

Measurement setup to investigate near surface failures in steep bedrock permafrost

Conference Poster

Author(s):

Weber, Samuel [6]; Beutel, Jan [6]; Faillettaz, Jérome; Gruber, Stephan; Gsell, Tonio; Hasler, Andreas; Vieli, Andreas

Publication date:

2014

Permanent link:

https://doi.org/10.3929/ethz-b-000323768

Rights / license:

Creative Commons Attribution 4.0 International

Measurement setup to investigate near surface failures in steep bedrock permafrost

Samuel Weber, Jan Beutel, Jerome Faillettaz, Stephan Gruber, Tonio Gsell, Andreas Hasler, Andreas Vieli

The main goals are:

- to gain better *process understanding* of *near surface failures* in permafrost
- to *assess stability* of rock-slopes in alpine environments
- to work towards an *early warning system* to prevent a catastrophic event

Assessing rupture in natural media remains a challenge because:

- natural media are *heterogeneous*
- the heterogeneity is difficult to *quantify and measure*
- rupture is a *nonlinear process* involving these hetereogeneities

BUT heterogeneity is a chance - taking advantage of it

During rupture process, weakest zones will break first!

-> precursory signs are expected before final rupture!

Assessing slope stability requires to...

...these precursors.

- monitor
- identify
- analyse/interpret

Assessing stability = monitor changes & detect precursory signs

	External changes		Internal changes
	geometry	th. regime	damage/cracks
Monitoring	displacement	temperature	acoustic/micro-seismic activity
Instrumentation	crackmeter, GPS	thermistor	piezo, accelerometer, geophone
	scale		scale

Gravitiy driven instabilities in high-alpine rock-slopes

Sensor setup

Displacement sensors

PermaSenseL1-GPS (large scale)

- daily position accuracy:
 - 1-2 mm horizontal
 - 3-5 mm vertical
- ublox LEA-6T receiver
- wireless communication
- all-inside mast design
- remote configurable

ForaPot crackmeter (small scale)

- potentiometric measurement principle
- very high accuracy (≤ 0.01 mm)
- temperature-compensated
- multiple axes possible

Temperature

- rock surface
- at depth

Camera

- Nikon D-300
- Axis

Weather station

Vaisala WXT520

Outlook

How to analyse/interpret data?

surface displacment MS/AE interaction source temperature

Need for a tool to investigate link between

- MS/AE activity, temperature & displacement
- acoustic data and rupture imminence!
- → using *numerical models* as tool to investigate and test parameters sensitivity

Complementary lab test

1) conventional lab tests to characterize the AE waveform and spectrum of *initiation* vs. *propagation* of microcracks

2) unconventional lab tests to simulate friction at different conditions (frozen, not frozen, wet, dry...)

characteristic spectrum?