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Abstract: Tandem mass spectral databases are indispensable for fast and reliable compound
identification in nontargeted analysis with liquid chromatography–high resolution tandem mass
spectrometry (LC-HRMS/MS), which is applied to a wide range of scientific fields. While many
articles now review and compare spectral libraries, in this manuscript we investigate two high-quality
and specialized collections from our respective institutes, recorded on different instruments
(quadrupole time-of-flight or QqTOF vs. Orbitrap). The optimal range of collision energies for
spectral comparison was evaluated using 233 overlapping compounds between the two libraries,
revealing that spectra in the range of CE 20–50 eV on the QqTOF and 30–60 nominal collision energy
units on the Orbitrap provided optimal matching results for these libraries. Applications to complex
samples from the respective institutes revealed that the libraries, combined with a simple data mining
approach to retrieve all spectra with precursor and fragment information, could confirm many
validated target identifications and yield several new Level 2a (spectral match) identifications. While
the results presented are not surprising in many ways, this article adds new results to the debate on
the comparability of Orbitrap and QqTOF data and the application of spectral libraries to yield rapid
and high-confidence tentative identifications in complex human and environmental samples.

Keywords: nontarget analysis; liquid chromatography mass spectrometry; compound identification;
tandem mass spectral library; forensics; wastewater

1. Introduction

Tandem mass spectral databases are indispensable for fast and reliable compound identification
in nontargeted analysis with liquid chromatography–high resolution tandem mass spectrometry
(LC-HRMS/MS) [1–7]. These databases have been applied in diverse fields, including forensics,
environmental analysis, food analysis, and metabolomics. They are usually applied for target and
suspect analysis [8–11], and enable fast and automated annotation of components [12,13]. Database
searching can yield identifications at a high confidence level. According to the scheme introduced by
Schymanski et al. [14], a Level 2a identification (probable structure via spectral match) can immediately
be reached with sufficient match to a library spectrum. Even Level 1 (structure confirmed by a reference
compound) can be achieved when the library spectrum and associated retention time (or index) match
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with data acquired on the same analytical set-up as in the sample. This identification scheme was
designed specifically for HRMS/MS data and is applied in the current manuscript. However, in the
context of this article, these levels do not differ markedly from the Metabolomics Standard Initiative
levels (MSI) 1 (Identified compounds) and 2 (Putatively identified compounds based upon spectral
similarity with spectral libraries) [15].

Tandem mass spectral databases consist of two integral parts: (1) the collection of tandem
mass spectral data accompanied by chemical information on the corresponding compounds, and
(2) a database management system with diverse search functions. Tandem mass spectra are usually
produced by collision-induced dissociation (CID) or higher-energy collision dissociation (HCD).
The instruments most commonly applied for the acquisition of reference spectra are quadrupole
time-of-flight (QqTOF) and iontrap/quadrupole-Orbitrap. Before storage, spectra are usually curated
and cleaned employing multiple steps, which can include some or all of noise and artefact removal,
peak annotation and recalibration, testing and benchmarking, as well as expert reviewing [16–21].

A challenge limiting tandem spectral database development has been the variability in observed
fragmentation reactions caused by limited standardization and harmonization of experimental
conditions. To cope with these reproducibility issues, state-of-the-art libraries contain multiple
spectra per compound [17,22–24]. This is usually accomplished by comprehensive coverage of
compound-specific breakdown curves via stepwise increase of applied collision energies. Combining
these libraries with appropriate tailor-made search algorithms [25–27] enables reliable and robust
identification. Such databases are characterized by false positive rates and false negative rates below
5% [3].

Tandem mass spectral libraries are constantly growing. The total number of compounds covered
by tandem mass spectral databases is already in the range of several tens of thousands [1,2]. However,
the overlap between libraries is still relatively limited [1]. While the results of extensive testing and
benchmarking experiments will provide guidance for database selection [20], as has recently been
investigated for genome-wide metabolic networks [28], such data is not available for the majority of
established databases in an environmental context. A further complication is the fact that databases
were established on either single or multiple instruments (i.e., QqTOF and various Orbitrap hybrid
instruments). There are a range of scientific opinions on whether Orbitrap databases with HCD (and
sometimes CID) spectra and QqTOF databases with CID spectra offer complementary identification
possibilities. Initial findings suggest that HCD MS/MS spectra yield acceptable matches in CID
mass spectral databases [29]. However, a thorough evaluation of the complementarity of these two
important types of tandem mass spectral databases has not been accomplished yet.

Here, we use two specialized collections to investigate the complementarity of QqTOF and
Orbitrap libraries, where the Orbitrap library contains both HCD and ion trap CID spectra. First,
we investigate the comparability of the spectra in the two libraries, one created on a QqTOF in
a forensic-toxicological context, the other a subset of Orbitrap spectra from MassBank compiled
in an environmental context. We then use both libraries for mining nontarget Orbitrap and
QqTOF data. While more extensive collections are available, we have limited this investigation
deliberately to these specialized collections, as both the libraries and nontarget data were generated
under relatively consistent conditions at the respective institutes of the coauthors, allowing greater
intuitive interpretation of the results beyond other, more extensive collections where this institutional
background knowledge is missing.

2. Results and Discussion

2.1. Testing and Benchmarking of the Tandem Mass Spectral Libraries

In the first evaluation approach, the performance of the two well-established tandem mass spectral
libraries was evaluated. The first collection was the “Wiley Registry of Tandem Mass Spectral Data”,
hereafter termed WRTMD, developed on QqTOF instruments. The second library was the Eawag
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collection part of MassBank, developed on Orbitrap instruments (for more details see the “Materials
and Methods” section). Overall, 14,693 QqTOF spectra representing 1349 compound species (i.e.,
including some compounds with multiple entries due to different precursor ions such as abundant
isotopes, adducts, and in-source fragments) and 7415 Orbitrap spectra representing 744 compounds
were available. For the QqTOF spectra, fragmentation was accomplished by CID at various collision
energies. Out of the entire set of Orbitrap spectra, 321 spectra were acquired with CID at 35 NCE
(nominal collision energy units), and 7094 spectra with HCD at various collision energies.

The WRTMD collection of 14,693 CID QqTOF spectra of 1349 compounds has been investigated
in multiple studies and the reliability of the search expressed as sensitivity and specificity has been
demonstrated [3,16,20,24,25,27,29]. Although the database was tested with spectra acquired on all
common types of tandem mass spectral instrumentation, the observed error rate was typically below
5%. This proven track record renders the WRTMD highly suitable for benchmarking experiments.

The Eawag collection of 7415 Orbitrap spectra (321 CID, 7094 HCD), representing 744 compounds,
has a proven record of success in application work [8–10,30,31]. As described above, the library spectra
are filtered and recalibrated [18]. This level of data curation also renders the Eawag collection suitable
for quality tests. The influence of recalibration and cleanup of library spectra on database searching is
shown in Table 2 of Stravs et al. [18].

Investigating the overlap of the two libraries tested revealed 233 compounds present in both
collections. These 233 compounds represented 17.3% of the WRTMD (2840 QqTOF spectra) and 31.3%
of the Eawag collection (2405 Orbitrap spectra).

As described in the “Materials and Methods” section, the ‘MSforID Search’ was used for spectral
matching to obtain amp- and ramp-values. The thresholds (see “Materials and Methods”) are deduced
from quality tests and represent a compromise between sensitivity and specificity [20,25].

Firstly, the compatibility of the Eawag collection with the spectral matching via ‘MSforID Search’
was evaluated. The true positive rate obtained by matching each individual spectrum of the Eawag
collection to the entire library was determined. Sensitivity (= true positive rate) was found to be
99.5%. The same test with the WRTMD yielded a sensitivity value of 99.7%. Secondly, each library
was used as test set to characterize the reliability of a match to the other collection. For statistical
evaluation, libraries were divided into positive and negative controls. By querying the WRTMD with
the Orbitrap spectra, sensitivity was 88.0% (2405 test spectra) and specificity (= true negative rate)
was 97.7% (5010 test spectra). Querying the QqTOF spectra against the Eawag collection gave a true
positive rate of 91.5% (2840 test spectra) and a true negative rate of 98.0% (11,853 test spectra). The
observed specificities correlated well to values observed with other test sets [3]. However, the observed
sensitivities fell short of expectations. Based on previous results [29], matching Orbitrap spectra to
WRTMD was expected to yield a true positive rate closer to 100%.

As a result, the impact of the collision energy on the true positive rate was investigated to
determine whether this could cause the reduced sensitivity (see Figure 1). For the majority of
compounds, the collision energy ranges 20–50 eV on the QqTOF and 30–60 nominal collision energy
units (NCE) on the Orbitrap seem to enable the acquisition of comparable reference and sample
spectra. In these cases, substantial overlap between compound-specific spectra acquired on QqTOF
and Orbitrap was observed. For the spectra acquired under these conditions, sensitivity values were
95.1–98.4%. For the QqTOF spectra acquired at very low collision energies (5 and 10 eV), sensitivity
values fell below 81%. Similarly, for the Orbitrap spectra acquired at collision energies above 90,
sensitivity values decreased to 21–61%. The ‘MSforID Search’ considers the similarity of the sample
spectrum to the entire series of compound-specific reference spectra, such that the outcome is not a
one-to-one match with a single reference spectrum. Thus, these results of this performance evaluation
study indicate that to use these two libraries in a complementary manner in nontargeted LC-MS/MS
identification, optimal sensitivity will be achieved for matching to both libraries if the nontarget data
is acquired with collision energies in the range of 20–50 eV on a QqTOF or 30–60 NCE on an Orbitrap
instrument, which was the case for the application cases presented below.
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plots of sensitivity vs. collision energy applied during spectra acquisition.

2.2. Compound Annotation Workflow for Application Samples

As discussed above, tandem mass spectral libraries are valuable for mining nontargeted
LC-MS/MS data and can rapidly yield either Level 2a (library match) or Level 1 (in-house reference
standard match) identifications.

Workflows for mining nontargeted LC-MS/MS data usually involve diverse steps of feature
detection, feature annotation, and compound identification. A feature detected by nontargeted
LC-MS/MS is characterized by the m/z and retention time and, where available, the isotopic
pattern of the precursor ion, any additional adduct species, and the corresponding fragmentation
pattern. Particularly in environmental analysis and metabolomics, peak picking and extracted ion
chromatograms (XICs) often play a key role in data processing. However, the data mining approach
used for the plasma and wastewater sample here is different. All features containing information
on the m/z of the precursor ion and the fragmentation pattern are matched directly to the tandem
mass spectral library. This approach is suitable for complex data when searching using tandem mass
spectral databases with high sensitivity. It also avoids the loss of matching compounds that may not
have been detected by peak picking algorithms.

2.3. Application Work

2.3.1. Application 1: Systematic Toxicological Analysis of Human Plasma Samples

Forensic toxicology is an important field of application for nontargeted LC-MS/MS [3,5].
Although the WRTMD has a proven record of success in forensic toxicological analysis [3], this library
does not cover the full range of compounds principally observable in human samples and should
therefore be complemented by other databases. To evaluate the impact of applying multiple libraries
for compound annotation, 10 human plasma samples were submitted to systematic toxicological
analysis involving nontargeted LC-MS/MS with data-dependant acquisition (DDA) on a QqTOF
instrument. Tandem mass spectra were acquired at 35 eV with a collision energy spread of 10 eV. This
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CE is well within the working range defined above. The obtained data sets were then matched to the
WRTMD and Eawag collections. False positive matches were sorted out by expert reviewing, which
involved visual inspection of the spectral match.

In the 10 samples analyzed, a total number of 132 compounds were identified (Figure 2a,
Supplementary Table S1). The number of identifications obtained for the individual samples ranged
from 41 to 68. In each sample, a considerable number of endogenous compounds were detected.
These biomolecules observed included amino acids, biogenic amines, steroids, nucleosides, and
vitamins, which are only covered by WRTMD. Several nutritional compounds were observed, including
caffeine, nicotine, and piperine, as well as their corresponding metabolites. A third group of observed
compounds represented industrial chemicals. While some of these were also detected in the blank and
thus may represent impurities and contaminants introduced after sample collection, there were nine
compounds that were only observed in patient samples. These included the vulcanization accelerators
2-mercaptobenzothiazole and dibenzothiazyldisulfide, the corrosion inhibitor 2-hydroxybenzothiazole,
the cosmetic ingredients ethylparabene, propylparabene, and octocrylene, the plasticiser benzyl butyl
phthalate, as well as phenylurea and neocuproine. Detection of these industrial chemicals suggests that
nontargeted LC-MS/MS techniques will be an important approach to detect unexpected compounds in
human biomonitoring [32]. The fourth group of compounds detected were pharmaceutical compounds
and corresponding metabolites. In total, 58 different species were detected. In accordance with previous
findings [33], a high number of psychoactive drugs were observed, and these included 12 compounds
belonging to the group of benzodiazepines and 8 to the group of opioids. Thirteen antidepressants
and six antipsychotics were also identified. The last group of observed compounds represented illegal
drugs and corresponding metabolites. Their detection provided evidence for cannabis consumption
by four patients, cocaine consumption by six patients, and heroin consumption by one patient. There
were three patient samples without any illegal drug detected. Further information about the identified
compounds, including chemical identifiers, is given in the Supplementary Materials (Tables S1 and S4).

An important aspect of this study was the evaluation of the number of compounds identified
with the two libraries employed in the context of forensic toxicological analysis (Figure 2b). Out
of the 570 identifications obtained, 384 (67.4%) were only obtained with the WRTMD, 22 (3.9%)
only with the Eawag collection, and 164 (28.8%) with both libraries tested. Obviously for forensic
samples, searching the Eawag collection enables verification of a considerable number of matches
to the WRTMD, but it only provided a limited number of unique matches. This observation is quite
reasonable taking into account that the Eawag library was initially built for environmental applications.
The 164 identifications obtained with both libraries corresponded to 39 reference compounds. All
other identifications involved compounds that were only included in one of the two libraries applied
(85 compounds of the WRTMD and 9 compounds of the Eawag collection).



Metabolites 2019, 9, 3 6 of 15
Metabolites 2018, 8, x 6 of 15 

 

 
Figure 2. Application of the two tandem mass spectral libraries to systematic toxicological analysis of 
10 authentic plasma samples. Nontargeted LC-MS/MS data was acquired on a QqTOF instrument 
using DDA. (a) Overview on the number of compounds identified in different compound classes via 
the combined use of the two libraries tested, and (b) the Venn diagram illustrating the number of 
identified compounds obtained with the two libraries tested. 

2.3.2. Application 2: Comprehensive Compound Identification in Wastewater Influent Samples 
Collected in a Local Wastewater Treatment Plant (WWTP) 

Environmental analysis is another important field of application for nontargeted LC-MS/MS 
workflows [8–11,30,31]. Particularly in water analysis, the Eawag collection has a proven record of 

Figure 2. Application of the two tandem mass spectral libraries to systematic toxicological analysis
of 10 authentic plasma samples. Nontargeted LC-MS/MS data was acquired on a QqTOF instrument
using DDA. (a) Overview on the number of compounds identified in different compound classes via
the combined use of the two libraries tested, and (b) the Venn diagram illustrating the number of
identified compounds obtained with the two libraries tested.
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2.3.2. Application 2: Comprehensive Compound Identification in Wastewater Influent Samples
Collected in a Local Wastewater Treatment Plant (WWTP)

Environmental analysis is another important field of application for nontargeted LC-MS/MS
workflows [8–11,30,31]. Particularly in water analysis, the Eawag collection has a proven record of
success. Recently, it has been demonstrated that the WRTMD is applicable for that purpose as well [34].
To evaluate the coverage of the two libraries, samples collected at the WWTP Rossau from 1–10 April
2016, were submitted for nontargeted LC-MS/MS analysis with DDA on a QqTOF instrument. Tandem
mass spectra were acquired at 35 eV with a collision energy spread of 10 eV. This CE was well within
the working range defined above. The obtained data sets were matched to the WRTMD and Eawag
collections. False positive matches were sorted out by expert reviewing.

In the 10 influent samples, 149 different compounds were identified (Figure 3a, Supplementary
Table S2). Pharmaceutical compounds and their metabolites represented the largest group of
compounds detected (N = 96). Diverse antipsychotics, anticonvulsants, antidepressants, hypnotics and
sedatives, hypoglycaemic agents, anti-inflammatory agents, cardiovascular agents, analgesics, and
antibiotics were present. Clearly, wastewater analysis yields a comprehensive overview on medical
prescription and consumption practices. Other important classes of compounds observed included
biomolecules (N = 21) and industrial chemicals (N = 16). The groups of nutritional compounds (N = 8)
and illegal drugs (N = 8) provide some insights into lifestyle of the community monitored. It provides
evidence for the consumption of caffeine and tobacco, as well as of cocaine, amphetamine, MDMA,
and heroine.
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Figure 3. Application of the two tandem mass spectral libraries to the analysis of wastewater samples
collected at the WWTP in Innsbruck. Ten influent samples were analyzed. The nontargeted LC-MS/MS
data was acquired on a QqTOF instrument using DDA. (a) Overview on the number of compounds
identified in different compound classes, as well as (b) a Venn diagram characterizing the number of
identified compounds obtained with the two libraries tested are provided.
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A total of 990 identifications were obtained (Figure 3b) with the two libraries. The WRTMD
produced 806 identifications, and the Eawag collection 612 identifications. Of these, 378 identifications
(38.2%) were solely obtained by the WRTMD, 184 identifications (18.6%) solely by the Eawag
collection, and 428 identifications (43.2%) by both libraries tested. This clearly proves that the two
libraries complement each other in wastewater analysis. Thus, for more comprehensive compound
identification (at Level 2a), the combined use of the two libraries is recommended.

False negative rates were determined using the 449 identifications corresponding to compounds
that were available in both libraries tested. The WRTMD produced 8 (1.8%), and the Eawag collection
13 false negative identifications (2.9%). In the majority of cases, the false negatives matched the
corresponding reference compounds but were sorted out during data evaluation based on match
probability values below the defined thresholds or during the final expert reviewing. Thus, when
using stringent thresholds, the combined use of two or more libraries is recommended. The lower false
negative rate for the WRTMD is most likely due to the fact that the acquisition data better matched the
original library data.

2.3.3. Application 3: Retrospective Compound Identification in LC-MS/MS Data Acquired from Swiss
Wastewater Effluent Samples

The third set of experimental data was selected to evaluate the compatibility of data mining
workflow presented here with Orbitrap data. The test sets were obtained from analysing nine Swiss
wastewater effluent samples by nontargeted LC-MS/MS with DDA [30]. Tandem mass spectra were
acquired at CID 35 and HCD 60. These CE values were within the working range defined above.

In the nine samples analyzed, 82 different compounds were identified (Supplementary Table S3).
These included 54 pharmaceutical compounds, 24 industrial compounds, 3 nutritional compounds,
and 1 illegal drug. Identifications per sample ranged from 45 to 58, leading to a total number of
458 identifications (Figure 4). Only 7.0% of the identifications were obtained with the WRTMD, 27.5%
with the Eawag collection, and 65.5% with both collections. As each institution generally develops
their reference standard collection (and thus libraries) for the local conditions and studies of interest, it
is not surprising that the Eawag library results in more % identifications for the Swiss data set, and the
WRTMD for the Austrian data sets.
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Figure 4. Application of the two tandem mass spectral libraries to the analysis of wastewater samples
collected at the effluent of nine Swiss WWTP. The target and nontargeted LC-MS/MS data was acquired
on an Orbitrap instrument using DDA. The column chart visualises the number of identifications
obtained with the WRTMD and/or the Eawag library for each sample analyzed.
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With the 492 identifications corresponding to compounds that were available in both libraries
tested, false negative rates were determined. The WRTMD produced 20 (4.1%) and the Eawag
collection 14 false negative identifications (2.8%). As above, in the majority of cases, negatively
identified compounds matched to the corresponding reference compounds but were sorted out during
data evaluation based on match probability values below the defined thresholds or during the final
expert reviewing. The lower false negative rate for the Eawag collection in this case supports the
conclusion above that fewer false negatives can be expected when the sample acquisition matches the
library acquisition. Nonetheless, it is clear that libraries acquired on different instruments can provide
valuable additional information in many cases.

As part of the initial study for this data set, a comprehensive quantitative target analysis was
performed [30]. This analysis detected 73 compounds in positive mode. With the retrospective data
analysis performed here, 58 of these targets were detected and identified. The identification of the
remaining 15 targeted compounds was not reproduced. For six of these false negatives, the tandem
mass spectral library search did not produce any evidence for their occurrence in the tested data
sets (i.e., no fragmentation information was available). For the remaining eight compounds, at least
one match was obtained, but in all cases, the spectral similarity was insufficient for a positive match
(Figure 5). The observed discrepancies between the results obtained by target analysis and the suspect
screening approach applied here can be explained by the different working principles of the two
identification workflows. The suspect screening workflow relies on tandem mass spectral information
for identification, such that compounds without fragments will not be detected—six compounds in
this case, which were identified with retention time and exact mass and a correspondingly lower
“identification point (IP) score” (2 IP vs 4.5 IP for targets with reported matching fragments) in the
original study [30]. This means that some low-abundance but well-known compounds will be missed
with a spectral library search approach.

The most interesting cases are those that failed due to low spectral similarity values (see Figure 5).
This is perhaps not surprising when querying spectra recorded in complex samples, as impurities are
likely to occur even in MS/MS fragment information obtained using DDA [12]. This indicates some
potential to apply a partial cleanup such as that performed in RMassBank prior to querying spectral
libraries. A simple subformula or mass defect filter based on the precursor mass will potentially
eliminate several interfering peaks that may correspond with different (coeluting) precursors that are
still within the DDA window. Furthermore, this problem could be exacerbated with the increasing
popularity of data-independent acquisition data (without precursor isolation and thus potentially more
spectral interferences), increasing the need for deconvolution [12] and alternative data-processing
approaches (e.g., [35]).

Another interesting result is that the retrospective data analysis performed in this study produced
67 additional tentative identifications corresponding to 24 compounds that were in WRTMD only and
thus not obtained in the original investigation (with either target, suspect, or nontarget approaches) [30].
Two of these compounds (O-desmethyltramadol and tri(butoxyethyl)phosphate) were found to be
among the thirty most abundant species observed in positive ion mode LC-MS/MS analysis.

Very recently, the Swiss wastewater data sets used here were included in a proof-of-concept
study that demonstrated the potential of a global emerging contaminant early warning network
to rapidly assess the spatial and temporal distribution of contaminants of emerging concern in
environmental samples through performing retrospective data analysis [36]. The data sets were
screened for 156 compounds included in the NORMAN Early Warning System (NormaNEWS) suspect
list (http://comptox.epa.gov/dashboard/chemical_lists/normanews). With the data acquired in
positive ion mode, 40 compounds were tentatively identified with the NormaNEWS method. For 31
of these compounds, reference spectra were available in the WRTMD and/or the Eawag collection
and thus amenable to identification with the tandem mass spectral library search approach applied
here. However, out of these 31 compounds detected in the wastewater samples, only 16 were
successfully matched to the libraries with the approach used here. In the remaining cases, either

http://comptox.epa.gov/dashboard/chemical_lists/normanews
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no (N = 12) or only low-quality tandem mass spectra (N = 3) were available in the data sets (Figure 5),
rendering confident compound identification (Level 2a or better) nearly impossible. This reinforces the
need for high-quality spectral searching to provide additional evidence to increase the confidence of
identification in nontarget screening efforts beyond the levels achieved with exact mass and retention
time matches and, where available, selected fragment masses. As discussed above and as shown in
Figure 5, the issue of interferences in the spectra extracted from complex samples played a role in the
poor-quality spectra in many cases and a future investigation could look into whether spectral cleanup
steps may improve these results.
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Figure 5. Examples of tandem mass spectra obtained from analysing wastewater samples with Orbitrap
that showed insufficient spectral similarity to reference spectra of (a) tramadol (interfering peaks),
(b) ibuprofen (noisy sample spectrum), (c) N-desmethylvenlafaxine (noise and/or interfering peaks),
and (d) losartan (noisy spectrum and interfering peaks) stored in the Eawag collection. Black dots
indicate precursor mass that triggered the MS/MS spectra (hollow dot).

3. Materials and Methods

3.1. Tandem Mass Spectral Libraries

Two libraries were tested: the WRTMD (Wiley, Hoboken, NJ, USA) [37] and the Eawag collection
in MassBank [18,23].

Tandem mass spectral data stored in the WRTMD were acquired on QqTOF instruments
(Qstar XL or TripleTOF 5600+, Sciex, Framingham, MA, USA). For each reference compound, 10 or
more product-ion spectra were acquired at different collision energy levels (resolution >10,000) to
comprehensively cover compound-specific breakdown curves. Low-abundance and unspecific signals
were removed from reference spectra by filtering [16,17]. For this study, a library version containing
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1349 entries with 14,693 spectra was used. A more detailed description of the mass spectral library is
provided on www.msforid.com.

The Eawag library used for this study contained 7415 MS/MS spectra corresponding to
744 compounds. Reference spectra of 321 compounds were acquired on a LTQ-Orbitrap XL (Thermo
Fisher Scientific, Waltham, MA, USA). For each of these compounds, HCD product-ion spectra were
acquired at six different collision energy levels (HCD 15, 30, 45, 60, 75, 90) and a CID spectrum at
one collision energy level (CID 35) to comprehensively cover compound-specific breakdown curves.
The MS/MS spectra for each collision energy were recorded at two resolutions (7500 and 15,000).
Reference spectra for a further 423 compounds were acquired on a QExactive Orbitrap (Thermo Fisher
Scientific). For each of these reference compounds, HCD product-ion spectra were acquired at six
different collision energy levels (HCD 15, 30, 45, 60, 75, 90). For a subset of 216 compounds, the
collision energy range was extended to include HCD product-ion spectra at the collision energy levels
120, 150, and 180. MS/MS spectra were recorded at a resolution of 35,000. In all cases, the R package
RMassBank was used to perform recalibration and cleanup of all spectra [18]. RMassBank can be
downloaded from BioConductor, at http://bioconductor.org/packages/RMassBank/. The curated
spectra (records published prior to 2018) are available at https://github.com/MassBank/MassBank-
data/tree/master/Eawag. Listings of the chemicals available in MassBank.EU and WRTMD used
in this investigation (beyond those detected and presented in the Supplementary Information) are
given on the NORMAN Suspect Exchange (https://www.norman-network.com/?q=node/236) and
CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/chemical_lists).

3.2. Tandem Mass Spectral Library Search

The library search was accomplished using the ‘MSforID Search’ [17,25]. The search algorithm
determines the similarity between a sample spectrum and library spectra. The estimation of similarity
starts with the identification of fragment ions that are present in both of the spectra being compared.
These ions are called “matching fragments”. The spectral information retrieved is used to calculate
the “reference spectrum specific match probability” (mp). As the mass spectral libraries contain
multiple spectra per reference compound, multiple mp values per reference compound are obtained.
To combine all these compound-specific mp values to one value that specifies the similarity between
the unknown and the specific reference compound, the compound-specific mp values are averaged
and normalized to yield the compound-specific “average match probability” (amp) and “relative
average match probability” (ramp), respectively. These values range between 0 and 100. High
compound-specific amp and ramp values indicate high similarity between the unknown and the
reference compound. The substance with the highest amp and ramp value is considered to be the best
match to the unknown compound.

Automated MSforID search was performed with a program written in Pascal using Delphi 6 for
Windows (Borland Software Corporation, Scotts Valley, CA, USA; now Embarcadero Technologies, Inc.,
San Francisco, CA, USA) using the following search parameters: mass-to-charge ratio (m/z) tolerance
of ±0.01, intensity cut-off factor of 0.01. The following criteria were used to classify obtained search
results as tentatively correct positive results: precursor ion mass tolerance of ±0.01, amp > 1.0–10.0
and ramp > 30–50. The thresholds were determined using quality tests and represent a compromise
between sensitivity and specificity [17,25]. The correctness of tentative identifications was checked by
expert reviewing, which included visual inspection and comparison of tandem mass spectral data.

3.3. Performance Evaluation

The performance of the two libraries (WRTMD, Eawag) was evaluated using two approaches.
In the first approach, the libraries were searched against each other. Either library was used as

reference or sample set. The spectra of compounds covered in both libraries served as positive controls.
All other spectra represented negative controls. The positive controls were further grouped according
to the collision energy settings used to acquire the individual spectra. For each test set, the number of

www.msforid.com
http://bioconductor.org/packages/RMassBank/
https://github.com/MassBank/MassBank-data/tree/master/Eawag
https://github.com/MassBank/MassBank-data/tree/master/Eawag
https://www.norman-network.com/?q=node/236
https://comptox.epa.gov/dashboard/chemical_lists
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positive identifications and the number of negative identifications were counted and used to calculate
the statistical parameters sensitivity (= true positive rate) and specificity (= true negative rate).

The second evaluation approach involved the analysis of forensic casework and environmental
samples. Here, the focus was on evaluating the number and type of identifications obtained with
the two libraries. The first set of samples analyzed represented 10 plasma samples collected as
evidence in forensic casework at the Institute of Legal Medicine of the Medical University Innsbruck.
The second set consisted of wastewater samples collected on 10 consecutive days (1–10 April 2016)
at the WWTP Rossau (Innsbrucker Kommunalbetriebe AG, Innsbruck, Austria). The wastewater
samples represented 24-h average samples of the influent [34]. The two sample sets were submitted to
nontargeted LC-MS/MS on a QqTOF instrument (TripleTOF 5600+, Sciex, Framingham, MA, USA).
Details of the analytical workflows employed are provided in the Electronic Supplementary File 1. The
third set of samples consisted of nine Swiss WWTP effluent samples that had been analyzed by target
and nontargeted LC-MS/MS on an Orbitrap instrument (LTQ Orbitrap XL, Thermo Fisher Scientific,
Waltham, MA, USA). Details of the analytical workflow have been published previously [30]. Raw data
files for the Swiss study are available at ftp://massive.ucsd.edu/MSV000079601. The remaining files
cannot be uploaded for legal reasons, but can be made available to interested researchers upon request.

Data mining involved the extraction of the tandem mass spectra and a subsequent database
search. Raw data files were converted to Mascot Generic Format (.mgf) files with the MSConvert from
ProteoWizard [38]. The MS/MS spectra part of the .mgf files were extracted with a program written in
ActivePerl 5.6.1 (Active State Corporation, Vancouver, Canada) to yield all MS/MS spectra as plain
text (ASCII) files containing peak list information. These spectra were then submitted to the tandem
mass spectral library search as described above.

4. Conclusions

This article demonstrates the applicability of tandem mass spectral library searching to complex
environmental and toxicological samples and reveals a wide range of comparability between collision
energies of different tandem mass spectral instruments over a diverse range of compounds. For
complementary use of the two libraries tested, the collision energy ranges 20–50 eV on the QqTOF and
30–60 NCE on the Orbitrap represented suitable working ranges. The results of the applications are in
many ways unsurprising, that is, that searching in two libraries instead of one reveals more hits and
that entries without fragmentation or with poor fragmentation information are not found. However,
this article documents additional investigations to add to the debate on the comparability between
QqTOF and Orbitrap instruments. This comparability is of utmost importance to achieve the desired
goal of developing a unified and universally applicable tandem mass spectral database. Library
development is laborious, time-consuming, and expensive, and this enormous effort is a serious
hurdle for individual and isolated labs interested in contributing to accomplishing this mammoth task.
Compatibility of libraries will enable the building of strong and dynamic consortia within scientific
communities that will significantly increase the number of available reference spectra by sharing the
connected workload. Further conclusions from this work are that the data mining approach used
here could possibly be improved in the future through the application of some basic spectral cleanup
to remove clear matrix interferences as well as the consideration of additional information such as
isotope patterns/adduct and retention behavior.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/1/3/s1.
Supplementary File 1: Experimental settings for nontargeted LC-MSMS analysis with QqTOF; Supplementary
File 2: Excel spreadsheet containing the following tables: Supplementary Table S1: Overview of compounds
identified by systematic toxicological analysis of ten authentic plasma samples; Supplementary Table S2: Overview
of compounds identified by nontargeted LC-MS/MS in ten wastewater samples collected at the influent of the
WWTP in Innsbruck; Supplementary Table S3: Overview of compounds identified by target and nontargeted
LC-MS/MS in nine wastewater samples collected at the effluent of Swiss WWTPs; Supplementary Table S4:
Additional chemical information for all compounds mentioned in Table S1 to S3.

ftp://massive.ucsd.edu/MSV000079601
http://www.mdpi.com/2218-1989/9/1/3/s1
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