Other Conference Item

Tropospheric path delays derived from very high-resolution GNSS-based troposphere models and spaceborne SAR interferometry

Author(s):
Wilgan, Karina; Siddique, Muhammad Adnan; Strozzi, Tazio; Geiger, Alain; Frey, Othmar

Publication Date:
2018-10-30

Permanent Link:
https://doi.org/10.3929/ethz-b-000320575

Rights / License:
In Copyright - Non-Commercial Use Permitted
Tropospheric path delays derived from very high-resolution GNSS-based troposphere models and spaceborne SAR interferometry

Karina Wilgan¹, Muhammad Adnan Siddique², Tazio Strozzi³, Alain Geiger¹, Othmar Frey²,³

¹ETH Zürich, Chair of Mathematical and Physical Geodesy, Zürich, Switzerland
²ETH Zürich, Chair of Earth Observation and Remote Sensing, Zürich, Switzerland
³Gamma Remote Sensing, Gümligen, Switzerland
Motivation

days - weeks between SAR acquisitions

different atmospheric conditions, especially for water vapor

tropospheric phases may be misinterpreted as deformations

Source: F. Alshawaf, PhD thesis
Motivation

• The long-term goal is to use GNSS-derived tropospheric path delays to mitigate DInSAR images (as a first correction).

• Another possible application is to be able to derive tropospheric path delays with very high resolution from InSAR images.

• In the first step, we compare the tropospheric delays derived from both techniques – GNSS and InSAR from the PS (persistent scatterers).

• Specific case in high mountains (high relief causing large spatial and temporal variability of the atmospheric signals).
Study area (Alpine region Valais, Switzerland)

Data period: 2008 – 2013

32 SAR acquisitions (June – October)

5 – 12 GNSS permanent stations in the area of interest

source: swisstopo

InSAR: Cosmo-SkyMed

X-band, $\lambda=3.12$ cm

326552 identified persistent scatterers

test area: ~12 km x 25 km

height: 1200 m – 4100 m a.s.m.l.
Persistent scatterer interferometry (PSI)

- The SAR interferometry is essentially exploiting the phase differences among two or more SAR images, and estimates the deformation by extracting the deformation-related phases among other phase contributions.
- PSI is a state-of-the-art method for deformation assessments.
- PSI identifies the coherent targets for which the atmosphere-induced phase can be isolated from other phase components, mainly residual topography and deformation.
- The natural terrain in alpine regions generally limits PS behavior (few scatterers).
- PS calculated using IPTA toolbox from Gamma software.

\[dSTD_{InSAR} = APD \frac{\lambda}{4\pi} \]

Methodology – GNSS interpolation

- COMEDIE: Least-squares collocation software developed at ETH Zürich
- Stochastic and deterministic interpolation and screening of meteorological/tropospheric data
- Outline: using software COMEDIE to interpolate ZTDs from the GNSS stations to the locations of PS

\[l = f(u, x, t) + s(C_{ss}, x, t) + n \]

More about methodology:
Wilgan K et al. J Geod (2017) 91: 117
doi.org/10.1007/s00190-016-0942-5
Differential STDs from GNSS

\[STD = \frac{1}{\cos \theta} ZTD \quad 24.5^\circ < \theta < 25.4^\circ \]

\[dSTD(x, t) = \]
\[= \left(STD(x, t) - STD(x, t_m) \right) \]
\[- \left(STD(x_{ref}, t) - STD(x_{ref}, t_m) \right) \]

\(t_m \) - master acquisition
\(2010-09-20, 17:46:45 \)
\(x_{ref} \) - reference point

More about ZTD models in the Alps:
Wilgan K & Geiger A J Geod (2018)
doi.org/10.1007/s00190-018-1203-6
GNSS vs InSAR – good agreement

$$R = 0.82 \quad \text{ioa} = 0.63 \quad \text{bias} = -1.2 \text{ [mm]} \quad SD = 3.2 \text{ [mm]} \quad SD \text{ GNSS} = 5.5 \text{ [mm]}$$

20110923

InSAR

GNSS

InSAR-GNSS

Correlation

Histogram of dSTD

Histogram of dSTD differences
GNSS vs InSAR – good agreement

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>ioa</th>
<th>bias [mm]</th>
<th>SD [mm]</th>
<th>SD GNSS [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.84 [-]</td>
<td>0.64 [-]</td>
<td>-3.0</td>
<td>3.2</td>
<td>5.4</td>
</tr>
</tbody>
</table>

20111013

InSAR

GNSS

InSAR-GNSS

correlation

histogram of dSTD

histogram of dSTD differences
IGS Workshop 2018, Wuhan, China

Karina Wilgan et al.

GNSS vs InSAR – average agreement

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>ioa</th>
<th>bias [mm]</th>
<th>SD [mm]</th>
<th>SD GNSS [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20131018</td>
<td>0.79 [-]</td>
<td>0.57 [-]</td>
<td>0.0 [mm]</td>
<td>4.0 [mm]</td>
<td>3.2 [mm]</td>
</tr>
</tbody>
</table>

![Graphs showing correlation and histogram of dSTD and dSTD differences between GNSS and InSAR.](image-url)
GNSS vs InSAR – bad agreement

<table>
<thead>
<tr>
<th>R</th>
<th>ioa</th>
<th>bias</th>
<th>SD</th>
<th>SD GNSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.51 [-]</td>
<td>0.24 [-]</td>
<td>-16.7 [mm]</td>
<td>5.9 [mm]</td>
<td>2.6 [mm]</td>
</tr>
</tbody>
</table>
GNSS vs InSAR – bad agreement

<table>
<thead>
<tr>
<th>R</th>
<th>ioa</th>
<th>bias</th>
<th>SD</th>
<th>SD GNSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07 [-]</td>
<td>0.16 [-]</td>
<td>-12.6 [mm]</td>
<td>3.4 [mm]</td>
<td>1.4 [mm]</td>
</tr>
</tbody>
</table>
GNSS vs InSAR – bad agreement

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>ioa</th>
<th>bias</th>
<th>SD</th>
<th>SD GNSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.29</td>
<td>0.38</td>
<td>0.7</td>
<td>4.0</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Table 20100904

InSAR

GNSS

InSAR-GNSS

Correlation

Histogram of dSTD

Histogram of dSTD differences

Plot
Assessment overview

<table>
<thead>
<tr>
<th>Date</th>
<th>(R)</th>
<th>(\text{ioa})</th>
<th>(\text{bias})</th>
<th>(\text{SD})</th>
<th>(\text{SD \ GNSS})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-09-23</td>
<td>0.82</td>
<td>0.63</td>
<td>-1.2</td>
<td>3.2</td>
<td>5.5</td>
</tr>
<tr>
<td>2011-10-13</td>
<td>0.84</td>
<td>0.64</td>
<td>-3.0</td>
<td>3.2</td>
<td>5.4</td>
</tr>
<tr>
<td>2010-08-19</td>
<td>0.85</td>
<td>0.61</td>
<td>-3.1</td>
<td>3.8</td>
<td>7.1</td>
</tr>
<tr>
<td>2012-09-09</td>
<td>0.81</td>
<td>0.58</td>
<td>-2.7</td>
<td>2.8</td>
<td>4.7</td>
</tr>
<tr>
<td>2013-10-18</td>
<td>0.80</td>
<td>0.58</td>
<td>0.0</td>
<td>4.0</td>
<td>3.2</td>
</tr>
<tr>
<td>2013-07-26</td>
<td>0.80</td>
<td>0.66</td>
<td>-1.0</td>
<td>4.6</td>
<td>7.7</td>
</tr>
<tr>
<td>2013-07-10</td>
<td>0.73</td>
<td>0.63</td>
<td>-0.3</td>
<td>4.9</td>
<td>6.5</td>
</tr>
<tr>
<td>2011-07-21</td>
<td>0.57</td>
<td>0.39</td>
<td>-4.3</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>2013-08-11</td>
<td>0.69</td>
<td>0.52</td>
<td>-2.7</td>
<td>4.6</td>
<td>5.3</td>
</tr>
<tr>
<td>2011-09-27</td>
<td>0.86</td>
<td>0.47</td>
<td>-5.9</td>
<td>3.3</td>
<td>5.4</td>
</tr>
<tr>
<td>2013-08-27</td>
<td>0.88</td>
<td>0.40</td>
<td>-7.7</td>
<td>3.2</td>
<td>5.1</td>
</tr>
<tr>
<td>2010-08-03</td>
<td>0.43</td>
<td>0.42</td>
<td>-1.9</td>
<td>3.5</td>
<td>3.4</td>
</tr>
<tr>
<td>2011-06-03</td>
<td>0.81</td>
<td>0.32</td>
<td>-8.2</td>
<td>3.3</td>
<td>4.8</td>
</tr>
<tr>
<td>2012-08-08</td>
<td>0.42</td>
<td>0.43</td>
<td>-2.0</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>2013-08-29</td>
<td>0.44</td>
<td>0.44</td>
<td>3.2</td>
<td>4.2</td>
<td>4.4</td>
</tr>
<tr>
<td>2012-07-23</td>
<td>0.49</td>
<td>0.48</td>
<td>-3.9</td>
<td>5.8</td>
<td>4.3</td>
</tr>
<tr>
<td>2013-08-31</td>
<td>0.49</td>
<td>0.42</td>
<td>-3.8</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>2012-06-05</td>
<td>0.43</td>
<td>0.38</td>
<td>-4.0</td>
<td>3.2</td>
<td>1.7</td>
</tr>
<tr>
<td>2010-09-04</td>
<td>0.29</td>
<td>0.38</td>
<td>0.7</td>
<td>4.0</td>
<td>2.9</td>
</tr>
<tr>
<td>2012-06-21</td>
<td>0.81</td>
<td>0.32</td>
<td>-11.8</td>
<td>4.4</td>
<td>4.2</td>
</tr>
<tr>
<td>2011-09-11</td>
<td>0.88</td>
<td>0.35</td>
<td>-11.7</td>
<td>3.8</td>
<td>6.3</td>
</tr>
<tr>
<td>2010-10-06</td>
<td>0.90</td>
<td>0.25</td>
<td>-11.6</td>
<td>3.6</td>
<td>1.8</td>
</tr>
<tr>
<td>2010-10-22</td>
<td>0.67</td>
<td>0.24</td>
<td>-10.9</td>
<td>3.3</td>
<td>3.8</td>
</tr>
<tr>
<td>2013-09-12</td>
<td>0.44</td>
<td>0.26</td>
<td>-6.3</td>
<td>3.1</td>
<td>2.5</td>
</tr>
<tr>
<td>2012-07-07</td>
<td>0.58</td>
<td>0.24</td>
<td>-11.2</td>
<td>3.8</td>
<td>3.0</td>
</tr>
<tr>
<td>2011-07-05</td>
<td>0.07</td>
<td>0.16</td>
<td>-12.7</td>
<td>3.4</td>
<td>1.4</td>
</tr>
<tr>
<td>2008-09-30</td>
<td>0.51</td>
<td>0.24</td>
<td>-16.7</td>
<td>5.9</td>
<td>2.6</td>
</tr>
<tr>
<td>2008-10-16</td>
<td>0.50</td>
<td>0.26</td>
<td>-11.8</td>
<td>4.7</td>
<td>3.5</td>
</tr>
</tbody>
</table>

- \(R\) [-] – Pearson correlation coefficient
- \(\text{ioa}\) [-] – index of agreement (Willmott, 1981)
- \(\text{SD \ [mm]}\) – standard deviation
- \(\text{Bias \ [mm]}\) – mean error
ZTDs without topography

20110923 ZTD GNSS no topography [mm]

20120909 ZTD GNSS no topography [mm]

20080930 ZTD GNSS no topography [mm]

20120707 ZTD GNSS no topography [mm]

Good agreement

Bad agreement
Phase unwrapping error's detection

20110823

InSAR

GNSS

InSAR-GNSS

3 acquisitions with errors detected!
Conclusions

• We compared the GNSS and InSAR-derived dSTDs on the PS points for 32 InSAR acquisitions

• The highest agreement between GNSS and InSAR is for days of varying troposphere

• For such days, GNSS-based models could be used for mitigating the troposphere errors in InSAR

• For days with stable troposphere, the models from InSAR are more reliable

• GNSS can also help detecting the phase unwrapping errors
Thank you! 謝謝！
Questions? 問題？
kwilgan@ethz.ch
Methodology COMEDIE

Deterministic part (zenith total delay):

\[ZTD(x, y, z, t) = (ZTD_0 + a_{ZTD} (x - x_0) + b_{ZTD} (y - y_0) + c_{ZTD} (t - t_0)) \cdot \exp \left(-\frac{z}{H_{ZTD}} \right) \]

Stochastic parts:

\[n \sim N(0, C_{nn}) \quad \text{stochastic uncorrelated noise} \]

\[C_{nn} \quad \text{diagonal matrix consisting of noise of particular measurements} \]

\[s \sim N(0, C_{ss}) \quad \text{stochastic correlated signal} \]

\[C_{ss} \quad \text{empirically determined covariance function, e.g.} \]

\[C_{ss}(i, j) = \sigma_0^2 \cdot \frac{1}{1 + \left(\frac{x_i - x_j}{\Delta x_0} \right)^2 + \left(\frac{y_i - y_j}{\Delta y_0} \right)^2 + \left(\frac{z_i - z_j}{\Delta z_0} \right)^2 + \left(\frac{t_i - t_j}{\Delta t_0} \right)^2} \cdot e^{-\frac{z_i + z_j}{2z_0}} \]