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Abstract
The closed loop control performance of MMCs can be significantly improved by using Model Predictive Control
(MPC). This paper evaluates an MPC algorithm based on a linearised MMC model regarding the performance
limits caused by the prediction error due to the linearisation. To decrease the prediction error to a minimum and
to improve the performance it is proposed to use a nonlinear MMC model as a prediction model for the MPC. The
steady state and transient performance of the MPC with both MMC models is compared in detail using simulations
to analyse the effect of the prediction error on the control performance.

1 Introduction
Due to the multi-input multi-output (MIMO) characteristic of the Modular Multilevel Converter (MMC), the well
known standard cascaded PI-controller structure (e.g. [1]) results in comparably low performance, when consid-
ering transients/reference steps or when dealing with relatively small inductance and module capacitance values.
Also time delays due to sensing, communication and/or computation cannot be compensated properly with cas-
caded PI-controllers. Therefore, MIMO control schemes as for example in [2] were proposed. However, all these
control schemes are not able to consider the system constraints like maximum output voltage of the individual
MMC arms, maximum module voltage or arm/grid/DC currents. For example in case the output power of an
MMC is reversed, the voltages of the module capacitors might increase above their maximum voltage if it is not
considered in the control algorithm.

The control of MIMO systems with constraints is a typical application area of Model Predictive Control (MPC)
algorithms. MPC algorithms perform an online prediction of the system’s future behaviour and optimize the control
input to find a tradeoff between tracking the (possibly contradicting) control references and the system constraints.

For MMCs, this could be beneficial, as one could decrease cost, volume and weight of the MMC by minimizing
the inductance and capacitance values without loosing (transient) performance, as the control takes the system’s
constraints into account. Therefore, the control performance benefits from long prediction horizons. For example,
the module voltages might hit their maximum value constraints in the future after a reference step. If this is
predicted by the control algorithm, a counteracting circulating current can be generated, such that the output
currents are affected as little as possible by the constraint and an optimal trade off between meeting the constraints
and tracking the reference can be implemented. There have been many predictive control schemes proposed for
the MMC in the literature. Most of them consider the switching state of each module as the system input (e.g.
[3, 4, 5, 6]). This results in a large integer optimization problem, such that in most cased only one prediction step
is considered to not cause a too heavy computational burden. For large MMCs with high module numbers even a
single prediction step can cause major computational problems.

In [7], not the switching state of the individual modules is considered, but the number of modules per arm, that
are inserted. Consequently, instead of controlling the individual module voltages, the sum of all capacitor voltages
of one arm is controlled. To keep the computational burden low, the change of the number of inserted modules
per sampling instant is restricted to one module more or less. For a large number of modules, the restriction
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Fig. 1: (a) Three phase MMC. N modules form one out of six arms. (b) One arm can be represented as a (controllable) voltage
source and a capacitor connected with a scaled current source. Here, the indices represent the upper arm of the first phase.

of inserting/bypassing not more one module per sampling instant results in slow reference tracking performance
during transients.

Instead of controlling the individual modules’ switching states with the MPC algorithm directly, a modulator can
be used. The modulator typically uses a PWM to implement a given reference voltage for the individual arms.
Modulators for MMCs can be designed such that all capacitor voltages within one arm are balanced around a mean
value and the voltage reference is implemented at the output of the arm with only small errors [8, 9].
With a modulator, the MMC can be modelled by averaged models. This means that no actual switching states
are considered. It is rather assumed that each MMC arm can generate a continuous output voltage. A common
modelling approach is shown in Fig. 1(b), where the MMC arms are modelled with a capacitor fed by the arm
current scaled with the so called insertion index n [10]. The insertion index can vary between zero and one
and describes the share of inserted modules of the considered arm (1 for all modules inserted, 0 for all modules
bypassed). The output voltage of the arm x is then the multiplication of the insertion index with the sum of all
capacitor voltages vΣ

x i.e. the internal arm voltage.

This average modelling with a modulator enables to use traditional MPC algorithms known from non switched
systems. Therefore, the computational burden of the MPC algorithm is independent of the number of modules and
can be used in many different application areas from medium voltage drive systems with few modules to HVDC
converters with hundreds of modules [11]. In [12, 13] a bilinear MMC average model is linearised around the
current operation point and a linear MPC algorithm based on a quadratic programm (QP) is used to determine the
reference voltages for the individual modulators of the MMC arms. The method allows long prediction horizons
without a too heavy computational burden, as fast and efficient solvers for (linear) QPs are available. The problem
of this method is the error of the prediction model that results from the linearisation. This error is dependant on the
individual system parameters, especially the inductance values. If the error becomes too large, a long prediction
horizon is worthless, because the prediction deviates too much from the real system’s answer.

Based on the modelling method and the MPC algorithm from [12, 13] with changes to the cost function and
reference formulation, this paper provides a short analysis of the resulting prediction error for different system
parameters. To decrease the prediction error, it is proposed to utilize the nonlinear/bilinear MMC model directly
as a prediction model in the MPC. Simulation results for validating both methods are shown. This demonstrates
the benefit in control performance during transients as well as during steady state by having a correct prediction
model.
The paper is organized as follows. After a short review of the mentioned MMC average modelling method pre-
sented in section 2 and the linearised MPC from [12, 13] with time varying references shown in section 3 and
4, the prediction error resulting from the linearisation is expressed analytically and discussed shortly for different
inductance values in section 5. In section 6, a nonlinear MPC based on the nonlinear MMC model is presented as
a benchmark for achieving low prediction errors. In section 7, simulation results are shown and analysed.

2 MMC Modelling
MPC algorithms require a model of the MMC in state space form. In this paper, the modelling proposed in [12],
detailled in [13], is used. The following modelling section will always refer to the notation introduced in Fig.



1. Each arm has an insertion index n1u that describes how much of the available inner arm voltage vΣ
1u of the

corresponding MMC arm is inserted into the arm, such that the reference voltage for an underlying modulator is
equal to n1u · vΣ

1u.
In the following, bold upper case letters denote a matrix, bold lower case letters a vector and regular lower case
letters a scalar. According to [12], the MMC’s dynamics in continuous time can be described with

iii =
[
i1u i1l i2u i2l idc

]T vvvΣ =
[
vΣ

1u vΣ
1l vΣ

2u vΣ
2l vΣ

3u vΣ
3l
]T vvvg =

[
vg,α vg,β

]T

d
dt

[
iii

vvvΣ

]
=

[
LLL 0
0 CCCa

]−1

·
([

−RRR KKKu ·NNN(t)
NNN(t) ·KKKi 0

]
·
[

iii
vvvΣ

]
+

[
KKKvg KKKdc

0 0

]
·
[

vvvg
Vdc

])
, (1)

with

LLL =




La La 0 0 Ldc
0 0 La La Ldc
La La La La 2La +Ldc
Lg −La−L −Lg La +L 0
2L −2La−2Lg Lg −La−Lg La


 , RRR in the same manner, CCCa =

C
N
· I(6)

KKKu =




−1 −1 0 0 0 0
0 0 −1 −1 0 0
0 0 0 0 −1 −1
0 +1 0 +1 0 0
0 +1 0 0 0 −1


 , KKKi =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−1 0 −1 0 1
0 −1 0 −1 1




KKKvg =




0(3×3)
−1 1 0
−1 0 1


 , KKKvdc =

[
1 1 1 0 0

]T
,

where 0 is a matrix of zeros and I(x) is the identity matrix of dimension x. NNN(t) is the diagonal matrix of the vector

containing the insertion indexes of all MMC arms nnn(t) =
[
n1u(t) n1l(t) n2u(t) n2l(t) n3u(t) n3l(t)

]T .
Note that (1) is a nonlinear/bilinear equation, because the system input nnn(t) is contained in the state coupling
matrix.

3 Linearised MPC for MMCs (`MPC)
To apply linear MPC to the MMC state space model (1), a linearization is proposed in [12, 13]. The linearisation is
performed around an operation point using a first order tailor series. The operation point is defined by the insertion
indexes nnn(t0), the currents iii(t0) and the inner arm voltages vvvΣ(t0). This results in the following system description:

d
dt

[
iii

vvvΣ

]

lin
=

[
LLL 0
0 CCCa

]−1

·
([

−RRR KKKu ·NNN(t0)
NNN(t0) ·KKKi 0

]
·
[

i
vvvΣ

]

lin
+

[
KKKu ·VVV Σ(t0)

III(t0)

]
·∆nnn(t)+

[
KKKvg KKKdc

0 0

]
·
[

vvvg
Vdc

])
(2)

Here, III(t0) is the diagonal matrix of KKKi · iii(t0), VVV Σ(t0) is the diagonal matrix of vvvΣ(t0) and ∆nnn(t) = nnn(t0)−nnn(t).
To be able to use the model (2) as a prediction model for a model predictive controller, a prediction of the grid
voltage has to be added. By assuming the grid frequency ω to be constant for the prediction horizon,

d
dt

vvvg =

[
0 −ω(t0)

ω(t0) 0

]
· vvvg = ΩΩΩ · vvvg (3)

can be used to predict the grid voltage. Therefore, it has to be included into the state vector. The DC voltage Vdc is
assumed to be constant during the whole prediction horizon.
Using the forward Euler approximation to discretise the resulting system with the sampling time Ts




iii
vvvΣ

vvvg




k+1

= xxxk+1 =


I(13)+Ts ·




LLL 0 0
0 CCCa 0
0 0 I(2)



−1

·




0 KKKuNNN(t0) KKKvg
NNN(t0)KKKi 0 0

0 0 ΩΩΩ





 · xxxk+ (4)

Ts ·




LLL 0 0
0 CCCa 0
0 0 I(2)



−1

·






KKKu ·VVV Σ(t0)
III(t0)

0


 ·∆nnnk +




KKKdc
0
0


 ·Vdc


 (5)

= AAAlin,k · xxxk +BBBlin,k ·∆nnnk (6)



results as the prediction model. Note that due to the changing operation point during operation of the MMC, the
system matrices have to be recalculated for every new sample. The outputs of the system are defined as the grid
currents, the arm currents, the DC current and the inner arm voltages, such that

yyyk =
[
iiig,k vvvΣ

k iiia,k idc,k
]T

=CCC · xxxk (7)

with iiig,k =
[
ig,a,k, ig,b,k, ig,c,k

]T and iiia,k = [iu,1,k, il,1,k, iu,2,k, . . . , il,3,k]
T .

The constraints for the MPC are:
• The insertion index that has to be between -1 and 1 for full-bridge modules or 0 and 1 for half-bridge

modules.
• The absolute value of the arm currents must not exceed the rating of the semiconductors/inductors.
• The absolute value of the grid currents must not exceed the rating of the grid connection.
• The inner arm voltage must not exceed the maximum module voltage.

As presented in [13], all state constraints are implemented as soft constraints, such that the optimization problem
results in

UUU `MPC,k = min
UUU

k+Np

∑
l=k
‖QQQ · (yyyl+1− rrrl+1)‖2

2 +‖RRR ·uuul‖2
2 +λsc ·1(1×16) ·ξξξl+1 (8a)

s.t.: xxxl+1 = AAAlin,k · xxxl +BBBlin,k ·∆nnnl (8b)
yyyl+1 =CCC · xxxl+1 (8c)

0(16×1) ≤ ξξξl+1 (8d)

yyymax− yyyl+1 ≤ ξξξl+1 (8e)
−1(6×1)−nnnk−1 ≤ uuul ≤+1(6×1)−nnnk−1 ∀l = k . . .Np−1 (8f)

UUU =
[
∆nnnk ∆nnnk+1 . . . ∆nnnk+Np−1

]
, (8g)

where the cost weighting matrices QQQ and RRR are the diagonal matrices of the following vectors

qqq =
[
1(1×3)λig 1(1×6)λvΣ 1(1×6)λia λidc

]T and rrr = 1(6×1)λu. (9)

The `MPC is implemented in Matlab using the YALMIP toolbox [14] with the quadprog solver (Matlab inte-
grated).
Reference values/trajectories are given for all outputs, as described in the next section.

4 Computation of the Reference Vector
The cost function shown in the previous section requires reference values rk+l for all outputs yk+l . The references
are determined based on a DC current reference i∗dc and a reference grid power angle φ = 0 (PFC). The grid voltage
VVV g,k (in αβ-coordinates), its amplitude V̂g,k and the grid angle ϕg,k are assumed to be known.
The grid currents’ references are given by the power balance between AC and DC side, such that

iii∗g,l+1 = 2 · Vdc,k · i∗dc

3 ·V̂g,k
·




sin(ϕg,k +ωg ·Ts · (l +1− k))
sin(ϕg,k +ωg ·Ts · (l +1− k)− 2π/3)
sin(ϕg,k +ωg ·Ts · (l +1− k)+ 2π/3)


 , ∀l = k . . .Np−1. (10)

Assuming that there are no circulating currents in steady state, the arm currents’ references can be calculated from
the DC and AC side currents with

iii∗a,l+1 =
[
+i∗g,a,l+1/2+ i∗dc/3, −i∗g,a,l+1/2+ i∗dc/3, . . . , −i∗g,c,l+1/2+ i∗dc/3

]T
, (11)

∀l = k . . .Np− 1. The reference trajectories for the internal arm voltages can be computed via the power/energy
equations of each arm (cf. e.g. [15]). Defining the grid voltage as V̂g · sin(ωgt), the energy variation in the upper
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noted numerical values are exemplary chosen points to improve readability.

arm of phase ’a’ is for example defined as

∆w∗1u,l+1 =
S

12mωg
· [4 · sin(ϕg,k +ωgTs(l +1− k)−φ−π/2)−m · sin(2ϕg,k +2ωgTs(l +1− k)−φ− pi)

−2m2 · sin(ϕg,k +ωgTs(l +1− k)−π/2) · cos(φ)], ∀l = k . . .Np−1, (12)

with m = 2 ·V̂g,k/Vdc,k and S = i∗dc ·Vdc. The internal arm voltage follows as

vΣ ∗
1u,l+1 = N ·

√
2 · (∆w∗1u,l+1 + w̄)/C, ∀l = k . . .Np−1. (13)

The reference voltages for the other arms can be computed analogously.

5 Prediction Error
The linearisation shown in the previous section results in an (open loop) error for all predicted states. In the
following, this error’s sensitivity to the system parameters is investigated.
The prediction error can be calculated by subtracting (1) and (2):

d
dt

[
δiii

δvvvΣ

]
=

[
LLL 0
0 CCCa

]−1

·
([

0 KKKu ·∆NNN(t)
∆NNN(t) ·KKKi 0

]
·
[

δiii
δvvvΣ

]
+

[
KKKu ·VVV Σ(t0)

I(t0)

]
·∆nnn(t)

)
, (14)

where [δiii, δvvvΣ]T denotes the difference [iii, vvvΣ]T − [iii, vvvΣ]Tlin and ∆NNN(t) = NNN(t)−NNN(t0) denotes the diagonal matrix
of the vector ∆nnn(t). Note that the actual prediction error is different from (14) due to the Euler approximation used
for the discretisation in the `MPC.
The prediction error for an exemplary MMC system’s grid and circulating currents (Table I and II) as well as its
internal arm voltages is shown in Fig. 2 and 3 for different inductance and (module-) capacitance values. The
inductance and capacitance values given in Table I where scaled by 5 or 2 respectively to point out the general
trend for larger values. For large inductance values, the prediction errors of all quantities are smaller, whereas
larger capacitance values do have a smaller impact on the error. Note, that for lower sampling frequencies, the
error increases linearly.
As mentioned in the introduction, the advantage of a long prediction horizon is, that the controller can predict,
if constraints will be hit in the future and react early enough to disturb the reference tracking of the outputs as
little as possible. If the difference between the open loop prediction and the actual system response is too large,
the controller predicts a wrong future behaviour of the system and thus can obtain only a suboptimal future input
sequence.
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6 Nonlinear MPC for MMCs (nMPC)
The nonlinear MPC presented in the following is based on the direct utilisation of the bilinear model (1) without
the linearisation used in (2). The discretisation is done using the forward Euler approximation, such that

xxxk+1 =

[
LLL 0
0 CCCa

]−1

·
(

I(13)+Ts ·
[
−RRR KKKu ·NNNk

NNNk ·KKKi 0

])

︸ ︷︷ ︸
AAAnlin(nnnk)

·xxxk +

[
LLL 0
0 CCCa

]−1

Ts ·
[

KKKdc KKKvg
0 0

]

︸ ︷︷ ︸
BBBVdc,g

·
[
Vdc,k
Vg,k

]
(15)

is used as the prediction model. Note that the grid voltage prediction known from (3) is not included. This is done
to avoid prediction errors in the grid voltage because of the discretisation with the Euler approximation. As there
is no influence of the MMC on the grid voltage, one can predict the grid voltage separately using the exact (ZOH)
discretisation of ΩΩΩ defined in (3).
The control law of the nMPC can be described as the following optimisation problem:

UUUnMPC,k = min
UUU

k+Np

∑
l=k
‖QQQ(yyyl+1− rrrl+1)‖2

2 +‖RRR(nnnl−nnnl−1)‖2
2 +λsc ·1(1×16) ·ξξξl+1 (16a)

s.t.: xl+1 = AAAnlin(nnnl) · xl +BBBVdc,g ·
[
Vdc,k Vg,l

]
(16b)

NNNl = diag(nnnl) (16c)
yyyl+1 =CCC · xxxl+1 (16d)

−1(6×1) ≤ nnnl ≤+1(6×1) (16e)

0(16×1) ≤ ξξξl+1 (16f)

yyymax− yyyl+1 ≤ ξξξl+1 ∀l = k . . .Np−1 (16g)

UUU =
[
nnnk nnnk+1 · · · nnnk+Np−1

]
, (16h)

where the definition of yyy is the same as for the linearised prediction model presented in section 3. The definition of
xxx is also similar, as only the grid voltage is not part of xxx anymore. The output references rrr are defined as proposed
in section 4.
To restrict undesired ripple in the DC current, the weighting matrices QQQ and RRR (see (9) for definition) are defined
as time variant and an additional cost for the change of the DC current during the prediction period is introduced



Table I: MMC SYSTEM PARAMETERS

Symbol SI value pu value Symbol SI value pu value

Vg Grid voltage 9kV
√

3/2 Ig,r Rated grid current 22.681A 1

Sr Rated power 250kVA 1 ωg,r Rated grid frequency 2π 50Hz 1

Vdc,r Rated DC voltage 35kV 4.763 vΣ
r Rated inner arm voltage 30kV 4.083

Lg Grid inductance 5mH 0.005 Rg Grid resistance 0.5Ω 0.0015

La Arm inductance 26.8mH 0.026 Ra Arm resistance 1Ω 0.0031

Ldc DC inductance 1.4µH 1.4 ·10−6 Rdc DC resistance 20.6mΩ 63 ·10−6

C Module capacitance 159µF 16.216 N Module number / arm 15

Ig,max max. grid current 30A 1.323 Ia,max max. arm current 50A 2.2

vC,max max. module voltage 2.2kV 0.299 vΣ
max max. inner arm voltage 33kV 4.491

as follows.

λu =

{
10 if reference step occured less than 5 sampling periods ago,
20 else.

(17)

The same is implemented for the DC current change cost λ∆idc that introduces a cost Jδidc for the change in the DC
current with

Jδidc =
k+Np

∑
l=k+1

λ∆idc · (idc,l− idc,l−1). (18)

This additional cost can easily be integrated into QQQ introducing the DC current change as an output with reference
zero.
The optimisation problem resulting from (16)-(18) is implemented in Matlab using the YALMIP toolbox [14] with
the fmincon solver (Matlab integrated).
Simulation results evaluating the performance of the nMPC are shown in the following section.

7 Simulation Results
In the following section, simulation results for the `MPC and the nMPC applied on an exemplary MMC system are
presented. The simulation is based on the average model of the MMC (cf. Fig. 1b)) and implemented in PLECS
as well as Matlab Simulink, where a perfect modulation (no modulation error, cf. [8, 9]) is assumed. The system
parameters are given in Table I. Note that the module capacities exceed the minimum value necessary for steady
state operation at rated power [15] by 70%.
The simulation results are shown in Fig. 4. The simulation scenario is as follows: At the beginning, the current
references are zero. At t = 0.04s a reference step to the rated power occurs, before the power is reversed at
t = 0.129s. Note, that the second reference step is at the maximum value of the reference for the internal arm
voltage of the upper arm of phase ’a’ and therefore represents the worst case scenario in terms of the reference
step size and the maximum voltage constraint, as the distance between the reference values before and after the
reference step is the largest possible and the distance to the maximum value is the smallest possible.
The control performance with both the `MPC and the nMPC is very good in steady state as well as during transients.
The reference tracking of all outputs is fast and accurate. The performance differences between the linear and the
nonlinear MPC formulations become clear when looking at the details:

• When the reference DC current/grid current is zero in the beginning of the simulation scenario, the `MPC
cannot keep the grid current lower than 2.612A peak to peak, whereas the nMPC keeps it as low as 0.051A
(difference of -98 %).

• During steady state it is one of the control goals to meet the reference DC/grid current and inner arm voltages
while keeping the occuring circulating currents as low as possible to save conduction losses. The nMPC
(0.985A peak to peak) can reduce the circulating currents by more than 50 % compared with the `MPC
(2.092A peak to peak).

• Both, the `MPC and the nMPC do not meet the DC reference current exactly during the time, when the



Table II: CONTROL SYSTEM PARAMETERS

Symbol Meaning SI value pu value Symbol Meaning SI value pu value

Ts Sampling time 1/1.5kHz 0.2094 Np Prediction steps 10

λig Grid current cost 5 λia Arm current cost 1

λidc DC current cost 100 λvΣ Inner arm voltage cost 20

λu Control output cost 20 or 10 λ∆idc DC current change cost 50 or 1

λsc Soft constraints cost 10000

reference is negative. Anyway, the `MPC reaches a DC current error of 0.484A, where the nMPC reaches
0.204A. This is an improvement by 58 %.

• Looking at the second reference step at t = 0.129s, one can notice that the nMPC achieves a faster rise time
of the DC current. The same can be observed for the grid currents.

• Also the reference tracking of the inner arm voltages (thus the energy balancing) after the second reference
step works better with the nMPC. To achieve this, the nMPC drives much larger circulating currents (the arm
currents stay well within the limits of ±50A) directly after the reference step.

As the energy balancing/inner arm voltage reference tracking works very well and the constraints for the inner arm
voltage are not fully exploited yet, the simulation scenario has been redone with module capacities that exceed
the minimum value necessary for steady state operation at rated power [15] by only 10% resulting in a module
capacitance value of 103.1µF (10.5 in pu). The results are shown in Fig. 5. All observations made for the results
in Fig. 4 in tendency also apply for the reduces module capacitance simulation. Especially concerning the tracking
of the DC current, the grid currents and the inner arm voltages, the nMPC outperforms the `MPC. Only regarding
the steady state circulating current amplitude, the difference between the two implementations is smaller than with
the larger module capacitance.

8 Conclusion
After enhancing the linear MPC scheme (`MPC) known from [12, 13] by adding time varying reference values for
the internal arm voltages, the prediction error with linearized long prediction horizon MPC algorithms applied to
MMCs is analysed. It is shown that the prediction error significantly depends on the individual system parameters
such as the sampling frequency as well as the inductance and capacitance values. To identify the performance ben-
efit of a more precise prediction model, using a nonlinear MMC model as a prediction model (nMPC) is proposed
and the resulting control performance is compared to the linearisation based `MPC using simulations.
Both of them perform very well. However, the nMPC’s performance is concluded to be better during steady state
(e.g. 50% less circulating currents and therefore lower losses) as well as during transients, where the DC/grid
current reference is tracked faster and more accurate than with the `MPC even if the constraints for the maximum
inner arm voltage are active. A drawback of the nMPC algorithm are its high computational demand due to the
non-linear optimisation problem that has to be solved in real time. This is only possible for relatively low sampling
frequencies and/or with expensive computation hardware. The computation time to solve the nonlinear optimisa-
tion problem is up to 6 times longer than for the linear one (for Matlab implementation: maximum 2.4s compared
to 0.4s). Therefore, this paper aimed to set a benchmark for the dynamic performance being achievable with MPC
utilizing a good matching prediction model with low prediction errors.
In future works, the focus should be finding more precise prediction models without using nonlinear terms. How-
ever, with the currently ongoing progress in computing performance, solving nonlinear optimisation problems in
real time might soon become a reasonable option even for power electronic systems. Another promising approach
is explicit MPC, where the optimisation problem is solved offline and the solutions are stored in large look up ta-
bles, such that almost no computational power is required for the real time implementation and also high sampling
frequencies are achievable.
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Fig. 4: Simulation results for the linearised `MPC and the nonlinear nMPC applied on the MMC system described in Table I.
References are shown as dotted lines, constraints (if existent) as horizontal dotted lines. The time instances, when the reference
changes occur are marked with vertical dashed lines. For some examples, the steady state tracking errors are noted.
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