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Abstract. River water-quality time series often exhibit frac-
tal scaling, which here refers to autocorrelation that decays
as a power law over some range of scales. Fractal scal-
ing presents challenges to the identification of deterministic
trends because (1) fractal scaling has the potential to lead to
false inference about the statistical significance of trends and
(2) the abundance of irregularly spaced data in water-quality
monitoring networks complicates efforts to quantify fractal
scaling. Traditional methods for estimating fractal scaling –
in the form of spectral slope (β) or other equivalent scaling
parameters (e.g., Hurst exponent) – are generally inapplica-
ble to irregularly sampled data. Here we consider two types
of estimation approaches for irregularly sampled data and
evaluate their performance using synthetic time series. These
time series were generated such that (1) they exhibit a wide
range of prescribed fractal scaling behaviors, ranging from
white noise (β = 0) to Brown noise (β = 2) and (2) their
sampling gap intervals mimic the sampling irregularity (as
quantified by both the skewness and mean of gap-interval
lengths) in real water-quality data. The results suggest that
none of the existing methods fully account for the effects of
sampling irregularity on β estimation. First, the results illus-
trate the danger of using interpolation for gap filling when ex-
amining autocorrelation, as the interpolation methods consis-
tently underestimate or overestimate β under a wide range of
prescribed β values and gap distributions. Second, the widely
used Lomb–Scargle spectral method also consistently under-

estimates β. A previously published modified form, using
only the lowest 5 % of the frequencies for spectral slope esti-
mation, has very poor precision, although the overall bias is
small. Third, a recent wavelet-based method, coupled with an
aliasing filter, generally has the smallest bias and root-mean-
squared error among all methods for a wide range of pre-
scribed β values and gap distributions. The aliasing method,
however, does not itself account for sampling irregularity,
and this introduces some bias in the result. Nonetheless, the
wavelet method is recommended for estimating β in irregular
time series until improved methods are developed. Finally,
all methods’ performances depend strongly on the sampling
irregularity, highlighting that the accuracy and precision of
each method are data specific. Accurately quantifying the
strength of fractal scaling in irregular water-quality time se-
ries remains an unresolved challenge for the hydrologic com-
munity and for other disciplines that must grapple with irreg-
ular sampling.

1 Introduction

1.1 Autocorrelations in time series

It is well known that time series from natural systems of-
ten exhibit autocorrelation; that is, observations at each time
step are correlated with observations one or more time steps
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in the past. This property is usually characterized by the au-
tocorrelation function (ACF), which is defined as follows for
a process Xt at lag k:

γ (k)= cov(Xt ,Xt+k) . (1)

In practice, autocorrelation has been frequently modeled with
classical techniques such as autoregressive (AR) or autore-
gressive moving-average (ARMA) models (Darken et al.,
2002; Yue et al., 2002; Box et al., 2008). These models as-
sume that the underlying process has short-term memory;
i.e., the ACF decays exponentially with lag k (Box et al.,
2008).

Although the short-term memory assumption holds some-
times, it cannot adequately describe many time series whose
ACFs decay as a power law (thus much slower than expo-
nentially) and may not reach zero even for large lags, which
implies that the ACF is non-summable. This property is com-
monly referred to as long-term memory or fractal scaling, as
opposed to short-term memory (Beran, 2010).

Fractal scaling has been increasingly recognized in stud-
ies of hydrological time series, particularly for the common
task of trend identification. Such hydrological series include
river flows (Montanari et al., 2000; Khaliq et al., 2008, 2009;
Ehsanzadeh and Adamowski, 2010), air and sea temperatures
(Fatichi et al., 2009; Lennartz and Bunde, 2009; Franzke,
2012a, b), conservative tracers (Kirchner et al., 2000, 2001;
Godsey et al., 2010), and non-conservative chemical con-
stituents (Kirchner and Neal, 2013; Aubert et al., 2014). Be-
cause for fractal scaling processes the variance of the sam-
ple mean converges to zero much slower than the rate of
n−1 (n: sample size), the fractal scaling property must be
taken into account to avoid false positives (Type I errors)
when inferring the statistical significance of trends (Cohn and
Lins, 2005; Fatichi et al., 2009; Ehsanzadeh and Adamowski,
2010; Franzke, 2012a). Unfortunately, as stressed by Cohn
and Lins (2005), it is “surprising that nearly every assessment
of trend significance in geophysical variables published dur-
ing the past few decades has failed [to do so]”, and a similar
tendency is evident in the decade following that statement as
well.

1.2 Overview of approaches for quantification of
fractal scaling

Several equivalent metrics can be used to quantify frac-
tal scaling. Here we provide a review of the definitions of
such processes and several typical modeling approaches, in-
cluding both time-domain and frequency-domain techniques,
with special attention to their reconciliation. For a more com-
prehensive review, readers are referred to Beran et al. (2013),
Boutahar et al. (2007), and Witt and Malamud (2013).

Strictly speaking, Xt is called a stationary long-memory
process if the condition

lim
k→∞

kαγ (k)= C1 > 0, (2)

where C1 is a constant and is satisfied by some α ∈ (0,1)
(Boutahar et al., 2007; Beran et al., 2013). Equivalently, Xt
is a long-memory process if, in the spectral domain, the con-
dition

lim
ω→0
|ω|βf (ω)= C2 > 0 (3)

is satisfied by some β ∈ (0,1), where C2 is a constant and
f (ω) is the spectral density function of Xt , which is re-
lated to ACF as follows (which is also known as the Wiener–
Khinchin theorem):

f (ω)=
1

2π

∞∑
k=−∞

γ (k)e−ikω, (4)

where ω is angular frequency (Boutahar et al., 2007).
One popular model for describing long-memory processes

is the so-called fractional autoregressive integrated moving-
average model, or ARFIMA (p, q, d), which is an extension
of ARMA models and is defined as follows:

(1−B)dϕ(B)Xt = ψ(B)εt , (5)

where εt is a series of independent, identically distributed
Gaussian random numbers (0, σ 2

ε ), B is the backshift opera-
tor (i.e., BXt =Xt−1), and functions ϕ (•) andψ (•) are poly-
nomials of order p and q, respectively. The fractional differ-
encing parameter d is related to the parameter α in Eq. (2) as
follows:

d =
1−α

2
∈ (−0.5,0.5) (6)

(Beran et al., 2013; Witt and Malamud, 2013).
In addition to a slowly decaying ACF, a long-memory pro-

cess manifests itself in two other equivalent fashions. One
is the so-called Hurst effect, which states that, on a log–log
scale, the range of variability of a process changes linearly
with the length of the time period under consideration. This
power-law slope is often referred to as the Hurst exponent or
Hurst coefficient H (Hurst, 1951), which is related to d as
follows:

H = d + 0.5 (7)

(Beran et al., 2013; Witt and Malamud, 2013).
The second equivalent description of long-memory pro-

cesses, this time from a frequency-domain perspective, is
fractal scaling, which describes a power-law decrease in
spectral power with increasing frequency, yielding power
spectra that are linear on log–log axes (Lomb, 1976; Scargle,
1982; Kirchner, 2005). Mathematically, this inverse propor-
tionality can be expressed as

f (ω)= C3|ω|
−β , (8)

where C3 is a constant and the scaling exponent β is termed
the spectral slope. In particular, for spectral slopes of zero,
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Figure 1. Synthetic time series with 200 time steps for three representative fractal scaling processes that correspond to white noise (β = 0),
pink noise (β = 1), and Brown noise (β = 2). (a–c) show the simulated time series without any gap. (d–l) show the same time series as
in (a–c) but with data gaps that were simulated using three different negative binomial (NB) distributions – that is, (d–f): NB(λ= 1, µ= 1);
(g–i): NB(λ= 1, µ= 14); (j–l): NB(λ= 0.01, µ= 1).

one, and two, the underlying processes are termed as “white”,
“pink” (or “flicker”), and “Brown” (or “red”) noises, respec-
tively (Witt and Malamud, 2013). Illustrative examples of
these three noises are shown in Fig. 1a–c.

In addition, it can be shown that the spectral density func-
tion for ARFIMA (p, d , q) is

f (ω)=
σ 2
ε

2π

∣∣ψ(e−iω)∣∣2∣∣ϕ(e−iω)∣∣2
∣∣∣1− e−iω∣∣∣−2d

(9)

for −π < ω < π (Boutahar et al., 2007; Beran et al., 2013).
For |ω| � 1, Eq. (9) can be approximated by

f (ω)= C4|ω|
−2d (10)

with

C4 =
σ 2
ε

2π
|ψ(1)|2

|ϕ(1)|2
. (11)

Equation (10) thus exhibits the asymptotic behavior required
for a long-memory process given by Eq. (3). In addition, a
comparison of Eqs. (10) and (8) reveals that

β = 2d. (12)

Overall, these derivations indicate that these different types
of scaling parameters (i.e., α, d , and H and β) can be
used equivalently to describe the strength of fractal scaling.
Specifically, their equivalency can be summarized as follows:

β = 2d = 1−α = 2H − 1. (13)

It should be noted, however, that the parameters d, α, and
H are only applicable over a fixed range of fractal scaling,
which is equivalent to (−1, 1) in terms of β.

1.3 Motivation and objective of this work

To account for fractal scaling in trend analysis, one must be
able to first quantify the strength of fractal scaling for a given

www.hydrol-earth-syst-sci.net/22/1175/2018/ Hydrol. Earth Syst. Sci., 22, 1175–1192, 2018
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time series. Numerous estimation methods have been devel-
oped for this purpose, including the Hurst rescaled range
analysis, Higuchi’s method, Geweke and Porter-Hudak’s
method, Whittle’s maximum likelihood estimator, detrended
fluctuation analysis, and others (Taqqu et al., 1995; Monta-
nari et al., 1997, 1999; Rea et al., 2009; Stroe-Kunold et al.,
2009). For brevity, these methods are not elaborated here;
readers are referred to Beran (2010) and Witt and Malamud
(2013) for details. While these estimation methods have been
extensively adopted, they are unfortunately only applicable
to regular (i.e., evenly spaced) data, e.g., daily streamflow
discharge, monthly temperature. In practice, many types of
hydrological data, including river water-quality data, are of-
ten sampled irregularly or have missing values, and hence
their strengths of fractal scaling cannot be readily estimated
with the above traditional estimation methods.

Thus, estimation of fractal scaling in irregularly sampled
data is an important challenge for hydrologists and practi-
tioners. Many data analysts may be tempted to interpolate the
time series to make it regular and hence analyzable (Graham,
2009). Although technically convenient, interpolation can be
problematic if it distorts the series’ autocorrelation structure
(Kirchner and Weil, 1998). In this regard, it is important to
evaluate various types of interpolation methods using care-
fully designed benchmark tests and to identify the scenarios
under which the interpolated data can yield reliable (or, al-
ternatively, biased) estimates of spectral slope.

Moreover, quantification of fractal scaling in real-world
water-quality data is subject to several common complexi-
ties. First, water-quality data are rarely normally distributed;
instead, they are typically characterized by log-normal or
other skewed distributions (Hirsch et al., 1991; Helsel and
Hirsch, 2002), with potential consequences for β estimation.
Moreover, water-quality data also tend to exhibit long-term
trends, seasonality, and flow dependence (Hirsch et al., 1991;
Helsel and Hirsch, 2002), which can also affect the accuracy
of β estimates. Thus, it may be more plausible to quantify
β in transformed time series after accounting for the sea-
sonal patterns and discharge-driven variations in the origi-
nal time series, which is the approach taken in this paper.
For the trend aspect, however, it remains a puzzle whether
the data set should be detrended before conducting β esti-
mation. Such detrending treatment can certainly affect the
estimated value of β and hence the validity of (or confidence
in) any inference made regarding the statistical significance
of temporal trends in the time series. This somewhat circu-
lar issue is beyond the scope of our current work – it has
been previously discussed in the context of short-term mem-
ory (Zetterqvist, 1991; Darken et al., 2002; Yue et al., 2002;
Noguchi et al., 2011; Clarke, 2013; Sang et al., 2014), but
it is not well understood in the context of fractal scaling (or
long-term memory) and hence presents an important area for
future research.

In the above context, the main objective of this work was
to use Monte Carlo simulation to systematically evaluate and

compare two broad types of approaches for estimating the
strength of fractal scaling (i.e., spectral slope β) in irregularly
sampled river water-quality time series. Specific aims of this
work include the following:

1. to examine the sampling irregularity of typical river
water-quality monitoring data and to simulate time se-
ries that contain such irregularity, and

2. to evaluate two broad types of approaches for estimating
β in simulated irregularly sampled time series.

The first type of approach includes several forms of interpo-
lation techniques for gap filling, thus making the data reg-
ular and analyzable by traditional estimation methods. The
second type of approach includes the well-known Lomb–
Scargle periodogram (Lomb, 1976; Scargle, 1982) and a
recently developed wavelet method combined with a spec-
tral aliasing filter (Kirchner and Neal, 2013). The latter two
methods can be directly applied to irregularly spaced data;
here we aim to compare them with the interpolation tech-
niques. Details of these various approaches are provided in
Sect. 3.1.

This work was designed to make several specific contri-
butions. First, it uses benchmark tests to quantify the perfor-
mance of a wide range of methods for estimating fractal scal-
ing in irregularly sampled water-quality data. Second, it pro-
poses an innovative and general approach for modeling sam-
pling irregularity in water-quality records. Third, while this
work was not intended to compare all published estimation
methods for fractal scaling, it does provide and demonstrate a
generalizable framework for data simulation (with gaps) and
β estimation, which can be readily applied toward the eval-
uation of other methods that are not covered here. Last but
not least, while this work was intended to help hydrologists
and practitioners understand the performance of various ap-
proaches for water-quality time series, the findings and ap-
proaches may be broadly applicable to irregularly sampled
data in other scientific disciplines.

The rest of the paper is organized as follows. We propose a
general approach for modeling sampling irregularity in typ-
ical river water-quality data and discuss our approach for
simulating irregularly sampled data (Sect. 2). We then intro-
duce various methods for estimating fractal scaling in irreg-
ular time series and compare their estimation performance
(Sect. 3). We close with a discussion of the results and impli-
cations (Sect. 4).

2 Quantification of sampling irregularity in river
water-quality data

2.1 Modeling of sampling irregularity

River water-quality data are often sampled irregularly. In
some cases, samples are taken more frequently during par-
ticular periods of interest, such as high flows or drought pe-
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riods; here we will address the implications of the irregular-
ity, but not the (intentional) bias, inherent in such a sampling
strategy. In other cases, the sampling is planned with a fixed
sampling interval (e.g., 1 day) but samples are missed (or
lost, or fail quality-control checks) at some time steps during
implementation. In still other cases, the sampling is intrinsi-
cally irregular because, for example, one cannot measure the
chemistry of rainfall on rainless days or the chemistry of a
stream that has dried up. Theoretically, any deviation from
fixed-interval sampling can affect the subsequent analysis of
the time series.

To quantify sampling irregularity, we propose a simple and
general approach that can be applied to any time series of
monitoring data. Specifically, for a given time series with N
points, the time intervals between adjacent samples are cal-
culated; these intervals themselves make up a time series of
N -1 points that we call1t . For this time series, the following
parameters are calculated to quantify its sampling irregular-
ity:

– L= the length of the period of record;

– N = the number of samples in the record;

– 1tnominal= the nominal sampling interval under regular
sampling (e.g., 1tnominal= 1 day for daily samples);

– 1t∗ =1t /1tnominal, the sample intervals non-
dimensionalized by the nominal sampling interval;

– 1taverage = L/ (N – 1) the average of all the entries in
1t .

The quantification is illustrated with two simple examples.
The first example contains data sampled every hour from
01:00 to 11:00 UTC on 1 day. In this case, L= 10 h, N = 11
samples, 1t = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1} h, and 1tnominal =

1taverage= 1 h. The second example contains data sampled at
01:00, 03:00, 04:00, 08:00, and 11:00. In this case, L= 10 h,
N = 5 samples, 1t = {2, 1, 4, 3} h, 1tnominal= 1 h, and
1taverage= 2.5 h. It is readily evident that the first case corre-
sponds to fixed-interval (regular) sampling that has the prop-
erty of 1taverage /1tnominal= 1 (dimensionless), whereas the
second case corresponds to irregular sampling for which
1taverage /1tnominal > 1.

The dimensionless set 1t∗ contains essential information
for determining sampling irregularity. This set is modeled as
independent, identically distributed values drawn from a neg-
ative binomial (NB) distribution. This distribution has two
dimensionless parameters, the shape parameter (λ) and the
mean parameter (µ), which collectively represent the irregu-
larity of the samples. The NB distribution is a flexible distri-
bution that provides a discrete analogue of a gamma distribu-
tion. The geometric distribution, itself the discrete analogue
of the exponential distribution, is a special case of the NB
distribution when λ= 1.

The parameters µ and λ represent different aspects
of sampling irregularity, as illustrated by the examples
shown in Fig. 2. The mean parameter µ represents
the fractional increase in the average interval between
samples due to gaps: µ=mean(1t∗)− 1 = (1taverage−

1tnominal)/1tnominal. Thus, the special case of µ= 0 cor-
responds to regular sampling (i.e., 1taverage =1tnominal),
whereas any larger value of µ corresponds to irregular sam-
pling (i.e., 1taverage >1tnominal) (Fig. 2c). The shape param-
eter λ characterizes the similarity of gaps to each other; that
is, a small λ indicates that the samples contain gaps of widely
varying lengths, whereas a large λ indicates that the samples
contain many gaps of similar lengths (Fig. 2a, b).

To visually illustrate these gap distributions, representative
samples of irregular time series are presented in Fig. 1 for the
three special processes described above (Sect. 1.2), i.e., white
noise, pink noise, and Brown noise. Specifically, three differ-
ent gap distributions, namely, NB(λ= 1, µ= 1), NB(λ= 1,
µ= 14), and NB(λ= 0.01, µ= 1), were simulated and each
was applied to convert the three original (regular) time se-
ries (Fig. 1a–c) to irregular time series (Fig. 1d–1l). These
simulations clearly illustrate the effects of the two parame-
ters λ and µ. In particular, compared with NB(λ= 1, µ= 1),
NB(λ= 1, µ= 14) shows a similar level of sampling irregu-
larity (same λ) but a much longer average gap interval (larger
µ). Again compared with NB(λ= 1, µ= 1), NB(λ= 0.01,
µ= 1) shows the same average interval (same µ) but a much
more irregular (skewed) gap distribution that contains a few
very large gaps (smaller λ).

2.2 Examination of sampling irregularity in real river
water-quality data

The above modeling approach was applied to real water-
quality data from two large river monitoring networks in
the United States to examine sampling irregularity. One
such network is the Chesapeake Bay River Input Monitor-
ing Program, which typically samples streams roughly once
or twice monthly, accompanied with additional sampling
during storm flows (Langland et al., 2012; Zhang et al.,
2015). These data were obtained from the US Geological
Survey National Water Information System (http://doi.org/
10.5066/F7P55KJN). The other network is the Lake Erie and
Ohio Tributary Monitoring Program, which typically sam-
ples streams at a daily resolution (National Center for Wa-
ter Quality Research, 2015). For each site, we determined
the NB parameters to quantify sampling irregularity. The
mean parameter µ can be estimated as described above, and
the shape parameter λ can be calculated directly from the
mean and variance of 1t∗ as follows: λ= µ2 / [var(1t∗) –
µ]= (mean(1t∗) – 1)2 / [var(1t∗) – mean(1t∗)+ 1]. Alter-
natively, a maximum likelihood approach can be used, which
employs the fitdist function in the fitdistrplus R package
(Delignette-Muller and Dutang, 2015). In general, the two
approaches produce similar results, which are summarized in
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Figure 2. Examples of gap-interval simulation using negative binomial distributions, NB (shape λ, mean µ). Simulation parame-
ters: L= 9125 days, 1tnominal= 1 day. The three panels show simulation with fixed (a) µ= 1, (b) µ= 14, and (c) λ= 1. Note that
1taverage/1tnominal=µ+ 1.
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Figure 3. Examples of quantified sampling irregularity with negative binomial (NB) distributions: total nitrogen in Choptank River (a)
and total phosphorus in Cuyahoga River (b). Theoretical CDF (cumulative distribution function) and quantiles are based on the fitted NB
distributions. See Table 1 for estimated mean and shape parameters.
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Table 1, with two examples of fitted NB distributions shown
in Fig. 3.

For the Chesapeake Bay River Input Monitoring Program
(nine sites), total nitrogen (TN) and total phosphorus (TP)
are taken as representatives of water-quality constituents. Ac-
cording to the maximum likelihood approach, the shape pa-
rameter λ varies between 0.7 and 1.2 for TN and between
0.8 and 1.1 for TP (Table 1). These λ values are around
1.0, reflecting the fact that these sites have relatively even
gap distributions (i.e., relatively balanced counts of large
and small gaps). The mean parameter µ varies between 9.5
and 19.6 for TN and between 13.4 and 24.4 for TP in the
Chesapeake monitoring network, corresponding to 1taverage
of 10.5–20.6 days for TN and 14.4–25.4 days for TP, respec-
tively. This is consistent with the fact that these sites have
typically been sampled roughly once or twice monthly, along
with additional sampling during storm flows (Langland et al.,
2012; Zhang et al., 2015).

For the Lake Erie and Ohio Tributary Monitoring Program
(six sites), records of nitrate plus nitrite (NOx) and TP were
examined. According to the maximum likelihood approach,
the shape parameter λ is approximately 0.01 for both con-
stituents (Table 1). These very low λ values occur because
these time series contain a few very large gaps, ranging from
35 days to 1109 days (∼ 3 years). The mean parameter µ
varies between 0.06 and 0.22, corresponding to 1taverage of
1.06 and 1.22 days, respectively. This is consistent with the
fact that these sites have been sampled at a daily resolution
with occasional missing values on some days (Zhang and
Ball, 2017).

2.3 Simulation of time series with irregular sampling

To evaluate the various β estimation methods, our first step
was to use the Monte Carlo simulation to produce time se-
ries that mimic the sampling irregularity observed in real
water-quality monitoring data. We began by simulating reg-
ular (gap-free) time series using the fractional noise simula-
tion method of Witt and Malamud (2013), which is based
on inverse Fourier filtering of white noises. Our analysis
showed this method performed reasonably well compared
to other simulation methods for β values between 0 and 1
(see the Supplement). In addition, this method can also sim-
ulate β values beyond this range. The noises simulated by the
Witt and Malamud method, however, are band limited to the
Nyquist frequency (half of the sampling frequency) of the
underlying white noise time series, whereas true fractional
noises would contain spectral power at all frequencies, ex-
tending well above the Nyquist frequency for any sampling.
Thus, these band-limited noises will be less susceptible to
spectral aliasing than true fractional noises would be (see
Kirchner, 2005, for detailed discussions of the aliasing is-
sue).

A total of 100 replicates of regular (gap-free) time se-
ries were produced for nine prescribed spectral slopes, which

vary from β = 0 (white noise) to β = 2 (Brownian motion or
“random walk”) with an increment of 0.25 (i.e., 0, 0.25, 0.5,
0.75, 1.0, 1.25, 1.5, 1.75, and 2). These regular time series
each have a length (N ) of 9125, which can be interpreted as
25 years of regular daily samples (that is, 1tnominal= 1 day).

The simulated regular time series were converted to irreg-
ular time series using gap intervals that were simulated with
NB distributions. To make these gap intervals mimic those in
typical river water-quality time series, representative NB pa-
rameters were chosen based on results from Sect. 2.2. Specif-
ically, µ was set at 1 and 14, corresponding to 1taverage of 2
and 15 days, respectively. For λ, we chose four values that
span 3 orders of magnitude, i.e., 0.01, 0.1, 1, and 10. Note
that when λ= 1 the generated time series corresponds to a
Bernoulli process. With the chosen values of µ and λ, a total
of eight scenarios were generated, which were implemented
using the rnbinom function in the stats R package (R Devel-
opment Core Team, 2014):

1. µ= 1 (i.e., 1taverage /1tnominal= 2), λ= 0.01,

2. µ= 1, λ= 0.1,

3. µ= 1, λ= 1,

4. µ= 1, λ= 10,

5. µ= 14 (i.e., 1taverage /1tnominal= 15), λ= 0.01,

6. µ= 14, λ= 0.1,

7. µ= 14, λ= 1,

8. µ= 14, λ= 10.

Examples of these simulations are shown with box plots in
Fig. 2.

3 Evaluation of proposed estimation methods for
irregular time series

3.1 Summary of estimation methods

For the simulated irregular time series, β was estimated us-
ing the aforementioned two types of approaches. The first
type includes 11 different interpolation methods (designated
as B1–B11 below) to fill the data gaps, thus making the data
regular and analyzable by traditional methods.

B1 Global mean: all missing values replaced with the mean
of all observations.

B2 Global median: all missing values replaced with the me-
dian of all observations.

B3 Random replacement: all missing values replaced with
observations randomly drawn (with replacement) from
the time series.
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B4 Next observation carried backward (NOCB): each miss-
ing value replaced with the next available observation.

B5 Last observation carried forward (LOCF): each missing
value replaced with the preceding available observation.

B6 Average of the two nearest samples: each missing value
replaced with the mean of its next and preceding avail-
able observations.

B7 LOWESS (locally weighted scatterplot smoothing) with
a smoothing span of 1: missing values replaced using
fitted values from a LOWESS model determined using
all available observations (Cleveland, 1981).

B8 LOWESS with a smoothing span of 0.75: same as B7
except that the smoothing span is 75 % of the available
data (similar distinction follows for B9–B11).

B9 LOWESS with a smoothing span of 50 %.

B10 LOWESS with a smoothing span of 30 %.

B11 LOWESS with a smoothing span of 10 %.

B4 and B5 were implemented using the na.locf function in
the zoo R package (Zeileis and Grothendieck, 2005). B7–
B11 were implemented using the loess function in the stats
R package (R Development Core Team, 2014). An illustra-
tion of these interpolation methods is provided in Fig. 4. The
interpolated data, along with the original regular data (desig-
nated as A1) were analyzed using Whittle’s maximum likeli-
hood method for β estimation, which was implemented using
the FDWhittle function in the fractal R package (Constantine
and Percival, 2014).

The second type of approaches estimates β directly from
the irregularly sampled data, using several variants of the
Lomb–Scargle periodogram (designated as C1a–C1c below),
and a recently developed wavelet-based method (designated
as C2 below). Specifically, these approaches are as follows.

C1a Lomb–Scargle periodogram: the spectral density of the
time series (with gaps) is estimated and the spectral
slope is fit using all frequencies (Lomb, 1976; Scargle,
1982). This is a classic method for examining period-
icity in irregularly sampled data, which is analogous to
the more familiar fast Fourier transform method often
used for regularly sampled data.

C1b Lomb–Scargle periodogram with 5 % data: same as C1a
except that the fitting of the spectral slope considers
only the lowest 5 % of the frequencies (Montanari et al.,
1999).

C1c Lomb–Scargle periodogram with “binned” data: same
as C1a except that the fitting of the spectral slope is per-
formed on binned data in three steps as follows.

(a) The entire range of frequency is divided into
100 equal-interval bins on logarithmic scale.

(b) The respective medians of frequency and power
spectral density are calculated for each of the
100 bins.

(c) The 100 pairs of median frequency and median
spectral density are used to estimate the spectral
slope on a log–log scale.

C2 Kirchner and Neal (2013)’s wavelet method: uses a
modified version of Foster’s weighted wavelet spectrum
(Foster, 1996) to suppress spectral leakage from low fre-
quencies and applies an aliasing filter (Kirchner, 2005)
to remove spectral aliasing artifacts at high frequencies.

C1a was implemented using the spec.ls function in the cts R
package (Wang, 2013). C2 was run in C, using codes modi-
fied from those in Kirchner and Neal (2013).

3.2 Evaluation of methods’ performance

Each estimation method listed above was applied to the sim-
ulated data (Sect. 2.3) to estimate β, which were then com-
pared with the prescribed (“true”) β to quantify the perfor-
mance of each method. Plots of method evaluation for all
simulations are provided as Figs. S3–S12 (Supplement S2).
Close inspections of these plots reveal some general patterns
of the methods’ performance. For brevity, these patterns are
presented with a subset of the plots, which correspond to the
cases where true β = 1 and shape parameter λ= 0.01, 0.1,
1, and 10 (Fig. 5). In general, β values estimated using the
regular data (A1) are very close to 1.0, which indicates that
the adopted fractional noise generation method and Whittle’s
maximum likelihood estimator have small combined simula-
tion and estimation bias. This is perhaps unsurprising, since
the estimator is based on the Fourier transform and the noise
generator is based on an inverse Fourier transform; thus, one
method is essentially just the inverse of the other. One should
also note that when fractional noises are not arbitrarily band
limited at the Nyquist frequency (as they inherently are with
the noise generator that is used here), spectral aliasing should
lead to spectral slopes that are flatter than expected (Kirch-
ner, 2005) and thus to underestimates of β.

For the simulated irregular data, the estimation methods
differ widely in their performance. Specifically, three inter-
polation methods (i.e., B4–B6) consistently overestimate β,
indicating that they introduce additional correlations into the
time series, reducing its short-timescale variability. In con-
trast, the other eight interpolation methods (i.e., B1–B3 and
B7–B11) generally underestimate β, indicating that the inter-
polated points are less correlated than the original time series,
thus introducing additional variability on short timescales.
As expected, results from the LOWESS methods (B7–B11)
depend strongly on the size of the smoothing window; that is,
β is more severely underestimated as the smoothing window
becomes wider. In fact, when the smoothing window is 1.0
(i.e., method B7), LOWESS performs the interpolation using
all data available and thus behaves similarly to interpolations
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Figure 4. Illustration of the interpolation methods for gap filling. The gap-free data (A1) was simulated with a series length of 500, with the
first 30 data shown. (×: omitted data for gap filling;+: interpolated data; NOCB: next observation carried backward; LOCF: last observation
carried forward; LOWESS: locally weighted scatterplot smoothing.)

based on global means (B1) or global medians (B2), except
that LOWESS fits a polynomial curve instead of constant
values. However, whenever a sampling gap is much shorter
than the smoothing window, the infilled LOWESS value will
be close to the local mean or median, and the abrupt jumps
produced by these infilled values will artificially increase the
variance in the time series at high frequencies, leading to an
artificially reduced spectral slope β and, correspondingly, an
underestimate of β. This mechanism explains why LOWESS
interpolation distorts β more when there are many small gaps
(large λ) and therefore more jumps to, and away from, the in-
filled values than when there are only a few large gaps (small
λ).

Among the direct methods (i.e., C1a, C1b, C1c, and
C2), the Lomb–Scargle method, with original data (C1a) or
binned data (C1c) tends to underestimate β, though the un-
derestimation by C1c is generally less severe. The modified
Lomb–Scargle method (C1b), using only the lowest 5 % of
frequencies, yields estimates that are centered around 1.0 for
large λ. However, C1b has the highest variability (i.e., least
precision) in β estimates among all methods. Compared with
all the above methods, the wavelet method (C2) has much
better performance in terms of both accuracy and precision

when λ is 1 or 10, a slightly better or similar performance
when λ is 0.1, but worse performance when λ is 0.01.

The shape parameter λ greatly affects the performance of
the estimation methods. All the interpolation methods that
underestimate β (i.e., B1–B3 and B7–B11) perform worse
as λ increases from 0.01 to 10. This effect can be interpreted
as follows: when the time series contains a large number of
relatively small gaps (e.g., λ= 1 or 10), there are many jumps
(which, as noted above, contain mostly high-frequency vari-
ance) between the original data and the infilled values, re-
sulting in more severe underestimation. In contrast, when the
data contain only a small number of very large gaps (e.g.,
λ= 0.01 or 0.1), there are fewer of these jumps, resulting in
minimal underestimation. Similar effects of λ are also ob-
served with the interpolation methods that show overestima-
tion (i.e., B4–B6) – that is, overestimation is more severe
when λ is larger. Similarly, the Lomb–Scargle method (C1a
and C1c) performs worse (more serious underestimation) as
λ increases. Finally, method C2 seems to perform the best
when λ is large (1 or 10), but not well when λ is very small
(0.01), as noted above. This result highlights the sensitivity
of the wavelet method to the presence of a few large gaps in
the time series. For such cases, a potentially more feasible
approach is to break the whole time series into several seg-

Hydrol. Earth Syst. Sci., 22, 1175–1192, 2018 www.hydrol-earth-syst-sci.net/22/1175/2018/



Q. Zhang et al.: Evaluation of statistical methods for quantifying fractal scaling 1185

●● ●● ● ● ● ●

●
●

●

●

A1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C1a C1b C1c C2
0.

0
0.

5
1.

0
1.

5
2.

0

E
st

im
at

ed
 β

(a) β = 1; NB(λ = 0.01, µ = 1)

●●
●●

●

● ● ● ● ●

●

A1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C1a C1b C1c C2

0.
0

0.
5

1.
0

1.
5

2.
0

E
st

im
at

ed
 β

(b) β = 1; NB(λ = 0.1, µ = 1)

● ●
●

●
● ●

● ● ●●

●●

●

●●
● ●●●●

A1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C1a C1b C1c C2

0.
0

0.
5

1.
0

1.
5

2.
0

E
st

im
at

ed
 β

(c) β = 1; NB(λ = 1, µ = 1)

● ●
●

●

●

●● ●

A1 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 C1a C1b C1c C2

0.
0

0.
5

1.
0

1.
5

2.
0

E
st

im
at

ed
 β

(d) β = 1; NB(λ = 10, µ = 1)

Figure 5. Comparison of bias in estimated spectral slope in irregular data that are simulated with prescribed β = 1 (100 replicates), a series
length of 9125, and gap intervals simulated with (a) NB (λ= 0.01, µ= 1), (b) NB (λ= 0.1, µ= 1), (c) NB (λ= 1, µ= 1), and (d) NB
(λ= 10, µ= 1). The blue dashed lines indicate the true β value.

ments (each without long gaps) and then apply the wavelet
method (C2) to analyze each segment separately. If this can
yield more accurate estimates, then further simulation exper-
iments should be designed to systematically determine how
long the gap needs to be to invoke such an approach.

Next, the method evaluation is extended to all the simu-
lated spectral slopes, that is, β = 0, 0.25, 0.5, 0.75, 1.0, 1.25,
1.5, 1.75, and 2. For ease of discussion, three quantitative
criteria were proposed for evaluating performance, namely,
bias (B), standard deviation (SD), and root-mean-squared er-
ror (RMSE), as defined below:

Bi = βi −βtrue, (14)

SDi =

√√√√ 1
99

100∑
j=1
(βi,j −βi)

2, (15)

RMSEi =
√
B2
i + SD

2
i , (16)

where βi is the mean of 100 β values estimated by method i,
and βtrue is the prescribed β value for simulation of the initial
regular time series. In general, B and SD can be considered as
the models’ systematic error and random error, respectively,
and RMSE serves as an integrated measure of both errors.
For all evaluations, plots of bias and RMSE are provided in
the main text. (Plots of SD are provided as Figs. S7 and S12
in the Supplement for simulations with µ= 1 and µ= 14,
respectively.)

For simulations with µ= 1, results of estimation bias and
RMSE are summarized in Figs. 6 and 7, respectively. (More
details are provided in Figs. S3–S6 in the Supplement.) For
brevity, we focus on three direct methods (C1a, C1b, and
C2) and three representative interpolation methods. (Specif-
ically, B1 represents B1–B3 and B7, B6 represents B4–B6,
and B8 represents B8–B11.) Overall, these six methods show
mixed performances. In terms of bias (Fig. 6), B1 (global
mean) and B8 (LOWESS with a smoothing span of 0.75)
tend to have negative bias, particularly for time series with

www.hydrol-earth-syst-sci.net/22/1175/2018/ Hydrol. Earth Syst. Sci., 22, 1175–1192, 2018



1186 Q. Zhang et al.: Evaluation of statistical methods for quantifying fractal scaling

0.0 0.5 1.0 1.5 2.0

−
2.

0
−

1.
0

0.
0

1.
0

(a) B1: Mean replacement

True β

B
ia

s

● ● ● ● ●
●

●

●

●

●

λ=0.01, µ=1
λ=0.1, µ=1
λ=1, µ=1
λ=10, µ=1

0.0 0.5 1.0 1.5 2.0

−
2.

0
−

1.
0

0.
0

1.
0

(b) B6: Mean of two neighbors

True β

B
ia

s

●
● ● ● ● ● ● ●

●

0.0 0.5 1.0 1.5 2.0

−
2.

0
−

1.
0

0.
0

1.
0

(c) B8: LOWESS (span = 0.75)

True β

B
ia

s

● ● ● ● ●
●

●

●

●

0.0 0.5 1.0 1.5 2.0

−
2.

0
−

1.
0

0.
0

1.
0

(d) C1a: Lomb−Scargle: all freq.

True β

B
ia

s

● ● ● ● ●
●

●

●

●

●

λ=0.01, µ=1
λ=0.1, µ=1
λ=1, µ=1
λ=10, µ=1

0.0 0.5 1.0 1.5 2.0

−
2.

0
−

1.
0

0.
0

1.
0

(e) C1b: Lomb−Scargle: 5 % freq.

True β

B
ia

s

● ● ● ● ●
●

●

●

●

0.0 0.5 1.0 1.5 2.0

−
2.

0
−

1.
0

0.
0

1.
0

(f) C2: Wavelet

True β

B
ia

s

●
● ● ● ● ● ● ● ●

Figure 6. Comparison of bias in estimated spectral slope in irregular data that are simulated with varying prescribed β values (100 replicates),
a series length of 9125, and a mean gap interval of 2 (i.e., µ= 1).
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Figure 7. Comparison of root-mean-squared error (RMSE) in estimated spectral slope in irregular data that are simulated with varying
prescribed β values (100 replicates), a series length of 9125, and a mean gap interval of 2 (i.e., µ= 1).

(1) moderate-to-large βtrue values and (2) large λ values (i.e.,
less skewed gap intervals). By contrast, B1 and B8 generally
have minimal bias when (1) βtrue is close to zero (i.e., when
the simulated time series is close to white noise) and (2) λ is
small (e.g., 0.01), since interpolating a few large gaps cannot

significantly affect the overall correlation structure. In addi-
tion, LOWESS interpolation with a larger smoothing win-
dow tends to yield more negatively biased estimates (data not
shown). The other interpolation method, B6 (mean of the two
nearest neighbors) tends to overestimate β, particularly for
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Figure 8. Comparison of bias in estimated spectral slope in irregular data that are simulated with varying prescribed β values (100 replicates),
a series length of 9125, and a mean gap interval of 15 (i.e., µ= 14).
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Figure 9. Comparison of root-mean-squared error (RMSE) in estimated spectral slope in irregular data that are simulated with varying
prescribed β values (100 replicates), a series length of 9125, and a mean gap interval of 15 (i.e., µ= 14).

time series with (1) small βtrue values and (2) large λ values.
At large βtrue values (e.g., 2.0), the autocorrelation is already
very strong such that taking the mean of two neighbors for
gap filling does not introduce much additional correlation, as
opposed to the case of small βtrue values. The Lomb–Scargle
methods (C1a and C1b) generally have negative bias, partic-

ularly for time series with (1) moderate-to-large βtrue values
(for both methods) and (2) large λ values (for C1a), which is
similar to B1 and B8. However, C1b overall shows less se-
vere bias than C1a. Finally, the wavelet method (C2) shows
generally the smallest bias among all methods. However, its
performance advantage is not as great when the time series
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has small λ values (i.e., very skewed gap intervals), as noted
above, which may be due to the fact that the aliasing filter
was designed for regular time series. In terms of SD (Fig. S7
in the Supplement), method C1b performs the worst among
all methods (as noted above), method B6 and B8 perform
poorly for large βtrue values, and method C2 performs poorly
for βtrue= 0. In terms of RMSE (Fig. 7), methods B1, B8,
C1a, and C1b perform well for small βtrue values and small
λ values, whereas method B6 performs well for large βtrue
values and small λ values. In comparison, method C2 gen-
erally has the smallest RMSEs among all methods, and its
RMSEs are similarly small for the wide range of βtrue and λ
values. In general, the wavelet method can be considered the
best among all the tested methods.

For simulations with µ= 14, results of estimation bias
and RMSE are summarized in Figs. 8 and 9, respectively.
(More details are provided in Figs. S8–S11 in the Supple-
ment.) Overall, these methods show mixed performances that
are generally similar to the cases when µ= 1, as discussed
above. These results highlight the generality of these meth-
ods’ performances, which applies at least to the range of
µ= [1, 14]. In addition, all methods show generally larger
RMSE for µ= 14 than µ= 1, indicating their dependence on
the mean gap interval (Fig. 9). Perhaps the most notable dif-
ference is observed with method C2, which in this case shows
positive bias for small λ values (0.01 and 0.1) and negative
bias for large λ values (1 and 10) (Fig. 8f). It nonetheless
generally shows the smallest RMSEs among all the tested
methods as in the cases of µ= 1 above.

3.3 Quantification of spectral slopes in real
water-quality data

In this section, the proposed estimation approaches were ap-
plied to quantify β in real water-quality data from the two
monitoring programs presented in Sect. 2.2 (Table 1). As
noted in Sect. 1.3, such real data are typically much more
complex than our simulated time series, because of (1) strong
deviations from normal distributions and (2) effects of flow
dependence, seasonality, and temporal trends (Hirsch et al.,
1991; Helsel and Hirsch, 2002). In this regard, future re-
search may simulate time series with these important char-
acteristics and evaluate the performance of various estima-
tion approaches, perhaps following the modeling framework
described here. Alternatively, one may quantify β in trans-
formed time series after accounting for the above aspects.
In this work, we have taken the latter approach for a pre-
liminary investigation. Specifically, we have used the pub-
lished weighted regressions on time, discharge, and sea-
son (WRTDS) method (Hirsch et al., 2010) to transform the
original time series. This widely accepted method estimates
daily concentrations based on discretely collected concentra-
tion samples using time, season, and discharge as explana-

tory variables, i.e.,

ln(C)= β0+β1t +β2 ln(Q)+β3sin(2πt)
+β4 cos(2πt)+ ε, (17)

where C is concentration, Q is daily discharge, t is time in
decimal years, βi are fitted coefficients, and ε is the error
term. The second and third terms on the right represent time
and discharge effects, respectively, whereas the fourth and
fifth terms collectively represent cyclical seasonal effects.
For a full description of this method, see Hirsch et al. (2010).
In this work, WRTDS was applied to obtain time series of es-
timated daily concentrations for each constituent at each site.
The difference between observed concentration (Cobs) and
estimated concentration (Cest) was calculated in logarithmic
space to obtain the concentration residuals,

residuals= ln(Cobs)− ln(Cest) . (18)

For our data sets, histograms of concentration residuals (ex-
pressed in natural log concentration units) are shown in
Figs. S13–S16 in the Supplement. Compared with the orig-
inal concentration data, these model residuals are much
more nearly normal and homoscedastic. Moreover, the model
residuals are less susceptible to the issues of temporal, sea-
sonal, and discharge-driven variations than the original con-
centrations. Therefore, the model residuals are more appro-
priate than the original concentrations for β estimation using
the simulation framework adopted in this work.

The estimated β values for the concentration residuals are
summarized in Fig. 10. Clearly, the estimated β varies con-
siderably with the estimation method. In addition, the es-
timated β varies with site and constituent (i.e., TP, TN, or
NOx). Our discussion below focuses on the wavelet method
(C2), because it is established above that this method per-
forms better than the other estimation methods under a wide
range of gap conditions. We emphasize that it is beyond
our current scope to precisely quantify β in these water-
quality data sets, but our simulation results presented above
(Sect. 3.2) can be used as references to qualitatively evaluate
the reliability of C2 and/or other methods for these data sets.

For TN and TP concentration data at the Chesapeake River
input monitoring sites (Table 1), µ varies between 9.5 and
24.4, whereas λ is ∼ 1.0. Thus, the simulated gap scenario
of NB(µ= 14, λ= 1) can be used as a reasonable reference
to assess methods’ reliability (Fig. 8). Based on method C2,
the estimated β ranges between β = 0.36 and β = 0.61 for
TN and between β = 0.30 and β = 0.58 for TP at these sites
(Fig. 10). For such ranges, the simulation results indicate
that method C2 tends to moderately underestimate β under
this gap scenario (Fig. 8), and hence spectral slopes for TN
and TP at these Chesapeake sites are probably slightly higher
than those presented here (Fig. 10).

For NOx and TP concentration data at the Lake Erie and
Ohio sites (Table 1),µ varies between 0.06 and 0.22, whereas
λ is ∼ 0.01. Thus, the simulated gap scenario of NB(µ= 1,
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Figure 10. Quantification of spectral slope in real water-quality data from the two regional monitoring networks, as estimated using the
set of examined methods. All estimations were performed on concentration residuals (in natural log concentration units) after accounting
for effects of time, discharge, and season. The two dashed lines in each panel indicate white noise (β = 0) and pink (flicker) noise (β = 1),
respectively. See Table 1 for site and data details.

λ= 0.01) can be used as a reasonable reference to assess the
methods’ reliability (Fig. 6). For such small λ (i.e., a few
gaps that are very dissimilar from others), C2 is not reliable
for β estimation, as reflected by the generally positive bias in
the simulation results. By contrast, methods B1 (interpola-
tion with global mean) and B8 (LOWESS with span 0.75)
both perform quite well under this gap scenario (Fig. 6).
These two methods provide almost identical β estimates for
each site–constituent combination, ranging from β = 0.8 to
β = 1.5 for NOx and TP (Fig. 10).

Overall, the above analysis of real water-quality data has
illustrated the wide variability in β estimates, with different
choices of estimation methods yielding very different results.
To our knowledge, these water-quality data have not previ-
ously been analyzed in this context. As illustrated above, our
simulation experiments (Sect. 3.2) can be used as references
to coarsely evaluate the reliability of each method under spe-
cific gap scenarios, thereby considerably narrowing the likely
range of the estimated spectral slopes. Nonetheless, our re-
sults demonstrate that the analyzed water-quality time series
can exhibit strong fractal scaling, particularly at the Lake
Erie and Ohio tributary sites. Thus, an important implica-
tion is that researchers and analysts should be cautious when

applying standard statistical methods to identify temporal
trends in such water-quality data sets (Kirchner and Neal,
2013). In future work, one may consider applying Bayesian
statistical analysis or other approaches to more accurately
quantify the spectral slope and associated uncertainty for real
water-quality data analysis. In addition, the modeling frame-
work presented here (including both gap simulation and β
estimation) may be extended to simulations of irregular time
series that have prescribed spectral slopes and also superim-
posed temporal trends, which can then be used to evaluate the
validity of various statistical methods for identifying trends
and their associated statistical significance.

4 Conclusions

River water-quality time series often exhibit fractal scaling
behavior, which presents challenges to the identification of
deterministic trends. Because traditional spectral estimation
methods are generally not applicable to irregularly sampled
time series, we have examined two broad types of estimation
approaches and evaluated their performances against syn-
thetic data with a wide range of prescribed β values and gap
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intervals that are representative of the sampling irregularity
of real water-quality data.

The results of this work suggest several important mes-
sages. First, the results remind us of the risks in using inter-
polation for gap filling when examining autocorrelation, as
the interpolation methods consistently underestimate or over-
estimate β under a wide range of prescribed β values and gap
distributions. Second, the widely used Lomb–Scargle spec-
tral method also consistently underestimates β. Its modified
form, using the 5 % lowest frequencies for spectral slope es-
timation, has very poor precision, although the overall bias
is small. Third, the wavelet method, coupled with an alias-
ing filter, has the smallest bias and root-mean-squared error
among all methods for a wide range of prescribed β values
and gap distributions, except for cases with small prescribed
β values (i.e., close to white noise) or small λ values (i.e.,
very skewed gap distributions). Thus, the wavelet method is
recommended for estimating spectral slopes in irregular time
series until improved methods are developed. In this regard,
future research should aim to develop an aliasing filter that is
more applicable to irregular time series with very skewed gap
intervals. Finally, all methods’ performances depend strongly
on the sampling irregularity in terms of both the skewness
and mean of gap-interval lengths, highlighting that the accu-
racy and precision of each method are data specific.

Overall, these results provide new contributions in terms
of better understanding and quantification of the proposed
methods’ performances for estimating the strength of fractal
scaling in irregularly sampled water-quality data. In addition,
the work has provided an innovative and general approach
for modeling sampling irregularity in water-quality records.
Moreover, this work has proposed and demonstrated a gen-
eralizable framework for data simulation (with gaps) and β
estimation, which can be readily applied to evaluate other
methods that are not covered in this work. More generally,
the findings and approaches may also be broadly applica-
ble to irregularly sampled data in other scientific disciplines.
Last but not least, we note that accurate quantification of frac-
tal scaling in irregular water-quality time series remains an
unresolved challenge for the hydrologic community and for
many other disciplines that must grapple with irregular sam-
pling.
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