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ABSTRACT
The brightest galaxy in a dark matter halo is expected to reside at rest at the centre of the halo.
In this paper, we test this ‘Central Galaxy Paradigm’ (CGP) using group catalogues extracted
from the Two-Degree Field Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky
Survey (SDSS). For each group, we compute a parameter R, which is defined as the difference
between the velocity of the brightest group galaxy and the average velocity of the other group
members (hereafter satellites), normalized by the unbiased estimator of the velocity dispersion
of the satellite galaxies. Because the redshift surveys suffer from incompleteness effects and
the group selection criterion unavoidably selects interlopers, a proper comparison between data
and model needs to take this into account. To this extent, we use detailed mock galaxy redshift
surveys (MGRSs), which are analysed in exactly the same way as the data, thus allowing
for a fair comparison. We show that the CGP is only consistent with the data in haloes with
M � 1013 h−1 M�, while in more massive haloes the data indicate a non-zero offset between
the brightest galaxy and the satellites. This indicates that either central galaxies reside at the
minimum of the dark matter potential, but that the halo itself is not yet fully relaxed, or, that
the halo is relaxed, but that the central galaxy oscillates in its potential well. The former is
consistent with the fact that the velocity bias of the brightest halo galaxies is larger in more
massive haloes, while the latter may be indicative of cored, rather than cusped, dark matter
haloes. We discuss several implications of these findings, including mass estimates based on
satellite kinematics, strong gravitational lensing, halo occupation models, and the frequency
and longevity of lopsidedness in disc galaxies.

Key words: methods: statistical – galaxies: haloes – galaxies: kinematics and dynamics –
dark matter.

1 I N T RO D U C T I O N

In the standard picture of galaxy formation, hot gas in virialized
dark matter haloes cools and accumulates at the centre of the po-
tential well, where it forms a galaxy (White & Rees 1978). During
the hierarchical build-up of larger and larger structures, haloes with
their ‘central’ galaxies are accumulated by even larger haloes. At
that point, the halo becomes a subhalo and the central galaxy be-
comes a satellite galaxy. In the standard picture, it is envisioned
that a satellite galaxy no longer accretes hot gas, which instead
is only accreted by the galaxy in the centre of the potential well
(e.g. Kauffmann, White & Guiderdoni 1993; Somerville & Primack
1999; Cole et al. 2000). Because this central galaxy therefore con-
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tinues to grow, it is expected to be the brightest, most massive galaxy
in a halo. This is further assured by the fact that any other massive
galaxy would quickly sink to the centre of the potential well by
dynamical friction to merge with the central galaxy, thus producing
an even more massive central galaxy. Therefore, according to the
standard paradigm, the brightest galaxy in a halo will reside at rest at
the centre of the potential well. Note that this is clearly a statistical
statement, as it does not necessarily hold for each individual system
(e.g. non-virialized, strongly interacting systems). Hereafter, we will
refer to this paradigm as the ‘Central Galaxy Paradigm’ (CGP), and
use the terms ‘central galaxy’ and ‘brightest halo galaxy’ without
distinction.

The CGP plays an important role in various areas of astrophysics.
For example, attempts to measure halo masses from the kinematics
of satellite galaxies are always based on the general assumption that
the ‘host’ galaxy is located at rest at the centre of a relaxed halo (e.g.
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Zaritsky et al. 1993; McKay et al. 2002; Brainerd & Specian 2003;
Prada et al. 2003; van den Bosch et al. 2004). This assumption is also
used in virtually all mass models of strong gravitational lenses. On
the other hand, the observed frequency and longevity of lopsidedness
in disc galaxies (e.g. Richter & Sancisi 1994; Zaritsky & Rix 1997)
is often interpreted as evidence for an actual offset between galaxy
and halo (e.g. Levine & Sparke 1998). The CGP also plays a role
in halo occupation modelling, where assumptions have to be made
regarding the spatial distribution of galaxies in haloes in order to
compute the galaxy–galaxy correlation function on small scales (e.g.
Scoccimarro et al. 2001; Berlind & Weinberg 2002; van den Bosch,
Yang & Mo 2003; Magliocchetti & Porciani 2003; Yang, Mo & van
den Bosch 2003; Tinker et al. 2004; Zehavi et al. 2004; Zheng et al.
2004).

This special dynamical status of the brightest galaxy in a halo has
been tested for the special class of central dominant (cD) galaxies.
Jones et al. (1979) have shown that cDs are located at the peak of
the cluster X-ray emission, while Quintana & Lawrie (1982) used
the kinematics of cluster galaxies to argue that cDs are at rest with
respect to the cluster. Although this is in agreement with the CGP,
more recent studies have revealed various cases in which the cD
galaxy has a significant peculiar velocity with respect to the mean
velocity of the other cluster members (e.g. Hill et al. 1988; Sharples,
Ellis & Gray 1988; Zabludoff, Huchra & Geller 1990; Oegerle &
Hill 1994, 2001). Applying a similar study to a dozen poor groups,
Mulchaey & Zabludoff (1998) and Zabludoff & Mulchaey (1998)
found that the position of the brightest galaxy in each group is
indistinguishable from that of the group centre or from the centre of
the X-ray emission. To our knowledge, however, the CGP has never
been tested for a statistically significant sample of dark matter haloes
that span a wide range in masses. In this paper, we use data from
the Two-Degree Field Galaxy Redshift Survey (2dFGRS; Colless
et al. 2001) and the Sloan Digital Sky Survey (SDSS; York et al.
2000) to directly test whether the brightest galaxies in dark matter
haloes are located at rest at the centre of their potential well. We show
that, although the brightest halo galaxies are clearly segregated with
respect to the other galaxies in the same halo, they have a non-zero
specific kinetic energy, at least in haloes with M � 1013 h−1 M�.

This paper is organized as follows. In Section 2, we present a
statistic that can be used to test the CGP, which we apply to the
2dFGRS and SDSS in Section 3. In Section 4, we describe a simple
model for the velocity and spatial bias of the brightest halo galax-
ies, which we use in Section 5 to construct detailed mock galaxy
redshift surveys (hereafter MGRSs) of the 2dFGRS. In Section 6,
we compare these mock-ups with the data in order to constrain the
phase-space parameters of the brightest halo galaxies. Section 7
discusses various implications of our results and we summarize our
conclusions in Section 8.

2 DY NA M I C A L S I G NAT U R E
O F C E N T R A L G A L A X I E S

Observationally, the only kinematic information that is available to
test the CGP is the line-of-sight velocities obtained from redshifts.
In what follows, we use vc to refer to the line-of-sight velocity of
the brightest halo galaxy and vi is the line-of-sight velocity of the ith
satellite galaxy. In addition, we define the difference �V = v̄s − vc

between the mean velocity of the satellite galaxies

(
v̄s = 1

Ns

Ns∑
i=1

vi

)

and that of the central galaxy. If the CGP is correct and vi follows
a Gaussian distribution with velocity dispersion σ s, the probability
that a halo with N s satellite galaxies has a value of �V is given by

P(�V )d�V = 1√
2πσ

exp

[
− (�V )2

2σ 2

]
d�V , (1)

with σ = σs/
√

Ns. Therefore, in principle, one could define the
parameter

R =
√

Ns(v̄s − vc)

σs
, (2)

and test the CGP by checking whether R follows a normal distri-
bution with zero mean and unit variance. However, the velocity
dispersion σ s is generally unknown and we have to use its unbiased
estimator

σ̂s =

√√√√ 1

Ns − 1

Ns∑
i=1

(vi − v̄s)2 (3)

instead. This allows us to define the modified parameter

R =
√

Ns(v̄s − vc)

σ̂s
. (4)

If the null hypothesis of the CGP is correct, R should follow a
Student t distribution with ν = N s − 1 degrees of freedom. Note
that Pν(R) approaches a normal distribution with zero mean and
unit variance in the limit N s → ∞.

The applicability of this ‘R test’ is strongly related to the ability
to find those galaxies that belong to the same dark matter halo. To
this extent, we use the halo-based galaxy group finder developed by
Yang et al. (2005a, hereafter YMBJ), which has been optimized for
this task. Although this group finder is well tested and calibrated,
it is not perfect. In particular, because of redshift errors and red-
shift space distortions, it is unavoidable that one selects interlopers
(galaxies that are not associated with the same halo). The expec-
tation value of |v s − vc| will be larger for an interloper than for a
true satellite. As long as the interloper is fainter than the brightest
galaxy in the group (halo) to which it is assigned, its impact on R
may be small, as it affects both the numerator and the denominator.
However, if the interloper is brighter than all true group members,
|R| will typically be severely overestimated. Another problem is
related to the fact that the 2dFGRS and SDSS suffer from various
incompleteness effects. If the actual brightest halo galaxy is missed
(i.e. is not present in the survey), R will be measured with respect
to a satellite galaxy, which again will bias |R| high. The presence
of interlopers and incompleteness effects, therefore, tends to create
excessive wings in the R distribution. A comparison with the Stu-
dent t distribution might then give the wrong impression that the
null hypothesis is rejected. Because the typical occupation numbers
of haloes are small, this effect can be very strong, as we demonstrate
in Section 6. To circumvent these problems, we compare the R dis-
tributions obtained from groups in the 2dFGRS and SDSS against
those obtained from groups extracted from detailed MGRSs, which
suffer from interlopers and incompleteness effects to the same extent
as the real data.

3 A P P L I C AT I O N TO T H E 2 D F G R S A N D S D S S

3.1 Group selection

The R test described above requires a selection of galaxies that
belong to the same dark matter halo. In YMBJ, we developed a halo-
based galaxy group finder, that is optimized for this task. Here, we
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give a brief description of this group finder and refer the interested
reader to YMBJ for details.

The basic idea behind our group finder is similar to that of the
matched filter algorithm developed by Postman et al. (1996), al-
though it also makes use of the galaxy kinematics. The group finder
starts with an assumed mass-to-light ratio to assign a tentative mass
to each potential group, identified using the friends-of-friends (FOF)
method. This mass is used to estimate the size and velocity disper-
sion of the underlying halo that hosts the group, which in turn is used
to determine group membership (in redshift space). This procedure
is iterated until no further changes occur in group memberships. Us-
ing detailed MGRSs, the performance of our group finder has been
tested in terms of completeness of true members and contamination
by interlopers. The average completeness of individual groups is
∼90 per cent and with only ∼20 per cent interlopers. Furthermore,
the resulting group catalogue is insensitive to the initial assumption
regarding the mass-to-light ratios and is more successful than the
conventional FOF method in associating galaxies according to their
common dark matter haloes.

3.2 The 2dFGRS

We use the final, public data release from the 2dFGRS, restrict-
ing ourselves only to galaxies with redshifts 0.01 � z � 0.20 in
the North Galactic Pole (NGP) and South Galactic Pole (SGP)
subsamples with a redshift quality parameter q � 3 and a red-
shift completeness c > 0.8. This leaves a grand total of 151 280
galaxies with a sky coverage of ∼ 1125 deg2. The typical rms red-
shift and magnitude errors are 85 km s−1 and 0.15 mag, respec-
tively (Colless et al. 2001). Absolute magnitudes for galaxies in the
2dFGRS are computed using the K-corrections of Madgwick et al.
(2002).

Application of the halo-based group finder to this galaxy sam-
ple yields a group catalogue consisting of 77 708 systems. Detailed
information regarding the clustering properties and galaxy occu-
pation statistics of these groups can be found in YMBJ and Yang
et al. (2005b,c). In what follows, we restrict our analyses to the 2502
groups in this catalogue with four members or more.

3.3 The SDSS

In addition to the 2dFGRS, we also use data from the SDSS. In par-
ticular, we use the New York University Value-Added Galaxy Cat-
alogue (NYU-VAGC),1 described in detail in Blanton et al. (2005).
The NYU-VAGC is based on the SDSS Data Release 2 (Abazajian
et al. 2004), but with an independent set of significantly improved
reductions. From this catalogue, we select all galaxies in the Main
Galaxy Sample, which has an extinction corrected Petrosian mag-
nitude limit of r = 18. We prune this sample to those galaxies in
the redshift range 0.01 � z � 0.20 and with a redshift complete-
ness c > 0.7. This leaves a grand total of 184 425 galaxies with a
sky coverage of ∼ 1950 deg2. From this SDSS sample, we construct
a group catalogue that contains 102 935 systems. A more detailed
description of this catalogue will be presented in Weinmann et al.
(in preparation). As for the 2dFGRS, we restrict our analysis to the
groups with four members or more, of which there are 3473 in our
catalogue.

1 http://wassup.physics.nyu.edu/vagc/#download

3.4 Comparison of 2dFGRS with SDSS

For each group in both the 2dFGRS and SDSS catalogues described
above, we compute R. Fig. 1 plots the cumulative distributions of
|R| for both surveys. In the upper-left panel, we plot the distribu-
tions using all groups in the range 50 km s−1 � σ̂s � 1000 km s−1,
with σ̂s the unbiased estimator of σ s (equation 3). In the other three
panels, we plot P(<|R|) for three subsamples (the values in square
brackets indicate the range in σ̂s used, in km s−1). Overall, the agree-
ment between SDSS and 2dFGRS is extremely good. To make the
comparison more quantitative, we use the Kolmogorov–Smirnov
(hereafter KS) test to compute the probability PKS that both P(|R|)
are drawn from the same distribution. The resulting probabilities are
indicated in each panel. These confirm what can already be inferred
by eye, namely that both R distributions are consistent with each
other. Given this good agreement between both data sets, we only
concentrate on the 2dFGRS in what follows. The main reason for
choosing this survey over the SDSS is that we have accurate mock-
ups for the 2dFGRS that have been well tested. Given the good
agreement between 2dFGRS and SDSS, we argue that any result
based on the former will also hold for the latter.

4 M O D E L L I N G V E L O C I T Y B I A S
O F C E N T R A L G A L A X I E S

The main goal of this paper is to use the R distributions presented
above in order to constrain the phase-space parameters of the bright-
est halo galaxies. We will express these in terms of their spatial and
velocity bias with respect to the satellites. If the null hypothesis of
the CGP is correct, both the spatial and the velocity bias should
equal zero. In order to model these biases and to incorporate them
in the mock redshift surveys that we will use for comparison with
the data, we proceed as follows.

We assume that each dark matter halo has an NFW (Navarro,
Frenk & White 1997) density distribution, ρ dm (r ), with virial radius
rvir, characteristic scale radius rs, and concentration parameter c =
r vir/r s. Assuming haloes to be spherical and isotropic, the local,
one-dimensional velocity dispersion follows from solving the Jeans
equation

σ 2
dm(r ) = 1

ρdm(r )

∫ ∞

r

ρdm(r ′)
∂�

∂r
(r ′) dr ′, (5)

with �(r ) the gravitational potential (Binney & Tremaine 1987).
Using that �/r = GM(r )/r 2 and defining the virial velocity Vvir =√

G M/rvir, we obtain

σ 2
dm(r ) = V 2

vir

c

f (c)

(
r

rs

)(
1 + r

rs

)2

I(r/rs), (6)

with f (x) = ln (1 + x) − x/(1 + x) and

I(y) =
∫ ∞

y

f (τ ) dτ

τ 3(1 + τ )2
. (7)

The halo-averaged velocity dispersion is given by

〈σdm〉M ≡ 4π

M

∫ rvir

0

ρdm(r ) σdm(r ) r 2 dr

= Vvir

√
c

f 3(c)

∫ c

0

y3/2 I1/2(y)

(1 + y)
dy (8)

(cf. van den Bosch et al. 2004).
Throughout this paper, we assume that the N sat satellite galax-

ies in a halo of mass M follow a number density distribution
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Figure 1. A comparison of the cumulative distributions of |R| of 2dFGRS [solid lines (red online)] and SDSS [dashed lines (blue)] groups. Results are shown
for four intervals in σ̂s, indicated in square brackets in each panel. The KS probability, PKS, that both distributions are drawn from the same distribution is also
indicated. Note that the P(|R|) from 2dFGRS and SDSS are in excellent agreement with each other.

n sat(r ) = (N sat/M)ρ dm(r ), i.e. there is no spatial bias between satel-
lite galaxies and dark matter particles. As shown in van den Bosch
et al. (2005), this is consistent with the observed radial distribution
of satellite galaxies in the 2dFGRS. If we further assume that the
satellites are in isotropic equilibrium, it also follows that there is
no velocity bias between the satellites and the dark matter, neither
globally (i.e. 〈σ sat〉M = 〈σ dm〉M) nor locally [i.e. σ sat(r ) = σ dm(r )].

When stacking all haloes of a given mass, we assume that their
brightest halo galaxies follow a number density distribution given
by a Hernquist (1990) profile:2

ρcen(r ) ∝ 1

2π

a

r

1

(r + a)3
. (9)

This implies a probability distribution for r of the central galaxies
of

Pcen(r )dr = 2

(
rvir + a

rvir

)2
ar

(r + a)3
dr . (10)

In order to parametrize the characteristic radius a in terms of that of
the dark matter halo, we define the parameter f cen ≡ a/r s. A bright-
est halo galaxy at a halo-centric radius r has an isotropic velocity

2 The choice for this particular distribution is not motivated by any physical
considerations, other than the fact that it is well behaved, both at r = 0 and
at r → ∞.

dispersion

σ 2
cen(r ) = 1

ρcen(r )

∫ ∞

r

ρcen(r ′)
∂�

∂r
(r ′) dr ′

= V 2
vir

c

f (c)

(
r

rs

)(
fcen + r

rs

)3

J (r/rs) , (11)

with

J (y) =
∫ ∞

y

f (τ ) dτ

τ 3( fcen + τ )3
. (12)

This implies a halo-averaged velocity dispersion of

〈σcen〉M ≡
∫ rvir

0
ρcen(r ) σcen(r ) r 2 dr∫ rvir

0
ρcen(r ) r 2 dr

= Vvir

√
4c

f (c)
fcen

∫ c

0

y3/2 J 1/2(y)

( fcen + y)3/2
dy , (13)

which allows us to define the velocity bias of the brightest halo
galaxies as bvel ≡ 〈σ cen〉/〈σ dm〉 = 〈σ cen〉/〈σ sat〉. In addition to the
velocity bias, we define the spatial bias as brad ≡ 〈r cen〉/〈r dm〉 =
〈r cen〉/〈r sat〉, where the expectation value for the radius follows from

〈r〉 =
∫ rvir

0
ρ(r )r 3 dr∫ rvir

0
ρ(r )r 2 dr

. (14)
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Figure 2. The velocity bias (left-hand panel) and spatial bias (right-hand panel) of central galaxies as function of the parameter f cen, which expresses the
characteristic scale of the radial distribution of central galaxies in terms of the characteristic scale of the NFW density distribution (see Section 4). Results are
shown for three values of the halo concentration parameter c, as indicated.

For an NFW density distribution with concentration c, this reduces
to

〈rdm〉 =
[

(2 + c)/(1 + c) − (2/c)ln(1 + c)

ln(1 + c) − c/(1 + c)

]
rvir (15)

or 〈r dm〉 = 0.41 r vir for c = 10.
Fig. 2 plots bvel (left-hand panel) and brad (right-hand panel) as

function of f cen for three values of the halo concentration parameter
c. In the limit f cen → 0, the probability distribution P cen(r ) becomes
a Dirac delta function. This implies that the central galaxy is sitting
still at the centre of the dark matter halo (i.e. the null hypothesis
of the CGP), so that bvel = brad = 0. Increasing f cen increases the
probability to find the brightest halo galaxy at larger halo-centric
radii, which corresponds to a larger velocity bias. Note, however,
that bvel never approaches unity, which is due to the fact that ρ cen(r )
can not be made to match ρ dm(r ) for any value of f cen. Typically
bvel � brad, which is a reflection of the ‘depth’ of the NFW potential.
For example, for a velocity bias of bvel = 0.5 (i.e. corresponding to
a specific kinetic energy that is one quarter of that of the satellites),
the radial bias is brad  0.07 (assuming c = 10). Combining this
with equation (15) implies an expectation value for the offset of the
central galaxy from the dark matter distribution of 〈r cen〉  0.03 r vir.
For a Milky Way sized system, this corresponds to ∼ 5 kpc, compa-
rable to the characteristic radius (scalelength) of the galaxy itself.
This clearly demonstrates that the signal of an off-centred brightest
halo galaxy is far more pronounced and thus easier to detect in veloc-
ity space than in real space (i.e. by measuring the projected distance
between the brightest galaxy and the centroid of the satellites).

In what follows, we construct a set of MGRSs for different values
of bvel and compare the R distributions of their groups against those
of the 2dFGRS, which are statistically identical to those of the SDSS,
in an attempt to constrain bvel. Although the construction of these
MGRSs is based on the model described above and thus depends
on the assumed functional form for P cen(r ), this does not impact on
our results. The statistic that we use to constrain bvel depends only
on the velocities of the central galaxies; were we to adopt another
P cen(r ) but with the same value of bvel, the resulting R distributions
would be virtually indistinguishable. The assumed form of P cen(r )
only impacts on the relation between bvel and brad.

5 M O C K G A L A X Y R E D S H I F T S U RV E Y S

We construct MGRSs by populating dark matter haloes with galaxies
of different luminosities. The distribution of dark matter haloes is
obtained from a set of large N-body simulations (dark matter only)
for a � cold dark matter (CDM) ‘concordance’ cosmology with
	m = 0.3, 	� = 0.7, h = 0.7 and σ 8 = 0.9. In this paper, we use
two simulations with N = 5123 particles each, which are described
in more detail in Jing & Suto (2002). The simulations have periodic
boundary conditions and box sizes of L box = 100 h−1 Mpc (hereafter
L100) and L box = 300 h−1 Mpc (hereafter L300). We follow Yang et al.
(2004) and replicate the L300 box on a 4 × 4 × 4 grid. The central
2 × 2 × 2 boxes are replaced by a stack of 6 × 6 × 6 L 100 boxes
and the virtual observer is placed at the centre (see fig. 11 in Yang
et al. 2004). This stacking geometry circumvents incompleteness
problems in the mock survey due to insufficient mass resolution
of the L300 simulations and allows us to reach the desired depth of
zmax = 0.20 in all directions.

Dark matter haloes are identified using the standard FOF algo-
rithm with a linking length of 0.2 times the mean interparticle sep-
aration. Unbound haloes and haloes with less than 10 particles are
removed from the sample. In Yang et al. (2004), we have shown
that the resulting halo mass functions are in excellent agreement
with the analytical halo mass function of Sheth, Mo & Tormen
(2001).

5.1 Populating haloes with galaxies

In order to populate the dark matter haloes with galaxies of different
luminosities, we use the conditional luminosity function (hereafter
CLF), 
(L |M), which gives the average number of galaxies of
luminosity L that resides in a halo of mass M. As demonstrated in
van den Bosch et al. (2003) and Yang et al. (2003), the CLF is well
constrained by the galaxy luminosity function and by the galaxy–
galaxy correlation lengths as functions of luminosity. In the MGRSs
used here, we use the CLF with ID no. 6 given in table 1 of van den
Bosch et al. (2005). We have tested that none of our results depends
significantly on this particular choice for the CLF.

Because of the mass resolution of the simulations and because of
the completeness limit of the 2dFGRS, we adopt a minimum galaxy
luminosity of L min = 107 h−2 L�. The mean number of galaxies
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with L � L min that resides in a halo of mass M is given by

〈N 〉M =
∫ ∞

Lmin


(L|M) dL. (16)

In order to Monte Carlo sample occupation numbers for individual
haloes, one requires the full probability distribution P(N |M) (with N
an integer) of which 〈N 〉M gives the mean. We differentiate between
satellite galaxies and central galaxies. The total number of galaxies
per halo is the sum of N cen, the number of central galaxies, which
is either one or zero, and N sat, the (unlimited) number of satellite
galaxies. We assume that N sat follows a Poisson distribution and
require that N sat = 0 whenever N cen = 0. The halo occupation
distribution is thus specified as follows: if 〈N 〉M � 1 then N sat =
0 and N cen is either zero (with probability P = 1 − 〈N 〉M) or one
(with probability P = 〈N 〉M). If 〈N 〉M > 1 then N cen = 1 and N sat

is drawn from a Poisson distribution with a mean of 〈N 〉M − 1.
We follow Yang et al. (2004) and draw the luminosity of the

brightest galaxy in each halo from 
(L |M) using the restriction
that L > L 1 with L1 defined by∫ ∞

L1


(L|M)dL = 1. (17)

The luminosities of the satellite galaxies are also drawn from

(L|M), but with the restriction L min < L < L 1.

Next, we assign all galaxies a position and velocity within their
halo, using the number density distributions and (isotropic) veloc-
ity dispersion profiles given in Section 4. Note that this implicitly
assumes that all haloes, as well as their galaxy populations, are re-
laxed. Halo concentrations as function of halo mass are computed
using the relation given by Eke, Navarro & Steinmetz (2001).

5.2 Creating mock surveys

The 2dFGRS uses a multifibre spectrograph to obtain redshifts.
However, because of the physical size of the fibers, when two galax-
ies are closer than ∼ 30 arcsec in projection only one of them can
be targeted. Furthermore, due to clustering, some areas on the sky
contain more galaxies within a single two-degree field than the avail-
able number of fibers. By using a sophisticated tiling strategy, these
problems are largely overcome, yielding a fairly uniform sampling
rate. Nevertheless, some spatial non-uniformities remain. In addi-
tion, fainter galaxies yield noisier spectra and therefore less accurate
redshifts. All these effects combined result in a redshift complete-
ness that depends on both position on the sky and on apparent mag-
nitude. The 2dFGRS team has constructed maps that parametrize
this position and magnitude dependent completeness (Colless et al.
2001; Norberg et al. 2002), and that facilitate a simulation of these
effects in our MGRSs. However, as it turns out, the completeness
depends also on the angular separation, θ , between galaxy pairs
(see Hawkins et al. 2003). This is largely due to the problem of fiber
collisions, which has not been completely corrected for by the tiling
strategy. Finally, Norberg et al. (2002) have shown that the parent
catalogue of the 2dFGRS, the APM catalogue, is only 91 per cent
complete. As shown in van den Bosch et al. (2005), this incom-
pleteness is, at least partially, due to image blending in the APM
catalogue (see also Cole et al. 2001). Based on this information, we
mimic the various observational selection and completeness effects
in the 2dFGRS using the following steps.

(i) We define an (α, δ)-coordinate frame with respect to the virtual
observer at the centre of the stack of simulation boxes, and remove
all galaxies that are not located in the areas equivalent to the NGP
and SGP regions of the 2dFGRS.

(ii) For each galaxy, we compute the apparent magnitude accord-
ing to its luminosity and distance, to which we add an rms error of
0.15 mag. Because galaxies in the 2dFGRS were pruned by appar-
ent magnitude before a K-correction was applied, we proceed as
follows: we first apply a negative K-correction, then select galaxies
according to the position-dependent magnitude limit (obtained using
the apparent magnitude limit masks provided by the 2dFGRS team)
and finally K-correct the magnitudes back to their rest-frame bJ

band. Throughout, we use the type-dependent K-corrections given
in Madgwick et al. (2002).

(iii) For each galaxy, we compute the redshift as ‘seen’ by the
virtual observer. We take the observational velocity uncertainties
into account by adding a random velocity drawn from a Gaussian
distribution with dispersion 85 km s−1.

(iv) To take account of the position- and magnitude-dependent
completeness of the 2dFGRS, we randomly sample each
galaxy using the completeness masks provided by the 2dFGRS
team.

(v) To take account of the fiber-collision induced incompleteness,
we compute the angular separations θ between all galaxy pairs and
remove galaxies based on a probability p(θ ), which we tune (by trial
and error) so that we reproduce the pair-separation incompleteness
quantified by Hawkins et al. (2003).

(vi) To take account of the incompleteness in the APM catalogue
due to image blending, we model the characteristic size of a galaxy
as

Rgal = 15 h−1 kpc

(
L

1010 h−2 L�

)1/3

(18)

and define the critical projection angle θ max = Rgal/DA, with DA

the angular diameter distance of the galaxy. We then remove the
faintest galaxy from all pairs for which θ < θ max.

(vii) Finally, we remove a number of galaxies completely at ran-
dom to bring the total fraction of removed galaxies, including those
removed under (v) and (vi), to 9 per cent.

As shown in van den Bosch et al. (2005), this procedure results
in mock 2dFGRS catalogues that accurately mimic all the various
incompleteness effects, allowing for a direct, one-to-one comparison
with the true 2dFGRS.

6 R E S U LT S

Using the method outlined above, we construct a set of ten MGRSs
that only differ in the value of bvel. Table 1 lists these mock-ups
together with their corresponding values of brad and f cen, computed
for a halo with a concentration parameter c = 10. Note that these
values of brad and f cen are only to give the reader an order of magni-
tude estimate of the corresponding radial bias. The R test used here
only constrains the value of bvel; the corresponding values of brad

and f cen can only be computed indirectly and are model dependent
(see Section 4).

In the case of M1.0, we deviated somewhat from the procedure
described in Section 4. Rather than giving the central galaxies a
probability distribution (10), we simply treat the brightest galaxy as
a satellite galaxy so that bvel = 1.0. Note that, in this case, f cen is not
defined. For each of our ten MGRSs, we construct a group catalogue
as described in Section 3.1, using those mock galaxies that are in
the redshift range 0.01 � z � 0.20 and with a completeness c > 0.8
(this mimics our selection from the 2dFGRS). In what follows, we
restrict our analysis to groups with four or more members and with
50 km s−1 � σ̂s � 1000 km s−1.
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Table 1. Comparison between MGRSs and 2dFGRS.

MGRS bvel brad f cen P KS[50, 1000] P KS[50, 200] P KS[200, 350] P KS[350, 1000]
(1) (2) (3) (4) (5) (6) (7) (8)

M 0.0 0.0 0.0 0.0 1.7 × 10−1 2.6 × 10−1 5.1 × 10−4 2.9 × 10−2

M 0.1 0.1 2.8 × 10−3 7.3 × 10−4 1.4 × 10−1 8.7 × 10−1 2.3 × 10−1 7.4 × 10−2

M 0.2 0.2 1.0 × 10−2 3.3 × 10−3 1.3 × 10−1 4.9 × 10−1 6.2 × 10−1 8.7 × 10−2

M 0.3 0.3 2.4 × 10−2 8.5 × 10−3 2.0 × 10−1 4.3 × 10−1 2.4 × 10−1 1.6 × 10−1

M 0.4 0.4 4.2 × 10−2 1.8 × 10−2 5.2 × 10−6 8.2 × 10−2 1.3 × 10−1 3.5 × 10−1

M 0.5 0.5 7.2 × 10−2 3.5 × 10−2 1.8 × 10−6 7.5 × 10−2 1.0 × 10−1 3.8 × 10−1

M 0.6 0.6 1.1 × 10−1 6.6 × 10−2 2.5 × 10−9 4.0 × 10−2 1.1 × 10−3 1.2 × 10−1

M 0.7 0.7 1.8 × 10−1 1.3 × 10−1 1.7 × 10−10 3.3 × 10−3 1.2 × 10−2 7.0 × 10−2

M 0.8 0.8 3.4 × 10−1 3.3 × 10−1 2.5 × 10−14 2.4 × 10−5 1.1 × 10−3 7.4 × 10−3

M 1.0 1.0 1.0 – 2.8 × 10−18 1.9 × 10−5 1.3 × 10−6 5.3 × 10−6

The MGRSs used for comparison with the 2dFGRS. Column (1) lists the ID of the MGRS. Columns (2), (3) and (4) list the velocity bias, spatial bias
and value of f cen, respectively (see Section 4 for definitions). Finally, columns (5)–(8) list the KS probabilities PKS that the distributions of R extracted
from these MGRS are consistent with those of the 2dFGRS for four different intervals in σ̂s, indicated by the values in square brackets (in km s−1).

Figure 3. The cumulative distributions of |R| obtained from MGRSs M0.0 (left-hand panel) and M1.0 (right-hand panel), in which the brightest halo
galaxies have a velocity bias of bvel = 0 and bvel = 1, respectively. Solid, dashed and dotted curves correspond to group samples with 50 km s−1 � σ̂s �
200 km s−1, 200 km s−1 � σ̂s � 350 km s−1, and 350 km s−1 � σ̂s � 1000 km s−1, respectively. The grey area indicates the area bounded by Student
distributions with 3 and 9 degrees of freedom. In the ideal case without interlopers, the P(< |R|) of M0.0 should fall in this range. The fact that they do not
illustrates the impact of interlopers and completeness effects, and emphasizes the importance of using MGRSs for a fair comparison with the data. Finally, the
fact that the P(< |R|) of M0.0 and M1.0 are significantly different illustrates that the R test does have the ability to constrain the phase-space parameters of
the brightest halo galaxies.

To illustrate the importance of using MGRSs, the left-hand panel
of Fig. 3 shows the cumulative distributions of |R| obtained from the
groups in M 0.0 for which bvel = 0.0. In this mock-up, all the brightest
halo galaxies have been located at rest at the centre of the halo. The
grey area indicates the area bounded by Student t distributions with
3 and 9 degrees of freedom (corresponding to systems with four and
10 satellites, respectively, which spans the range covered by the vast
majority of our groups). In principle, because this MGRS obeys the
null hypothesis of the CGP, the resulting P(< |R|) should fall in this
range. Clearly it does not, especially not for groups with 50 km s−1 �
σ̂s � 200 km s−1 (solid line). This owes to the completeness effects
in the survey, and to the fact that our group finder is not perfect
and (unavoidably) selects interlopers. As we discussed in Section 2,
these effects systematically broaden P(R). Because the impact of
one or two interlopers is much stronger in low-mass groups, which
have fewer members, the P(R) of groups with low σ̂s deviates more
from the predicted Student t distribution than that of more massive

groups. This clearly demonstrates that one needs to take interlopers
and completeness effects into account, in a statistical sense, when
interpreting the distribution of R obtained from the 2dFGRS. The
MGRSs used here are ideally suited for this task.

The right-hand panel of Fig. 3 shows the same results as in the left-
hand panel, but now based on M 1.0 for which bvel = 1.0. Clearly,
for this MGRS the P(R) are significantly broader than for M0.0.
This demonstrates that, despite the interloper/completeness prob-
lem, the detailed distributions of R obtained from group catalogues
do contain useful information that we can use to constrain bvel.

Before we compare theRdistributions obtained from our MGRSs
with those obtained from the 2dFGRS, we need to address two spe-
cific issues. The first is cosmic variance. Although the 2dFGRS is a
large redshift survey, cosmic variance may still play a role. Because
the R distributions depend only mildly on bvel, small differences
in P(R) due to cosmic variance may have a non-negligible im-
pact on the inferred value of bvel. In order to address this, we have
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Table 2. The KS probabilities that express how similar the P(R)
distributions are for four independent mock-ups (all with bvel =
0.5). Column (1) lists the numbers (arbitrary) of the mocks that are
compared. Columns (2)–(5) list the KS probabilities that the R dis-
tributions for groups in these mock-ups are consistent with being
drawn from the same distribution. The different columns correspond
to different σs intervals as indicated at the top of each column. Note
that P KS > 0.1 in all cases. In what follows, we adopt this value as the
boundary between distributions that are consistent and inconsistent
with each other.

MGRSs [50, 1000] [50, 200] [200, 350] [350, 1000]
(1) (2) (3) (4) (5)

1–2 0.70 0.60 0.60 0.97
1–3 0.44 0.26 0.99 0.69
1–4 0.82 0.98 0.46 0.31
2–3 0.36 0.11 0.58 0.81
2–4 0.73 0.65 0.42 0.26
3–4 0.40 0.48 0.62 0.36

constructed four independent MGRSs (all with bvel = 0.5) from a set
of independent simulation boxes (see Yang et al. 2004 for details).
For each of these four MGRSs, we construct a group catalogue as
described in Section 3.1 and compare the resulting P(R) using the
KS statistic. The results are listed in Table 2. In all cases, we find
that P KS > 0.1. In what follows, we therefore consider this probabil-
ity value to indicate the boundary between two distributions being
statistically equivalent or not.

The second issue that needs to be addressed concerns the number
density of rich groups. As shown in YMBJ, our MGRSs overpredict
the number of rich groups compared with the 2dFGRS. This implies
that either the average mass-to-light ratio of groups and clusters
is significantly higher than normally assumed, or that the power-
spectrum normalization σ 8  0.75 as opposed to 0.9 (cf. van den
Bosch, Mo & Yang 2003; Yang et al. 2004; van den Bosch et al. 2005;
YMBJ). As shown in Fig. 3, more massive groups are less severely
affected by incompleteness and interlopers than less massive groups.
Therefore, the R distribution of all groups is sensitive to the relative
fractions of groups of different masses (or different σ̂s). In order
for the mismatch in group abundances between mock-up and data
to not influence our results, we randomly remove massive groups
from our MGRSs until we match the relative number of groups in
the various σ̂s bins.

In Fig. 4, we compare P(< |R|) obtained from our 2dFGRS group
catalogue (grey dots), to those obtained from three MGRSs with
different values of bvel, as indicated. The upper-left panel plots the
results using all groups in the full range of σ̂s considered. The MGRS
with bvel = 0.0 (i.e. the one that fulfills the null hypothesis of the
CGP) seems to be in reasonable agreement with the 2dFGRS data,
although its P(|R|) appears to be somewhat narrower. Nevertheless,
it clearly fits the data better than the MGRSs with bvel = 0.5 or bvel

= 1.0. The other three panels of Fig. 4 plot P(< |R|) for three
different bins of σ̂s, as indicated. Although the results are somewhat
more noisy (because of the smaller number of groups involved),
a comparison with the various MGRSs also suggests best-fitting
values for bvel in the range 0–0.5.

In order to make the comparison between 2dFGRS and MGRS
more quantitative, Fig. 5 plots the logarithm of the KS probability,
PKS, that the P(|R|) of the 2dFGRS and the MGRS are drawn from
the same distribution. Results are shown as function of bvel and for
the same four intervals of σ̂s as in Fig. 4 (see also Table 1). When
all groups with 50 km s−1 � σ̂s � 1000 km s−1 are considered, the

data are consistent with the null hypothesis of the CGP. However,
the data are equally consistent with a small but non-zero velocity
bias, while models with bvel > 0.3 are strongly ruled out by the data.
When analysing the three σ̂s subsamples, one notices a weak trend:
more massive haloes seem to require a higher value of bvel. If we
adopt P KS > 0.1 to indicate consistency with the data (see above),
we obtain the following constraints on the velocity bias of the central
galaxies: bvel � 0.4 for 50 km s−1 � σ̂s � 200 km s−1, 0.1 � bvel �
0.5 for 200 km s−1 � σ̂s � 350 km s−1 and 0.2 � bvel � 0.6 for
350 km s−1 � σ̂s � 1000 km s−1.

Finally, we address the issue of velocity bias for the satellite galax-
ies. When constructing our MGRSs, we have made the assumption
that satellite galaxies have the same spatial and kinematic distribu-
tion as dark matter particles. These assumptions are, at least partially,
supported by observations of cluster galaxies (e.g. Carlberg et al.
1997; van der Marel et al. 2000; Lin, Mohr & Stanford 2004). On
the other hand, numerical simulations seem to suggest that satellite
galaxies may have a small velocity bias: Using smoothed particle
hydrodynamics (SPH) simulations, Berlind et al. (2003) found that
satellites in intermediate-mass haloes are slightly colder than the
dark matter in their host haloes, corresponding to a velocity bias of
bsat ≡ σ sat/σ DM ∼ 0.9. On the other hand, Faltenbacher et al. (2005),
using gas dynamical simulations of clusters, found that galaxies are
slightly hotter than the dark matter (bsat ∼ 1.1), in good agreement
with results obtained for dark matter subhaloes without gas (see
Diemand, Moore & Stadel 2004 and references therein). Because
both v̄s and σ̂s scale linearly with bsat, but the velocity of the bright-
est halo galaxy does not, a velocity bias bsat �= 1 will have a small
effect on the measure of R. To test the magnitude of this effect, we
constructed two MGRSs with bvel = 0.5: one with bsat = 0.9 and
the other with bsat = 1.1. The R distributions of these MGRSs are
shown in Fig. 6. As expected, a lower value of bsat results in a some-
what broader distribution of R values. To a good approximation,
reducing (increasing) bsat by 0.1 has a similar effect on P(R) as an
increase (decrease) of bvel by a similar value. Using this simple rule
of thumb, the reader can convert the constraints on bvel obtained
here, which correspond to bsat = 1.0, to their own favorite value for
the velocity bias of satellite galaxies.

7 D I S C U S S I O N

Our finding that the brightest halo galaxies in massive groups and
clusters have, on average, a non-zero specific kinetic energy has two
possible interpretations. First of all, the central galaxy may not be
at rest with respect to the virialized dark matter halo. This scenario,
which we hereafter refer to as the Non-Relaxed Galaxy (NRG) sce-
nario, is illustrated in the left-hand panel of Fig. 7. The right-hand
panel depicts the second possible scenario: that of a Non-Relaxed
Halo (NRH). In this case, the brightest halo galaxy is located at
rest with respect to the minimum of the dark matter potential, but
the dark matter mass distribution is not relaxed and reveals a clear
m = 1 mode (i.e. the potential minimum does not coincide with the
barycentre). In both scenarios, the brightest halo galaxy has a net
velocity with respect to the coordinate frame defined by the mean
motion of the satellites. Note that, although our MGRSs are based
on the NRG scenario, to first order it also mimics the NRH scenario,
so that our comparison between MGRS and 2dFGRS applies to both
cases.

Of the two scenarios illustrated in Fig. 7, the most likely one
is the NRH scenario. It seems to fit naturally within a hierarchical
picture of structure formation, where haloes continue to grow in
mass by accretion and merging. It is also in accord with our finding
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Figure 4. The cumulative distributions of |R| obtained from the groups in the 2dFGRS (grey dots), compared with those obtained from three of our MGRSs,
which only differ in their value of bvel, as indicated in the upper-left panel. Results are shown for four intervals in σ̂s, indicated in square brackets in each panel.
The number of 2dF groups in each of the three subsamples is indicated.

that bvel is larger in more massive haloes, which form later and are
thus expected to be less relaxed. Using a combination of numeri-
cal simulations and semi-analytical models of galaxy formation in
a �CDM cosmology, Diaferio et al. (1999) found that the central
galaxy has an average velocity with respect to the halo barycentre
of ∼ 80 km s−1. With a median halo mass of ∼ 1013 h−1 M�, this
corresponds to 〈|vcen|〉 = 0.23

√
〈|vDM|2〉.3 A similar result was

obtained by Yoshikawa, Jing & Börner (2003) who, using an SPH
simulation of galaxy formation in a �CDM universe, found that
〈|vcen|〉 = 0.27

√
〈|vDM|2〉. Finally, Berlind et al. (2003), using sim-

ilar SPH simulations, found that 〈|vcen|〉  0.2 〈|vdm|〉. If we make
the simplifying assumption that

bvel =
√

〈|vcen|2〉√
〈|vDM|2〉

 〈|vcen|〉√
〈|vDM|2〉

 〈|vcen|〉
〈|vDM|〉 (19)

3 Here, we have used equation (8) and the assumption of isotropy to relate
halo mass to the three-dimensional velocity dispersion of the dark matter
particles.

(where the approximations are typically accurate to a few per cent),
these results imply values for bvel in the range 0.2 to 0.30. A com-
parison with Fig. 5 shows that these results are in good overall
agreement with the constraints on bvel obtained from our 2dFGRS
group catalogue.

Unfortunately, Yoshikawa et al. (2003) did not investigate
whether the most massive halo galaxy has a net velocity with re-
spect to the most bound halo particle, while in Diaferio et al. (1999)
the central galaxy is associated with the most bound halo parti-
cles by construction. Therefore, we can not use either of these re-
sults to discriminate between the NRG and NRH scenarios. Berlind
et al. (2003), however, showed that, in their SPH simulation, central
galaxies are closer to the most bound dark matter particle of their
halo (mean separation of ∼2 per cent of the virial radius) than to
the centre of mass of their halo (mean separation of ∼10 per cent of
the virial radius). This clearly points towards the NRH scenario. We
thus conclude that the simulation results are in good overall agree-
ment with the results obtained here, and that they seem to support
the NRH scenario as the most likely cause for the offset between
the velocity of the central galaxy and that of the satellites.
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Figure 5. The KS probability that the R distribution obtained from the 2dFGRS groups is consistent with that obtained from our MGRSs, as function of bvel.
Results are shown for four σ̂s intervals, indicated in square brackets in each panel. The horizontal, dashed line in each panel indicates P KS = 0.1: based on
estimates of the scatter due to cosmic variance, we consider two distributions to be statistically equivalent when P KS > 0.1. Whereas low-mass groups are
consistent with bvel = 0, the brightest galaxies in more massive groups are inconsistent with the null hypothesis of the CGP.

The NRG scenario appears unlikely at first sight, as dynamical
friction against the highly concentrated dark matter halo probably
quickly damps any oscillatory motion. On the other hand, if dark
matter haloes are cored, rather than cusped, the oscillations may
persist for a much longer time (cf. Bontekoe 1988). This possibility
is interesting in the light of various independent claims for cored
dark matter haloes, based on rotation curves of dwarf and low sur-
face brightness galaxies (e.g. Flores & Primack 1994; Moore 1994;
de Blok et al. 2001; Borriello & Salucci 2001; de Blok & Bosma
2002, but see also van den Bosch et al. 1999; van den Bosch &
Swaters 2001; Dutton et al. 2005), on the observed pattern speeds
of barred galaxies (Debattista & Sellwood 1998, 2000), and on the
longevity of the lopsidedness of disc galaxies (Levine & Sparke
1998). A more in-depth study of the damping rate of these kinds
of oscillations in dark matter haloes, both cusped and cored, could
shed more light on these issues.

Independent of which of the aforementioned scenarios is respon-
sible for the non-zero velocity bias of the brightest halo galaxies, it
has important implications for various areas in astrophysics. First
of all, it has an important impact on the use of satellite kinematics
to infer halo masses. Because the number of detectable satellites in
individual systems is generally small, one typically stacks the data

on many host–satellite pairs to obtain statistical estimates of halo
masses (Erickson, Gottesman & Hunter 1987; Zaritsky et al. 1993;
Zaritsky & White 1994; Zaritsky et al. 1997; McKay et al. 2002;
Brainerd & Specian 2003; Prada et al. 2003; van den Bosch et al.
2004). The halo mass is typically derived from the dispersion, σ cs, of
the distribution of the velocity difference between host and satellite
galaxies. This derivation rests on the (standard) assumptions that the
host galaxies (i.e. the brightest halo galaxies) are at rest with respect
to the centre of a relaxed dark matter halo. If the satellite galaxies
have the same kinematics as dark matter particles, then σ cs = σ dm ∝
M1/3. However, in the case of the NRH scenario, one simply can not
use (satellite) kinematics to infer reliable halo masses, as the crucial
assumption of a virialized system is not correct. In the case of the
NRG scenario, on the other hand, the system is relaxed but, because
of the non-zero velocity bias, we have that σcs = √

1 + bvel σdm. If
one were not to correct for bvel, the inferred halo mass would be
overestimated by a factor (1 + bvel)3/2 (corresponding to ∼ 1.5 in
the case of bvel = 0.3).

The results presented here also have potentially important im-
plications for (strong) gravitational lensing. In both the NRG and
NRH scenarios, one expects a strong, ‘external’ shear due to the
dark matter halo, which should leave signatures in the image
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Figure 6. The cumulative distributions of |R| for three MGRSs with bvel =
0.5, but with different values for the velocity bias bsat of the satellite galaxies
as indicated. Note that bsat = 1.0 corresponds to no velocity bias (i.e. satellite
galaxies have the same velocity distribution as dark matter particles). Overall
the impact of the velocity bias of the satellite galaxies on P(R) is small (see
text for detailed discussion).

Non–Relaxed Galaxy Non–Relaxed Halo

Figure 7. An illustration of the two different configurations that are both
consistent with our inferred offset between the brightest halo galaxy and
the satellite galaxies. Contours depict equipotentials of the dark matter
haloes, while filled ellipses and circles represent the brightest halo galax-
ies and satellite galaxies, respectively. In the Non-Relaxed Galaxy (NRG)
scenario, the brightest halo galaxy oscillates in a fully relaxed halo. In the
Non-Relaxed Halo (NRH) scenario, on the other hand, the central galaxy
coincides with the minimum of the halo potential, but the centres of differ-
ent equipotential surfaces are offset from each other. See text for a detailed
discussion.

configurations and time delays of the lens. In fact, this ‘exter-
nal’ shear may already have been detected. As shown in Keeton,
Kochanek & Seljak (1997), fitting four-image lenses almost always
requires an independent external shear that is not aligned with the
light of the lens. Although this may reflect a misalignment between
the luminous galaxy and dark matter halo, in agreement with the re-
sults presented here, there are alternative sources of external shear
(nearby galaxies, large-scale structure along the line-of-sight) that
may leave a similar signal in the lens configuration. A more thor-
ough, systematic study of multiple-lensed systems is therefore re-

quired to put constraints on the spatial bias of the brightest halo
galaxies. In fact, strong gravitational lensing is probably the only
method that can be used to detect an offset between halo and galaxy
in individual systems, and to discriminate between the NRH and
NRG scenarios.

A non-zero 〈r cen〉 also impacts on the internal structure and dy-
namics of central galaxies. As the galaxy oscillates in the dark matter
halo (NRG scenario), or the halo relaxes around the central galaxy
(NRH scenario), it is constantly subjected to tidal forces that may
trigger bar instabilities in otherwise stable discs, may cause ex-
cessive heating of the disc and may create lopsidedness (Levine
& Sparke 1998; Noordermeer, Sparke & Levine 2001). Detailed
studies have revealed lopsidedness (either in the kinematics or the
photometry) in about half of all disc galaxies studied (e.g. Richter &
Sancisi 1994; Zaritsky & Rix 1997; Haynes et al. 1998; Matthews,
van Driel & Gallagher 1998; Rudnick & Rix 1998; Swaters 1999).
In fact, as shown by Bissantz, Englmaier & Gerhard (2003), the
morphology and kinematics of gas in the inner few kpc of the Milky
Way (in particular the 3 kpc arm) may indicate the presence of a sim-
ilar m = 1 asymmetry in our own galaxy (cf. Fux 1999). The high
frequency of lopsided and barred disc galaxies therefore seems to be
in support of a non-zero 〈r cen〉, whether it reflects a non-relaxed halo
or a non-relaxed galaxy. Taking our results at face value, it is clear
that any study of disc stability that ignores these strong distortions
and time variability of the potential may be missing an essential
ingredient.

Finally, as mentioned in the introduction, a non-zero bvel also
plays a role in halo occupation models. Using the method described
in detail in Yang et al. (2004), we computed the projected two-point
correlation function and pairwise peculiar velocity dispersions of
MGRSs M 0.0, M 0.5 and M1.0. The differences are found to be ex-
tremely small, well below the errors due to cosmic variance. There-
fore, for all practical purposes, it suffices to model the phase-space
parameters of galaxies in dark matter haloes with bvel = 0 (as is gen-
erally done), when computing galaxy–galaxy correlation functions
based on halo occupation distributions. Furthermore, as shown in
Yang et al. (2005d), the effect of a non-zero bvel is even small in the
galaxy—dark matter cross-correlation function.

8 C O N C L U S I O N S

According to the standard paradigm of structure formation, the
brightest galaxy in a dark matter halo should reside at rest at
the centre of the potential well. In order to test this CGP, we used
the halo-based galaxy group finder of YMBJ to construct group cat-
alogues from the 2dFGRS and SDSS. For each group, we compute
the statistic R, defined as the difference between the velocity of the
brightest group galaxy and the average velocity of the other group
members (satellites), normalized by the unbiased estimator of the
velocity dispersion of the satellite galaxies. If the null hypothesis
of the CGP is correct, R should follow a Student t distribution. If,
on the other hand, the brightest halo galaxies have a non-zero ve-
locity bias with respect to the satellite galaxies, the R distribution
should be significantly broader. The applicability of this ‘R test’
depends critically on how well one can group those galaxies that
belong to the same dark matter halo. Although our group finder is
well tested and calibrated, it is not perfect and unavoidably selects
interloper galaxies as group members. In addition, redshift surveys
suffer from various incompleteness effects. We have shown that
these effects result in a broadening of the R distribution, which,
when not accounted for, may give the false impression that the CGP
is ruled out.
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In order to take interlopers and incompleteness effects into ac-
count, and thus allow for a fair comparison with the data, we con-
struct detailed MGRSs that can be compared with the 2dFGRS on
a one-to-one basis. We apply our R statistic to the galaxy groups
selected from these MGRS, which we compare to those obtained
from the 2dFGRS using the KS test. This shows that the CGP is
only consistent with the data for haloes with σ̂s � 200 km s−1 (cor-
responding to haloes with M � 1013 h−1 M�). In more massive
haloes, however, we find a clear indication that the brightest halo
galaxies have a non-zero specific kinetic energy. In massive clusters,
this specific kinetic energy may be as large as ∼ 25 per cent of that
of the satellite galaxies (corresponding to bvel = 0.5). Although this
may seem large, for a typical, relaxed, CDM halo it only corresponds
to an expectation value for the offset between the galaxy and halo
of ∼ 3 per cent of the virial radius, comparable to the characteristic
radius of the galaxy.

We have focussed mainly on the R distributions obtained from
the 2dFGRS, simply because we have accurate MGRSs available
for this data set. However, we have shown that the R distributions
obtained from groups in the SDSS are in excellent agreement with
those obtained from the 2dFGRS, suggesting that the SDSS is also
inconsistent with the CGP.

What is the origin of this offset between the central galaxy and
the rest-frame defined by the satellites? Probably the most likely
explanation is that the majority of dark matter haloes are not yet
fully relaxed. In this case, the brightest halo galaxy may still coincide
with the minimum of the potential well, but that minimum does not
coincide with the centre of mass measured over the entire halo.
This picture is consistent with our finding that the specific kinetic
energy of the brightest halo galaxies is larger in more massive haloes,
which form later, and also has support from numerical simulations,
which reveal a velocity bias of the brightest halo galaxies that is
very similar to that found here (Diaferio et al. 1999; Yoshikawa
et al. 2003). In particular, the simulations of Berlind et al. (2003)
have shown that the brightest halo galaxy is, on average, much
closer to the most bound particle than it is to the halo centre of
mass.

An alternative explanation for the non-zero velocity of the bright-
est halo galaxies with respect to the satellite galaxies may be that
the halo is relaxed, but that the brightest halo galaxy oscillates in
the central potential well. If the dark matter halo is strongly con-
centrated, as expected for typical CDM haloes, one would naively
expect that any such oscillation is quickly damped by dynamical fric-
tion. However, this damping time-scale may be significantly longer
if there is less dark matter in the centre of the halo than antici-
pated; i.e. if the density distribution is cored rather than cusped. This
possibility is interesting in light of recent claims for cored haloes
based on the observed rotation curves and bar pattern speeds of disc
galaxies.

In either case, the brightest halo galaxy is expected to experience
a time-varying tidal field. This strongly questions the applicability
of (numerical) studies of galaxy dynamics and in particular of sta-
bility analyses that make the assumption that the galaxy is at rest at
the centre of a relaxed dark matter halo. In particular, it may explain
the high frequency and longevity of bars and lopsidedness in disc
galaxies. The fact that we find evidence for a non-zero velocity of
the brightest halo galaxy with respect to the satellite galaxies also
has important implications for the determination of halo masses
based on the kinematics of host–satellite systems and for the mod-
elling of strong gravitational lenses. For the purpose of computing
galaxy–galaxy correlation functions based on halo occupation mod-
els, however, one can safely ignore the fact that the CGP does not

hold and make the simple Ansatz that the brightest halo galaxy
resides at rest at the halo centre.
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