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Abstract

Deploying state-of-the-art CNNs requires power-hungry processors and off-chip memory. This precludes the im-
plementation of CNNs in low-power embedded systems. Recent research shows CNNs sustain extreme quantization,
binarizing their weights and intermediate feature maps, thereby saving 8-32× memory and collapsing energy-intensive
sum-of-products into XNOR-and-popcount operations.

We present XNORBIN, a flexible accelerator for binary CNNs with computation tightly coupled to memory
for aggressive data reuse supporting even non-trivial network topologies with large feature map volumes. Imple-
mented in UMC 65nm technology XNORBIN achieves an energy efficiency of 95 TOp/s/W and an area efficiency of
2.0 TOp/s/MGE at 0.8 V.

I. INTRODUCTION & RELATED WORK

The recent success of convolutional neural networks (CNNs) have turned them into the go-to approach for many complex
machine learning tasks. Computing the forward pass of a state-of-the-art image classification CNN requires ≈ 20GOp/frame
(1 multiply-accumulate corresponds to 2 Op) and access to 20M-100M weights [1]. Such networks are out of reach for low-
power (mW-level) embedded systems and are typically run on W-level embedded platforms or workstations with powerful GPUs.
Hardware accelerators are essential to push CNNs to mW-range low-power platforms, where state-of-the-art energy efficiency at
negligible accuracy loss is achieved using binary weight networks [2]. For maximum energy efficiency, it is imperative to store
repeatedly accessed data on-chip and limit any off-chip communication. This puts stringent constraints on the CNNs (weights
and intermediate feature map size) that can fit the device, limiting applications and crippling accuracy. Binary neural networks
(BNNs) use bipolar binarization (+1/-1) for both the model weights and feature maps, reducing overall memory size and bandwidth
constraints by ≈ 32×, and simplifying the costly sum-of-products computation to mere XNOR-and-popcount operations while
keeping an acceptable accuracy penalty relative to full-precision networks [3], also thanks to iterative improvement through
multiple BNN convolutions [4].

Recently, a few energy-efficient hardware accelerators for BNNs have been presented, but they rely on analog integration [5]
or analog in-memory optimization [6] and severely constrain the network size. We present XNORBIN, a fully-digital hardware
accelerator targeting a wide range of state-of-the-art fully-binary CNNs to address both the memory and computation energy
challenges for large-scale computer vision tasks like object recognition on ImageNet. The key operations of BNNs are 2D-
convolutions of multiple binary (+1/-1) input feature maps and binary (+1/-1) filter kernel sets, resulting in multiple integer-
valued feature maps. This convolutions can be formulated as many parallel XNOR-and-popcount operations with the potential
for intensive data reuse. The activation function and the optional batch normalization can then be collapsed to a re-binarization
on a pre-computed per-output feature map threshold value and can be applied on-the-fly. An optional pooling operation can
be enabled after the re-binarization. XNORBIN is complete in the sense that it implements all common BNN operations (e.g.
those of the binary AlexNet described in [3]) and supports a wide range of hyperparameters. Furthermore, we provide a tool for
automatic mapping of trained BNNs from the PyTorch deep learning framework to a control stream for XNORBIN.

II. ARCHITECTURE

A top-level overview of the chip architecture is provided in Fig. 1. The XNORBIN accelerator sequentially processes each
layer of the BNN.
Data flow: To support up to 7×7 kernel sizes, the processing core of XNORBIN is composed of an array (cf. Fig. 3) of 7 BPUs
(Basic Processing Units), where every BPU includes a set of 7 xnor_sum units. These units calculate the XNOR-and-popcount
result on 16 bit vectors, containing values of 16 feature maps at a specific pixel. The outputs of all 7 xnor_sum units in a
BPU are added-up, computing one output value of a 1D convolution on an image row each cycle. On the next higher level of
hierarchy, the results of the BPUs are added up to produce one output value of a 2D convolution (cf. Fig. 3). Cycle-by-cycle, a
convolution window slides horizontally over the image. The resulting integer value is forwarded to the DMA controller, which
includes a near-memory compute unit (CU). The CU accumulates the partial results by means of a read-add-write operation,
since the feature maps are processed in tiles of 16. After the final accumulation of partial results, the unit also performs the
thresholding/re-binarization operation (i.e. activation and batch normalization). When binary results have to be written back to
memory, the DMA also handles packing them into 16 bit words.
Data re-use/buffering: XNORBIN comes with three levels of memory and data buffering hierarchy. 1) At the highest level, the



main memory stores the feature maps and the partial sums of the convolutions. This memory is divided into two SRAM blocks,
where one serves as the data source (i.e. contains the current layer’s input feature maps) while the other serves as data sink (i.e.
contains the current output feature maps/partial results), and switching their roles as layer changes. These memories are sized
such that they can store the worst-case layer of a non-trivial network (implemented: 128 kbit and 256 kbit to accommodate binary
AlexNet), thus avoid the tremendous energy cost of pushing intermediate results off-chip. Additionally, a parameter buffer stores
the weights, binarization threshold, and configuration parameters and is sized to fit the target network, but may be used as a
cache for an external flash memory storing these parameters. Integrating this accelerator with a camera sensor would allow to
completely eliminate off-chip communication. 2) On the next lower level of hierarchy, the row banks are used to buffer rows of
the input feature maps to relieve pressure on the SRAM. Since these row banks need to be rotated when shifting the convolution
window down, they are connected to the BPU array through a crossbar. 3) The crossbar connects to the working memory inside
the BPUs, the controlled shift registers (CSRs, cf. Fig. 3), for the input feature maps and the filter weights. These are shifted
when moving the convolution window forward. All the data words in the CSRs are accessible in parallel and steered to the
xnor_sum units.
Programmability: XNORBIN supports CNNs of arbitrary depths by streaming the network parameters from an external memory.
However, the size of the BNN’s layer with the largest pair of input and output feature maps has to fit into the main memory
(i.e. 250 kbit for the actual implementation of XNORBIN). The succession of CNN layers is configurable. XNORBIN supports
adjustable feature map dimensions (height, width, channel length), as long as the volume of the largest intermediate feature map
fits in main memory. It can handle convolution windows of up to 7 × 7 and configurable stride. Furthermore, any convolution
layer with a filter size larger than 7× 7 would need to be split into smaller convolutions due to the number of parallel working
BPUs, xnor_sum units per BPU, the number of row banks, and the size of the CSRs, thereby introducing a large overhead.

III. IMPLEMENTATION RESULTS

The design has been implemented in UMC 65nm technology. Evaluations for the typical-case corner at 25 ◦C for 1.2V
and 0.8V, have yielded a throughput of 746 GOp/s and 244 GOp/s and an energy efficiency of 23.3 TOp/s/W and 95 TOp/s/W,
respectively. The system consumes 1.8 mW@0.8V from which 69% are in the memory, 14.6% in the DMA and crossbar and
13% in the BPUs. The key performance and physical characteristics are presented in Fig. 4. The implementation parameters
such as memory sizes have been chosen to support BNN models up to the size of binary AlexNet. A binary AlexNet pretrained
on ImageNet [3] has been used for evaluation purposes. The throughput and energy consumption per layer are shown in Tbl. 1.
The results are implicitly bit-true—there is no implementation loss such as going from fp32 to a fixed-point representation,
since all intermediate results are integer-valued or binary. We compare energy efficiency of XNORBIN to state-of-the-art CNN
accelerators in Tbl. 3. To the best of our knowledge, this is the first hardware accelerator for binary neural networks. The
closest comparison point are the FPGA-based FINN results [7] with a 168× higher energy consumption when running BNNs.
The strongest competitor is [2], which is a binary-weight CNN accelerator strongly limited by I/O energy, requiring 25× more
energy per operation than XNORBIN.

IV. CONCLUSION

Thanks to the binarization of the neural networks, the memory footprint of the intermediate results as well as the filter weights
could be reduced by 8-32×, making XNORBIN capable to fit all intermediate results of a simple, but realistic BNN, such as
binary AlexNet, into on-chip memory with a mere total accelerator size of 0.54 mm2. Furthermore, the computational complexity
decreases significantly as full-precision multiplier-accumulate units are replaced by XNOR and pop-count operations. Due to
these benefits—smaller compute logic, keeping intermediate results on-chip, reduced model size—XNORBIN outperforms the
overall energy efficiency of existing accelerators by more than 25×.
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Fig. 1: A simpli�ed schematic describing 
the organization of our archtiecture. 

Tbl. 2: Storage elements in memory hierarchy. Tbl. 3: Comparison of various state-of-the-art accelerators.

Fig. 4: Key �gures of XNORBIN.

Fig. 2: Schedule of a typical CNN layer. Binarization occurs at the completion of 
every 16th convolution output map. Partial sums for one 16-map output batch 
are calculated in steps of 16-map input slices. Time axis is not to scale.

Fig. 5: Floorplan of XNORBIN.

Fig. 3: A pipelined cluster of BPUs.

Tbl. 1: Layer-wise performance on AlexNet.
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