
ETH Library

Tracing Internet Path
Transparency

Conference Paper

Author(s):
Kühlewind, Mirja; Walter, Michael; Learmonth, Iain R.; Trammell, Brian

Publication date:
2018

Permanent link:
https://doi.org/10.3929/ethz-b-000315299

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.23919/TMA.2018.8506532

Funding acknowledgement:
688421 - Measurement and Architecture for a Middleboxed Internet (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000315299
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.23919/TMA.2018.8506532
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Tracing Internet Path Transparency
Mirja Kühlewind

ETH Zurich
Michael Walter

ETH Zurich
Iain R. Learmonth

Univiversity of Aberdeen
Brian Trammell

ETH Zurich

Abstract—Investigating Internet Path Transparency means
measuring if a network path between two endhosts is impaired
by in-network functions on the path. A path is considered
transparent if it provides connectivity and the same performance
independent of the protocol or protocol stack that is used for
the transmission. Unfortunately this is not always the case.
Simple firewalls that block e.g. UDP, are an example. Of course
such in-network functions are often valuable, like firewalls.
However, these middleboxes also, sometimes unintentionally,
make assumptions about the traffic passing through them that
restricts innovation in the Internet on the higher layers, e.g. the
deployment of new UDP-based protocols such as QUIC, to stick
with the previous example.

PATHspider is an active measurement tool to test for Path
Transparency. In this paper we present a new feature of PATH-
spider that integrates tracebox-based functionality and analysis
to not only detect in-transparency but also further locate the
origin of the impairment observed. As an example study we
show updated and extended measurements on ECN support and
connectivity. By using our enhanced ECN PATHspider plugin to
test network support of the ECN IP codepoint and additional
path tracing that is correlated with DSCP testing, we show that
most in-network ECN IP codepoint zeroing is due to use of the
deprecated definition of the IP ToS field for domain-internal
service differentiation, while pure resetting of the ECN IP field
is more likely an active inference in border networks.

I. INTRODUCTION

The end-to-end principle [1], on which the basic design of
the Internet is based, argues for smart endpoints connected by
a simple network: more complex functions should be placed
at higher layers whenever possible. Following this principle
keeps the upper layers of the Internet protocol stack flexible.
Implicitly this principle suggests that connectivity and network
treatment should not depend on functions provided by higher
layer protocols; i.e., the network should be transparent to these
higher layer protocols.

This principle is often quoted but increasingly rarely fol-
lowed. Today, there are a diverse and increasing set of func-
tions deployed in the Internet that go far beyond forwarding.
These functions have been introduced for various reasons,
such as network address conservation, ensure stable manage-
ment and operations, supporting troubleshooting, or increasing
security. However, independent of their utility or perceived
value, these middlebox functions impair the connectivity and
treatment of end-to-end traffic, whether intentionally, (e.g., in
case of a firewall), or accidentally, as a side effect of desired
function.

As a consequence we need to consider impairments in-
troduced by on-path network elements in protocol design
and protocol-path-pair selection. Newer protocol extensions

such as Multipath TCP [2] are expressly designed to deal
with these effects, incorporating path probing and fallback
mechanisms that disable optional features if problems have
been detected during connection establishment. Emerging ap-
proaches in building endpoint transport stacks can even race
entire protocols against each other on different paths [3] to
work around these impairments

However, as a first step we actually need to know what
impairments to expect. Any of the approaches above add
complexity and impose cost in form of latency and efficiency.
Therefore it is beneficial to cover those cases that are most
likely to be observed on the Internet.

PATHspider [4] is an active measurement tool that is de-
signed to address exactly the question whether a certain path
on the Internet is transparent to a given protocol or protocol
feature under test. It has been developed and extended over
the last couple of years and been used in a diverse set of
measurements [5], [6].

This collected data provides a view on which impairments
exist, and how likely certain impairments are to be expected
under certain network conditions. However, PATHspider treats
the network as a black box, performing A/B testing of con-
nectivity and operation with and without the tested feature. An
approach that doesn’t give much insight into why and where
these impairments are observed. Better understanding the root
cause of the observed behavior can help to locate problems and
potentially fix them, as well as assist the design of solutions
that will not only work around the problem but can also help
to support initial intended middlebox functionality correctly.

In this paper we present the integration of route tracing
and impairment localization into PATHspider based upon the
tracebox [7] methodology. Tracebox is a measurement tool that
performs a traceroute, comparing the headers returned by each
node with the headers originally sent. Through the integration
with PATHspider we can use information derived from A/B
testing to find paths on which a given feature doesn’t work,
and immediately trace the path on which the feature failed. In
contrast to a two-phase approach where one would take the
results from PATHspider and feeding them into a Tracebox im-
plementation after the full PATHspider measurement has been
completed, the integrated approach has less delay between the
initial detection and the follow-up traceroute measurement and
provides therefore more timely and likely more accurate path
information. Further, the integrated approach can more easily
use a TCP packet with the same characteristics of that which
caused the measured failure.

Further, we describe the results of an initial study performed



with a prototype version of the integrated tracing feature,
which also extends our previous work on measuring connec-
tivity and support of TCP’s Explicit Congestion Notification
(ECN) [8] extension [9], [10]. ECN, if negotiated successfully
during the TCP handshake, allows endpoints to mark their
packets as ECN Capable Transport, using one of two code-
point in the two bit ECN IP header field (ECT0 or ECT1).
Subsequently, network devices can signal congestion to the
endpoints before packets need to be dropped by setting the
Congestion Experienced (CE) codepoint in the ECN IP field.
While ECN support is continuously increasing and any severe
connectivity problems that hindered initial deployment are
overcome, we show that the usability of ECN is still impaired
by middlebox mangling.

For this measurement we extend the PATHspider ECN-
plugin to also test the use of different ECN IP codepoint
during the TCP handshake. These cases are important to
verify the functionality of an extension to ECN [11] currently
proposed within the IETF to allow ECN support for TCP
control packets. In addition, we use the trace extension to cor-
relate impairments of the Differentiated Services Code Point
(DSCP) [12] with impairments to the ECN codepoints in the
IP header. This help us to identify a root cause of our observed
problems as the majority of ECN IP mangling along the paths
is caused by out-dated middlebox implementations, which treat
the byte containing the ECN and DSCP codepoints according
its previous definition as the IP Type of Service byte [13]; this
definition has been deprecated for two decades. We further
found that if the ECN IP field is reset likely independent of
the DSCP field, that these bleaching is close to the network
border, presumably on purpose by content networks. In case
of Google it is known that ECN is not supported by their web
servers and as such we could observe active re-setting to Not-
ECT in their domain. It should be noted that this case study, we
present, does not include measurement from mobile vantage
point, where ECN is often not supported due to TCP proxying.
These follow-up measurements are currently in progress.

A. Related work

PATHspider’s development follows on a body of work on
the deployability of TCP extensions, such as Honda et al’s [14]
options study, or Bauer et al’s initial re-examination of ECN
readiness [15]. TCP HICCUPS [16] went even further by
proposing a build in mechanism in the TCP handshake to
detect middlebox mangling. More recent work also focuses
on deployability of encryption mechanisms, mainly TLS [17].
PATHspider ’s HTTP/2 plugin, not further covered in this
work, can be used to test HTTPS. Further, there have been
a few recent studies that also focus on UDP, e.g. on ECN
support [18], complementing our earlier ECN measurement,
or our own measurement on UDP differential treatment [19]
which was performed together with some of the authors of
the tracebox tool [20]. Further, DSCP modification in the IP
header was recently examined [21], however, only providing
initial results from a small-scale measurement study.

Further, the measurement community has also paid increas-
ing attention to mobile networks [22], as it is known that in-
network functions are heavily used in these networks due to
their architecture. PATHspider is currently under deployment
on the MONROE testbed1, a European-wide measurement
platform mostly based on nodes connected to multiple mobile
access networks. While we presented initial measurement
results recently [6], the public release of a MONROE container
for PATHspider measurement is work in progress.

II. INTEGRATING TRACEBOX FUNCTIONALITY INTO
PATHspider

PATHspider [4] is a general-purpose A/B testing tool for
Internet path transparency. Each test run by PATHspider typi-
cally consists of multiple connections performed in quick suc-
cession: a control connection that is usually vanilla HTTP over
TCP or DNS request using UDP, to verify connectivity; and the
experimental connection(s) using the protocol or protocol ex-
tension under test. If the experimental flow fails, this indicates
protocol-dependent connectivity problems. PATHspider also
passively observes and analyzes all test traffic and can thus
attempt to infer from this any unexpected behaviors or modi-
fications. The current release of PATHspider2 provides support
for testing ECN [8], DSCP [12], TCP Fast Open (TFO) [23],
HTTP/2 [24], and the Evil Bit [25]; this last test is a test to
detect generalized connectivity breakage when setting reserved
header fields. As a result PATHspider provides observations
on path transparency. An observation is an assertion that a
given condition was observed on a given path at a given
time; e.g. that ECN was successfully negotiated, or that an
experimental TFO cookie was seen.

PATHspider’s architecture is designed to be scalable to
measure millions of paths in a single campaign. As such it
can detect protocol-dependent connectivity problems as well
as middlebox mangling, however, further measurements are
needed to localize where problem occurs. The tracebox [7]
tool, used by the PATHspider authors in previous analysis [9],
provided inspiration for an automated traceroute function that
has been integrated into the PATHspider workflow. Instead
of running traceroutes manually after a large-scale PATHspi-
der campaign, PATHspider can now be used to automatically
perform traceroutes in close timely succession to the original
measurement that detected the problem if a configured failure
condition has been observed. Similar as the tracebox tool,
PATHspider will not only provide the trace information but
also an analysis of any mangling or dropping of packets by
middleboxes.

Where the end-to-end-only PATHspider measurements
would infer path conditions from the replies received from
targets, the new integrated traceroute functionality relies on
routers on the path providing ICMP quotations attached to
ICMP Time-To-Live (TTL) exceeded messages. These hop-
by-hop measurements produce a finer view of the path and
allow for the more precise localisation of any breakage.

1see https://www.monroe-project.eu/
2https://pathspider.net



When an IPv4 router receives an IPv4 packet whose TTL is
going to expire, it returns an ICMPv4 TTL exceeded message
that contains a quotation of the original packet. According
to [26], the returned ICMP packet should quote the IP header
of the original packet and the first 64 bits of the payload of this
packet. When the packet contains a TCP segment, these first
64 bits correspond to the source and destination ports and the
sequence number. Later, [27] recommended to quote the entire
IP packet in the returned ICMP, but this recommendation may
not be followed on older routers. For IPv6, the mechanism is
similar except that it is an ICMPv6 packet that is returned and
the specification for ICMPv6 messages has always been that
as much of the original packet should be quoted as possible
without exceeding the MTU [28]. By comparing the returned
quoted packet to the original packet sent, PATHspider is able
to detect various header field modifications performed by
middleboxes and routers on the path towards a target.

The tradeoff for these more precise measurements is in
the scalability as running a traceroute measurement takes
significantly longer than performing a single connection. For
this reason traceroutes are only performed when breakage has
been identified by the traditional end-to-end connection tests.
Further, the base end-to-end measurement can already be used
to estimate the number of hops between the measurement
vantage point and the target by analysing the TTL field as
received on reply packets in order to reduce the sending of
redundant traceroute probes. Limiting the tracing to only the
expected number of hops further speeds up the measurement.

When a traceroute is performed, the output from the mea-
surement additionally includes more specific information on
middlebox mangling observed as well as the contents of
relevant packet headers as seen by each router that produced a
TTL exceeded reply with a quotation where changes compared
to the originally sent bits are already highlighted. In later
analysis it will be possible to use this data to determine any
kind of packet mangling in addition to connectivity issues.

A. PATHspider 2.0 Architecture

An overview of the architecture of the 1.0 series of PATH-
spider is available in [4]. For the 2.0 series of PATHspider,
the architecture was extended to allow for arbitrary numbers
of tests to be performed as opposed to a single A/B test. The
new extended architecture is shown in figure 1. This was done
through the addition of an extra Combiner stage before the
output stage that would collect the results from individual tests
and then only combine them with the job records to produce
path conditions once all the tests had completed for a target.
Job records are passed to the combiner stage independent of
the results of the workers to reduce memory consumption, as
each job record can contain metadata that can assist during
analysis but should not be duplicated for each test connection.

In this new architecture, parts of the code can be more
easily integrated as the API available to plugins becomes more
flexible. Traceroutes can now be implemented as additional
connections and the merging of traceroute results can be han-
dled by the combiner. Existing plugins for passive observation

Fig. 1. The extended architecture of the 2.0 series of PATHspider supporting
arbitrary numbers of tests for each target. The prototype implementation’s
modules are shown in this diagram with dashed outlines.

can be easily extended to act on the ICMP quotations without
the need for this to happen in the merging module.

B. Traceroute Integration

Traceroute integration was developed in parallel with a num-
ber of other improvements to PATHspider. For this reason the
implementation used to perform measurements in this paper is
considered a prototype that will inform a final implementation.
The prototype source code is available on GitHub3.

Two new modules were created, a traceroute sender and a
traceroute merger. When a measurement for a target has re-
turned a result that warrants further investigation, a traceroute
for this target is performed by passing the target details to the
traceroute sender. This will use a forged packet specific to the
kind of measurement to attempt to make broken behaviour
observable. For example, for ECN it may be the case that
a middlebox on the path clears the ECN Capable Transport
(ECT) field in the IP header and so the traceroute would
be performed with this field set to “all ones”, Congestion
Experienced (CE), and it will be observable when the field
is cleared.

If a flow contains ICMP TTL exceeded packets, it is marked
for analysis by the traceroute merger module. This module will
prepare the traceroute data for output.

The traceroute implementation within PATHspider can also
be invoked as a standalone tool, i.e., to accept a list of
targets as if they had already been found to have interesting
conditions associated with them. We use this functionality to

3https://github.com/mami-project/pathspider/tree/traceroute-prototype



TABLE I
ECN SUMMARY STATISTICS FOR POPULAR WEB SERVERS SINCE 2012

August 2012 [9] September 2014 [10] June 2016 [4] January 2017 [4] November 2017 Description
n =77 854 n =598 739 n =642 345 n =765 820 n =751 064

hosts pct hosts pct hosts pct hosts pct hosts pct
- - - - 11,858 1.85% 16,204 2.12% 30,445 4.05% Completely failed to connect

22,948 29.5% 337,881 56.4% 452,806 70.5% 581,588 75.9% 589,821 78.5% Capable of negotiating ECN
- - 8,106 1.35% 2,076 0.32% 1,874 0.24% 1,608 0.21% Failed to connect w/ECN

examine the correlation between ECN and DSCP manipulation
in section III-C.

C. Enhanced ECN plugin
With the ability to perform more than just the A/B con-

nectivity breakage test, we also performed tests for ECN
negotiation with the ECT field deliberately corrupted. For each
target we established 4 TCP connections where one does not
attempt ECN negotiation and the remaining 3 attempt ECN
neogtiation with the IP ECT field clear, set to zero, set to
ECT0, and finally set to CE.

The ECN base specification [8] does explicitly exempt TCP
control packets, such as the TCP SYN, to indicate ECN
support, mainly because the specified ECN feedback scheme
for TCP does not implement a way to provide feedback if
congestion is observed for these packet. However, with the
development of a more accurate ECN feedback scheme [29],
a more universal support for ECN including the important-
to-not-lose control packets is currently under discussion in
standardization [11].

[8] does, however, not specify how to react to the reception
of ECT-marked control packet. Given there are known cases
where the ToS field was incorrectly rewritten and not bleached
at the network border such that all packets crossing certain
networks would appears as ECT or CE marked, there are
ECN implementations that do not negotiate ECN if the TCP
SYN has a non-zero ECN IP field. Other implementations only
disable ECN negotiation if the CE codepoint is set in the SYN.
While re-writing to ECT could conceal previous CE marks
and thereby delay a congestion reaction until packet drops are
observed, an erroneous middlebox that marks all packets with
CE would indicate permanent congestion leading to sending
rate reduction to basically zero at the sender side. In our
measurements we show that both implementation are widely
deployed which can make universal deployment of ECN more
challenging than it already is.

III. DETECTING MIDDLEBOX MANAGLING

For all measurements we created a target list of IP ad-
dressees based on the Alexa top million website domains list,
obtained on Oct 30, 2017. We resolved each domain name to
zero or more IP addresses, taking all IPv4 and IPv6 addresses
returned by the resolver and adding them to the target list.
After filtering out duplicates, we end up with a target list of
751,064 IP addresses. All measurements were conducted in
November 2017 and were made from servers of the cloud
infrastructure provider Digital Ocean located in Amsterdam
and London.

A. Update on ECN connectivity and support

First we provide a quick update on ECN support and
connectivity as measured by the ECN PATHspider plugin with
respect to measurements we reported earlier [9], [10], [6], as
also summarized in Table ??tab:ecn). Out of the 751,064 target
IP address, we could not connect to 30,445 at all. Respectively,
for 716,419 (95.39%) addresses we did not observe any
connectivity problems, including 92,008 IPv6 addresses. For
the remaining hosts we either could not connect when ECN
was requested (1608 addresses) or we could connect with
ECN negotiation but not in the base TCP test without ECN
negotiation attempt (2,592 IP address). As both numbers are in
the same range, we assumed that this indicates mainly transient
failures. Therefore, we repeated the measurement with the
same target list in the subsequent two weeks and found for
66 hosts with TCP SYN packets that had the ECN TCP
header flags set to negotiate endpoint ECN support were stably
dropped while connectivity without ECN negotiation attempts
always succeeded. We subsequently utilized the integrated
tracebox functionality to detect that 7 of these hosts drop
the packets on reception, and one host sends a TCP RST.
For the remaining hosts we were not able to acquire trace
information due to unresponsive node on the path. This is
however expected, as we have seen in previous measurement
that there is a correlation between nodes that perform some
kind of packet mangling and unresponsiveness to ICMP.

For ECN support we can report that the observed increase
from previous measurement reports is continuing with 500,585
(80.17%) IPv4 addresses and 89,236 (96.99%) IPv6 address
negotiating ECN successfully in November 2017. However,
we also found 1,858 (0.26%) addresses where the host would
reflect the TCP ECN header bits which indicates a broken TCP
connection or potentially some proxy in the middle.

B. ECN IP codepoint mangling

Current specifications do not allow TCP control packets,
like the SYN, to be ECN enabled, as no feedback is usually
provided for this kind of packet, however, there are mecha-
nisms under discussion to enable a fully ECN-supported In-
ternet where all traffic is ECN capable [11]. To test deployment
issues with these changes, we repeated the measurements with
the extended version of the ECN plugin, performing additional
test runs with the ECT0 and CE codepoints set in the IP
header of the TCP SYN. For this measurement we limited
our target list to the top 50,000 entries. Similar to the first
study above, we were able to connect successfully to 95.59%



TABLE II
DSCP AND ECN MANIPULATION PER PATH (N = 201,854)

DSCP ECN → ECT0 ECN → Non-ECT total
treatment (preserved) (rewritten)

n pct n pct n pct
→ EF (unchanged) 41850 20.7% 169 0.08% 42019 20.8%
→ 6 (three-bit bleach) 87182 43.2% 101 0.05% 87283 43.2%
→ 0 (bleach) 50031 24.8% 1665 0.82% 51686 25.6%
→ CSx 4883 2.42% 701 0.35% 5584 2.77%
→ AFxx/VA 9951 4.93% 68 0.03% 10019 4.96%
→ undefined value 5182 2.57% 81 0.04% 5263 2.61%
total 199079 98.6% 2775 1.37% 201854 100%

of the target host, independent of the codepoint set, indicating
that this sample set is representative.

69.35% of all hosts (33145) only negotiated ECN when the
ECN IP codepoint was set to zeros (non-ECT) but not if ETC0
or CE was set. Only 12.79% of the hosts (8280) negotiated
ECN no matter what codepoint was set on the TCP SYN. 26
hosts negotiated ECN when ECT0 was set but not when CE
was set. While it was expected that some hosts would not
negotiate ECN if CE was set, as this is a known fallback
mechanism to prevent ECN usage on corrupted path, it is
rather surprising how many hosts have implemented this logic
and that most host apply the same fallback to ETC0.

However, for the 12.79% of the hosts, that negotiated
ECN independent of the codepoint set, we further wanted
to test if the codepoint was actually observed at the endhost
or potentially erased on the path. Therefore, we performed
another measurement study where we used the full-traceroute
mode of PATHspiderfrom our Vantage point in Amsterdam to
a reduced set of the initial target list. For fast convergence, we
limited the list of target addresses to IP addresses that have a
unique prefix of length 24 for IPv4 or length 64 for IPv6, as
other addresses with the same prefix lie in the same collision
domain and will thus assumably anyway share the same path,
leading to a reduced set of 223,367 unique targets. For this
measurement we used TCP SYN packets with ECT0 set but
no ECN negotiation attempt (ECE and CWR not set in the
TCP header) to avoid unwanted interference. We further set
the DSCP codepoint to 46 (Expedited Forwarding) to look
at correlation between ECN and DSCP mangling on path, as
described in section III-C below.

201,854 (90.37%) hosts gave back a TCP response to the
TCP SYN. 263 of these hosts responded with a RST. For these
hosts we also tested the response with the DSCP set to zero;
this always yielded the same result. For 2,775 (1.37%) of these
hosts, the ECT0 codepoint was erased before the TCP SYN
received the server, with about 50% of the codepoint removal
in the last hop and in more than 90% of the cases in the
last 40% of the path. For these hosts we ran an additional
measurement with ECT0 set but no SYN flag to test if that
was a general misconfiguration or an intended normalization
on the TCP SYN and found that only about approximately 2/3
of the last hops still had the ECT0 erased. We also found that
3,252 hosts reflected the ECT0 codepoint in the SYN/ACK
even though ECN support was not requested in the SYN,

while 22 replied with ECT1 and 18 with CE in the SYN/ACK.
Both the erasure of the ECT1 codepoint as well as unexpected
codepoints on the SYN/ACK indicate potential deployment of
routers that still operate on the ToS field, as further investigated
in the following section.

C. Correlation between ECN IP and DSCP manipulation

To better understand potentially root causes of the ECN IP
mangling, we now take a closer look at the correlation between
ECN IP codepoint and DSCP manipulation along the path.

1) Manipulation per-path: The results per path on the
collection of the 201,854 responsive paths we probed are
shown in Table II. Here we compare the value of the ECN
and DSCP codepoints at the ingress to the last hop before the
destination4. DSCP manipulation along the path is far more
common than ECN manipulation: four of five paths see some
DSCP manipulation, while only about one in 75 paths see the
ECN codepoints manipulated.

Of note is that the most common single outcome is that
ECN is preserved, while DSCP is rewritten to 6. This is
indicative of an older interpretation of the bits of the DSCP
field, blanking the old IP Precedence bits and leaving the low-
order three bits unchanged (“three-bit bleaching”). The next
most common occurrence is a DSCP rewrite to 0 (“bleaching”)
while leaving ECN unchanged; followed by no change of
either codepoint along the path. Fortunately both cases do not
impact the operation of ECN directly.

Examining only those paths on which the IP ECN codepoint
is manipulated, we see a different pattern. The majority of
ECN-manipulating paths also bleach the DSCP codepoint. The
second most common occurrence is more interesting: here, the
ECN codepoint is set to 0 while the DSCP codepoint is set to
a CS value. This is also consistent with the treatment of this
byte according to the old ToS definition [13]: a device sets
a CS value as if it were the ToS byte and zeroes the ECN
codepoint as a side-effect.

For the remaining 11.45% we observed in total 51 different
code points of the possible 64, indicating that the field was
remarked for internal use but not bleached at the network
border. Also different than observed with the ECN IP bits,
about 70% of all DSCP manipulations happened in the first

4as we are using TCP traceroute, we cannot see the values that left the last
hop toward the server, as the server will send us a TCP SYN ACK (or a TCP
RST) instead of an ICMP Time Exceeded.



TABLE III
DSCP AND ECN MANIPULATION PER EDGE (N = 28,961)

DSCP ECN → ECT0 ECN → Non-ECT total
treatment (preserved) (rewritten)

n pct n pct n pct
→ EF 55 0.19% 136 0.47% 191 0.66%
→ 6 (three-bit bleach) 3891 13.4% 88 0.30% 3979 13.7%
→ 0 (bleach) 17469 60.3% 1367 4.72% 18836 65.0%
→ CSx 1179 4.07% 359 1.24% 1538 5.31%
→ AFxx/VA 1770 6.11% 79 0.27% 1849 6.38%
→ undefined value 2496 8.62% 72 0.25% 2568 8.87%
total 26860 92.7% 2101 7.25% 28961 100%

half of the path. As a side note, we similarly observed in
the TCP response of the 201,854 hosts 37 of the 64 different
codepoints, unsurprising with 89% set to 0.

In summary, there is a high number of DSCP rewriting and
bleaching, as expected, and on a path basis, the majority of
on-path interference with the ECN codepoint in the Internet
appears to be linked to DSCP interference by devices imple-
menting the older interpretation of this byte in the IP header.
We now turn to per-edge analysis to verify this hypothesis.

2) Manipulation per-edge and per-node: We next take all
the paths from our traceroute measurements and combine
them into a single graph with 418,834 distinct edges between
any two hops on the measured paths. Of these, 389,873
(93.1%) change neither the DSCP nor the ECN codepoint,
26,965 (6.44%) change the DSCP codepoint but not the ECN
codepoint, 1,059 (2.5%) change both, and 937 (2.2%) change
only the ECN codepoint. However, we note that the most
common ECN changes are associated with zeroing the entire
byte containing both codepoints, and on 561 of these 937
edges, the incoming DSCP codepoint is already zero. We can
therefore state that the majority – 53.1% of ECN manipulation
can be observed on the same edge as the DSCP manipulation
with an upper bound for 81.2% when including those cases
where DSCP has already been previously bleached and as such
no additional observation about ToS bleaching could be made
when the ECN IP codepoint was erased.

The outgoing codepoints per edge on the collection of
28,961 edges which change at least one of the DSCP and
ECN codepoints are shown in Table III. We note that the most
common per-path behavior is three-bit bleaching without ECN
manipulation, while the most common per-edge behavior is
full DSCP bleaching without ECN manipulation.

To determine the location of the nodes responsible for this
manipulation, we first assume that the source node of each
edge is responsible for the manipulation; i.e., we assume that
DSCP and ECN will not be modified on a packet before the
TTL is checked. Grouping our edges by egress node, we find
10,139 distinct nodes. 1,226 of these manipulate ECN, and
9,573 manipulate DSCP.

We see 16 ASNs with a high proportion of ECN interference
(i.e. more than half of nodes in our traces that manipulate any
codepoint manipulate ECN) representing 14 entities. Five of
these are hosting firms, eight are Internet and infrastructure
service providers (six of these in the APNIC region), and

one is Google. The ISPs see proportionally more DSCP re-
marking, suggesting that ECN damage in ISPs is more likely
due to collateral damage from older DSCP treatment, while
the hosting providers and Google are more likely to change
ECN markings without DSCP re-marking.

IV. CONCLUSION

In this paper we presented an integration of tracebox func-
tionality into PATHspider, an active measurement tool to test
Internet path transparency. Our approach of full integration of
path tracing and trace analysis in the PATHspider architecture
makes it possible to automatically trigger path tracing in timely
succession when a failure condition has be observed in the
base end-to-end path transparency test. This enhances the
PATHspider measurement tool to not only detect middlebox
impairments but also provides further information where the
impairment is located and thereby indications about the root
cause of the impairment.

We show the applicability of this methodology based on a
large-scale measurement campaign using the enhanced ECN
plugin of PATHspider to also test support of the ECN IP
codepoint field as well as the new full-traceroute mode to
demonstrate correlation with DSCP rewriting and bleaching.
With this measurement we continue our longitudinal study of
ECN deployment dating back to 2012, showing a continuous
increase 78.5% popular web servers negotiating ECN, with
very little remaining connectivity impairment.

However, where connectivity breakage was still observed,
we note that it is often linked to ICMP breakage. This can be
an indication of middleboxes that are designed or configured to
evade ping and traceroute. Moreover, we also observed some
remaining challenges for universal ECN deployment, where
all packets including TCP control packets are envisioned to be
ECN enabled, due to accidental or indented ECN IP codepoint
reset. Especially concerning is that 50-80% of ECN IP zeroing
is connected to DSCP bleaching, indicating large deployments
of outdated router functionality that operates based on the
deprecated ToS field. Further, while ToS bleaching was ob-
served on the whole network path, as this function is usually
performed on domain borders, active ECN IP rewriting is
more commonly performed at edge networks, e.g. when the
connected network is known to not support ECN.



ACKNOWLEDGMENT

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement
No 688421, and was supported by the Swiss State Secretariat for
Education, Research and Innovation (SERI) under contract number
15.0268. The opinions expressed and arguments employed reflect
only the authors’ views. The European Commission is not responsible
for any use that may be made of that information. Further, the
opinions expressed and arguments employed herein do not necessarily
reflect the official views of the Swiss Government.

REFERENCES

[1] Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system
design. ACM Trans. Comput. Syst. 2(4) (1984) 277–288

[2] Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP Extensions for
Multipath Operation with Multiple Addresses. RFC 6824 (Experimental)
(2013)

[3] Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G., Perkins, C., Tiesel,
P., Wood, C.: An architecture for transport services. Internet-Draft draft-
ietf-taps-arch-00, IETF (2018)

[4] Learmonth, I., Trammell, B., Kühlewind, M., Fairhurst, G.: PATHspider:
A tool for active measurement of path transparency. In: First ACM/IRTF
Applied Networking Research Workshop, Berlin, Germany (2016)

[5] Trammell, B., Khlewind, M., Vaere, P.D., Learmonth, I.R., Fairhurst,
G.: Tracking transport-layer evolution with pathspider. In: Proceedings
of the ACM, IRTF & ISOC Applied Network Research Workshop
(ANRW’17). (2017)

[6] Learmonth, I.R., Lutu, A., Fairhurst, G., Ros, D., zg Alay: Path
transparency measurements from the mobile edge with pathspider. In:
IEEE/IFIP Workshop on Mobile Network Measurement (MNM17).
(2017)

[7] Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.:
Revealing Middlebox Interference with Tracebox. In: Proceedings of
the 2013 Conference on Internet Measurement Conference. IMC ’13,
Barcelona, Spain, ACM (2013) 1–8

[8] Ramakrishnan, K., Floyd, S., Black, D.: The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168 (Proposed Standard)
(2001) Updated by RFCs 4301, 6040.

[9] Kühlewind, M., Neuner, S., Trammell, B.: On the state of ECN and TCP
options on the Internet. In: Passive and Active Measurement Conference,
Hong Kong, China (2013) 135–144

[10] Trammell, B., Khlewind, M., Boppart, D., Learmonth, I., Fairhurst, G.,
R., R.S.: Enabling internet-wide deployment of explicit congestion
notification. In: Passive and Active Measurement (PAM). (2015)

[11] Bagnulo, M., Briscoe, B.: ECN++: Adding Explicit Congestion Noti-
fication (ECN) to TCP Control Packets. Internet-Draft draft-ietf-tcpm-
generalized-ecn-02, IETF (2017)

[12] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.:
An Architecture for Differentiated Services. RFC 2475 (Informational)
(1998) Updated by RFC 3260.

[13] Almquist, P.: Type of Service in the Internet Protocol Suite. RFC 1349
(Proposed Standard) (1992) Obsoleted by RFC 2474.

[14] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M.,
Tokuda, H.: Is It Still Possible to Extend TCP? In: Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement
Conference. IMC ’11, Berlin, Germany, ACM (2011) 181–194

[15] Bauer, S., Beverly, R., Berger, A.: Measuring the state of ecn readiness
in servers, clients,and routers. In: Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference. IMC ’11,
Berlin, Germany, ACM (2011)

[16] Craven, R., Beverly, R., Allman, M.: A middlebox-cooperative tcp for
a non end-to-end internet. SIGCOMM Comput. Commun. Rev. 44(4)
(2014) 151–162

[17] Mandalari, A.M., Bagnulo, M., Lutu, A.: Informing protocol design
through crowdsourcing: the case of pervasive encryption. In: ACM
SIGCOMM Workshop on Crowdsourcing and crowdsharing of Big
(Internet) Data (C2B(I)D). (2015)

[18] McQuistin, S., Perkins, C.S.: Is explicit congestion notification usable
with udp? In: Proceedings of the 2015 ACM Conference on Internet
Measurement Conference. IMC ’15, New York, NY, USA, ACM (2015)
63–69

[19] Edeline, K., Khlewind, M., Trammell, B., Donnet, B.: copycat: Testing
differential treatment of new transport protocols in the wild. In:
Proceedings of the ACM, IRTF & ISOC Applied Network Research
Workshop (ANRW’17). (2017)

[20] Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.:
Revealing middlebox interference with tracebox. In: Proceedings of the
2013 Conference on Internet Measurement Conference. IMC ’13, New
York, NY, USA, ACM (2013) 1–8

[21] Barik, R., Welzl, M., Elmokashfi, A.: How to say that you are special:
Can we use bits in the IPv4 header? In: First ACM/IRTF Applied
Networking Research Workshop, Berlin, Germany (2016)

[22] Wang, Z., Qian, Z., Xu, Q., Mao, Z., Zhang, M.: An untold story of
middleboxes in cellular networks. SIGCOMM Comput. Commun. Rev.
41(4) (2011) 374–385

[23] Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A.: TCP Fast Open. RFC
7413 (Experimental) (2014)

[24] Belshe, M., Peon, R., Thomson, M.: Hypertext Transfer Protocol Version
2 (HTTP/2). RFC 7540 (Proposed Standard) (2015)

[25] Bellovin, S.: The Security Flag in the IPv4 Header. RFC 3514
(Informational) (2003)

[26] Postel, J.: Internet Control Message Protocol. RFC 792 (Internet
Standard) (1981) Updated by RFCs 950, 4884, 6633, 6918.

[27] Baker, F.: Requirements for IP Version 4 Routers. RFC 1812 (Proposed
Standard) (1995) Updated by RFCs 2644, 6633.

[28] Conta, A., Deering, S.: Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6) Specification. RFC 2463 (Draft
Standard) (1998) Obsoleted by RFC 4443.

[29] Briscoe, B., Kuehelwind, M., Scheffenegger, R.: More accurate ecn
feedback in tcp. Internet-Draft draft-ietf-tcpm-accurate-ecn-05, IETF
(2017)


