high accuracy even
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for significantly high and low copy numbers, its performance declined for unstable genome
with a high degree of copy number variability. By profiling and analyzing a CRPC tumor,
Chimaera demonstrated the ability to estimate clonal composition of a real unstable cancer,
permitting the inference of a phylogenetic tree that describes the evolution of the disease.
We also applied Chimaera on a recently published HCC cohort, where the reconstructed phy-
logeny estimates allowed the discovery of recurrent initiating mutations. Specifically, we
observed a significant enrichment of the WNT-signaling pathway in the mutations assigned to
root subclones. This finding is in agreement with the known role of WNT in cellular prolifer-
ation and tumor initiation [38] and it has been corroborated by analyzing HCC profiles from
TCGA.

In conclusion, Chimaera provides an effective way to handle clonal composition inference
in unstable cancers, thus enabling reconstruction of phylogenetic trees that elucidate disease
progression in a patient-specific fashion. To facilitate its application to the community, Chi-
maera has been made available as an open-access web service.

6.4 Methods

In the following we report all the methodologies adopted for the analysis presented in Sec-
tion 6.2.

6.4.1 Clonality reconstruction problem

Let M = {m : m ∈ N, 1 ≤ m ≤ n} denote the set of n mutations identified across a
set of profiled biopsies S. The mutation burden in any given cell is given as a subset of M ,
γ ⊆ M , or as an element of the power set over M , P (M); i.e., γ ∈ P (M) is a specific
mutation ensemble that characterizes a tumor subclone. We denote the cellularity of γ and
its corresponding subclone in biopsy s ∈ S as ρsγ , and the frequency of a mutation m ∈ γ in
biopsy s as φsm =

∑
{γ: γ∈P (M),m∈γ} ρ

s
γ . Consequently,

∑
γ∈P (M) ρ

s
γ = 1 and the assignment

A = {ρsγ : γ ∈ P (M), s ∈ S} produces a solution to the formulated clonality reconstruction
problem.
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6.4.2 Relation between copy number and mutation frequencies

As defined above, for a mutation m in biopsy s ∈ S, φsm denotes the frequency of cells in
s with mutation m. The total copy number Cs of the allele targeted by the mutation can be
estimated from sequencing data. Cs is composed by: the copy numbers of the allele in cells
that lack mutation m, δs, the copy number of the wildtype allele in m-mutated cells, δsw and
the copy number of the mutated allele in m-mutated cells, δsm (see Figure 6.7).

Clonality and copy number of a mutated allele across biopsies
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Figure 6.7: Mutation-centric model for CNV effects. Our mutation-centric model for the
effects of CNVs on mutated-read fractions in WES. In each biopsy s, the mutated-read fraction
is a function of the true mutation frequency φsm, the copy number of the allele in all profiled
cells—tumor and WT—that lack this mutation, δs, and the copy number of the wildtype and
the mutated allele in tumor cells with the mutation, δsw, δsm.

Notice that if no copy number event has occurred at the locus m : δs = 2, δsw = 1 and
δsm = 1. Adopting the infinite-sites assumption, we denote the mutated-read fraction, the
fraction of reads reflecting the mutated versus wildtype allele, in sample s as f sm. Then, we
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can formulate the following system of equations:

Cs = δs(1− φsm) + (δsw + δsm)φsm (6.1)

f sm =
φsmδ

s
m

Cs
(6.2)

where Equation 6.1 provides a weighted sum of the copy number contribution from each allele
type, and Equation 6.2 gives the ratio of the number of reads coming from the mutated allele
to the total number of reads.

6.4.3 Chimaera

Chimaera proceeds in three steps. First, mutation frequencies are approximated from sequenc-
ing and CNV data in each biopsy; then, mutations with similar approximated frequency vec-
tors (where each vector component gives the mutation frequency in each biopsy) are clustered
together to form subclones; and finally, mutation frequencies and CNVs for these alleles are
refined using an optimization process. The optimization assumes that all clustered mutations
that are associated with the same subclone have the same frequency in each tumor biopsy and
that δsm, the average copy number of the m-mutated allele, is the same across all biopsies from
the same tumor.

A first approximation

We first approximate the true frequency of the mutation φsm by accounting for tumor purity,
i.e., the fraction of tumor cells in the biopsy, and assuming that the allele’s average copy
number in tumor cells, whether mutated or not, is fixed. Let ps be the purity of biopsy s, then
Equation 6.2 can be rewritten as follows:

f sm =
φsmδ

s
mp

s

2(1− ps) + Csps
(6.3)

The experimentally observed copy number, Cs
obs, depends on the purity of the sample and the

copy number of the sample tumor cells, Cs, as follows:

Cs
obs = 2(1− ps) + Csps (6.4)
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where Cs
obs can be estimated using additional biochemical assays, genetic sequencing, or

through computational analysis of WES data [39], and the normal cells are assumed to have
been corrected for germline copy number variants associated biases. We assume that the mu-

tated allele’s average copy number in tumor cells in each biopsy is constant, i.e., δsm =
Cs

2
.

Under this approximation, we can use Equation 6.3 and Equation 6.4 to eliminate Cs and
obtain a first approximation for the mutation frequency:

φ̃sm = min

(
2f smC

s
obs

Cs
obs − 2(1− ps)

, 1

)
(6.5)

This constraint will be later removed in the optimization process that follows, but is necessary
at this stage to obtain an initial approximation of the mutation frequencies that takes into
account copy number variations.

Subclone reconstruction

The approximate mutation frequency vectors, Equation 6.5, are next clustered to identify can-
didate groups of mutations that form subclones. We considered clustering algorithms with
robust treatment of the outliers in order to ensure a good clustering stability and quality.
Specifically, we used hdbscan [33], a density-based hierarchical clustering method that aims
at maximizing the stability of the obtained clustered against noise and requires minimal pa-
rameter selection. The number of clusters is determined automatically based on the minimal
number of mutations that has to be considered to constitute a cluster. We also use tclust [28],
a non-hierarchical robust clustering that trims outliers based on a probabilistic model. The
number of clusters is selected by optimizing intra-cluster entropy or the sum of square errors
(SSE), and using a variety of optimization methods including the Elbow method, SD index
and gaussian mixture models-based approaches [29–32]. The clustering based on hdbscan,
using a distance based on the L1-norm, exhibits better performance on the generated synthetic
data compared to others, especially when considering the number of mutations processed.
Furthermore, it has the advantage of avoiding imposing a prior distribution on the mutation
frequencies. Once the clusters are found, Chimaera assumes that each cluster represents a
subclone and uses the mutation assignments to infer subclone frequencies and copy number
estimates for each mutated allele in the final optimization step.
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Frequency and copy number inference

Focusing on subclone γ ∈ P (M), Equation 6.3 describes a relationship between the frequen-
cies and copy numbers of mutations in γ:

φsmδ
s
m = f sm

Cs
obs

ps
≡ Bsm, ∀m ∈ γ, ∀s ∈ S. (6.6)

where, Bsm is the entry of a matrix B ∈ R|S|,|γ| corresponding to mutation m and biopsy
s. B is fully determined from analysis of sequencing assays, including purity, observed
copy numbers, and observed mutated-read fractions for each mutation. Unfortunately, the
central term of Equation 6.6, a multiplication of frequencies and copy numbers, cannot be
analytically decoupled. However, mutations from the same subclone occur in cells with
shared evolutionary history, and thus are expected to show similar mutation frequencies, i.e.,
φsmi

= φsmj
≡ φs ∀mi,mj ∈ γ. Notice that the same mutations may have different frequen-

cies in a different biopsy, as the subclones identified in different biopsies are not constraint
to descend from the same ancestral parent. Further, we assume that the copy number of each
mutation m is constant across biopsies, i.e., δsim = δ

sj
m ≡ δm ∈ [0, CN ] ∀si, sj ∈ S, where CN

is a fixed upper bound for the copy number; CN = 15 in our simulations and WES analysis.
While we expect that this assumption will introduce some errors to the approximation of δsm,
it will have limited effects on the selection of optimal mutation frequencies because the vari-
ability of copy number averages for the mutated allele across biopsy is expected to be low. We
also note that we have not assumed stable genomes in our simulated data, i.e, the generated
data displays variable copy numbers for the same mutated allele across biopsies, in order to
have an accurate estimate of the committed error. Making use of these assumptions, the opti-
mization problem for each subclone γ ∈ P (M), based on Equation 6.6, can be formulated as:

minimize ‖ ~φs ⊗ ~δm − B‖2

subject to 0 ≤ δm ≤ CN, ∀m ∈ γ

0 ≤ φs ≤ 1, ∀s ∈ S.

(6.7)

where ~φs is the mutation frequency vector across biopsies for all mutations in γ; ~δm is the
copy-number vector for each mutation in γ; B as defined in Equation 6.6; and ~φs⊗ ~δm denotes
the outer product of vectors ~φs ∈ R|S| and ~δm ∈ R|γ|. We used sequential least squares
programming (SLSQP) optimization [40] to find an optimal solutions of Equation 6.7, where
multiple runs with random initialization are used to avoid being trapped in local optima.
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6.4.4 Simulation of WES data

WES simulations are based on phylogenies and associated cellularity matrices that describe
ancestral relations between 6 to 12 subclones (see Figures 6.8a and 6.8b).

Proliferative 
Subclones

(a) (b)

(c) (d)

Biopsy Subclones

1 0.15 0.05 0.1 0.2 0.5

2 0.3 0.1 0.6

3 0.1 0.1 0.05 0.05 0.4 0.3

4 0.1 0.2 0.7 0

5 0.2 0.05 0.15 0.6 0

6 0.1 0.5 0.4

Copy Number
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Figure 6.8: Synthetic data generation. Our synthetic data generation and a comparison of
simulated CNV distributions to those that were observed in tumors. (a) Representative phylo-
genies and (b) a representative cellularity matrix. (c) Density plots of average copy numbers
across profiles of TCGA hepatocellular carcinoma (HCC) and breast (BRCA) tumors. HCC1
and HCC2 show genome-wide CNV distributions in each of two HCC tumors, while HCC
and BRCA distributions are taken across genes and tumors. (d) Simulated CNVs ranged from
0 to 15x.

Each subclone is associated with 20 to 50 somatic mutations, and each somatic mutation
is associated with a trio of copy numbers—δs, δsw, and δsm—that are sampled from truncated
normal distributions with means µ ∈ {1, 2, 3}, where µ = 1 corresponds to no copy number
changes in tumor cells, and standard deviation σ ∈ {0, 1, 2, 3}; σ = 0 is used only when
µ = 1. The resulting copy numbers model a range of genetic instability conditions that is in
line with observed copy number changes in hepatocellular carcinoma (HCC) and breast can-
cer (BRCA) tumors from TCGA (see Figures 6.8c and 6.8d). We assume no linkage between
simulated CNVs of any mutation. In addition, we add up to 10% of wildtype reads for all
simulated mutations to account for the potential inclusion of non-tumor cells in the assay (WT
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subclone in Figure 6.1a). Total coverage for each allele, i.e., the number of reads covering
both wild-type and the mutated genetic position, is taken by sampling mutation coverage val-
ues from real tumor biopsies profiled in a CRPC patient. Finally, once simulated reads are
produced for both mutated and wild-type alleles, noise is added to simulate duplication or loss
of up to 5% of the observations according to a uniform distribution. Each simulation has been
repeated to produce six biopsies per tumor using a distinct cellularity vector for each biopsy
(as depicted in Figures 6.8a and 6.8b). The availability of six biopsies per tumor increases
the likelihood that mutations can be aggregated and subclone mutation frequencies can be
compared to infer ancestral relations. We note that while our CRPC tumor has been profiled
at ten regions, setting a six-biopsy minimum will exclude the profiling of many tumor types
using our method; this represents a compromise between clinical feasibility and power to infer
mutation frequencies and phylogenies.

6.4.5 Profiling and analysis of ten CRPC biopsies

To test our ability to infer mutation frequencies and ancestral relations between subclones
based on clinical profiles, we profiled ten castration resistant prostate cancer (CRPC) tumor
biopsies (see Figure 6.4). The specimen was collected at the Department of Pathology and
Molecular Pathology, University Hospital Zürich, Switzerland as previously described [41]
with the approval of Cantonal scientific ethics committee Zürich, approval number KEK-ZH-
No. 2014-0007, and with informed consent by the patient. Tumor regions were selected for
heterogeneous histological presentation by an experienced uropathologist. DNA from periph-
eral blood and formalin-fixed paraffin-embedded (FFPE) punches (ten cylinders with diameter
of 0.6 mm) was isolated with the Maxwell 16 LEV Blood DNA kit (Promega, AS1290) and
Maxwell 16 FFPE Tissue LEV DNA Purification Kit (Promega AS1130), respectively, ac-
cording to manufacturer’s recommendations; 300 µL of blood collected in a BD Vacutainer
K2 (EDTA 18.0 mg) tube was added to 30 µL of Proteinase K solution (final concentration
2 mg mL−1) and subsequently mixed with 300 µL lysis buffer, vortexed and incubated for
20 minutes at 56 ◦C. FFPE cylinders were deparaffinised with xylene, washed twice with
ethanol, dried 10 minutes at 37 ◦C and re-suspended in 200 µL incubation buffer containing
2 mg mL−1 Proteinase K. Samples were incubated overnight at 70 ◦C and mixed with 400 µL

lysis buffer. Lysates from both, blood and FFPE tissues, were transferred to well 1 of the
supplied cartridge of the corresponding kit and DNA was automatically purified and eluted in
30 µL Tris-buffer, pH 8.0 by the Maxwell instrument. Each biopsy was profiled using Agi-
lent SureSelect Whole Exome Enrichment, v6 (58 Mbp) and 2x75 bp paired-end reads were
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used for optimal performance on a HiSeq 4000 (Illumina). Mutation calling was followed by
protocols established by TCGA and ExAC [42, 43]. Reads were aligned to hg19 using BWA
39, and variants were called with GenomeAnalysisTK, MuTect 40, Picard MarkDuplicates,
and additional post-processing utilities from GATK including BaseRecalibrator. FastQ files
were deposited in EBI’s ENA project PRJEB19193. Predicted mutations were annotated with
estimated read fractions and estimated CNVs by VarScan using default parameters and after
setting the maximum amplification to 15x [39]. Mutations that were present in fewer than
three biopsies or supported by fewer than three reads were discarded. A total of 356 mutations
were used as input for inference methods.

6.4.6 Enrichment analysis of WNT-signaling in HCC

Pathway enrichment analysis for mutated genes present in initiating subclones estimated with
Chimaera was performed using Enrichr [44] and Panther [45]. In order to test WNT-signaling
pathway genes enrichment for high frequency mutations from HBV-positive HCC patients in-
cluded in TCGA we consider KEGG [35, 36] pathways reported in MSigDB [37]. A permu-
tation testing was used to estimate p-values, where for each pathway, random same-size gene
sets were generated using KEGG pathway genes, and the mutated-sample fraction taken to
generate a null distribution. WNT-signaling was our top pathway for enrichment of mutations
with mutated-read fractions above 25% or for any mutated-read fraction. To correct for the
shadow effect [46], where pathways that overlap a pathway that is mutated in many samples
are also significant, we recalculated enrichment significance for each pathway after excluding
WNT-signaling pathway genes, and note that MAPK-signaling and two other pathways were
still enriched (see Table 6.1).
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Part III.

Concluding Remarks





7 Discussion and Outlook

On the back part of the step, toward the right, I saw a small irides-

cent sphere of almost unbearable brilliance. At first I thought it was

revolving; then I realised that this movement was an illusion created

by the dizzying world it bounded. The Aleph’s diameter was probably

little more than an inch, but all space was there, actual and undi-

minished. Each thing (a mirror’s face, let us say) was infinite things,

since I distinctly saw it from every angle of the universe. I saw the

teeming sea; I saw daybreak and nightfall; I saw the multitudes of

America; I saw a silvery cobweb in the center of a black pyramid; I

saw a splintered labyrinth (it was London); I saw, close up, unending

eyes watching themselves in me as in a mirror; I saw all the mirrors

on earth and none of them reflected me; I saw in a backyard of Soler

Street the same tiles that thirty years before I’d seen in the entrance

of a house in Fray Bentos; I saw bunches of grapes, snow, tobacco,

lodes of metal, steam; I saw convex equatorial deserts and each one

of their grains of sand...

– Jorge Luis Borges, El Aleph

This thesis presents a series of methods and algorithms developed with the aim of acceler-
ating the adoption of precision medicine approaches and increasing our ability to better un-
derstand complex diseases using multiple data modalities. Starting form the reconstruction of
relevance networks and their application for interpretable patient stratification it arrives at the
implementation of personalized or sub-population specific models. The research conducted
can be seen as an effort to design novel methodologies that constitute a systems biology tool-
box integrating state-of-the-art methods from multiple domains, in order to provide the scien-
tific community with a set of algorithms ready to be applied to a wide variety of experimental
data to answer relevant biological questions.

As a starting point, molecular interaction network inference has been analyzed using two
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data modalities: high-throughput omic measurements and natural language from scientific
publications. In Chapter 2, COSIFER 1 scalable cloud service for the inference of molecu-
lar networks that creates a consensus network by integrating the output of different inference
algorithms, is presented. The COSIFER idea came from the need to access a reliable and
robust framework for building disease-specific interactomes from omic data. The ability to
infer context-specific interaction networks is a fundamental step towards a comprehensive
understanding of the biological system considered. The methodologies considered and the
idea of merging predictions using a voting scheme have been inspired by the seminal work
performed in two DREAM challenges concerning network inference from molecular data [1,
2]. In the COSIFER manuscript the framework results are validated on a large set of syn-
thetic data with different noise types, sample sizes and network sizes, generated using Gene-
NetWeaver [3]. Performance of the consensus methods, in agreement with what has been
observed in the DREAM challenges, has been proven to be more stable as they surpass or
match the top-performing inference algorithms. Furthermore, COSIFER has been applied on
network inference using breast cancer gene expression data coming from two independent co-
horts, TCGA-BRCA [4] and METABRIC [5]. By comparing the similarity of the networks
inferred from a selection of different pathways [6], it has been possible to show which mecha-
nisms are consistently reconstructed from the independent patient measurements, highlighting
disease-specific relevant pathways, like Epithelial-Mesenchymal transition, a known pathway
for breast cancer development and metastatic behavior [7, 8]. By integrating the data from
the two cohorts we have been able to identify a set of potential breast cancer regulators using
node betweenness centrality [9] as a proxy for regulatory behavior. The research conducted
while developing COSIFER also led to a publication [10] where an inference method based
on partial correlation was implemented on memristive devices showing for the first time the
potential of mixed-precision in-memory computing. The hardware implementation has been
used to estimate an autophagy specific network from cancerous and normal RNASeq measure-
ments from TCGA, exhibiting an altered regulation of genes responsible for autophagosomes
formation.

In parallel to the efforts of inferring interaction networks from molecular data, INtER-
AcT [11] 2 has been developed, see Chapter 3. INtERAcT represents a novel approach to
infer relevance networks from publications in an unsupervised way. The main motivation be-
hind the implementation of INtERAcT resides in the need of a method able to keep up with the
continuously increasing amount of knowledge coming from scientific articles published. In

1https://sysbio.uk-south.containers.mybluemix.net/cosifer/, as of November 2018
2https://sysbio.uk-south.containers.mybluemix.net/interact/, as of November 2018
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such a context, rule-based methods [12] as well as semi-supervised or supervised methods [13]
are not easily applicable, given the impossibility of reliably annotating an ever-growing text
corpus. INtERAcT builds upon recent research in language modeling based on learning vec-
tor representation of words without supervision [14, 15]. By leveraging these approaches, no
manual curation or expert knowledge in the text processing phase is required, since the vector
representation can be obtained without any prior assumption. INtERAcT scores interactions
making use of a new metric to compare word vectors. After clustering the words in the em-
bedding space, the metric is defined by using the Jensen-Shannon divergence [16] to compare
word’s neighbors distribution over the clusters. We have shown how INtERAcT is effectively
able to reconstruct cancer-specific networks in significant agreement with interactions reported
in STRING [17] using KEGG [18, 19] to define tumor-specific pathways. Specifically, it is
extremely effective for variable corpus sizes and exhibits strong robustness towards variations
of the hyper-parameters used to train word vectors compared to others metrics usually adopted
to compute similarities in word embeddings.

Networks reconstructed using INtERAcT and COSIFER are extremely useful to produce
disease-specific interaction networks and summarize evidence contained in two disparate data
domains. Moreover, by making use of prediction aggregation methods, like consensus algo-
rithms adopted in COSIFER [20], we can easily integrate the information from the multiple
modalities. Besides these clear advantages, some limitations have to be considered. Both
methods estimate relevance networks in the form of weighted undirected graphs. While this
representation, by using network analysis approaches, can provide us with a lot of useful in-
sights it is still not able to capture the complex dynamic of a gene regulatory network or a
signaling pathway. Inferring causal interactions would allow us to enhance the graph repre-
sentation learned, but this comes at the price of requiring either temporal series data or data
from perturbation experiments. Moreover, most causality inference methods come with per-
formance drawbacks that force us to limit the size of the system analyzed, e.g., single signaling
pathways. Inspired by current trends in structural representation learning based on interpreting
a graph in terms of node and edge embeddings [21–23], we started to work in the direction of
adding causality relations for the inference of regulatory interactions using deep learning [24]
with impressive results in terms of reconstruction of known transcription factor to target in-
teractions. These approaches represent the future of the field of network reconstruction in
systems biology and are a natural extension of the work presented in the thesis. Especially
promising are recent advances proposed in some seminal works on model formulation [25–
27], and efforts to propose methods able to scale for large networks and successfully integrate
multiple data from different sources [28–30].
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As mentioned earlier, while far from being an accurate description of the dynamic be-
havior of a biological system, relevance networks can be useful in many systems biology
applications, especially to facilitate interpretable patient classification. Definition of patient
groups or sub-populations plays a fundamental role in adopting a precision medicine approach.
PIMKL [31] 1, included in Chapter 4, exploits them to achieve a molecular process-aware clas-
sification of samples. By considering a selection of pathways, we partition a known molecular
interaction network and construct pathway-induced kernels that are combined using a multi-
ple kernel learning (MKL) algorithm to predict a phenotype of interest. Working at pathway
level enables us to shift from a common biomarker paradigm towards a composite biomarker
paradigm. This allows us to interpret classification results in the light of the molecular pro-
cesses enriched by the weights obtained for each kernel from applying the MKL algorithm,
providing a biologically relevant explanation for PIMKL predictions. PIMKL surpasses state-
of-the-art methodologies benchmarked [32] in the task of predicting biochemical recurrence
on a collection of microarray data from six independent breast cancer cohorts. In this vali-
dation we use as the prior knowledge source the network used as benchmark, namely a com-
bination of KEGG [18, 19] and Pathway Commons [33], and the hallmark gene sets from
MSigDB [34] to define the pathways. Besides a superior performance, PIMKL infers molecu-
lar signatures that are stable across the different cohorts, highlighting pathways that are linked
to breast cancer development. For example, we find that heme metabolism is significantly
enriched in all cohorts, indicating a strong relation between this pathway and relapse-free sur-
vival. Interestingly a link between this pathway and cancer progression has been observed in
lung cancer cell lines and animal models [35], supporting the validity of the findings. These
results show that PIMKL can achieve high performance in terms of specificity and sensitivity
while providing insights about relevant pathways for the phenotype of interest. Additionally,
we validated the potential of PIMKL for transfer learning tasks by using the molecular sig-
natures learned in the six independent cohorts to predict biochemical recurrence-free survival
in METABRIC [5]. Performance in terms of area under the curve remain unchanged when
comparing the transferred signature to a re-trained one, proving PIMKL generalization power.
Finally, we demonstrate how PIMKL can be easily extended to handle multiple data modali-
ties by simply adding additional kernels to the mixture. By applying PIMKL on METABRIC
and considering gene expression and copy number alteration data, we observe that the al-
gorithm is able to fuse the modalities and discard noisy kernels while maintaining the high
performance. This feature is important when it is necessary to deal with heterogenous data
for which we do not have any prior information about the quality and information content of

1https://sysbio.uk-south.containers.mybluemix.net/pimkl/, as of November 2018
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the different datasets, a common case when we are confronted with the analysis of multi-omic
datasets. Despite the flexibility of PIMKL, some shortcomings are still present. In the first
place, considering interaction networks present in databases and defining pathways by limiting
ourselves to annotated gene sets might bias the analysis towards what is already known, and
thus reduce our ability to discover new molecular processes linked to a specific phenotype.
To overcome this problem, at a network level, we can use interaction networks inferred from
independent datasets using different reconstruction algorithms and consensus approaches, like
in COSIFER. Regarding the gene sets used to identify cellular processes, an approach to avoid
depending too much on prior knowledge is represented by applying community detection al-
gorithms [36] on the molecular interaction network considered. Finding gene sets with similar
properties in a data-driven way can really increase the potential of a method like PIMKL to
discover novel groups of interacting genes and allows completely new pathways to be de-
fined in an assumption-free fashion. Another issue to consider, common to most supervised
algorithms for patient stratification, is the appropriate treatment of label uncertainty. This is
a major problem since it has been shown in multiple studies how clinical labels, especially
in cancer grading diagnosis, can be noisy and can exhibit a low agreement between different
specialists [37, 38]. Besides keeping a supervised approach by explicitly modeling label un-
certainty [39–43], we can adapt the algorithm to work in an unsupervised setting. Extending
PIMKL by making use of an unsupervised MKL methodology [44], will improve its usabil-
ity and help overcome the noisy labels problem, while allowing patient groups to be defined
without any supervision. This gives a major advantage in a precision medicine perspective
since we would be able to define novel patient groups associated with a potentially different
prognosis and possibly a different treatment.

As said, determining patient sub-populations is fundamental in precision medicine, since
it defines patient groups that can be used to answer specific biological questions and suggest
personalized therapeutic options. The research activities described in Chapter 5 and Chap-
ter 6 are enabling the development of such approaches. In Chapter 5 the implementation of
a framework for hardware acceleration of Boolean model simulations using FPGA cards has
been described. Boolean models and more generally logical models are a powerful tool to
analyze and simulate a complex biological system [45, 46], but currently their application has
been limited to the analysis moderate-size networks, up to a few hundred of genes or proteins.
One of the main limitations is the lack of a scalable way to simulate the dynamics and find
the steady states of the system. The hardware accelerator we propose addresses this problem
by exhibiting consistent speedups between 10x and 1,000x for a selection of models of vari-
able sizes and describing different molecular systems. The framework presented enables a
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thorough analysis of the state space and system’s attractors. The results obtained show how
the hardware implementation of the simulator permits the simulation of molecular systems
including thousands of nodes. This implies that, by using multiple FPGA cards, we are able
to easily simulate a molecular system up to genome-wide scale offering a unique opportunity
to model arbitrarily large signaling pathways and fully exploit high-throughput omic datasets.
Being capable of simulating network dynamics at such scale will for example facilitate the
simulation of personalized patient models and the analysis of their response to different per-
turbations, such as known effects of a drug or a treatment. Besides the clear advantages of
the framework, a shortcoming is evident: the need for specific, if not unique, requirements
in terms of hardware architecture in order to be able to profit from the acceleration based on
FPGA. This could be addressed by making the platform available and hosting a cloud accel-
eration service for Boolean model simulation and attractor analysis accessible to the scientific
community. Such a service would represent a unique resource to simulate logical models at
an unprecedented scale and promote the consistent usage of these personalized model-based
approaches.

In Chapter 6, another algorithm for personalized modeling, implemented during this re-
search work, called Chimaera [47] 1 has been presented. Chimaera is a method for inferring
the clonal composition of tumors using mutation data obtained by profiling multiple regions
of a cancer at a single time point. The approach we adopt is based on a commonly used
methodology: we define clones by grouping co-occurring mutations, in terms of mutation fre-
quencies, across different regions and define the phylogenetic clonal evolution by finding a
partial order between them. The two main assumptions are: first, spatial resolution can help
sample a tumor’s subclones that appeared at different time points; and, second, mutations
are accumulated over time, namely higher frequency mutations are older and define ancestral
clones. Many methods, using a similar procedure, have been proposed [48–50] in recent years,
but none of them is able to properly account for genome instability at copy number level, a
common phenomenon in different cancer types. Chimaera explicitly accounts for copy num-
ber alterations by correcting somatic mutation frequencies. Our algorithm exhibits superior
performance on multiple synthetic data generated from different phylogenies, noise rates and
levels of copy number alterations when compared to other state-of-the-art methods. We also
prove Chimaera’s potential by analyzing multiple cancer types. First, we used Chimaera to
infer clonal evolution for a CRPC patient using WES data from ten regions, showing how we
can define an evolution trajectory for the tumor development in the considered patient. We
also applied Chimaera on an hepatocellular carcinoma cohort published in a recent study [51].

1https://sysbio.uk-south.containers.mybluemix.net/chimaera/, as of November 2018

150

https://sysbio.uk-south.containers.mybluemix.net/chimaera/


Chapter 7. Discussion and Outlook

For each patient we have been able to build phylogenetic trees in agreement with the results of
the study and recapitulating known biological behavior. Moreover, Chimaera not only enabled
the study of cancer evolution at the single patient level, but also when comparing mutations
in clones estimated as ancestral, highlighted a significant enrichment of the WNT-signaling
pathway. Interestingly, WNT-signaling is one of the usual suspects for tumor initiation and
proliferation and has been tested as a drug target in pre-clinical studies [52]. Results on HCC
show that Chimaera can be effectively used to describe patient-specific tumor evolution and
suggest potential therapeutic interventions. Despite its flexibility, Chimaera presents some
limitations. First, the assumptions made on somatic mutation and copy number behavior
might be too strict and not consistent with the actual biology underlying cancer evolution.
Second, the resolution given by DNA sequencing from multiple regions might not be enough
to sample all cell populations, leading to an incomplete description of the clonal architecture
and forcing the algorithm to perform the inference on extremely noisy data. Regarding the first
issue, while on one hand we have seen cases in the cohorts analyzed where for some genomic
locations the assumptions were violated, on the other hand mutations exhibiting this behavior
were limited in number and represented only a small portion of the SNVs considered. Re-
garding the low resolution problem, the most promising option seems to be single-cell DNA
sequencing. With this technology we can call mutations for each cell and potentially detect
every single cell population present in a sample. Unfortunately some technical limitations,
like quantity of material needed and noise, are preventing us from relying on these measure-
ments for the time being. Nevertheless, extending Chimaera to work with these data types,
possibly obtained by profiling multiple regions at the single-cell level, will surely expand our
ability to infer tumor evolution. However, even by working with standard DNA sequencing
data, Chimaera infers phylogenetic trees representing tumor development that can be used to
design therapeutic interventions tailored for a specific patient, representing a perfect example
of an algorithm design in the era of precision medicine.

This research work has produced a set of valuable tools that can be used to study biolog-
ical systems and analyze multi-omic data at multiple levels. The graph-based approaches
implemented, COSIFER and INtERAcT, are the pillars used to support the analysis of high-
throughput molecular data by summarizing information about molecular interactions and mech-
anisms governing cell behavior. On top of these pillars we have developed PIMKL that, with
its interpretable phenotype prediction, allows clinically relevant patient groups to be defined
while using a prior interaction network to highlight active molecular processes. Once pa-
tients are stratified, we can use the proposed hardware-accelerated Boolean models to poten-
tially simulate network dynamics and find attractors at genome-wide scale for specific patient
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groups. Going towards a personalized medicine perspective, Chimaera has been implemented
to integrate multiple genomic data to infer patient-specific tumor evolution.

In conclusion, we believe that the algorithms implemented in the course of this thesis will
help the systems biology community accelerate a consistent adoption of precision medicine
approaches.
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sizes (48 settings) over ten simulations. (a) Boxen plot (Letter-value plot)
of the AUC values. (b) Box plots grouped by different noise types. . . . . . 24
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2.3 COSIFER inferred consensus network for Epithelial-Mesenchymal Tran-
sitiongene set. This Figure describes the analysis of high confidence reg-
ulatory interactions (pruning edges using a threshold t = 0.9) for the most
stable hallmark set, Epithelial-Mesenchymal Transition. The network has
been obtained using the consensus network estimated after merging the re-
sults from both TCGA-BRCA and METABRIC cohorts. In Panel (a) poten-
tial regulators, sorted using betweenness measure, are reported. The legend
shows the colors associated with the different genes based on their source.
The known transcription factors are recovered from TFcheckpoint (green).
The genes reported have a centrality betweennes above the 75th percentile
of the centrality distribution while the ones highlighted as potential regu-
lators (blue) above the 95th percentile. In Panel (b) a graph reporting all
the high confidence interactions is shown. Edge width is a function of the
intensity, node size depends on their betweenness and the color scheme is
the same used in Panel (a). . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Evaluation of the performance of COSIFER with repsect to simulation
parameters. AUC values of each network inference method as shown in
Figure 2.2a, with each subplot showing the data in respect to a certain pa-
rameter. top Boxen plot (Letter-value plot) of the AUC values with respect
to network size. middle Boxen plot of the AUC values with respect to sam-
ple number. bottom Boxen plot of the AUC values with respect to noise
type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Pathway similarities between cohorts. Similarity analysis of gene regula-
tory networks estimated with COSIFER for the hallmark gene sets between
the METABRIC and TCGA-BRCA cohorts. Pathways with high similar-
ity between cohorts are expected to contain a higher degree of breast can-
cer–specific information compared to pathways with low similarity where
the cohort effects are influencing the network. The most similar cancer
hallmark pathways across cohorts is the pathway Epithelial-Mesenchymal
Transition, highlighted in light blue. . . . . . . . . . . . . . . . . . . . . . 39

3.1 Schematic representation of INtERAcT. Text is used as input to generate
a word embedding. The word vectors are clustered into groups of similar
semantic meaning and the distributions of each word’s neighbors across
clusters are used to compute and predict interactions between molecular
entities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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3.2 (a) Top 50 prostate cancer protein-protein interactions inferred by IN-
tERAcT. The prostate cancer gene set has been defined according to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) prostate cancer path-
way, and includes molecular entities known to be important in prostate can-
cer onset and development. The interactions and associated scores have
been computed using a word embedding trained on ~140000 prostate can-
cer open-access abstracts from PubMed Central and INtERAcT. Node size
is proportional to node degree while edge width is proportional to the in-
tensity of the interaction. (b) Performance of INtERAcT on a prostate
cancer gene validation set compared to other distance measures using
STRING as a ground truth. We use ROC (Receiver Operating Charac-
teristic) curves to quantify the accuracy of the inferred interactions in a set
of prostate cancer-related genes. INtERAcT (red curve) significantly out-
performs alternative, commonly used metrics on a word embedding such
as a cosine distance-based similarity (orange curve), correlation-based sim-
ilarity (blue curve) and a similarity score based on the Euclidean distance
(green curve). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 INtERAcT performance compared to other distance measures using
STRING as a ground truth. We use ROC (Receiver Operating Charac-
teristic) curves to quantify the quality and performance of inferred inter-
actions. The curves here reported refer to the inference performed on the
KEGG cancer pathways considered in the analysis. Using naive approaches
such as a similarity based on the Euclidean distance (green curve) between
word vectors led to poor results. Other methods such as cosine-based sim-
ilarity (orange curve) or correlation-based similarity (green curve) showed
an improvement. INtERAcT (red curve) achieved the best performance pre-
dicting interactions reported in STRING. The confidence intervals (CIs) at
level 68% are reported (one standard deviation from the mean). To generate
the empirical distribution we used sampling with replacement at different
false positive rates of the true positive rates given by the different pathways.
The confidence intervals reported are at level 68% (one standard deviation
from the mean) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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3.4 Description of the skip-gram model. Skip-gram model used in Word2Vec
to find an optimal representation to predict the surrounding context of a
target word. The example highlights the window around PTEN, a gene
implicated in many cancer processes. The target word, PTEN, is linked
to each of its neighboring words and the pairs are fed into the network.
The learning process optimizes the probability of predicting the contextual
words of PTEN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Exploration of the influence of word embedding parameters on AUC
for different methods and ground truths. Many word embeddings with
parameters min_count , n-grams, size and window have been trained. Each
embedding has been used for inference with the four studied methods. The
inferences have been evaluated using two different ground truths: STRING
text-mined interactions and STRING interactions predicted through a com-
bined score integrating diverse computational and experimental evidences.
In both cases, ground-truth interactions are color-separated (blue, orange
and green) according to the STRING confidence score. Each such com-
bination results in a single data point in the Figures 3.5 and 3.6, except
for INtERAcT, which has additional parameters (clusters and neighborhood
sizes), making it appear denser. Each of the four panels investigates varia-
tion of a single parameter: (a) min_count, the minimal allowed occurrence
of words in the entire corpus to be included in the embedding; (b) n-grams,
prior substitution of bi-grams or tri-grams as single tokens. (c) size, the
dimensionality of the embedding vector. (d) window, the size of the win-
dow surrounding each target word to be predicted during the learning of the
embedding. INtERAcT is largely insensitive to the choice of embedding pa-
rameters, with small gains in performance for larger values for min_count
and window size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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3.6 Parametric dependency of INtERAcT using STRING as a ground truth.
AUC for different word embeddings compared to STRING with a confi-
dence score of 700. Word embeddings for both bi-grams and tri-grams,
window sizes of 9 and 11 as well as sizes (dimensionality) 100, 250 and
500 with fixed parameter min_count=50 are shown here. Word embeddings
were used varying the cluster size and number of neighbors. Left Increasing
the number of clusters representing similar context in the corpus improves
performance of INtERAcT. Middle The number of neighbors has a small
effect on the performance of INtERAcT. Right The size (dimensionality)
of the word embedding has no noticeable influence on INtERAcT. . . . . . 62

3.7 Word embedding source comparison. Full text versus abstract. AUC
for different word embeddings compared to two ground truths obtained by
STRING with a confidence score of 700. Word embeddings for both bi-
grams and tri-grams, window sizes of 9 and 11 as well as sizes (dimension-
ality) 100, 250 and 500 with fixed parameter min_count=50 are shown here.
Left Text-mining ground truth. Right Combined ground truth. . . . . . . . 64

3.8 INtERAcT score analysis. The curves reported describe how the diver-
gence values are mapped into scores by Equation 3.5 setting β = 0.0 and
for different α values. The orange line corresponds to the selected value of
α = 7.5. Other α values don’t map properly the divergence values in a [0,1]
interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 PIMKL concept. Given a network topology describing molecular inter-
actions, relevant sub-networks can be extracted to generate a mixture of
pathway-induced kernels. The combination of kernels is then optimized to
predict a phenotype of interest. The weights of the mixture provide a mea-
surement of the importance of each pathway, thereby shedding light on the
molecular mechanisms that contribute to the phenotype. . . . . . . . . . . 74

4.2 PIMKL cross-validation results. (a) Box plots for AUC values over all
cohorts for the methods considered. PIMKL results are reported in red,
while other methods’ results are colored in blue. Box plots are obtained
from ten (repeats of) mean AUC values over 10-fold cross-validation splits,
see algorithm 2. (b) Heat map showing significant pathways selected by
PIMKL across the different cohorts considered in the study. Significant
pathways are highlighted in red, while non-significant are colored in blue. . 76
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4.3 Correlation in molecular signatures. Heat map reporting the correla-
tion of the molecular signature estimated across multiple cohorts. Corre-
lation values are reported in the lower triangular part of the heat map (since
it is symmetric) on blue to red scale, white squares indicate non signifi-
cant correlations. All cohorts exhibit a positive correlation, significant in
most cases, proving the stability of the molecular signature obtained with
PIMKL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 PIMKL performance on METABRIC. Box plots of the performance of
PIMKL over the six cohorts used to benchmark the method (left of the
dashed vertical line) and its application on METABRIC for disease free
survival prediction (right of the dashed vertical line). Optimized weights at
training by EasyMKL (blue); provided weights from taking the pathway-
wise median weights of the six signatures obtained during benchmarking
(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 PIMKL performance on METABRIC multi-omics. Box plots for AUC
values obtained applying PIMKL on different data types and their integra-
tion. CNA only results are reported in blue, mRNA ones in green and their
integration in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Pathway induction. Given a pathway adjacency matrix, it is possible to
map sample measurements from their original space, the space of the nodes,
to the space of the interactions between the molecular entities. The exam-
ple above shows how the mapping using pathway induction transforms the
considered samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 PIMKL cross-validation AUC. Box plots of the AUC values for the meth-
ods considered (blue) and PIMKL (red). PIMKL clearly outperforms other
methods in four out of six datasets. For GSE1456 is performing close to
other methods average while for GSE11121 is in the top group. Results are
presented as follows: each box is drawn from ten (repeats of) mean AUC
values over 10-fold cross-validation splits, see algorithm 2. . . . . . . . . . 90
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4.8 PIMKL cross-validation AUC for different gene sets. Box plots of all
100 AUC values (overall 600) for pathway induced MKL obtained by al-
gorithm 2 with different gene sets to define the pathways given the same
aforementioned interactions. In addition to the 50 previously introduced
hallmark gene sets, results for 186 KEGG gene sets from the Molecular
Signatures Database (MSigDB) version 5.2 and also respective randomized
gene sets are reported. For randomization, the same number of gene sets is
created, each set with random size between 50 and 250 genes by sampling
from the union of all gene sets. The quartiles are comparable within each
cohort proving the stability of the methods towards gene sets selection. . . 91

4.9 PIMKL cross-validation weights. Significance of weights over 100 cross-
validation folds for the 50 hallmark pathways are reported. Significant path-
ways are colored in red, while non-significant in blue. . . . . . . . . . . . 92

4.10 Regression between trained and transferred signature. Regression of
the pathway weights of the signature obtained from directly training on
METABRIC (median over 100 cross-validation folds) against the trans-
ferred signature obtained from training on six independent cohorts (each
median over 100 cross-validation folds) indicating high correlation of the
two signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Partial Network of FA-BRCA pathway. Sub-network representing part
of the Boolean model for Fanconi Anemia/Breast Cancer (FA/BRCA) path-
way proposed by Rodríguez et al.. . . . . . . . . . . . . . . . . . . . . . . 102

5.2 A general Boolean model. Genes in the model are connected using differ-
ent types of Boolean gates describing the action of a logical operator. As in
a circuit the next value for each node is dependent on the values of all the
incoming connections carrying the current value of neighboring nodes. . . 103

5.3 Cycles types. Schematic depiction of different types of cycles. . . . . . . . 105
5.4 Frequency at different number of repetitions. Line plots for different

number of repetitions of a simulation with a fixed initial state in T-LGL are
reported. In the two panels the activation frequencies for Apoptosis (left)
and BID (right) are shown. The increased number of repetitions smooth the
curves resulting in more accurate frequencies estimates that consistently
capture the system dynamic. . . . . . . . . . . . . . . . . . . . . . . . . . 108
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5.5 System architecture overview. Overall system architecture with the FPGA
top-level. Communication between the FPGA card and the POWER8 pro-
cessor is performed through CAPI. . . . . . . . . . . . . . . . . . . . . . 113

5.6 Execution core scheme. Here are included the top-level modules used in
the execution core to implement: synchronous and asynchronous simula-
tions as well as attractor detection. . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Footprint of clonal evolution across tumor biopsies. (a) Tumor phy-
logeny composed of five dominant tumor subclones and wildtype (WT)
cells, with no somatic mutations, that make up the cellular composition of
four tumor biopsies (b). Subclones 3 and 5 were more proliferative, i.e., the
proportion of these subclones (cellularity) in containing biopsies is greatest.
(c) Failure to account for genetic instability can skew cellularity estimates
because fractions of reads (mutated-read fractions) presenting each muta-
tion in WES depend on the copy numbers of the alleles in both mutated
and non-mutated cells. Consequently, in genetically-stable tumors, biop-
sies from (b) will have mutated-read fractions that differ from those of (d)
genetically unstable tumors with the same cellularities. . . . . . . . . . . . 121

6.2 Impact of mutation frequencies on the inference of the ancestral rela-
tions. Small variations in mutation frequency estimates can impact the in-
ference of ancestral relations. (a) Simulated tumor phylogeny, (b) subclone
cellularities, and (c) frequencies of subclonal mutations across biopsies. (d)
Ancestral relations between subclones can be inferred from comparisons of
their frequency vectors: Subclone 4 frequencies are greater than those of
subclone 3 across all biopsies, but (e) errors in frequency estimates (red)
can violate this relationship and complicate tumor-phylogeny reconstruc-
tion efforts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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6.3 Accuracy on simulated data. (a) Accuracy of mutation-frequency esti-
mates by AncesTree (purple), SCHISM (red) and Chimaera (green and
blue) on simulated WES data from genomes with varying mutation copy
numbers; SCHISM and Chimaera were evaluated using multiple clustering
methods with SDIndex (SCHISM) and ElbowSSE (Chimaera) producing
top accuracy, respectively, in blue are reported estimates for Chimaera us-
ing hdbscan. (c) Percentage of mutations processed applying the three dif-
ferent algorithms. It is evident how Chimaera using hdbscan outperforms
clearly other methods, being able of considering over 80% of the mutations
considered. (b) Accuracy was inversely correlated with genetic instabil-
ity, which was measured here as the coefficient of variation of the distribu-
tions used to simulate CNVs in each simulated WES profile; SCHISM with
SDIndex clustering outperformed AncesTree inferences. (d) Evaluated in-
dependently, mutation copy numbers had relatively little effect on Chimaera
accuracy. We report results for Chimera using hdbscan and SCHISM with
SDIndex (a representative that resembles results with other clustering meth-
ods). Standard errors are reported. Mean Error is the mean of the L1 dis-
tances between true and estimated mutation frequencies after normalizing
for the number of biopsies. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Profiled CRPC regions. Overview of four hematoxylin-eosin stained his-
tology slides with 10 profiled areas (left); and zoomed-in versions (right)
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6.5 Reconstructed CRPC phylogeny. (a) Chimaera inferred four CRPC sub-
clones that implied a chain phylogeny, clones are colored after the average
frequency in the inferred mutations from red (high) to green (low). (b)
Schematic representation of mutation frequencies across biopsies in each
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6.6 Representative phylogenetic trees for three HCC patients. A selection
of representative trees reconstructed using Chimaera clonality inference.
HCC6046 and HCC6952 exihibit a similar structure where, after a chain of
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6.7 Mutation-centric model for CNV effects. Our mutation-centric model for
the effects of CNVs on mutated-read fractions in WES. In each biopsy s,
the mutated-read fraction is a function of the true mutation frequency φsm,
the copy number of the allele in all profiled cells—tumor and WT—that
lack this mutation, δs, and the copy number of the wildtype and the mutated
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