
DISS. ETH NO. 25498

UNSUPERVISED LEARNING:

MODEL-BASED CLUSTERING AND LEARNED

COMPRESSION

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

MICHAEL TOBIAS TSCHANNEN

MSc ETH in Electrical Engineering and Information Technology

born on 03.08.1988
citizen of Zürich ZH

accepted on the recommendation of

Prof. Dr. Helmut Bölcskei, examiner
Prof. Dr. Andreas Krause, co-examiner

2018

Abstract

This thesis addresses two central tasks prevalent in many modern
data processing, storage, and transmission pipelines: Clustering and
compression. Specifically, in the first and the second part of this thesis,
we study the problems of subspace clustering and random process
clustering, respectively. While clustering problems are arguably among
the most archetypal problems in unsupervised learning, compression
methods are traditionally hand designed. In the third and fourth part
of this thesis, we leverage machine learning techniques for compression,
a trend that only emerged recently. In more detail, we propose a deep
generative model-based framework for lossy data compression on
one hand, and we study compression of neural network models for
inference on resource-constrained hardware on the other hand.

Subspace clustering, the focus of the first part of this thesis, refers to
the problem of clustering unlabeled high-dimensional data points into
a union of unknown low-dimensional subspaces. Out of the plethora
of subspace clustering algorithms, the sparse subspace clustering
(SSC) algorithm (Elhamifar and Vidal, 2013) has attracted significant
attention thanks to excellent clustering performance in practical
applications. SSC performs spectral clustering based on an adjacency
matrix obtained by sparsely representing each data point in terms
of all the other data points via the Lasso. When the number of data
points is large or the dimension of the ambient space is high, the
computational complexity of SSC quickly becomes prohibitive. In
this case, replacing the Lasso by the greedy orthogonal matching
pursuit (OMP) algorithm results in significantly lower computational

iii

complexity, while often yielding comparable performance (Dyer et al.,
2013). The main contribution of the first part of the thesis is an
analytical performance characterization of the resulting SSC-OMP
algorithm for noisy data. Moreover, we introduce and analyze the
SSC-matching pursuit (SSC-MP) algorithm, which employs MP in
lieu of OMP. Both SSC-OMP and SSC-MP are proven to succeed even
when the subspaces underlying the data intersect and when the data
points are contaminated by severe noise. Our experiments show that
SSC-MP compares very favorably to other sparsity-based subspace
clustering algorithms, both in terms of clustering performance and
running time. In addition, we find that, in contrast to SSC-OMP, the
performance of SSC-MP is very robust with respect to the choice of
parameters in the stopping criteria.

The second part of this thesis deals with the problem of clustering
noisy finite-length observations of stationary ergodic random pro-
cesses according to their generative models without prior knowledge
of the model statistics and the number of generative models. Two
algorithms, both using the L1-distance between estimated power spec-
tral densities (PSDs) as a measure of dissimilarity, are analyzed. The
first one, termed nearest neighbor process clustering (NNPC), relies
on partitioning the nearest neighbor graph of the observations via
spectral clustering. The second algorithm consists of a single k-means
iteration with farthest point initialization and was considered before
in the literature, albeit with a different dissimilarity measure and with
asymptotic performance results only. We prove that both algorithms
succeed with high probability in the presence of noise and missing
entries, and even when the generative process PSDs overlap signifi-
cantly, all provided that the observation length is sufficiently large.
Our results quantify the tradeoff between the overlap of the generative
process PSDs, the observation length, the fraction of missing entries,
and the noise variance. Furthermore, we provide extensive numerical
results for synthetic and real data and find that NNPC outperforms
state-of-the-art algorithms in human motion sequence clustering.

In the third part of this thesis, we propose and study the problem
of distribution-preserving lossy compression. Motivated by recent

iv

advances in extreme image compression which allow to maintain
artifact-free reconstructions even at very low bitrates, we propose to
optimize the rate-distortion tradeoff under the constraint that the re-
constructed samples follow the distribution of the training data. Such
a compression system recovers both ends of the spectrum: On one
hand, at zero bitrate it learns a generative model of the data, and at
high enough bitrates it achieves perfect reconstruction. Furthermore,
for intermediate bitrates it smoothly interpolates between learning
a generative model of the training data and perfectly reconstructing
the training samples. We study several methods to approximately
solve the proposed optimization problem, including a novel combina-
tion of Wasserstein generative adversarial networks and Wasserstein
autoencoders, and present an extensive theoretical and empirical
characterization of the proposed compression systems.
The fourth and last part of this thesis targets hardware-friendly

compression of neural network models in the sense that the com-
pressed models require only few multiplications at inference time.
Specifically, we perform end-to-end learning of low-cost approxima-
tions of (generalized) matrix multiplications in deep neural network
(DNN) layers by casting matrix multiplications as 2-layer sum-product
networks (SPNs) (arithmetic circuits) and learning their (ternary)
edge weights from data. The SPNs disentangle multiplication and
addition operations and enable us to impose a budget on the number
of multiplication operations. Combining our method with knowledge
distillation techniques and applying it to image classification and
language modeling DNNs, we obtain a first-of-a-kind reduction in
number of multiplications (over 99.5%) while maintaining the predic-
tive performance of the full-precision models. Finally, we demonstrate
that the proposed framework is able to rediscover Strassen’s matrix
multiplication algorithm, learning to multiply 2× 2 matrices using
only 7 multiplications instead of 8.

v

Kurzfassung

Diese Dissertation behandelt zwei Datenverarbeitungsprobleme, die
zentraler Bestandteil vieler moderner Datenverarbeitungs-, Speicher-
und Übertragungssysteme sind: Clusteranalyse und Komprimierung.
Im ersten und zweiten Teil dieser Dissertation betrachten wir das
Clustern von Datenpunkten in Unterräume (englisch: subspace clus-
tering) sowie das Clustern von Zufallsprozessen. Während Cluster-
analyse wohl zu den ältesten Problemen im Bereich des unbeauf-
sichtigten Lernens gehört, werden Kompressionsverfahren traditionell
von Hand entwickelt. Im dritten und vierten Teil dieser Dissertation
setzen wir maschinelle Lerntechniken ein um Kompressionsalgorith-
men zu entwickeln—ein Trend, der erst kürzlich aufkam. Wir schlagen
einerseits ein System für die verlustbehaftete Datenkomprimierung
basierend auf generativen Modellen vor und behandeln andererseits
die Komprimierung neuronaler Netzwerke für deren Einsatz auf Hard-
ware mit eingeschränkten Ressourcen.

Subspace clustering, der Fokus des ersten Teils dieser Dissertation,
bezieht sich auf das Problem, hochdimensionale Datenpunkte in eine
Vereinigung von unbekannten niedrigdimensionalen Unterräumen zu
clustern. Aus der Vielzahl von bekannten subspace clustering Algorith-
men hat der sparse subspace clustering (SSC) Algorithmus (Elhamifar
und Vidal, 2013) aufgrund seiner exzellenten Clustering-Genauigkeit
in praktischen Anwendungen erhebliche Aufmerksamkeit auf sich
gezogen. SSC wendet spektrales Clustern auf eine Adjazenzmatrix an,
die aus der spärlichen linearen Darstellung jedes Datenpunkts durch
alle anderen Datenpunkte, berechnet mittels Lasso, aufgebaut wird.

vii

Wenn die Anzahl der Datenpunkte gross ist oder die Dimension des
Umgebungsraums hoch, wird die Rechenkomplexität von SSC schnell
prohibitiv. In diesem Fall führt die Verwendung des orthogonal match-
ing pursuit (OMP) Algorithmus anstelle von Lasso zu einer signifikant
geringeren Rechenkomplexität, während die Clustering-Genauigkeit
oft unbeinträchtigt bleibt (Dyer et al., 2013). Der Hauptbeitrag des
ersten Teils der Dissertation ist eine statistische Analyse des resul-
tierenden SSC-OMP Algorithmus für verrauschte Daten. Darüber
hinaus führen wir den SSC-matching pursuit (SSC-MP) Algorith-
mus ein, der MP anstelle von OMP verwendet. Wir beweisen, dass
SSC-OMP und SSC-MP erfolgreich clustern können wenn die den
Daten zugrunde liegenden Unterräume überlappen und wenn der
Rauschpegel hoch ist. Unsere Experimente zeigen, dass SSC-MP
kompetitiv ist mit anderen subspace clustering Algorithmen, sowohl
hinsichtlich der Clustering-Genauigkeit als auch der Laufzeit. Ausser-
dem beobachten wir, dass die Clustering-Genauigkeit von SSC-MP,
im Gegensatz zu SSC-OMP, sehr robust gegenüber der Wahl dessen
Parameter ist.
Im zweiten Teil dieser Dissertation betrachten wir das Problem,

verrauschte Beobachtungen stationärer, ergodischer Zufallsprozesse
endlicher Länge gemäss ihren generativen Modellen zu clustern, ohne
Wissen über die Modellstatistiken und die Anzahl der generativen
Modelle. Zwei Algorithmen, die beide den L1-Abstand zwischen
geschätzten Leistungsspektraldichten (englisch: power spectral densi-
ties (PSDs)) als Unähnlichkeitsmass verwenden, werden analysiert.
Der erste Algorithmus, den wir nearest neighbor process clustering
(NNPC) nennen, beruht auf der Partitionierung des Nächste-Nachbarn-
Graphen der Beobachtungen mittels spektralem Clustern. Der zweite
Algorithmus besteht aus einer einzigen k-Means-Iteration mit farthest
point Initialisierung und wurde in der Literatur bereits behandelt,
allerdings mit einem anderen Unähnlichkeitsmass und nur mit asymp-
totischer statistischer Analyse. Wir beweisen, dass beide Algorithmen
in der Gegenwart von Rauschen und fehlenden Einträgen das richtige
Ergebnis liefern, sogar wenn die generativen PSDs signifikant über-
lappen, sofern die Beobachtungslänge ausreichend gross ist. Unsere

viii

Ergebnisse beschreiben die Wechselbeziehung zwischen dem Grad der
Überlappung der generativen PSDs, der Beobachtungslänge, dem An-
teil fehlender Einträge und dem Rauschpegel. Ausserdem präsentieren
wir umfangreiche numerische Ergebnisse für synthetische und reale
Daten. Diese Ergebnisse zeigen, dass NNPC die Cluster-Genauigkeit
bekannter Algorithmen im Clustern von menschlicher Bewegungsse-
quenzen übertrifft.
Im dritten Teil dieser Dissertation definieren wir das Problem

der verteilungserhaltenden, verlustbehafteten Komprimierung (en-
glisch: distribution-preserving lossy compression (DPLC)). Motiviert
durch jüngste Fortschritte im Bereich der extremen Bildkomprim-
ierung, die es erlauben, artefaktfreie Rekonstruktionen auch bei sehr
niedrigen Bitraten aufrechtzuerhalten, schlagen wir vor, die Rate-
Verzerrungs-Funktion unter der Nebenbedingung zu optimieren, dass
die Rekonstruktionen der statistischen Verteilung von Trainingsdaten
folgen. Ein solches Komprimierungssystem deckt ein breites Spektrum
ab: Einerseits lernt es ein generatives Modell der Daten bei einer
Bitrate von Null, und andererseits erreicht es perfekte Rekonstruktion
bei genug hohen Bitraten. Darüber hinaus interpoliert es zwischen
dem Lernen eines generativen Modells und der perfekten Rekonstru-
ieren der Daten für mittelgrosse Bitraten. Wir untersuchen mehrere
Methoden, um das vorgeschlagene Optimierungsproblem zu lösen, ein-
schliesslich einer neuartigen Kombination von Wasserstein generative
adversarial networks und Wasserstein autoencoders, und präsentieren
eine umfangreiche theoretische und empirische Charakterisierung des
vorgeschlagenen Komprimierungssystems.

Der vierte und letzte Teil dieser Dissertation befasst sich mit der
hardwarefreundlichen Komprimierung tiefer neuronaler Netzwerke
(englisch: deep neural networks (DNNs)) so, dass die komprimierten
Modelle nur wenige Multiplikationen benötigen um Vorhersagen zu
machen. Wir lernen Approximationen der (verallgemeinerten) Ma-
trixmultiplikationen in DNN-Schichten, indem wir die Matrixmultip-
likationen als 2-Schicht-Summen-Produkt-Netzwerke (SPN) (arith-
metische Schaltungen) darstellen und deren (ternäre) Kantengewichte
aus Daten lernen. Die SPN trennen (skalare) Multiplikations- und

ix

Additionsoperationen und ermöglichen es uns, die Anzahl der ver-
wendeten Multiplikationsoperationen festzulegen. Wir kombinieren
unsere Methode mit knowledge distillation Techniken und wenden
sie auf Bildklassifizierungs- und Sprachmodellierungs-DNNs an, und
erhalten eine drastische Reduktion der Anzahl Multiplikationen (über
99,5%) unter Beibehaltung der Genauigkeit der ursprünglichen Mod-
elle. Schliesslich demonstrieren wir, dass die vorgeschlagene Methode
in der Lage ist, den Matrix-Multiplikationsalgorithmus von Strassen
aus Beispielen zu lernen, d.h. das Multiplizieren von 2× 2-Matrizen
zu lernen unter der Verwendung von nur 7 Multiplikationen anstelle
von 8.

x

Acknowledgments

I would like to express my deepest gratitude to my advisor, Profes-
sor Helmut Bölcskei, for his excellent guidance, advice, and support
throughout my doctoral studies.

I would like to thank Professor Helmut Bölcskei and Professor An-
dreas Krause for acting as examiners for this thesis.

I would also like to thank Eiríkur Ágústsson, Professor Animashree
Anandkumar, Aran Khanna, and Dr. Mario Lučić for discussions and
contributions that were valuable for the outcome of my work.

Thanks go to the members of the Communication Theory Group
for the enjoyable times we shared.

Finally, I would like to thank my family and friends for their en-
couragement and support over the years.

xi

Contents

1 Introduction 1
1.1 Noisy subspace clustering via matching pursuits 1
1.2 Nearest neighbor random process clustering 6
1.3 Distribution-preserving lossy compression 8
1.4 Deep learning with a multiplication budget 11
1.5 Publications . 13
1.6 Notation . 14

2 Noisy subspace clustering via matching pursuits 17
2.1 Subspace clustering via matching pursuits 18

2.1.1 The algorithms 18
2.1.2 Parameter selection 22

2.2 Main results . 27
2.3 Numerical results . 36

2.3.1 Comparison of SSC-OMP and SSC-MP 37
2.3.2 Face clustering 40
2.3.3 True positives/false positives tradeoff in DD-

stopping . 42
2.3.4 Influence of smax and pmax in DI-stopping . . . 45
2.3.5 Influence of smax and pmax in DI-stopping for

noiseless data 48
Appendices . 50
2.A Proof of Theorem 2.1 50
2.B Proof of Theorem 2.2 73

xiii

CONTENTS

2.C Proof of Theorem 2.3 81
2.D Supplementary notes 83

3 Nonparametric nearest neighbor random process clustering 85
3.1 Formal problem statement and algorithms 86
3.2 Analytical performance results 92
3.3 Comparison with thresholding-based subspace clustering 97
3.4 Numerical results . 100

3.4.1 Synthetic data 100
3.4.2 Real data . 107

Appendices . 110
3.A Proofs of Theorems 3.1 and 3.2 110
3.B Proof of Theorem 3.3 112
3.C Proof of Proposition 3.1 123

4 Distribution-preserving lossy compression 127
4.1 Problem formulation 127
4.2 Distribution-preserving lossy compression 129
4.3 Unsupervised training via Wasserstein++ 133
4.4 Empirical evaluation 136
4.5 Related work . 142
4.6 Conclusion and future work 144
Appendices . 145
4.A Proof of Theorem 4.1 145
4.B Hyperparameters and architectures 146
4.C The Wasserstein++ algorithm 150
4.D Visual examples . 151

5 Deep learning with a multiplication budget 165
5.1 Related work . 165
5.2 Learning fast matrix multiplications via SPNs 167

5.2.1 Casting matrix multiplication as SPN 167
5.2.2 Learning fast approximate matrix multiplica-

tions for DNNs 169
5.2.3 Knowledge distillation (KD) 171

xiv

CONTENTS

5.2.4 Application to 2D convolution 172
5.3 Experiments . 174

5.3.1 Rediscovering Strassen’s algorithm 174
5.3.2 Image classification 175
5.3.3 Language modeling 182

5.4 Conclusion and future work 184
Appendices . 185
5.A Additional results on CIFAR-10 185
5.B Additional results for language modeling 186
5.C Application to 2D convolution: Pseudocode 186
5.D Additional tables . 188

References 191

xv

CHAPTER 1

Introduction

The first two parts of this thesis address clustering problems, namely
subspace clustering and random process clustering. The third and
fourth part deal with compression, specifically with deep generative
models for lossy compression and neural network model compres-
sion for inference on resource-constrained hardware. Each part is
introduced individually below.

1.1. NOISY SUBSPACE CLUSTERING VIA MATCHING
PURSUITS (CHAPTER 2)

Extracting structural information from large high-dimensional data
sets in a computationally efficient manner is a major challenge in many
modern machine learning tasks. A structure widely encountered in
practical applications is that of unions of (low-dimensional) subspaces.
The problem of extracting the assignments of the data points in
a given data set to the subspaces without prior knowledge of the
number of subspaces, their orientations and dimensions is referred
to as subspace clustering and has found applications in, e.g., image
representation and segmentation (Hong et al., 2006), face clustering
(Ho et al., 2003), motion segmentation (Costeira and Kanade, 1998),
system identification (Vidal et al., 2003), and genomic inference (Jiang
et al., 2004). More formally, given a set Y = Y1 ∪ . . . ∪ YL of N data

1

1 INTRODUCTION

points in Rm, where the points in Y` lie in or near the d`-dimensional
linear subspace S` ⊂ Rm, we want to find the association of the points
in Y to the Y`, without prior knowledge on the S`.
The subspace clustering problem has been studied for more than

two decades with a correspondingly sizeable body of literature. The
algorithms available to date can roughly be categorized as algebraic,
statistical, and spectral clustering-based; we refer to (Vidal, 2011) for a
review of the most prominent representatives of each class. While many
subspace clustering algorithms exhibit good performance in practice,
corresponding analytical results under non-restrictive conditions on
the relative orientations of the subspaces are available only for a small
set of algorithms. Specifically, during the past few years a number
of new algorithms, which rely on sparse representations (of each
data point in terms of all the other data points) followed by spectral
clustering (von Luxburg, 2007), were proposed and mathematically
analyzed (Elhamifar and Vidal, 2013; Soltanolkotabi and Candès,
2012; Soltanolkotabi et al., 2014; Wang and Xu, 2016; Heckel and
Bölcskei, 2015; Dyer et al., 2013; Park et al., 2014; You et al., 2016).
These algorithms exhibit good empirical performance and succeed
provably under quite generous conditions on the relative orientations
of the subspaces. Almost all analytical performance results available
to date apply, however, to the noiseless case, where the data points
lie exactly in the union of the S`. A notable exception is the sparse
subspace clustering (SSC) algorithm by Elhamifar and Vidal (2013),
which was shown by Soltanolkotabi et al. (2014) and Wang and Xu
(2016) to succeed for noisy data even when the subspaces intersect.
SSC employs the Lasso1 (or `1-minimization in the noiseless case) to
find a sparse representation (or, more precisely, approximation) of
each data point in terms of all the other data points, then constructs
an affinity graph based on the so-obtained sparse representations, and

1We note that the SSC formulation in (Elhamifar and Vidal, 2013) adds a term
to the Lasso objective function to account for sparse corruptions of the data points.
The performance guarantees in (Soltanolkotabi et al., 2014; Wang and Xu, 2016)
apply, however, to the “pure” Lasso version of SSC. Throughout this chapter,
unless explicitly stated otherwise, SSC will refer to the “pure” Lasso version.

2

1.1 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

finally determines subspace assignments through spectral clustering of
the affinity graph. To understand the intuition behind this approach,
first note that in the noiseless case every data point yj in S` can be
represented by (at most d`) other data points in S` provided that the
points in Y` are non-degenerate. In the noisy case, the hope is now
that the sparse representation of yj ∈ Y` in terms of Y\{yj} delivered
by SSC involves mostly points belonging to Y` thanks to the sparsity-
promoting nature of the Lasso. Of course, this will happen only if
the subspaces S` underlying the Y` are sufficiently far apart. The
analytical performance results in (Soltanolkotabi and Candès, 2012;
Soltanolkotabi et al., 2014; Wang and Xu, 2016) quantify the impact
of subspace dimensions and relative orientations, noise variance, and
the number of data points on the performance of SSC.
When the data is high-dimensional or the number of data points

is large, solving the N Lasso problems (each in N − 1 variables)
in SSC can be computationally challenging. Greedy algorithms for
computing sparse representations of the data points (in terms of all
the other data points) are therefore an interesting alternative. Three
such alternatives were proposed in the literature, namely the SSC-
orthogonal matching pursuit (SSC-OMP) algorithm by Dyer et al.
(2013), the thresholding-based subspace clustering (TSC) algorithm by
Heckel and Bölcskei (2015), and the nearest subspace neighbor (NSN)
algorithm by Park et al. (2014). SSC-OMP employs OMP instead of
the Lasso to compute sparse representations of the data points. TSC
relies on the nearest neighbors—in spherical distance—of each data
point to construct the affinity graph, and NSN greedily assigns to each
data point a subset of the other data points by iteratively selecting
the data point closest (in Euclidean distance) to the subspace spanned
by the previously selected data points.

To the best of our knowledge, besides SSC, TSC is the only subspace
clustering algorithm that was proven to succeed under noise. The
performance guarantees available for SSC-OMP (Dyer et al., 2013;
You et al., 2016; Heckel et al., 2017) all apply to the noiseless case.

The main contributions of this chapter are an analytical perfor-
mance characterization of SSC-OMP in the noisy case, and of a

3

1 INTRODUCTION

new algorithm, termed SSC-matching pursuit (SSC-MP), which is
obtained by replacing OMP in SSC-OMP by the MP algorithm (Fried-
man and Stuetzle, 1981; Mallat and Zhang, 1993). Matching pursuit
algorithms per se have been studied extensively in the sparse signal
representation literature (Blumensath et al., 2012) and the approxi-
mation theory literature (Temlyakov, 2003). Replacing OMP by MP
is attractive as the per-iteration complexity of MP is smaller than
that of OMP thanks to the absence of the orthogonalization step.
On the other hand, the representation error (in `2-norm) of MP may
decay slower—as a function of the number of iterations—than that of
OMP (Temlyakov, 2003). We shall see, however, that in the context
of subspace clustering, in practice, the lower per-iteration cost of MP
usually translates into lower overall running time, while delivering
essentially the same clustering performance as OMP.
Our main results are sufficient conditions for SSC-OMP and SSC-

MP to succeed in terms of the no false connections (NFC) property
(see Definition 2.1), a widely used (Soltanolkotabi and Candès, 2012;
Soltanolkotabi et al., 2014; Dyer et al., 2013; Heckel and Bölcskei, 2015;
Wang and Xu, 2016; Heckel et al., 2017; Dyer et al., 2013; You et al.,
2016; Park et al., 2014) subspace clustering performance measure.
Specifically, we find that both algorithms succeed even when the
subspaces intersect and when the signal to noise ratio is as low as 0dB.
Furthermore, the sufficient conditions we obtain point at an intuitively
appealing tradeoff between the affinity of the subspaces (a similarity
measure for pairs of subspaces defined later), the noise variance, and
the number of points in the data set corresponding to each subspace.
This “clustering condition” is structurally similar to those for SSC in
(Soltanolkotabi et al., 2014, Thm. 3.1), (Wang and Xu, 2016, Thm.
10) and for TSC in (Heckel and Bölcskei, 2015, Thm. 3). Moreover,
numerical results indicate that our clustering condition is order-wise
optimal. The main technical challenge in proving our results stems
from the need to handle statistical dependencies between quantities
computed in different iterations of the OMP and MP algorithms.

OMP and MP are commonly stopped either after a prescribed maxi-
mum number of iterations, which we henceforth call data-independent

4

1.1 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

(DI)-stopping, or when the representation error falls below a threshold
value, referred to as data-dependent (DD)-stopping. For a given data
point to be represented, OMP is guaranteed to select a new data point
in every iteration and the sparsity level of the resulting representation
therefore equals the number of OMP iterations performed. MP, on the
other hand, may select individual data points to participate repeatedly
in the sparse representation of a given data point. The sparsity level
of the representation computed by MP may therefore be smaller than
the number of iterations performed. As it is important for subspace
clustering purposes to be able to control the sparsity level, we propose
a new hybrid stopping criterion for MP terminating the algorithm
either when a given maximum number of iterations was performed or
when a given target sparsity level is attained. We consider SSC-OMP
and SSC-MP both with DI- and DD-stopping. For DI-stopping, we
present numerical results which indicate that performing (order-wise)
more than d` OMP iterations can severely compromise the perfor-
mance of SSC-OMP. SSC-OMP with DI-stopping therefore requires
fairly accurate knowledge of the subspace dimensions. SSC-MP, on
the other hand, exhibits a much more robust behavior in this re-
gard. For DD-stopping, we prove that taking the threshold value
on the representation error to be linear in the noise standard devi-
ation ensures that both OMP and MP select order-wise at least d`
points from Y`\{yj} to represent yj ∈ Y`, provided that the noise
variance is sufficiently small. Numerical results further indicate that
both algorithms, indeed, select order-wise no more than d` points
from Y`\{yj} and essentially no points from Y\Y`. This means that
SSC-OMP and SSC-MP with DD-stopping implicitly estimate (again
order-wise) the subspace dimensions d`. This can—in principle—also
be accomplished by SSC with a selection procedure for the Lasso
parameter that is based on solving an auxiliary (constrained Lasso)
optimization problem for each data point (Soltanolkotabi et al., 2014).
This procedure imposes, however, significant computational burden;
in contrast DD-stopping as performed here comes at essentially zero
computational cost.

Finally, we present extensive numerical results comparing the per-

5

1 INTRODUCTION

formance of SSC-OMP, SSC-MP, SSC, TSC, and NSN for synthetic
and real data. In particular, we find that SSC-MP outperforms SSC
in the reference problem of face clustering on the Extended Yale B
data set (Georghiades et al., 2001; Lee et al., 2005) and does so at
drastically lower running time.

1.2. ROBUST NONPARAMETRIC NEAREST NEIGHBOR
RANDOM PROCESS CLUSTERING (CHAPTER 3)

Consider a set of N noisy length-M observations of stationary ergodic
discrete-time random processes stemming from L < N (typically
L � N) different generative processes, referred to as generative
models henceforth. We want to cluster these observations according
to their generative models without prior knowledge of the model
statistics and the number of generative models, L. This problem arises
in many domains of science and engineering where (large amounts of)
data have to be divided into meaningful categories in an unsupervised
fashion. Concrete examples include audio and video sequences (Wang
et al., 2000), electrocardiography (ECG) recordings (Kalpakis et al.,
2001), industrial production indices (Corduas and Piccolo, 2008), and
financial time series (Marti et al., 2016a, 2017).

Common measures for quantifying the (dis)similarity of generative
models typically rely on process statistics estimated from observa-
tions using either parametric or nonparametric methods. Parametric
methods yield good performance when the (parametric) model the
estimation is based on matches the true (unknown) model well. Non-
parametric methods typically outperform parametric ones in case of
model mismatch (Stoica and Moses, 2005), a likely scenario in many
practical applications. Existing random process clustering methods
quantify the dissimilarity of observations using the Euclidean dis-
tance between estimated process model parameters (Corduas and
Piccolo, 2008; Marti et al., 2016a), cepstral coefficients (Kalpakis
et al., 2001; Boets et al., 2005), or normalized periodograms (Caiado
et al., 2006). Other methods rely on divergences (e.g., Kullback-Leibler

6

1.2 NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

divergence) between normalized periodograms (Kakizawa et al., 1998;
Vilar and Pértega, 2004), use the distributional distance (Gray, 2009)
between processes (Ryabko, 2010; Khaleghi et al., 2012, 2016), or
the earth mover’s distance between copulas of the processes (Marti
et al., 2016a,b). In all cases the resulting distances are fed into a
standard clustering algorithm such as k-means or hierarchical cluster-
ing. Another line of work employs a Bayesian framework to infer the
cluster assignments, e.g., according to a maximum a posteriori crite-
rion (Xiong and Yeung, 2004). While many of these approaches have
proven effective in practice, corresponding analytical performance
results are scarce. Moreover, existing analytical results are mostly
concerned with the asymptotic regime where the observation length
goes to infinity while the number of observations is fixed (see, e.g.,
(Kakizawa et al., 1998; Vilar and Pértega, 2004; Corduas and Piccolo,
2008; Ryabko, 2010; Khaleghi et al., 2012; Borysov et al., 2014));
the finite observation-length regime has attracted significantly less
attention (Ryabko, 2010; Ryabko and Mary, 2013; Khaleghi et al.,
2016; Marti et al., 2016a).

In this chapter, we consider two process clustering algorithms that
apply to nonparametric generative models and employ the L1-distance
between estimated power spectral densities (PSDs) as dissimilarity
measure. The first one, termed nearest neighbor process clustering
(NNPC), relies on partitioning the q-nearest neighbor graph (q is a pa-
rameter of the algorithm) of the observations via normalized spectral
clustering. NNPC is inspired by the TSC (subspace clustering) algo-
rithm (Heckel and Bölcskei, 2015) and, to the best of our knowledge,
has not been considered before in the context of process clustering.
The second algorithm, which will be referred to as k-means (KM),
consists of a single k-means iteration with farthest point initialization
(Katsavounidis et al., 1994) and was first proposed in (Ryabko, 2010),
albeit with a different dissimilarity measure.
Assuming real-valued stationary ergodic Gaussian processes with

arbitrary (continuous) PSDs as generative models, we characterize
the performance of NNPC and KM analytically for finite-length
observations—potentially with missing entries—contaminated by in-

7

1 INTRODUCTION

dependent additive real-valued white Gaussian noise. We find that
both algorithms succeed with high probability even when the PSDs
of the generative models exhibit significant overlap, all provided that
the observation length is sufficiently large and the noise variance is
sufficiently small. Our analytical results quantify the tradeoff between
observation length, fraction of missing entries, noise variance, and
distance between the (true) PSDs of the generative models.

Furthermore, we prove that treating the finite-length observations
as vectors in Euclidean space and clustering them using the TSC
algorithm (Heckel and Bölcskei, 2015) results in performance strictly
inferior to that obtained for NNPC. We argue that the underlying
cause is to be found in TSC employing spherical distance as dissimi-
larity measure, thereby ignoring the stationary process structure of
the observations. In a broader context this suggests that clustering
observations of random processes using dissimilarity measures con-
ceived with Euclidean geometry in mind, a popular ad-hoc approach
in practice (Esling and Agon, 2012), can lead to highly suboptimal
performance.

We evaluate the performance of NNPC and KM on synthetic and on
real data, and find that NNPC outperforms state-of-the-art algorithms
in human motion sequence clustering. Furthermore, NNPC and KM
are shown to yield better clustering performance than single linkage
and average linkage hierarchical clustering based on the L1-distance
between estimated PSDs. We also compare (L1-based) NNPC and
KM to their respective L2 and L∞-cousins and find that the original
variants consistently yield better or the same results.

1.3. DEEP GENERATIVE MODELS FOR
DISTRIBUTION-PRESERVING LOSSY
COMPRESSION (CHAPTER 4)

Data compression methods based on deep neural networks (DNNs)
have recently received a great deal of attention. These methods were

8

1.3 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

shown to outperform traditional codecs in image compression (Toderici
et al., 2015, 2017; Theis et al., 2017; Rippel and Bourdev, 2017; Ballé
et al., 2017; Agustsson et al., 2017; Johnston et al., 2017; Li et al., 2018;
Mentzer et al., 2018; Ballé et al., 2018), speech compression (Kankana-
halli, 2018), and video compression (Wu et al., 2018) under several
distortion measures. In addition, DNN-based compression methods
are flexible and can be adapted to specific domains leading to further
reductions in bitrate, and promise fast processing thanks to their
internal representations that are amenable to modern data processing
pipelines (Torfason et al., 2018).
In the context of image compression, learning-based methods ar-

guably excel at low bitrates by learning to realistically synthesize
local image content, such as texture. While learning-based methods
can lead to larger distortions w.r.t. measures optimized by traditional
compression algorithms, such as peak signal-to-noise ratio (PSNR),
they avoid artifacts such as blur and blocking, producing visually more
pleasing results (Toderici et al., 2015, 2017; Theis et al., 2017; Rippel
and Bourdev, 2017; Ballé et al., 2017; Agustsson et al., 2017; Johnston
et al., 2017; Li et al., 2018; Mentzer et al., 2018; Ballé et al., 2018).
In particular, visual quality can be improved by incorporating gener-
ative adversarial networks (GANs) (Goodfellow et al., 2014) into the
learning process (Rippel and Bourdev, 2017; Agustsson et al., 2018).
Rippel and Bourdev (2017) leveraged GANs for artifact suppression,
whereas Agustsson et al. (2018) used them to learn synthesizing image
content beyond local texture, such as facades of buildings, obtaining
visually pleasing results at very low bitrates.

In the third chapter of this thesis, we propose a formalization of this
line of work: A compression system that respects the distribution of
the original data at all rates—a system whose decoder generates i.i.d.
samples from the data distribution at zero bitrate, then gradually
produces reconstructions containing more content of the original image
as the bitrate increases, and eventually achieves perfect reconstruction
at high enough bitrate (see Figure 4.1 for examples). Such a system
can be learned from data in a fully unsupervised fashion by solving
what we call the distribution-preserving lossy compression (DPLC)

9

1 INTRODUCTION

problem: Optimizing the rate-distortion tradeoff under the constraint
that the reconstruction follows the distribution of the training data.
Enforcing this constraint promotes artifact-free reconstructions, at
all rates.
We then show that the algorithm proposed in (Agustsson et al.,

2018) is solving a special case of the DPLC problem, and demonstrate
that it fails to produce stochastic decoders as the rate tends to zero in
practice, i.e., it is not effective in enforcing the distribution constraint
at very low bitrates. This is not surprising as it was designed with a
different goal in mind. We then propose and study different alternative
approaches based on deep generative models that overcome the issues
inherent with (Agustsson et al., 2018). In a nutshell, one first learns
a generative model and then applies it to learn a stochastic decoder,
obeying the distribution constraint on the reconstruction, along with
a corresponding encoder. To quantify the distribution mismatch of the
reconstructed samples and the training data in the learning process
we rely on the Wasserstein distance. One distinct advantage of our
approach is that we can theoretically characterize the distribution
of the reconstruction and bound the distortion as a function of the
bitrate.
On the practical side, to learn the generative model, we rely on

Wasserstein generative adversarial network (WGAN) (Arjovsky et al.,
2017) and Wasserstein autoencoder (WAE) (Tolstikhin et al., 2018), as
well as a novel combination thereof termed Wasserstein++. The latter
attains high sample quality comparable to WGAN (when measured
in terms of the Fréchet inception distance (FID) (Heusel et al., 2017))
and yields a generator with good mode coverage as well as a structured
latent space suited to be combined with an encoder, like WAE. We
present an extensive empirical evaluation of the proposed approach on
two standard GAN data sets, CelebA (Liu et al., 2015b) and LSUN
bedrooms (Yu et al., 2015), realizing the first system that effectively
solves the DPLC problem.

10

1.4 DEEP LEARNING WITH A MULTIPLICATION BUDGET

1.4. DEEP LEARNING WITH A MULTIPLICATION
BUDGET (CHAPTER 5)

The outstanding predictive performance of DNNs often comes at the
cost of large model size, and corresponding computational inefficiency.
This can make the deployment of DNNs on mobile and embedded
hardware challenging. For example, a full-precision ResNet-152 (He
et al., 2016a) contains 60.2 million parameters and one forward pass
requires 11.3 billion floating point operations. A variety of methods
to address this issue were proposed recently, including optimizing
the network architecture, factorizing the weight tensors, pruning
the weights, and reducing the numerical precision of weights and
activations (see Section 5.1 for a detailed overview).
These prior works mainly focused on decreasing the number of

multiply-accumulate operations used by DNNs. In contrast, in this
chapter, the objective that guides our algorithm design is a reduction
of the number of multiplications. This algorithm design principle
has led to many fast algorithms in linear algebra, most notably
Strassen’s matrix multiplication algorithm (Strassen, 1969). Strassen’s
algorithm uses 7 instead 8 multiplications to compute the product of
two 2× 2 matrices (and requires O(n2.807) operations for multiplying
n× n matrices). In the context of DNNs, the same design principle
led to the Winograd filter-based convolution algorithm proposed by
Lavin and Gray (2016). This algorithm only requires 16 instead of
36 multiplications to compute 2× 2 outputs of 2D convolutions with
3 × 3 kernels and achieves a 2–3× speedup on graphics processing
units (GPUs) in practice.
From a hardware perspective, multipliers occupy considerably

more area on chip than adders (for fixed-point data types). Field-
programmable gate arrays (FPGAs) and application-specific inte-
grated circuits (ASICs) can therefore potentially accommodate con-
siderably more adders than multipliers, and trading off multiplications
against additions is desirable. In fact, it was demonstrated recently
that DNN architectures which rely on a large number of additions

11

1 INTRODUCTION

and a small number of multiplications (such as (Li et al., 2016))
achieve a 60% higher throughput on FPGA than on GPU, while being
2.3× better in performance per watt (Nurvitadhi et al., 2017). In the
context of ASICs, reducing the number of multiplications is beneficial
as multiplication operations consume significantly more energy than
addition operations (3–30× depending on the data type (Horowitz,
2014; Andri et al., 2018)). More generally, replacing multiplications
in DNNs by additions leads to a reduction in models size as addi-
tion/subtraction can be encoded as a binary weight. This is beneficial
in terms of throughput for most deep learning applications, which are
typically memory-bound.
Motivated by these observations, we propose a novel framework

to drastically reduce the number of multiplications used by DNNs
for inference. Specifically, for every DNN layer, we cast the (ma-
trix) multiplication of the weight matrix with the activations as a
2-layer sum-product network (SPN) (arithmetic circuit). The SPNs
disentangle (scalar) multiplications and additions in a way similar
to Strassen’s algorithm. The number of hidden units in the SPNs
therefore determines the multiplication budget of the corresponding
DNN layers. We then learn the addition and multiplication operations
for all layers jointly from data by learning the edges of the SPNs,
encoded as ternary {−1, 0, 1} matrices. As the transforms realized
by the SPNs are approximate and adapted to the weight matrices
and distribution of the activation tensors in the DNN, this allows us
to reduce the number of multiplications much more drastically than
hand-engineered transforms like Strassen’s algorithm or the more
specialized Winograd filter-based convolution. In summary, our main
contributions are the following.

• We propose a SPN-based framework for stochastic gradient-based
end-to-end learning of fast approximate transforms for the arith-
metic operations in DNN layers.

• Our framework allows fine-grained control of the number of mul-
tiplications and additions used at inference time, enabling precise

12

1.5 PUBLICATIONS

adjustment of the tradeoff between arithmetic complexity and ac-
curacy of DNN models.

• Extensive evaluations on the CIFAR-10 and ImageNet data sets
show that our method applied to ResNet (He et al., 2016a) yields the
same or higher accuracy than existing complexity reduction methods
while using considerably fewer multiplications. For example, for
ResNet-18 our method reduces the number of multiplications by
99.63% while incurring a top-1 accuracy degradation of only 2.0%
compared to the full-precision model on ImageNet.

• Our method applied to a language model with convolution and
LSTM layers (Kim et al., 2016a) results in a 99.69% reduction in
multiplications while inducing an increase of only 3.3% in perplexity.

• Combining our method with knowledge distillation (KD) tech-
niques, we obtain for the first time massive reductions in number
of multiplications (99.5% and more) while maintaining the pre-
dictive performance of the full-precision models, for both image
classification and language modeling.

• We demonstrate that the proposed framework is able to rediscover
Strassen’s algorithm, i.e., it can learn to (exactly) multiply 2× 2
matrices using only 7 multiplications instead of 8.

Two key aspects of our approach that lead to gains compared
previous methods are (i) our method is specifically tailored to reduce
the number of multiplications whereas some previous works put more
emphasis on model size reduction, and (ii) we leverage knowledge
distillation which improves our results further.

1.5. PUBLICATIONS

The majority of the results in this thesis have been published during
the course of the PhD studies. Specifically, the results in Chapters 2
and 3 appear in (Tschannen and Bölcskei, 2018) and (Tschannen and

13

1 INTRODUCTION

Bölcskei, 2015, 2017), respectively. Moreover, the results presented in
Chapter 4 were accepted for publication (Tschannen et al., 2018a),
and the results in Chapter 5 were published in (Tschannen et al.,
2018b). Other publications relevant for this thesis are (Tschannen,
2014; Heckel et al., 2017; Locatello et al., 2017a,b; Agustsson et al.,
2017; Torfason et al., 2018; Mentzer et al., 2018; Agustsson et al.,
2018; Furlanello et al., 2018).

1.6. NOTATION

We use lowercase boldface letters to denote (column) vectors and
uppercase boldface letters to designate matrices. The superscript >
stands for transposition. For the vector v, [v]i denotes its ith element,
‖v‖0 is the number of non-zero entries, and ‖v‖∞ := maxi |[v]i|. For
the matrix A, Ai,j denotes the entry in the ith row and jth column, Ai

designates its ith row, A−i stands for the matrix obtained by removing
the ith column from A, AT is the submatrix of A consisting of the
columns with index in the set T , R(A) is its range space, ‖A‖2→2 :=
max‖v‖2=1 ‖Av‖2 its spectral norm, ‖A‖F := (

∑
i,j |Ai,j |2)1/2 its

Frobenius norm, tr(A) =
∑
i Ai,i its trace (for A square), and σmin(A)

and σmax(A) refer to its minimum and maximum singular value,
respectively. For a matrix A ∈ Rm×n, m ≥ n, of full column rank, we
denote its pseudoinverse by A† := (A>A)−1A>. I and 1 stand for
the identity matrix and the all ones matrix (the latter not necessarily
square), respectively. vec(A) is the vectorization of the matrix A =
[a1 . . . an], i.e., vec(A) = [a1

> . . . an>]>. For matrices A and B of
identical dimensions, A�B is the Hadamard product, i.e., (A�B)i,j =
Ai,jBi,j . For a vector b ∈ {0, 1}n, we let Pb := diag([b]1, . . . , [b]n).

The set {1, . . . , N} is denoted by [N]. The cardinality of the set T
is |T | and its complement is T . The unit sphere in Rm is Sm−1 :=
{x ∈ Rm : ‖x‖2 = 1}.
The ith element of a sequence x is denoted by x[i]. The (cir-

cular) convolution of f, g ∈ L2([0, 1)) is defined as (f ∗ g)(y) :=∫ 1
0 f(x)g̃(y − x)dx, y ∈ [0, 1), where g̃ is the 1-periodic extension of

14

1.6 NOTATION

g. The composition of f and g is written as f ◦ g. log(·) refers to the
natural logarithm.
N (µ,Σ) stands for the distribution of a Gaussian random vector

with mean µ and covariance matrix Σ. The expectation of the random
variable X is written as E[X] and its distribution is denoted by PX .
The relation W ∼ PX designates that W follows the distribution PX ,
and X ∼ Y indicates that X and Y are identically distributed.

We say that a subgraph H of a graph G is connected if every pair
of nodes in H can be joined by a path with nodes exclusively in H.
A connected subgraph H of G is called a connected component of G
if there are no edges between H and the remaining nodes in G.

15

CHAPTER 2

Noisy Subspace Clustering via

Matching Pursuits

Sparsity-based subspace clustering algorithms have attracted signif-
icant attention thanks to their excellent performance in practical
applications. A prominent example is the SSC algorithm by Elhamifar
and Vidal (2013), which performs spectral clustering based on an
adjacency matrix obtained by sparsely representing each data point
in terms of all the other data points via the Lasso. When the number
of data points is large or the dimension of the ambient space is high,
the computational complexity of SSC quickly becomes prohibitive.
Dyer et al. (2013) observed that SSC-OMP obtained by replacing
the Lasso by the greedy OMP algorithm results in significantly lower
computational complexity, while often yielding comparable perfor-
mance. The central goal of this chapter is an analytical performance
characterization of SSC-OMP for noisy data. Moreover, we introduce
and analyze the SSC-MP algorithm, which employs MP in lieu of
OMP. Both SSC-OMP and SSC-MP are proven to succeed even when
the subspaces intersect and when the data points are contaminated
by severe noise. The clustering conditions we obtain for SSC-OMP
and SSC-MP are similar to those for SSC and for the TSC algorithm
due to Heckel and Bölcskei (2015). Analytical results in combination
with numerical results indicate that both SSC-OMP and SSC-MP
with a data-dependent stopping criterion automatically detect the

17

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

dimensions of the subspaces underlying the data. Experiments on syn-
thetic and on real data show that SSC-MP often matches or exceeds
the performance of the computationally more expensive SSC-OMP
algorithm. Moreover, SSC-MP compares very favorably to SSC, TSC,
and the NSN algorithm, both in terms of clustering performance and
running time. In addition, we find that, in contrast to SSC-OMP, the
performance of SSC-MP is very robust with respect to the choice of
parameters in the stopping criteria.

2.1. SUBSPACE CLUSTERING VIA MATCHING
PURSUITS

OMP and MP per se were introduced in (Chen et al., 1989) and
(Friedman and Stuetzle, 1981), respectively, and have been studied
extensively in the sparse signal representation literature, see, e.g.,
(Blumensath et al., 2012), (Foucart and Rauhut, 2013, Chap. 3). In
the context of subspace clustering the premise is that the (sparse)
representations of each data point in terms of all the other data points
delivered by OMP and MP contain predominantly data points that
lie in the same subspace as the data point under consideration. We
refer to (Elhamifar and Vidal, 2013), (Heckel and Bölcskei, 2015,
Sec. 2.B) for a detailed discussion on the relation between sparse
signal representation theory and subspace clustering.

2.1.1. The algorithms

We first briefly review the SSC-OMP algorithm, introduced in (Dyer
et al., 2013), and then present the novel SSC-MP algorithm. The
ensuing formulations of SSC-OMP and SSC-MP assume that the data
points are of comparable `2-norm. This assumption is relevant in Step
1 in both algorithms, but is not restrictive as the data points can
always be normalized prior to processing. Further, an estimate L̂ of
the number of subspaces L is assumed to be available. The estimation
of L from the data set under consideration is discussed below.

18

2.1 SUBSPACE CLUSTERING VIA MATCHING PURSUITS

The SSC-OMP algorithm (Dyer et al., 2013): Given a set of N
data points Y in Rm, an estimate of the number of subspaces L̂, and
• a maximum number of iterations smax ≤ min{m,N − 1} for DI-
stopping,
• a threshold τ on the representation error for DD-stopping,
perform the following steps:
Step 1: For every yj ∈ Y, find a representation of yj in terms
of Y\{yj} using OMP as follows: Initialize the iteration counter
s = 0, the residual r0 = yj, and the set of selected indices Λ0 = ∅.
Denote the data matrix containing the points in Y by Y ∈ Rm×N .
For s = 1, 2, . . . , perform the updates

λs = arg max
i∈[N]\(Λs−1∪{j})

|〈yi, rs−1〉| (2.1)

Λs = Λs−1 ∪ λs

rs =
(
I−YΛs(YΛs)

†
)

yj (2.2)

=
(

I− ỹλs(ỹλs)
>

‖ỹλs‖
2
2

)
rs−1,

where ỹλs = (I−YΛs−1(YΛs−1)†)yλs , until at least one of the following
criteria is met
• for DI-stopping:
s = smax, maxi∈[N]\(Λs∪{j}) |〈yi, rs〉| = 0.1

• for DD-stopping:
‖rs‖2 ≤ τ , maxi∈[N]\(Λs∪{j}) |〈yi, rs〉| = 0.

Ties in the maximization (2.1) are broken arbitrarily.
Step 2: With the number of OMP iterations actually performed de-
noted by sa, compute the representation coefficient vectors bj ∈ RN ,
j ∈ [N], according to (bj)Λsa = (YΛsa)†yj, (bj)Λsa

= 0, and con-
struct the adjacency matrix A = B+B>, where B = abs([b1 . . . bN])

1Throughout the chapter, we use the convention of maximization over the empty
set evaluating to 0.

19

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

with abs(·) denoting absolute values taken element-wise.
Step 3: Apply normalized spectral clustering (Ng et al., 2001; von
Luxburg, 2007) to (A, L̂).

The SSC-MP algorithm: Given a set of N data points Y in Rm,
an estimate of the number of subspaces L̂, and
• a maximum number of iterations smax and a target sparsity level
pmax for DI-stopping,

• a threshold τ on the representation error for DD-stopping,
perform the following steps:
Step 1: For every yj ∈ Y, find a representation of yj in terms of
Y\{yj} using MP as follows: Initialize the iteration counter s = 0,
the residual q0 = yj, and the coefficient vector bj ∈ RN as bj = 0.
For s = 1, 2, . . . , perform the updates

ωs = arg max
i∈[N]\{j}

|〈yi,qs−1〉| (2.3)

[bj]ωs ← [bj]ωs + 〈yωs ,qs−1〉
‖yωs‖

2
2

(2.4)

qs =
(

I− yωs(yωs)
>

‖yωs‖
2
2

)
qs−1 (2.5)

until at least one of the following criteria is met
• for DI-stopping:
s = smax, ‖bj‖0 = pmax, maxi∈[N]\{j} |〈yi,qs〉| = 0.

• for DD-stopping:
‖qs‖2 ≤ τ , maxi∈[N]\{j} |〈yi,qs〉| = 0.

Ties in the maximization (2.3) are broken arbitrarily.
Step 2: Construct the adjacency matrix A = B + B>, where B =
abs([b1 . . . bN]).
Step 3: Apply normalized spectral clustering (Ng et al., 2001; von
Luxburg, 2007) to (A, L̂).

20

2.1 SUBSPACE CLUSTERING VIA MATCHING PURSUITS

Stopping criteria: We emphasize that OMP, thanks to the orthog-
onalization (2.2) of the residual rs−1 w.r.t. all data points selected
previously, is guaranteed to select a new data point in every iteration
and hence the sparsity level of bj equals the number of OMP iterations
performed. In contrast, MP orthogonalizes (see (2.5)) the residual
qs−1 w.r.t. the data point yωs selected in the current iteration s only
and may therefore select the same data point to participate repeatedly
in the representation of yj . The sparsity level of bj may hence be
smaller than the number of MP iterations performed, which is why
the DI-stopping criterion for MP incorporates termination when a
given target sparsity level, namely pmax, is attained. Choosing smax
large enough, stopping will, indeed, be activated by ‖bj‖0 = pmax.
Having control over the sparsity level of the coefficient vectors bj can
be important to achieve good clustering performance as discussed
below. Setting pmax = N , on the other hand, guarantees that stopping
is activated through s = smax and thereby allows to control the maxi-
mum number of MP iterations through choice of smax. This hybrid
stopping criterion does not seem to have been considered before in
the literature.
For DD-stopping, OMP is guaranteed to stop as soon as a basis

for the subspace yj lies in has been found or, in case yj does not lie
in the span of Y\{yj}, the best representation—in the least-squares
sense—of yj in terms of the points in Y\{yj}. On the other hand,
MP is, in general, not guaranteed to terminate after a finite number of
iterations as it may fail to activate either of the conditions ‖qs‖2 ≤ τ
and maxi∈[N]\{j} |〈yi,qs〉| = 0 if τ is chosen too small (Mallat and
Zhang, 1993). For most data sets encountered in practice this is not an
issue. It can, however, become a problem when the data set contains
outliers that cannot be represented sparsely by the other data points.
In such cases it is advisable to employ the DI-stopping criterion which
guarantees that at most smax iterations are performed.

Implementation aspects: As MP requires the computation of inner
products only, whereas OMP contains a (least-squares) orthogonal-
ization step (typically carried out by QR decomposition or Cholesky

21

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

factorization (Blumensath et al., 2012)), the per-iteration computa-
tional cost of SSC-MP is lower than that of SSC-OMP. The numerical
results in Section 2.3.2 indicate that this typically also translates into
a lower overall running time for SSC-MP at fixed performance.

Weak selection rules: For very large data sets one can often speed
up OMP and MP by relaxing the selection rules (2.1) and (2.3)
to so-called weak selection rules (Blumensath et al., 2012) as fol-
lows. Instead of (2.1), one determines λs such that |〈yλs , rs−1〉| ≥
αmaxi∈[N]\(Λs−1∪{j}) |〈yi, rs−1〉| and instead of (2.3), one finds ωs
according to |〈yωs ,qs−1〉| ≥ αmaxi∈[N]\{j} |〈yi,qs−1〉|, in both cases
for a fixed relaxation parameter α ∈ (0, 1]. These weakened selection
rules can be implemented efficiently using, e.g., locality-sensitive hash-
ing (Jain et al., 2011; Vitaladevuni et al., 2011). For conciseness, we
shall not analyze weak selection rules here, but only note that our
main results presented in Section 2.2 extend to weak selection rules
with minor modifications.

2.1.2. Parameter selection

In both algorithms, L̂ may be estimated in Step 2 based on the
adjacency matrix A using the eigengap heuristic (von Luxburg, 2007)
(note that L is needed only in Step 3), which relies on the fact that the
number of zero eigenvalues of the normalized Laplacian of the graph
G with adjacency matrix A corresponds to the number of connected
components of G.

The spectral clustering step (Step 3 in both algorithms) recovers the
oracle segmentation {Y1, . . . ,YL} of Y if L̂ = L and if each connected
component in G corresponds to exactly one of the Y` (von Luxburg,
2007, Prop. 4; Sec. 7). Choosing the parameters smax and pmax in the
case of DI-stopping, and τ for DD-stopping, appropriately is therefore
crucial. Indeed, as smax, pmax, and τ determine the sparsity level of
the representation coefficient vectors bj , they control the number of
edges in G and hence the connectivity properties of G. Specifically,
taking smax, pmax too small or τ too large results in weak connectivity

22

2.1 SUBSPACE CLUSTERING VIA MATCHING PURSUITS

and may hence cause the subgraphs of G corresponding to individual
Y` to split up into multiple connected components. Spectral clustering
would then assign these components to different clusters, which means
that a given set Y` is divided up into multiple (disjoint) sets. On the
other hand, choosing smax, pmax too big or τ too small will result in
strong connectivity and hence potentially in “false connections”, i.e.,
in edges in G between points that correspond to different Y`. Spectral
clustering exhibits, however, a certain amount of robustness vis-à-
vis false connections with small corresponding weights in G. From
what was just said it follows that ideally smax, pmax, and τ should
be chosen such that the sparsity levels of the bj are on the order of
the subspace dimensions. This can be seen as follows. Assume that
the points in Y` are well spread out on the subspace S`, ` ∈ [L], and
perturbed by additive isotropic Gaussian noise. If the noise variance
is not too large the noisy data points yj ∈ Y` will remain close to S`.
In this case, roughly d` points from Y`\{yj} will suffice to represent
yj ∈ Y` with small representation error. Hence, if the subspaces S`
are sufficiently far apart, imposing a sparsity level of ≈ d` for yj ∈ Y`
through suitable choice of smax, pmax, τ will force OMP and MP to
select points predominantly from Y`\{yj}. If, however, the subspaces
are too close to each other, OMP and MP are likely to select points
from Y\Y` (i.e., false connections) as well.

We next discuss the selection of the parameters smax, pmax for DI-
and τ for DD-stopping in the light of what was just said. For simplicity
of exposition, in the noisy case we assume that the points in Y are
in general position, i.e., every subset of m or fewer points in Y is
linearly independent. Real-world data sets usually have this property
and the statistical data model our analysis is based on (see Section
2.2) conforms with this assumption as well. Note that if the points
in Y are in general position, OMP under DI-stopping is guaranteed
to perform exactly smax iterations, whereas MP will perform at least
min{smax, pmax,m,N − 1} iterations under DI-stopping.

DI-stopping: We first consider SSC-OMP. In the noiseless case, if the
subspaces are sufficiently far apart, OMP under DI-stopping automat-

23

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

ically stops after at most d` iterations for all yj ∈ Y`, ` ∈ [L] (Dyer
et al., 2013; You et al., 2016). Therefore, choosing smax ≥ max`∈[L] d`
guarantees that OMP automatically detects the dimensions of the
subspaces the points yj reside in. In contrast, in the noisy case, per-
forming more than ≈ d` iterations “forces” OMP to select points from
Y\Y` (corresponding to false connections) for the representation of
yj ∈ Y` as after ≈ d` iterations rs will roughly be orthogonal to S`
(see Figure 2.1). The choice of smax, in practice, therefore requires
knowledge of the subspace dimensions. In certain applications such
as, e.g., face clustering (Basri and Jacobs, 2003), information on the
subspace dimensions may, indeed, be available a priori. When the
subspace dimensions d` vary widely (across `), there may be no smax
that ensures both connectivity of all the subgraphs of G correspond-
ing to the Y`, and at the same time guarantees a small number of
false connections. In principle this problem could be mitigated by
setting smax for each yj individually according to the dimension of
the subspace it belongs to. This would, however, require knowledge
of the assignments of the data points yj to the subspaces S`, thereby
performing the actual subspace clustering task.

We now turn to SSC-MP. MP with pmax = N , i.e., the hybrid stop-
ping criterion is activated once smax iterations have been performed,
exhibits a stopping behavior that is fundamentally different from that
of OMP. As already mentioned this is a consequence of MP orthogo-
nalizing the residual only w.r.t. the data point selected in the current
iteration, thereby allowing for repeated selection of individual data
points. In the noiseless case, unlike SSC-OMP, SSC-MP can select
more than d` data points from Y`\{yj} to represent yj ∈ Y`, thereby
potentially producing a graph G with better connectivity than SSC-
OMP. On the other hand, SSC-MP tends to assign smaller weights
to the points in Y`\{yj} than SSC-OMP, which can lead to slightly
inferior performance (see the experiments reported in Appendix 2.3.5).
For the noisy case, the experiments on synthetic and real-world data,
reported in Section 2.3.4, show that in the first d` or so iterations MP
adds predominantly new points from the correct cluster Y`\{yj} and
thereafter tends to revisit previously selected data points or add new

24

2.1 SUBSPACE CLUSTERING VIA MATCHING PURSUITS

S1

S2

yj

yλ1= yω1
yλ2= yω2

yλ3

yω3

r1 = q1

q2

r2

Fig. 2.1: Evolution of the (normalized) residuals rs and qs corresponding
to OMP and MP, respectively, for the data point yj ∈ Y1. The data points
belonging to S2 are marked by circles. Note that all data points were normalized
to unit `2-norm prior to clustering.

points stemming mostly from Y`\{yj}. For fixed smax, this leads to a
smaller number of false connections than what would be obtained by
OMP. The example in Figure 2.1 illustrates this behavior. The data
set Y is drawn from the union of a two-dimensional subspace S1 and a
one-dimensional subspace S2, where S1 and S2 span a (principal) an-
gle of approximately 50 degrees. We consider the data point yj ∈ Y1.
In the first iteration, both OMP and MP select the same data point
yλ1 = yω1 and we have r1 = q1. In the second iteration, the two
algorithms again select the same data point, namely yλ2 = yω2 , but
r2 is now almost orthogonal to S1 whereas q2 remains close to S1 as
MP orthogonalizes only w.r.t. yω2 . Specifically, the (principal) angle
between q2 and S1 is approximately 27 degrees, while q2 and S2

25

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

span an angle of approximately 50 degrees. In the third iteration MP
therefore selects a point from the set Y1\{yj}, whereas OMP chooses
a point from the wrong subspace Y2.
The experiments reported in Section 2.3.4 reveal the following

remarkable property. Even when we discount the advantage of MP—
owing to its ability to reselect data points—by forcing the sparsity
levels of MP and OMP to be equal to, say shigh, through appropriate
choice of smax and pmax, with shigh � d` for at least one ` ∈ [L],
MP still tends to select more points from Y` to represent yj ∈ Y`
than OMP does. Moreover, these numerical results indicate that MP
also tends to assign smaller (in absolute value) coefficients to false
connections, i.e., to points in Y\Y`; this can have a favorable effect on
performance thanks to the robustness of spectral clustering to false
connections with small associated weights.
Our analytical results in Section 2.2 guarantee that SSC-OMP

and SSC-MP succeed for smax and pmax linear—up to log-terms—in
the smallest subspace dimension, provided that the subspaces are
sufficiently far apart, the noise variance is sufficiently small, and the
data set contains sufficiently many points from each subspace.

DD-stopping: We assume throughout that τ is sufficiently large for
SSC-MP to terminate. For OMP in the context of sparse noisy signal
recovery, taking τ linear in the noise standard deviation σ is known
to lead to correct recovery of the sparse signal under certain technical
conditions (Cai and Wang, 2011). In the context of subspace clustering,
where the problem is actually of a different nature, the analytical
results in Section 2.2 indicate that such a choice for τ guarantees
that both SSC-OMP and SSC-MP select order-wise at least d` points
from Y` to represent yj ∈ Y`, provided that the subspaces S` are
sufficiently far apart and the points in Y` are well spread out on
S`, ` ∈ [L], and perturbed by additive isotropic Gaussian noise of
sufficiently small variance. The numerical results in Section 2.3.3 show
that the graphs G generated by SSC-OMP and SSC-MP will also
have a small number of false connections if τ , in addition, is not too
small. Appropriate choice of τ therefore makes both OMP and MP

26

2.2 MAIN RESULTS

automatically adjust the sparsity level for each data point according
to the dimension of the subspace the data point lies in. We say that
the algorithms detect the dimensions of the subspaces the data points
reside in. Recall that under DI-stopping this has to be accomplished
through suitable choice of smax, pmax.

When the data set Y contains outliers that cannot be represented
sparsely in terms of the other points in Y, DD-stopping usually
leads to a high number of false connections as the representation
error for outliers will decay slowly resulting in late activation of the
DD-stopping criterion. In this case, we need to rely on DI-stopping.

Summary: We recommend DI-stopping with smax on the order of the
subspace dimensions if the subspace dimensions are (approximately)
known, and DD-stopping with τ2 on the order of the noise variance if
the noise variance is known and not too large. If no prior knowledge
on the subspace dimensions or noise variance is available, or if the
noise variance is large, we recommend relying on DI-stopping with
smax in the range {5, . . . , 10}. These values for smax turned out to
work well in the relevant experiments conducted in this chapter, and
were also used in related works (Dyer et al., 2013; You et al., 2016).

2.2. MAIN RESULTS

Our analytical performance results are for a statistical data model,
also employed in (Soltanolkotabi et al., 2014; Heckel and Bölcskei,
2015). Specifically, we take the subspaces S` to be fixed and the points
in the corresponding subsets Y` of the data set Y = Y1 ∪ . . . ∪ YL
to be randomly distributed on S` ∩ Sm−1 and perturbed by additive
random noise. Concretely, the points in Y`, ` ∈ [L], are given by
y(`)
i = x(`)

i + z(`)
i = U(`)a(`)

i + z(`)
i , i ∈ [n`], where the columns of

U(`) ∈ Rm×d` constitute an orthonormal basis for S`, the a(`)
i are

independently (across i ∈ [n`], ` ∈ [L]) and uniformly distributed
on Sd`−1, and the z(`)

i are i.i.d. N (0, (σ2/m)Im). The factor 1/m in
the noise covariance matrix ensures that ‖z(`)

i ‖
2
2 concentrates around

27

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

E[‖z(`)
i ‖

2
2] = σ2 for large m. Note further that the `2-norm of the

data points concentrates around
√

1 + σ2 for large m and that they
are hence of comparable `2-norm, as required by the formulations of
SSC-OMP and SSC-MP in Section 2.1. Moreover, the data points are
in general position w.p. 1 for σ > 0.

Prima facie assuming the noiseless data points x(`)
i to be uniformly

distributed on the subspaces S` may appear overly stylized. However,
for any algorithm to have a chance of producing correct assignments,
we need the noiseless data points to be well spread out to a certain
extent (albeit not necessarily around the origin as in our data model)
on the subspaces. To see this, suppose for example, that the points
in Y` are concentrated on two distinct subspaces of S`, say S ′` and
S ′′` . Then, one can assign the points in Y` either to two clusters, one
containing the points concentrated on S ′` and the other one those
concentrated on S ′′` , or one can assign all the points in Y` to a single
cluster.

Our results will depend on the affinity between pairs of subspaces
which measures how far apart two subspaces are. The affinity between
the subspaces Sk and S` is defined as (Soltanolkotabi and Candès,
2012, Def. 2.6), (Soltanolkotabi et al., 2014, Def. 1.2)

aff(Sk,S`) := 1√
min{dk, d`}

∥∥∥U(k)>U(`)
∥∥∥
F

(2.6)

and can equivalently be expressed in terms of the principal angles
θ1 ≤ . . . ≤ θmin{dk,d`} between Sk and S` (Golub and Van Loan, 1996,
Sec. 6.3.4) according to

aff(Sk,S`) =

√
cos2(θ1) + . . .+ cos2(θmin{dk,d`})

min{dk, d`}
. (2.7)

We have 0 ≤ aff(Sk,S`) ≤ 1 and for subspaces intersecting in t

dimensions, we get cos(θ1) = . . . = cos(θt) = 1 and hence aff(Sk,S`) ≥√
t/min{dk, d`}.
Recall that spectral clustering recovers the oracle segmentation

28

2.2 MAIN RESULTS

{Y1, . . . ,YL} if L̂ = L and each connected component in G corre-
sponds to one of the Y`. Establishing conditions that guarantee zero
clustering error is inherently difficult. To the best of our knowledge
the only instances of such a result for spectral clustering-based sub-
space clustering algorithms are (Heckel and Bölcskei, 2015, Thm.
2) for TSC in the noiseless case and a condition in (Wang et al.,
2016b) guaranteeing that a post-processing procedure for SSC yields
correct clustering in the noisy case. We will rely on the following
intermediate, albeit sensible, performance measure, which has become
standard in the subspace clustering literature and was also employed
in (Soltanolkotabi and Candès, 2012; Soltanolkotabi et al., 2014; Dyer
et al., 2013; Heckel and Bölcskei, 2015; Wang and Xu, 2016; Heckel
et al., 2017; Dyer et al., 2013; You et al., 2016; Park et al., 2014).

Definition 2.1 (No false connections (NFC) property). The graph G
satisfies the no false connections (NFC) property if, for all ` ∈ [L], the
nodes corresponding to Y` are connected to other nodes corresponding
to Y` only.

In what follows, we often say “SSC-OMP/SSC-MP satisfies the
NFC property” instead of “the graph G generated by SSC-OMP/SSC-
MP satisfies the NFC property”. To guarantee perfect clustering,
we would need to ensure—in addition to the NFC property—that
the subgraphs of G corresponding to the Y` are connected. This
would preclude split-ups of the subgraphs of G corresponding to the
individual Y`. Sufficient conditions guaranteeing this property for
SSC were established in (Nasihatkon and Hartley, 2011) for m = 3 in
the noiseless case.

Note that the NFC property does not involve the parameter L̂. The
sufficient conditions for SSC-OMP and SSC-MP to satisfy the NFC
property reported next, therefore, do not require L̂ = L.
Our main result for SSC-OMP with DI-stopping is the following.

Theorem 2.1 (SSC-OMP with DI-stopping). Define the sampling
density ρ` := (n` − 1)/d`, and let dmax := max`∈[L] d` and ρmin =
min`∈[L] ρ`. Assume that m ≥ 2dmax, ρmin ≥ cρ, σ ≤ 1/2, and smax ≤

29

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

min`∈[L]{csd`/ log((n` − 1)e/smax)}, where cρ and cs are numerical
constants satisfying cρ > 1, 0 < cs ≤ 1/10. Then, the clustering
condition

max
k,` : k 6=`

aff(Sk,S`) + 10σ√
log(N3smax)

(√
dmax√
m

c(σ)

+
√

2
√
ρmin

(
1 + 3

2σ
))
≤ 1

8 log(N3smax) (2.8)

with c(σ) = 10 + 13σ guarantees that the graph G generated by SSC-
OMP under DI-stopping satisfies the NFC property w.p. at least

P ? := 1− 6/N − 5Ne−cmm − 6
∑

`∈[L]

n`e
−cdd` (2.9)

for numerical constants cd and cm obeying 0 < cd ≤ 1/18, 0 < cm ≤
1/8.

The main result for SSC-MP with DI-stopping is as follows.

Theorem 2.2 (SSC-MP with DI-stopping). Define the sampling
density ρ` := (n` − 1)/d`, and let dmax := max`∈[L] d` and ρmin =
min`∈[L] ρ`. Assume that m ≥ 2dmax, ρmin ≥ cρ, σ ≤ 1/2, smax > 0,
and pmax ≤ min`∈[L]{csd`/ log((n` − 1)e/pmax)}, where cρ and cs are
numerical constants satisfying cρ > 1, 0 < cs ≤ 1/10. Then, the
clustering condition (2.8) with c(σ) = 22 + 29σ guarantees that the
graph G generated by SSC-MP under DI-stopping satisfies the NFC
property w.p. at least P ? as defined in (2.9).

The proofs of Theorems 2.1 and 2.2 can be found in Appendices
2.A and 2.B, respectively.

Theorems 2.1 and 2.2 essentially state that SSC-OMP and SSC-MP
satisfy the NFC property for smax and pmax linear—up to log-terms—
in dmin := min`∈[L] d`, provided that the subspaces are not too close
(in terms of their pairwise affinities), the noise variance σ2 is sufficiently
small, and the data set Y contains sufficiently many points from each
subspace S`. Specifically, the clustering condition (2.8) tells us that

30

2.2 MAIN RESULTS

the subspaces S` are allowed to be quite close to each other and can
even intersect in a substantial fraction of their dimensions, all provided
that σ2 is not too large. Moreover, inspection of the second term on
the left-hand side (LHS) of (2.8) shows that a higher noise variance
σ2 is tolerated when m becomes large relative to the largest subspace
dimension dmax and/or the data set Y contains an increasing number
of points in each of the subspaces, resulting in an increase in the
minimum sampling density ρmin. The clustering condition (2.8) can
hence be satisfied under the condition σ ≤ 1/2 imposed by Theorems
2.1 and 2.2 if m is sufficiently large relative to dmax and if ρmin is
sufficiently large (but not too large, in order to prevent the right-hand
side (RHS) of (2.8) from becoming too small; for example, ρmin should
not scale exponentially in one of the d`). This shows that SSC-OMP
and SSC-MP, indeed, satisfy the NFC property even when the noise
variance σ2 is on the order of the signal energy, i.e., when the signal
to noise ratio SNR := E[‖xj‖22] /E[‖zj‖22] = 1/σ2 satisfies SNR ≈ 0dB
(recall that y(`)

i = x(`)
i + z(`)

i with E[‖x(`)
i ‖

2
2] = 1).

The RHS of (2.8) going to zero as N → ∞ may appear counter-
intuitive as one would expect clustering to become easier when the
number of data points increases. Note, however, that (2.8) allows
the subspaces to intersect, and Theorems 2.1 and 2.2 guarantee the
NFC property for all data points. Now, when N increases, owing to
the statistical data model our analysis is based on, the number of
data points that are close to the intersection of two subspaces also
increases, which in turn leads to an increase in the probability of the
NFC property being violated for at least one data point. This then
results in the clustering condition becoming more restrictive. The
clustering conditions for SSC in (Soltanolkotabi et al., 2014, Eq. (3.1)),
(Wang and Xu, 2016, Thm. 10) and for TSC in (Heckel and Bölcskei,
2015, Eq. (8)) exhibit the same O(1/ log(N)) scaling and hence the
same seemingly counter-intuitive behavior.

We hasten to add that the condition σ ≤ 1/2 in Theorems 2.1
and 2.2 was imposed only to get clustering conditions that are of
simple form. Removing the restriction σ ≤ 1/2 (which is used to

31

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

get the bounds (2.28) and (2.29) in Appendix 2.A) would lead to
clustering conditions allowing, in principle, for arbitrarily large σ
(i.e., even for SNR < 0dB), provided that the d` are sufficiently small
compared to m, and ρmin is sufficiently large. One might further
expect that the upper bounds on smax and pmax in Theorems 2.1 and
2.2, respectively, should depend on σ because the number of iterations
for which SSC-OMP and SSC-MP are guaranteed to select points
from Y`\{yj} for yj ∈ Y` should decrease as σ increases. However,
this is not the case as the clustering condition (2.8) limits the noise
variance (more precisely, the variance of the noise components on the
subspaces) depending on maxk,` : k 6=` aff(Sk,S`), N , ρmin, and smax.
We furthermore note that the conditions in Theorems 2.1 and 2.2
(with different constants in (2.8)) continue to guarantee the NFC
property for bounded noise or sub-gaussian noise, in both cases of
isotropic distribution. It is interesting to see that SSC-MP satisfies
the NFC property under virtually the same conditions as SSC-OMP,
although in practice SSC-MP typically exhibits a lower running time
at fixed performance.
Comparing the clustering condition (2.8) to those for SSC in

(Soltanolkotabi et al., 2014, Thm. 3.1) and for TSC in (Heckel and
Bölcskei, 2015, Thm. 3), both of which guarantee the NFC property
and apply to the same data model as used here, we find that (2.8) ex-
hibits the same structure (up to log-factors and constants) apart from
the term proportional to

√
1/ρmin on the LHS of (2.8). This term

dominates the term proportional to
√
dmax/m only if

√
dmax/m�√

1/ρmin =
√

max`∈[L](d`/(n` − 1)), i.e., if max`∈[L] n` � m (ow-
ing to max`∈[L](d`/(n` − 1)) ≥ (max`∈[L] d`)/(max`∈[L] n` − 1) >

dmax/(max`∈[L] n`)). Similarly, the clustering condition in (Wang and
Xu, 2016, Thm. 10) does not have a term proportional to

√
1/ρmin

as (2.8) does, but imposes a slightly more restrictive condition on σ,
requiring σ(c+ σ) to be at most on the order of

√
m− d/d instead of√

m/
√
d (assuming d` = d for all ` ∈ [L] and neglecting log-terms for

simplicity of exposition), where c is a constant. Numerical results in
Section 2.3.1 indicate that the term proportional to

√
1/ρmin in (2.8)

is not an artifact of our proof techniques, but rather fundamental.

32

2.2 MAIN RESULTS

We further note that setting σ = 0, the second term on the LHS of
(2.8) vanishes and we recover (up to log-factors and constants) the
clustering condition

max
k,` : k 6=`

aff(Sk,S`) ≤
√

log(ρmin)
64 log(N)

found in (Heckel et al., 2017, Cor. 1) for SSC-OMP in the noiseless
case.
In summary, SSC-OMP, SSC-MP, TSC, and SSC all satisfy the

NFC property under similar (sufficient) conditions, while differing
considerably w.r.t. computational complexity. Specifically, SSC-OMP
and SSC-MP, albeit greedy, are computationally more expensive
than TSC, but significantly less expensive than SSC. On the other
hand, SSC-MP can outperform TSC quite significantly in certain
applications (see Section 2.3.2). A detailed comparison of SSC, SSC-
OMP, SSC-MP, and TSC in terms of performance and running times is
provided in Section 2.3.2. The performance of all four algorithms varies
across data sets, and none of the algorithms consistently outperforms
the other ones.
Recall that under DI-stopping the choice of the parameters smax,

pmax is critical for the success of SSC-OMP and SSC-MP. Taking
smax, pmax too small or too large may lead to cluster split-ups or to
many false connections, respectively. The maximum range for smax,
pmax for our results to guarantee the NFC property is determined
(up to log-factors) by the smallest subspace dimension dmin, which is
usually unknown. Furthermore, if dmin is small, the range of admissible
values for smax, pmax will also be small. The clustering condition (2.8)
is, however, only sufficient (for the NFC property to hold) and good
clustering performance may be obtained in practice for larger values
of smax, pmax than those identified by Theorems 2.1 and 2.2.
We proceed to our main result on DD-stopping, which indicates

that the problems with choosing smax, pmax for DI-stopping due
to unknown d` can be mitigated—to a certain extent—through DD-
stopping. Specifically, we show that SSC-OMP and SSC-MP under DD-

33

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

stopping automatically select at least on the order of d` points from
Y` to represent yj ∈ Y`. We hasten to add, however, that Theorem
2.3 does not guarantee that no additional data points corresponding
to false connections are selected and Theorem 2.3 hence does not
guarantee the NFC property.

Theorem 2.3 (SSC-OMP and SSC-MP with DD-stopping). Define
the sampling density ρ` := (n` − 1)/d`, and let dmax := max`∈[L] d`
and ρmin = min`∈[L] ρ`. Suppose that m ≥ 2dmax, ρmin ≥ cρ, and
σ ≤ 1/2, where cρ is a numerical constant satisfying cρ > 1. Pick
τ ∈ [0, 2/3 − (

√
dmax/

√
m)σ]. Then, the clustering condition (2.8)

with smax on both sides replaced by max`∈[L]bcsd`/ log((n` − 1)e)c
guarantees w.p. at least P ? as defined in (2.9), for all yj ∈ Y`, j ∈ [n`],
` ∈ [L], that the corresponding coefficient vectors bj computed by OMP
and MP (if it terminates) have at least

 d`
log((n` − 1)e) min





1
3


2

3 −
τ

1− 3
2

√
d`√
m
σ




2

, cs





 (2.10)

non-zero entries corresponding to points in Y`\{yj}.

Note that MP is not guaranteed to terminate under the conditions
of Theorem 2.3 as τ in the admissible range indicated by Theorem 2.3
could be too small for termination (see the corresponding discussion in
Section 2.1). The ensuing statements on SSC-MP all apply only if MP,
indeed, terminates for all points yj ∈ Y . Theorem 2.3 identifies a range
for the threshold parameter τ guaranteeing that both SSC-OMP and
SSC-MP deliver a graph G which has each yj ∈ Y`, ` ∈ [L], connected
to at least O(d`/ log(n` − 1)) other points in Y`. If σ increases, the
probability of OMP and MP selecting false connections increases
and more iterations need to be performed for a given number of
true connections to be selected. As a consequence, the interval for τ
specified in Theorem 2.3 decreases as σ increases. As already pointed
out, Theorem 2.3 does not guarantee the NFC property, and choosing
τ too small will result in entries in the coefficient vectors bj that

34

2.2 MAIN RESULTS

correspond to false connections. Intuitively, we expect that choosing
τ sufficiently large, OMP and MP should stop early enough so as
to avoid false connections. More specifically, one would expect that
τ needs to be chosen larger as σ increases so as to avoid OMP and
MP selecting points from Y\Y` to represent yj ∈ Y`. Unfortunately,
it seems rather difficult, at least for the statistical data model at
hand, to analytically characterize a range for τ that guarantees the
NFC property and simultaneously on the order of d` connections
between yj ∈ Y` and other points in Y`, for all j ∈ [n`], ` ∈ [L].
Nonetheless, it turns out, that in practice G often exhibits both of
these properties if τ is chosen appropriately. Numerical results in
Section 2.3.3 corroborate this claim. In summary, SSC-OMP and
SSC-MP under DD-stopping with appropriately chosen τ detect the
dimensions of the subspaces S` correctly and adapt the sparsity level
of the individual representations according to the dimension of the
subspace the data point at hand lies in.
The procedure in (Soltanolkotabi et al., 2014, Alg. 2) for the se-

lection of a per-data-point Lasso parameter in SSC has a similar
subspace dimension-detecting property but comes with stronger theo-
retical guarantees. Specifically, (Soltanolkotabi et al., 2014, Thm. 3.1)
and (Soltanolkotabi et al., 2014, Thm. 3.2) taken together guarantee
the NFC property and, concurrently, that each yj ∈ Y` is connected
to on the order of d` other points in Y`, all this provided that the
noise variance—assumed known—is small enough. The procedure in
(Soltanolkotabi et al., 2014, Alg. 2) could also be employed to select
smax in SSC-OMP and SSC-MP under DI-stopping for each data point
individually. This emulates DD-stopping by employing DI-stopping
together with a data-point-wise parameter selection procedure. More
specifically, as shown in (Soltanolkotabi et al., 2014, Lem. A.2), the
optimal cost of the auxiliary Lasso problem in (Soltanolkotabi et al.,
2014, Eq. (2.4)) for yj ∈ Y` is proportional to

√
d`. Squaring the

optimal cost therefore yields an estimate of d`, which can, in turn,
be used to select the parameter smax in SSC-OMP such that it is
on the order of d` for yj ∈ Y` and thereby satisfies the condition in
Theorem 2.1 (we can lower-bound the factor 1/ log((n`− 1)e/smax) in

35

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

that condition by 1/ log(Ne)). This would then guarantee, in addition
to the NFC property, on the order of d`/ log(n`) true connections
for yj ∈ Y`, j ∈ [n`], ` ∈ [L], for both SSC-OMP and SSC-MP
under the conditions of Theorems 1 and 2, and would hence real-
ize the “many true discoveries” and the NFC property at the same
time as guaranteed by (Soltanolkotabi et al., 2014, Thm. 3.1) and
(Soltanolkotabi et al., 2014, Thm. 3.2) for SSC. We point out, however,
that the selection procedure in (Soltanolkotabi et al., 2014, Alg. 2)
results in considerable computational burden in addition to solving
the (already computationally demanding) N Lasso problems required
by SSC or running the OMP and MP routines in SSC-OMP and
SSC-MP, respectively, to perform the actual clustering.

Finally, we note that determining the range of admissible threshold
parameters τ ∈ [0, 2/3 − (

√
dmax/

√
m)σ] in Theorem 2.3 requires

knowledge of the noise variance σ2. In principle, knowledge of dmax
is required as well. We can, however, upper-bound

√
dmax/

√
m by 1

thereby obviating the need for knowing dmax at the cost of a reduced
range for τ .

2.3. NUMERICAL RESULTS2

We compare the performance of SSC-OMP, SSC-MP, SSC, TSC, and
NSN. SSC-OMP and SSC-MP were implemented in Matlab exactly
following their descriptions in Section 2.1. For SSC, TSC, and NSN,
we used the implementations provided in the corresponding references
(Elhamifar and Vidal, 2013), (Heckel and Bölcskei, 2015), and (Park
et al., 2014), respectively.
Our main performance measure is the clustering error (CE), i.e.,

the fraction of misclustered data points, defined as

CE(ĉ, c) = min
π

(
1− 1

N

N∑

i=1
1{π([ĉ]i)=[c]i}

)
, (2.11)

2Code to reproduce the experiments is available at http://www.nari.ee.ethz.
ch/commth/research/.

36

http://www.nari.ee.ethz.ch/commth/research/
http://www.nari.ee.ethz.ch/commth/research/

2.3 NUMERICAL RESULTS

where c ∈ [L]N and ĉ ∈ [L]N are the true and the estimated assign-
ments, respectively, and the minimum is taken over all permutations
π : [L]→ [L]. Additional performance measures will be introduced in
the description of the respective experiments.

We provide the algorithms with the true number of subspaces L in
all experiments. All running times were measured on a PC with 32
GB RAM and 4-core Intel Core i7-3770K CPU clocked at 3.50 GHz.
It is quite common in the computer vision literature to perform post-
processing on the adjacency matrix A generated by the individual
clustering algorithms. This can improve the clustering performance,
but will not be pursued here in order to simplify our comparisons.

2.3.1. Comparison of SSC-OMP and SSC-MP

As the clustering condition (2.8) is only a sufficient condition and
guarantees the NFC property only, it is unclear to what extent the
behavior predicted by (2.8) is reflected in the CE. The following
experiment is devoted to answering this question while comparing
SSC-OMP and SSC-MP. We generate data sets Y according to the
statistical data model described in Section 2.2. Specifically, we set
d` = d, ` ∈ [L], and we choose the bases U(`) ∈ Rm×d to all intersect
in a shared t-dimensional space and to be mutually orthogonal on
the orthogonal complement of this intersection. More specifically, the
bases U(`) are obtained by choosing a matrix U ∈ Rm×(L(d−t)+t)

uniformly at random from the set of all orthonormal matrices of
dimension m × (L(d − t) + t) and setting U(`) := [U[t] UT`], where
T` := {t+(`−1)(d−t)+1, . . . , t+`(d−t)}. This results in aff(Sk,S`) =√
t/d, k, ` ∈ [L], k 6= `. Varying the parameter t therefore allows us

to vary the pairwise affinities. We furthermore set n` = n, ` ∈ [L],
and generate instances of Y by sampling n data points uniformly at
random from each subspace and adding N (0, (σ2/m)I) noise to each
data point (the noise vectors are generated independently across data
points). We let L = 3, d = 20, m = 200, and vary t, ρmin = ρ = n/d,
and σ2. Furthermore, we employ DI-stopping and set smax = d/2 = 10
for both SSC-OMP and SSC-MP, and pmax = N . Figure 2.2 shows

37

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

the CE as a function of maxk,` : k 6=` aff(Sk,S`) =
√
t/d, ρ, and σ2.

The results nicely reflect the qualitative behavior indicated by the
clustering condition (2.8). Specifically, both SSC-OMP and SSC-MP
tolerate higher noise variance as the affinities between the subspaces
decrease and the number of points in Y drawn from each subspace, n,
increases. It is furthermore interesting to observe that the performance
of SSC-OMP and SSC-MP is virtually identical.

Recall that the clustering condition (2.8), apart from the term
proportional to

√
1/ρmin, exhibits the same scaling behavior as those

guaranteeing the NFC property for SSC in (Soltanolkotabi et al.,
2014, Thm. 3.1) and for TSC in (Heckel and Bölcskei, 2015, Thm. 3).
To find out whether this additional term is an artifact of our proof
technique, we first note that the clustering condition (2.8) takes the
form

max
k,` : k 6=`

aff(Sk,S`) + c1√
ρ
≤ c2, (2.12)

for fixed σ, and

σ(c3 + σc4 + 1
√
ρ

(c5 + σc6)) ≤ c7, (2.13)

for fixed maximum affinity, where c1-c7 > 0 are constants, dmax and
m were assumed constant in both cases, and factors logarithmic in
any of the parameters (variable or fixed) were neglected. Rewriting
(2.12) and (2.13) assuming equality, we get

ρ =
(

c1
c2 −maxk,` : k 6=` aff(Sk,S`)

)2
(2.14)

and
ρ =

(
σ(c5 + c6σ)

c7 − σ(c3 + σc4)

)2
, (2.15)

respectively. In the top and bottom rows of Figure 2.2, we now fit
(2.14) and (2.15), respectively (by manually adjusting the constants c1-
c7), to the boundaries between the regions of success and the regions of
failure. The shape of the fitted curves follows the boundaries indicated

38

2.3 NUMERICAL RESULTS

0.5 1

1

2

3

aff

ρ

OMP (σ = 1, SNR = 0dB)

0.5 1

1

2

3

aff
ρ

MP (σ = 1, SNR = 0dB)

0

0.2

0.4

0.6

0.5 10

1

2

aff

σ

OMP (ρ = 3)

0.5 10

1

2

aff

σ

MP (ρ = 3)

0

0.2

0.4

0.6

0 1 2

1

2

3

σ

ρ

OMP (aff =
√

2/5)

0 1 2

1

2

3

σ

ρ

MP (aff =
√

2/5)

0

0.2

0.4

0.6

Fig. 2.2: CE as a function of aff := maxk,` : k 6=` aff(Sk,S`), ρ = n/d, and σ2.
The (fitted) black curves in the top and bottom rows correspond to the curves
(2.14) and (2.15), respectively, and delineate the boundary between success
and failure.

39

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

by the numerical results closely. This can be taken as an indication—
at least to a certain extent—of the term in (2.8) proportional to√

1/ρmin being fundamental.

2.3.2. Face clustering

Next, we consider the problem of clustering face images of different
individuals taken under varying illumination conditions. The rationale
for employing subspace clustering to solve this problem stems from the
observation that vectorized images of a given individual taken under
different lighting conditions lie (approximately) in a 9-dimensional
linear subspace (Basri and Jacobs, 2003). We consider the Extended
Yale B data set (Georghiades et al., 2001; Lee et al., 2005), which
contains 192× 168 pixel frontal face images of 38 individuals, each
taken under 64 different illumination conditions. As SSC-MP does
not seem to have been considered before in the literature, we compare
its performance in terms of CE to that of SSC-OMP, SSC, TSC, and
NSN. Similar experiments comparing the performance of SSC-OMP
to that of other subspace clustering algorithms for face clustering
were presented in (Dyer et al., 2013; You et al., 2016; Heckel et al.,
2017). To accomodate the memory requirements incurred by the
optimization problems in SSC, we apply SSC (and, to ensure a fair
comparison, also the other algorithms) to the downsampled 48× 42
pixel versions of the images in the Extended Yale B data set provided
in (Elhamifar and Vidal, 2013). Note, however, that SSC-OMP, SSC-
MP, TSC, and NSN all could handle the original 192×168 pixel images.
Instances of the data set Y are obtained by first choosing a subset
of L individuals uniformly at random from the set of all individuals
and then collecting the 64 (vectorized) images corresponding to each
of the chosen individuals. As DD-stopping leads to a large number
of false connections—arguably due to (sparse) corruptions induced
by shadows and specular reflections in the face images (Elhamifar
and Vidal, 2013)—we rely on DI-stopping (i.e., τ = 0) with smax = 5
(which corresponds to the choice made in (Dyer et al., 2013) for
SSC-OMP) for both SSC-OMP and SSC-MP, and we set pmax = N .

40

2.3 NUMERICAL RESULTS

Note that both OMP and MP perform exactly smax iterations in this
experiment as the points in Y are in general position. For SSC, TSC,
and NSN we use the parameter values employed for the face clustering
experiments in (Elhamifar and Vidal, 2013), (Heckel and Bölcskei,
2015), and (Park et al., 2014), respectively. We emphasize that the
experiments in (Elhamifar and Vidal, 2013), (Heckel and Bölcskei,
2015), and (Park et al., 2014) all also provide the true number of
subspaces L to the individual algorithms. Note furthermore that we
employ SSC with the objective function as formulated in (Elhamifar
and Vidal, 2013) accounting for sparse corruptions of the data points.

Table 2.1 shows the CE for different choices of L, averaged over 100
instances of Y for each L. In Table 2.2, we report the corresponding
average running times. SSC-MP outperforms SSC-OMP (and TSC)
for all values of L, but L = 2, and does so at consistently lower running
times (recall that SSC-OMP and SSC-MP both perform exactly smax
iterations in this experiment, but SSC-MP has a lower per-iteration
cost than SSC-OMP). Furthermore, SSC-OMP uniformly outperforms
SSC. The lowest CE is obtained with NSN. We note, however, that
the performance of SSC-MP, except for L = 2, almost matches that
of NSN, and SSC-MP consistently has roughly half the running time
of NSN. TSC has the lowest running time but yields the largest CE
(which is particularly high for this very data set (Heckel and Bölcskei,
2015)). The running time of SSC is one to two orders of magnitude
higher than that of all other algorithms. Also note that the difference
between the running times of SSC-OMP and SSC-MP is small because
smax is small. Finally, the difference between the results for SSC-OMP,
SSC, TSC, and NSN reported here compared to the results reported in
published works (You et al., 2016; Elhamifar and Vidal, 2013; Heckel
and Bölcskei, 2015; Park et al., 2014) can be attributed to the fact
that we do not perform post-processing on the adjacency matrix A
produced by the individual algorithms.
Finally, we emphasize that for other applications such as, e.g.,

handwritten digit clustering (Heckel and Bölcskei, 2015), SSC and TSC
yield lower CE than the other algorithms considered here, and none of
the algorithms outperforms the others uniformly across applications

41

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

as seen from experiments in (Elhamifar and Vidal, 2013; Heckel and
Bölcskei, 2015; Park et al., 2014).

Table 2.1: Average CE (in percent) for face clustering.

L 2 3 5 8 10
SSC-OMP 2.83 4.04 6.81 12.98 14.14
SSC-MP 4.16 3.72 5.24 9.09 11.36
SSC 2.88 4.59 8.65 16.95 21.28
TSC 10.71 16.81 29.73 38.34 41.22
NSN 1.81 2.89 5.37 8.15 10.05

Table 2.2: Average running times (in seconds) for face clustering.

L 2 3 5 8 10
SSC-OMP 0.21 0.36 0.80 2.01 3.13
SSC-MP 0.15 0.28 0.65 1.74 2.80
SSC 12.63 17.50 28.24 45.78 60.33
TSC 0.08 0.14 0.29 0.62 0.95
NSN 0.34 0.55 1.10 3.05 5.64

2.3.3. True positives/false positives tradeoff in DD-stopping

Recall that for DD-stopping Theorem 2.3 guarantees that each data
point yj ∈ Y`, ` ∈ [L], is connected (in G) to at least O(d`/ log(n` −
1)) other points in Y`; we here refer to such connections as true
positives (TP). As already mentioned, Theorem 2.3, does, however,
not guarantee the absence of false connections and provides a lower
bound on the number of TP only. It is therefore not clear, a priori,
to what extent SSC-OMP and SSC-MP under DD-stopping, indeed,
do detect the subspace dimensions. First, recall that by “detecting
the subspace dimensions” we mean that the coefficient vectors bj
for all yj ∈ Y`, ` ∈ [L], have on the order of d` non-zero entries

42

2.3 NUMERICAL RESULTS

corresponding to TP and essentially no non-zero entries corresponding
to false connections. We designate the number of TP as #TP̀ , and the
number of false positives (FP) as #FP`, both averaged over the data
points corresponding to the subspace S`. We will also need the notions
of true positive rate (TPR) and false positive rate (FPR) defined, in
this experiment, as TPR` = #TP̀ /d` and FPR` = #FP`/(m − d`),
respectively.
We set m = 300, L = 4, ρ` = 4, ` ∈ [L], and choose the basis

matrices U(`) for the subspaces of dimensions 20, 40, 60, and 80,
according to U(`) := [Ū Ũ(`)], where Ū and the Ũ(`) are drawn
uniformly at random from the set of all orthonormal matrices of
dimensions 300× 4 and 300× (d` − 4), respectively. This guarantees
that maxk,` : k 6=` aff(Sk,S`) ≥

√
1/5 as the subspaces all intersect in

a shared 4-dimensional space and possibly overlap in the orthogonal
complement of this shared space. The data points are then drawn
according to the statistical data model described in Section 2.2.

Figure 2.3 shows #TP̀ along with TPR` and FPR` as a function of
τ and for different values of σ2. The middle and bottom rows in Figure
2.3 show that the TPR curves corresponding to different ` are almost
on top of each other, i.e., TPR1(τ) ≈ . . . ≈ TPR4(τ) ≈ cTPR(τ), which
means that the number of TP for each subspace is, indeed, roughly
proportional to the subspace dimension as #TP̀ (τ) = TPR`(τ)d` ≈
cTPR(τ)d`, ` ∈ [L]. This indicates that the result in Theorem 2.3 is
order-wise optimal in d`. As, in addition, for large enough τ , FPR` ≈ 0,
` ∈ [L], we conclude that SSC-OMP and SSC-MP, indeed, exhibit
excellent subspace dimension detection properties provided that τ is
chosen appropriately.

We finally note that a similar experiment investigating the TPR/FPR
tradeoff as a function of the Lasso parameter in SSC was conducted
in (Soltanolkotabi et al., 2014, Sec. 2.4.3) with the main conclusion
that a Lasso parameter on the order of 1/

√
d` extracts the subspace

dimensions correctly order-wise with essentially no FP.

43

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

10−2 10−1 100
0

50

100

τ

#TP̀ for OMP

10−1 10−0.5
0

50

100

150

τ

#TP̀ for MP

d1 = 20

d2 = 40

d3 = 60

d4 = 80

10−2 10−1 100

0

0.5

1

τ

TPR`, FPR` for OMP, σ = 0.2

10−1 10−0.5

0

1

2

τ

TPR`, FPR` for MP, σ = 0.2

10−2 10−1 100

0

0.5

1

τ

TPR`, FPR` for OMP, σ = 0.5

10−1 10−0.5

0

1

2

τ

TPR`, FPR` for MP, σ = 0.5

Fig. 2.3: TP/FP tradeoff in DD-stopping as a function of τ . Top row: Solid
lines: σ = 0.2, dotted lines: σ = 0.5. Middle and bottom rows: Solid lines:
TPR, dashed lines: FPR.

44

2.3 NUMERICAL RESULTS

2.3.4. Influence of smax and pmax in DI-stopping

Recall that Theorems 2.1 and 2.2 provide a range of admissible values
for smax and pmax in DI-stopping. For small dmin, these ranges are,
however, small. As already pointed out, taking smax, pmax too small
leads to cluster split-ups, whereas smax, pmax too large results in a
large number of false connections in G. It is therefore important to
determine the sensitivity of SSC-OMP and SSC-MP performance
w.r.t. the choice of smax and pmax. The next experiment is devoted
to this matter. We consider the CE as well as the average TPR and
FPR which, in this experiment, are defined as TPR′` = #TP̀ /n` and
FPR′` = #FP`/(N−n`), respectively. These alternative normalizations
are used as we are not interested in investigating the dependence
of TP and FP on the d`, as was done in Section 2.3.3; rather, we
want to ensure that TPR′`,FPR′` ∈ [0, 1]. Furthermore, we define the
TP-`1-norm and the FP-`1-norm as the `1-norm of the entries of
the coefficient vectors bj corresponding to TP and FP, respectively,
both averaged over all data points. The TP- and FP-`1-norms hence
correspond to half of the average weight associated with TP and FP,
respectively; the factor 1/2 stems from the adjacency matrix of G
being given by A = B + B>. The motivation for considering TP-
/FP-`1-norms comes from the fact that the performance of spectral
clustering is determined not only by the number of TP and FP, but also
by the weights associated with the TP and the FP. Specifically, even
when the bj contain a considerable number of FP, good performance
can still be obtained provided that the corresponding FP-`1-norm is
sufficiently small.
We cluster synthetic data generated according to the statistical

data model described in Section 2.2 as well as images taken from
the Extended Yale B data set (we use downsampled 48 × 42 pixel
versions of the images, see Section 2.3.2 for a detailed description).
More specifically, in the case of synthetic data, we set L = 3, m = 80,
σ = 0.5, d` = 15, ` ∈ [L], and ρ` = 4, ` ∈ [L], and we generate
the bases U(`), ` ∈ [L], to intersect in a shared 3-dimensional space
by following the construction employed in Section 2.3.3 such that

45

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

maxk,` : k 6=` aff(Sk,S`) =
√

1/5. In the case of face clustering, we
follow the procedure described in Section 2.3.2 to obtain instances of
Y containing the face images of L = 3 randomly selected individuals.
Figure 2.4 shows the CE, TPR/FPR, and TP-/FP-`1-norms as a

function of smax and pmax. For both clustering problems the CE of
SSC-OMP is seen to increase rapidly as a function of smax, while for
SSC-MP with pmax = N (i.e., stopping is activated by s = smax), the
CE increases very slowly for the face clustering problem and does
not increase at all in the case of synthetic data. This indicates that
SSC-MP exhibits significantly smaller sensitivity to the choice of smax
than SSC-OMP. As already pointed out in Section 2.1, this is due
to the ability of SSC-MP to select points yi ∈ Y`\{yj} repeatedly
to participate in the representation of yj ∈ Y`; for given smax this
results in SSC-MP producing fewer FP than SSC-OMP. Moreover,
for SSC-MP, the TP-`1-norm exceeds the FP-`1-norm for all values of
smax, while for SSC-OMP the FP-`1-norm exceeds the TP-`1-norm for
large smax, and does so significantly. The coefficient vectors produced
by SSC-MP hence lead to more favorable conditions for the spectral
clustering step than those produced by SSC-OMP.
We further observe that the TPR and FPR of SSC-MP, with

smax =∞ (i.e., stopping is activated by ‖bj‖0 = pmax), as a function
of pmax, increase at the same rate as the TPR and FPR of SSC-OMP
as a function of smax. However, the ratio of TP- and FP-`1-norms for
SSC-MP significantly exceeds that for SSC-OMP for all values of u
(u is the variable on the x-axis in Figure 2.4 and corresponds to smax
for SSC-OMP and pmax for SSC-MP). In other words, even when we
force the representations computed by SSC-MP and SSC-OMP to
have the same sparsity level, thereby discounting the advantage MP
has through its ability to reselect data points, SSC-MP still produces
weight assignments in G that are more favorable in terms of spectral
clustering. Indeed, in both the face clustering and the synthetic data
clustering problem the CE incurred by SSC-OMP significantly exceeds
that of SSC-MP for most values of u. In summary, this indicates that
when we enforce the same target sparsity level for SSC-MP and SSC-
OMP, SSC-MP is less sensitive to the choice of the sparsity level than

46

2.3 NUMERICAL RESULTS

0 50 100
0

0.2

0.4

u

CE face clustering

0 20 40 60
0

0.2

0.4

u

CE synthetic data

0 50 100
0

0.2

0.4

0.6

u

TPR′
`, FPR′

` face clustering

0 20 40 60
0

0.2

0.4

u

TPR′
`, FPR′

` synthetic data

0 50 100
0

2

4

u

TP-/FP-`1-norm face clustering

OMP with smax = u
MP with smax = u

(pmax = N)
MP with pmax = u

(smax = ∞)

0 20 40 60
0

2

4

6

u

TP-/FP-`1-norm synthetic data

Fig. 2.4: Clustering performance of SSC-OMP and SSC-MP for DI-stopping,
as a function of smax and pmax, respectively. Middle row: solid lines: TPR,
dashed lines: FPR. Bottom row: solid lines: TP-`1-norm, dashed lines: FP-`1-
norm.

47

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

SSC-OMP.
We finally note that while in the noisy case SSC-MP is much more

robust than SSC-OMP w.r.t. the choice of the parameters for DI-
stopping, in the noiseless case SSC-OMP yields slightly lower CE
than SSC-MP for DI-stopping if the subspace affinities are large. This
matter is investigated numerically in Appendix 2.3.5.

2.3.5. Influence of smax and pmax in DI-stopping for
noiseless data

We compare the influence of smax and pmax on the performance of
SSC-OMP and SSC-MP with DI-stopping and for noiseless data. To
this end, we generate data lying in a union of three subspaces as
described in Section 2.3.4 (with σ = 0), considering the pairs (5, 3),
(10, 3), and (10, 6) for (t, ρ), where t denotes the number of dimensions
which the three subspaces intersect in. Figure 2.5 shows the CE along
with the quantities TPR/FPR and the TP-/FP-`1-norm as a function
of smax (or pmax for SSC-MP if the maximum sparsity level is used
as stopping criterion) in the range {1, . . . , 2d}. We observe that SSC-
OMP yields a slightly lower CE than SSC-MP for t = 10. While
SSC-MP yields a higher TPR and a lower FPR than SSC-OMP
for most of the values of t, ρ, and smax or pmax, SSC-MP assigns
smaller values, than SSC-OMP, to entries in the adjacency matrix A
corresponding to the true connections (see the plot in the last row,
left, in Figure 2.5). This arguably leads to the slightly higher CE of
SSC-MP compared to SSC-OMP for t = 10.

48

2.3 NUMERICAL RESULTS

0 10 20 30
0

0.2

0.4

0.6

u

CE

OMP with smax = u

MP with smax = u

(pmax = N)

MP with pmax = u

(smax = ∞)

0 10 20 30
0

0.1

0.2

0.3

0.4

u

TPR′
`

0 10 20 30
0

0.1

0.2

0.3

0.4

u

FPR′
`

0 10 20 30

1

2

3

u

TP-`1-norm

0 10 20 30
0

1

2

3

u

FP-`1-norm

Fig. 2.5: Clustering performance of SSC-OMP and SSC-MP for DI-stopping,
as a function of smax and pmax for noiseless data. Solid line: t = 5, ρ = 3;
dashed line: t = 10, ρ = 3; dotted line: t = 10, ρ = 6.

49

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

APPENDICES

2.A. PROOF OF THEOREM 2.1

Throughout the proof, we shall use Y(`) := X(`) + Z(`) = U(`)A(`) +
Z(`), X(`) ∈ Rm×n` , A(`) ∈ Rd`×n` , and Z(`) ∈ Rm×n` to denote the
matrices whose columns are the y(`)

i , x(`)
i , a(`)

i , and z(`)
i , i ∈ [n`],

respectively. Furthermore, P‖ := U(`)U(`)> and P⊥ := I−U(`)U(`)>

stand for the orthogonal projection onto S` and its orthogonal com-
plement (in Rm) S⊥` , respectively. We do not indicate the depen-
dence of P‖ and P⊥ on ` as this is always clear from the context.
For v ∈ Rm and A ∈ Rm×n, we use the shorthands v‖ := P‖v,
A‖ := P‖A, v⊥ := P⊥v, and A⊥ := P⊥A. Further, ã(`)

i ∈ Rd` de-
notes the coefficients of y(`)

i‖ in the basis U(`), i.e., y(`)
i‖ = U(`)ã(`)

i , and
similarly Y(`)

‖ = P‖Y(`) = U(`)Ã(`). Note that the distribution of
ã(`)
i = a(`)

i + U(`)>z(`)
i is rotationally invariant as a(`)

i and U(`)>z(`)
i

are statistically independent and both have rotationally invariant
distributions. Finally, rs(x,D) and Λs(x,D) denote the residual and
the index set, respectively, after iteration s, obtained by OMP applied
to x with the columns of D as dictionary elements.
If min`∈[L]{csd`/ log((n` − 1)e/smax)} < 1, then the condition in

Theorem 2.1 admits zero OMP iterations, i.e., the graph G deliv-
ered by SSC-OMP has an empty edge set and thereby trivially
no false connections. We therefore consider the case 1 ≤ smax ≤
min`∈[L]{csd`/ log((n` − 1)e/smax)} in the remainder of the proof.

The graph G obtained by SSC-OMP has no false connections if for
each y(`)

i ∈ Y`, for all ` ∈ [L], the OMP algorithm selects points from
Y` in all smax iterations.3 Now, the OMP selection rule (2.1) for y(`)

i

3For DI-stopping the OMP algorithm terminates w.p. 1 after exactly smax
iterations as in our data model the points in Y are in general position w.p. 1 and
smax < min`∈[L] csd` < min{m, N − 1} by the condition on smax in Theorem 2.1.

50

2.A PROOF OF THEOREM 2.1

implies that OMP selects a point from Y` in the (s+ 1)-st iteration if

max
k 6=`,j

∣∣∣
〈
y(k)
j , rs

〉∣∣∣ < max
j∈[n`]\(Λs∪{i})

∣∣∣
〈
y(`)
j , rs

〉∣∣∣ , (2.16)

where maxk 6=`,j denotes maximization over subspaces k ∈ [L], k 6= `,
and over the indices j of the points y(k)

j ∈ Yk in these subspaces.
Hence, the graph G obtained by SSC-OMP satisfies the NFC property
if (2.16) holds for all smax iterations, for each y(`)

i ∈ Y`, for all ` ∈ [L].
We now establish that this holds for our statistical data model w.p.
at least P ? as defined in (2.9).
Our analysis will be based on an auxiliary algorithm termed “re-

duced OMP”, which has access to the reduced dictionary Y`\{y(`)
i }

only—instead of the full dictionary Y\{y(`)
i }—to represent y(`)

i . We
henceforth use the shorthands r(`)

s for the residuals rs(y(`)
i ,Y(`)

−i) cor-
responding to reduced OMP. The dependence of the r(`)

s on the index
i of the data point y(`)

i to be represented is not made explicit for
notational ease. If the r(`)

s satisfy (2.16) for all iterations s ∈ [smax],
the reduced OMP algorithm and the original OMP algorithm select
exactly the same data points and do so in exactly the same order. In
this case, we also have r(`)

s = rs, for all s ∈ [smax]. As r(`)
s satisfying

(2.16) for all s ∈ [smax] is necessary and sufficient for rs to satisfy
(2.16) for all s ∈ [smax], a lower bound P ? on the probability of r(`)

s

satisfying (2.16) for all s ∈ [smax] also constitutes a lower bound on
the probability of rs satisfying (2.16) for all s ∈ [smax]. Working with
the reduced OMP algorithm is beneficial as r(`)

s is a function of the
points in Y` only and is therefore statistically independent of the
points in Y\Y`. This is significant as it will allow us to apply stan-
dard concentration of measure inequalities for independent random
variables. In the remainder of the proof, we work with reduced OMP
exclusively.

We start by providing intuition on the proof idea. To this end, we
expand the inner products in (2.16) according to

〈
y(k)
j , r(`)

s

〉
=
〈
x(k)
j + z(k)

j , r(`)
s‖ + r(`)

s⊥

〉

51

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

=
〈
x(k)
j , r(`)

s‖

〉
+
〈
x(k)
j , r(`)

s⊥

〉

+
〈
z(k)
j , r(`)

s‖

〉
+
〈
z(k)
j , r(`)

s⊥

〉
. (2.17)

The first term in (2.17) quantifies the similarity of the portions of
y(k)
j and r(`)

s that lie in Sk and S`, respectively, i.e., the “signal
components” of y(k)

j and r(`)
s , while the other terms all account for

interactions with or between “undesired components” residing in S⊥k ,
S⊥` . If the similarities—in absolute value—of the “signal components”
for k = `, j ∈ [n`]\(Λs∪{i}), are sufficiently large relative to those for
k 6= `, j ∈ [nk], and if the interactions of all “undesired components”
are sufficiently small, for k, ` ∈ [L], then (2.16) holds. Following
(Heckel et al., 2017, proofs of Thm. 3, Cor. 1) this intuition will be
made quantitative and rigorous by introducing events that, when
conditioned on, yield bounds on the absolute values of the individual
terms in (2.17) that are of analytically amenable form. These bounds
will then be employed to derive an upper bound on the LHS and a
lower bound on the RHS of (2.16) that both hold conditionally on
the intersection of the underlying events. Based on these bounds, we
will then show that the clustering condition (2.8) implies (2.16) w.p.
at least P ?. The particular choice of the events that we condition on
is delicate, but when done properly, allows us to make the statistical
dependencies between r(`)

s and y(`)
j , j ∈ [n`]\{i}, analytically tractable.

We finally note that although the general idea of conditioning on
suitably defined events is taken from previous work by the authors
(Heckel et al., 2017, proofs of Thm. 3, Cor. 1), the choice of the specific
events as well as other technical aspects of the present proof differ
significantly from (Heckel et al., 2017, proofs of Thm. 3, Cor. 1).

We commence the formal proof by upper-bounding the LHS of
(2.16) according to

max
k 6=`,j

∣∣∣
〈
x(k)
j + z(k)

j , r(`)
s‖ + r(`)

s⊥

〉∣∣∣

≤ max
k 6=`,j

∣∣∣
〈
x(k)
j , r(`)

s‖

〉∣∣∣+ max
k 6=`,j

∣∣∣
〈
x(k)
j , r(`)

s⊥

〉∣∣∣

52

2.A PROOF OF THEOREM 2.1

+ max
k 6=`,j

∣∣∣
〈
z(k)
j , r(`)

s

〉∣∣∣

≤ 4 log(N3smax)

∥∥∥U(k)>U(`)
∥∥∥
F√

dk
√
d`

∥∥∥r(`)
s‖

∥∥∥
2

+
√

2 log(N3smax)√
m− d`

∥∥∥r(`)
s⊥

∥∥∥
2

+
√

2 log(N3smax)√
m

3
2σ
(

1 + 3
2σ
)
, (2.18)

where the second inequality holds on the event E(`,i,s)
1 ∩ E(`,i,s)

2 ∩
E(`,i,s)

3 ∩ E4 with

E(`,i,s)
1 :=



max
k 6=`,j

∣∣∣
〈
x(k)
j , r(`)

s‖

〉∣∣∣

≤ 4 log(N3smax)

∥∥∥U(k)>U(`)
∥∥∥
F√

dk
√
d`

∥∥∥r(`)
s‖

∥∥∥
2



, (2.19)

E(`,i,s)
2 :=

{
max
k 6=`,j

∣∣∣
〈
x(k)
j , r(`)

s⊥

〉∣∣∣≤
√

2 log(N3smax)√
m− d`

∥∥∥r(`)
s⊥

∥∥∥
2

}
, (2.20)

E(`,i,s)
3 :=

{
max
k 6=`,j

∣∣∣
〈
z(k)
j , r(`)

s

〉∣∣∣

≤
√

2 log(N3smax)√
m

(
1 +

∥∥∥z(`)
i

∥∥∥
2

)
max
k 6=`,j

∥∥∥z(k)
j

∥∥∥
2

}
, (2.21)

E4 :=
{{∥∥∥z(`)

j‖

∥∥∥
2
≤ 3

2

√
d`√
m
σ

}
∩
{∥∥∥z(`)

j

∥∥∥
2
≤ 3

2σ
}
,

∀` ∈ [L], j ∈ [n`]
}
. (2.22)

Note that the dependence of E(`,i,s)
1 and E(`,i,s)

2 on i is due to r(`)
s‖ and

r(`)
s⊥, both of which are functions of y(`)

i . Here, E(`,i,s)
1 pertains to the

53

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

similarities of the “signal components” for k 6= `, E(`,i,s)
2 and E(`,i,s)

3
quantify the similarity of “undesired components”, and E4 controls
the magnitude of the “undesired components” of the y(`)

j .

We proceed by lower-bounding the RHS of (2.16). Using ‖r(`)
s ‖2 =

‖(I−Y(`)
Λs (Y(`)

Λs)
†
)y(`)
i ‖2 ≤ ‖y

(`)
i ‖2 ≤ 1+‖z(`)

i ‖2 (where the inequality

is thanks to ‖x(`)
i ‖2 = 1 and I − Y(`)

Λs (Y(`)
Λs)
†
being an orthogonal

projection matrix), we find that on the event E4 ∩ E
(`,i)
5 with

E(`,i)
5 :=

{
max

j∈[n`]\(Λs∪{i})

∣∣∣
〈
y(`)
j , r(`)

s

〉∣∣∣

≥
(

1− c4 + 1
√
ρ`

)
∥∥∥r(`)
s‖

∥∥∥
2√

d`

− σ
(

1√
m

+ 2√
n` − 1

)∥∥∥r(`)
s

∥∥∥
2

}
, (2.23)

where c4 > 0 is the numerical constant in Lemma 2.9, the RHS of
(2.16) obeys

max
j∈[n`]\(Λs∪{i})

∣∣∣
〈
y(`)
j , r(`)

s

〉∣∣∣ ≥
(

1− c4 + 1
√
ρ`

)
∥∥∥r(`)
s‖

∥∥∥
2√

d`

− σ
(

1√
m

+ 2√
n` − 1

)(
1 + 3

2σ
)
. (2.24)

On E(`,i,s)
1 ∩ E(`,i,s)

2 ∩ E(`,i,s)
3 ∩ E4 ∩ E

(`,i)
5 , (2.16) is now implied by

[RHS of (2.18)] < [RHS of (2.24)]; multiplying this inequality by√
d`/(4 log(N3smax)‖r(`)

s‖ ‖2), we get
∥∥∥U(k)>U(`)

∥∥∥
F√

dk´¹¹¹¸¹¹¶
≤ max
k : k 6=`

aff(Sk,S`)

+ 1√
8 log(N3smax)

(√
d`√

m− d`´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤
√

2d`/
√
m

∥∥∥r(`)
s⊥

∥∥∥
2∥∥∥r(`)

s‖

∥∥∥
2

54

2.A PROOF OF THEOREM 2.1

+ σ∥∥∥r(`)
s‖

∥∥∥
2

√
d`√
m

3
2

(
1 + 3

2σ
))

<
1

4 log(N3smax)

((
1− c4 + 1

√
ρ`

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥1/2

− σ∥∥∥r(`)
s‖

∥∥∥
2

(√
d`√
m

+ 2
√
d`√

n` − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=2/√ρ`

)(
1 + 3

2σ
))

, (2.25)

where 1 − (c4 + 1)/√ρ` ≥ 1/2 follows from ρ` ≥ ρmin ≥ cρ :=
4(c4 + 1)2, for all ` ∈ [L], and

√
d`/
√
m− d` ≤

√
2d`/
√
m is by

m ≥ 2dmax ≥ 2d`, for all ` ∈ [L]. Rearranging terms in (2.25) and
using

√
8 log(N3smax) < 4 log(N3smax), for N ≥ 2, we can see that

(2.25) is implied by

max
k : k 6=`

aff(Sk,S`) + 1∥∥∥r(`)
s‖

∥∥∥
2

√
8 log(N3smax)

(√
2d`√
m

∥∥∥r(`)
s⊥

∥∥∥
2

+ σ

(
5
2

√
d`√
m

+ 2
√
ρ`

)(
1 + 3

2σ
))
≤ 1

8 log(N3smax) . (2.26)

To further simplify (2.26), we upper-bound ‖r(`)
s⊥‖2 and lower-bound

‖r(`)
s‖ ‖2. To this end, we introduce the events

E(`,i)
6 :=

{∥∥∥r(`)
s⊥

∥∥∥
2
≤
∥∥∥z(`)

i⊥

∥∥∥
2

+ 3σ
ã

∥∥∥y(`)
i

∥∥∥
2
,∀s ≤ smax

}
,

E(`,i)
7 :=




∥∥∥r(`)
s‖

∥∥∥
2
>
∥∥∥y(`)

i‖

∥∥∥
2


2

3 −

√
3s̄ log((n` − 1)e/s̄)

d`


,∀s ≤ s̄



,

(2.27)

where ã := minj∈[n`]\{i} ‖y
(`)
j‖ ‖2 ≥ minj∈[n`]\{i}(‖x

(`)
j ‖2 − ‖z

(`)
j‖ ‖2) ≥

1−maxj∈[n`]\{i} ‖z
(`)
j‖ ‖2. Setting s̄ = smax in (2.27), on E4 ∩ E

(`,i)
6 ∩

55

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

E(`,i)
7 , we have

∥∥∥r(`)
s⊥

∥∥∥
2
≤ 3

2σ + 3σ
1 + 3

2σ

1− 3
2

√
d`√
m
σ
≤ σ(8 + 10σ), (2.28)

∥∥∥r(`)
s‖

∥∥∥
2
>

(
1− 3

2

√
d`√
m
σ

)(
2
3 −
√

3cs
)

>

(
1− 3

2

√
d`√
m
σ

)
1
9 >

1
20 , (2.29)

where we employed the assumptions m ≥ 2dmax ≥ 2d`, for all ` ∈ [L],
and σ ≤ 1/2 to get (2.28), and used smax ≤ csd`/ log((n`−1)e/smax),
for all ` ∈ [L], and cs := min{1/10, c1} (with c1 the constant in
Lemma 2.7 below), to arrive at (2.29). With (2.28) and (2.29), it
follows that (2.26) is implied by

max
k : k 6=`

aff(Sk,S`) + 10σ√
log(N3smax)

(√
d`√
m

(10 + 13σ)

+
√

2
√
ρ`

(
1 + 3

2σ
))
≤ 1

8 log(N3smax) .

This inequality holds for all ` ∈ [L] by the clustering condition (2.8)
with c(σ) = 10 + 13σ. Hence, on the event

E? :=
⋂

`,i,s

(
E(`,i,s)

1 ∩ E(`,i,s)
2 ∩ E(`,i,s)

3

∩ E4 ∩ E
(`,i)
5 ∩ E(`,i)

6 ∩ E(`,i)
7

)
, (2.30)

(2.8) implies (2.16) for every y(`)
i ∈ Y`, for all ` ∈ [L], and the graph

G obtained by SSC-OMP has no false connections. It remains to
lower-bound P[E?]. By the union bound, we have

P[E?] = 1− P
[
E?
]

≥ 1− P
[
E4
]

56

2.A PROOF OF THEOREM 2.1

−
∑

`∈[L],i∈[n`]

(
P
[
E(`,i)

5

]
+ P

[
E(`,i)

6

]
+ P

[
E(`,i)

7

])

−
∑

`∈[L],i∈[n`],
s∈[smax]

(
P
[
E(`,i,s)

1

]
+ P

[
E(`,i,s)

2

]
+ P

[
E(`,i,s)

3

])

≥ 1−
∑

`∈[L]

n`(e−d`/8 + e−m/8)

−
∑

`∈[L],i∈[n`]

(
2e−c5d` + 2e−2m

+ 2e−c2m + 2e−c3d` + e−d`/18
)

−
∑

`∈[L],i∈[n`],
s∈[smax]

(2
N2smax

+ 2
N2smax

+ 2
N2smax

)
(2.31)

≥ 1− 6
N
−
∑

`∈[L]

n`(6e−cdd` + 5e−cmm),

where cd := min{1/18, c3, c5}, cm := min{1/8, c2}, and (2.31) follows
from Lemmata 2.2, 2.5, 2.7, 2.9, and 2.10.

The proofs of Lemmata 2.2 and 2.5 rely on the rotational invariance
of the distributions of r(`)

s‖ and r(`)
s⊥ on S` and S⊥` , respectively, which

is inherited from the rotational invariance of the distributions of the
x(`)
j and z(`)

j characterized next.

Lemma 2.1. The distributions of r(`)
s‖ and r(`)

s⊥ are rotationally invari-
ant on S` and S⊥` , respectively, for all i ∈ [n`], ` ∈ [L], i.e., we have
V‖r(`)

s‖ ∼ r(`)
s‖ and V⊥r(`)

s⊥ ∼ r(`)
s⊥ for all unitary matrices V‖ and V⊥

of the form V‖ = U(`)W‖U(`)>+P⊥ and V⊥ = P‖+U(`)
o W⊥U(`)

o

>
,

respectively, where W‖ ∈ Rd`×d` , W⊥ ∈ R(m−d`)×(m−d`) are unitary
and the columns of U(`)

o ∈ Rm×(m−d`) form an orthonormal basis for
S⊥` .

Note that the unitary transformations V‖ and V⊥ act only on S`
and S⊥` , respectively, and leave components in S⊥` and S`, respectively,

57

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

unchanged.

Proof. We first show that the reduced OMP residual r(`)
s is covariant

w.r.t. transformations of the points in Y` by a unitary matrix V ∈
Rm×m, i.e., we establish that rs(Vy(`)

i ,VY(`)
−i) = Vrs(y(`)

i ,Y(`)
−i), for

all s ∈ [smax], i ∈ [n`], ` ∈ [L]. Combining this covariance property of
r(`)
s with the rotational invariance on S` and S⊥` of the distributions
of y(`)

j‖ = U(`)ã(`)
j and y(`)

j⊥ = P⊥z(`)
j , respectively, then establishes

the desired result.
We prove rs(Vy(`)

i ,VY(`)
−i) = Vrs(y(`)

i ,Y(`)
−i) by induction and start

with the inductive step. Assume that after some iteration s′ < smax,
the index set Λs′ corresponding to the transformed data (Vy(`)

i ,
VY(`)

−i) is identical to the index set Λs′ associated with the original
data, i.e., Λs′(Vy(`)

i ,VY(`)
−i) = Λs′(y(`)

i ,Y(`)
−i). Using the shorthands

Λs′(V) for Λs′(Vy(`)
i ,VY(`)

−i) and Λs′ for Λs′(y(`)
i ,Y(`)

−i), it then fol-
lows that

rs′(Vy(`)
i ,VY(`)

−i) =
(

I−VY(`)
Λs′ (V)

(
VY(`)

Λs′ (V)

)†)
Vy(`)

i

=
(

I−VY(`)
Λs′

(
VY(`)

Λs′

)†)
Vy(`)

i

=
(

I−VY(`)
Λs′

(
Y(`)

Λs′
>

V>VY(`)
Λs′

)−1
Y(`)

Λs′
>

V>
)

Vy(`)
i

= V
(

I−Y(`)
Λs′

(
Y(`)

Λs′
>

Y(`)
Λs′

)−1
Y(`)

Λs′
>
)

y(`)
i

= Vrs′(y(`)
i ,Y(`)

−i). (2.32)

For the index λs′+1(Vy(`)
i ,VY(`)

−i) selected for the V-transformed
data set in iteration s′ + 1, (2.32) implies

λs′+1(Vy(`)
i ,VY(`)

−i) = arg max
j∈[n`]\(Λs′∪{i})

∣∣∣
〈
Vy(`)

j , rs′(Vy(`)
i ,VY(`)

−i)
〉∣∣∣

= arg max
j∈[n`]\(Λs′∪{i})

∣∣∣
〈
y(`)
j , rs′(y(`)

i ,Y(`)
−i)
〉∣∣∣

58

2.A PROOF OF THEOREM 2.1

= λs′+1(y(`)
i ,Y(`)

−i), (2.33)

i.e., the index selected in iteration s′ + 1 by operating on the V-
transformed data set is identical to that obtained for the original data
set. It remains to establish the base case. This is done by noting that
thanks to r0(Vy(`)

i ,VY(`)
−i) = Vy(`)

i , we have

λ1(Vy(`)
i ,VY(`)

−i) = arg max
j∈[n`]\(Λs′∪{i})

|〈Vy(`)
j ,Vy(`)

i 〉|

= arg max
j∈[n`]\(Λs′∪{i})

|〈y(`)
j ,y(`)

i 〉|

= λ1(y(`)
i ,Y(`)

−i).

We next establish the rotational invariance of r(`)
s‖ and r(`)

s⊥. Note that
V‖y(`)

j = U(`)W‖U(`)>y(`)
j‖ + y(`)

j⊥ = U(`)W‖ã(`)
j + y(`)

j⊥ ∼ U(`)ã(`)
j +

y(`)
j⊥ = y(`)

j , j ∈ [n`], and V⊥y(`)
j = y(`)

j‖ + U(`)
o W⊥U(`)

o

>
y(`)
j⊥ = y(`)

j‖ +

U(`)
o W⊥U(`)

o

>
z(`)
j⊥ ∼ y(`)

j‖ + z(`)
j⊥ = y(`)

j , j ∈ [n`], by unitarity of V‖

and V⊥. Together with rs(Vy(`)
i ,VY(`)

−i) = Vrs(y(`)
i ,Y(`)

−i), this yields

rs‖(y(`)
i ,Y(`)

−i) = P‖rs(y(`)
i ,Y(`)

−i) (2.34)

∼ P‖rs(V‖y(`)
i ,V‖Y(`)

−i)

= P‖V‖rs(y(`)
i ,Y(`)

−i)

= (P‖U(`)W‖U(`)>

´¹¹¸¹¹¹¶
=U(`)W‖U(`)>P‖

+ P‖P⊥
´¹¹¹¹¹¹¸¹¹¹¹¹¶

=0

)rs(y(`)
i ,Y(`)

−i)

= V‖P‖rs(y(`)
i ,Y(`)

−i)

= V‖rs‖(y(`)
i ,Y(`)

−i), (2.35)

and establishes V‖rs‖ ∼ rs‖. Repeating the steps leading from (2.34)
to (2.35) with P⊥ and V⊥ in place of P‖ and V‖, respectively, we
analogously obtain rs⊥ ∼ V⊥rs⊥, thereby finishing the proof.

59

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

We next derive lower bounds on P[E(`,i,s)
1], P[E(`,i,s)

2], and P[E(`,i,s)
3].

Lemma 2.2. We have

P
[
E(`,i,s)

1

]
≥ 1− 2

N2smax
, P

[
E(`,i,s)

2

]
≥ 1− 2

N2smax
,

P
[
E(`,i,s)

3

]
≥ 1− 2

N2smax
. (2.36)

Proof. First note that r(`)
s‖ /‖r

(`)
s‖ ‖2 and r(`)

s⊥/‖r
(`)
s⊥‖2 are distributed

uniformly at random on Sm−1 ∩ S` and Sm−1 ∩ S⊥` , respectively, as a
consequence of rotational invariance (Lemma 2.1) and normalization
(Muirhead, 2009, Thm. 1.5.6). This allows us to apply Lemma 2.3
below with L = A(k), C = U(k)>U(`), a = r(`)

s‖ /‖r
(`)
s‖ ‖2, and α =

4 log(N3smax) (note that the condition α > 12 is satisfied as N ≥ 3
and smax ≥ 1 by the assumptions of Theorem 2.1) to get a lower
bound on P

[
E(`,i,s)

1

]
according to

P


 max
j∈[nk]

∣∣∣
〈
x(k)
j , r(`)

s‖

〉∣∣∣

> 4 log(N3smax)

∥∥∥U(k)>U(`)
∥∥∥
F√

dk
√
d`

∥∥∥r(`)
s‖

∥∥∥
2


 ≤ nk + 1

N3smax

≤ 2nk
N3smax

,

for k 6= `. The desired bound on P[E(`,i,s)
1] then follows by a union

bound over k ∈ [L]\{`}.
The lower bound on P[E(`,i,s)

2] is obtained by invoking Lemma
2.4 below with a = r(`)

s⊥/‖r
(`)
s⊥‖2 ∈ S⊥` (hence replacing Sm−1 by

S⊥` ∩ Sm−1), b = x(k)
j , and β =

√
2 log(N3smax), which yields

P
[∣∣∣
〈
r(`)
s⊥,x

(k)
j

〉∣∣∣ >
√

2 log(N3smax)√
m− d`

∥∥∥r(`)
s⊥

∥∥∥
2

]
≤ 2
N3smax

, (2.37)

60

2.A PROOF OF THEOREM 2.1

for k 6= `. Again, a union bound over k ∈ [L]\{`}, j ∈ [nk], gives the
desired bound on P[E(`,i,s)

2].
Finally, for P[E(`,i,s)

3], we set a = z(k)
j /‖z(k)

j ‖2, b = r(`)
s , and β =√

2 log(N3smax) in Lemma 2.4, and use ‖r(`)
s ‖2 ≤ 1 + ‖z(`)

i ‖2, to
obtain

P
[∣∣∣
〈
z(k)
j , r(`)

s

〉∣∣∣ >
√

2 log(N3smax)√
m

(
1 +

∥∥∥z(`)
i

∥∥∥
2

)∥∥∥z(k)
j

∥∥∥
2

]

≤ 2
N3smax

,

for all k 6= `. Again, the lower bound on P[E(`,i,s)
3] follows from a

union bound over k ∈ [L]\{`}, j ∈ [nk].

Lemma 2.3 (Extracted from the proof of (Soltanolkotabi and Candès,
2012, Lem. 7.5)). Let a ∈ Rd2 be distributed uniformly at random
on Sd2−1 and let the columns of L ∈ Rd1×n1 be independent and
distributed uniformly on Sd1−1. Let C ∈ Rd1×d2 . Then, for α ≥ 12,
we have

P
[
‖LCa‖∞ ≥

α√
d1
√
d2
‖C‖F

]
≤ (n1 + 1)e−α/4. (2.38)

Lemma 2.4 (E.g., (Vershynin, 2012, Ex. 5.25)). Let a be uniformly
distributed on Sm−1 and fix b ∈ Rm. Then, for β ≥ 0, we have

P
[
|〈a,b〉| > β√

m
‖b‖2

]
≤ 2e−

β2
2 .

Next, we lower-bound P[E(`,i)
7].

Lemma 2.5. Let n` ≥ d` + 1 and s̄ ≤ d`. We have

P
[
E(`,i)

7

]
= P



∥∥∥r(`)
s‖

∥∥∥
2

61

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

>
∥∥∥y(`)

i‖

∥∥∥
2


2

3 −

√
3s̄ log((n` − 1)e/s̄)

d`


 , ∀s ≤ s̄




≥ 1− e−d`/18. (2.39)

Proof. The bound obviously holds for s = 0 as ‖r(`)
0‖ ‖ = ‖y(`)

i‖ ‖2.
For 1 ≤ s ≤ s̄ the outline of the proof is as follows. As ‖r(`)

s‖ ‖2 =

‖P‖(I−Y(`)
ΛsY

(`)
Λs
†
)y(`)
i ‖2 is hard to analyze directly owing to statis-

tical dependencies between y(`)
i and the columns of Y(`)

Λs induced
by the dependence of Λs on y(`)

i , we rely on an auxiliary quantity,
namely ‖P‖(I−Y(`)

Γ Y(`)
Γ
†
)y(`)
i ‖2 for a fixed index set Γ ⊂ [n`]\{i}

with cardinality satisfying 1 ≤ |Γ| ≤ s̄. We start the proof by deriving
a lower bound ϕΓ on ‖P‖(I−Y(`)

Γ Y(`)
Γ
†
)y(`)
i ‖2 and then show that

E(`,i)
7 ⊇ F (`,i)

7 , where

F (`,i)
7 :=



ϕΓ′ >

∥∥∥y(`)
i‖

∥∥∥
2


2

3 −

√
3s̄ log((n` − 1)e/s̄)

d`


 ,∀Γ′ ∈ I





with
I := {Γ′ ⊂ [n`]\{i} : |Γ′| = s̄}, (2.40)

which implies P[E(`,i)
7] ≥ P[F (`,i)

7]. The proof is then completed by
establishing a lower bound on P[F (`,i)

7] using a version of Borell’s
inequality.

We proceed by lower-bounding ‖P‖(I−Y(`)
Γ Y(`)

Γ
†
)y(`)
i ‖2 for 1 ≤

|Γ| ≤ s̄. Define the orthogonal projection matrices PΓ := Y(`)
Γ Y(`)

Γ
†

and P‖Γ := Y(`)
Γ‖Y

(`)
Γ‖
†
and note that P‖P

‖
Γ = P‖Γ = P‖ΓP‖. We now

get
∥∥∥P‖(I−PΓ)y(`)

i

∥∥∥
2

2
=
∥∥∥P‖(I−P‖Γ + P‖Γ −PΓ)y(`)

i

∥∥∥
2

2
(2.41)

=
∥∥∥P‖(I−P‖Γ)y(`)

i + (P‖Γ −P‖PΓ)y(`)
i

∥∥∥
2

2
(2.42)

62

2.A PROOF OF THEOREM 2.1

=
∥∥∥P‖(I−P‖Γ)y(`)

i

∥∥∥
2

2
+
∥∥∥(P‖Γ −P‖PΓ)y(`)

i

∥∥∥
2

2
(2.43)

≥
∥∥∥P‖(I−P‖Γ)y(`)

i

∥∥∥
2

2

=
∥∥∥y(`)

i‖ −P‖Γy(`)
i‖

∥∥∥
2

2
, (2.44)

where the last equality is thanks to P‖P
‖
Γ = P‖ΓP‖ and the step

leading from (2.42) to (2.43) follows from

(P‖(I−P‖Γ))
>

(P‖Γ −P‖PΓ) = (I−P‖Γ)P‖(P‖Γ −P‖PΓ)

= (I−P‖Γ)P‖(P‖ΓP‖Γ −P‖ΓP‖PΓ)

= (I−P‖Γ)P‖P‖Γ(P‖Γ −P‖PΓ)

= (I−P‖Γ)P‖Γ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

(P‖Γ −P‖PΓ) = 0.

Using (2.41)–(2.44), we further have
∥∥∥P‖(I−PΓ)y(`)

i

∥∥∥
2
≥
∥∥∥y(`)

i‖ −P‖Γy(`)
i‖

∥∥∥
2

(2.45)

≥
∥∥∥y(`)

i‖

∥∥∥
2
−
∥∥∥P‖Γy(`)

i‖

∥∥∥
2

≥
∥∥∥y(`)

i‖

∥∥∥
2
−
∥∥∥P‖Γ′y

(`)
i‖

∥∥∥
2´¹¹¸¹¹¶

=:ϕΓ′

, (2.46)

for all Γ ⊆ Γ′ ∈ I, where the second inequality is by the reverse
triangle inequality and the third is a consequence of R(P‖Γ) ⊆
R(P‖Γ′) ⊂ S`. It follows from (2.2) and (2.45)–(2.46) that ‖r(`)

s‖ ‖2 =
‖P‖(I−PΛs)y

(`)
i ‖2 ≥ ϕΓ′ for Λs ⊂ I, which implies ‖r(`)

s‖ ‖2 ≥
minΓ′∈I ϕΓ′ , and thus, indeed, E(`,i)

7 ⊇ F (`,i)
7 . It remains to lower-

bound P[F (`,i)
7].

To this end, we first work on the second term in (2.46) and note

63

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

that
∥∥∥P‖Γ′y

(`)
i‖

∥∥∥
2∥∥∥y(`)

i‖

∥∥∥
2

=

∥∥∥∥Y
(`)
Γ′‖Y

(`)
Γ′‖
†
y(`)
i‖

∥∥∥∥
2∥∥∥y(`)

i‖

∥∥∥
2

=

∥∥∥∥U(`)Ã(`)
Γ′ (U(`)Ã(`)

Γ′)
†
U(`)ã(`)

i

∥∥∥∥
2∥∥∥U(`)ã(`)

i

∥∥∥
2

=

∥∥∥Ã(`)
Γ′ Ã

(`)
Γ′
†ã(`)
i

∥∥∥
2∥∥∥ã(`)

i

∥∥∥
2

. (2.47)

Since the columns of Ã(`)
Γ′ , i.e., the vectors ã(`)

j , j ∈ Γ′, are i.i.d.
and of rotationally invariant distribution, Ã(`)

Γ′ Ã
(`)
Γ′
† is the projector

onto a subspace of Rd` that is s̄-dimensional w.p. 1. In particular,
this subspace is distributed uniformly at random on the set of all
s̄-dimensional subspaces of Rd` . Indeed, note that we have, w.p. 1,

R
(
Ã(`)

Γ′
)

= R
(
Ã(`)

Γ′ diag
(

1
/∥∥∥ã(`)

γ′1

∥∥∥
2
, . . . , 1

/∥∥∥ã(`)
γ′s̄

∥∥∥
2

))

∼ R (G diag (1/‖g1‖2, . . . , 1/‖gs̄‖2)) (2.48)
= R(G) (2.49)
= R(G(G>G)−1/2), (2.50)

where γ′j , j ∈ [s̄], denotes the elements of Γ′ and G = [g1 . . . gs̄] ∈
Rd`×s̄ has i.i.d. standard normal random variables as entries. Here, to
obtain (2.48), we used that the ã(`)

γ′
j
/‖ã(`)

γ′
j
‖2, j ∈ [s̄], and the gj/‖gj‖2,

j ∈ [s̄], are all i.i.d. uniform on Sd`−1, and for (2.49) and (2.50) we
exploit that diag(1/‖g1‖2, . . . , 1/‖gs̄‖2) and G, respectively, have full
rank w.p. 1. The claim now follows by noting that G(G>G)−1/2

is distributed uniformly at random on the set of all orthonormal
matrices in Rd`×s̄ (Chikuse, 2003, Thm. 2.2.1 iii)).

Next, we note that conditioning on Ã(`)
Γ′ Ã

(`)
Γ′
† does not change the

64

2.A PROOF OF THEOREM 2.1

distribution of ‖Ã(`)
Γ′ Ã

(`)
Γ′
†ã(`)
i ‖

2
2/‖ã

(`)
i ‖

2
2. To see this, consider a ∈ Rm

distributed uniformly at random on Sd`−1 and choose V uniformly at
random from the set of all orthonormal matrices in Rd`×d` . Further, let
Ps̄ be a projector onto an arbitrary, but fixed s̄-dimensional subspace
of Rd` . Then, we have ‖Ã(`)

Γ′ Ã
(`)
Γ′
†ã(`)
i ‖

2
2/‖ã

(`)
i ‖

2
2 ∼

∥∥Ps̄V>a
∥∥2

2 ∼
‖Ps̄a‖22, where the first distributional equivalence follows from
Ã(`)

Γ′ Ã
(`)
Γ′
† ∼ VPs̄V> (by (Chikuse, 2003, Thm. 2.2.1 ii))) and the

second from V>a ∼ a (by rotational invariance of the distributions
of V and a).
Now, using ‖P‖Γ′y

(`)
i‖ ‖2 = ‖Ã(`)

Γ′ Ã
(`)
Γ′
†ã(`)
i ‖

2
2 and conditioning

‖Ã(`)
Γ′ Ã

(`)
Γ′
†ã(`)
i ‖

2
2 on Ã(`)

Γ′ Ã
(`)
Γ′
† allows us to apply the following version

of Borell’s inequality to get an upper bound on the second term on
the RHS of (2.46).

Lemma 2.6 (Extracted from the proof of (Soltanolkotabi and Candès,
2012, Lem. 7.5)). Let Σ ∈ Rd1×d2 be a deterministic matrix and take
λ ∈ Rd2 to be distributed uniformly at random on Sd2−1. Then, we
have

P
[
‖Σλ‖2 −

‖Σ‖F√
d2
≥ ε
]
< e−d2ε

2/(2σmax(Σ)2).

Setting Σ = Ã(`)
Γ′ Ã

(`)
Γ′
† and λ = ã(`)

i /‖ã(`)
i ‖2 in Lemma 2.6 and

noting that ‖Σ‖F = ‖Ã(`)
Γ′ Ã

(`)
Γ′
†‖F =

√
s̄ and σmax(Σ) = 1 yields

P
[∥∥∥Ã(`)

Γ′ Ã
(`)
Γ′
†ã(`)
i

∥∥∥
2
≥
∥∥∥ã(`)

i

∥∥∥
2

(√
s̄

d`
+ ε

)]
< e−d`ε

2/2. (2.51)

We now have

P
[
ϕΓ′ ≥

∥∥∥y(`)
i‖

∥∥∥
2

(
1−

√
s̄

d`
− ε
)
, ∀Γ′ ∈ I

]

= P
[∥∥∥P‖Γ′y(`)

i‖

∥∥∥
2
<
∥∥∥y(`)

i‖

∥∥∥
2

(√
s̄

d`
+ ε

)
, ∀Γ′ ∈ I

]
(2.52)

≥ 1−
∑

Γ′∈I
P
[∥∥∥P‖Γ′y(`)

i‖

∥∥∥
2
≥
∥∥∥y(`)

i‖

∥∥∥
2

(√
s̄

d`
+ ε

)]
(2.53)

65

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

≥ 1−
(
n` − 1
s̄

)
e−d`ε

2/2 (2.54)

≥ 1− es̄ log((n`−1)e/s̄)e−d`ε
2/2, (2.55)

where we used the inequality (2.45)–(2.46) to get (2.52), a union bound
for the step leading from (2.52) to (2.53), (2.51) and |I| =

(
n`−1
s̄

)

to obtain (2.54) (recall that ‖P‖Γ′y(`)
i‖ ‖2 = ‖Ã(`)

Γ′ Ã
(`)
Γ′
†ã(`)
i ‖2 and

‖y(`)
i ‖2 = ‖ã(`)

i ‖2), and
(
n`−1
s̄

)
≤ ((n` − 1)e/s̄)s̄ to get (2.55). Finally,

setting

ε =

√
1
9 + 2s̄ log((n` − 1)e/s̄)

d`
<

1
3 +

√
2s̄ log((n` − 1)e/s̄)

d`

in (2.55) and noting that

1−
√

s̄

d`
− ε > 2

3 −
√

s̄

d`
−

√
2s̄ log((n` − 1)e/s̄)

d`

>
2
3 −

√
3s̄ log((n` − 1)e/s̄)

d`
,

where we used log((n` − 1)e/s̄) ≥ 1 (as n` − 1 ≥ d` and s̄ ≤ d`) for
the last inequality, we have

P
[
F (`,i)

7

]
= P


ϕΓ′>

∥∥∥y(`)
i‖

∥∥∥
2


2

3 −

√
3s̄ log((n` − 1)e/s̄)

d`


,∀Γ′ ∈ I




≥ 1− e−d`/18.

This completes the proof of Lemma 2.5.

We continue by deriving a lower bound on P[E(`,i)
6].

Lemma 2.7. Set ã := minj∈[n`]\{i} ‖y
(`)
j‖ ‖2 and suppose that smax ≤

c1d`/ log(e(n` − 1)/smax) for a numerical constant c1 > 0. Then, we

66

2.A PROOF OF THEOREM 2.1

have

P
[
E(`,i)

6

]
= P

[∥∥∥r(`)
s⊥

∥∥∥
2
≤
∥∥∥z(`)

i⊥

∥∥∥
2

+ 3σ
ã

∥∥∥y(`)
i

∥∥∥
2
, ∀s ≤ smax

]

≥ 1− 2e−c2m − 2e−c3d` , (2.56)

where c2, c3 > 0 are numerical constants.

Proof. First note that for s = 0, r(`)
0⊥ = y(`)

i⊥ = z(`)
i⊥ and the inequality

‖r(`)
s⊥‖2 ≤ ‖z

(`)
i⊥‖2 + (3σ/ã)‖y(`)

i ‖2 holds trivially. For 1 ≤ s ≤ smax, as
in the proof of Lemma 2.5, we consider fixed index sets Γ ∈ J , with

J := {Γ′ ⊂ [n`]\{i} : |Γ′| = s ∈ [smax]}, (2.57)

to resolve the issue of statistical dependencies (between the columns
of Y(`)

Λs and y(`)
i) in ‖r(`)

s⊥‖2 = ‖P⊥(I−Y(`)
ΛsY

(`)
Λs
†
)y(`)
i ‖2. Specifically,

this is accomplished by upper-bounding ‖P⊥(I − Y(`)
Γ Y(`)

Γ
†
)y(`)
i ‖2

according to (2.58) and establishing that the submatrix Y(`)
Γ of Y(`)

is well-conditioned with high probability for all Γ ∈ J , in particular
for the sets Λs ∈ J , s ∈ [smax], which determine r(`)

s⊥. This will be
accomplished by employing the restricted isometry property (RIP)
(Vershynin, 2012, Sec. 5.6) and standard concentration of measure
results from random matrix theory.

By the triangle inequality and the submultiplicativity of the opera-
tor norm, we have, for every Γ ∈ J , that

∥∥∥∥P⊥(I−Y(`)
Γ Y(`)

Γ
†
)y(`)
i

∥∥∥∥
2

≤
∥∥∥y(`)

i⊥

∥∥∥
2

+
∥∥∥P⊥Y(`)

Γ

∥∥∥
2→2

∥∥∥∥Y
(`)
Γ
†
∥∥∥∥

2→2

∥∥∥y(`)
i

∥∥∥
2

(2.58)

=
∥∥∥z(`)

i⊥

∥∥∥
2

+ 1
σmin(Y(`)

Γ)

∥∥∥P⊥Z(`)
Γ

∥∥∥
2→2

∥∥∥y(`)
i

∥∥∥
2

(2.59)

≤
∥∥∥z(`)

i⊥

∥∥∥
2

+ 1
σmin(Ã(`)

Γ)

∥∥∥Z(`)
Γ

∥∥∥
2→2

∥∥∥y(`)
i

∥∥∥
2
, (2.60)

67

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

where we used σmin(Y(`)
Γ) = 1/‖Y(`)

Γ
†
‖2→2 (Vershynin, 2012, Sec.

5.2.1) to get (2.59) and σmin(Y(`)
Γ) ≥ σmin(Ã(`)

Γ) > 0 w.p. 1 (where
the first inequality is a consequence of ‖Y(`)

Γ v‖2 ≥ ‖P‖Y
(`)
Γ v‖2 =

‖Ã(`)
Γ v‖2, for all v ∈ Rs, and the second stems from the fact that Ã(`)

Γ
has full column rank w.p. 1) to get (2.60). Denote the elements of Γ
by γj , j ∈ [s]. We continue by decomposing Ã(`)

Γ according to Ã(`)
Γ =

EΓDΓ, where E := [ã(`)
1 /‖ã(`)

1 ‖2 ã(`)
2 /‖ã(`)

2 ‖2 . . . ã(`)
n` /‖ã

(`)
n` ‖2], and

DΓ := diag(‖ã(`)
γ1 ‖2, ‖ã

(`)
γ2 ‖2, . . . , ‖ã

(`)
γs ‖2). Note that the columns of E

are distributed i.i.d. uniformly at random on Sd`−1 and σmin(DΓ) ≥ ã.
We next establish that Ã(`) and Z(`) satisfy the RIP with high prob-
ability, which will then allow us to bound σmin(Ã(`)

Γ) and σmax(Z(`)
Γ),

respectively, in (2.60), for all Γ ∈ J .
We start by recalling the definition of the RIP.

Definition 2.2. A matrix A ∈ Rm×n satisfies the RIP of order p ≥ 1
if there exists δp > 0 such that

(1− δp)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δp)‖v‖22 (2.61)

holds for all v ∈ Rn with ‖v‖0 ≤ p. The smallest number δp = δp(A)
satisfying (2.61) is called the restricted isometry constant of A.

If A ∈ Rm×n satisfies the RIP of order p, it follows from (Vershynin,
2012, Lem. 5.36) that for δ ∈ [δp, 1],

1− δ ≤ σmin(AT) ≤ σmax(AT) ≤ 1 + δ,

for all T ⊆ [n] with |T | ≤ p. (2.62)

By (Vershynin, 2012, Ex. 5.25) the rows of (
√
m/σ)Z(`)

−i ∈ Rm×(n`−1)

are independent sub-gaussian isotropic random vectors (Vershynin,
2012, Def. 5.19, Def. 5.22), and by (Vershynin, 2012, Ex. 5.25) the
columns of

√
d`E−i ∈ Rd`×(n`−1) are independent sub-gaussian isotropic

random vectors with `2-norm
√
d` a.s. We can therefore apply the

next lemma to show that (
√
m/σ)Z(`)

−i and
√
d`E−i satisfy the RIP

for suitable p and δ with high probability. This will then allow us to
bound σmin(Ã(`)

Γ) and σmax(Z(`)
Γ) for all Γ ∈ J .

68

2.A PROOF OF THEOREM 2.1

Lemma 2.8 (Vershynin (2012), Thm. 5.65). Let A ∈ Rm×n be
a random matrix with independent sub-gaussian isotropic random
vectors as rows or independent sub-gaussian isotropic random vectors
with `2-norm

√
m a.s. as columns. Select p with 1 ≤ p ≤ n and let

δ ∈ (0, 1). If
m ≥ Cδ−2p log(en/p),

then, w.p. at least 1−2e−cδ2m, the normalized matrix Ā := (1/
√
m)A

satisfies the RIP of order p with δp(Ā) ≤ δ. Here, the constants
c, C > 0 depend only on the sub-gaussian norm4 of the rows or
columns of A.

By Lemma 2.8 with A = (
√
m/σ)Z(`)

−i and δ = 1/2, and (2.62), if
smax ≤ C2m/ log(e(n` − 1)/smax), there exist constants c2, C2 > 0
such that

P
[

1
2σ ≤ σmin(Z(`)

Γ) ≤ σmax(Z(`)
Γ) ≤ 3

2σ, ∀Γ ∈ J
]
≥ 1− 2e−c2m.

(2.63)

Setting A =
√
d`E−i and δ = 1/2 in Lemma 2.8, we have similarly

P
[

1
2 ≤ σmin(EΓ) ≤ σmax(EΓ) ≤ 3

2 , ∀Γ ∈ J
]
≥1− 2e−c3d` , (2.64)

if smax ≤ C3d`/ log(e(n`− 1)/smax), for constants c3, C3 > 0. Putting
(2.63) and (2.64) together, we get (2.56) as follows

P
[
E(`,i)

6

]
= P
[∥∥∥∥P⊥(I−Y(`)

ΛsY
(`)
Λs
†
)y(`)
i

∥∥∥∥
2
≤
∥∥∥z(`)

i⊥

∥∥∥
2

+ 3σ
ã

∥∥∥y(`)
i

∥∥∥
2

]

≥ P
[
σmax(Z(`)

Λs)
σmin(Ã(`)

Λs)
≤ 3σ

ã

]
(2.65)

4 The sub-gaussian norm of a random variable X is defined as ‖X‖Ψ2
:=

supp≥1 p−1/2(E[|X|p])1/p (Vershynin, 2012, Def. 5.7).

69

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

≥ P
[
σmax(Z(`)

Λs)
σmin(EΛs)

≤ 3σ
]

(2.66)

≥ P
[{
σmin(EΛs) ≥

1
2

}
∩
{
σmax(Z(`)

Λs) ≤
3
2σ
}]

≥ 1− P
[
σmin(EΛs) <

1
2

]
− P

[
σmax(Z(`)

Λs) >
3
2σ
]

(2.67)

≥ 1− 2e−c2m − 2e−c3d` , (2.68)

for all s ≤ smax. Here (2.65) follows from (2.60) with Γ = Λs, (2.66)
is by

1
σmin(Ã(`)

Λs)
≤ 1
ãσmin(EΛs)

,

where we used

σmin(Ã(`)
Λs) = min

v∈Rs
‖EΛsDΛsv‖2

= min
v∈Rs

∥∥∥∥EΛs
DΛsv
‖DΛsv‖2

∥∥∥∥
2
‖DΛsv‖2

≥ min
v∈Rs

∥∥∥∥EΛs
DΛsv
‖DΛsv‖2

∥∥∥∥
2
ã

= ãσmin(EΛs),

(2.67) is by a union bound, and (2.68) follows from (2.63) and (2.64)
with Λs ∈ J for all s ≤ smax. Finally, letting c1 := min{2C2, C3} ≤
min{(m/d`)C2, C3} (using the assumption m ≥ 2dmax) ensures that
smax, and thereby |Γ|, is small enough for both (2.63) and (2.64) to
hold. This concludes the proof of Lemma 2.7.

We proceed by establishing a lower bound on P[E(`,i)
5].

Lemma 2.9. For numerical constants c4, c5 > 0 it holds that

P
[
E(`,i)

5

]
= P

[
max

j∈[n`]\(Λs∪{i})

∣∣∣
〈
y(`)
j , r(`)

s

〉∣∣∣ ≥
(

1− c4 + 1
√
ρ`

)
∥∥∥r(`)
s‖

∥∥∥
2√

d`

70

2.A PROOF OF THEOREM 2.1

− σ
(

1√
m

+ 2√
n` − 1

)∥∥∥r(`)
s

∥∥∥
2

]

≥ 1− 2e−c5d` − 2e−m/2. (2.69)

Proof. We first lower-bound the maximum in (2.69) by a term pro-
portional to ‖Y(`)

−i
>

r(`)
s ‖2 and then establish (2.69) by leveraging

standard bounds on the singular values of random matrices. We have

max
j∈[n`]\(Λs∪{i})

∣∣∣
〈
y(`)
j , r(`)

s

〉∣∣∣ = max
j∈[n`]\{i}

∣∣∣
〈
y(`)
j , r(`)

s

〉∣∣∣

=
∥∥∥∥Y

(`)
−i
>

r(`)
s

∥∥∥∥
∞

≥

∥∥∥∥Y
(`)
−i
>

r(`)
s

∥∥∥∥
2√

n` − 1

=

∥∥∥∥A
(`)
−i
>

U(`)>r(`)
s‖ + Z(`)

−i
>

r(`)
s

∥∥∥∥
2√

n` − 1

≥

∥∥∥∥A
(`)
−i
>

U(`)>r(`)
s‖

∥∥∥∥
2√

n` − 1
−

∥∥∥∥Z
(`)
−i
>

r(`)
s

∥∥∥∥
2√

n` − 1

≥
σmin

(
A(`)
−i
>
)

√
n` − 1

∥∥∥r(`)
s‖

∥∥∥
2
−
σmax

(
Z(`)
−i
>
)

√
n` − 1

∥∥∥r(`)
s

∥∥∥
2
, (2.70)

where the first equality is thanks to orthogonality of r(`)
s and y(`)

j , for
all j ∈ Λs, the first inequality follows from ‖v‖2 ≤

√
n` − 1‖v‖∞, for

all v ∈ Rn`−1, and the second inequality is by the reverse triangle
inequality.

Noting that
√
d`A(`)

−i
>

is a (n` − 1) × d` matrix whose rows are
independent isotropic subgaussian random vectors (as defined in
(Vershynin, 2012, Def. 5.19, Def. 5.22)), it follows from (Vershynin,

71

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

2012, Thm. 5.39) (see Theorem 2.5 in Appendix 2.D) that

P
[√

d`σmin

(
A(`)
−i
>
)
<
√
n` − 1− c4

√
d` − t

]
< 2e−c5t

2
, (2.71)

where the constants c4, c5 > 0 depend only on the sub-gaussian norm
of the rows of A(`)

−i
>
. Setting t =

√
d` in (2.71), we get

P



σmin

(
A(`)
−i
>
)

√
n` − 1

∥∥∥r(`)
s‖

∥∥∥
2
<

(
1− c4 + 1

√
ρ`

)
∥∥∥r(`)
s‖

∥∥∥
2√

d`


 < 2e−c5d` .

(2.72)

Since (
√
m/σ)Z(`)

−i
>
is a (n` − 1)×m matrix with i.i.d. standard

normal entries, it follows from (Vershynin, 2012, Cor. 5.35) (see
Corollary 2.6 in Appendix 2.D) that

P
[√

m

σ
σmax

(
Z(`)
−i
>
)
>
√
n` − 1 +

√
m+ t

]
< 2e−t

2/2. (2.73)

Setting t =
√
m in (2.73), we obtain

P



σmax

(
Z(`)
−i
>
)

√
n` − 1

∥∥∥r(`)
s

∥∥∥
2
>σ

(
1√
m

+ 2√
n` − 1

)∥∥∥r(`)
s

∥∥∥
2


 < 2e−m/2.

(2.74)

The claim in Lemma 2.9 now follows by lower-bounding the first term
in (2.70) using (2.72), by upper-bounding the second term in (2.70)
using (2.74), and by application of a union bound.

Finally, we derive a lower bound on P[E4].

72

2.B PROOF OF THEOREM 2.2

Lemma 2.10. We have

P[E4] ≥ 1−
∑

`∈[L]

n`(e−d`/8 + e−m/8). (2.75)

Proof. The proof is effected by applying the following well-known
concentration result.

Theorem 2.4 (Ledoux (2005)). Let f : Rm → R be a Lipschitz
function with Lipschitz constant K, i.e., |f(a)− f(b)| ≤ K‖a − b‖2,
for all a,b ∈ Rm. Let z ∈ Rm be a N (0, Im) vector. Then, for t ≥ 0,
we have

P[f(z)− E[f(z)] > t] ≤ e−t
2/(2K2). (2.76)

The functions f(z) = ‖z‖2 and f‖(z) = ‖P‖z‖2 both have Lip-
schitz constant K = 1 (|f‖(a)− f‖(b)| = |‖P‖a‖2 − ‖P‖b‖2| ≤
‖P‖(a − b)‖2 ≤ ‖a − b‖2, for all a,b ∈ Rm, by the reverse triangle
inequality and ‖P‖‖2→2 = 1). For z ∼ N (0, Im), we get by Jensen’s in-
equality E[‖z‖2] ≤

√
E[‖z‖22] =

√
m and E[‖P‖z‖2] ≤

√
E[‖P‖z‖22] =

√
d` (where the equality follows from P‖z = U(`)U(`)>z and the fact

that U(`)>z is N (0, Id`)-distributed). Noting that z(`)
i ∼ (σ/

√
m)z,

application of (2.76) to z and P‖z yields

P
[∥∥∥z(`)

i

∥∥∥
2
>

3
2σ
]
≤ e−m/8 and

P
[∥∥∥P‖z(`)

i

∥∥∥
2
>

3
√
d`

2
√
m
σ

]
≤ e−d`/8,

where we set t =
√
m/2 and t =

√
d`/2, respectively. A union bound

over ` ∈ [L], i ∈ [n`], yields the desired lower bound (2.75).

2.B. PROOF OF THEOREM 2.2

Most steps of the proof of Theorem 2.2 are almost identical to those
in the proof of Theorem 2.1. We therefore elaborate only on the

73

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

arguments the proofs differ in significantly.
Analogously to the proof for SSC-OMP, we will henceforth work

with the “reduced MP” algorithm which, for the representation of
y(`)
i selects elements from the reduced dictionary Y`\{y(`)

i } only,
instead of the full dictionary Y\{y(`)

i }. The justification for relying on
reduced MP to establish the desired result is identical to that for OMP.
Throughout the proof the residual of the reduced MP algorithm will
be denoted by q(`)

s and the number of iterations actually performed
when a stopping condition has been met by sa. As in the OMP case,
for expositional convenience, the quantities q(`)

s and sa do not reflect
the dependence on the index i of the data point y(`)

i .
Note that the selection rules for OMP and MP are equivalent in the

following sense. As the OMP residual r(`)
s is orthogonal to y(`)

j , for
all j ∈ Λs, we can replace maxj∈[N]\(Λs∪{i}) |〈y

(`)
j , rs〉| on the RHS of

(2.16) by maxj∈[N]\{i} |〈y
(`)
j , rs〉|, i.e., we can take the maximization

over j ∈ [N]\{i} as in MP. We therefore need to show that (2.16)
with rs replaced by qs and maxj∈[N]\(Λs∪{i}) replaced by maxj∈[N]\{i}

holds for all MP iterations, and for every y(`)
i ∈ Y`, ` ∈ [L], w.p. at

least P ?.
Next, we systematically revisit the events E(`,i,s)

1 – E(`,i)
7 and adapt

the corresponding bounds for MP where needed. Recall that the
bounds on P[E(`,i,s)

1] and P[E(`,i,s)
2] in Lemma 2.2 rely on the rotational

invariance—as expressed in Lemma 2.1—of the distributions of r(`)
s‖

and r(`)
s⊥, respectively. As the residual update rule (2.5) for MP differs

from that for OMP in (2.2), we need to establish rotational invariance
for q(`)

s‖ and q(`)
s⊥, which will be done in Lemma 2.11 below. The

bounds on P[E(`,i,s)
3], P[E4], and P[E(`,i)

5] in Lemmata 2.2, 2.10, and 2.9,
respectively, do not depend on a particular property of r(`)

s apart from
‖r(`)
s ‖2 ≤ ‖y

(`)
i ‖2 in the case of P[E(`,i,s)

3] (we have ‖q(`)
s ‖2 ≤ ‖y

(`)
i ‖2

as a consequence of (Mallat and Zhang, 1993, Eq. 13)). Thus, the
bounds on P[E(`,i,s)

1]–P[E(`,i)
5] continue to hold for r(`)

s , r(`)
s‖ , and r(`)

s⊥

in E(`,i,s)
1 –E(`,i)

5 replaced by q(`)
s , q(`)

s‖ , and q(`)
s⊥, respectively, and we

readily get the upper bound (2.18) on the LHS of (2.16) and the

74

2.B PROOF OF THEOREM 2.2

lower bound (2.24) on the RHS of (2.16). The bounds on ‖r(`)
s‖ ‖2 and

‖r(`)
s⊥‖2 in E(`,i)

6 and E(`,i)
7 , respectively, in the proof of Theorem 2.1

require more work. In particular, as the stopping behavior of MP
is different from that of OMP, we need the corresponding bounds
on ‖q(`)

s⊥‖2 and ‖q(`)
s‖ ‖2 to hold for all MP iterations s ∈ [sa] and

for a maximum sparsity level of pmax. This will be accomplished by
deriving an upper bound on ‖q(`)

s⊥‖2 and a lower bound on ‖q(`)
s‖ ‖2

leading to suitably modified events Ẽ(`,i)
6 and Ẽ(`,i)

7 , respectively, as
defined below. Specifically, the resulting upper bound on ‖q(`)

s⊥‖2 is
slightly weaker than that on ‖r(`)

s⊥‖2 in E(`,i)
6 , but exhibits the same

scaling behavior in σ, whereas the resulting lower bound on ‖q(`)
s‖ ‖2

is identical to the one on ‖r(`)
s‖ ‖2 in E(`,i)

7 .

We proceed by introducing the modified events

Ẽ(`,i)
6 :=

{∥∥∥q(`)
s⊥

∥∥∥
2
≤
∥∥∥z(`)

i⊥

∥∥∥
2

+ 6σ
ã

∥∥∥y(`)
i

∥∥∥
2
, ∀s ≤ sa

}
, and

Ẽ(`,i)
7 :=




∥∥∥q(`)

s‖

∥∥∥
2

>
∥∥∥y(`)

i‖

∥∥∥
2


2

3 −

√
3pmax log((n` − 1)e/pmax)

d`


,∀s ≤ sa



,

(2.77)

where ã := minj∈[n`]\{i} ‖y
(`)
j‖ ‖2, and deriving lower bounds on P[Ẽ(`,i)

6]
and P[Ẽ(`,i)

7] in Lemmata 2.12 and 2.13, respectively. These lower
bounds will turn out to be identical to those for SSC-OMP. Although
the corresponding proofs rely on arguments similar in spirit to those
used for OMP, the technical details are dissimilar enough to warrant
detailed presentation.

We continue by establishing the bounds on ‖q(`)
s‖ ‖2 and ‖q(`)

s⊥‖2,
as announced. Using the assumptions m ≥ 2dmax, σ ≤ 1/2, and
pmax ≤ min`∈[L]{csd`/ log((n` − 1)e/pmax)}, we have on E4 ∩ Ẽ

(`,i)
6

75

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

that
∥∥∥q(`)

s⊥

∥∥∥
2
≤ 3

2σ + 6σ
1 + 3

2σ

1− 3
2

√
d`√
m
σ
≤ σ(15 + 20σ) (2.78)

and, by repeating the steps in (2.29), we get ‖q(`)
s‖ ‖2 > 1/20 on

Ẽ(`,i)
7 . It therefore follows that (2.16) for MP is implied by (2.8) with
c(σ) = 17 + 23σ on Ẽ? :=

⋂
`,i,s(E

(`,i,s)
1 ∩E(`,i,s)

2 ∩E(`,i,s)
3 ∩E4∩E

(`,i)
5 ∩

Ẽ(`,i)
6 ∩ Ẽ(`,i)

7). The proof is completed by lower-bounding P[Ẽ?] via a
union bound.

We proceed by establishing the rotational invariance properties of
q(`)
s‖ and q(`)

s⊥ needed to establish the lower bounds on P[Ẽ(`,i)
6] and

P[Ẽ(`,i)
7] in Lemmata 2.12 and 2.13, respectively.

Lemma 2.11. The distributions of q(`)
s‖ and q(`)

s⊥ are rotationally
invariant on S` and S⊥` , respectively, i.e., for unitary transforma-
tions V‖,V⊥ ∈ Rm×m of the form specified in Lemma 2.1, we have
V‖q(`)

s‖ ∼ q(`)
s‖ and V⊥q(`)

s⊥ ∼ q(`)
s⊥.

Proof. The arguments employed in this proof are similar to those
in the proof of the corresponding result for OMP, Lemma 2.1, but
the structure of the proof differs as the MP residual q(`)

s can only
be expressed recursively, i.e., as a function of previous residuals.
In contrast, the reduced OMP residual r(`)

s can be written as the
projection of y(`)

i onto the orthogonal complement of the span of the
data points indexed by Λs. Throughout the proof, ωs(x,D) denotes
the index obtained by the MP algorithm in iteration s when applied
to x with the columns of D as dictionary elements, and qs(x,D) is
the corresponding residual.

We first establish results analogous to (2.32) and (2.33). Again, the
proof is effected through induction. We start with the inductive step
and assume that

qs′(Vy(`)
i ,VY(`)

−i) = Vqs′(y(`)
i ,Y(`)

−i) (2.79)

for fixed s′ < sa, for all unitary matrices V ∈ Rm×m. For iteration

76

2.B PROOF OF THEOREM 2.2

s′ + 1 we then have

ωs′+1(Vy(`)
i ,VY(`)

−i) = arg max
j∈[n`]\{i}

∣∣∣
〈
Vy(`)

j ,qs′(Vy(`)
i ,VY(`)

−i)
〉∣∣∣

= arg max
j∈[n`]\{i}

∣∣∣
〈
y(`)
j ,qs′(y(`)

i ,Y(`)
−i)
〉∣∣∣

= ωs′+1(y(`)
i ,Y(`)

−i). (2.80)

Now, using the shorthands ωs′+1(V) and ωs′+1 for ωs′+1(Vy(`)
i ,VY(`)

−i)
and ωs′+1(y(`)

i ,Y(`)
−i), respectively, we get

qs′+1(Vy(`)
i ,VY(`)

−i)

= qs′(Vy(`)
i ,VY(`)

−i)

−

〈
qs′(Vy(`)

i ,VY(`)
−i),

Vy(`)
ωs′+1(V)∥∥∥Vy(`)
ωs′+1(V)

∥∥∥
2

〉
Vy(`)

ωs′+1(V)∥∥∥Vy(`)
ωs′+1(V)

∥∥∥
2

= qs′(Vy(`)
i ,VY(`)

−i)−
〈

qs′(Vy(`)
i ,VY(`)

−i),
Vy(`)

ωs′+1∥∥∥y(`)
ωs′+1

∥∥∥
2

〉
Vy(`)

ωs′+1∥∥∥y(`)
ωs′+1

∥∥∥
2

= V


qs′(y(`)

i ,Y(`)
−i)−

〈
qs′(y(`)

i ,Y(`)
−i),

y(`)
ωs′+1∥∥∥y(`)
ωs′+1

∥∥∥
2

〉
y(`)
ωs′+1∥∥∥y(`)
ωs′+1

∥∥∥
2




= Vqs′+1(y(`)
i ,Y(`)

−i), (2.81)

where the second and third equality follow from (2.80) and (2.79),
respectively. Now, the base case is q0(Vy(`)

i ,VY(`)
−i) = Vy(`)

i =
Vq0(y(`)

i ,Y(`)
−i), and we therefore established that

qs(Vy(`)
i ,VY(`)

−i) = Vqs(y(`)
i ,Y(`)

−i), (2.82)

for all s ≤ sa and all unitary V ∈ Rm×m.

Finally, repeating the steps leading from (2.34) to (2.35) for qs and
qs‖ instead of rs and rs‖, respectively, yields the desired result.

77

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

We continue with the lower bound on P[Ẽ(`,i)
7].

Lemma 2.12. Let n` > 1. We have

P
[
Ẽ(`,i)

7

]
= P



∥∥∥q(`)

s‖

∥∥∥
2

>
∥∥∥y(`)

i‖

∥∥∥
2


2

3 −

√
3pmax log((n` − 1)e/pmax)

d`


, ∀s ≤ sa




≥ 1− e−d`/18. (2.83)

Proof. We start by recalling that the reduced MP algorithm decom-
poses y(`)

i according to (see, e.g., (Mallat and Zhang, 1993))

y(`)
i =

s∑

s′=1

〈
q(`)
s′−1,

y(`)
ωs′∥∥∥y(`)
ωs′

∥∥∥
2

〉
y(`)
ωs′∥∥∥y(`)
ωs′

∥∥∥
2

+ q(`)
s . (2.84)

Denote by Ωs the set containing the indices of the points in Y`\{y(`)
i }

selected during the first s iterations, i.e.,

Ωs := {ωs′ : s′ ∈ [s]}. (2.85)

Note that Ωs may contain fewer than s indices as reduced MP may
select one or more points (from Y`\{y(`)

i }) repeatedly. With P‖Ωs :=

Y(`)
Ωs‖Y

(`)
Ωs‖
†
, using (2.84), we get

∥∥∥P‖q(`)
s

∥∥∥
2
≥
∥∥∥(I−P‖Ωs)P‖q

(`)
s

∥∥∥
2

=

∥∥∥∥∥∥
(I−P‖Ωs)P‖


y(`)

i

s∑

s′=1

〈
q(`)
s′−1,

y(`)
ωs′∥∥∥y(`)
ωs′

∥∥∥
2

〉
y(`)
ωs′∥∥∥y(`)
ωs′

∥∥∥
2



∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
(I−P‖Ωs)y

(`)
i‖

78

2.B PROOF OF THEOREM 2.2

− (I−P‖Ωs)




s∑

s′=1

〈
q(`)
s′−1,

y(`)
ωs′∥∥∥y(`)
ωs′

∥∥∥
2

〉
y(`)
ωs′‖∥∥∥y(`)
ωs′

∥∥∥
2




´¹¹¸¹¹¹¶
∈R(P‖Ωs)

∥∥∥∥∥∥
2

=
∥∥∥(I−P‖Ωs)y

(`)
i‖

∥∥∥
2

≥ ‖(I−P‖Ωsa)y(`)
i‖ ‖2, (2.86)

where the last inequality is by R(I−P‖Ωsa) ⊆ R(I−P‖Ωs), for s ≤ sa.
The proof is now completed by replacing Ωsa in (2.86) by a fixed
Γ ∈ I (recall the definition of I from (2.40), with s̄ in (2.40) replaced
by pmax) and by lower-bounding ‖(I−P‖Γ)y(`)

i‖ ‖2 for all Γ ∈ I as in
the proof of Lemma 2.5 (following the steps starting from (2.45)).

Next, we lower-bound P[Ẽ(`,i)
6].

Lemma 2.13. Set ã := minj∈[n`]\{i} ‖y
(`)
j‖ ‖2 and assume that pmax ≤

c1d`/ log(e(n` − 1)/pmax) for a numerical constant c1 > 0. Then, we
have

P
[
Ẽ(`,i)

6

]
= P

[∥∥∥q(`)
s⊥

∥∥∥
2
≤
∥∥∥z(`)

i⊥

∥∥∥
2

+ 6σ
ã

∥∥∥y(`)
i

∥∥∥
2
,∀s ≤ sa

]

≥ 1− 2e−c2m − 2e−c3d` , (2.87)

where c2, c3 > 0 are numerical constants.

Proof. We start by rewriting (2.84) as

y(`)
i = Y(`)

ΩsbΩs + q(`)
s , (2.88)

where Ωs was defined in (2.85) and bΩs contains the coefficients
of the representation of y(`)

i computed by MP according to (2.4),
i.e., [b]ω =

∑
s′ : ωs′=ω 〈y

(`)
ωs′ ,q

(`)
s′−1〉 /‖y

(`)
ωs′‖

2
2, ω ∈ Ωs (this is a direct

consequence of (2.4); we do not reflect dependence of b on i, ` for
expositional ease). Next, note that

σmin(Ã(`)
Ωs)‖bΩs‖2 ≤ σmin(Y(`)

Ωs)‖bΩs‖2

79

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

≤
∥∥∥Y(`)

ΩsbΩs

∥∥∥
2

=
∥∥∥y(`)

i − q(`)
s

∥∥∥
2

≤
∥∥∥y(`)

i

∥∥∥
2

+
∥∥∥q(`)

s

∥∥∥
2
≤ 2
∥∥∥y(`)

i

∥∥∥
2
, (2.89)

where the first inequality is a consequence of ‖Y(`)
Ωsv‖2 ≥ ‖P‖Y

(`)
Ωsv‖2 =

‖P‖U(`)Ã(`)
Ωsv‖2 = ‖Ã(`)

Ωsv‖2, for all v ∈ R|Ωs|, and the last inequality
follows from ‖q(`)

s ‖2 ≤ ‖y
(`)
i ‖2 (Mallat and Zhang, 1993, Eq. 13).

For σmin(Ã(`)
Ωs) > 0 (we will justify below that σmin(Ã(`)

Ωs) is, indeed,
bounded away from 0 with high probability) it hence follows that
‖bΩs‖2 ≤ (2/σmin(Ã(`)

Ωs))‖y
(`)
i ‖2 and therefore, together with (2.88),

we get
∥∥∥q(`)

s⊥

∥∥∥
2

=
∥∥∥y(`)

i⊥ −Y(`)
Ωs⊥bΩs

∥∥∥
2

≤
∥∥∥y(`)

i⊥

∥∥∥
2

+
∥∥∥Y(`)

Ωs⊥bΩs

∥∥∥
2

≤
∥∥∥y(`)

i⊥

∥∥∥
2

+
∥∥∥Y(`)

Ωs⊥

∥∥∥
2→2
‖bΩs‖2

=
∥∥∥z(`)

i⊥

∥∥∥
2

+
∥∥∥Z(`)

Ωs⊥

∥∥∥
2→2
‖bΩs‖2

≤
∥∥∥z(`)

i⊥

∥∥∥
2

+ 2
σmin(Ã(`)

Ωs)

∥∥∥Z(`)
Ωs⊥

∥∥∥
2→2

∥∥∥y(`)
i

∥∥∥
2
. (2.90)

Replacing Ωs in (2.90) by a fixed Γ ∈ J (recall the definition of J
from (2.57), with smax in (2.57) replaced by pmax), (2.90) and (2.60)
are equal up to the factor 2 in the second term of (2.90). This factor-
of-two difference stems from the update rule for q(`)

s differing from
that for r(`)

s and leads to the difference in c(σ) between Theorems
2.2 and 2.1. We proceed as in the proof of Lemma 2.13 (starting
from (2.58)–(2.60)) by establishing bounds on the tail probabilities
of ‖Z(`)

Γ⊥‖2→2 and σmin(Ã(`)
Γ), for all Γ ∈ J , via (2.63) and (2.64),

respectively, to obtain the result in Lemma 2.13.

80

2.C PROOF OF THEOREM 2.3

2.C. PROOF OF THEOREM 2.3

We prove the result for OMP. The proof for MP follows simply by
replacing the lower bound on ‖r(`)

s‖ ‖2 in E(`,i)
7 by the lower bound on

‖q(`)
s‖ ‖2 in Ẽ(`,i)

7 (defined in (2.77)), and by noting that P[E(`,i)
7] =

P[Ẽ(`,i)
7].
We only need to address the case

d`
log((n` − 1)e) min





1
3


2

3 −
τ

1− 3
2

√
d`√
m
σ




2

, cs




≥ 1, (2.91)

as otherwise there is nothing to prove. We start by noting that under
the conditions of Theorem 2.3 (which are identical to the conditions
of Theorem 2.1 minus the condition smax ≤ min`∈[L]{csd`/ log((n` −
1)e/smax)}), it follows from the proof of Theorem 2.1 that, condi-
tionally on E? as defined in (2.30), reduced OMP and OMP are
guaranteed to select the same points to represent y(`)

i during the
first bcsd`/ log((n` − 1)e)c ≥ (2.10) iterations, for all i ∈ [n`], ` ∈ [L].
Therefore, conditionally on E?, for τ small enough reduced OMP
will perform a number of iterations lower-bounded by (2.10), for
all y(`)

i , i ∈ [n`], ` ∈ [L], which implies that the number of points
from Y`\{y(`)

i } selected by OMP is lower-bounded by (2.10) as well,
for all y(`)

i , i ∈ [n`], ` ∈ [L]. Specifically, we will show that for
τ ∈ [0, 2/3− (

√
dmax/

√
m)σ] the number of reduced OMP iterations

is lower-bounded by (2.10). This will be accomplished by establishing
that for τ ∈ [0, 2/3− (

√
dmax/

√
m)σ], on E?, we have ‖r(`)

sτ ‖2 > τ for
all y(`)

i , i ∈ [n`], ` ∈ [L], where

sτ :=

 d`
log((n` − 1)e)

1
3


2

3 −
τ

1− 3
2

√
d`√
m
σ




2
 . (2.92)

Indeed, as the stopping criterion maxy(`)
j
∈Y`\(Λs∪{y(`)

i
}) |〈y

(`)
j , r(`)

s 〉| =

81

2 NOISY SUBSPACE CLUSTERING VIA MATCHING PURSUITS

0 is activated only after min{m,n` − 1} > d` > sτ iterations (as the
points in Y` are in general position w.p. 1), ‖r(`)

sτ ‖2 > τ implies that
reduced OMP performs at least sτ iterations. On the event E4∩E

(`,i)
7 ⊃

E? (E4 and E(`,i)
7 are defined in (2.22) and (2.27), respectively), setting

s̄ = sτ in E(`,i)
7 , we have

∥∥∥r(`)
s̄

∥∥∥
2
≥
∥∥∥r(`)
s̄‖

∥∥∥
2

>
∥∥∥y(`)

i‖

∥∥∥
2


2

3 −

√
3s̄ log((n` − 1)e/s̄)

d`




≥
(

1− 3
2

√
d`√
m
σ

)
2

3 −

√
3s̄ log((n` − 1)e/s̄)

d`




≥
(

1− 3
2

√
d`√
m
σ

)



2
3

−




 d`
log((n` − 1)e)

1
3


2

3 −
τ

1− 3
2

√
d`√
m
σ




2


· 3 log((n` − 1)e)
d`




1
2



≥
(

1− 3
2

√
d`√
m
σ

)
2

3 −


2

3 −
τ

1− 3
2

√
d`√
m
σ






= τ, (2.93)

where for the second inequality we used that ‖y(`)
i‖ ‖2 ≥ ‖x

(`)
i ‖2 −

‖z(`)
i‖ ‖2 ≥ 1− 3

√
d`/(2

√
m) on E4, log((n` − 1)e/s̄) ≤ log((n` − 1)e),

for s̄ ≥ 1, for the third inequality, and τ ≤ 2/3− (
√
dmax/

√
m)σ for

82

2.D SUPPLEMENTARY NOTES

the last inequality. This completes the proof.

2.D. SUPPLEMENTARY NOTES

Lemma 2.14 (Vershynin (2012), Lem. 5.24). Let X1, . . . , Xn be
independent centered sub-gaussian random variables (see footnote 4).
Then, X = (X1, . . . , Xn) is a centered sub-gaussian random vector in
Rn, and

‖X‖Ψ2
≤ C max

i∈[n]
‖Xi‖Ψ2

, (2.94)

where C is a numerical constant.

Theorem 2.5 (Vershynin (2012), Lem. 5.39). Let A be an m × n
matrix whose rows are independent sub-gaussian isotropic random
vectors (Vershynin, 2012, Def. 5.19, Def. 5.22) in Rn. Then, for t ≥ 0,
w.p. at least 1− 2e−ct2 , we have
√
m− C

√
n− t ≤ σmin(A) ≤ σmax(A) ≤

√
m+ C

√
n+ t. (2.95)

Here C = CK , c = cK > 0 depend only on the sub-gaussian norm
K = maxi ‖A:,i‖Ψ2

of the rows of A.

Theorem 2.6 (Vershynin (2012), Cor. 5.35). Let A be an m × n
matrix with i.i.d. standard normal entries. Then, for t ≥ 0, w.p. at
least 1− 2e−t2/2, we have
√
m−

√
n− t ≤ σmin(A) ≤ σmax(A) ≤

√
m+

√
n+ t. (2.96)

83

CHAPTER 3

Robust Nonparametric Nearest Neighbor

Random Process Clustering

We consider the problem of clustering noisy finite-length observations
of stationary ergodic random processes according to their generative
models without prior knowledge of the model statistics and the num-
ber of generative models. Two algorithms, both using the L1-distance
between estimated PSDs as a measure of dissimilarity, are analyzed.
The first one, termed NNPC, relies on partitioning the nearest neigh-
bor graph of the observations via spectral clustering. The second
algorithm, simply referred to as KM, consists of a single k-means
iteration with farthest point initialization and was considered before
in the literature, albeit with a different dissimilarity measure and with
asymptotic performance results only. We prove that both algorithms
succeed with high probability in the presence of noise and missing
entries, and even when the generative process PSDs overlap signifi-
cantly, all provided that the observation length is sufficiently large.
Our results quantify the tradeoff between the overlap of the generative
process PSDs, the observation length, the fraction of missing entries,
and the noise variance. Furthermore, we prove that treating the finite-
length observations of stationary ergodic random processes as vectors
in Euclidean space and clustering them using the TSC algorithm, the
subspace clustering cousin of NNPC, results in performance strictly
inferior to that of NNPC. We argue that the underlying cause is to be

85

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

found in TSC employing spherical distance as dissimilarity measure,
thereby ignoring the stationary process structure of the observations.
Finally, we provide extensive numerical results for synthetic and real
data and find that NNPC outperforms state-of-the-art algorithms in
human motion sequence clustering.

3.1. FORMAL PROBLEM STATEMENT AND
ALGORITHMS

We consider the following clustering problem. Given the unlabeled
data set X = X1 ∪ . . . ∪ XL of cardinality N , where X` = {x(`)

i }
n`
i=1

contains noisy length-M observations x(`)
i —possibly with missing

entries—of the real-valued discrete-time stationary ergodic random
process X(`)[m], m ∈ Z, corresponding to the `th generative model,
find the partition X1, . . . ,XL. The statistics of the generative models
and of the noise processes, and the number of generative models, are
all assumed unknown.

Both clustering algorithms considered in this chapter are based on
the following measure for the distance between pairs of processes. With
the PSD of X(`) denoted by s(`)(f), f ∈ [0, 1), we define the distance
(dissimilarity) between the processesX(k) andX(`) as d(X(k), X(`)) :=
1
2
∫ 1

0 |s
(k)(f) − s(`)(f)|df . As argued below, for the algorithms to

be meaningful, the different processes have to be of the same or
at least of comparable power, which motivates the normalization∫ 1

0 s
(`)(f)df = 1, ` ∈ [L]. Now, this implies that d(X(k), X(`)) ≤

1
2
∫ 1

0 |s
(k)(f)|df+ 1

2
∫ 1

0 |s
(`)(f)|df = 1

2
∫ 1

0 s
(k)(f)df+ 1

2
∫ 1

0 s
(`)(f)df =

1, and hence d(X(k), X(`)) ∈ [0, 1]. The distance measure d(X(k), X(`))
is close to 1 when s(k) and s(`) are concentrated on disjoint frequency
bands and close to 0 when they exhibit similar support sets and shapes.
In contrast, for general Lp-distances dLp(X(k), X(`)) := (

∫ 1
0 |s

(k)(f)−
s(`)(f)|pdf)

1
p , with p > 1, it is easy to see that

∫ 1
0 s

(`)(f)df = 1,
` ∈ [L], does not imply a uniform upper bound for dLp(X(k), X(`)).
For example, dL∞(X(k), X(`)) can become arbitrarily large if we set

86

3.1 FORMAL PROBLEM STATEMENT AND ALGORITHMS

s(k)(f) = 1, f ∈ [0, 1), and let s(`) have a sharp peak at some frequency
f0 ∈ [0, 1), while maintaining

∫ 1
0 s

(`)(f)df = 1.

We now present the NNPC and the KM algorithms. Recall that
NNPC is inspired by the TSC algorithm introduced in (Heckel and
Bölcskei, 2015), and KM is obtained by replacing the distance mea-
sure in Algorithm 1 in (Ryabko, 2010) by the distance measure d
defined above. In principle, NNPC and KM are applicable to general
(real-valued) time series, in particular also to non-stationary random
processes, but the definition of d above is obviously motivated by
stationarity.

The NNPC algorithm: Given a set X of N length-M observa-
tions, the number of generative models, L (the estimation of L from
X is discussed below), and the parameter q, carry out the following
steps.
Step 1: For every xi ∈ X , estimate the PSD ŝi(f) via the Blackman-
Tukey (BT) estimator according to

ŝi(f) :=
M−1∑

m=−M+1
g[m]r̂i[m]e−i2πfm, where (3.1)

r̂i[m] := 1
M

M−|m|−1∑

n=0
xi[n+m]xi[n], |m| ≤M − 1,

and g[m], m ∈ Z, is an even window function (i.e., g[m] = g[−m])
with g[m] = 0 for |m| ≥M , and with bounded non-negative discrete-
time Fourier transform (DTFT).
Step 2: For every xi ∈ X , identify the set Ti ⊂ [N]\{i} of cardinality
q defined through

d(xi, xj) ≤ d(xi, xv), for all j ∈ Ti and all v /∈ Ti,

where
d(xi, xj) := 1

2

∫ 1

0
|ŝi(f)− ŝj(f)|df. (3.2)

87

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

Step 3: Let zj ∈ RN be the vector with ith entry exp(−2 d(xi, xj)),
if i ∈ Tj, and 0, if i /∈ Tj.
Step 4: Construct the adjacency matrix A according to A = Z + Z>,
where Z = [z1 . . . zN].
Step 5: Apply normalized spectral clustering (von Luxburg, 2007) to
(A, L).

Step 2 of NNPC determines the q-nearest neighbors of every ob-
servation w.r.t. to the distance measure d. We henceforth denote
the corresponding nearest neighbor graph with adjacency matrix A
constructed in Step 4 by G. The parameter q determines the mini-
mum degree of G. Choosing q too small results in the observations
stemming from a given generative model forming multiple connected
components in G and hence not being assigned to the same cluster
in Step 5. This problem can be countered by taking q larger, which,
however, increases the chances of observations originating from dif-
ferent generative models being connected in G, thereby increasing
the likelihood of incorrect cluster assignments. These tradeoffs are
identical to those associated with the choice of the parameter q in
TSC (Heckel and Bölcskei, 2015). Note that spectral clustering is
robust in the sense that it may deliver correct clustering even when G
contains edges connecting observations that originate from different
generative models, as long as the corresponding edge weights are
sufficiently small.
The number of generative models, L, may be estimated in Step 4

based on the adjacency matrix A using the eigengap heuristic (von
Luxburg, 2007) (note that L is needed only in Step 5), which relies
on the fact that the number of zero eigenvalues of the normalized
Laplacian of G equals the number of connected components in G.

The KM algorithm (Ryabko, 2010): Given a set X of N length-
M observations and the number of generative models L, carry out the
following steps.
Step 1: Initialize c1 := 1 and X̂` := {}, for all ` ∈ [L].

88

3.1 FORMAL PROBLEM STATEMENT AND ALGORITHMS

Step 2: For every xi ∈ X , estimate the PSD ŝi(f) via the BT
estimator (3.1).
Step 3: for p = 2 to L do:

cp := arg max
i∈[N]

(
min

`∈[p−1]
d(xi, xc`)

)
,

with d as defined in (3.2).
Step 4: for i = 1 to N do:

`? ← arg min
`∈[L]

d(xi, xc`) (3.3)

X̂`? ← X̂`? ∪ {xi} (3.4)

KM selects the cluster centers in Step 3 and determines the assign-
ments of the observations to these cluster centers in Step 4. Specifically,
the algorithm selects x1 as the first cluster center and then recursively
determines the remaining cluster centers by maximizing the minimum
distance to the cluster centers already chosen. In Step 4, it then
assigns each observation to the closest cluster center (see Figure 3.1).
Intuitively, KM recovers the correct cluster assignments if the clusters
are separated well enough. In practice, performing additional k-means
iterations by alternating between cluster center refinement (simply
by taking the refined center to be the average of the observations
assigned to it) and re-assignment of the data points to the refined
cluster centers, can often improve performance. Numerical results on
the effect of additional k-means iterations are provided in Section 3.4.
Our analytical results, however, all pertain to the case of a single
k-means iteration per the definition of the KM algorithm above. Note
that besides the number of clusters, L, KM does not have other
parameters such as q in NNPC.

Both NNPC and KM are based on comparisons of distances between
observations, and are, therefore, meaningful only if the underlying
processesX(`) are of comparable power

∫ 1
0 s

(`)(f)df . Indeed, when this

89

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

xc1

xc2

xc3

xc4

Fig. 3.1: Clustering of an example data set in R2 determined by KM with
farthest point intialization and based on Euclidean distance.

is not the case, the distance between the observations is determined
predominantly by the difference in power rather than the difference in
PSD support sets and shapes. Note that the assumption of comparable
power is not critical as we can normalize the observations in practice.
The choice of the window function g in (3.1) determines the bias-

variance tradeoff of the BT estimator and through the distance es-
timates d(xi, xj) ultimately the bias-variance tradeoff of NNPC and
KM. For a discussion of window choice considerations for the BT
estimator in a general context, we refer the reader to (Stoica and
Moses, 2005, Sec. 2.6). We only remark here that the variance of the
BT estimator goes to 0 as M → ∞ under rather mild conditions
on the process PSD and for g ∈ `1 (Kay, 1988, Appendix B4); the
statistical data model employed in this chapter (and described in the
next section) satisfies these conditions on the PSDs.

Next, we briefly discuss computational aspects of NNPC and KM for
L� N , the situation typically encountered in practice. The BT PSD
estimates (3.1) can be computed efficiently using the FFT. NNPC is
a spectral clustering algorithm and as such requires the N(N − 1)/2
distances between all pairs of observations to construct G. NNPC

90

3.1 FORMAL PROBLEM STATEMENT AND ALGORITHMS

furthermore needs to determine the L eigenvectors corresponding to
the L smallest eigenvalues of the N × N normalized graph Lapla-
cian, which requires O(N3) operations (without exploiting potentially
present structural properties of the Laplacian such as, e.g., sparsity).
Spectral clustering then performs standard k-means clustering on the
rows of the resulting N × L matrix of eigenvectors. The computa-
tional complexity of NNPC therefore becomes challenging for large
N . Several spectral clustering methods suitable for data sets of up
to millions of observations are available in the literature, see, e.g.,
(Yan et al., 2009; Li et al., 2011; Chen et al., 2011). KM, on the other
hand, is computationally considerably less expensive, requiring only
O(NL2) distance computations.
We finally note that both NNPC and KM along with the corre-

sponding analytical performance guarantees presented in the next
section can easily be generalized to stationary ergodic vector-processes
x(`)[m] ∈ Rn, m ∈ Z. Specifically, with the spectral density matrices
S(`)(f) :=

∑∞
m=−∞ E

[
x(`)[m](x(`)[0])>

]
e−i2πfm ∈ Rn×n, ` ∈ [L], one

defines the distance measure

d(x(k),x(`)) =
∑

u,v∈[n]

∫ 1

0
|S(k)
u,v(f)− S(`)

u,v(f)|df

and employs the BT estimator in (3.1) component-wise to estimate
S(`)(f). As this requires the computation of distances between all
scalar random process components, evaluating d(x(k),x(`)) in the
vector case incurs n(n + 1)/2 (exploiting the symmetry of S(`)(f))
times the cost in the scalar case. All other steps of NNPC and KM
remain unchanged and hence have the same computational complexity
as in the scalar case. For simplicity of exposition, we focus on the
scalar case throughout the chapter.

Relation to prior work: Numerical studies of time series clustering
based on spectral clustering of the q-nearest neighbor graph using dif-
ferent dissimilarity measures (albeit not the L1-distance, or, for that
matter, other Lp-distances, between estimated PSDs) were reported

91

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

in (Tucci and Raugi, 2011). In (Ferreira and Zhao, 2016) time series
clustering is formulated as a community detection problem in graphs,
but no analytical performance results are provided. KM with distri-
butional distance as dissimilarity measure was proven in (Ryabko,
2010)—for more general (i.e., not necessarily Gaussian) generative
models—to deliver correct clustering with probability approaching 1
as the observation length goes to infinity. We note, however, that esti-
mating the distributional distance is computationally more demanding
than estimating the L1-distance between PSDs.

3.2. ANALYTICAL PERFORMANCE RESULTS

We start by describing the statistical data model underlying our
analytical performance results. Recall that both NNPC and KM
are, in principle, applicable to general real-valued time series includ-
ing non-stationary processes. The performance analysis conducted
here applies, however, to stationary processes. In addition, we take
into account additive noise and potentially missing entries. Specif-
ically, we assume that the x(`)

i are obtained as contiguous length-
M observations of X̌(`)[m] := U (`)[m](X(`)[m] + W (`)[m]),m ∈ Z,
where U (`) is a Bernoulli process with i.i.d. entries according to
P
[
U (`)[m] = 1

]
= 1 − P

[
U (`)[m] = 0

]
= p > 0 (we henceforth refer

to p as sampling probability), X(`) is zero-mean stationary Gaus-
sian with PSD s(`)(f), and W (`) is a zero-mean white Gaussian
noise process with variance σ2. The autocorrelation functions (ACFs)
r(`)[m] :=

∫ 1
0 s

(`)(f)ei2πfmdf of the X(`) are assumed absolutely
summable, i.e.,

∑∞
m=−∞ |r(`)[m]| < ∞, ` ∈ [L], which implies con-

tinuity of the s(`)(f) and thereby ergodicity of the corresponding
processes X(`) (Maruyama, 1949). Moreover, we take the PSDs to
be normalized according to

∫ 1
0 s

(`)(f)df = 1, ` ∈ [L], and we let
B := max`∈[L] supf∈[0,1) s

(`)(f). We further assume that U (`), X(`),
and W (`) are mutually independent. As a consequence, the noisy
process X̃(`)[m] := X(`)[m] +W (`)[m] and the Bernoulli process U (`)

are jointly stationary ergodic so that X̌(`)[m] = U (`)[m]X̃(`)[m] is

92

3.2 ANALYTICAL PERFORMANCE RESULTS

stationary ergodic by (White, 2014, Prop. 3.36). Furthermore, we
denote the ACF of the noisy process X̃(`)[m] by r̃(`)[m] and note that
r̃(`)[m] = r(`)[m] + σ2δ[m]. It follows from X̌(`)[m] = U (`)[m]X̃(`)[m]
that ř(`)[m] = u[m]r̃(`)[m], where u[m] := p form = 0, and u[m] := p2,
else. For each `, the x(`)

i may either stem from independent realizations
of X̌(`) or correspond to different (possibly overlapping) length-M
segments of a given realization of X̌(`). In the latter case the x(`)

i

will not be statistically independent in general. This is, however, not
an issue as statistical independence is not required in our analysis,
neither across observations stemming from a given generative model
nor across observations originating from different generative models.

Multiplication of X̃(`) by the Bernoulli process U (`) models, e.g., a
sampling device which acquires only every (1/p)th sample on average.
Moreover, in practice we could deliberately subsample in order to
speed up the computation of the distances d when the observation
length M is large. Specifically, with observation length M and sam-
pling probability p, we get ≈ (1− p)M entries of x(`)

i that are set to
0, which can be exploited when computing the BT estimates using
the FFT (Skinner, 1976).
Naïvely applying the BT estimator to the x(`)

i delivers PSD esti-
mates that, owing to ř(`)[m] = u[m]r̃(`)[m], can be severely biased
compared to estimates that would be obtained from observations with
no missing entries. Indeed, as ř(`)[0] = p r̃(`)[0] and ř(`)[m] = p2r̃(`)[m],
for m 6= 0, for small p, u[m] assigns a much larger weight to lag m = 0
than to the lags m 6= 0. To correct this bias, we assume in the remain-
der of the chapter (in particular also in the analytical results below)
that the BT estimates in (3.1) are computed for the window function
ĝ[m] := g[m]/u[m], m ∈ Z, i.e., g in NNPC and KM is replaced by ĝ.
While ĝ remains even and supported on {−M + 1, . . . ,M − 1}, BT
PSD estimates based on ĝ are not guaranteed to be non-negative (in
contrast to estimates based on g directly (Stoica and Moses, 2005, Sec.
2.5.2)) as the DTFT of ĝ may not be non-negative. This is, however,
not an issue as we consider distances between PSDs only and do not
explicitly make use of the positivity property of PSDs. We note that
bias correction requires knowledge of p, which can be obtained in

93

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

practice simply by estimating the average number of non-zero entries
in the x(`)

i . In addition, we will assume that g[0] = 1 and g has a
bounded DTFT g(f), i.e., 0 ≤ g(f) ≤ A <∞, f ∈ [0, 1). An example
of such a window function is the Bartlett window (see (3.12)) used
in the experiments in Section 3.4. Our performance results will be
seen to depend on the maximum ACF moment µmax := max`∈[L] µ

(`),
where µ(`) :=

∑∞
m=−∞ |h[m]||r(`)[m]| with

h[m] :=
{

1− g[m](1− |m|/M), for |m| < M

1, otherwise. (3.5)

We are now ready to state our main results. For the NNPC al-
gorithm, we provide a sufficient condition for the NFC property to
hold. The notion of NFC property used here is identical to that used
in Chapter 2 for subspace clustering, defined in Definition 2.1. For
completeness we restate it here for NNPC. Recall that G is the nearest
neighbor graph with adjacency matrix A, as constructed in Step 4 of
NNPC.

Definition 3.1 (No false connections (NFC) property). The graph G
satisfies the no false connections property if, for all ` ∈ [L], all nodes
corresponding to X` are connected exclusively to nodes corresponding
to X`.

We henceforth say that “NNPC succeeds” if the NFC property
is satisfied. Recall that, although the NFC property alone does not
guarantee correct clustering, it was found to be a sensible performance
measure for subspace clustering algorithms (see, e.g., (Elhamifar and
Vidal, 2013; Soltanolkotabi et al., 2014; Heckel and Bölcskei, 2015)
and further references in Section 2.2). To ensure correct clustering
one would additionally need the subgraph of G corresponding to X`
to be connected, for each ` ∈ [L] (von Luxburg, 2007, Prop. 4; Sec. 7).
Establishing conditions for this to hold appears to be difficult, at least
for the statistical data model considered here.

Theorem 3.1. Let X be generated according to the statistical data
model described above and assume that q ≤ min`∈[L](n` − 1). Then,

94

3.2 ANALYTICAL PERFORMANCE RESULTS

the clustering condition

min
k,`∈[L] :
k 6=`

d(X(k), X(`))

>
8
√

2A(B+σ2+
√

2(1+p)(1+σ2))
p2

√
logM
M

+2µmax (3.6)

guarantees that G satisfies the NFC property with probability at least
1− 6N/M2.

The condition q ≤ min`∈[L](n` − 1) is necessary for the NFC prop-
erty to hold as choosing q > min`∈[L](n` − 1) would force NNPC to
select observations from X\X` for at least one of the data points x(`)

i .
As the n` are unknown in practice, one has to guess q while taking
into account the tradeoffs related to the choice of q as discussed in
Section 3.1.

Our main result for KM comes with a performance guarantee that is
stronger than the NFC property, namely it ensures correct clustering;
accordingly, “KM succeeds” henceforth refers to KM delivering correct
clustering. This stronger result is possible as KM does not entail a
spectral clustering step and is therefore much easier to analyze. On
the other hand, NNPC typically outperforms KM in practice, as seen
in the numerical results in Section 3.4.

Theorem 3.2. Let X be generated according to the statistical data
model described above. Then, under the clustering condition (3.6),
the partition X̂1, . . . , X̂L of X inferred by KM corresponds to the true
partition X1, . . . ,XL with probability at least 1− 6N/M2.

The proofs of Theorems 3.1 and 3.2 are provided in Appendix 3.A.
We first note that the clustering condition (3.6) depends on a few
model parameters only and all constants involved are explicit. Fur-
thermore, the condition is identical for NNPC and KM, although the
performance guarantee we obtain for KM (namely correct clustering)
is stronger than that for NNPC (namely the NFC property). This is a
consequence of both proofs relying on the same “separation condition”

95

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

(namely (3.13) in Appendix 3.A) and the clustering condition (3.6)
being sufficient for this separation condition to hold (see Appendix
3.A for further details).

Theorems 3.1 and 3.2 essentially state that NNPC and KM succeed
even when the PSDs s(`) of the X(`) overlap significantly and the
observations have missing entries and are contaminated by strong
noise, all this provided that the observation length M is sufficiently
large and the window function g is chosen to guarantee small µmax.
The clustering condition (3.6) suggests (recall that it is sufficient only)
a tradeoff between the amount of overlap of pairs of PSDs {s(k), s(`)}
(through mink,`∈[L] : k 6=` d(X(k), X(`))), the observation length M , the
sampling probability p, and the noise variance σ2. It indicates, for
example, that both algorithms tolerate shorter observation length
M , more missing entries (i.e., smaller p), and stronger noise (i.e.,
larger σ2) as the pairs {s(k), s(`)}, k 6= `, overlap less and hence
mink,`∈[L] : k 6=` d(X(k), X(`)) is larger. Keeping σ2 and p fixed, the
first term on the RHS of (3.6), which accounts for the PSD estimation
error owing to finite observation length M , vanishes as M becomes
large. Since d(X(k), X(`)) ∈ [0, 1], we need µmax � 1 to ensure that
the clustering condition can be satisfied for finite M . To see how this
can be accomplished, we consider r(`) of small effective support relative
toM , i.e., r(`)[m] ≈ 0 for m ≥M0 withM0 �M , which is essentially
equivalent to requiring that the s(`) be sufficiently smooth. We then
choose g such that g[m] ≈ 1 for m ≤M0 and note that this ensures
h[m] ≈ 1−g[m](1−|m|/M) ≈ 1−g[m] ≈ 0, form ≤M0 �M . Thanks
to µ(`) =

∑∞
m=−∞ |h[m]||r(`)[m]| ≈

∑M0
m=−M0

|h[m]||r(`)[m]| � 1,
we then get µmax � 1. The clustering condition (3.6) can hence,
indeed, be satisfied for finiteM if the r(`) have small effective support.
Note that the choice of g will affect the constant A (recall that
0 ≤ g(f) ≤ A < ∞, f ∈ [0, 1)). Specifically, windows g of larger
effective support have larger corresponding A in general.
To ensure high probability of success, we need to take M �

√
N ,

i.e., the observation length has to be large relative to the square root
of the number of observations. We note that the results in Theorems
3.1 and 3.2 can easily be extended to colored noise processes, as long

96

3.3 COMPARISON WITH THRESHOLDING-BASED SUBSPACE CLUSTERING

as the noise PSDs are identical for all ` ∈ [L].
We emphasize that the vast majority of analytical performance

results for random process clustering available in the literature pertain
to the asymptotic regime M → ∞, with N fixed. The findings in
(Kakizawa et al., 1998; Vilar and Pértega, 2004) are closest in spirit
to ours and show that pairs of observations stemming from different
generative models can be discriminated consistently (in the statistical
sense), for M →∞, via a PSD-based distance measure, provided that
the PSDs of all pairs of generative models differ on a set of positive
Lebesgue measure.
Finally, we note that generalization of our analytical results to

processes other than Gaussian such as, e.g., subgaussian processes,
seems difficult as a version of the concentration inequality (Demanet
et al., 2012, Lem. 1), upon which the proofs of Theorems 3.1 and 3.2
rely, does not appear to be available for non-Gaussian random vectors
with dependent entries (see (Adamczak, 2015) for details). For i.i.d.
subgaussian processes such an inequality was reported in (Rudelson
and Vershynin, 2013); this is, however, not of interest here as i.i.d.
processes have flat PSDs.

3.3. COMPARISON WITH THRESHOLDING-BASED
SUBSPACE CLUSTERING

For finite observation length M , the random process clustering prob-
lem considered here can also be cast as a classical subspace clustering
problem as studied in Chapter 2 simply by interpreting the observa-
tions x(`)

i as vectors x(`)
i ∈ RM . Numerical results, not reported here1,

demonstrate, however, that this approach leads to NNPC significantly
outperforming its subspace clustering cousin, the TSC algorithm
(Heckel and Bölcskei, 2015). Our next result, Proposition 3.1 below,
provides analytical underpinning for this observation. Before stating
the formal result, we develop some intuition. To this end, we consider

1but available at http://www.nari.ee.ethz.ch/commth/research/

97

http://www.nari.ee.ethz.ch/commth/research/

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

statistically independent observations and set p = 1 (i.e., no missing
entries). We then note that the clustering condition (3.6) for NNPC
ensures that (using (3.17) and (3.18) in (3.13) together with (3.24)
and (3.34), cf. Appendices 3.A and 3.B)

P
[
d(x(k)

j , x
(`)
i) ≤ d(x(`)

v , x
(`)
i)
]
<

6
M2 , (3.7)

for j, i 6= v and k 6= `. This guarantees that the probability of the
NFC property being violated becomes small forM large, in particular,
even when the PSD pairs {s(k), s(`)}, k 6= `, overlap substantially and
SNR := r(`)[0]/σ2 = 1/σ2 < 1, ` ∈ [L]. For TSC (which constructs
the sets Ti such that |〈xj ,xi〉| ≥ |〈xv,xi〉| for all j ∈ Ti and all
v /∈ Ti) applied to {x(`)

i }i∈n`,`∈[L] the probability corresponding to the
LHS of (3.7) is P[|〈x(k)

j ,x(`)
i 〉| ≥ |〈x

(`)
v ,x(`)

i 〉|]. The next proposition
establishes that this probability remains bounded away from 0 even
when M grows large, unless the observations are noiseless and all
the PSD pairs {s(k), s(`)}, k 6= `, are supported on essentially disjoint
frequency bands. These conditions are, however, hardly encountered in
practice, and the corresponding clustering problem can be considered
easy. The superior performance of NNPC as compared to TSC stems
from the TSC similarity measure not exploiting the stationarity of
the generative models. We proceed to the formal statement.

Proposition 3.1. Let x(`)
i be a contiguous length-M observation of

X̃(`) (note that we consider the case p = 1). Assume that the x(`)
i are

independent across ` ∈ [L] and i ∈ [n`]. Denote the vectors containing
the elements of the x(`)

i by x(`)
i ∈ RM and the corresponding covariance

matrices by R̃(`) := R(`) + σ2I, with R(`)
v,w = r(`)[w− v] = r(`)[v−w],

` ∈ [L]. Then, for k 6= ` and v 6= i, we have

P
[∣∣∣
〈
x(k)
j ,x(`)

i

〉∣∣∣ ≥
∣∣∣
〈
x(`)
v ,x(`)

i

〉∣∣∣
]

≥ 1
5π arctan




√
tr
(
R̃(k)R̃(`)

)

5
√

3
√

tr
(
R̃(`)R̃(`)

)


. (3.8)

98

3.3 COMPARISON WITH THRESHOLDING-BASED SUBSPACE CLUSTERING

Proof: See Appendix 3.C.

Remark 3.1. Note that, in contrast to Theorems 3.1 and 3.2, Propo-
sition 3.1 assumes the observations to be statistically independent.
This assumption turns out to be critical in the proof of Proposition 3.1.

We next show, as announced, that the RHS of (3.8) remains
strictly positive even when M grows large, unless the observations
are noiseless and all pairs of PSDs have essentially disjoint support.
To this end, we examine the behavior of (1/M)tr(R̃(k)R̃(`)), k 6= `,
and (1/M)tr(R̃(`)R̃(`)) (the motivation for the normalization by M
will become clear later). First note that (1/M)tr(R̃(`)R̃(`)) <∞ as∑∞

m=−∞
(
r̃(`)[m]

)2
< ∞ by virtue of r̃(`) = r(`)[m] + σ2δ[m] ∈ `1,

which, in turn, follows from the assumption r(`) ∈ `1. The probability
in (3.8) is hence bounded away from 0 unless (1/M)tr(R̃(k)R̃(`)) ≈ 0.
It therefore remains to identify conditions for (1/M)tr(R̃(k)R̃(`)) ≈ 0
to hold. To this end, we note that

1
M

tr
(
R̃(k)R̃(`)

)
= 1
M

M−1∑

m=0

M−1∑

n=0
r̃(k)[n−m]r̃(`)[n−m]

=
∑

m∈M

(
1− |m|

M

)
r̃(k)[m]r̃(`)[m] (3.9)

=
∫ 1

0
(w ∗ s̃(k))(f)s̃(`)(f)df, (3.10)

where (3.9) is due to the Toeplitz structure and the symmetry of
R̃(k) and R̃(`), (3.10) is by Parseval’s Theorem, M := {−M +
1,−M + 2, . . . ,M − 1}, and w(f) :=

∑
m∈M(1− |m|/M)e−i2πfm =

sin2(πfM)/(M sin2(πf)). As w(f) is strictly positive on the interval
[0, 1) (apart from its zeros which are supported on a set of measure
0) and the s̃(`)(f), ` ∈ [L], are non-negative, (3.10) is bounded away
from 0 for finite M . As M grows large, w(f) approaches the Dirac
delta distribution, i.e., the “leakage” induced by w becomes small
and we have (3.10) ≈

∫ 1
0 s̃

(k)(f)s̃(`)(f)df . This integral vanishes for
all k 6= ` if and only if σ2 = 0 (recall that s̃(`)(f) = s(`)(f) + σ2,

99

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

` ∈ [L]) and all pairs {s(k), s(`)}, k 6= `, are supported on essentially
disjoint frequency bands. This establishes the claim made above and
concludes the argument.

3.4. NUMERICAL RESULTS2

We present numerical results for NNPC and KM on synthetic and on
real data. In addition, we report results for KM followed by 100 k-
means iterations (see the discussion in Section 3.1); this variant of KM
will be referred to as iterated k-means (KMit). Furthermore, we com-
pare NNPC, KM, and KMit with single linkage (SL), average linkage
(AL), and complete linkage (CL) hierarchical clustering (Friedman
et al., 2009, Sec. 14.3.12), all based on the L1-distance measure (3.2).
We also investigate variants of NNPC, KM, and KMit with the L1-
distance measure replaced by dL2(xi, xj) := (

∫ 1
0 |ŝi(f)− ŝj(f)|2 df) 1

2 ,
and variants of NNPC and KM with the L1-distance measure replaced
by dL∞(xi, xj) := supf∈[0,1) |ŝi(f)− ŝj(f)| (we do not consider KMit
here as dL∞-based k-means iterations do not seem sensible). NNPC
and KM were implemented strictly according to the corresponding
algorithm descriptions in Section 3.1. For SL, AL, and CL, we use the
functions built into Matlab. Throughout, performance is measured in
terms of the CE, i.e., the fraction of misclustered data points, also
used in Chapter 2 (cf. the more formal definition in (2.11)). We report
running times (excluding time for loading the data) obtained on a
MacBook Pro with a 2.5 GHz Intel Core i7 CPU with 16 GB RAM.

3.4.1. Synthetic data

We investigate the tradeoff between the minimum distance
mink,`∈[L] : k 6=` d(X(k), X(`)), the observation length M , the sampling
probability p, and the noise variance σ2 as indicated by the clustering
condition (3.6). Recall that the clustering condition is only sufficient

2Code to reproduce the experiments is available at http://www.nari.ee.ethz.
ch/commth/research/.

100

http://www.nari.ee.ethz.ch/commth/research/
http://www.nari.ee.ethz.ch/commth/research/

3.4 NUMERICAL RESULTS

0 0.2 0.4 0.6 0.8 10

2

4

f

s0.6,0.4π
s0.8,0.4π
s0.6,0.7π
s0.8,0.7π

Fig. 3.1: Example PSDs of the form (3.11).

(and for NNPC guarantees the NFC property only). It is therefore
unclear a priori to what extent the CE, indeed, follows the behavior
indicated by the clustering condition.
We consider L = 2 second-order AR generative processes with

PSDs of the form

sa,ν(f) = b2(a, ν)
|1− 2a cos(ν)ei2πf + a2ei4πf |2

, (3.11)

where ν ∈ [0, π], a ∈ (0, 1), and b2(a, ν) = 1/(
∫ 1

0 1/|1−2a cos(ν)ei2πf+
a2ei4πf |2df) ensures that

∫ 1
0 sa,ν(f)df = 1. Figure 3.1 shows examples

of sa,ν(f) for different choices of a and ν. In the ensuing experiments,
we set s(1)(f) = s0.6,0.7π(f) and s(2)(f) = s0.6,ν2(f), where ν2 is
variable and controls the locations of the peaks of s(2) and thereby
the distance d(X(1), X(2)). Indeed, varying ν2 shifts the locations of
the peaks of s(2) while essentially maintaining its shape. For the BT
PSD estimator, we use a Bartlett window of length W defined as

gBW [m] :=
{

1− |m|/bW/2c, for |m| ≤ bW/2c
0, otherwise, (3.12)

and we set W = 101. Note that gBW satisfies the assumptions made
about g in Section 3.2. The number of generative models L = 2 is

101

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

assumed known throughout. The performance of NNPC is found
(corresponding results are not shown here) to be rather insensitive to
the choice of the parameter q as long as 10 ≤ q ≤ 25; we set q = 10.
For a given quadruple (ν2,M, σ, p), a realization of the data set X
is obtained by sampling n = 25 independent observations from X̌(1)

and X̌(2) each, and the CE is estimated by averaging over 10 such
independent realizations of X . We do not normalize the BT PSD
estimates to unit power.
Figure 3.2 shows that NNPC, KM, and KMit all exhibit roughly

the same qualitative behavior as a function of d(X(1), X(2)), M ,
1/p, and σ. In particular, for large enough d(X(1), X(2)) all three
algorithms yield a CE close to 0 even when σ2 exceeds the signal power
(i.e., when SNR < 1), when the observations have missing entries
(p < 1), and whenM is small. All three algorithms tolerate more noise
and more missing entries as the observation length increases. These
numerical results are in line with the qualitative tradeoff indicated by
the (sufficient) clustering condition (3.6). The numerical constants in
(4) are, however, too big for the clustering condition (4) to be sharp.
NNPC consistently achieves the lowest CE, followed by KMit, and
KM. The performance advantage of NNPC over KM and KMit can
be attributed to the spectral clustering step, which leads to increased
robustness to noise and missing entries. Finally, we note that KMit
often yields a significantly lower CE than KM.
The results in Figure 3.4 indicate that the qualitative dependence

of the CE on d(X(1), X(2)), M , 1/p, and σ for SL, AL, and CL is
essentially identical to that for NNPC, KM, and KMit. For large
σ and small d(X(1), X(2)), M , or p, SL and AL lead, however, to a
significantly larger CE than NNPC, KM, and KMit. The CE for CL is
comparable to, but slightly larger than, that of KMit and significantly
larger than that of NNPC.
Comparing the CE for NNPC, KM, and KMit in Figure 3.2 with

that obtained for their dL2 and dL∞-cousins in Figures 3.3 and
3.5, respectively, we note that, for all values of d(X(1), X(2)), M ,
σ, and p the dL2-based variants of NNPC, KM, and KMit and the
dL∞-based variants of NNPC and KM yield the same or larger CE

102

3.4 NUMERICAL RESULTS

0 2 40

0.5

σ

d
(X

(1
) ,
X

(2
))

NNPC

0 2 40

0.5

σ

KM

0 2 40

0.5

σ

KMit

0

0.2

0.4

1 2
·103

0.2
0.4
0.6

M

d
(X

(1
) ,
X

(2
))

1 2
·103

0.2
0.4
0.6

M

1 2
·103

0.2
0.4
0.6

M

0

0.2

0.4

1 2
·103

0

2

4

M

σ

1 2
·103

0

2

4

M

1 2
·103

0

2

4

M

0

0.2

0.4

1 2
·103

2

4

6

M

1/
p

1 2
·103

2

4

6

M

1 2
·103

2

4

6

M

0

0.2

0.4

Fig. 3.2: Results of the synthetic data experiment. First row: CE as a function
of σ and d(X(1), X(2)) for M = 400 and p = 1. Second row: CE as a function
of M and d(X(1), X(2)) for σ = 0.5 and p = 1. Third row: CE as a function
of M and σ for ν2 = 0.62π (d(X(1), X(2)) ≈ 0.2) and p = 1. Bottom row:
CE as a function of M and 1/p for ν2 = 0.62π and σ = 0.5.

103

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

0 2 40

0.5

σ

d
(X

(1
) ,
X

(2
))

NNPC(dL2)

0 2 40

0.5

σ

KM(dL2)

0 2 40

0.5

σ

KMit(dL2)

0

0.2

0.4

1 2
·103

0.2
0.4
0.6

M

d
(X

(1
) ,
X

(2
))

1 2
·103

0.2
0.4
0.6

M

1 2
·103

0.2
0.4
0.6

M

0

0.2

0.4

1 2
·103

0

2

4

M

σ

1 2
·103

0

2

4

M

1 2
·103

0

2

4

M

0

0.2

0.4

1 2
·103

2

4

6

M

1/
p

1 2
·103

2

4

6

M

1 2
·103

2

4

6

M

0

0.2

0.4

Fig. 3.3: CE as a function of d(X(1), X(2)),M , σ, and p for variants of NNPC,
KM, and KMit based on dL2 , using the same values as in the setup in Figure
3.2 for the model parameters that are not varied.

104

3.4 NUMERICAL RESULTS

0 2 40

0.5

σ

d
(X

(1
) ,
X

(2
))

SL

0 2 40

0.5

σ

AL

0 2 40

0.5

σ

CL

0

0.2

0.4

1 2
·103

0.2
0.4
0.6

M

d
(X

(1
) ,
X

(2
))

1 2
·103

0.2
0.4
0.6

M

1 2
·103

0.2
0.4
0.6

M

0

0.2

0.4

1 2
·103

0

2

4

M

σ

1 2
·103

0

2

4

M

1 2
·103

0

2

4

M

0

0.2

0.4

1 2
·103

2

4

6

M

1/
p

1 2
·103

2

4

6

M

1 2
·103

2

4

6

M

0

0.2

0.4

Fig. 3.4: CE for single linkage, average linkage, and complete linkage hierar-
chical clustering as a function of d(X(1), X(2)), M , σ, and p, using the same
values as in the setup in Figure 3.2 for the model parameters that are not
varied.

105

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

0 2 40

0.5

σ

d
(X

(1
) ,
X

(2
))

NNPC(dL∞)

0 2 40

0.5

σ

KM(dL∞)

0

0.2

0.4

1 2
·103

0.2
0.4
0.6

M

d
(X

(1
) ,
X

(2
))

1 2
·103

0.2
0.4
0.6

M

0

0.2

0.4

1 2
·103

0

2

4

M

σ

1 2
·103

0

2

4

M

0

0.2

0.4

1 2
·103

2

4

6

M

1/
p

1 2
·103

2

4

6

M

0

0.2

0.4

Fig. 3.5: CE as a function of d(X(1), X(2)),M , σ, and p for variants of NNPC
and KM based on dL∞ , using the same values as in the setup in Figure 3.2
for the model parameters that are not varied.

106

3.4 NUMERICAL RESULTS

than the respective original variants. This justifies usage of the L1-
based distance measure (3.2) also from a practical point of view.
Finally, we note that normalizing the model PSDs (3.11) according to
(
∫ 1

0 s
2
a,ν(f)df) 1

2 = 1 for dL2 and supf∈[0,1) sa,ν(f) = 1 for dL∞ does
not have a noticeable impact on the clustering performance.

3.4.2. Real data

We perform experiments on two data sets, namely on human motion
data and on EEG data.

Human motion data: We consider the problem of clustering se-
quences of human motion data according to the underlying activities
performed. Specifically, we consider the experiment conducted in (Li
and Prakash, 2011; Khaleghi et al., 2012), which uses the Carnegie
Mellon Motion Capture database3 containing motion sequences of
149 subjects performing various activities. The clustering algorithm
in (Li and Prakash, 2011) first fits a linear dynamical system model
to each motion sequence and then performs standard k-means cluster-
ing with the estimated model parameters (organized into vectors) as
data points. In (Khaleghi et al., 2012) an online clustering algorithm
based on KM in combination with distributional distance is proposed.
The motion vector-sequences in the Carnegie Mellon Motion Capture
database describe the temporal evolution of marker positions on dif-
ferent body parts, recorded through optical tracking. The experiment
in (Li and Prakash, 2011; Khaleghi et al., 2012) is based on subjects
#16 and #35 for which the database contains 49 and 33 sequences,
respectively, labeled either as “walking” or “running”. We cluster the
(scalar-valued) sequences describing the motion of the marker placed
on the right foot of the subjects. It is argued in (Khaleghi et al.,
2012) that these sequences can be considered stationary ergodic. We
assume the number of generative models L = 2 to be known and
set q = 5 (good performance was observed for 4 ≤ q ≤ 10). For

3The Carnegie Mellon Motion Capture database is available at http://mocap.
cs.cmu.edu.

107

http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

Table 3.1: CE, S, and running time t (in seconds) for clustering of human mo-
tion sequences using NNPC, KM, and KMit as well as online clustering (OC)
(Khaleghi et al., 2012, Algorithm 2) and complex linear dynamical systems
(CLDS)-based clustering (Li and Prakash, 2011).

NNPC KM KMit OC CLDS

subject CE S t CE S t CE S t S S

#16 0.02 0.09 0.206 0.24 0.55 0.029 0.20 0.49 0.038 0.21 0.37

#35 0 0 0.185 0 0 0.017 0 0 0.024 0 0.10

the BT estimator, we use the Bartlett window gBW , defined in (3.12),
with W given by the sequence length, and we normalize the BT PSD
estimates to unit power. Table 3.1 lists the CE, the running times in
seconds, and for comparison with the results in (Li and Prakash, 2011;
Khaleghi et al., 2012) also the entropy S of the clustering confusion
matrix (see (Li and Prakash, 2011, Sec. 6) for the definition of S).
This comparison reveals that for subject #35 NNPC, KM, and KMit
all outperform the algorithm in (Li and Prakash, 2011) and match
the performance of that in (Khaleghi et al., 2012), while for subject
#16 NNPC significantly outperforms both the algorithms in (Li and
Prakash, 2011; Khaleghi et al., 2012) as well as KM and KMit.

EEG data: We perform an experiment similar to that in (Maharaj
and D’Urso, 2011, Sec. 5), which considers clustering of segments
of EEG recordings of healthy subjects and of subjects experiencing
epileptic seizure according to whether seizure activity is present or not.
It is argued in (Sanei and Chambers, 2008) that EEG recordings can
be modeled as stationary ergodic random processes. We use subsets A
and E of the publicly available4 EEG data set described in (Andrzejak
et al., 2001). Each of these two subsets contains 100 EEG segments of
23.6s duration, acquired at a sampling rate of 173.61Hz. We refer to

4The EEG recordings are available at http://ntsa.upf.edu/downloads/
andrzejak-rg-et-al-2001-indications-nonlinear-deterministic-and-
finite-dimensional.

108

http://ntsa.upf.edu/downloads/andrzejak-rg-et-al-2001-indications-nonlinear-deterministic-and-finite-dimensional
http://ntsa.upf.edu/downloads/andrzejak-rg-et-al-2001-indications-nonlinear-deterministic-and-finite-dimensional
http://ntsa.upf.edu/downloads/andrzejak-rg-et-al-2001-indications-nonlinear-deterministic-and-finite-dimensional

3.4 NUMERICAL RESULTS

(Andrzejak et al., 2001) for a more detailed description of acquisition
and preprocessing aspects.

We compare the performance of NNPC, KM, and KMit as a function
of W and q (for NNPC). We center each EEG segment by subtracting
its (estimated) mean and use a Bartlett window gBW , as defined in
(3.12), of variable length W for the BT PSD estimator. Furthermore,
we normalize the PSD estimates to unit power and assume the number
of clusters L = 2 to be known. Figure 3.6 shows the CE obtained for
NNPC as a function of the window length W and of q, as well as the
CE obtained for KM and KMit as a function of window length W .
It can be seen that NNPC is robust to small variations of q and W
around the pair (q,W) corresponding to the minimum CE (marked by
a white dot in Figure 3.6). Similarly, KM and KMit yield a CE close
to their respective minima for a large range of values for W . In Table
3.2, we report the minimum CE achieved by each algorithm, along
with the corresponding running times and CE-minimizing values for
W and q (in the case of NNPC), all chosen based on results depicted
in Figure 3.6. The minimum CE obtained for NNPC is significantly
lower than that corresponding to KM and KMit.

Table 3.2: Clustering EEG segments: Minimum CE, running time t (in sec-
onds), and corresponding parameter choices.

min CE t W q

NNPC 0.005 0.694 840 3

KM 0.360 0.482 640 -

KMit 0.095 0.954 520 -

109

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

10 20
0

500

q

W

NNPC

0

0.2

0.4

0 200 400 600 800
0

0.2

0.4

0.6

W

C
E

KM, KMit

Fig. 3.6: Left: CE of NNPC for EEG recordings as a function of q and W . The
white dot in the left figure shows the location of minimum CE. Right: CE of
KM (solid line) and KMit (dashed line) as a function of W .

APPENDICES

3.A. PROOFS OF THEOREMS 3.1 AND 3.2

The central element in the proofs of Theorems 3.1 and 3.2 is the
following result, proven in Appendix 3.B.

Theorem 3.3. Consider a data set X generated according to the
statistical data model described in Section 3.2. Then, the clustering
condition (3.6) implies that

min
k,`∈[L] :
k 6=`

min
i∈[n`],
j∈[nk]

d(x(k)
j , x

(`)
i) > max

`∈[L]
max

i,j∈[n`] :
i 6=j

d(x(`)
i , x

(`)
j) (3.13)

holds with probability at least 1− 6N/M2.

Theorem 3.3 says that under the clustering condition (3.6) observa-
tions stemming from the same generative model are closer (in terms of
the distance measure d) than observations originating from different
generative models. This property is known in the clustering literature
as the strict separation property (Balcan et al., 2008). We now show
how Theorems 3.1 and 3.2 follow directly from the strict separation

110

3.A PROOFS OF THEOREMS 3.1 AND 3.2

property.

Proof of Theorem 3.1: Under the condition q ≤ min`∈[L](n`− 1) the
NFC property is a direct consequence of (3.13), which by Theorem
3.3, is implied by the clustering condition (3.6). The condition q ≤
min`∈[L](n`−1) is necessary for the NFC property to hold as choosing
q > min`∈[L](n` − 1) would force NNPC to select observations from
X\X` for at least one of the data points x(`)

i , thereby resulting in a
violation of the NFC property.

Proof of Theorem 3.2: The proof is effected by first showing that
in Step 3 KM selects an observation with a different underlying
generative model in every iteration, i.e., the set of cluster centers
{xc`}L`=1 contains exactly one observation from each generative model,
provided that the clustering condition (3.6) and hence, by Theorem
3.3, (3.13) holds. The argument is then concluded by noting that
(3.13) implies directly that the partition X̂1, . . . , X̂L obtained in Step
4 corresponds to the true partition X1, . . . ,XL.

It remains to establish that the cluster centers xc` selected in Step
3 of KM, indeed, all originate from different generative models. This
is accomplished by induction. For v = 1 the claim holds trivially, as
we have selected a single cluster center only, namely xc1 . The base
case is hence established. For the inductive step, suppose that after
the vth iteration in Step 3 of KM the observations {xc1 , . . . , xcv} all
come from different generative models, and assume w.l.o.g. that the
generative model underlying xc` has index `, ` ∈ [v]. In iteration v+ 1
(i.e., for the selection of xcv+1), we have

max
i∈[N]

min
`∈[v]

d(xi, x(`)
c`

)

= max
{

max
k∈[v],
i∈[nk]

min
`∈[v]

d(x(k)
i , x(`)

c`
), max
k∈[L]\[v],
i∈[nk]

min
`∈[v]

d(x(k)
i , x(`)

c`
)
}

111

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

= max
{

max
k∈[v],
i∈[nk]

d(x(k)
i , x(k)

ck
)

´¹¹¹¸¹¹¶
≤max
`∈[L]

max
i,j∈[n`] :

i6=j

d(x(`)
i
,x

(`)
j

)

, max
k∈[L]\[v],
i∈[nk]

min
`∈[v]

d(x(k)
i , x(`)

c`
)

´¹¹¹¸¹¹¹¶
≥ min
k∈[L]\[v],
i∈[nk]

min
`∈[v]

d(x(k)
i
,x(`)
c`

)

≥ min
k,`∈[L] :
k 6=`

min
i∈[nk],
j∈[n`]

d(x(k)
i
,x

(`)
j

)

}
(3.14)

= max
k∈[L]\[v],
i∈[nk]

min
`∈[v]

d(x(k)
i , x(`)

c`
), (3.15)

where we applied (3.13) to get (3.15) from (3.14). Note that in the
maximization in (3.15) k runs over [L]\[v] (i.e., the maximization in
(3.15) is over the observations in X\(X1 ∪ · · · ∪ Xv)), which implies
that xcv+1 is guaranteed to correspond to a generative model that
is different from those underlying xc1 , . . . , xcv . This completes the
induction argument.

3.B. PROOF OF THEOREM 3.3

We start by quantifying the deviation of the estimated distances
d(x(k)

j , x
(`)
i) from the true distances d(X(k), X(`)) due to the PSD

estimation error caused by finite observation length, noise, and missing
entries.
Let s̃(`)(f) := s(`)(f) + σ2, f ∈ [0, 1), ` ∈ [L], be the PSD of

the noisy observation X̃(`) and denote the corresponding ACF by
r̃(`). With ŝ(`)

i (f) as defined in (3.1) (recall that we use the modified
window ĝ[m] = g[m]/u[m] in the BT estimator (3.1)), set e(`)

i (f) :=
ŝ

(`)
i (f) − s̃(`)(f), and let ε := max`∈[L],i∈[n`] supf∈[0,1) |e

(`)
i (f)|. We

have for all k, ` ∈ [L], j ∈ [nk], i ∈ [n`],

d(x(k)
j , x

(`)
i) = 1

2

∫ 1

0

∣∣∣ŝ(k)
j (f)− ŝ(`)

i (f)
∣∣∣ df

= 1
2

∫ 1

0

∣∣∣s(k)(f)+σ2+e(k)
j (f)− (s(`)(f)+σ2+e(`)

i (f))
∣∣∣df

112

3.B PROOF OF THEOREM 3.3

≤ 1
2

∫ 1

0

∣∣∣s(k)(f)−s(`)(f)
∣∣∣ df + 1

2

∫ 1

0

∣∣∣e(k)
j (f)− e(`)

i (f))
∣∣∣ df

≤ d(X(k), X(`)) + 1
2

∫ 1

0

∣∣∣e(k)
j (f)

∣∣∣df + 1
2

∫ 1

0

∣∣∣e(`)
i (f)

∣∣∣ df (3.16)

≤ d(X(k), X(`)) + ε. (3.17)

Applying the reverse triangle inequality, it follows similarly that

d(x(k)
j , x

(`)
i) ≥ d(X(k), X(`))− ε, (3.18)

for all k, ` ∈ [L], j ∈ [nk], i ∈ [n`]. Replacing the RHS of (3.13) by
the upper bound in (3.17) and the LHS by the lower bound in (3.18),
we find that (3.13) is implied by

min
k,`∈[L] : k 6=`

d(X(k), X(`)) > 2ε. (3.19)

We continue by upper-bounding ε. To this end, define Qm ∈
{0, 1}M×M according to (Qm)u,v = 1, if v−u = m, and (Qm)u,v = 0,
else, and let Ĝ(f) :=

∑
m∈M ĝ[m] cos(2πfm)Qm. Now, with x ∈ RM

the random vector whose elements are given by x
(`)
i , it holds for

m ∈M = {−M + 1,−M + 2, . . . ,M − 1} that

r̂
(`)
i [m] = x>Qmx

M
=

y>C>P>ξ QmPξCy
M

,

where we used x = PξCy, with the entries of y i.i.d. standard normal,
C = (R + σ2I)1/2 ∈ RM×M with Rv,w = r(`)[w − v] the (Toeplitz)
covariance matrix corresponding to M consecutive elements of X̃(`),
and ξ ∈ {0, 1}M indicates the locations of the observed entries of
x. Note that R is identical for all contiguous length-M segments of
X̃(`) thanks to stationarity, and C is symmetric because R + σ2I is
symmetric. We next develop an upper bound on ε according to

sup
f∈[0,1)

∣∣∣e(`)
i (f)

∣∣∣ = sup
f∈[0,1)

∣∣∣ŝ(`)
i (f)− s̃(`)(f)

∣∣∣

113

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

= sup
f∈[0,1)

∣∣∣∣
∑

m∈M
ĝ[m]r̂(`)

i [m]e−i2πfm −
∑

m∈Z
r̃(`)[m]e−i2πfm

∣∣∣∣

= sup
f∈[0,1)

∣∣∣∣
∑

m∈M

ĝ[m]
M

(
x>Qmx− Ey

[
x>Qmx

])
e−i2πfm

´¹¹¹¸¹¹¹¶
1
M

(
x>
(∑

m∈M ĝ[m] cos(2πfm)Qm

)
x

−Ey
[
x>
(∑

m∈M ĝ[m] cos(2πfm)Qm

)
x
])

+
∑

m∈M

ĝ[m]
M

Ey
[
x>Qmx

]
e−i2πfm −

∑

m∈Z
r̃(`)[m]e−i2πfm

∣∣∣∣

≤ sup
f∈[0,1)

∣∣∣∣
1
M

(
y>C>P>ξ Ĝ(f)PξCy

−Ey

[
y>C>P>ξ Ĝ(f)PξCy

])

´¹¹¸¹¹¹¶
=:α(`)

i
(f)

∣∣∣∣

+
∣∣∣∣
∑

m∈M

ĝ[m]
M

Ey
[
x>Qmx

]
−
∑

m∈Z
r̃(`)[m]

´¹¹¹¸¹¹¶
=:β(`)

i

∣∣∣∣, (3.20)

where we used the fact that ĝ[m](x>Qmx − Ey
[
x>Qmx

]
) is a real-

valued even sequence (ĝ[m] and x>Qmx = Mr̂
(`)
i [m] are real-valued

even by definition, the latter property implies that Ey
[
x>Qmx

]
is

also real-valued and even). It now follows from (3.20) that

ε ≤ max
`∈[L],i∈[n`]

(
sup

f∈[0,1)

∣∣α(`)
i (f)

∣∣+
∣∣β(`)
i

∣∣)

and hence (3.6) implies (3.13) via (3.19) on the event

F? :=
⋂

`∈[L],i∈[n`]

(F (`)
1,i ∩ F

(`)
2,i)

114

3.B PROOF OF THEOREM 3.3

with

F (`)
1,i :=

{
sup

f∈[0,1)

∣∣∣α(`)
i (f)

∣∣∣ < 4A(B + σ2)
p2

√
2 logM
M

}
and

F (`)
2,i :=

{∣∣∣β(`)
i

∣∣∣ < 8(1 + p)A(1 + σ2)
p2

√
logM
M

+ µmax

}
.

With the upper bound on P[F̄ (`)
1,i] resulting from (3.24) and that on

P[F̄ (`)
2,i] in (3.34), application of the union bound according to

P[F?] ≥ 1−
∑

`∈[L],i∈[n`]

(
P
[
F̄ (`)

1,i

]
+ P

[
F̄ (`)

2,i

])
≥ 1− 6N

M2 (3.21)

completes the proof.
We proceed to the upper bound on P[F̄ (`)

1,i].

Upper bound on P[F̄ (`)
1,i]: Conditioning on ξ and setting B :=

C>P>ξ Ĝ(f)PξC, we establish an upper bound on the tail proba-
bility of supf∈[0,1)

∣∣∣α(`)
i (f)

∣∣∣ by invoking a well-known concentration
of measure result for quadratic forms in Gaussian random vectors
(Demanet et al., 2012, Lem. 1), namely

P
[∣∣y>By− E

[
y>By

]∣∣

≥
∥∥B + B>

∥∥
F

√
δ + 2‖B‖2→2δ

∣∣ξ
]
≤ 2e−δ. (3.22)

Next, we note that ‖B + B>‖F ≤ 2‖B‖F ≤ 2
√
M‖B‖2→2 and

‖B‖2→2 ≤ ‖ C®
= R+σ2I

‖22→2 ‖Pξ‖22→2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

‖Ĝ(f)‖2→2

≤ A(B + σ2)
p2 ,

where the second inequality follows as both R and Ĝ(f) are symmetric
Toeplitz matrices and hence, by (Gray, 2006, Lem. 4.1), ‖R‖2→2 ≤

115

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

supf∈[0,1) s
(`)(f) ≤ B and

‖Ĝ(f)‖2→2 ≤ sup
f ′∈[0,1)

ĝ(f ′)

= sup
f ′∈[0,1)

1
p2 g(f ′) +

(
1
p
− 1
p2

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

g[0]
°
=1

≤ 1
p2 sup

f ′∈[0,1)
g(f ′) = A

p2 , (3.23)

where we used ĝ[m] = (1/p2)g[m]+(1/p−1/p2)g[0]δ[m]. Now, setting
δ = 2 log(M) in (3.22) and using δ/M ≤

√
δ/M < 1, for M ≥ 1,

yields

P
[
F̄ (`)

1,i
∣∣ξ
]

= P
[

sup
f∈[0,1)

∣∣∣α(`)
i (f)

∣∣∣

≥ 4A(B + σ2)
p2

√
2 logM
M

∣∣∣∣ξ
]
≤ 2
M2 . (3.24)

The proof is concluded by noting that this bound holds uniformly
over ξ ∈ {0, 1}M so that P[F̄ (`)

1,i] ≤ 2/M2.

Upper bound on P[F̄ (`)
2,i]: Setting G̃ :=

∑
m∈M ĝ[m]Qm, we start by

rewriting the first sum in the definition of β(`)
i in (3.20) as

∑

m∈M

ĝ[m]
M

Ey
[
x>Qmx

]
= 1
M

Ey

[
x>
(∑

m∈M
ĝ[m]Qm

)
x
]

= 1
M

Ey

[
y>C>Pξ

>G̃PξCy
]

= 1
M

tr(C>Pξ
>G̃PξC)

= 1
M

tr(Pξ
>G̃Pξ CC>²

=R+σ2I

) (3.25)

116

3.B PROOF OF THEOREM 3.3

= 1
M

∑

u,v∈[M]

ξuξvG̃u,v(Rv,u±
=Ru,v

+σ2δ[u− v]) (3.26)

= 1
M

ξ>(G̃� (R + σ2I))ξ. (3.27)

Now, setting D := G̃� (R + σ2I) and using (3.27), we have
∣∣∣β(`)
i

∣∣∣

=
∣∣∣∣

1
M

ξ>Dξ − 1
M

E
[
ξ>Dξ

]
+ 1
M

E
[
ξ>Dξ

]
−
∑

m∈Z
r̃(`)[m]

∣∣∣∣

≤
∣∣∣∣

1
M

(
ξ>Dξ − E

[
ξ>Dξ

])∣∣∣∣+
∣∣∣∣

1
M

E
[
ξ>Dξ

]
−
∑

m∈Z
r̃(`)[m]

∣∣∣∣ (3.28)

≤
∣∣∣∣

1
M

(
ξ>Dξ − E

[
ξ>Dξ

])

´¹¹¹¸¹¹¹¶
=:γ(`)

i

∣∣∣∣+ µmax. (3.29)

Here, the last inequality is a consequence of the following upper bound
on the second term in (3.28)

∣∣∣∣
1
M

E
[
ξ>Dξ

]
−
∑

m∈Z
r̃(`)[m]

∣∣∣∣

=
∣∣∣∣

1
M

∑

v,w∈[M]

E[ξvξw] G̃v,w(Rv,w + σ2δ[v − w])

−
∑

m∈Z
r̃(`)[m]

∣∣∣∣ (3.30)

=
∣∣∣∣

1
M

∑

v,w∈[M]

E[ξvξw] ĝ[v − w]
´¹¹¸¹¹¶

u[v−w]ĝ[v−w]=g[v−w]

r̃(`)[v − w]−
∑

m∈Z
r̃(`)[m]

∣∣∣∣

=
∣∣∣∣ g[0]
°
=1

(r(`)[0] + σ2)− (r(`)[0] + σ2)

117

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

+
∑

m∈M\{0}

(
M − |m|

M
g[m]r(`)[m]− r(`)[m]

)

−
∑

m∈Z\M

r(`)[m]
∣∣∣∣ (3.31)

≤
∑

m∈Z
|h[m]||r(`)[m]|

≤ µmax, (3.32)

where (3.30) follows from the equality (3.27)=(3.26) and from r̃(`)[m] =
r(`)[m] + σ2δ[m]. We continue by establishing a bound on the tail
probability of |γ(`)

i |. To this end, we note that

‖D‖2→2 = ‖G̃� (R + σ2I)‖2→2

= (1 + σ2)
∥∥∥∥G̃�

(
R + σ2I
1 + σ2

)∥∥∥∥
2→2

≤ (1 + σ2)‖G̃‖2→2

≤ A(1 + σ2)
p2 , (3.33)

where we used the fact that (R+σ2I)/(1+σ2) is a symmetric positive
semi-definite matrix with ones on its main diagonal, and we employed
(Horn and Johnson, 1991, Thm. 5.5.11) in the first inequality, and
steps analogous to those in (3.23) to obtain the second inequality.

Now, using (3.29) we get

P
[
F̄ (`)

2,i

]
≤ P

[∣∣∣γ(`)
i

∣∣∣ ≥ 8(1 + p)A(1 + σ2)
p2

√
logM
M

]

< P
[∣∣∣γ(`)

i

∣∣∣ > 8(1 + p)‖D‖2→2

√
logM
M

]
<

4
M2 , (3.34)

where the second inequality follows from the upper bound on ‖D‖2→2
in (3.33) and the third inequality is an application of Lemma 3.1 with
H := D and t := 8(1 + p)‖D‖2→2

√
M logM .

118

3.B PROOF OF THEOREM 3.3

A final remark concerns the concentration inequality for quadratic
forms in Boolean random vectors reported in the following Lemma
3.1. Such concentration inequalities, or more generally, concentration
inequalities for multivariate polynomials of boolean random variables
have been studied extensively in the context of random graph theory
(Schudy and Sviridenko, 2012). Unfortunately, the bounds available
in the literature typically come in terms of functions of the entries
of H that do not lead to crisp statements in the context of the
process clustering problem considered here. We therefore develop a
new concentration result in Lemma 3.1, which depends on ‖H‖2→2
only. The proof of this result is based on techniques developed in
(Rudelson and Vershynin, 2013).

Lemma 3.1. Let H ∈ RM×M be a (deterministic) symmetric matrix
and let ξ ∈ {0, 1}M be a random vector with i.i.d. Bernoulli entries
drawn according to P[ξi = 1] = 1− P[ξi = 0] = p, i ∈ [M]. Then, we
have

P
[∣∣ξ>Hξ − E

[
ξ>Hξ

]∣∣ > t
]

< 4 exp
(
− t2

32(1 + p)2M‖H‖22→2

)
. (3.35)

Proof. The proof is effected by adapting the proof of (Rudelson and
Vershynin, 2013, Thm. 1.1), which provides a concentration inequality
for quadratic forms in zero-mean subgaussian random vectors. We
start by decomposing ξ>Hξ − E

[
ξ>Hξ

]
according to

ξ>Hξ − E
[
ξ>Hξ

]

=
∑

i∈[M]

Hi,i(ξ2
i − E

[
ξ2
i

]
) +

∑

i,j∈[M] :
i 6=j

Hi,j(ξiξj − E[ξiξj])

=
∑

i∈[M]

Hi,i(ξi − p)

´¹¹¹¸¹¹¹¶
=:Sdiag

+
∑

i,j∈[M] :
i 6=j

Hi,j(ξiξj − p2)

´¹¹¹¸¹¹¶
=:Soff

,

119

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

where we used the fact that the ξi, i ∈ [M], are {0, 1}-valued and
statistically independent. Now, we have

P
[∣∣ξ>Hξ − E

[
ξ>Hξ

]∣∣ > t
]
≤ P[|Sdiag|+ |Soff | > t]

≤ P[|Sdiag| > t/2] + P[|Soff | > t/2] (3.36)

≤ 2 exp
(
− 2t2∑

i∈[M](Hi,i)2

)

+ 2 exp
(
− t2

32(1 + p)2M‖H‖22→2

)
(3.37)

< 4 exp
(
− t2

32(1 + p)2M‖H‖22→2

)
,

where (3.37) follows from the upper bounds on P[|Sdiag| > t/2] and
P[|Soff | > t/2] established below, and the last inequality is thanks
to
∑
i∈[M](Hi,i)2 ≤ M maxi∈[M](Hi,i)2 ≤ M‖H‖22→2 obtained from

‖H‖22→2 =max‖x‖2=1‖Hx‖22 ≥ max‖x‖2=1,x∈{0,1}M ‖Hx‖22 =maxi∈[M]∑
j∈[M](Hj,i)2 ≥ maxi∈[M](Hi,i)2.

Upper bound on P[|Sdiag| > t/2]: Note that the Hi,i(ξi − p), i ∈
[M], are independent, bounded, zero-mean random variables with
ai ≤ Hi,i(ξi − p) ≤ bi, ai, bi ∈ R, i ∈ [M]. We can therefore apply
Hoeffding’s inequality (Boucheron et al., 2013, Thm. 2.8), which upon
noting that (bi − ai)2 = H2

i,i yields

P[|Sdiag| > t/2] < 2 exp
(
− 2t2∑

i∈[M](Hi,i)2

)
.

Upper bound on P[|Soff | > t/2]: We start by decoupling (Foucart
and Rauhut, 2013, Sec. 8.4) the sum Soff over the off-diagonal entries
of H, then upper-bound the moment generating function of Soff , and
use the resulting upper bound to get an upper bound on P[Soff > t/2]
via the exponential Chebyshev inequality. The final result follows by
noting that P[Soff > t/2] = P[Soff < −t/2] and applying the union

120

3.B PROOF OF THEOREM 3.3

bound.

To decouple Soff , consider i.i.d. Bernoulli random variables νi ∈
{0, 1}, i ∈ [M], with P[νi = 0] = P[νi = 1] = 1/2, and set ν =
[ν1 . . . νM]>. With

Sν :=
∑

i,j∈[M]

νi(1− νj)Hi,j(ξi − p)(ξj + p),

we have Soff = 4Eν [Sν] thanks to the symmetry of H (i.e., Hi,j =
Hj,i), and E[νi(1− νj)] = 1/4, for i 6= j, and E[νi(1− νj)] = 0, for
i = j. Setting Iν := {i ∈ [M] : νi = 1}, we can express Sν as

Sν =
∑

i∈Iν ,j∈Iν

Hi,j(ξi − p)(ξj + p)

=
∑

i∈Iν

(ξi − p)
(∑

j∈Iν

Hi,j(ξj + p)
)
. (3.38)

We continue by upper-bounding the moment generating function of
Soff via Jensen’s inequality according to

Eξ[exp(λSoff)] = Eξ[exp(λ4Eν [Sν])]
≤ Eξ,ν [exp(4λSν)], (3.39)

where λ > 0 is a deterministic parameter. It follows from (3.38)
that Sν , conditioned on ν and on the ξj , with j ∈ Iν , is a linear
combination of independent bounded zero-mean random variables.
We therefore have

Eξi,i∈Iν [exp(4λSν)]

= Eξi,i∈Iν


exp


4λ

∑

i∈Iν

(ξi − p)
(∑

j∈Iν

Hi,j(ξj + p)
)




=
∏

i∈Iν

Eξi


exp


4λ(ξi − p)

(∑

j∈Iν

Hi,j(ξj + p)
)


 (3.40)

121

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

≤
∏

i∈Iν

exp


2λ2

(∑

j∈Iν

Hi,j(ξj + p)
)2

 (3.41)

= exp
(

2λ2
∑

i∈Iν

(∑

j∈Iν

Hi,j(ξj + p)

´¹¹¸¹¹¶
=Hi(I−Pν)(ξ+p1)

)2
)

= exp
(

2λ2‖PνH(I−Pν)(ξ + p1)‖22
)

≤ exp
(

2λ2 ‖Pν‖22→2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

‖H‖22→2 ‖I−Pν‖22→2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

‖ξ + p1‖22´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤M(1+p)2

)

≤ exp
(

2λ2(1 + p)2M‖H‖22→2

)
, (3.42)

where we used the independence of the ξi, i ∈ Iν , to get (3.40), and
Hoeffding’s Lemma in the step leading from (3.40) to (3.41). Note
that instead of Hoeffding’s Lemma we could also apply (Buldygin
and Moskvichova, 2013, Thm. 2.1) to get a sharper bound on (3.40),
but this would not lead to a different scaling behavior of (3.35) in
terms of p or M .

Combining (3.42) with (3.39) and noting that the bound (3.42)
does not depend on ν and ξj , j ∈ Iν , it follows that

Eξ,ν [exp(λSoff)] ≤ Eξ,ν [exp(4λSν)]

= Eν

[
Eξj ,j∈Iν [Eξi,i∈Iν [exp(4λSν)]]

]

≤ Eν

[
Eξj ,j∈Iν

[
exp

(
2λ2(1 + p)2M‖H‖22→2

)]]

= exp
(

2λ2(1 + p)2M‖H‖22→2

)
. (3.43)

We finally use (3.43) and the exponential Chebyshev inequality to get
the upper bound

P[Soff > t/2] ≤ exp
(
−λt/2 + 2λ2(1 + p)2M‖H‖22→2

)
, (3.44)

122

3.C PROOF OF PROPOSITION 3.1

which holds for all λ > 0. Minimizing (3.44) over λ > 0 yields

P[Soff > t/2] ≤ exp
(
− t2

32(1 + p)2M‖H‖22→2

)
. (3.45)

3.C. PROOF OF PROPOSITION 3.1

Recall that x(`)
i = C(`)y(`)

i , ` ∈ [L], i ∈ [n`], where y(`)
i is an

i.i.d. standard normal random vector and C(`) := (R̃(`))1/2. Set-
ting σ(k,`) := ‖C(k)>C(`)y(`)

i ‖2, conditional on y(`)
i , 〈x(k)

j ,x(`)
i 〉 and

〈x(`)
v ,x(`)

i 〉, for k 6= ` and v 6= i, are independent (as a consequence
of the mutual independence of the x(`)

i , ` ∈ [L], i ∈ [n`], which
is by assumption) and distributed according to N (0, σ(k,`)2) and
N (0, σ(`,`)2), respectively. Conditional on y(`)

i , or equivalently, con-
ditional on σ(k,`) and σ(`,`), |〈x(k)

j ,x(`)
i 〉| and |〈x

(`)
v ,x(`)

i 〉| hence have
half-normal distributions and we get

P
[∣∣∣
〈
x(k)
j ,x(`)

i

〉∣∣∣ <
∣∣∣
〈
x(`)
v ,x(`)

i

〉∣∣∣
∣∣∣∣
σ(k,`)

σ(`,`)

]

=
∫ ∞

0

√
2

σ(`,`)√π
e
− x2

2σ(`,`)2

∫ x

0

√
2

σ(k,`)√π
e
− y2

2σ(k,`)2 dy dx

=
∫ ∞

0

√
2

σ(`,`)√π
e
− x2

2σ(`,`)2 erf
(

x

σ(k,`)
√

2

)
dx

= 1− 2
π

arctan
(
σ(k,`)

σ(`,`)

)
, (3.46)

where we used the integral formula (Ng and Geller, 1969, Eqn. 2,
p. 7)

∫∞
0 erf(ax)e−b2x2dx = (π/2 − arctan(b/a))/(b

√
π), with a =

1/(σ(k,`)√2) and b = 1/(σ(`,`)√2) to arrive at (3.46).
Denoting the probability density function of σ(k,`)/σ(`,`) by pσ, we

123

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

get for fixed β > 0,

P
[∣∣∣
〈
x(k)
j ,x(`)

i

〉∣∣∣ ≥
∣∣∣
〈
x(`)
v ,x(`)

i

〉∣∣∣
]

=
∫ ∞

0

(
1−P

[∣∣∣
〈
x(k)
j ,x(`)

i

〉∣∣∣ <
∣∣∣
〈
x(`)
v ,x(`)

i

〉∣∣∣
∣∣∣∣x
])

pσ(x)dx

=
∫ ∞

0

2
π

arctan(x) pσ(x)dx

≥
∫ ∞

β

2
π

arctan(x) pσ(x)dx

≥ 2
π

arctan(β)
∫ ∞

β

pσ(x)dx

= 2
π

arctan(β) P
[
σ(k,`)

σ(`,`) ≥ β
]
. (3.47)

We continue by setting

β :=

√
tr
(
R̃(k)R̃(`)

)

5
√

3
√

tr
(
R̃(`)R̃(`)

)

and obtain

P
[
σ(k,`)

σ(`,`) ≥ β
]
≥ P

[{
σ(k,`) ≥ 1√

3

√
tr
(
R̃(k)R̃(`)

)}

∩
{
σ(`,`) ≤ 5

√
tr
(
R̃(`)R̃(`)

)}]

≥ 1− P
[
σ(k,`) <

1√
3

√
tr
(
R̃(k)R̃(`)

)]

− P
[
σ(`,`) > 5

√
tr
(
R̃(`)R̃(`)

)]

> 1− e− 1
9 − e−8 >

1
10 , (3.48)

where the second inequality follows from a union bound argument,

124

3.C PROOF OF PROPOSITION 3.1

and the third from

P
[
σ(k,`) <

1√
3

√
tr
(
R̃(k)R̃(`)

)]
≤ e− 1

9 (3.49)

and
P
[
σ(`,`) > 5

√
tr
(
R̃(`)R̃(`)

)]
≤ e−8, (3.50)

both proven below. Inserting (3.48) into (3.47) yields the desired
result.

Proof of (3.49): We start by noting that σ(k,`)2 =
‖C(k)>C(`)y(`)

i ‖
2
2 = y(`)

i

>
C(`)>R̃(k)C(`)y(`)

i can be written as
σ(k,`)2 ∼

∑M
m=1 λmz

2
m, where λm, m ∈ [M], denotes the non-negative

eigenvalues of C(`)>R̃(k)C(`) and zm, m ∈ [M], are independent
standard normal random variables. Setting λ = [λ1 . . . λM]> and
applying the lower tail bound (Laurent and Massart, 2000, Lem. 1)
for linear combinations of independent χ2 random variables yields,
for t > 0,

P
[
σ(k,`)2

≤ ‖λ‖1 − 2‖λ‖2
√
t
]
≤ e−t. (3.51)

The inequality (3.49) is obtained from (3.51) by noting that ‖λ‖2 ≤
‖λ‖1 and

‖λ‖1 = tr
(
C(`)>R̃(k)C(`)) = tr

(
R̃(k)C(`)C(`)>) = tr

(
R̃(k)R̃(`)),

and by setting t = 1/9 in (3.51).

Proof of (3.50): Noting that σ(`,`) = f(y(`)
i) = ‖C(`)>C(`)y(`)

i ‖2 =
‖R̃(`)y(`)

i ‖2 is Lipschitz with Lipschitz constant ‖R̃(`)‖2→2, we can
invoke a well-known concentration inequality for Lipschitz functions
of Gaussian random vectors with independent standard normal entries

125

3 NONPARAMETRIC NEAREST NEIGHBOR RANDOM PROCESS CLUSTERING

(see, e.g., (Foucart and Rauhut, 2013, Thm. 8.40)) to get, for t > 0,

P
[∥∥∥R̃(`)y(`)

i

∥∥∥
2
− E

[∥∥∥R̃(`)y(`)
i

∥∥∥
2

]
≥ t
]
≤ exp

(
− t2

2‖R̃(`)‖22→2

)
.

(3.52)

The inequality (3.50) is now implied by

E[‖R̃(`)y(`)
i ‖2] ≤

√
E
[
‖R̃(`)y(`)

i ‖
2
2

]
=
√

tr(R̃(`)R̃(`)) = ‖R̃(`)‖F

(where we used Jensen’s inequality), ‖R̃(`)‖2→2 ≤ ‖R̃(`)‖F , and (3.52)
with t = 4‖R̃(`)‖F .

126

CHAPTER 4

Deep Generative Models for

Distribution-Preserving Lossy Compression

We propose and study the problem of distribution-preserving lossy
compression. Motivated by recent advances in extreme image compres-
sion which allow to maintain artifact-free reconstructions even at very
low bitrates, we propose to optimize the rate-distortion tradeoff under
the constraint that the reconstructed samples follow the distribution
of the training data. Such a compression system recovers both ends
of the spectrum: On one hand, at zero bitrate it learns a generative
model of the data, and at high enough bitrates it achieves perfect
reconstruction. Furthermore, for intermediate bitrates it smoothly
interpolates between learning a generative model of the training data
and perfectly reconstructing the training samples. We study several
methods to approximately solve the proposed optimization problem,
including a novel combination of WGAN and WAE, and present an
extensive theoretical and empirical characterization of the proposed
compression systems.

4.1. PROBLEM FORMULATION

Setup: Consider a random variableX ∈ X with distribution PX . The
latter could be modeling, for example, natural images, text documents,

127

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

or audio signals. In standard lossy compression, the goal is to create
a rate-constrained encoder E : X → W := {1, . . . , 2R}, mapping the
input to a code of R bits, and a decoder D : W → X , mapping the
code back to the input space, such as to minimize some distortion
measure d : X × X → R+. Formally, one aims at solving

min
E,D

EX [d(X,D(E(X)))]. (4.1)

In the classic lossy compression setting, both E and D are typically
deterministic. As a result, the number of distinct reconstructed inputs
X̂ := D(E(X)) is bounded by 2R. The main drawback is, as R
decreases, the reconstruction X̂ will incur increasing degradations
(such as blur or blocking in the case of natural images), and will be
constant for R = 0. Note that simply allowing E,D in (4.1) to be
stochastic does not resolve this problem as discussed in Section 4.2.

Distribution-preserving lossy compression: Motivated by recent ad-
vances in extreme image compression (Agustsson et al., 2018), we
propose and study a novel compression problem: Solve (4.1) under the
constraint that the distribution of reconstructed instances X̂ follows
the distribution of the training data X. Formally, we want to solve
the problem

min
E,D

EX,D[d(X,D(E(X)))] s.t. D(E(X)) ∼ X, (4.2)

where the decoder is allowed to be stochastic.1 The goal of the distri-
bution matching constraint is to enforce artifact-free reconstructions
for all rates. Furthermore, as the rate R→ 0, the solution converges
to a generative model of X, while for sufficiently large rates R the
solution guarantees perfect reconstruction and trivially satisfies the
distribution constraint.

1Note that a stochastic decoder is necessary if PX is continuous.

128

4.2 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

4.2. DEEP GENERATIVE MODELS FOR
DISTRIBUTION-PRESERVING LOSSY
COMPRESSION

The distribution constraint makes solving the problem (4.2) extremely
challenging, as it amounts to learning an exact generative model of
the generally unknown distribution PX for R = 0. As a remedy, one
can relax the problem and consider the regularized formulation,

min
E,D

EX,D[d(X,D(E(X)))] + λdf (PX̂ , PX), (4.3)

where X̂ = D(E(X)), and df is a (statistical) divergence that can be
estimated from samples using, e.g., the GAN framework (Goodfellow
et al., 2014).

Challenges of the extreme compression regime: At any finite rate
R, the distortion term and the divergence term in (4.3) have strik-
ingly opposing effects. In particular, for distortion measures for which
miny d(x, y) has a unique minimizer for every x, the decoder mini-
mizing the distortion term is constant, conditioned on the code w.
For example, if d(x, y) = ‖x − y‖2, the optimal decoder D for a
fixed encoder E obeys D(w) = EX [X|E(X) = w], i.e., it is biased
to output the mean. For many popular distortions measures, D,E
minimizing the distortion term therefore produce reconstructions X̂
that follow a discrete distribution, which is at odds with the often
continuous nature of the data distribution. In contrast, the distribu-
tion divergence term encourages D ◦E to generate outputs that are
as close as possible to the data distribution PX , i.e., it encourages
D ◦ E to follow a continuous distribution if PX is continuous. While
in practice the distortion term can have a stabilizing effect on the
optimization of the divergence term (see (Agustsson et al., 2018)), it
discourages the decoder form being stochastic—the decoder learns to
ignore the noise fed as an input to provide stochasticity, and does so
even when adjusting λ to compensate for the increase in distortion

129

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

when R decreases (see the experiments in Section 4.4). This is in line
with recent results for deep generative models in conditional settings:
As soon as they are provided with context information, they tend to
ignore stochasticity as discussed in (Zhu et al., 2017a; Mathieu et al.,
2016), and in particular (Zhu et al., 2017b) and references therein.

Proposed method: We propose and study different generative model-
based approaches to approximately solve the DPLC problem. These
approaches overcome the aforementioned problems and can be applied
for all bitrates R, enabling a gentle tradeoff between matching the
distribution of the training data and perfectly reconstructing the
training samples. Figure 4.1 provides an overview of the proposed
method.
In order to mitigate the bias-to-the-mean-issues with relaxations

of the form (4.3), we decompose D as D = G ◦ B, where G is a
generative model taking samples from a fixed prior distribution PZ
as an input, trained to minimize a divergence between PG(Z) and
PX , and B is a stochastic function that is trained together with E to
minimize distortion for a fixed G.
Out of the plethora of divergences commonly used for learning

generative models G (Kingma and Welling, 2014; Goodfellow et al.,
2014), the Wasserstein distance between PX̂ and PX is particularly
well suited for DPLC. In fact, it has a distinct advantage as it can be
defined for an arbitrary transportation cost function, in particular for
the distortion measure d quantifying the quality of the reconstruction
in (4.2). For this choice of transportation cost, we can analytically
quantify the distortion as a function of the rate and the Wasserstein
distance between PG(Z) and PX .

Learning the generative model G: The Wasserstein distance between
two distributions PX and PY w.r.t. the measurable cost function
c : X × X → R+ is defined as

Wc(PX , PY) := inf
Π∈P(PX ,PY)

E(X,Y)∼Π[c(X,Y)], (4.4)

130

4.2 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

where P(PX , PY) is a set of all joint distributions of (X,Y) with
marginals PX and PY , respectively. When (X , d′) is a metric space
and we set c(x, y) = d′(x, y) we have by Kantorovich-Rubinstein
duality (Villani, 2008) that

Wd′(PX , PY) := sup
f∈F1

EX [f(X)]− EY [f(Y)], (4.5)

where F1 is the class of bounded 1-Lipschitz functions f : X → R.
Let G : Z → X and set Y = G(Z) in (4.5), where Z is distributed
according to the prior distribution PZ . Minimizing the latter over
the parameters of the mapping G, one recovers the Wasserstein GAN
(WGAN) proposed in (Arjovsky et al., 2017). On the other hand, for
Y = G(Z) with deterministic G, (4.4) is equivalent to factorizing the
couplings P(PX , PG(Z)) through Z using a conditional distribution
function Q(Z|X) (with Z-marginal QZ(Z)) and minimizing over
Q(Z|X) (Tolstikhin et al., 2018), i.e.,

inf
Π∈P(PX ,PG(Z))

E(X,Y)∼Π[c(X,Y)]= inf
Q : QZ=PZ

EXEQ(Z|X)[c(X,G(Z))].

(4.6)
In this model, the so-called Wasserstein Autoencoder (WAE), Q(Z|X)
is parametrized as the push-forward of PX , through some possibly
stochastic function F : X → Z and (4.6) becomes

inf
F : F (X)∼PZ

EXEF [c(X,G(F (X)))], (4.7)

which is then minimized over G.

Note that, in order to solve (4.2), one cannot simply set c(x, y) =
d(x, y) and replace F in (4.7) with a rate-constrained version F̂ = B ◦
E, where E is a rate-constrained encoder as introduced in Section 4.1
and B : W → Z a stochastic function. Indeed, the tuple (X,G(F (X)))
in (4.7) parametrizes the couplings P(PX , PG(Z)) and G ◦ F should
therefore be of high model capacity. Using F̂ instead of F severely
constrains the model capacity of G ◦ F̂ (for small R) compared to
G ◦ F , and minimizing (4.7) over G ◦ F̂ would hence not compute a

131

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

G(Z) which approximately minimizes Wc(PX , PG(Z)).

Learning the function B ◦ E: To circumvent this issue, instead of
replacing F in (4.7) by F̂ , we propose to first learn G? by either
minimizing the primal form (4.6) via WAE or the dual form (4.5)
via WGAN (if d is a metric) for c(x, y) = d(x, y), and subsequently
minimize the distortion as

min
B,E : B(E(X))∼PZ

EX,B [d(X,G?(B(E(X))))] (4.8)

w.r.t. the fixed generator G?. We then recover the stochastic decoder
D in (4.2) as D = G? ◦B. Clearly, the distribution constraint in (4.8)
ensures that G?(B(E(X))) ∼ G?(Z) since G was trained to map PZ
to PX .

Reconstructing the Wasserstein distance: The proposed method has
the following guarantees.

Theorem 4.1. Suppose Z = Rm and ‖ · ‖ is a norm on Rm. Further,
assume that E[‖Z‖1+δ] <∞ for some δ > 0, let d be a metric and let
G? be K-Lipschitz, i.e., d(G?(x), G?(y)) ≤ K‖x− y‖. Then,

Wd(PX , PG?(Z)) ≤ min
B,E : B(E(X))∼PZ

EX,B [d(X,G?(B(E(X))))]

≤Wd(PX , PG?(Z)) + 2−R/mKC, (4.9)

where C > 0 is an absolute constant that depends on δ,m,E[‖Z‖1+δ],
and ‖ · ‖. Furthermore, for an arbitrary distortion measure d and
arbitrary G? it holds for all R ≥ 0

Wd(PX , PG?(B(E(X)))) = Wd(PX , PG?(Z)). (4.10)

The proof is presented in Appendix 4.A. Theorem 4.1 states that the
distortion incurred by the proposed procedure is equal toWd(PX , PG?(Z))
up to an additive error term that decays exponentially in R, hence con-
verging to Wd(PX , PG?(Z)) as R→∞. Intuitively, as E is no longer

132

4.3 UNSUPERVISED TRAINING VIA WASSERSTEIN++

rate-constrained asymptotically, we can replace F in (4.6) by B ◦ E
and our two-step procedure is equivalent to minimizing (4.7) w.r.t.
G, which amounts to minimizing Wd(PX , PG(Z)) w.r.t. G by (4.6).

Furthermore, according to Theorem 4.1, the distribution mismatch
between G?(B(E(X)) and PX is determined by the quality of the
generative model G?, and is independent of R. This is natural given
that we learn G? independently.
We note that the proof of (4.9) in Theorem 4.1 hinges upon the

fact that Wd is defined w.r.t. the distortion measure d. The bound
can also be applied to a generator G′ obtained by minimizing, e.g.,
some f -divergence (Liese and Miescke, 2007) between PX and PG(Z).
However, if Wd(PX , PG′(Z)) > Wd(PX , PG?(Z)) (which will generally
be the case in practice) then the distortion obtained by using G′ will
asymptotically be larger than that obtained for G?. This suggests
using Wd rather than f -divergences to learn G.

4.3. UNSUPERVISED TRAINING VIA WASSERSTEIN++

To learn G, B, and E from data, we parametrize each component
as a DNN and solve the corresponding optimization problems via
stochastic gradient descent (SGD). We embed the code W as vectors
(henceforth referred to as “centers”) in Euclidean space. Note that
the centers can also be learned from the data (Agustsson et al.,
2017). Here, we simply fix them to the set of vectors {−1, 1}R and
use the differentiable approximation from (Mentzer et al., 2018) to
backpropagate gradients through this non-differentiable embedding.
To ensure that the mapping B is stochastic, we feed noise together
with the (embedded) code E(X).

The distribution constraint in (4.8), i.e., ensuring that B(E(X)) ∼
PZ , can be implemented using a maximum mean discrepancy (MMD)
(Gretton et al., 2012) or GAN-based (Tolstikhin et al., 2018) regular-
izer. Firstly, we note that both MMD and GAN-based regularizers
can be learned from the samples—for MMD via the corresponding
U-estimator, and for GAN via the adversarial framework. Secondly,

133

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

matching the (simple) prior distribution PZ is much easier than match-
ing the likely complex distribution PX as in (4.3). Intuitively, at high
rates, B should learn to ignore the noise at its input and map the
code to PZ . On the other hand, as R → 0, the code becomes low-
dimensional and B is forced to combine it with the stochasticity of
the noise at its input to match PZ . In practice, we observe that MMD
is robust and allows to enforce PZ at all rates R, while GAN-based
regularizers are prone to mode collapse at low rates.

Wasserstein++: As previously discussed, G? can be learned via
WGAN (Arjovsky et al., 2017) or WAE (Tolstikhin et al., 2018). As
the WAE framework naturally includes an encoder, it ensures that
the structure of the latent space Z is amenable to encode into. On the
other hand, there is no reason that such a structure should emerge
in the latent space of G trained via WGAN (in particular when Z is
high-dimensional).2 In our experiments we observed that WAE tends
to produce somewhat less sharp samples than WGAN. On the other
hand, WAE is arguably less prone to mode dropping than WGAN
as the WAE objective severely penalizes mode dropping due to the
reconstruction error term. To combine the best of both approaches,
we propose the following novel combination of the primal and the
dual form of Wd, via their convex combination

Wc(PX , PG(Z)) = γ

(
sup
f∈F1

EX [f(X)]− EY [f(G(Z))]
)

+ (1− γ)
(

inf
F : F (X)∼PZ

EXEF [d(X,G(F (X)))]
)
,

(4.11)

with γ ∈ [0, 1]. There are two practical questions remaining. Firstly,
minimizing this expression w.r.t. G can be done by alternating be-
tween performing gradient updates for the critic f and gradient

2In principle, this is not an issue if B has enough model capacity, but it might
lead to differences in practice as the distortion (4.8) should be easier to minimize
if the Z-space is suitably structured, see Section 4.4.

134

4.3 UNSUPERVISED TRAINING VIA WASSERSTEIN++

X
F

Z
G

X̂

f

WAE
WGAN

Wasserstein++

(a)

X E
N

D

G?B X̂

(b)

Fig. 4.1: (a) A generative model G of the data distribution is commonly learned
by minimizing the Wasserstein distance between PX and PG(Z) either (i)
via Wasserstein autoencoder (WAE) (Tolstikhin et al., 2018), where G ◦ F
parametrizes the couplings between PX and PG(Z), or (ii) via Wasserstein
GAN (WGAN) (Arjovsky et al., 2017), which relies on the critic f . We pro-
pose Wasserstein++, a novel approach subsuming both WAE and WGAN. (b)
Combining the trained generative model G? with a rate-constrained encoder E
(quantization denoted by ♦-symbol), and a stochastic function B (stochastic-
ity is provided through the noise vector N) to realize a distribution-preserving
compression (DPLC) system which minimizes the distortion between X and
X̂, while ensuring that PX and PX̂ are similar at all rates.

updates for G,F . In other words, we combine the steps of the WGAN
algorithm (Arjovsky et al., 2017, Algorithm 1) and WAE-MMD algo-
rithm (Tolstikhin et al., 2018, Algorithm 2), and call this combined
algorithm Wasserstein++. Secondly, one can train the critic f on
fake samples from G(Z) or from G(F (X)), which will not follow the
same distribution in general due to a mismatch between F (X) and

135

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

PZ , which is more pronounced in the beginning of the optimization
process. Preliminary experiments suggest that the following setup
yields samples of best quality (in terms of FID score):

(i) Train f on samples from G(Z̃), where Z̃ = UZ + (1−U)F (X)
with U ∼ Uniform(0, 1).

(ii) Train G only on samples from F (X), for both the WGAN and
the WAE loss term.

We note that training f on samples from G(Z̃) instead of G(Z) ar-
guably introduces robustness to distribution mismatch in Z-space.
A more detailed description of Wasserstein++ can be found in Ap-
pendix 4.C, and the relation of Wasserstein++ to existing approaches
combining GANs and autoencoders is discussed in Section 4.5. We
proceed to present the empirical evaluation of the proposed approach.

4.4. EMPIRICAL EVALUATION3

Setup: We empirically evaluate the proposed DPLC framework for
G? trained via WAE-MMD (with an inverse multiquadratics kernel,
see (Tolstikhin et al., 2018)), WGAN with gradient penalty (WGAN-
GP) (Gulrajani et al., 2017), and Wasserstein++ (implementing the 1-
Lipschitz constraint in (4.11) via the gradient penalty from (Gulrajani
et al., 2017)), on two standard generative modeling benchmark image
datasets, CelebA (Liu et al., 2015b) and LSUN bedrooms (Yu et al.,
2015), both downscaled to 64× 64 resolution. We focus on these data
sets at relatively low resolution as current state-of-the-art generative
models can handle them reasonably well, and we do not want to limit
ourselves by the difficulties arising with generative models at higher
resolutions. The Euclidean distance is used as distortion measure
(training objective) d in all experiments.

We measure the quality of the reconstructions of our DPLC sys-
tems via mean squared error (MSE) and we assess how well the
distribution of the testing reconstructions matches that of the original

3Code is available at https://github.com/mitscha/dplc.

136

https://github.com/mitscha/dplc

4.4 EMPIRICAL EVALUATION

data using the FID score, which is the recommended measure for
image data (Heusel et al., 2017; Lucic et al., 2018). To quantify the
variability of the reconstructions conditionally on the code w (i.e.,
conditionally on the encoder input), we estimate the mean conditional
pixel variance PV [X̂|w] = 1

N

∑
i,j EB [(X̂i,j − EB [X̂i,j |w])2|w], where

N is the number of pixels of X. In other words, PV is a proxy for how
well G◦B picks up the noise at its input at low rates. All performance
measures are computed on a testing set of 10k samples held out form
the respective training set, except PV which is computed on a subset
256 testing samples, averaged over 100 reconstructions per testing
sample (i.e., code w).

Architectures, hyperparameters, and optimizer: The prior PZ is an
m-dimensional multivariate standard normal, and the noise vector
providing stochasticity to B has m i.i.d. entries distributed uniformly
on [0, 1]. We use the DCGAN (Radford et al., 2015) generator and
discriminator architecture for G and f , respectively. For F and E

we follow (Tolstikhin et al., 2018) and apply the architecture similar
to the DCGAN discriminator. B is realized as a stack of n residual
blocks (He et al., 2016a). We set m = 128, n = 2 for CelebA, and
m = 512, n = 4 for the LSUN bedrooms data set. We chose m to
be larger than the standard latent space dimension for GANs as we
observed that lower m may lead to blurry reconstructions.
As baselines, we consider compressive autoencoders (CAEs) with

the same architecture G ◦ B ◦ E but without feeding noise to B,
training G,B,E jointly to minimize distortion, and BPG (Bellard,
2018), a state-of-the-art engineered codec.4 In addition, to corroborate
the claims made on the disadvantages of (4.3) in Section 4.2, we train
G ◦ B ◦ E to minimize (4.3) as done in the generative compression
(GC) approach from (Agustsson et al., 2018), but replacing df by Wd.

Throughout, we rely on the Adam optimizer (Kingma and Ba,
2015). To train G by means of WAE-MMD and WGAN-GP we use the

4The implementation from (Bellard, 2018) used in this chapter cannot compress
to rates below ≈ 0.2 bpp on average for the data sets considered here.

137

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

0.000 0.008 0.031 0.125 0.500 orig. 0.000 0.008 0.031 0.125 0.500 orig.

Fig. 4.1: Example (test) reconstructions for CelebA (left) and LSUN bedrooms
(right) obtained by our DPLC method based on Wasserstein++ (rows 1–
4), and a compressive autoencoder (CAE) baseline (row 5), as a function of
the compression rate (in bits per pixel). We stress that even as the bitrate
decreases, DPLC manages to generate diverse and realistic-looking images,
whereas the CAE reconstructions become increasingly blurry.

training parameters form (Tolstikhin et al., 2018) and (Gulrajani et al.,
2017), respectively. For Wasserstein++, we set γ in (4.11) to 2.5 ·10−5

for CelebA and to 10−4 for LSUN. Further, we use the same training
parameters to solve (4.8) as for WAE-MMD. Thereby, to compensate
for the increase in the reconstruction loss with decreasing rate, we
adjust the coefficient of the MMD penalty, λMMD (see Appendix
4.C), proportionally as a function of the reconstruction loss of the
CAE baseline, i.e., λMMD(R) = const. ·MSECAE(R). We adjust the
coefficient λ of the divergence term df in (4.3) analogously. This
ensures that the regularization strength is roughly the same for all
rates. Appendix 4.B provides a detailed description of all architectures
and hyperparameters.

138

4.4 EMPIRICAL EVALUATION

Table 4.1: Reconstruction FID and MSE (without rate constraint5), and sam-
ple FID for the trained generators G, on CelebA and LSUN bedrooms (smaller
is better for all three metrics). Wasserstein++ obtains lower rFID and sFID
than WAE, but a (slightly) higher sFID than WGAN-GP.

CelebA LSUN bedrooms
MSE rFID sFID MSE rFID sFID

WAE 0.0165 38.55 51.82 0.0099 42.59 153.57
WGAN-GP / / 22.70 / / 45.52
Wasserstein++ 0.0277 10.93 23.36 0.0321 27.52 60.97

Results: Table 4.1 shows sample FID of G? for WAE, WGAN-GP,
and Wasserstein++, as well as the reconstruction FID and MSE
for WAE and Wasserstein++.5 In Figure 4.2 we plot the MSE, the
reconstruction FID, and PV obtained by our DPLC models as a
function of the bitrate, for different G?, along with the values obtained
for the baselines. Figure 4.1 presents visual examples produced by
our DPLC model with G? trained using Wasserstein++, along with
examples obtained for GC and CAE. More visual examples can be
found in Appendix 4.D.

Discussion: We first discuss the performance of the trained genera-
tors G?, shown in Table 4.1. For both CelebA and LSUN bedrooms,
the sample FID obtained by Wasserstein++ is considerably smaller
than that of WAE, but slightly larger than that of WGAN-GP. Fur-
ther, Wasserstein++ yields a significantly smaller reconstruction FID
than WAE, but a larger reconstruction MSE, as the Wasserstein++
objective is obtained by adding a WGAN term to the WAE objective
(which minimizes distortion).

We now turn to the DPLC results obtained for CelebA shown in
Figure 4.2, top row. It can be seen that among our DPLC models, the

5The reconstruction FID and MSE in Table 4.1 are obtained as G?(F (X)),
without rate constraint. We do not report reconstruction FID and MSE for
WGAN-GP as its formulation (4.5) does not naturally include an unconstrained
encoder.

139

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

10−2 10−1 100

10−2

10−1

0

MSE

10−2 10−1 100
101

102

0

rFID

10−2 10−1 100

10−4

10−3

10−2

10−1

0
0

PV

10−2 10−1 100

10−2

10−1

0

Bits per pixel
10−2 10−1 100

101

102

0

Bits per pixel

WAE WGAN-GP Wasserstein++ BPG CAE GC

10−2 10−1 100

10−3

10−2

10−1

0
0

Bits per pixel

Fig. 4.2: Testing MSE (smaller is better), reconstruction FID (smaller is bet-
ter), conditional pixel variance (PV, larger is better) obtained by our DPLC
model, for different generators G?, CAE, BPG, as well as GC (Agustsson et al.,
2018), as function of the bitrate. The results for CelebA are shown in the top
row, those for LSUN bedrooms in the bottom row. The PV of our DPLC mod-
els steadily increases with decreasing rate, i.e., they generate gradually more
image content, as opposed to GC.

one combined with G? from WAE yields the lowest MSE, followed by
those based on Wasserstein++, and WGAN-GP. This is not surprising
as the optimization of WGAN-GP does not include a distortion term.
CAE obtains a lower MSE than all DPLC models which is again
intuitive as G,B,E are trained jointly and to minimize distortion
exclusively (in particular there is no constraint on the distribution in
Z-space). Finally, BPG obtains the overall lowest MSE. Note, however,
that BPG relies on several advanced techniques such as entropy coding

140

4.4 EMPIRICAL EVALUATION

based on context models (see, e.g., (Rippel and Bourdev, 2017; Li
et al., 2018; Mentzer et al., 2018; Ballé et al., 2018)), which we did
not implement here (but which could be incorporated into our DPLC
framework).

Among our DPLC methods, DPLC based on Wasserstein++ attains
the lowest reconstruction FID (i.e., its distribution most faithfully
reproduces the data distribution) followed by WGAN-GP and WAE.
For all three models, the FID decreases as the rate increases, meaning
that the models manage not only to reduce distortion as the rate
increases, but also to better reproduce the original distribution. The
FID of CAE increases drastically as the rate falls below 0.03 bpp.
Arguably, this can be attributed to significant blur incurred at these
low rates (see Figure 4.D.9 in Appendix 4.D). BPG yields a very
high FID as soon as the rate falls below 0.5 bpp due to compression
artifacts.
The PV can be seen to increase steadily for all DPLC models as

the rate decreases, as expected. This is also reflected by the visual
examples in Figure 4.1, left: At 0.5 bpp no variability is visible, at
0.125 bpp the facial expression starts to vary, and decreasing the rate
further leads to the encoder producing different persons, deviating
more and more form the original image, until the system generates
random faces.

In contrast, the PV obtained by solving (4.3) as in GC (Agustsson
et al., 2018) is essentially 0, except at 0 bpp, where it is comparable
to that of our DPLC models. The noise injected into D = G ◦ B is
hence ignored unless it is the only source of randomness at 0 bpp. We
emphasize that this is the case even though we adjust the coefficient
λ of the df term as λ(R) = const. ·MSECAE(R) to compensate for
the increase in distortion with decreasing rate. The performance of
GC in terms of MSE and reconstruction FID is comparable to that
of the DPLC model with Wasserstein++ G?.
We now turn to the DPLC results obtained for LSUN bedrooms.

The qualitative behavior of DPLC based on WAE and Wasserstein++
in terms of MSE, reconstruction FID, and PV is essentially the same
as observed for CelebA. Wasserstein++ provides the lowest FID by a

141

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

large margin, for all positive rates. The reconstruction FID for WAE
is high at all rates, which is not surprising as the sample FID obtained
by WAE is large (cf. Table 4.1), i.e., WAE struggles to model the
distribution of the LSUN bedrooms data set.

For DPLC based on WGAN-GP, in contrast, while the MSE and PV
follow the same trend as for CelebA, the reconstruction FID increases
notably as the bitrate decreases. By inspecting the corresponding
reconstructions (cf. Figure 4.D.12 in Appendix 4.D) one can see that
the model manages to approximate the data distribution well at zero
bitrate, but yields increasingly blurry reconstructions as the bitrate
increases. This indicates that either the (trained) function B ◦E is not
mapping the original images to Z space in a way suitable for G? to
produce crisp reconstructions, or the range of G? does not cover the
support of PX well. We tried to address the former issue by increasing
the depth of B (to increase model capacity) and by increasing λMMD
(to reduce the mismatch between the distribution of B(E(X)) and
PZ), but we did not observe improvements in reconstruction quality.
We therefore suspect mode coverage issues to cause the blur in the
reconstructions.
Finally, GC (Agustsson et al., 2018) largely ignores the noise in-

jected into D at high bitrates, while using it to produce stochastic
decoders at low bitrates. However, at low rates, the rFID of GC is
considerably higher than that of DPLC based on Wasserstein++,
meaning that it does not faithfully reproduce the data distribution
despite using stochasticity. Indeed, GC suffers from mode collapse at
low rates as can be seen in Figure 4.D.14 in Appendix 4.D.

4.5. RELATED WORK

DNN-based methods for compression have become an active area
of research over the past few years. Most authors focus on image
compression (Toderici et al., 2015, 2017; Theis et al., 2017; Rippel
and Bourdev, 2017; Ballé et al., 2017; Agustsson et al., 2017; Li et al.,
2018; Johnston et al., 2017; Torfason et al., 2018; Mentzer et al.,

142

4.5 RELATED WORK

2018; Ballé et al., 2018), while others consider audio (Kankanahalli,
2018) and video (Wu et al., 2018) data. Compressive autoencoders
(Theis et al., 2017; Ballé et al., 2017; Agustsson et al., 2017; Li et al.,
2018; Torfason et al., 2018; Ballé et al., 2018) and recurrent neural
networks (RNNs) (Toderici et al., 2015, 2017; Johnston et al., 2017)
have emerged as the most popular DNN architectures for compression.

GANs have been used in the context of learned image compression
before (Rippel and Bourdev, 2017; Agustsson et al., 2018; Santurkar
et al., 2018; Galteri et al., 2017). Rippel and Bourdev (2017) apply a
GAN loss to image patches for artifact suppression, whereas Agustsson
et al. (2018) apply the GAN loss to the entire image to encourage
the decoder to generate image content (but does not demonstrate a
properly working stochastic decoder). GANs are leveraged by Ledig
et al. (2017) and Galteri et al. (2017) to improve image quality of
super resolution and engineered compression methods, respectively.
Santurkar et al. (2018) use a generator trained with a GAN as

a decoder in a compression system. However, they rely on vanilla
GAN (Goodfellow et al., 2014) only rather than considering different
Wd-based generative models and they do not provide an analytical
characterization of their model. Most importantly, they optimize their
model using conventional distortion minimization with deterministic
decoder, rather than solving the DPLC problem.

Gregor et al. (2016) propose a variational autoencoder (VAE)-type
generative model that learns a hierarchy of progressively more abstract
representations. By storing the high-level part of the representation
and generating the low-level one, they manage to partially preserve
and partially generate image content. However, their framework is
lacking a notion of rate and distortion and does not quantize the
representations into a code (apart from using finite precision data
types).
Probably most closely related to Wasserstein++ is VAE-GAN

(Larsen et al., 2015), combining the VAE (Kingma and Welling, 2014)
with vanilla GAN (Goodfellow et al., 2014). However, whereas the
VAE part and the GAN part minimize different divergences (Kullback-
Leibler and Jensen-Shannon in the case of VAE and vanilla GAN,

143

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

respectively), WAE and WGAN minimize the same cost function,
so Wasserstein++ is somewhat more principled conceptually. More
generally, learning generative models jointly with an inference mecha-
nism for the latent variables has attracted significant attention, see,
e.g., (Larsen et al., 2015; Donahue et al., 2017; Dumoulin et al., 2017;
Dosovitskiy and Brox, 2016) and (Rosca et al., 2017) for an overview.

Outside of the domain of machine learning, the problem of distribu-
tion-preserving (scalar) quantization was studied. Specifically, (Delp
and Mitchell, 1991) studies moment preserving quantization, that is
quantization with the design criterion that certain moments of the
data distribution shall be preserved. Further, (Li et al., 2010) proposes
an engineered dither-based quantization method that preserves the
distribution of the variable to be quantized.

4.6. CONCLUSION AND FUTURE WORK

In this chapter, we studied the DPLC problem, which amounts to
optimizing the rate-distortion tradeoff under the constraint that the
reconstructed samples follow the distribution of the training data. We
proposed different approaches to solve the DPLC problem, in particu-
lar Wasserstein++, a novel combination of WAE and WGAN, and
analytically characterized the properties of the resulting compression
systems. These systems allowed us to obtain essentially artifact-free
reconstructions at all rates, covering the full spectrum from learn-
ing a generative model of the data at zero bitrate on one hand, to
learning a compression system with almost perfect reconstruction at
high bitrate on the other hand. Most importantly, our framework
improves over previous methods by producing stochastic decoders at
low bitrates, thereby effectively solving the DPLC problem for the
first time. Future work includes scaling the proposed approach up
to full-resolution images and applying it to data types other than
images.

144

4.A PROOF OF THEOREM 4.1

APPENDICES

4.A. PROOF OF THEOREM 4.1

We first prove (4.9). We start by constructing a rate-constrained
stochastic function F̂ : X → Rm as follows. Let q be the nearest
neighbor quantizer

q(z) = arg min
i∈[2R]

‖z − ci‖ (4.12)

with the centers {c1, . . . , c2R} ⊂ Rm chosen to minimize E[mini∈[2R]
‖z−ci‖] (the minimum is attained by Prop. 2.1 in (Luschgy and Pagès,
2002)). Let Ai be the Voronoi region associated with ci, i.e., Ai = {z ∈
Rm : ‖z − ci‖ = mini∈[2R] ‖z − ci‖}. We now set E(X) = q(F ?(X))
and B(i) = Zi, where F ? is a minimizer of (4.7) for G = G? and Zi ∼
PZ|Z∈Ai , independent of Z given Ai. It holds F̂ (X) := B(E(X)) ∼ Z
by construction and the described choice of B,E is feasible for (4.8).
We continue by upper-bounding d(X,G?(F̂ (X)))

d(X,G?(F̂ (X))) ≤ d(X,G?(F ?(X))) + d(G?(F ?(X)), G?(F̂ (X)))
≤ d(X,G?(F ?(X))) +K‖F ?(X)− F̂ (X)‖
≤ d(X,G?(F ?(X))) +K‖F ?(X)− cE(X)‖

+K‖cE(X) − F̂ (X)‖. (4.13)

By Cor. 6.7 from (Graf and Luschgy, 2007) we have

EX [‖F ?(X)− cE(X)‖] ≤ 2−R/m(C1E[‖Z‖1+δ] + C2), (4.14)

where δ > 0, 2R > C3, and C1, C2, C3 > 0 are numerical con-
stants depending on δ,m and ‖ · ‖. The same upper bound holds for
E[‖cE(X) − F̂ (X)‖] as E(X) = q(F ?(X)) = q(F̂ (X)), i.e., ‖cE(X) −
F̂ (X)‖ = ‖cq(F̂ (X)) − F̂ (X)‖, and F̂ (X) ∼ Z ∼ F ?(X). Taking the
expectation on both sides of (4.13) and using (4.14) in the result-
ing expression yields the upper bound in (4.9). The lower bound

145

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

is obtained by noting that the minimization (4.7) includes the rate
constrained mappings B ◦ E.

Eq. (4.10) directly follows from the distribution constraint in (4.8),
B(E(X)) ∼ PZ : This constraint implies G?(B(E(X))) ∼ G?(Z)
which in turn implies (4.10).

Remark 4.1. The construction of the discrete encoder F̂ in the
proof of Theorem 4.1 requires optimal vector quantization, which is
generally NP hard. However, if we make stronger assumptions on PZ
than done in the statement of Theorem 4.1 one can prove exponential
convergence without optimal vector quantization. For example, if Z
is uniformly distributed on [0, 1]m, R = km for a positive integer k,
and ‖ · ‖ is the Euclidean norm, then one can partition [0, 1]m into
2R hypercubes of equal edge length 1/2k = 1/2 R

m and associate the
centers ci with the centers of these hypercubes. In this case, the two
last terms in (4.13) are upper-bounded by

√
m ·2− R

m . The quantization
error thus converges to 0 as 2− R

m for R→∞.

4.B. HYPERPARAMETERS AND ARCHITECTURES

Learning the generative model G?: The training parameters used
train G? using WAE, WGAN-GP, and Wasserstein++ are shown in
Table 4.B.1. The parameters for WAE correspond to those used for
the WAE-MMD experiments on CelebA in (Tolstikhin et al. (2018),
see Appendix C.2), with the difference that we use a batch size of
256 and a slightly modified schedule (note that 41k iterations with
a batch size of 256 correspond to roughly 55 epochs with batch size
100, which is suggested by (Tolstikhin et al., 2018)). This does not
notably impact the performance WAE (we obtain a slightly lower
sample FID than reported in (Tolstikhin et al., 2018, Table 1)). The
parameters for WGAN-GP correspond to those recommended for
LSUN bedrooms in (Gulrajani et al., 2017, Appendix E).

146

4.B HYPERPARAMETERS AND ARCHITECTURES

Learning the function B ◦ E: The training parameters to solve
(4.8) can be found in Table 4.B.2. To solve (4.1) (i.e., to train the
CAE baseline) we use the same parameters as for WAE (except
that λMMD = 0 as there is no distribution constraint in (4.1)), see
Table 4.B.1.

Training the baseline (4.3) as in (Agustsson et al., 2018): To solve
(4.3) we use the parameters and schedule specified in Table 4.B.1 for
Wasserstein++ (except that we do not need λMMD), and we determine
λ in (4.3) based on the bitrate as λ(R) = 2.5 · 10−5 · MSECAE(R)

MSECAE(0.5bpp)

for CelebA and λ(R) = 7.5 · 10−5 · MSECAE(R)
MSECAE(1bpp) for LSUN bedrooms.

Architectures: We use the following notation. cxsy-z stands for a
2D convolution with an x × x kernel, stride y, and z filters, followed
by the ReLU non-linearity (the ReLU non-linearity is omitted when
the convolution is followed by quantization or the tanh non-linearity).
The suffixes b and l, i.e., cxsyb-z and cxsyl-z, indicate that batch
normalization is employed before the non-linearity and layer normal-
ization as well as leaky ReLU with a negative slope of 0.2 instead
of ReLU, respectively. txsyb-z stands for a transposed 2D convo-
lution with an x × x kernel, stride 1/y, and z filters, followed by
batch normalization and ReLU non-linearity. fc-z denotes flattening
followed by a fully-connected layer with z neurons. r-z designates a
residual block with z filters in each layer. The abbreviations bn, tanh,
and -q are used for batch normalization, the tanh non-linearity, and
quantization with differentiable approximation for gradient backprop-
agation, respectively. k is the number of channels of the quantized
feature representation (i.e., k determines the bitrate), and the suf-
fix +n denotes concatenation of an m-dimensional noise vector with
i.i.d. entries uniformly distributed on [0, 1], reshaped as to match the
spatial dimension of the feature maps in the corresponding network
layer.

• F : c4s2-64, c4s2b-128, c4s2b-256, c4s2b-512, fc-m, bn

147

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

• G: t4s2b-512, t4s2b-256, t4s2b-128, t4s2b-64, t4s2b-64,
c3s1-3, tanh

• f : c3s1-64, c4s2l-64, c4s2l-128, c4s2l-256, c4s2l-512,
fc-1

• E: c4s2-64, c4s2b-128, c4s2b-256, c4s2b-512, c3s1-k-q+n

• B: c3s1-512, r-512, ..., r-512, fc-m, bn

148

4.B HYPERPARAMETERS AND ARCHITECTURES

T
ab
le

4.
B
.1
:
A
da
m

le
ar
ni
ng

ra
te
s
α
F
,
α
G
,
α
f
fo
r
th
e
W
A
E

en
co
de
r
F
,
th
e
ge
ne
ra
to
r
G
,
an
d
th
e
W
G
A
N

cr
it
ic
f
,

re
sp
ec
ti
ve
ly
,A

da
m

pa
ra
m
et
er
s
β

1,
β

2,
M
M
D

re
gu

la
riz

at
io
n
co
effi

ci
en
t
λ

M
M

D
,m

in
i-b

at
ch

si
ze
b,
nu

m
be
r
of

(g
en
er
at
or
)

it
er
at
io
ns

n
it
er
,
an
d
le
ar
ni
ng

ra
te

sc
he
du

le
(L
R

sc
he
d.
),

fo
r
C
el
eb
A
.
T
he

nu
m
be
r
of

cr
it
ic

it
er
at
io
ns

pe
r
ge
ne
ra
to
r

it
er
at
io
n
is
se
t
to
n

cr
it
ic

=
5
fo
r
W
G
A
N
-G
P
an
d
W
as
se
rs
te
in
+
+
.
Fo

r
LS

U
N

be
dr

oo
m

s,
th
e
pa
ra
m
et
er
s
ar
e
id
en
ti
ca
l,

ex
ce
pt

th
at
λ

M
M

D
=

30
0
fo
r
W
A
E
an
d
W
as
se
rs
te
in
+
+
,
an
d
th
e
nu

m
be
r
of

it
er
at
io
ns

is
do

ub
le
d
(w

it
h
th
e
le
ar
ni
ng

ra
te

sc
he
du

le
sc
al
ed

ac
co
rd
in
gl
y)

fo
r
al
lt
hr
ee

al
go
rit
hm

s.

α
F

α
G

α
f

β
1

β
2

λ
M

M
D

λ
G

P
b

n
it

er
LR

sc
he

d.

W
A
E

10
−

3
10
−

3
/

0.
5

0.
99
9

10
0

/
25
6

41
k
×

0.
4@

22
k;
38
k

W
G
A
N
-G

P
/

10
−

4
10
−

4
0.
5

0.
90
0

/
10

64
10
0k

/
W
as
se
rs
te
in
+
+

3
·1

0−
4

3
·1

0−
4

10
−

4
0.
5

0.
99
9

10
0

10
25
6

25
k
×

0.
4@

15
k;
21
k

T
ab
le

4.
B
.2
:
A
da
m

pa
ra
m
et
er
s
α
,β

1,
β

2,
M
M
D

re
gu

la
riz

at
io
n
co
effi

ci
en
t
λ

M
M

D
as

a
fu
nc
ti
on

of
th
e
M
SE

in
cu
rr
ed

by
C
A
E
at

ra
te
R

(M
SE

C
A

E
(R

))
,
m
in
i-b

at
ch

si
ze
b,

nu
m
be
r
of

it
er
at
io
ns
n

it
er
,
an
d
le
ar
ni
ng

ra
te

sc
he
du

le
(L
R

sc
he
d.
)

us
ed

to
so
lv
e
(4
.8
).

α
β

1
β

2
λ

M
M

D
(R

)
b

n
it

er
LR

sc
he
d.

C
el
eb

A
10
−

3
0.
5

0.
99
9

15
0
·

M
SE

C
A

E
(R

)
M

SE
C

A
E

(0
.5

bp
p)

25
6

41
k
×

0.
4@

22
k;
38
k

LS
U
N

be
dr
oo

m
s

10
−

3
0.
5

0.
99
9

80
0
·

M
SE

C
A

E
(R

)
M

SE
C

A
E

(1
bp

p)
25
6

82
k
×

0.
4@

44
k;
76
k

149

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

4.C. THE WASSERSTEIN++ ALGORITHM

Algorithm 1: Wasserstein++
Require: MMD regularization coefficient λMMD, WGAN coefficient γ,

WGAN gradient penalty coefficient λGP, number of critic iterations
per generator iteration ncritic, mini-batch size b, characteristic
positive-definite kernel k, Adam parameters (not shown explicitly).

1: Initialize the parameters φ, θ, and ψ of the WAE encoder Fφ, the
generator Gθ, and the WGAN discriminator fψ, respectively.

2: while (φ, θ, ψ) not converged do
3: for t = 1, . . . , ncritic do
4: Sample {x1, . . . , xb} from the training set
5: Sample z̄i from Fφ(xi), for i = 1, . . . , b
6: Sample {z1, . . . , zb} from the prior PZ
7: Sample {η1, . . . , ηb} from Uniform(0, 1)
8: Sample {ν1, . . . , νb} from Uniform(0, 1)
9: z̃i ← ηizi + (1− ηi)z̄i, for i = 1, . . . , b
10: x̂i ← Gθ(z̃i), for i = 1, . . . , b
11: x̃i ← νixi + (1− νi)x̂i, for i = 1, . . . , b
12: Lf ← 1

b

∑b

i=1 fψ(x̂i)− fψ(xi) + λGP(‖∇x̃ifψ(x̃i)‖ − 1)2

13: ψ ← Adam(ψ,Lf)
14: end for
15: Ld ← 1

b

∑b

i=1 ‖xi −Gθ(z̄i)‖
16: LMMD ←

1
b(b−1)

∑
` 6=j k(z`, zj) + 1

b(b−1)
∑

` 6=j k(z̄`, z̄j)− 2
b2
∑

`,j
k(z`, z̄j)

17: LWGAN ← 1
b

∑b

i=1−fψ(Gθ(z̄i))
18: θ ← Adam(θ, (1− γ)Ld + γLWGAN)
19: φ← Adam(φ, (1− γ)(Ld + λMMDLMMD))
20: end while

150

4.D VISUAL EXAMPLES

4.D. VISUAL EXAMPLES

In the following, we show random samples and reconstructions pro-
duced by different DPLC models and CAE, at different bitrates, for
the CelebA and LSUN bedrooms data set. None of the examples are
cherry-picked.

151

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

WAE

WGAN-GP

Wasserstein++

Figure 4.D.4: Random samples produced by the trained generator G?(Z), with
Z ∼ PZ , on CelebA. The samples produced by WGAN-GP and Wasserstein++
are sharper than those generated by WAE.

152

4.D VISUAL EXAMPLES

0
bp

p
0.
00
8
bp

p
0.
03
1
bp

p
0.
12
5
bp

p
0.
5
bp

p

Figure 4.D.5: Testing reconstructions produced by our DPLC model with WAE
G?, along with the original image (green border), for CelebA. The variability
between different reconstructions increases as the bitrate decreases.

153

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION
0
bp

p
0.
00
8
bp

p
0.
03
1
bp

p
0.
12
5
bp

p
0.
5
bp

p

Figure 4.D.6: Testing reconstructions produced by our DPLC model with
WGAN-GP G?, along with the original image (green border), for CelebA. The
variability between different reconstructions increases as the bitrate decreases.

154

4.D VISUAL EXAMPLES

0
bp

p
0.
00
8
bp

p
0.
03
1
bp

p
0.
12
5
bp

p
0.
5
bp

p

Figure 4.D.7: Testing reconstructions produced by our DPLC model with
Wasserstein++ G?, along with the original image (green border), for CelebA.
The variability between different reconstructions increases as the bitrate de-
creases.

155

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION
0
bp

p
0.
00
8
bp

p
0.
03
1
bp

p
0.
12
5
bp

p
0.
5
bp

p

Figure 4.D.8: Testing reconstructions produced using G ◦ B ◦ E obtained by
solving (4.3) similarly as in GC (Agustsson et al., 2018), along with the original
image (green border), for CelebA. There is no variability between different
reconstructions except at 0 bpp.

156

4.D VISUAL EXAMPLES

0.000 bpp 0.008 bpp 0.031 bpp

0.125 bpp 0.500 bpp original

Figure 4.D.9: Testing reconstructions produced by CAE, for CelebA. The re-
constructions become increasingly blurry as the rate decreases.

157

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION

WAE

WGAN-GP

Wasserstein++

Figure 4.D.10: Random samples produced by the trained generator G?(Z),
with Z ∼ PZ , for LSUN bedrooms. The samples produced by WGAN-GP and
Wasserstein++ are sharper than those generated by WAE.
158

4.D VISUAL EXAMPLES

0
bp

p
0.
00
8
bp

p
0.
03
1
bp

p
0.
12
5
bp

p
0.
5
bp

p

Figure 4.D.11: Testing reconstructions produced by our DPLC model with
WGAN-GP G?, along with the original image (green border), for LSUN bed-
rooms. The reconstructions are blurry at all rates.

159

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION
0
bp

p
0.
00
8
bp

p
0.
03
1
bp

p
0.
12
5
bp

p
0.
5
bp

p

Figure 4.D.12: Testing reconstructions produced by our DPLC model with
WGAN-GP G?, along with the original image (green border), for LSUN bed-
rooms. The reconstructions are blurry at all rates except at 0 bpp.

160

4.D VISUAL EXAMPLES

0
bp

p
0.
00
8
bp

p
0.
03
1
bp

p
0.
12
5
bp

p
0.
5
bp

p

Figure 4.D.13: Testing reconstructions produced by our DPLC model with
Wasserstein++ G?, along with the original image (green border), for LSUN
bedrooms. The variability between different reconstructions increases as the
bitrate decreases. The reconstructions are quite sharp at all rates.

161

4 DISTRIBUTION-PRESERVING LOSSY COMPRESSION
0
bp

p
0.
00
8
bp

p
0.
03
1
bp

p
0.
12
5
bp

p
0.
5
bp

p

Figure 4.D.14: Testing reconstructions produced using G ◦ B ◦ E obtained
by solving (4.3) similarly as in GC (Agustsson et al., 2018), along with the
original image (green border), for LSUN bedrooms. The method produces a
stochastic decoder at very low rates but suffers from mode collapse.

162

4.D VISUAL EXAMPLES

0.000 bpp 0.008 bpp 0.031 bpp

0.125 bpp 0.500 bpp original

Figure 4.D.15: Testing reconstructions produced by CAE, for LSUN bedrooms.
The reconstructions become increasingly blurry as the rate decreases.

163

CHAPTER 5

Deep Learning with a Multiplication Budget

A large fraction of the arithmetic operations required to evaluate
DNNs consists of matrix multiplications, in both convolution and
fully connected layers. We perform end-to-end learning of low-cost
approximations of matrix multiplications in DNN layers by casting
matrix multiplications as 2-layer SPNs (arithmetic circuits) and learn-
ing their (ternary) edge weights from data. The SPNs disentangle
multiplication and addition operations and enable us to impose a
budget on the number of multiplication operations. Combining our
method with knowledge distillation and applying it to image classifi-
cation DNNs (trained on ImageNet) and language modeling DNNs
(using LSTMs), we obtain a first-of-a-kind reduction in number of
multiplications (over 99.5%) while maintaining the predictive perfor-
mance of the full-precision models. Finally, we demonstrate that the
proposed framework is able to rediscover Strassen’s matrix multipli-
cation algorithm, learning to multiply 2 × 2 matrices using only 7
multiplications instead of 8.

5.1. RELATED WORK

We briefly review the most common approaches to compress DNNs,
focusing on methods decreasing computational complexity rather
than memory footprint. In all cases, there is a tradeoff between the

165

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

complexity reduction and reduction in the (inference) accuracy of the
compressed model.
A popular way to speed up DNNs, in particular convolutional

neural networks (CNNs), is to utilize resource-efficient architectures,
such as SqueezeNet (Iandola et al., 2016), MobileNet (Howard et al.,
2017), and ShuffleNet (Zhang et al., 2017). SqueezeNet reduces the
convolution kernel size. MobileNet and ShuffleNet rely on depth-wise
separable convolutions and grouped convolutions, respectively. More
sophisticated grouping and sharing techniques are studied by Wang
et al. (2016a).
Another strategy to accelerate CNNs is to exploit the low-rank

structure prevalent in weight matrices and convolution kernels. Denton
et al. (2014); Novikov et al. (2015); Kim et al. (2016b) use tensor de-
compositions to obtain low-rank approximations of pretrained weight
matrices and filter tensors, then finetune the approximated weight
matrices and filters to restore the accuracy of the compressed models.
Other works (Tai et al., 2016; Wen et al., 2017) employ low rank-
promoting regularizers to further reduce the rank of the filter tensors.
A framework to exploit low-rank structure in the filter responses is
presented by Zhang et al. (2016).
Sparsifying filters and pruning channels are popular methods to

make DNNs more efficient during inference. Wen et al. (2016) and
Lebedev and Lempitsky (2016) rely on group norm-based regularizers
and demonstrate their effectiveness in penalizing unimportant filters
and channels, promoting hardware-friendly filter shapes, regularizing
the network depth, and optimizing the filter receptive fields. Inter-
channel and intra-channel redundancy is exploited by Liu et al. (2015a)
via a two-stage factorization procedure. An energy-aware methodology
to prune filters of CNNs is described in (Yang et al., 2017).
Finally, an effective way to adapt DNNs to resource-constrained

platforms is to reduce the numerical precision of their weights and/or
activations. Examples for DNNs that quantize both weights and acti-
vations are DoReFa-Net (Zhou et al., 2016), XNOR-Net (Rastegari
et al., 2016), and ABC-Net (Lin et al., 2017). Other works use binary
weights (Courbariaux et al., 2015; Rastegari et al., 2016; Lin et al.,

166

5.2 LEARNING FAST MATRIX MULTIPLICATIONS VIA SPNS

2017) and ternary weights (Li et al., 2016; Zhu et al., 2016) but main-
tain full-precision values for the activations. Keeping the activations
in full precision instead of quantizing them leads to a smaller decrease
in computational cost, but can yield better predictive performance.

5.2. LEARNING FAST MATRIX MULTIPLICATIONS VIA
SPNS

5.2.1. Casting matrix multiplication as SPN

Given square matrices A,B ∈ Rn×n, the product C = AB can be
represented as a 2-layer SPN

vec(C) = Wc[(Wbvec(B))� (Wavec(A))] (5.1)

where Wa,Wb ∈ Kr×n2 and Wc ∈ Kn2×r, with K := {−1, 0, 1},
are fixed. The SPN (5.1) disentangles additions (and subtractions),
encoded in the ternary matrices Wa, Wb, and Wc, and multiplica-
tions, realized exclusively by the operation � (see Figure 5.1, left).
The width of the hidden layer of the SPN, r, hence determines the
number of multiplications used for the matrix multiplication. A naïve
implementation of the matrix multiplication AB requires r = n3.
For n = 2,1 Strassen’s matrix multiplication algorithm (Strassen,
1969) specifies the following set of weights that satisfy (5.1) for r = 7

1The formulation by Strassen (1969) is more general, applying recursively to
4 equally-sized subblocks of square matrices, with the 2 × 2 case occurring at
maximal recursion depth.

167

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

(instead of r = 8)

Wa =




1 0 0 1
0 1 0 1
1 0 0 0
0 0 0 1
1 0 1 0
−1 1 0 0

0 0 1 −1




, Wb =




1 0 0 1
1 0 0 0
0 0 1 −1
−1 1 0 0

0 0 0 1
1 0 1 0
0 1 0 1




,

Wc =




1 0 0 1 −1 0 1
0 1 0 1 0 0 0
0 0 1 0 1 0 0
1 −1 1 0 0 1 0


 . (5.2)

An interesting tensor perspective on the SPN (5.1) (not explored in-
depth here) is common in the context of algebraic complexity theory.
Specifically, (5.1) can be written as

vec(C)i =
n2∑

k=1

n2∑

`=1
(Mn)i,k,`[vec(A)]k[vec(B)]`, where

(Mn)i,k,` =
r∑

j=1
(Wc)i,j(Wa)j,k(Wb)j,`.

Mn is the (n × n)-matrix multiplication tensor, and r hence cor-
responds to the rank of Mn. It is known that rank(M2) = 7 and
19 ≤ rank(M3) ≤ 23, see (Elser, 2016) for more details and references.

Elser (2016) explores learning exact matrix multiplications via SPNs
of the form (5.1) for n = 2 and n = 3 from synthetic data. Thereby,
the elements of Wa, Wb, and Wc are relaxed to real numbers instead
of elements from K. Note that this relaxation leads to an increase in
the number of multiplications in general. In contrast, we integrate
SPNs with weights from K into DNN layers and learn them end-to-end
(see next section), realizing actual reductions in multiplications.

168

5.2 LEARNING FAST MATRIX MULTIPLICATIONS VIA SPNS

(a)

vec(A)

vec(B)

vec(C)

Wb

Wc

Wa

(b)

r
cin cout�ãp p

Wb Wc

Fig. 5.1: (a) Illustration of the 2-layer SPN (5.1), implementing an (approx-
imate) matrix multiplication. The edges (i.e., the matrices Wa, Wb, Wc)
have weights in K = {−1, 0, 1}. (b) Application of the proposed framework
to 2D convolution leads to p-strided 2D convolution with Wb, followed by
channel-wise scaling by ã = Wavec(A), followed by 1/p-strided transposed
2D convolution with Wc.

5.2.2. Learning fast approximate matrix multiplications for
DNNs

Writing matrix products in the form (5.1) is not specific to square
matrices. Indeed, it is easy to see that r ≥ nmk is a sufficient condi-
tion for the existence of matrices Wa,Wb,Wc with elements in K
such that the product of any two matrices A ∈ Rk×m and B ∈ Rm×n,
including matrix-vector products (i.e., n = 1), can be written in the
form (5.1). When the matrices A and B are drawn from probability
distributions that concentrate on low-dimensional manifolds of Rk×m

169

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

and Rm×n, respectively, or if one of the matrices is fixed, it may
be possible to find Wa and Wb that satisfy the equality in (5.1)
approximately even when r � nmk. In this case, (5.1) approximately
computes the product AB while considerably reducing the number
of multiplications compared to the naïve implementation. Further-
more, by imposing structure (such as, e.g., sparsity or block-diagonal
structure) into the matrices Wa, Wb, Wc one can tailor sharing or
grouping of the operations for the application or platform at hand.

In this chapter, we leverage this concept to accelerate and compress
the matrix multiplications in DNN layers for inference. Specifically,
for layer `, we associate A with the (pretrained) weights/filters W`

and B with the corresponding activations/feature maps F`. The
ternary matrices Wa, Wb, and Wc are then learned end-to-end using
a stochastic gradient-based optimizer (one set of weights Wa, Wb,
Wc for each layer). After training, Wa and vec(A) can be collapsed
into a vector ã = Wavec(A) ∈ Rr as they are both fixed during
inference. Alternatively, ã ∈ Rr, Wb, and Wc can be learned jointly
from scratch. The choice of r determines the tradeoff between the
computational cost in terms of multiplications and the precision of
the the approximate matrix multiplication, and hence the predictive
performance of the network. This approach requires r full-precision
parameters and rm(k + n) ternary weight parameters. It reduces the
number of multiplications by a factor of mnk/r.
Quantizing the elements of Wa, Wb, and Wc to K during train-

ing poses a challenge as quantization is non-differentiable. Different
approaches were proposed to overcome this issue (Courbariaux et al.,
2015; Li et al., 2016; Rastegari et al., 2016; Zhu et al., 2016; Agustsson
et al., 2017). Here, we adopt the method from (Li et al., 2016) and
briefly describe it for quantizing Wa (Wb and Wc are quantized
in exactly the same way). Specifically, this method maintains a full-
precision version Wfp

a of Wa during training and quantizes Wfp
a in

every forward pass by approximately solving the optimization problem

α∗,Wt∗
a = arg min

α,Wt
a

‖Wfp
a − αWt

a‖2F

170

5.2 LEARNING FAST MATRIX MULTIPLICATIONS VIA SPNS

s.t. α > 0, Wt
a ∈ Kr×km, (5.3)

and by setting Wa = α∗Wt∗
a (the scaling factors α∗ for Wa, Wb,

Wc can be absorbed by A or ã after training to ensure that Wa, Wb,
Wc have elements in K). During the backward pass the quantization
function is replaced by the identity function, and the gradient step
is applied to Wfp

a . Assuming i.i.d. Gaussian weights, Li et al. (2016)
derive the approximate solution

(Wt∗
a)i,j =





1 if (Wfp
a)i,j > ∆,

−1 if (Wfp
a)i,j < −∆,

0 otherwise,

α∗ =
∑

(i,j) : (Wt∗
a)i,j 6=0 |(Wfp

a)i,j |∑
i,j |(Wt∗

a)i,j |
(5.4)

to (5.3), where ∆ = 0.7
kmr

∑
i,j |(Wfp

a)i,j |. While our framework would
allow quantized training from scratch with fixed threshold ∆ and
fixed quantization level α (e.g., ∆ = 0.5 and α = 1), we observed
that relying on the scheme (5.4) allows us to pretrain Wfp

a , Wfp
b ,

Wfp
c without quantization, and then activate quantization to stably

continue training. We found that this strategy leads to faster training
while inducing no loss in accuracy.

Besides the fully connected case described in this section, we partic-
ularize the proposed approach for 2D convolutions for image classifi-
cation DNNs. We emphasize that any DNN layer operation reducible
to a general matrix multiplication (GEMM) can be cast into the
form (5.1), including n-dimensional convolutions, group (equivariant)
convolutions (when implemented as a filter bank) (Cohen and Welling,
2016), and deformable convolutions (Dai et al., 2017).

5.2.3. Knowledge distillation (KD)

KD refers to the process of training a student network using a larger
(in terms of the number of layers and hidden units) teacher network

171

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

(Bucilua et al., 2006; Hinton et al., 2014). As a result, the student net-
work typically has the same or slightly better predictive performance
than the teacher network, despite being less complex. KD for training
a low-precision student network from a full-precision teacher network
with the same architecture and hyper parameters as the student net-
work was investigated recently in (Mishra and Marr, 2018; Zhuang
et al., 2018; Polino et al., 2018). Here, we explore the same avenue to
improve the predictive performance of networks compressed with our
method. Specifically, we follow the method proposed in (Hinton et al.,
2014) using the cross entropy between the student softmax output
and the teacher softmax output as KD loss term. We set the softmax
temperature parameter to 1 throughout and assign the same weight
to the KD loss term as to the original loss. For sequence models, we
simply apply the described KD loss to the softmax outputs of the
unrolled teacher and student models (more sophisticated techniques
were proposed in (Kim and Rush, 2016)).

5.2.4. Application to 2D convolution

Consider the `th 2D convolution layer of a CNN applying cout filters
of dimension w × h× cin to a feature representation F` of dimension
W × H × cin (width×height×number of channels). To write the
computation of all cout output channels as a matrix multiplication,
each feature map in F` is decomposed into WH patches of size w× h
(after appropriate padding) and the vectorized patches are arranged
in a matrix F̃` of dimension whcin ×WH. This transformation is
usually referred to as im2col, see (Sze et al. (2017), Figure 19) for
an illustration. Accordingly, the filters for all output channels are
vectorized and jointly reshaped into a cout × whcin matrix W̃`. The
vectorized layer output (before activation) for all cout output channels
is obtained as W̃`F̃` and has dimension cout × WH. In principle,
one can now compress the operation W̃`F̃` using our method by
setting A = W̃`, B = F̃`, plugging them into (5.1), and proceeding
as described in Section 5.2.2. However, this results in impractically
large Wa, Wb, and Wc and ignores the weight sharing structure

172

5.2 LEARNING FAST MATRIX MULTIPLICATIONS VIA SPNS

of the convolution. By associating A with W̃` and B with single
columns of F̃` we can jointly compress the computations across all
input and output channels, while preserving the spatial structure
of the convolution. The resulting SPN realizes a convolution with r
ternary w×h×cin filters (the rows of Wb), followed by a channel-wise
scaling with ã = Wavec(W̃`), followed by convolution with a ternary
1×1×r filter for each of the cout outputs (the rows of Wc) see Figure
5.1, right.

To realize local spatial compression, we partition the computation of
the convolution into subsets corresponding to square output patches.
In more detail, we consider the computation of p × p convolution
output patches from (p− 1 +w)× (p− 1 + h) input patches, offset by
a stride of p, and approximate this computation with a SPN jointly
for all channels. As a result, the number of multiplications is reduced
both spatially and across channels. For example, for 3× 3 convolution
filters, we divide the input feature maps into 4 × 4 spatial patches
with a stride of 2, such that the SPN computes 2× 2× cout outputs
from 4 × 4 × cin elements of F`. Thereby, Wc realizes a 2 × 2 × r
transposed convolution with a stride of 1/2 (see Figure 5.1, right, and
pseudocode in Appendix 5.C). For fixed r, this reduces the number of
multiplications by a factor of 4 compared to the case without spatial
compression (i.e., p = 1).

In summary, the described compression of 2D convolution leads to a
reduction of the number of multiplications by a factor cincoutwhp

2/r

compared to the standard implementation of the convolution.

Finally, to reduce the number of additions realized through Wb

(and thereby the number of nonzero elements of Wb) by a factor of
g, we implement Wb as grouped convolution, originally introduced
in (Krizhevsky et al., 2012). Specifically, the convolution realized by
Wb is assumed to consist of g independent 2D convolutions each with
cin/g input channels and r/g output channels. In other words, Wb

is assumed to be block-diagonal with blocks of dimension (r/g) ×
(whcin/g).

173

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

Relation to prior work in the 2D convolution case: Binary weight
networks (BWNs) (Rastegari et al., 2016) and ternary weight networks
(TWNs) (Li et al., 2016) rely on binary {−1, 1} and ternary {−1, 0, 1}
weight matrices, respectively, followed by (full-precision) rescaling of
the activations (see Section 5.2.2) and are special cases of our frame-
work. ABC-Nets (Lin et al., 2017) approximate the full-precision
weight matrices as a weighted sum of multiple binary {−1, 1} weight
matrices and can also be cast as (structured) SPNs. However, we do
not directly recover the trained ternary quantization (TTQ) approach
from (Zhu et al., 2016), which relies on asymmetric ternary weights
{−c1, 0, c2}, c1, c2 > 0. Finally, note that Winograd filter-based con-
volution (Lavin and Gray, 2016) realizes spatial compression over
2× 2 output patches but performs exact computation and does not
compress across channels.

5.3. EXPERIMENTS2

5.3.1. Rediscovering Strassen’s algorithm

Before applying the proposed method to DNNs, we demonstrate
that it is able to rediscover Strassen’s algorithm, i.e., it can learn
to multiply 2× 2 matrices using only 7 multiplications instead of 8
(which implies a recursive algorithm for larger matrices). This problem
was previously studied by Elser (2016), but for real-valued Wa, Wb,
Wc, which increases the number of multiplications in general when
using these matrices in (5.1) to compute matrix products. In contrast,
our method learns Wa,Wb ∈ K7×4, Wc ∈ K4×7 (i.e., the discrete
solution space has size 33·4·7 = 384), and hence leads to an actual
reduction in the number of multiplications.

We generate a training set containing 100k pairs (Ai,Bi) with en-
tries i.i.d. uniform on [−1, 1], train the SPN with full-precision weights
(initialized i.i.d. uniform on [−1, 1]) for one epoch with SGD (learning

2Code to reproduce the experiments is available at https://github.com/
mitscha/strassennets.

174

https://github.com/mitscha/strassennets
https://github.com/mitscha/strassennets

5.3 EXPERIMENTS

rate 0.1, momentum 0.9, mini-batch size 4), activate quantization, and
train for another epoch (with learning rate 0.001). Around 25 random
initializations are necessary to obtain convergence to zero training
L2-loss after activation of the quantization; for most initializations
the training L2-loss converges to a positive value. A set of ternary
weight matrices implementing an exact matrix multiplication, found
by our method, is

Wa =




−1 −1 0 0
0 0 0 1
−1 −1 1 1
−1 0 1 0
−1 −1 1 0

0 0 1 0
0 −1 0 0




, Wb =




−1 −1 0 0
0 0 0 1
0 1 0 0
1 0 1 0
−1 −1 −1 0

1 1 1 1
0 0 −1 0




,

Wc =




1 0 0 −1 −1 0 1
0 0 1 1 1 0 −1
−1 0 0 0 1 1 −1

0 1 0 0 0 0 1


 .

5.3.2. Image classification

We apply our method to all convolution layers (including the first con-
volution layer and the projection layers for subsampling) of the ResNet
architecture (He et al., 2016a) to create the so-called Strassen-ResNet
(ST-ResNet). We evaluate ST-ResNet on CIFAR-10 (10 classes, 50k
training images, 10k testing images) (Krizhevsky and Hinton, 2009)
and ImageNet (ILSVRC2012; 1k classes, 1.2M training images, 50k
testing images) (Russakovsky et al., 2015) for different choices of r, p, g,
and compare the accuracy of ST-ResNet to related works. All models
were trained from scratch, meaning we directly learn ã = Wavec(A)
rather than associating A with the weights of pretrained networks
and learning Wa. Throughout the training process we used SGD
with momentum 0.9 and weight decay 10−4. As most related works

175

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

involving ternary weights do not report sparsity levels, to facilitate
comparisons, we do not make any assumption about the number of
zeros among ternary weights. It is the sparsity of the activations, not
the weights, that directly impacts the number of multiplications (the
focus of this chapter). All model sizes are computed without (lossless)
compression of the network parameters.

CIFAR-10

We consider ST-ResNet-20 and employ the data augmentation pro-
cedure described in (He et al. (2016a), Sec. 4.2.). We train for 250
epochs with initial learning rate 0.1 and mini-batch size 128, multi-
plying the learning rate by 0.1 after 150 and 200 epochs. We then
activate quantization for Wb and Wc, set the learning rate to 0.01
and train the network for 40 epochs, multiplying the learning rate by
0.1 every 10 epochs. Finally, we fix the (now ternary) Wb and Wc

and continue training for another 10 epochs. The resulting testing
accuracy is shown in Table 5.1 for different r and p, along with the
corresponding reduction in the number of multiplications compared
to the uncompressed model in Table 5.2 (for the 32× 32 CIFAR-10
images; see Table 5.D.1 in Appendix 5.D for the reduction in the num-
ber of additions). Additional results for a similar experiment based
on the VGG-inspired 7-layer architecture considered in (Courbariaux
et al., 2015; Li et al., 2016) can be found in Appendix 5.A.

Table 5.1: Testing accuracy (in %) of ST-ResNet-20 on CIFAR-10.

testing accuracy

r

p cout
3
4cout

1
2cout

1
4cout

1 91.24 90.62 88.63 85.46
2 89.87 89.47 87.31 84.01
4 86.13 84.67 82.67 75.01

176

5.3 EXPERIMENTS

Table 5.2: Reduction in the number of multiplications (in %) obtained by our
method for ResNet-20 on CIFAR-10.

red. in multiplications

r

p cout
3
4cout

1
2cout

1
4cout

1 98.96 99.08 99.21 99.33
2 99.33 99.36 99.39 99.42
4 99.42 99.43 99.44 99.44

Discussion: The model obtained for the base configuration with
r = cout and p = 1 incurs a negligible accuracy loss compared to
the uncompressed ResNet-20 with an accuracy of 91.25% (He et al.,
2016a) while reducing the number of multiplications by 98.96% (the
evaluation of the uncompressed ResNet-20 requires 41.038M multiply-
adds). This model also matches the accuracy of TTQ (Zhu et al., 2016)
for ResNet-20 while requiring fewer multiplications (TTQ does not
quantize the first convolution layer). As r decreases and/or p increases,
the number of multiplications decreases at the cost of further accuracy
reduction.

ImageNet

We consider ST-ResNet-18 and, unlike for the experiment on CIFAR-
10, we also compress the last (fully connected) layer of ST-ResNet-18
for models with r ≤ cout in convolution layers, setting r = 1000 for
that layer throughout (we observed that compressing the last layer
when r > cout in convolution layers leads to a considerable reduction
in validation accuracy). Following (Rastegari et al., 2016; Li et al.,
2016; Zhu et al., 2016), the training images are resized such that
the shorter side has length 256 and are then randomly cropped to
224 × 224 pixels. The validation accuracy is computed from center
crops. We use an initial learning rate of 0.05 and mini-batch size 256,
with two different learning rate schedules depending on the value of r

177

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

in the convolution layers: We train for 40 epochs without quantization,
multiplying the learning rate by 0.1 after 30 epochs, if r ≤ cout, and
for 70 epochs, multiplying the learning rate by 0.1 after 40 and 60
epochs, otherwise. Thereafter, we activate quantization and continue
training for 10 epochs. Finally, we fix Wb and Wc and train ã for
another 5 epochs.
In Table 5.3 we report the validation accuracy of ST-ResNet-18

for different r, p, and g, and the validation accuracy obtained with
KD. Table 5.4 shows the reduction in the number of multiplications
compared to the original ResNet-18 model, for different r, p, and g
(see Table 5.D.3 in Appendix 5.D for reductions in the number of
additions and model size). In Figure 5.1, we plot the accuracy of
ST-ResNet-18 for different r, p, and g, as a function of the number
of operations and model size. In addition, we report the validation
accuracy for related works (Rastegari et al., 2016; Li et al., 2016; Zhu
et al., 2016; Lin et al., 2017) (see also Table 5.D.4 in Appendix 5.D).
We do not consider p > 2 as this leads to (ternary) convolution with
impractically large kernels for 224× 224 images.

Finally, to demonstrate amenability of our method to larger models,
we trained ST-ResNet-34 with r = 2cout, p = 2, g = 1 (without
tuning any hyper parameters) and obtained 69.2%/88.5% top-1/top-5
validation accuracy without KD and 71.9%/90.5% with KD (the
full-precision model obtains 73.3%/91.3%; we report the accuracies
of the Torch pretrained models for all full-precision ResNets).

Discussion: All ST-ResNet-18 models that require the same number
of multiplications as TWN (those with r = cout, p = 1, g = 4; r = cout,
p = 1, g = 1; r = 2cout, p = 2, g = 1) obtain a considerably higher
top-1 and top-5 accuracy than TWN. In particular, ST-ResNet-18
with r = 2cout, p = 2, and g = 1 leads to a 7.0% improvement in top-1
accuracy. Furthermore, ST-ResNet-18 with r = 2cout, p = 1, and
g = 1 outperforms TTQ while using 98.3% fewer multiplications. ST-
ResNet-18 with r = 6cout, p = 2, and g = 1 incurs a 2.0% reduction in
top-1 accuracy compared to the full-precision model while reducing the
number of multiplications by 99.63%. Our ST-ResNets require fewer

178

5.3 EXPERIMENTS

60

65

70

BWN
TWN

TTQ

FP

to
p-

1
ac

c.
[%

]

BWN
TWN

TTQ

FP

BWN
TWN

TTQ

FP

107 108 109

82

84

86

88

90

BWN

TWN

TTQ

FP

multiplications

to
p-

5
ac

c.
[%

]

109 1010

BWN

TWN

TTQ

FP

additions
101 102

BWN

TWN

TTQ

FP

model size [MB]

6 4 2 1 1
2

Fig. 5.1: Top-1 and top-5 validation accuracy of ST-ResNet-18 on ImageNet
as a function of the number of multiplications, the number of additions, and
model size, along with the values obtained in related works BWN (Rastegari
et al., 2016), TWN (Li et al., 2016), TTQ (Zhu et al., 2016), ABC-Net-
1/2/3/5 (Lin et al., 2017) (“+” signs, the suffix reflects the ranking according
to accuracy), and the full-precision model (FP). The numbers associated with
the marker types correspond to the ratio of the number of hidden SP units
and output channels, r/cout. Different colors indicate different combinations
of output patch size p and number of convolution groups g: Blue: p = 2,
g = 1; green: p = 1, g = 1; red: p = 1, g = 4. Selected models trained with
KD are shown with filled markers.

179

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

Table 5.3: Top-1 and top-5 validation accuracy (in %) of ST-ResNet-18 on
ImageNet, for different choices of r, p, g, and with KD.

top-1 accuracy

r r (KD)
(p, g) 6cout 4cout 2cout cout

1
2cout 4cout 2cout cout

(1, 1) 67.9 67.6 67.0 64.7 62.2 68.6 67.9 66.0
(2, 1) 68.2 68.0 67.1 64.1 61.8 70.4 69.4 66.4
(1, 4) 67.4 67.2 65.6 62.6 58.9 68.0 66.6 63.9

top-5 accuracy

r r (KD)
(p, g) 6cout 4cout 2cout cout

1
2cout 4cout 2cout cout

(1, 1) 88.1 87.9 87.5 86.0 84.1 88.7 88.3 87.1
(2, 1) 88.2 88.0 87.5 85.6 83.9 89.4 89.0 87.3
(1, 4) 87.8 87.6 86.6 84.5 81.8 88.3 87.5 85.5

Table 5.4: Reduction in the number of multiplications (in %) of ST-ResNet-18
compared to the full-precision model, for 224× 224 images.

red. in multiplications

r

(p, g) 6cout 4cout 2cout cout
1
2cout

(1, 1) 99.01 99.29 99.56 99.73 99.79
(2, 1) 99.63 99.70 99.77 99.83 99.85
(1, 4) 99.01 99.29 99.56 99.73 99.79

multiplications and additions than ABC-Net-1/2/3 while yielding
the same accuracy. For p = 2, our models lead to a reduction in
multiplications of at least 50% compared to the ABC-Net with the
same accuracy. Note that TTQ and BWN use considerably more

180

5.3 EXPERIMENTS

multiplications than ST-ResNet-18, TWN, and ABC-Net as they do
not quantize the first convolution layer.
In contrast to the experiments on CIFAR-10, increasing p from 1

to 2 increases the accuracy for fixed r ≥ 2cout. A possible explanation
for this behavior is that the benefits of the increase in the number
of ternary parameters obtained by increasing p outweighs the loss
in precision due to the reduction in spatial resolution. This is in
accordance with the fact that the images in ImageNet are much larger
than those in CIFAR-10, resulting in larger feature maps for most
layers.

KD leads to improvements in top-1 accuracy of 1.3–3.5%, see Table
5.3. In particular, ST-ResNet-18 with r = 2cout, p = 2, and g = 1
trained using KD essentially matches the accuracy of the full-precision
model. Increasing r to 4cout yields a model that even outperforms the
full-precision model. To the best of our knowledge, these models are
the first to realize massive reductions in the number of multiplications
(over 99.5%) while maintaining the accuracy of the full-precision
model. Note that student models outperforming their teachers were
observed before in different contexts (Mishra and Marr, 2018; Zhuang
et al., 2018; Furlanello et al., 2018).
For some of the configurations, the reduction in multiplications

comes at the cost of a small to moderate increase in the number
of additions. We emphasize that this is also the case for Strassen’s
algorithm (see (5.2)) and the Winograd filter-based convolution (see
(Lavin and Gray, 2016, Sec. 4.1)). The specific application and target
platform will determine what increase in the number of additions is
acceptable.

Finally, in all our image classification experiments the ratio r/cout
is the same for all layers. Since one would expect improvements from
allocating more multiplications to layers that require more accurate
operations, we also tested a simple way to learn the ratio r/cout
for each layer from data. Specifically, we chose a large r/cout and
applied L1 regularization to the vectors ã. However, for a given
total multiplication budget this strategy led to lower accuracy in our
experiments than just fixing r/cout for all layers.

181

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

5.3.3. Language modeling

We apply our method to the character-level language model described
in (Kim et al., 2016a) and evaluate it on the English Penn Treebank
(PTB with word vocabulary size 10k, character vocabulary size 51, 1M
training tokens, standard train-validation-test split, see (Kim et al.,
2016a)) (Marcus et al., 1993). We use the large version of the model
from (Kim et al., 2016a) which is composed of a convolution layer
with 1100 filters (applied to a character-level representation of the
words, without aggregation across channels), followed by a 2-layer
highway network with 1100 hidden units, feeding into a 2-layer LSTM
network with 650 hidden units (see Table 2 in (Kim et al., 2016a)
for more details). We obtain Strassen language models (ST-LMs) by
replacing the convolution layer and all fully connected layers (both
within the LSTM and the output/decode layer) with SPNs. r is set to
the number of filters for the convolution layer and is parametrized as
r(κ) = κ ·nout for the fully connected layers, where nout is the number
of hidden units. For the output/decode layer we use r(κ) = κ · 2000.
All models are trained for 40 epochs using SGD with mini-batch

size 20 and initial learning rate 2, multiplying the learning rate by
0.5 when the validation perplexity per word (PPL; c.f. (Kim et al.,
2016a, Eq. (9))) decreases by less than 0.5 per epoch (a similar
schedule was used in (Kim et al., 2016a)). Although the ST-LMs
train stably with quantization from scratch, we train them for 20
epochs with full-precision weights before activating quantization for
Wb and Wc, which leads to slightly lower validation PPLs. As a
baseline, we consider the TWN quantization scheme (5.4) and apply
it to all layers of the language model. As we observed a somewhat
higher variability in the validation performance than for the image
classification experiments, we train each quantized model 5 times and
report the average testing PPL.
In Figure 5.2, we plot the average testing PPL of our ST-LMs

for different r as a function of the number of operations and model
size, with and without KD. Table 5.D.2 in Appendix 5.D shows the
reduction in the number of operations and model size compared to

182

5.3 EXPERIMENTS

the full-precision model.

105 106 107
75

80

85

90

95

FP

TWN

multiplications

te
st

in
g

PP
L

107 108

FP

TWN

additions
102 103

FP

TWN

model size [MB]

8 6 4 2 1 1
2

1
4

Fig. 5.2: Testing PPL (averaged over 5 runs) for ST-LM as a function of
the number of operations and model size, along with the values obtained
for TWN quantization (5.4), and the full-precision model (FP). Solid line:
Without KD; dotted line: With KD. The numbers associated with the marker
types correspond to the ratio of the number of hidden SP units and hidden
units, r/nout.

Discussion: Our ST-LM models reduce the number of multiplications
by over 99% compared to the full-precision model, while incurring
an increase in testing PPL of only 3–4%. The PPL obtained via
TWN quantization clearly exceeds that of all considered ST-LMs.
The ST-LM model with r = nout requires roughly the same number
of multiplications as the TWN model but has a 7.4% lower testing
PPL. KD leads to a significant reduction in testing PPL. The distilled
ST-LMs outperform the teacher model for r ≥ nout. To our knowledge,
our models are the first to obtain such massive reductions (over 99.5%
for r ≤ 4nout) in the number of multiplications while maintaining the
PPL of the full-precision model. We observed that KD applied to the

183

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

teacher model also reduces its testing PPL to values comparable to
that of the compressed models with KD for r ≥ nout (see (Furlanello
et al., 2018) for more exploration of this phenomenon). On the other
hand, KD considerably increases the testing PPL for TWN.
There are only few prior works on compressing sequence models

in a multiplication-reducing fashion (He et al., 2016b; Hubara et al.,
2016). For single-layer LSTM and GRU language models with binary
weights He et al. (2016b) report an increase in PPL of 70% and
more compared to the full-precision model, whereas Hubara et al.
(2016) observed divergence for a single-layer LSTM model with binary
weights, but report small degradations for 4-bit weight and activation
quantization.

5.4. CONCLUSION AND FUTURE WORK

We proposed and evaluated a versatile framework to learn fast approx-
imate matrix multiplications for DNNs end-to-end. We found that our
method leads to the same or higher accuracy compared to existing
methods while using significantly fewer multiplications. By leveraging
KD we were able to train models that incur no loss in predictive
performance despite reducing the number of multiplications by over
99.5%. A natural next step is to incorporate activation quantization
into the proposed method. In addition, it will be interesting to see
how the theoretical gains reported here translate into actual energy
savings and runtime speedups on specialized hardware such as FPGAs
and ASICs.

184

5.A ADDITIONAL RESULTS ON CIFAR-10

APPENDICES

5.A. ADDITIONAL RESULTS ON CIFAR-10

We apply our method to the 7-layer VGG-inspired architecture pre-
viously considered in (Courbariaux et al., 2015; Li et al., 2016) (see
(Li et al., 2016, Sec. 3)) for a detailed description of the architecture)
and evaluate it on CIFAR-10. We vary r and p for convolution layers
and fix r = 1024 for the fully connected layer with 1024 units feeding
into the softmax layer. The same hyper parameters and schedules as
for ST-ResNet-20 are used for training, see Sec. 5.3.2. Table 5.A.1
shows the testing accuracy for different r and p. Our method achieves
the same or higher accuracy than TWN (Li et al., 2016) for p = 1.
The impact of increasing p on testing accuracy is analogous to that
observed for ST-ResNet-20. Reducing r seems to reduce testing accu-
racy to a smaller extent than for ST-ResNet-20. A possible reason for
this could be that the considered VGG architecture has considerably
wider layers (128 to 512 channels) than ResNet-20 (16 to 64 channels).

Table 5.A.1: Testing accuracy (in %) of the 7-layer VGG model from (Cour-
bariaux et al., 2015; Li et al., 2016) compressed by our method, on CIFAR-10.

testing accuracy

r

p cout
3
4cout

1
2cout

1
4cout

1 93.17 93.19 92.39 92.50
2 91.87 91.44 91.39 89.66
4 88.08 88.40 87.65 87.05

185

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

5.B. ADDITIONAL RESULTS FOR LANGUAGE
MODELING

To assess the generalization of the ST-LM models described in Sec-
tion 5.3.3, we apply the FP and ST-LM (with r = 2nout) models
to Wikitext-23 (word vocabulary size 33k and 2M training tokens)
without changing hyper parameters and obtain a testing PPL of
90.07, 97.40, and 87.72 for the FP model, the ST-LM model, and the
ST-LM model with KD, respectively. The PPL of the FP model (19M
parameters) is comparable to that of the variational dropout LSTM
(VD-LSTM-RE, 22M parameters) from (Inan et al., 2017). While the
gap between the FP and ST-LM model is larger than for PTB, the
ST-LM model with distillation outperforms the FP model similarly
as for PTB.

5.C. APPLICATION TO 2D CONVOLUTION:
PSEUDOCODE

In this section, we provide provide pseudocode to facilitate the imple-
mentation of the proposed framework for 2D convolutions with k × k
kernels (see Section 5.2.4) in popular deep learning software packages.
Let W_B, a_tilde, and W_C be variables associated with tensors of
dimensions r × cin × (p − 1 + k) × (p − 1 + k), 1 × r × 1 × 1, and
r × cout × p × p, respectively. Denote the standard 2D convolution
and transposed 2D convolution operations with input data, filter
tensor weights, in_channels input channels, out_channels output
channels, kernel size kernel_size, and stride stride by Conv2d and
ConvTranspose2d. Let Multiply be the broadcasted element-wise
multiplication of weights with data and designate the function im-
plementing the quantization scheme described in (5.4) by Quantize.
Then, the forward pass (during training) through a compressed 2D

3Available at https://www.salesforce.com/products/einstein/ai-research/
the-wikitext-dependency-language-modeling-dataset/.

186

https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/

5.C APPLICATION TO 2D CONVOLUTION: PSEUDOCODE

convolution for an input tensor in_data of dimensions b×cin×W×H
is given by

W_B = Quantize(W_B)
W_C = Quantize(W_C)
conv_out = Conv2d(

data=in_data,
weights=W_B,
in_channels=cin,
out_channels=r,
kernel_size=p− 1 + k,
stride=p,
groups=g)

mul_out = Multiply(
data=conv_out,
weights=a_tilde)

out_data = ConvTranspose2d(
data=mul_out,
weights=W_C,
in_channels=r,
out_channels=cout,
kernel_size=p,
stride=p)

At inference time, Conv2d and ConvTranspose2d can be replaced
with specialized convolution operations exploiting the fact that W_B
and W_C are ternary. To compute the backward pass, the backpropaga-
tion algorithm (Rumelhart et al., 1986) is applied to the sequence of
operations in the forward pass, ignoring the Quantize operations. We
found it beneficial to perform batch normalization (Ioffe and Szegedy,
2015) after the Conv2d operation.

187

5 DEEP LEARNING WITH A MULTIPLICATION BUDGET

5.D. ADDITIONAL TABLES

Table 5.D.1: Reduction (in %) in the number of additions obtained by our
method for ResNet-20 on CIFAR-10.

red. in additions

r

p cout
3
4cout

1
2cout

1
4cout

1 -13.904 14.435 42.774 71.112
2 39.123 54.205 69.287 84.369
4 57.550 68.025 78.501 88.976

Table 5.D.2: Testing PPL and reduction (in %) in the number of operations
as well as model size for ST-LM compared to the full-precision model. We also
report the reductions for the model compressed with TWN quantization (5.4).

ST-LM, r
8nout 6nout 4nout 2nout nout

1
2nout

1
4nout TWN

testing PPL 83.118 82.65 82.88 82.68 83.42 85.44 89.19 92.23
testing PPL (dist.) 77.29 76.74 76.49 77.69 79.11 81.14 86.29 -
multiplications 99.20 99.37 99.53 99.69 99.77 99.82 99.84 99.75
additions -1682.23 -1238.24 -794.28 -350.31 -128.33 -17.34 38.21 -35.27
model size -18.76 10.89 40.54 70.19 85.01 92.42 96.13 93.65

188

5.D ADDITIONAL TABLES

Table 5.D.3: Reduction in the number of additions and model size (in %) of
ST-ResNet-18 compared to the full-precision model, for 224× 224 images.

red. in additions

r

(p, g) 6cout 4cout 2cout cout
1
2cout

(1, 1) -596.76 -364.56 -132.36 -16.32 41.73
(2, 1) -288.57 -159.10 -29.63 35.05 67.41
(1, 4) -181.51 -87.73 6.05 52.89 76.33

red. in model size

r

(p, g) 6cout 4cout 2cout cout
1
2cout

(1, 1) 53.87 67.76 81.64 92.16 95.63
(2, 1) 3.07 33.89 64.71 83.69 91.40
(1, 4) 80.31 85.38 90.45 96.56 97.83

Table 5.D.4: Top-1 and top-5 validation accuracy (in %) along with the re-
duction (in %) in the number of multiplications and model size for BWN
(Rastegari et al., 2016), TWN (Li et al., 2016), TTQ (Zhu et al., 2016),
ABC-Net-3 (Lin et al., 2017), and ST-ResNet-18-2-2-1 (r = 2cout, p = 2,
g = 1), compared to the full-precision model (for the full-precision model, the
absolute quantities are given in parentheses).

top-1 top-5 mul. model size

BWN 60.8 83.0 93.25 92.33
TWN 61.8 84.2 99.73 93.39
TTQ 66.6 87.2 86.66 89.20
ABC-Net-3 66.2 86.7 99.42 49.39
ST-ResNet-18-2-2-1 67.1 87.5 99.77 125.89
full-precision 69.6 89.2 (1.82 · 109) (356.74 MB)

189

References

Adamczak, R. (2015), “A note on the Hanson-Wright inequality for random
vectors with dependencies,” Electronic Communications in Probability,
vol. 20, no. 72, pp. 1–13.

Agustsson, E., Mentzer, F., Tschannen, M., Cavigelli, L., Timofte, R.,
Benini, L., and Gool, L. V. (2017), “Soft-to-hard vector quantization
for end-to-end learning compressible representations,” in Advances in
Neural Information Processing Systems (NIPS), pp. 1141–1151.

Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., and Van Gool, L.
(2018), “Generative adversarial networks for extreme learned image
compression,” arXiv:1804.02958.

Andri, R., Cavigelli, L., Rossi, D., and Benini, L. (2018), “YodaNN: An ar-
chitecture for ultralow power binary-weight CNN acceleration,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 1, pp. 48–60.

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and
Elger, C. E. (2001), “Indications of nonlinear deterministic and finite-
dimensional structures in time series of brain electrical activity: De-
pendence on recording region and brain state,” Physical Review E,
vol. 64, no. 6.

Arjovsky, M., Chintala, S., and Bottou, L. (2017), “Wasserstein generative
adversarial networks,” in Proceedings of the International Conference
on Machine Learning (ICML), pp. 214–223.

Balcan, M.-F., Blum, A., and Vempala, S. (2008), “A discriminative frame-
work for clustering via similarity functions,” in Proceedings of the
Annual ACM Symposium on Theory of Computing, pp. 671–680.

Ballé, J., Laparra, V., and Simoncelli, E. P. (2017), “End-to-end opti-
mized image compression,” in International Conference on Learning
Representations (ICLR).

Ballé, J., Minnen, D., Singh, S., Hwang, S. J., and Johnston, N. (2018),

191

REFERENCES

“Variational image compression with a scale hyperprior,” in Interna-
tional Conference on Learning Representations (ICLR).

Basri, R. and Jacobs, D. (2003), “Lambertian reflectance and linear sub-
spaces,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 25, no. 2, pp. 218–233.

Bellard, F. (2018), “BPG Image format,” https://bellard.org/bpg/. Ac-
cessed 26 June 2018.

Blumensath, T., Davies, M. E., and Rilling, G. (2012), “Greedy algorithms
for compressed sensing,” in Y. C. Eldar and G. Kutyniok (Eds.),
Compressed Sensing: Theory and Applications, pp. 348–393, Cambridge
University Press.

Boets, J., De Cock, K., De Moor, B., and Espinoza, M. (2005), “Clustering
time series, subspace identification and cepstral distances,” Communi-
cations in Information & Systems, vol. 5, no. 1, pp. 69–96.

Borysov, P., Hannig, J., and Marron, J. (2014), “Asymptotics of hierarchical
clustering for growing dimension,” Journal of Multivariate Analysis,
vol. 124, pp. 465–479.

Boucheron, S., Lugosi, G., and Massart, P. (2013), Concentration Inequal-
ities: A Nonasymptotic Theory of Independence, Oxford University
Press.

Bucilua, C., Caruana, R., and Niculescu-Mizil, A. (2006), “Model compres-
sion,” in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 535–541.

Buldygin, V. and Moskvichova, K. (2013), “The sub-Gaussian norm of
a binary random variable,” Theory of Probability and Mathematical
Statistics, vol. 86, pp. 33–49.

Cai, T. T. and Wang, L. (2011), “Orthogonal matching pursuit for sparse
signal recovery with noise,” IEEE Transactions on Information Theory,
vol. 57, no. 7, pp. 4680–4688.

Caiado, J., Crato, N., and Peña, D. (2006), “A periodogram-based metric for
time series classification,” Computational Statistics & Data Analysis,
vol. 50, no. 10, pp. 2668–2684.

Chen, S., Billings, S. A., and Luo, W. (1989), “Orthogonal least squares
methods and their application to non-linear system identification,”
International Journal of Control, vol. 50, no. 5, pp. 1873–1896.

Chen, W.-Y., Song, Y., Bai, H., Lin, C.-J., and Chang, E. Y. (2011),
“Parallel spectral clustering in distributed systems,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 568–
586.

Chikuse, Y. (2003), Statistics on special manifolds, Lecture Notes in Statis-
tics, vol. 174, Springer Science & Business Media.

192

https://bellard.org/bpg/

REFERENCES

Cohen, T. and Welling, M. (2016), “Group equivariant convolutional net-
works,” in Proceedings of the International Conference on Machine
Learning (ICML), pp. 2990–2999.

Corduas, M. and Piccolo, D. (2008), “Time series clustering and classifica-
tion by the autoregressive metric,” Computational Statistics & Data
Analysis, vol. 52, no. 4, pp. 1860–1872.

Costeira, J. P. and Kanade, T. (1998), “A multibody factorization method
for independently moving objects,” International Journal of Computer
Vision, vol. 29, no. 3, pp. 159–179.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015), “Binaryconnect:
Training deep neural networks with binary weights during propaga-
tions,” in Advances in Neural Information Processing Systems (NIPS),
pp. 3123–3131.

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and Wei, Y. (2017),
“Deformable convolutional networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
764–773.

Delp, E. J. and Mitchell, O. R. (1991), “Moment preserving quantization
(signal processing),” IEEE Transactions on Communications, vol. 39,
no. 11, pp. 1549–1558.

Demanet, L., Létourneau, P.-D., Boumal, N., Calandra, H., Chiu, J., and
Snelson, S. (2012), “Matrix probing: A randomized preconditioner for
the wave-equation Hessian,” Applied and Computational Harmonic
Analysis, vol. 32, no. 2, pp. 155–168.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R. (2014),
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Advances in Neural Information Processing Systems
(NIPS), pp. 1269–1277.

Donahue, J., Krähenbühl, P., and Darrell, T. (2017), “Adversarial feature
learning,” in International Conference on Learning Representations
(ICLR).

Dosovitskiy, A. and Brox, T. (2016), “Generating images with perceptual
similarity metrics based on deep networks,” in Advances in Neural
Information Processing Systems (NIPS), pp. 658–666.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky,
M., and Courville, A. (2017), “Adversarially learned inference,” in
International Conference on Learning Representations (ICLR).

Dyer, E. L., Sankaranarayanan, A. C., and Baraniuk, R. G. (2013), “Greedy
feature selection for subspace clustering,” Journal of Machine Learning
Research, vol. 14, pp. 2487–2517.

Elhamifar, E. and Vidal, R. (2013), “Sparse subspace clustering: Algorithm,

193

REFERENCES

theory, and applications,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 11, pp. 2765–2781.

Elser, V. (2016), “A network that learns Strassen multiplication,” Journal
of Machine Learning Research, vol. 17, no. 116, pp. 1–13.

Esling, P. and Agon, C. (2012), “Time-series data mining,” ACM Computing
Surveys, vol. 45, no. 1, p. 12.

Ferreira, L. N. and Zhao, L. (2016), “Time series clustering via community
detection in networks,” Information Sciences, vol. 326, pp. 227–242.

Foucart, S. and Rauhut, H. (2013), A Mathematical Introduction to Com-
pressive Sensing, Springer, Berlin, Heidelberg.

Friedman, J., Hastie, T., and Tibshirani, R. (2009), The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, Springer
New York.

Friedman, J. H. and Stuetzle, W. (1981), “Projection pursuit regression,”
Journal of the American Statistical Association, vol. 76, no. 376, pp.
817–823.

Furlanello, T., Lipton, Z. C., Tschannen, M., Itti, L., and Anandkumar, A.
(2018), “Born-again neural networks,” in Proceedings of the Interna-
tional Conference on Machine Learning (ICML), pp. 1602–1611.

Galteri, L., Seidenari, L., Bertini, M., and Del Bimbo, A. (2017), “Deep
generative adversarial compression artifact removal,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV),
pp. 4826–4835.

Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J. (2001), “From
few to many: Illumination cone models for face recognition under
variable lighting and pose,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 23, no. 6, pp. 643–660.

Golub, G. H. and Van Loan, C. F. (1996), Matrix Computations, JHU
Press.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014), “Generative adversarial
nets,” in Advances in Neural Information Processing Systems (NIPS),
pp. 2672–2680.

Graf, S. and Luschgy, H. (2007), Foundations of quantization for probability
distributions, Springer.

Gray, R. M. (2006), “Toeplitz and circulant matrices: A review,” Founda-
tions & Trends in Communications and Information Theory, vol. 2,
no. 3, pp. 155–239.

——— (2009), Probability, Random Processes, and Ergodic Properties,
Springer Science & Business Media.

Gregor, K., Besse, F., Rezende, D. J., Danihelka, I., and Wierstra, D. (2016),

194

REFERENCES

“Towards conceptual compression,” in Advances in Neural Information
Processing Systems (NIPS), pp. 3549–3557.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola,
A. (2012), “A kernel two-sample test,” Journal of Machine Learning
Research, vol. 13, pp. 723–773.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C.
(2017), “Improved training of Wasserstein GANs,” in Advances in
Neural Information Processing Systems (NIPS), pp. 5769–5779.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a), “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

He, Q., Wen, H., Zhou, S., Wu, Y., Yao, C., Zhou, X., and Zou, Y.
(2016b), “Effective quantization methods for recurrent neural net-
works,” arXiv:1611.10176.

Heckel, R. and Bölcskei, H. (2015), “Robust subspace clustering via thresh-
olding,” IEEE Transactions on Information Theory, vol. 61, no. 11,
pp. 6320–6342.

Heckel, R., Tschannen, M., and Bölcskei, H. (2017), “Dimensionality-
reduced subspace clustering,” Information and Inference: A Journal
of the IMA, vol. 6, no. 3, pp. 246–283.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S.
(2017), “GANs trained by a two time-scale update rule converge to a
local Nash equilibrium,” in Advances in Neural Information Processing
Systems (NIPS), pp. 6629–6640.

Hinton, G., Vinyals, O., and Dean, J. (2014), “Distilling the knowledge in
a neural network,” NIPS Deep Learning Workshop.

Ho, J., Yang, M., Lim, J., Lee, K., and Kriegman, D. (2003), “Clustering
appearances of objects under varying illumination conditions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1, pp. 11–18.

Hong, W., Wright, J., Huang, K., and Ma, Y. (2006), “Multiscale hybrid
linear models for lossy image representation,” IEEE Transactions on
Image Processing, vol. 15, no. 12, pp. 3655–3671.

Horn, R. A. and Johnson, C. R. (1991), Topics in Matrix Analysis, Cam-
bridge University Press.

Horowitz, M. (2014), “Computing’s energy problem (and what we can
do about it),” in IEEE International Solid-State Circuits Conference
Digest of Technical Papers, pp. 10–14.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., and Adam, H. (2017), “Mobilenets: Ef-

195

REFERENCES

ficient convolutional neural networks for mobile vision applications,”
arXiv:1704.04861.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y.
(2016), “Quantized neural networks: Training neural networks with
low precision weights and activations,” arXiv:1609.07061.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and
Keutzer, K. (2016), “SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and < 0.5 MB model size,” arXiv:1602.07360.

Inan, H., Khosravi, K., and Socher, R. (2017), “Tying word vectors and word
classifiers: A loss framework for language modeling,” in International
Conference on Learning Representations (ICLR).

Ioffe, S. and Szegedy, C. (2015), “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the International Conference on Machine Learning (ICML), pp.
448–456.

Jain, P., Tewari, A., and Dhillon, I. S. (2011), “Orthogonal matching pursuit
with replacement,” in Advances in Neural Information Processing
Systems (NIPS), pp. 1215–1223.

Jiang, D., Tang, C., and Zhang, A. (2004), “Cluster analysis for gene
expression data: A survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 16, no. 11, pp. 1370–1386.

Johnston, N., Vincent, D., Minnen, D., Covell, M., Singh, S., Chinen, T.,
Jin Hwang, S., Shor, J., and Toderici, G. (2017), “Improved lossy
image compression with priming and spatially adaptive bit rates for
recurrent networks,” arXiv:1703.10114.

Kakizawa, Y., Shumway, R. H., and Taniguchi, M. (1998), “Discrimination
and clustering for multivariate time series,” Journal of the American
Statistical Association, vol. 93, no. 441, pp. 328–340.

Kalpakis, K., Gada, D., and Puttagunta, V. (2001), “Distance measures for
effective clustering of ARIMA time-series,” in Proceedings of the IEEE
International Conference on Data Mining (ICDM), pp. 273–280.

Kankanahalli, S. (2018), “End-to-end optimized speech coding with deep
neural networks,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2521–2525.

Katsavounidis, I., Jay Kuo, C.-C., and Zhang, Z. (1994), “A new initializa-
tion technique for generalized Lloyd iteration,” IEEE Signal Processing
Letters, vol. 1, no. 10, pp. 144–146.

Kay, S. M. (1988), Modern Spectral Estimation, Prentice Hall.
Khaleghi, A., Ryabko, D., Mary, J., and Preux, P. (2012), “Online cluster-

ing of processes,” in Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 601–609.

196

REFERENCES

——— (2016), “Consistent algorithms for clustering time series,” Journal
of Machine Learning Research, vol. 17, no. 3, pp. 1–32.

Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016a), “Character-
aware neural language models,” in Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pp. 2741–2749.

Kim, Y. and Rush, A. M. (2016), “Sequence-level knowledge distillation,”
in Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1317–1327.

Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D. (2016b),
“Compression of deep convolutional neural networks for fast and low
power mobile applications,” in International Conference on Learning
Representations (ICLR).

Kingma, D. P. and Ba, J. (2015), “Adam: A method for stochastic opti-
mization,” in International Conference on Learning Representations
(ICLR).

Kingma, D. P. and Welling, M. (2014), “Auto-encoding variational Bayes,”
in International Conference on Learning Representations (ICLR).

Krizhevsky, A. and Hinton, G. (2009), “Learning multiple layers of features
from tiny images,” .

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012), “Imagenet clas-
sification with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems (NIPS), pp. 1097–1105.

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and Winther, O.
(2015), “Autoencoding beyond pixels using a learned similarity metric,”
arXiv:1512.09300.

Laurent, B. and Massart, P. (2000), “Adaptive estimation of a quadratic
functional by model selection,” The Annals of Statistics, vol. 28, no. 5,
pp. 1302–1338.

Lavin, A. and Gray, S. (2016), “Fast algorithms for convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4013–4021.

Lebedev, V. and Lempitsky, V. (2016), “Fast convnets using group-wise
brain damage,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2554–2564.

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A.,
Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W. (2017), “Photo-
realistic single image super-resolution using a generative adversarial
network,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4681–4690.

Ledoux, M. (2005), The concentration of measure phenomenon, no. 89 in
Mathematical Surveys and Monographs, American Mathematical Soc.

197

REFERENCES

Lee, K. C., Ho, J., and Kriegman, D. J. (2005), “Acquiring linear subspaces
for face recognition under variable lighting,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27, no. 5, pp. 684–698.

Li, F., Zhang, B., and Liu, B. (2016), “Ternary weight networks,” NIPS
Workshop on Efficient Methods for Deep Neural Networks (EMDNN).

Li, L. and Prakash, B. A. (2011), “Time series clustering: Complex is
simpler!” in Proceedings of the International Conference on Machine
Learning (ICML), pp. 185–192.

Li, M., Klejsa, J., and Kleijn, W. B. (2010), “Distribution preserving quan-
tization with dithering and transformation,” IEEE Signal Processing
Letters, vol. 17, no. 12, pp. 1014–1017.

Li, M., Lian, X.-C., Kwok, J. T., and Lu, B.-L. (2011), “Time and space
efficient spectral clustering via column sampling,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2297–2304.

Li, M., Zuo, W., Gu, S., Zhao, D., and Zhang, D. (2018), “Learning
convolutional networks for content-weighted image compression,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3214–3223.

Liese, F. and Miescke, K.-J. (2007), “Statistical decision theory,” in Statis-
tical Decision Theory, pp. 1–52, Springer.

Lin, X., Zhao, C., and Pan, W. (2017), “Towards accurate binary convolu-
tional neural network,” in Advances in Neural Information Processing
Systems (NIPS), pp. 344–352.

Liu, B., Wang, M., Foroosh, H., Tappen, M., and Pensky, M. (2015a),
“Sparse convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
806–814.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015b), “Deep learning face
attributes in the wild,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 3730–3738.

Locatello, F., Khanna, R., Tschannen, M., and Jaggi, M. (2017a), “A unified
optimization view on generalized matching pursuit and frank-wolfe,” in
Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), pp. 860–868.

Locatello, F., Tschannen, M., Rätsch, G., and Jaggi, M. (2017b), “Greedy
algorithms for cone constrained optimization with convergence guaran-
tees,” in Advances in Neural Information Processing Systems (NIPS),
pp. 773–784.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bousquet, O. (2018),

198

REFERENCES

“Are GANs Created Equal? A Large-Scale Study,” in Advances in
Neural Information Processing Systems (NeurIPS), pp. 698–707.

Luschgy, H. and Pagès, G. (2002), “Functional quantization of Gaussian
processes,” Journal of Functional Analysis, vol. 196, no. 2, pp. 486–531.

von Luxburg, U. (2007), “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416.

Maharaj, E. A. and D’Urso, P. (2011), “Fuzzy clustering of time series
in the frequency domain,” Information Sciences, vol. 181, no. 7, pp.
1187–1211.

Mallat, S. G. and Zhang, Z. (1993), “Matching pursuits with time-frequency
dictionaries,” IEEE Transactions on Signal Processing, vol. 41, no. 12,
pp. 3397–3415.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993), “Building
a large annotated corpus of English: The Penn Treebank,” Computa-
tional Linguistics, vol. 19, no. 2, pp. 313–330.

Marti, G., Andler, S., Nielsen, F., and Donnat, P. (2016a), “Clustering
financial time series: How long is enough?” in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pp.
2583–2589.

Marti, G., Nielsen, F., and Donnat, P. (2016b), “Optimal copula transport
for clustering multivariate time series,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2379–2383.

Marti, G., Nielsen, F., Donnat, P., and Andler, S. (2017), “On clustering
financial time series: A need for distances between dependent random
variables,” in Computational Information Geometry, pp. 149–174,
Springer.

Maruyama, G. (1949), “The harmonic analysis of stationary stochastic
processes,” Memoirs of the Faculty of Science, Kyushu University.
Series A, Mathematics, vol. 4, no. 1, pp. 45–106.

Mathieu, M., Couprie, C., and LeCun, Y. (2016), “Deep multi-scale video
prediction beyond mean square error,” in International Conference on
Learning Representations (ICLR).

Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., and Van Gool, L.
(2018), “Conditional probability models for deep image compression,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4394–4402.

Mishra, A. and Marr, D. (2018), “Apprentice: Using knowledge distillation
techniques to improve low-precision network accuracy,” in Interna-
tional Conference on Learning Representations (ICLR).

199

REFERENCES

Muirhead, R. J. (2009), Aspects of multivariate statistical theory, Wiley
Series in Probability and Statistics, vol. 197, John Wiley & Sons.

Nasihatkon, B. and Hartley, R. (2011), “Graph connectivity in sparse sub-
space clustering,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2137–2144.

Ng, A., Jordan, I. M., and Yair, W. (2001), “On spectral clustering: Analysis
and an algorithm,” in Advances in Neural Information Processing
Systems (NIPS), pp. 849–856.

Ng, E. W. and Geller, M. (1969), “A table of integrals of the error functions,”
Journal of Research of the National Bureau of Standards B, vol. 73,
pp. 1–20.

Novikov, A., Podoprikhin, D., Osokin, A., and Vetrov, D. P. (2015), “Ten-
sorizing neural networks,” in Advances in Neural Information Process-
ing Systems (NIPS), pp. 442–450.

Nurvitadhi, E., Venkatesh, G., Sim, J., Marr, D., Huang, R., Ong Gee Hock,
J., Liew, Y. T., Srivatsan, K., Moss, D., Subhaschandra, S., and
Boudoukh, G. (2017), “Can FPGAs beat GPUs in accelerating next-
generation deep neural networks?” in Proceedings of the ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp.
5–14.

Park, D., Caramanis, C., and Sanghavi, S. (2014), “Greedy subspace cluster-
ing,” in Advances in Neural Information Processing Systems (NIPS),
pp. 2753–2761.

Polino, A., Pascanu, R., and Alistarh, D. (2018), “Model compression via
distillation and quantization,” International Conference on Learning
Representations (ICLR).

Radford, A., Metz, L., and Chintala, S. (2015), “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks,”
arXiv:1511.06434.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016), “XNOR-
Net: Imagenet classification using binary convolutional neural net-
works,” in Proceedings of the European Conference on Computer Vision
(ECCV), pp. 525–542.

Rippel, O. and Bourdev, L. (2017), “Real-time adaptive image compression,”
in Proceedings of the International Conference on Machine Learning
(ICML), pp. 2922–2930.

Rosca, M., Lakshminarayanan, B., Warde-Farley, D., and Mohamed, S.
(2017), “Variational approaches for auto-encoding generative adversar-
ial networks,” arXiv:1706.04987.

Rudelson, M. and Vershynin, R. (2013), “Hanson-Wright inequality and sub-

200

REFERENCES

Gaussian concentration,” Electronic Communications in Probability,
vol. 18, pp. no. 82, 1–9.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), “Learning
representations by back-propagating errors,” Nature, vol. 323, no. 6088,
p. 533.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-
Fei, L. (2015), “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252.

Ryabko, D. (2010), “Clustering processes,” in Proceedings of the Interna-
tional Conference on Machine Learning (ICML), pp. 919–926.

Ryabko, D. and Mary, J. (2013), “A binary-classification-based metric
between time-series distributions and its use in statistical and learning
problems,” Journal of Machine Learning Research, vol. 14, no. 1, pp.
2837–2856.

Sanei, S. and Chambers, J. A. (2008), EEG Signal Processing, John Wiley
& Sons.

Santurkar, S., Budden, D., and Shavit, N. (2018), “Generative compression,”
in Picture Coding Symposium (PCS), pp. 258–262.

Schudy, W. and Sviridenko, M. (2012), “Concentration and moment inequal-
ities for polynomials of independent random variables,” in Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
437–446.

Skinner, D. (1976), “Pruning the decimation in-time FFT algorithm,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 24, no. 2,
pp. 193–194.

Soltanolkotabi, M. and Candès, E. J. (2012), “A geometric analysis of
subspace clustering with outliers,” The Annals of Statistics, vol. 40,
no. 4, pp. 2195–2238.

Soltanolkotabi, M., Elhamifar, E., and Candès, E. J. (2014), “Robust
subspace clustering,” The Annals of Statistics, vol. 42, no. 2, pp.
669–699.

Stoica, P. and Moses, R. L. (2005), Spectral Analysis of Signals, Pear-
son/Prentice Hall, Upper Saddle River, NJ.

Strassen, V. (1969), “Gaussian elimination is not optimal,” Numerische
Mathematik, vol. 13, no. 4, pp. 354–356.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017), “Efficient pro-
cessing of deep neural networks: A tutorial and survey,” Proceedings
of the IEEE, vol. 105, no. 12, pp. 2295–2329.

Tai, C., Xiao, T., Zhang, Y., and Wang, X. (2016), “Convolutional neural

201

REFERENCES

networks with low-rank regularization,” in International Conference
on Learning Representations (ICLR).

Temlyakov, V. N. (2003), “Nonlinear methods of approximation,” Founda-
tions of Computational Mathematics, vol. 3, no. 1, pp. 33–107.

Theis, L., Shi, W., Cunningham, A., and Huszar, F. (2017), “Lossy im-
age compression with compressive autoencoders,” in International
Conference on Learning Representations (ICLR).

Toderici, G., O’Malley, S. M., Hwang, S. J., Vincent, D., Minnen, D.,
Baluja, S., Covell, M., and Sukthankar, R. (2015), “Variable rate
image compression with recurrent neural networks,” International
Conference on Learning Representations (ICLR).

Toderici, G., Vincent, D., Johnston, N., Hwang, S. J., Minnen, D., Shor,
J., and Covell, M. (2017), “Full resolution image compression with
recurrent neural networks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5435–5443.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf, B. (2018), “Wasser-
stein auto-encoders,” in International Conference on Learning Repre-
sentations (ICLR).

Torfason, R., Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., and
Van Gool, L. (2018), “Towards image understanding from deep com-
pression without decoding,” in International Conference on Learning
Representations (ICLR).

Tschannen, M. (2014), Dimensionality reduction for sparse subspace clus-
tering, Master’s thesis, ETH Zürich.

Tschannen, M., Agustsson, E., and Lucic, M. (2018a), “Deep generative
models for distribution-preserving lossy compression,” in Advances in
Neural Information Processing Systems (NeurIPS), pp. 5933–5944.

Tschannen, M. and Bölcskei, H. (2015), “Nonparametric nearest neighbor
random process clustering,” in Proceedings of the IEEE International
Symposium on Information Theory (ISIT), pp. 1207–1211.

——— (2017), “Robust nonparametric nearest neighbor random process
clustering,” IEEE Transactions on Signal Processing, vol. 65, no. 22,
pp. 6009–6023.

——— (2018), “Noisy subspace clustering via matching pursuits,” IEEE
Transactions on Information Theory, vol. 64, no. 6, pp. 4081–4104.

Tschannen, M., Khanna, A., and Anandkumar, A. (2018b), “StrassenNets:
Deep learning with a multiplication budget,” in Proceedings of the
International Conference on Machine Learning (ICML), pp. 4992–
5001.

Tucci, M. and Raugi, M. (2011), “Analysis of spectral clustering algorithms
for linear and nonlinear time series,” in Proceedings of the IEEE Inter-

202

REFERENCES

national Conference on Intelligent Systems Design and Applications
(ISDA), pp. 925–930.

Vershynin, R. (2012), “Non-asymptotic random matrix theory,” in Y. C.
Eldar and G. Kutyniok (Eds.), Compressed Sensing: Theory and
Applications, Cambridge University Press.

Vidal, R. (2011), “Subspace clustering,” IEEE Signal Processing Magazine,
vol. 28, no. 2, pp. 52–68.

Vidal, R., Soatto, S., Ma, Y., and Sastry, S. (2003), “An algebraic geometric
approach to the identification of a class of linear hybrid systems,” in
Proceeding of the IEEE Conference on Decision and Control, pp. 167–
172.

Vilar, J. A. and Pértega, S. (2004), “Discriminant and cluster analysis for
Gaussian stationary processes: Local linear fitting approach,” Journal
of Nonparametric Statistics, vol. 16, no. 3-4, pp. 443–462.

Villani, C. (2008), Optimal transport: Old and new, vol. 338, Springer
Science & Business Media.

Vitaladevuni, S. N., Natarajan, P., Prasad, R., and Natarajan, P. (2011),
“Efficient orthogonal matching pursuit using sparse random projec-
tions for scene and video classification,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pp. 2312–2319.

Wang, M., Liu, B., and Foroosh, H. (2016a), “Design of efficient con-
volutional layers using single intra-channel convolution, topological
subdivisioning and spatial “bottleneck” structure,” arXiv:1608.04337.

Wang, Y., Liu, Z., and Huang, J.-C. (2000), “Multimedia content analysis –
Using both audio and visual clues,” IEEE Signal Processing Magazine,
vol. 17, no. 6, pp. 12–36.

Wang, Y., Wang, Y.-X., and Singh, A. (2016b), “Graph connectivity in
noisy sparse subspace clustering,” in Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), pp.
538–546.

Wang, Y.-X. and Xu, H. (2016), “Noisy sparse subspace clustering,” Journal
of Machine Learning Research, vol. 17, no. 12, pp. 1–41.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016), “Learning
structured sparsity in deep neural networks,” in Advances in Neural
Information Processing Systems (NIPS), pp. 2074–2082.

Wen, W., Xu, C., Wu, C., Wang, Y., Chen, Y., and Li, H. (2017), “Co-
ordinating filters for faster deep neural networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 658–666.

White, H. (2014), Asymptotic Theory for Econometricians, Academic Press.
Wu, C.-Y., Singhal, N., and Krähenbühl, P. (2018), “Video compression

203

REFERENCES

through image interpolation,” in European Conference on Computer
Vision (ECCV).

Xiong, Y. and Yeung, D.-Y. (2004), “Time series clustering with ARMA
mixtures,” Pattern Recognition, vol. 37, no. 8, pp. 1675–1689.

Yan, D., Huang, L., and Jordan, M. I. (2009), “Fast approximate spec-
tral clustering,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp.
907–916.

Yang, T.-J., Chen, Y.-H., and Sze, V. (2017), “Designing energy-efficient
convolutional neural networks using energy-aware pruning,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5687–5695.

You, C., Robinson, D., and Vidal, R. (2016), “Scalable sparse subspace
clustering by orthogonal matching pursuit,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3918–3927.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao, J. (2015),
“LSUN: Construction of a large-scale image dataset using deep learning
with humans in the loop,” arXiv:1506.03365.

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2017), “Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices,”
arXiv:1707.01083.

Zhang, X., Zou, J., He, K., and Sun, J. (2016), “Accelerating very deep
convolutional networks for classification and detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 38, no. 10,
pp. 1943–1955.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2016), “DoReFa-
Net: Training low bitwidth convolutional neural networks with low
bitwidth gradients,” arXiv:1606.06160.

Zhu, C., Han, S., Mao, H., and Dally, W. J. (2016), “Trained ternary quan-
tization,” in International Conference on Learning Representations
(ICLR).

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017a), “Unpaired image-
to-image translation using cycle-consistent adversarial networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2223–2232.

Zhu, J.-Y., Zhang, R., Pathak, D., Darrell, T., Efros, A. A., Wang, O.,
and Shechtman, E. (2017b), “Toward multimodal image-to-image
translation,” in Advances in Neural Information Processing Systems
(NIPS), pp. 465–476.

Zhuang, B., Shen, C., Tan, M., Liu, L., and Reid, I. (2018), “Towards

204

REFERENCES

effective low-bitwidth convolutional neural networks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7920–7928.

205

	Introduction
	Noisy subspace clustering via matching pursuits
	Nearest neighbor random process clustering
	Distribution-preserving lossy compression
	Deep learning with a multiplication budget
	Publications
	Notation

	Noisy subspace clustering via matching pursuits
	Subspace clustering via matching pursuits
	The algorithms
	Parameter selection

	Main results
	Numerical results
	Comparison of SSC-OMP and SSC-MP
	Face clustering
	True positives/false positives tradeoff in DD-stopping
	Influence of smax and pmax in DI-stopping
	Influence of smax and pmax in DI-stopping for noiseless data

	Appendices
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Supplementary notes

	Nonparametric nearest neighbor random process clustering
	Formal problem statement and algorithms
	Analytical performance results
	Comparison with thresholding-based subspace clustering
	Numerical results
	Synthetic data
	Real data

	Appendices
	Proofs of Theorems 3.1 and 3.2
	Proof of Theorem 3.3
	Proof of Proposition 3.1

	Distribution-preserving lossy compression
	Problem formulation
	Distribution-preserving lossy compression
	Unsupervised training via Wasserstein++
	Empirical evaluation
	Related work
	Conclusion and future work
	Appendices
	Proof of Theorem 4.1
	Hyperparameters and architectures
	The Wasserstein++ algorithm
	Visual examples

	Deep learning with a multiplication budget
	Related work
	Learning fast matrix multiplications via SPNs
	Casting matrix multiplication as SPN
	Learning fast approximate matrix multiplications for DNNs
	Knowledge distillation (KD)
	Application to 2D convolution

	Experiments
	Rediscovering Strassen's algorithm
	Image classification
	Language modeling

	Conclusion and future work
	Appendices
	Additional results on CIFAR-10
	Additional results for language modeling
	Application to 2D convolution: Pseudocode
	Additional tables

	References

