

AV revolution? Limits and chances

Presentation

Author(s): Axhausen, Kay W. (D

Publication date: 2019-02

Permanent link: https://doi.org/10.3929/ethz-b-000328234

Rights / license: In Copyright - Non-Commercial Use Permitted

Axhausen, K.W. (2018) AV revolution? Limits and chances, *ITLS Leadership and Policy Seminar*, Sydney, February 2019.

.

AV revolution? Limits and chances

KW Axhausen

IVT ETH Zürich

February 2019

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich S Hörl for the work on AV simulation

F Becker for the new mode choice and mobility tool models

P Bösch, F Becker and H Becker for the cost estimates

Meyer, H Becker and P Bösch for the induced demand work

- Regulatory approval
 - Behaviour in dilemma situations
 - Restrictions to protect incumbents
 - Car manufacturers and service industries
 - Public transport industry
 - Taxi industry
- User acceptance
 - Reliance on taxi services (independence of third parties)
 - Acceptance of pooled taxi services
 - Replacement of the pride of ownership
 - Foregoing the mastery of the car

- Non-user behaviour
 - Social norms for playing with AVs
 - Encoding social norms into the AV logic

- User behaviour
 - Number and extent of empty rides
 - Use for butler services (delivery, early positioning, etc.)

Some scenarios for a 2030 Level 5 vehicle future

- Market structure (monopoly, oligopoly, dispersed)
- Role and extent of public transport
- System target (system optimum, user equilibrium)
- Type of traffic system manager
- Road space allocation
- Share of autonomous vehicles

- Oligopoly of fleet owners
- Public transport scaled down to the high capacity modes
- System optimum via dynamic tolls and parking charges
- Operators negotiate slots with each other
- Road space allocation tends towards the slow modes
- 100% share of mixed size autonomous vehicles for cost reasons
- 100% share of electric vehicles for climate reasons

What are the current general expectations?

- AV will reduce the generalised costs (time perception via increased comfort, monetary costs)
- AV will reduce them further through (pooled) taxis
- AV will increase the number of slots
- AV will redistribute time by reducing shopping and pickup/drop-off trips
- AV (vehicles/drones) will undermine the existing retail services
- AV will make most of current "public" transport superfluous
- AV will enable a new wave of urban sprawl

How to enable the mobility of low income travellers?

- Today
 - Public covers the fixed costs, especially for railways, but also busses
 - Across-the-board operational subsidies
 - Lack of means-testing
 - Low price season tickets/fares
 - Operational support via priority at signals and road space allocation
- Future, where each kilometre is tracked and chargeable
 - Income-adjusted rebates ?
 - Income and work-distance adjusted rebates ?
 - Fixed free kilometre budget ?

MFD data for one year (Wiedekon, Zürich)

ITLS 19

Capacity effects at the network level: MFD before/after

Jam density increases, due to a smaller acceptable gap at (near) v=0 and on average smaller cars (?)

Updated full cost/pkm estimate (current occupancy levels)

Updated full cost/pkm estimates (local values)

Updated full cost/pkm estimate (current occupancy levels)

Accessibility	Share of mobiles	0.61
	Number of trips	0.44
	Trips per hour	0.24
	Out-of-home time	0.10
	Total distance travelled	1.14
Transport price index	Share of mobiles	-0.06
	Number of trips	-0.19
	Trips per hour	-1.66
	Out-of-home time	-1.95
	Total distance travelled	-0.84

ITLS 19

2010 Switzerland general accessibility

Accessibility change for scenario 3/c with induced demand

MATSim: An open-source agent based simulation

ITLS 19

Calibration of the base scenario: Mode by distance

Results city only: Number of vehicles

ITLS 19

Results city only: Induced VKT

- More work on acceptance of AV
 - By age and education
 - By location of residence
- More work on future cost/prices by type of operator
- More work on the efficiency of the fleets (empty kilometres, parking, drop off/pick up, rebalancing, dispatch)
- More work on how to achieve system optimum with fleet operators
- More work on future 'public transport' ?

See also

www.ivt.ethz.ch

http://www.ivt.ethz.ch/forschung/ autonomes-fahren.html

- Hörl, S. (2016) Implementation of an autonomous taxi service in a multi-modal traffic simulation using MATSim. Master Thesis, Chalmers University of Technology, Göteborg.
- Maciejewski, M., J. Bischoff, S. Hörl and K. Nagel (2017) Towards a testbed for dynamic vehicle routing algorithms, Accepted for presentation at the 15th International Conference on Practical Applications of Agents and Multi-Agent Systems, Porto.
- Bischoff, J., M. Maciejewski (2017) Simulation of City-wide Replacement of Private Cars with Autonomous Taxis in Berlin. *Procedia Computer Science*, **88**, 237-244.