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Abstract
The topic of this thesis is the analysis and parallel implementation of the Fokker-
Planck-DSMC algorithm for the numerical simulation of rarefied gas flows.

The most established method for this task is the Direct Simulation Monte
Carlo (DSMC) technique. For gas flows in the near-continuum regime, however,
its computational cost becomes intractable due to the high number of collisions
of (computational) particles that need to be computed. The Fokker-Planck (FP)
algorithm, on the other hand, provides accurate numerical predictions for near-
continuum gas flows at computational cost independent of the number of collisions.
In this method, the trajectories of the computational particles evolve independently
along continuous stochastic paths. Since both DSMC and the FP algorithm are
stochastic particle methods sharing the same underlying structure, they may be
coupled seamlessly: the resulting FP-DSMC algorithm is capable of simulating
rarefied gas flows from the near-continuum to the fully rarefied regime.

One result of this thesis is a flexible, yet computationally efficient simulation
software, which uses both distributed- and shared-memory parallelization to exploit
state-of-the-art high-performance computer cluster technologies. It provides the
means to conduct computer simulations of flows of diatomic, rarefied gases in
complex domains, using many computational particles. The new implementation
is used to analyze the accuracy and performance of the FP-DSMC algorithm by
means of a variety of simulations. It is shown that given a limited amount of
computational resources, using FP-DSMC can provide more accurate results at
lower computational cost compared to pure DSMC.

Further, the implementation is capable of performing automatic local mesh
refinement, as well as parallel load balancing. This is achieved by choosing space-
filling curves (SFCs) as a fundamental concept for the ordering of the computational
mesh and particle data. SFCs not only allow for an elegant implementation of these
features, but have the additional benefit of ensuring cache-friendly computations.
The impact on computational performance of using different space-filling curves is
analyzed numerically, and the implementation is demonstrated to deliver accurate
simulation results for a relevant test case.

In order to maximize the efficiency gains due to the FP-DSMC algorithm, the
computational mesh should be locally adapted to the flow gradients. With this
goal in mind, a general theoretical framework for the estimation of mixed partial
derivatives of statistics of scattered data is developed based on the concept of kernel
density estimation. The new approach allows for the computation of flow gradients
locally in each cell of the mesh as a simple weighted sum of the particle states, and
may prove useful beyond the scope of rarefied gas flow simulations.





Zusammenfassung
Das Thema dieser Arbeit ist die Analyse und parallele Implementierung des Fokker-
Planck-DSMC Algorithmus zur numerischen Simulation von Gasströmungen mit
signifikanten mittleren freien Weglängen.

Die etablierteste Methode hierfür ist der Direct Simulation Monte Carlo (DSMC)
Algorithmus. Für Gasströmungen nahe dem Kontinuumbereich erfordert DSMC
jedoch die Berechnung grosser Anzahlen von Kollisionen unter den repräsentati-
ven Partikeln, bis hin zu prohibitiv hohem Rechenaufwand. Der Fokker-Planck
(FP) Algorithmus hingegen erlaubt genaue numerische Vorhersagen nahe dem
Kontinuumbereich, wobei der numerische Aufwand unabhängig von der Anzahl der
Kollisionen ist. Bei dieser Methode bewegen sich die Partikel entlang unabhängi-
ger, kontinuierlicher stochastischer Trajektorien. Da sowohl DSMC als auch FP
stochastische Partikelmethoden sind und dieselbe Grundstruktur aufweisen, lassen
sich beide Methoden nahtlos koppeln: Es resultiert der FP-DSMC Algorithmus,
welcher in der Lage ist, die Strömung von Gasen vom Kontinuum bis hin zum
kollisionslosen Grenzfall zu simulieren.

Ein Ergebnis dieser Arbeit ist eine flexible, aber dennoch recheneffiziente par-
allele Simulationsanwendung, die sowohl verteilten als auch gemeinsam genutz-
ten Hauptspeicher verwenden kann, was die Ausnutzung aktueller Hochleistungs-
grossrechner erlaubt. Die Anwendung ermöglicht die numerische Simulation der
Strömung von zweiatomigen Gasen unter geometrisch komplexen Randbedingungen,
wobei eine grosse Anzahl repräsentativer Partikel verwendet werden kann. Mit-
tels der neuen Implementierung wird die Genauigkeit und das Leistungsvermögen
des FP-DSMC Algorithmus anhand mehrerer Simulationen analysiert. Für den
Fall begrenzter Rechenressourcen wird gezeigt, dass FP-DSMC, bei geringerem
Rechenaufwand, genauere Resultate liefert als DSMC.

Weiterhin ist die Anwendung in der Lage, das numerische Gitter automatisch
lokal zu verfeinern, sowie die parallele Rechenlastverteilung dynamisch zu optimie-
ren. Dies wird durch die Verwendung raumfüllender Kurven zur Anordnung der
Daten des numerischen Gitters und der repräsentativen Partikel ermöglicht. Diese
Anordnung der Datenstrukturen erlaubt nicht nur eine elegante Implementierung
der oben genannten Merkmale, sondern gewährleistet darüber hinaus die effiziente
Nutzung des Zugriffsspeichers. Die Auswirkung der Wahl verschiedener raumfül-
lender Kurven auf die Rechenzeit wird analysiert und es wird für einen relevanten
Testfall gezeigt, dass die Implementierung genaue Ergebnisse liefert.

Um die Effizienzsteigerung durch die Nutzung des FP-DSMC Algorithmus zu
maximieren ist es erforderlich, dass das numerische Gitter anhand der Strömungs-
gradienten verfeinert wird. Mit dieser Zielsetzung wird die theoretische Grundlage
für die Schätzung gemischter partieller Ableitungen von Statistiken verteilter Da-
ten auf Basis der Kerndichteschätzung entwickelt. Der neue Ansatz erlaubt die
Berechnung der Strömungsgradienten lokal in jeder Zelle des numerischen Gitters
als einfache gewichtete Summe der Partikeldaten und könnte sich auch über die
numerische Strömungssimulation hinaus als nützlich erweisen.
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1 Preface
When imagining the physical nature of gas flows, the kinetic picture might not be
the first that comes to mind. The mean distance traveled by a molecule in a gas
between successive collisions may seem so insignificantly small that even a rather
precise mathematical description of gas flow phenomena should be able to safely
neglect this range of scales. In many situations, this continuum picture is adequate.
However, once the molecular mean free path becomes significant compared to the
relevant flow length-scales, adequate numerical predictions of the flow field need to
take into account the molecular nature of gas. Many real-world flows exhibit large
variations of the molecular mean-free path length. For example, as gas escapes
through a nozzle into vacuum, it becomes increasingly rarefied, and will quickly exit
the continuum regime. This situation occurs naturally in space vehicle thrusters
or physics experiments involving, e.g., mass spectrometry. In hypersonic flows
encountered during atmospheric reentry of spacecraft, the generated shock waves
have a thickness that may become small compared to the mean free path. For these
phenomena, the conventional Navier-Stokes-Fourier (NSF) description, on which
continuum flow solvers are based, is no longer valid. The relevant non-dimensional
parameter to characterize the degree of rarefaction is the Knudsen number (Kn).
Where Kn is large, the flow description needs to be directly based on the Boltzmann
equation, which describes the evolution of the fluid density in a high-dimensional
phase space under the influence of binary molecular collisions.

The most established numerical technique for solving the Boltzmann equation is
the Direct Simulation Monte Carlo (DSMC) method. Ever since its invention in the
early 1960s, DSMC has been used to make invaluable contributions to the field of
rarefied gas dynamics, from the investigation of fundamental physical phenomena
on the microscopic scale, to three-dimensional simulations of aerodynamic forces
on the entire international space station. However, the computational cost of
DSMC becomes prohibitive in the near-continuum regime. This creates a gap
in the range of Knudsen numbers for which accurate numerical predictions of
flows can be obtained with manageable computational effort. In other words, the
previously mentioned flow situations, which are characterized by a large Kn range,
are notoriously difficult to simulate numerically.

The Fokker-Planck (FP) method introduced by Jenny et al., and further de-
veloped at ETH’s Institute of Fluid Dynamics by Gorji et al., is a particle Monte
Carlo scheme that allows for computationally efficient simulations of rarefied gas
flows in the low to moderate Kn regime. Here, continuous stochastic processes
for the evolution of the gas state are integrated in time, which, for low Kn, may
be orders of magnitude faster than the explicit computation of binary collisions
necessary in DSMC. Moreover, it is easy to seamlessly couple DSMC and FP, since
both algorithms are stochastic particle methods and share the same fundamental
structure. This coupling is more consistent than the pairings in previous “hybrid”
algorithms that combine partial differential equation solvers and particle methods.
The combined Fokker-Planck-DSMC (FP-DSMC) algorithm has already been suc-
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1 PREFACE

cessfully applied to flows covering the whole Kn range, and combines the efficiency
of the FP method for small to moderate Kn with the accuracy of DSMC for large
Kn.

The goal of this thesis is the development of a parallel implementation of the
Fokker-Planck-DSMC algorithm that may be used to further analyze performance
and accuracy of FP-DSMC for relevant test cases, ranging beyond the purely aca-
demic. Several challenges are addressed: The developed simulation software should
be executable in parallel and perform well on state-of-the-art high-performance
computing clusters. Without changing the code, one would like to be able to simu-
late many different flow scenarios, from internal flows in micro-electro-mechanical
(MEMS) devices to external flows over space vehicles, not limited by the complexity
of the geometry. The implementation should be specifically suited for the simula-
tion of flows covering the whole Kn range, the staple of the FP-DSMC algorithm.
Last but not least, the software should be designed from the ground up with
future extensions in mind: adding a richer physical description and more numerical
capabilities should necessitate as few changes as possible to existing code.

1.1 Outline

With the above as a goal in mind, the remainder of this thesis is structured as follows:
Part I serves as a brief introduction to the field of rarefied gas dynamics. The key
aspects of the underlying statistical modeling of rarefied gases are presented, along
with a short description of the relevant algorithms for their numerical simulation.
A larger section is devoted to the review of the Fokker-Planck algorithm and its
coupling to DSMC. The aim of this section is to provide a unified overview of the
underlying assumptions and derivations of the FP method for diatomic gases.

The original research contributions of this Ph.D. project are presented in parts
II, III, and IV, which are largely identical to the corresponding articles published in
the Journal of Computational Physics [KJ17; KJ18a], and the recently submitted
manuscript [KJ18b], respectively.

Part II concerns the overall structure of the implementation, and the presented
test cases confirm the accuracy and performance of FP-DSMC in general and of
the developed code in particular.

In Part III, the extension of the code with capabilities for automatic mesh
refinement and parallel load balancing are discussed. Specifically, it is demonstrated
that using particle and mesh data structures ordered by space-filling curves (SFCs)
allows for a (relatively) easy yet efficient implementation of these features. The data
structures and algorithms presented are applicable to any particle-based simulation
method, beyond the scope of FP-DSMC. The impact of using different SFCs on
computational performance is studied, and again, relevant simulation test cases
demonstrate the accuracy and efficiency of the implementation.

Part IV is more theoretical in nature: motivated by the need for estimates of
gradients of flow variables to inform the automatic mesh refinement procedure, a
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general framework for the kernel-based estimation of arbitrary-order mixed deriva-
tives of statistics of scattered data is developed. The technique may prove useful
for other particle methods, from molecular dynamics to astrophysics simulations,
but also to other fields such as machine intelligence and data analysis tasks.

Based on the above, Part V describes current development steps, i.e., the
application of the gradient estimation procedure to local mesh refinement, as
well as the necessary algorithmic adjustments to use local variable time steps.
Additionally, the advanced Fokker-Planck position integration scheme presented by
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Part VI completes the thesis with a short summary and conclusions, as well as
an outlook on future algorithmic, modeling, and simulation tasks.
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Part I

Introduction
In the following, the necessary theoretical background for the subsequent chapters
is provided. The section follows standard textbooks in the field, in particular [Bir94;
Cer00; Str05], and the interested reader is referred to these works for more in-depth
explanations and derivations.

2 Statistical Modeling of the Dynamics of Rar-
efied Gases

At atmospheric conditions (p ≈ 101 kPa, T ≈ 293 K), one cubic meter of gas
contains about 2.5× 1025 molecules. Clearly, making numerical predictions about
the behavior of each of such a large number of molecules is not possible on current
or any envisioned computational platforms in the foreseeable future. Using 64-bit
numbers (commonly used to address computer memory), it is not even possible to
assign a unique integer index to each of the 2.5× 1025 molecules. Consequently,
the microscopic description of individual gas molecules and their interactions, and
the corresponding numerical methods (Molecular Dynamics), are limited to the
study of very small systems.

The other end of a scale measuring different modeling approaches by the amount
of detail provided, inversely related to their computational complexity (see Figure 1),
is represented by continuum methods: For many flows, it is completely sufficient to
treat the gas in the so-called hydrodynamic limit, and to consider partial differential
equations derived from the laws of conservation of mass, momentum and energy.
The modeled quantities are the macroscopic fields, such as the bulk velocity of
the fluid, its pressure, density, etc. Together with the assumptions (constitutive
relations) that stresses are a linear function of the gradient of velocity (law of
Navier-Stokes), and that molecular heat flux is a linear function of the gradient
of temperature (Fourier’s law), one obtains the celebrated Navier-Stokes-Fourier
(NSF) equations. Intuitively, one may say that the laws of Navier-Stokes and
Fourier are justified whenever enough collisions between the particles occur on
the considered time and length scale to effectively propagate information about
the gradients in the flow. The average distance traveled by a molecule between
successive collisions is the mean free path λ, and as long as the ratio of the mean
free path to the characteristic flow length scale L is small, the NSF equations
are valid. The dimensionless number given by this ratio is the Knudsen number
Kn = λ/L , and the NSF equations require Kn � 1 to hold.

However, important “real-world” applications exist where the Knudsen number
is not small and thus the NSF equations are no longer valid: for example, both
flows in micro electro-mechanical systems (MEMS), as well as hypersonic flows
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microscopic level
N ≈ 1023

kinetic level
Boltzmann equation

Monte Carlo simulation
N ≈ 106 . . . 109

macroscopic level
moment (fluid) equations

CFDMolecular Dynamics

more detailed

less computational cost

Figure 1: Three conceptual approaches to modeling gas flows, with corresponding
numerical methods, arranged by the level of detail provided, inversely related to
computational complexity. N is the number of particles.

encountered by space vehicles during atmospheric reentry, are characterized by
small values of the characteristic length L and thus moderate to large values of Kn.
The first due to the small dimensions of the device, the second due to the steep
gradients of the flow properties caused by strong shock waves. In flows with low
density, such as those encountered by space vehicles in orbit, or—on the laboratory
scale—in physics experiments or industrial processes carried out in near vacuum,
λ becomes large, and hence also Kn. Gas flows in which Kn ' 0.01 are said to
be in the rarefied regime. In these situations, the mathematical modeling, and
consequently the numerical simulation of gas flows, must take the molecular nature
of the fluid into account.

The “middle ground” between the microscopic description of each individual
molecule on the one hand, and the purely macroscopic picture provided by the
NSF equations on the other, is the kinetic theory of gases. Here, the “solution”
quantities are again the macroscopic fields. However, these are derived from the
single particle phase density, which provides information about the probability of
encountering a molecule with given state at a certain point in time and space. The
molecular ensemble is described on a statistical level. It turns out that modeling,
and in turn simulating, the evolution in space and time of the phase density is
sufficient to capture the effects attributable to the molecular nature of a gas, while
still being abstract enough to provide information about moderate to large systems
at manageable computational cost. The Fokker-Planck-DSMC algorithm, the topic
of this thesis, is a numerical tool developed for this purpose, with the aim of
expanding the boundaries of the set of problems tractable by computer simulation.

Some background on kinetic modeling, the evolution equation of the phase
density, and—most importantly here—the Fokker-Planck-DSMC algorithm, is given
in the following.
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2.1 Phase Density and Link to Macroscopic Quantities
Let ξ : Ω→ Rdx and ζ : Ω→ Rdc be absolutely continuous random vectors, where
Ω denotes the sample space. ξ and ζ describe the position of a given molecule in
dx-dimensional physical space with coordinate vector x ∈ Rdx , and dc-dimensional
state space with coordinate vector c ∈ Rdc , respectively. The state space coordinate
vector c has components c = (v, cint), where the vector v ∈ R3 corresponds to
velocity, and for complex molecules with dc,int internal degrees of freedom, the
vector cint ∈ Rdc,int collects the corresponding internal states. In this thesis, only
continuously varying (i.e., non-quantized) internal states are considered.

Define the (non-normalized) phase density f : Rdx×Rdc → R, such that, at time
t, the number of molecules in the infinitesimal volume-element of dx+dc-dimensional
phase space, located at point (x, c), is given by [Str05, Equation (2.1)]

dN = 1
m
f(x, c; t)dxdc, (1)

where m is the molecular mass. Note that here and in the following, the abbreviated
notation dx1 · · · dxn = dx11dx12 · · · dx1d1×· · ·×dxn1dxn2 · · · dxndn is used to denote
an infinitesimal volume-element of a d1 + · · ·+ dn-dimensional space, located at
point (x1, . . . ,xn).

The phase density may be factored into the gas density ρ(x) and the nor-
malized conditional state probability density function (PDF) fζ(c,x; t) satisfying∫
Rdc fζ(c,x; t)dc ≡ 1, i.e.,

f(x, c; t) = ρ(x; t)fζ(c,x; t). (2)

2.1.1 Moments of the Phase Density

The phase density may be linked to the familiar variables of continuum theory
via its moments, that is, weighted integrals of f over state space. Knowledge of
f , together with the ideal gas law, thus determines the field quantities: density ρ,
mean velocity v, pressure tensor pij, heat flux vector q, etc. The most frequently
used relations are stated below. In the following, the explicit time dependence is
dropped for brevity of notation.

The gas density ρ may be written as

ρ(x) =
∫
Rdc

f(x, c′)dc′. (3)

The ith component of the mean, or bulk, velocity vector of the gas flow is given
by

Ui(x) = 1
ρ(x)

∫
Rdc

cif(x, c′)dc′, i = 1, 2, 3, (4)

which in turn defines the thermal, or peculiar, velocity vector

V = v −U . (5)
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One obtains the pressure tensor

pij(x) =
∫
Rdc

V ′i (x)V ′j (x)f(x, c′)dc′, i, j = 1, 2, 3, (6)

from which the scalar pressure field p(x) follows as p = 1
3pkk. Note that here and

throughout, Einstein’s summation convention is implied, that is, quantities with
repeated indices are understood to be summed over the index range, unless stated
otherwise. Consequently, p = 1

3pkk ≡
1
3
∑3
k=1 pkk.

The trace-free part of the pressure tensor is the stress tensor

σij(x) = p〈ij〉 = pij − pδij, i, j = 1, 2, 3. (7)

Note that here and in the following, angular brackets around tensor indices indicate
the trace-free part of the respective tensor.

From the ideal gas law p = ρRT , where the (specific) gas constant R = kB
m

is
defined in terms of the Boltzmann constant kB ≈ 1.380 648 52× 10−23 J K−1 and
the molecular mass m, one may define the temperature T as

T (x) = p(x)
ρ(x)R, (8)

and the temperature in “energy units” as θ = RT .
Total energy density and average specific thermal energy per molecule are

calculated as

w(x) = wtr(x) + wint(x) = 1
2

∫
Rdc
‖c′‖2f(x, c′)dc′ (9)

and
ε(x) = εtr(x) + εint(x) = 1

ρ(x)

∫
Rdc

e(x, c′)f(x, c′)dc′, (10)

respectively, where
e(x, c) = 1

2‖V (x,v)‖2 + eint(cint) (11)

is the specific thermal energy of a molecule at position x in state c, comprised of
the thermal kinetic energy etr = 1

2‖V ‖
2 and the specific energy eint associated with

the internal state cint. Total energy density and average specific thermal energy per
molecule are related via w = ρε + 1

2ρ‖U‖
2. The average specific thermal energy

ε is frequently referred to as “internal” energy; here, the term “thermal” is used
instead to avoid confusion with the energy associated with the internal degrees of
freedom. Further, specific translational thermal energy εtr and the temperature in
energy units θ are related via θ = 2

3εtr.
The (translational) heat flux vector qtr is given by

qtr,i(x) = 1
2

∫
Rdc

Vi(x)‖V (x, c′)‖2f(x, c′)dc′, i = 1, 2, 3, (12)

and the flux vector of total thermal energy is given by

qi(x) = 1
2

∫
Rdc

V ′i (x)e(x, c′)f(x, c′)dc′, i = 1, 2, 3. (13)
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2.2 The Boltzmann Equation
In order to make predictions about the behavior of a gas, an equation for the
space-time evolution of the phase density f is required. Assuming that the gas
under consideration is dilute, i.e., λ� d, where d is the molecular diameter, and
considering only binary collisions of molecules with uncorrelated velocities as the
source of inter-molecular force transmission, the appropriate description is given
by the equation devised by Boltzmann in 1872. Following [Kre10], a sketch of the
derivation of the (generalized) Boltzmann equation is provided below: The general
equation governing the evolution of the phase density (in the absence of external
and long-range forces) may be written as

∂

∂t
f(x, c; t) + vi

∂

∂xi
f(x, c; t) = S(f(x, c; t)), (14)

where the left hand side describes the change of f due to the transport (convection),
and the right hand side—the collision operator S(f)—characterizes the influence
of inter-molecular forces mediated via collisions.

Any collision operator S should respect the conservation of mass, momentum
and energy, since these properties are obviously conserved in individual binary
collisions.

The collision operator for the Boltzmann equation (SBoltz.) may be divided into
two terms, S+

Boltz. and S−Boltz., which are proportional to the number of collisions per
unit time and volume from which molecules with state c emerge and are consumed,
respectively.

In the center-of-mass frame-of-reference, a binary interaction occurs in a two
dimensional plane, and may be parameterized by the impact parameter b, 0 ≤
b ≤ ∞, the distance of closest approach of the undisturbed trajectories of the
interacting particles in the center-of-mass frame-of-reference, and by the azimuthal
angle ε, 0 ≤ ε ≤ 2π, the angle of the collision plane w.r.t. a reference plane.

Let two interacting particles have states c and c′, respectively, and let the vector
g = v − v′ denote their relative velocity. Further, let the superscripted quantities
c?, c′?, g?, b?, ε? denote the same quantities, but for a pair of particles, that, after
the collision, will be in a state characterized by the un-superscripted quantities.
It is assumed that all particles obey Hamilton’s equations of motion, and thus,
by Liouville’s theorem, volumes of phase space along Hamiltonian trajectories are
conserved. In particular, for the differential 2× (dc + dx)-dimensional volumes of
phase space of the two-particle system before and after an interaction, the following
relationship holds [Kre10, Equation 5.95]:

g?b?db?dε?dc?dc′? ≡ gbdbdεdcdc′. (15)

Consider the situation depicted in Figure 2 ([Str05, Figure 3.4]): all particles
located in the differential phase space element dxdc′ will suffer collisions with all
particles located in the phase space cylinder of volume gdtbdbdε during the time
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2 STATISTICAL MODELING OF THE DYNAMICS OF RAREFIED GASES

Figure 2: [Str05, Fig. 3.4]. Parametrization of a binary collision.

interval dt. Their density in phase space is 1
m
f(x, c′), and the number of particles

in the aforementioned cylinder is 1
m
f(x, c)gdtbdbdεdc, giving the total number of

binary interactions in the considered differential volume of phase space as

dN− = 1
m2f(x, c)f(x, c′)gdtbdbdεdxdcdc′. (16)

From the above, the rate of depletion of the phase density f(x, c) follows by
integrating over all “test”-velocities c′ and over all possible values of the collision
parameters b and ε, viz.

S−Boltz. = 1
m

∫
f(x, c)f(x, c′)gbdbdεdc′. (17)

Using a similar reasoning for particles located in the phase space element dtdxdc?
×g?b?db?dε?dc′? , which interact to increase the phase density f(x, c), one finds

S+
Boltz. = 1

m

∫
f(x, c?)f(x, c′?)g?b?db?dε?dc′?. (18)

Note that the quantities g, g?, c? and c′? are all functions of c and c′, being linked
by the requirement that the considered interaction should have the specified final
state. Equation (15) allows SBoltz. to be written as

SBoltz. = S+
Boltz. + S−Boltz.

= 1
m

∫
(f(x, c?; t)f(x, c′?; t)− f(x, c; t)f(x, c′; t))gbdbdεdc′,

(19)

to yield, as a final result, the generalized Boltzmann equation for a dilute gas, viz.

∂

∂t
f(x, c; t) + vi

∂

∂xi
f(x, c; t) =

1
m

∫
(f(x, c?; t)f(x, c′?; t)− f(x, c; t)f(x, c′; t))gbdbdεdc′.

(20)
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2.2.1 Equilibrium Phase Density

The equilibrium phase density fE implied by Equation (20) is the unique function f
for which SBoltz.(fE) ≡ 0. From Equation (20), it follows that fE(x, c?)fE(x, c′?) ≡
fE(x, c)fE(x, c′), and hence also

ln fE(x, c?) + ln fE(x, c′?) ≡ ln fE(x, c) + ln fE(x, c′). (21)
One may prove [Kre10, Theorem 1] that any function satisfying the above relation
must be a linear combination of the conserved quantities mass, momentum and
energy, which implies

ln fE = A+B • v + Ce(c), (22)
with constants A, B and C, which may be determined by the macroscopic quantities
implied by fE. The equilibrium phase density follows as [Kre10, Equation (5.38)]

f|E(x, c) =
(

1
2πθ(x)

) 3
2 exp(−eint(cint)/θ(x))

Z(x) exp
(
−‖V (x,v)‖2

2θ(x)

)
, (23)

where Z =
∫

exp(−eint(c′int)/θ )dc′int is the partition function. For classical degrees
of freedom for which eint ≡ 1

2‖cint‖
2, one has Z = (2πθ)

dc,int
2 .

2.3 Half-Range Phase Density
Especially for the specification of boundary conditions, it is of interest to know
the phase density of particles crossing a directed area element dA = ndA with
unit normal vector n. Consider the situation depicted in Figure 3: the mass of
particles with states in the interval (c, c+ dc) crossing the area element dA during
the time interval dt, assuming that their velocity vectors v satisfy v • n < 0, is
dM+(x, c) = dtdA|v • n|f(x, c)dc. The total mass of all particles crossing the
directed area element dA with velocities v′ v′knk < 0 during the same time interval
is dM+(x) = dtdA

∫
|v′ • n|H(−v′ • n)f(x, c′)dc′, where H(x) is the Heaviside

function equal to 1 if its argument x satisfies x ≥ 0, and 0 else. The phase density
of particles crossing the area element dA with velocities v • n < 0 is thus

f+(x, c) = ρ(x)dM+(x, c)
dM+(x)

= ρ(x)H(−v • n) |v • n|f(x, c)∫
|v′ • n|H(−v′ • n)f(x, c′)dc′ .

(24)

In equilibrium, i.e., when f ≡ f|E, the denominator in Equation (24) reads [Bir94,
Equation (4.22)]

dM+(x)
dtdA =

∫
|v′ • n|H(−v′ • n)fE(x, c′)dc′

= ρ(x)
√
θ(x)
2π

[
exp

(
−s(x)2

)
+
√
πs(x)

(
1 + erf(s(x))

)]
,

(25)

where s(x) = U(x) • n
/√

2θ(x) .
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|v · n|dt

dAn

v

Figure 3: Illustration of phase space flux.

3 Numerical Algorithms
Various algorithms for the numerical simulation of Equation (20) exist: direct
simulation, or conventional numerical discretization of the equation, is rendered
prohibitively expensive in terms of computational resources for all but the simplest
cases by the presence of the dc + 2-dimensional integral in the collision term. The
problem is ameliorated by assuming a simplified form of the collision operator, the
most well-known being the Bhatnager-Gross-Krook model (BGK) (see, e.g., [Str05,
p. 46ff.]).

Equations for the transport of moments may be derived by multiplying Equa-
tion (20) by functions of the state variable and analytical integration over the state
space. The resulting conservation laws may be integrated in time much like the
NSF equations for hydrodynamics, see, e.g., the works of Torhillon, Struchtrup,
et al. [Str05; TAS03; TS04]. In order to evaluate integrals of the collision operator,
either the collision dynamics must be assumed to be governed by a certain molecular
model known as Maxwell molecules, or a certain functional form of f with known
moments is assumed. Alternatively, one may model these so-called production
terms as functions of known moments.

This thesis is concerned with a third class of methods described in more detail
below, namely stochastic particle algorithms.

3.1 Generic Particle Monte Carlo Algorithm
One of the most widely used approaches for the simulation of gas flow based
on the Boltzmann equation are particle Monte Carlo algorithms. As in moment
methods, the quantities of interest are the macroscopic fields, which, as stated
earlier, may be obtained as weighted integrals of the phase density. Particle Monte
Carlo methods approximate these integrals by finite sums of random samples of the
respecitve integrand, which results in the well-known convergence rate of the mean
squared error of these estimates of 1/N , where N is the number of samples. The
samples, in turn, are given by functions of the state-space vectors of an ensemble
of computational particles. Conceptually, each of these particles can be thought
of as representing a large number of physical molecules. As an ensemble, they
constitute a point-mass representation of the phase density. More formally, consider
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N computational particles, each with index l, (statistical) weight wl, random
position vector ξl and random state vector ζl. The ratio of statistical weight w
to molecular mass m, commonly referred to as FN = w/m (read: «eff-num»)
is an important parameter in particle Monte Carlo algorithms, comparable to a
“resolution” of f .

In the limit N →∞, the ensemble exactly represents the phase density, viz.

f(x, c) = lim
N→∞

N∑
l=1

wlδ
(
x− ξl

)
δ
(
c− ζl

)
. (26)

A generalized moment of f with weight function g(c) may be computed in terms
of its point-mass representation via

∫
g(c′)f(x, c′)dc′ = lim

N→∞

N∑
l=1

wlδ
(
x− ξl

)
g
(
ζl
)
. (27)

In the practical case of finite N , the simulated volume of physical space is disrcetized
into a finite number M of non-overlapping volume elements (“grid cells”) Ωj, each
with index j and volume |Ωj|. An approximation to the average value of the
moment Equation (27) in cell j is then given by

1
|Ωj|

∫
Ωj

∫
g(c′)f(x′, c′)dc′dx′ ≈ 1

|Ωj|
∑

l: ξl∈Ωj
g
(
ζl
)
. (28)

A more rigorous treatment of the above is deferred to Part IV of this thesis.
As in many numerical simulation algorithms, time is discretized into finite time

steps of length ∆t. In order to simulate the Boltzmann equation, the ensemble
of (computational) particles needs to be evolved in time such that the evolution
of the represented density is consistent with Equation (20), to the desired level
of approximation. The most basic requirements for consistent simulations are the
conservation of mass, momentum and energy over each time step. In a particle
algorithm, conservation of mass is trivial to fulfill by keeping the number and
masses of the particles constant (except at inflows and outflows). Further, the
treatment of the collision operator should lead to the correct equilibrium density.

The generic simulation algorithm for a stochastic particle method is listed as
Algorithm 1 and illustrated in Figure 4.
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Algorithm 1: Generic particle Monte Carlo
algorithm
1: initialize particle system {xl, ζl}, l = 1, . . . , N
2: for each timestep, do
3: sample particles at inflow (a)
4: for each particle p, do
5: move p (b) s.t. boundary conditions (c.1, c.2)

6: sort particles into grid cells
7: for each cell C, do
8: sample moments of particles in C
9: apply collision operator to particles in C (d)

Uin, Tin,

(a)

(b)

(c.1)

(c.1) (d)

ρin

Figure 4: Illustration of generic
particle Monte Carlo algorithm.

The remaining components to be discussed are the treatment of boundaries
and, most importantly, of the collision term.

3.2 Boundary Conditions

Several types of boundary conditions need to be treatable by the particle algorithm
to conduct meaningful simulations. The main difference to continuum methods
is that boundary conditions are defined by fixing the phase density of particles
entering the domain, instead of fixing values of the macroscopic fields and/or their
derivatives. The specification of a boundary condition will not directly control the
number of particles impinging on the boundary from within the simulation domain.
A short overview of the most important boundary conditions follows.

At “stream” boundaries, new particles are sampled at each time step according
to a prescribed phase density, while particles impinging from within the domain
are removed from the simulation. A special case is the vacuum boundary, where
the density is set to 0 and accordingly, no particles enter. The most common
stream boundary assumes contact of the domain with a reservoir of molecules in
equilibrium. Accordingly, density ρ, mean velocity vector U and temperature T
need to be specified. The appropriate density to sample is the half-range equilibrium
density given in Equation (25). A higher-order description is possible by assuming a
Grad-type density, which additionally permits the specification of pressure tensor pij
and heat flux vector q, for a total of 13 parameters. In the present implementation,
the algorithm due to Garcia and Wagner [GW06] is used to generate samples from
the half-range Maxwellian. Samples from the Grad-type density are generated
according to the algorithm due to Stephani et al. [SGV13]. Recall the derivation of
Equation (24): the mean number of computational particles with phase density f
and weights w to enter the domain through a boundary element of area A during a
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time interval ∆t is given by

∆N̄ = m

w
A∆t

∫
|v′ • n|H(−v′ • n)f(x, c′)dc′. (29)

The actual number of computational particles that enter during a given interval
(t, t+ ∆t) is a random number distributed according to the Poisson distribu-
tion [TG05]. Accordingly, during a simulation, at each time step and for each
inflow are element, the number N of new particles to initialize is sampled from the
probability mass function

fN(n) = 1
n!
(
∆N̄

)n
e−∆N̄ . (30)

At solid boundaries, particles should be prevented from penetrating the bound-
ary, and change their state according to the specific wall model. The simplest
wall model assumes perfectly elastic interactions of molecules with the wall, i.e.,
no energy or parallel momentum exchange takes place. This means that particles
impinging on the wall are reflected specularly. Specifically, the only change to their
state vector is the reversal of the wall normal component of their velocity. Specular
boundary interaction is illustrated in Figure 5. One may conveniently implement
this reversal in terms of a Householder reflection, that is, given the wall-normal
unit vector n, the particle velocity vector v is updated as

v ← v − 2(v • c)n. (31)

Conversely, a perfectly thermalizing wall causes diffuse reflection: here, particles
impinging are assumed to undergo many collisions with the wall before reemerging
with a state sampled from the prescribed PDF of the wall (typically a Maxwellian
with given wall temperature). Here, the velocity of a particle after interaction with
the boundary is assumed to be uncorrelated to its incoming velocity. The diffuse
boundary is equivalent to an inflow boundary with zero mean velocity, oriented
in the direction of the surface normal, where one particle is generated for each
impinging one. Diffuse boundary interaction is illustrated in Figure 6.

A Maxwell boundary condition may be viewed as a linear combination of specular
and diffuse reflection: one specifies an accomodation coefficient α, 0 ≤ α ≤ 1,
which, on interaction of a particle with the boundary, defines the probability for
diffuse reflection. Specular reflection occurs with probability 1− α.

Finally, it is often convenient to have periodic and symmetry boundary condi-
tions, to make use of symmetries in the simulated problem and thereby reduce the
computational cost. Conveniently, a symmetry boundary is equal to a specular wall,
since instead of reflecting the wall-normal component of the impinging particle’s
velocity, the action of the boundary may equivalently be thought of as consuming
the impinging particle, while at the same time, the corresponding identical virtual
particle with “mirrored” velocity crosses into the domain. Periodic boundary
conditions are always proscribed on two parallel planes. When a particle impinges
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on one plane, its state is left unaltered by the interaction, and it is simply displaced
to the corresponding location on the other plane.

v

n

v∗

Figure 5: Specular boundary.

Twall

v

v∗

Figure 6: Diffuse boundary.

3.3 The Direct Simulation Monte Carlo (DSMC) Method
The most prominent particle Monte Carlo algorithm for the simulation of rarefied
gas flows is certainly the Direct Simulation Monte Carlo (DSMC) method introduced
by Graeme Bird [Bir94]. One of the fundamental assumptions underlying DSMC is
that, for time steps smaller than the mean collision time, one may integrate the
advection and collision terms of the Boltzmann equation sequentially rather than
simultaneously. During a time step of length ∆t, first, particle states are updated
assuming constant position, that is, one solves a spatially homogeneous relaxation
problem. Next, particle positions are updated assuming constant state, that is,
collision-less flow is assumed.

In the absence of external forces, the advection term is trivial to handle, since
all particles change their position simply according to their respective velocity. For
particle with index l, position vector ξl and velocity vector µ, the position update
reads ξl(t+ ∆t) = ξl(t) + µl(t)∆t.

To simulate the relaxation process, inter-particle collisions are simulated in a
statistical way. In each grid cell, assumed to be smaller than the local mean free
path, an appropriate number of particle pairs is selected for collision. For each pair,
the relevant collision plane angle and impact parameter are chosen randomly. Next,
the particle velocities are updated according to the dynamics of binary collisions
imposed by the chosen inter-molecular potential, subject to the sampled collision
parameters. Thus, DSMC conserves momentum and energy on a per-collision basis.

An attractive feature of DSMC is that various physical models for particle
interactions, internal energy transfer, that is, inelastic collisions, etc., are relatively
easy to implement, since the dynamics of the computational particles correspond
directly to those of real molecules, albeit in a statistical sense. In this thesis,
the Larsen-Borgnakke model is used to simulate inelastic collisions, see [Bir94,
Chapters 11.3 and 11.4] for details.
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The DSMC procedure may be directly derived from the kinetic master equation,
and was proven to converge to the Boltzmann equation in the limit of infinite
particles and infinitesimal time steps [IR88]. A crucial step in the algorithm is to
determine the correct number of collisions to compute. Since the probability of a
pair of particles to collide depends on their relative velocity, in a cell containing NC
computational particles, a naive algorithm would have to evaluate all NC(NC − 1)/2
relative velocities. The algorithmic complexity may be reduced to O(NC), if an
acceptance rejection scheme is used instead: first, an upper bound for the collision
frequency ν is determined as

νmax = n(NC − 1)/2 × (σT‖g‖)max, (32)

where n is the number density in the cell, ‖g‖ is again the modulus of the relative
velocity vector, and σT = πd12(‖g‖)2 is the total collision cross-section in which d12
is the effective molecular diameter, which, in general, may depend on ‖g‖. Next,
a corresponding number N sel

C of potential collision pairs are randomly selected
among the particles in the cell. For each selected pair, the collision is only actually
computed if the ratio of the product of actual relative velocity and collision cross-
section of the pair to the maximum value is larger than a random number sampled
uniformly from the interval [0, 1). Two alternatives for the computation of N sel

C are
common, the Majorant Frequency (MF) scheme, and the No Time Counter (NTC)
method:

Majorant Frequency Scheme. In this scheme [IR88], N sel
C is determined by

successively sampling the inter-collision times τ imin from the appropriate exponential
distribution, until the sum of sampled times exceeds the time step size. The number
of select collision pairs then corresponds to the number of sampled times less one,
i.e.,

N sel
C = argmin

N

N∑
i=1

τ imin, τ imin ∼ Exp(νmax), s.t.
N+1∑
i=1

τ imin > ∆t. (33)

The remaining time ∆t−∑N
i=1 τ

i
min is carried over to the next time step.

No Time Counter Method. The most widely used method for computing the
number of selected pairs is the no time counter method invented by Bird [Bir94].
In its most recent form [Bir07], the number of pairs selected is simply computed as

N sel
C = νmax ×∆t. (34)

Instead of sampling inter collision times, here, the mean value of the exponential
distribution is used instead. If the number NC of particles in the cell is larger than
≈ 10, the results produced by MF and NTC agree [IR88]. Note that, due to the
stochastic nature of DSMC, NC ' 20 is recommended regardless of which DSMC
“flavor” is used.
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3.4 The Fokker-Planck (FP) Algorithm

In situations where the mean free path is still significant, but smaller than the
relevant flow length scales, DSMC becomes computationally very expensive, since
the discrete nature of collisions needs to be resolved. The basic idea of the Fokker-
Planck (FP) algorithm for the simulation of rarefied gas flows is to alleviate this
deficiency by modeling the particle velocity evolution as a continuous stochastic
process. Instead of having to resolve the discontinuous “jumps” in velocity during
binary collisions, a continuous stochastic process may be integrated over much
larger time scales.

Since the publication of the original FP model and simulation algorithm by
Jenny et al. [JTH10] for monatomic gases, the method has undergone numerous
developments and extensions. By extending the original linear drift model to a cubic
model, Gorji et al. [GTJ11] improved the method to capture the correct evolution
of heat fluxes. Later, Gorji and Jenny generalized the model to treat mixtures of
monatomic gases [GJ12], and presented a more efficient algorithm [GJ14]. For this
thesis, the model for diatomic gas flow introduced by the same authors [GJ15] was
implemented. Development on the model is still ongoing, with the latest modi-
fication concerning improved accuracy for non-Maxwellian interaction potentials
and the adherence to the H-theorem [GT16]. Since there exist many incremental
changes to the method, the aim of this section is to provide a consistent derivation
and summary of the parts of the “diatomic cubic” FP model and algorithm neces-
sary for implementation. The subsequent sections follow, in part, Section 2 of the
article [KJ17], as well as the original publications by Gorji, Jenny, et al. mentioned
above.

3.4.1 The Fokker-Planck Model for the Phase Density Evolution

The Fokker-Planck model for rarefied gas flow assumes that the temporal evolution
of f is governed—in the absence of external forces—by the following Fokker-Planck
equation: (

D

Dt
+ ∂

∂ck

{
Ak −

1
2
∂

∂cl
Dkl

})
f = 0, (35)

where the operator
D

Dt
= ∂

∂t
+ vi

∂

∂xi
(36)

signifies the convective derivative, and the vector A(x, c, t), as well as the positive
definite tensor D(x, c, t) denote drift and diffusion coefficients, respectively. This
“drift and diffusion” ansatz is justified when enough collisions occur per unit of
space and time, such that their individual effects on f are negligible, while their
collective effect may be modeled stochastically.

In terms of Equation (15), the model assumption is that the Fokker-Planck
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operator

SFP =
(
∂

∂ck

{
−Ak + 1

2
∂

∂cl
Dkl

})
f (37)

is a reasonable approximation to the full Boltzmann collision operator SBoltz..
Specifically, in the FP method, consistency with the Boltzmann collision operator
is enforced on the level of moments:

For notational convenience, let the operator 〈·〉 denote the generalized expecta-
tion w.r.t. the phase density, i.e., let

〈g(c)〉 ≡
∫
g(c′)f(·, c′)dc′ (38)

denote a generalized moment of f . An evolution equation for 〈g(c)〉 may be
obtained by multiplying Equation (15) by g and integrating over the state space,
that is,

∂

∂t
〈g(c)〉+ ∂

∂xk
〈g(c)vk〉 =

∫
g(c′)S(c′)dc′︸ ︷︷ ︸

Πg

, (39)

where Πg is referred to as the “production term” of the quantity 〈g〉. The basis
of the FP method is to choose A and D such that, under certain assumptions,∫
g(c′)SFP(c′)dc′ =

∫
g(c′)SBoltz(c′)dc′ holds for relevant g.

Some relevant production terms of the Boltzmann equation, in the absence of
internal degrees of freedom, i.e., with dc = 3, assuming Maxwellian interaction
potentials (which have infinite range), are given in [Str05, Equation 5.23], viz.

Π1 ≡ 0 (mass conservation) (40a)
Πvi ≡ 0 (momentum conservation) (40b)

Πe(c) ≡ 0 (energy conservation) (40c)

ΠV〈iVj〉 = − p
µ
σij (stress tensor) (40d)

Π‖V ‖2Vi = −4
3
p

µ
qi, (tr. heat fluxes) (40e)

where µ = µ(T ) is the viscosity, which, for power law potentials, takes the form
µ(T ) = µref(T/Tref)ω with parameter ω and where µref is the viscosity at temperature
Tref. While the above expressions for the production terms are exact for Maxwellian
molecules, most simulations are conducted using different molecular models, such as
hard spheres (HS) or the variable soft sphere (VSS) model, cf. [Bir94, Sections 2.5–
2.10]. In these cases, the Equations (40) are used as an approximation, together
with the correct viscosity µ(T ). Additionally, a first-order correction based on a
Grad-type density assuming hard spheres for ΠV〈iVj〉 [GT17; GT12] is used, viz.

Π∗V〈iVj〉 = − p
µ

(
σij −

1
28
Rij

θ

)
, (41)

19



3 NUMERICAL ALGORITHMS

where Rij = 〈‖V ‖2ViVj〉 − 1
3〈‖V ‖

4〉δij − 7θσij.
In the general case of molecules with internal degrees of freedom, closed form

expressions for the Π terms do not exist, and approximations are again obtained by
assuming a Grad-type density, see [GJ13], as well as [McC70], as cited in [GJ13].

The production terms implied by the Fokker-Planck operator, with generic
coefficients A and D, may be evaluated by (repeated) integration by parts to bring
all terms containing derivatives into divergence form, i.e.,

∫
∇c(g̃(c,A, D)f)dc,

which, under the usual assumption f → 0 as any ci → ±∞, vanish due to the
divergence theorem.

The resulting production terms read
ΠFP

1 = 0 (mass) (42a)
ΠFP
vi

= 〈Ai〉 (momentum) (42b)

ΠFP
e(c) = 〈(∂cke)Ak〉+ 1

2〈(∂ck∂cle)Dkl〉 (energy) (42c)

ΠFP
V〈iVj〉

= 〈AiVj〉+ 〈AjVi〉+ 1
2(〈Dij〉+ 〈Dji〉)

− 1
3(2〈AsVs〉+ 〈Dss〉)δij

(stress tensor) (42d)

ΠFP
‖V ‖2Vi

= 2〈AsVsVi〉+ 〈AiVsVs〉+
〈ViDss〉+ 〈VsDsi〉+ 〈VsDis〉,

(tr. heat fluxes) (42e)

where i, j, s = 1, 2, 3 and k, l = 1, . . . , dc.

3.4.2 The Cubic Fokker-Planck Model for Diatomic Gas Flows

Using a cubic ansatz for Atr,i, the FP evolution of the moments of the phase density
up to the heat fluxes can be made consistent with the evolution implied by the
Boltzmann equation for Maxwellian molecules [GTJ11; GJ15], in the case of a
monatomic gas, and for a Grad-type density in the case of a gas with internal
degrees of freedom [GJ13].

In this thesis, the model presented in [GJ13] is employed for the simulation of
flows of diatomic gas with two rotational and two vibrational internal modes, for a
total state space dimension dc = 7. The components of the state space coordinate
vector c ∈ R7 are designated

c =
(
v1 v2 v3 ω1 ω2 χ1 χ2

)>
. (43)

The internal degrees of freedom are assumed to be normalized such that the specific
internal thermal energy of a particle in state c may be calculated as

eint(c) = erot(ω) + evib(χ) = 1
2‖ω‖

2 + 1
2‖χ‖

2. (44)

Consequently, the corresponding equilibrium phase density Equation (23) reads

f|E(x, c) = ρ(x)
(

1
2πθ(x)

) 7
2

exp
(
−‖V (x,v)‖2 + ‖ω‖2 + ‖χ‖2

2θ(x)

)
. (45)
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The drift coefficient vector and the diffusion coefficient tensor take the following
generic forms:

A(x, c, t) =
(
Atr,1 Atr,2 Atr,3 Arot,1 Arot,2 Avib,1 Avib,2

)>
, (46)

D(x, t) = diag
((
D2

tr D
2
tr D

2
tr D

2
rot D

2
rot D

2
vib D

2
vib

))
. (47)

Note that the diffusion is chosen to not explicitly depend on the state coordinate c.
For the translational modes, a cubic ansatz for the drift is made:

Atr,i = Γi − νVi + c̃irVr + γiVrVr + ΛViVrVr, (48)

with coefficients c̃ ∈ R3×3, c̃ij ≡ c̃ji, Γ,γ ∈ R3 and Λ ∈ R, and where the inverse
relaxation time ν is given by ν = p/2µ as a function of viscosity µ and pressure p.
This choice of ν gives the correct relaxation of stresses for a linear translational
drift, assuming Maxwellian molecules. The negative scalar Λ is to stabilize the
drift and should vanish in equilibrium, a condition satisfied by the ad-hoc choice

Λ = − ν

(u2)4

∣∣∣∣det
(
u0
ij −

1
3u

2δij

)∣∣∣∣, (49)

where here and in the following, for convenience of notation, the abbreviation

usi1...ik = 〈‖V ‖sVi1 · · ·Vik〉 (50)

is used. Note that usij ≡ usji and usrr ≡ us+2.

For the internal degrees of freedom, the drift is modeled by a linear ansatz, i.e.,

Arot,i = −1
2νrotωi,

Avib,i = −1
2νvibχi

i = 1, 2. (51)
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Production Terms implied by the Cubic Model. Assuming A to be in the
form given by Equations (48) and (51), the production terms (Equation (42)) read

ΠFP
vi

= 〈Atr,i〉 = ρΓi + γiu
2 + Λu2

i (momentum) (52a)
ΠFP
ckck

= 2〈Akck〉+ 〈Dkk〉
= − 4νρεtr + 2c̃sru0

rs + 2γsu2
s + 2Λu4

− 2νrotρεrot − 2νvibρεvib
+ ρ

(
3D2

tr + 2D2
rot + 2D2

vib

) (energy) (52b)

ΠFP
V〈iVj〉

= 〈Atr,iVj〉+ 〈Atr,jVi〉 −
2
3〈AsVs〉δij

= − 2νu0
ij + c̃iru

0
rj + c̃jru

0
ri

+ γiu
2
j + γju

2
i + 2Λu2

ij

− 2
3
(
−νu2 + c̃sru

0
rs + γsu

2
s + Λu4

)
δij

(stress tensor) (52c)

ΠFP
‖V ‖2Vi

= 2〈Atr,sVsVi〉+ 〈Atr,iVsVs〉
= 2Γsu0

si + Γiu2 − 3νu2
i + 2c̃sru0

rsi + c̃iru
2
r

+ 2γsu2
si + γiu

4 + 3Λu4
i ,

(tr. heat fluxes) (52d)

where wrot = 1
2〈‖ω‖

2〉 and wvib = 1
2〈‖χ‖

2〉 denote the density of rotational and
vibrational energy, respectively.

Evolution of Internal Energy. The evolution of rotational and vibrational
energy is assumed to be governed by the Landau-Teller approximation [GJ13;
NT08], i.e., homogeneous relaxation of average specific thermal rotational and
vibrational energy are assumed to follow simple exponential decays, that is,

d
dtεrot(t) = −νrotεrot(t) + νrotε

∗
rot|E (53)

d
dtεvib(t) = −νvibεvib(t) + νvibε

∗
vib|E, (54)

where ε∗rot|E and ε∗vib|E denote the respective equilibrium values. For the rotational
modes, the classical value εrot|E∗ = εrot|E = θ, which is implied by Equation (45),
is used, while for the vibrational modes, ε∗vib|E is set to the equilibrium average
specific energy in a heat bath of quantized harmonic oscillators, viz.

ε∗vib|E = Lθ (55)

with L = (ϑv/T )
exp(ϑv/T )− 1 , (56)

where ϑv = hν0/kB is the characteristic vibrational temperature, given in terms of
Planck’s constant h and the fundamental frequency ν0 of the diatomic molecule’s
vibrational mode.
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Comparing Equations (53) and (42c) leads to the following diffusion coefficients:

D2
rot = νrotθ, (57)

D2
vib = νvibLθ. (58)

The inverse relaxation times νrot = νcoll/Zrot and νvib = νcoll/Zvib are propor-
tional to the mean collision frequency νcoll = 4

π
p
µ
and the rotational and vibrational

collision numbers Zrot and Zvib, respectively. The model equations for Zrot and
Zvib are [Par59]

Zrot = Z∞rot

1 +
√
π3

2

(
T ∗

T

) 1
2

+
(
π2

4 + π

)(
T ∗

T

)−1

(59)

and Zvib =
(
C1

T ω

)
exp

(
C2T

− 1
3
)
, (60)

respectively, where Z∞rot, T ∗, C1 and C2 are model constants and ω is the exponent
in the viscosity power law µ = µref(T/Tref )ω.

It is worth noting that, while the above choices for νvib and Dvib lead to the
desired Landau-Teller relaxation rate of vibrational energy, conserving the energy
density w = 1

2〈‖v‖
2〉+ 1

2〈‖cint‖
2〉 will still lead to the classical equilibrium density

given by Equation (45). To account for this discrepancy at inflows and diffusive
boundaries, particles are generated here according to the non-equilibrium joint
normal density

f|E∗(c) = ρ
( 1

2πθ

) 5
2

exp
(
−‖V ‖

2 + ‖ω‖2

2θ

)( 1
2πLθ

)
exp

(
−‖χ‖

2

2Lθ

)
, (61)

instead of using Equation (45).

Constitutive Equations. The coefficients Γ, c̃, γ and Dtr are determined from
a system of constitutive equations, derived by comparing the production terms
implied by the FP operator to those derived from the Boltzmann equation.

Conservation of momentum, i.e., comparing Equations (40b) and (52a), imme-
diately yields

Γi = −1
ρ

(
γiu

2 + Λu2
i

)
. (62)

The desired production term for the stress tensor evolution is enforced by
comparing Equations (41) and (52c), viz.

− 2νu0
ij + c̃iru

0
rj + c̃jru

0
ri + γiu

2
j + γju

2
i + 2Λu2

ij

− 2
3
(
−νu2 + c̃sru

0
rs + γsu

2
s + Λu4

)
δij

!= Π∗V〈iVj〉 .
(63a)

A solution to Equation (63a) may be found by requiring

c̃iru
0
rj + c̃jru

0
ri + γiu

2
j + γju

2
i + 2Λu2

ij
!= Π∗V〈iVj〉 + 2νσij. (63b)
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Since the right hand side of Equation (63b) has zero trace, it follows that

c̃sru
0
rs + γsu

2
s + Λu4 ≡ 0, (64)

and consequently, Equation (63b) is recovered from Equation (63a).
Inserting Equations (57), (58) and (64) into Equation (52b) and comparing to

Equation (40c), i.e., enforcing conservation of energy, yields the diffusion coefficient
for the translational degrees of freedom as

D2
tr = 2

3
(
2νεtr + νrot

(
εrot − ε∗rot|E

)
+ νvib

(
εvib − ε∗vib|E

))
, (65)

where, as before, the rotational and vibrational stationary average specific thermal
energies are ε∗rot|E = θ and ε∗vib|E = Lθ, respectively.

The remaining three equations to close the system for the 9 unknowns c̃, γ
are provided by comparing the FP production term for the translational heat flux
vector, Equations (52d), together with the previous result for the coefficients Γi,
Equation (62), to the corresponding term derived from the Boltzmann equation,
i.e.,

− 3νu2
i + 2c̃sru0

rsi + c̃iru
2
r

+ 2γs
(
u2
si −

1
ρ
u0
siu

2
)

+ γi

(
u4 − 1

ρ
u2u2

)

+ Λ
(

3u4
i − 21

ρ
u2
su

0
si −

1
ρ
u2
iu

2
)

!= Π∗‖V ‖2Vi
.

(66)

For a diatomic gas, under certain assumptions (cf. [GJ13] and references therein
for details), Π∗‖V ‖2Vi

can be derived as

Π∗‖V ‖2Vi
= −2

3
p

µ
u2
i + 5

3(νrotqrot,i + νvibqvib,i)−
5

9R(νrotcrot + νvibcvib)u2
i , (67)

where qrot,i = 1
2〈‖ω‖

2Vi〉, qvib,i = 1
2〈‖χ‖

2Vi〉 are the flux vectors of rotational
and vibrational energy, respectively, and the specific heats crot and cvib are given
by [Kre10, Equation (5.44)]

crot = R

and cvib = R

(
(ϑv/2T )

sinh(ϑv/2T )

)2

.
(68)

Equations (63b) and (66) together form a 9 × 9 linear system of equations,
provided in Appendix A.1, which, at each time step and in every cell, is solved
numerically for the vector of unknowns(

c̃> γ>
)

=
(
c̃11 c̃12 c̃13 c̃22 c̃23 c̃33 γ1 γ2 γ3

)
(69)
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with the quantities ρ, usi1...in , θ, εrot, εvib, etc. estimated in terms of (functions of)
ensemble averages of the particles located in the respective cell.

To summarize, the cubic Fokker-Planck model for rarefied diatomic gas flows,
due to Gorji and Jenny [GJ13], subject to the system of constitutive equations, has
the following drift and diffusion coefficients:

Atr,i = − νVi + c̃irVr

+ γi
(
VrVr − u2

/
ρ
)

+ Λ
(
ViVrVr − u2

i

/
ρ
)

D2
tr = 2

3

(
2νεtr + νrot(εrot − θ)

+ νvib(εvib − θL)
)

Arot,j = −1
2νrotωj D2

rot = νrotθ

Avib,j = −1
2νvibχj D2

vib = νvibθL

i, r = 1, 2, 3 j = 1, 2.

(70)

3.4.3 Itō Processes

Using Itō calculus, the evolution of f according to Equation (35) can be transformed
into an equivalent system of stochastic differential equations (SDEs), see [Gar09,
Chapter 5]. The SDEs govern the evolution of the random phase-space vector
(ξ, ζ) ∈ R3+7 with components

ζ =
(
µ1 µ2 µ3 Ω1 Ω2 Ξ1 Ξ2

)>
. (71)

Note that the probability density (PDF) of ζ, fζ , is, by definition, related to the
full phase space density f as

fζ(c;x, t) = 1
ρ(x, t)f(c,x; t). (72)

The SDEs governing the evolution of ζ and ξ read as follows:

dζl = Al(ζ(t), t)dt+ λlk(t)dWk

and dξi = µidt,
(73)

where k,m, l = 1, . . . , dc, i = 1, 2, 3, λlm is the square root of the diffusion matrix
Dlm = λlkλkm, and dWm is an increment of a stochastic Wiener process Wm(t),
satisfying E[dWj] ≡ 0 and E[dWldWm] ≡ δlmdt. Define the fluctuating velocity
vector M = µ − Eζ [µ] = µ − U , with corresponding phase space coordinate
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vector V . For the cubic model given by Equations (70), the Equations (73) read

dµi = dMi =
[
−νMi + c̃isMs + γi

(
MsMs − u2

/
ρ
)

+Λ
(
MiMsMs − u2

i

/
ρ
)]

dt+DtrdWi,

dΩj = −1
2νrotΩjdt+DrotdWj,

dΞj = −1
2νvibΞjdt+DvibdWj,

and dξi = µidt,

(74)

where i, s = 1, 2, 3, and j = 1, 2.

3.4.4 Solution Algorithm

The exact correspondence of the FP equation to the Langevin equation for individual
phase-space point-masses given above (Equation (74)) is the main advantage of
particle simulations based on the FP model compared to DSMC. These continuous
stochastic processes may be accurately integrated in time, which can be done
without having to honor collisional space and time scales as in DSMC. Instead,
it is sufficient to resolve the gradients of the macroscopic properties, in order to
justify the assumption that the values of the coefficients in the FP model remain
constant along a particle’s trajectory during a given time step.

In order to simulate the evolution of a finite ensemble of computational particles
with indices l and state vectors ζl according to Equations (74), the updated state
vector ζl, n+1 = ζl(t = tn+1 = tn + ∆t) is approximated under the above assumption
that the macroscopic coefficients remain fixed during the time step.

First consider the translational degrees of freedom: Let the non-linear part of
the drift be abbreviated as

Ni = c̃isMs + γi
(
MsMs − u2

/
ρ
)

+ Λ
(
MiMsMs − u2

i

/
ρ
)
, (75)

so that the corresponding SDE for M may be written as

dMi = [−νMi +Ni]dt+DtrdWi. (76)

Itō’s lemma states the following [Øks03, Theorem 4.2.1]: Let

dXi(t) = µi(t)dt+ σidWi(t) (77)

be an n-dimensional Itō process. Let g(t,x)> =
(
g1(t,x) . . . gp(t,x)

)
be a C2 map

[0,∞)× Rn → Rp. Then the process

Y (t, ω) = g(t,X(t)) (78)
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is again an Itō process, whose component number k, Yk, is given by

dYk = ∂tgkdt+ ∂xlgkdXl + 1
2∂xl∂xmgkdXldXm (79)

where dWidWj = δijdt, dWidt = dtdWi = 0, and summation over the indices
l,m = 1, . . . , n is implied.

Consider the substitution gi := eνtMi (integrating factor method). From
Equation (77), it follows that

dgi = eνtNidt+ eνtDtrdWi (80)

with formal solution

Mi(t+ ∆t) = e−ν∆tMi(t) +
∫ t+∆t

t
eν(s−t−∆t)Nids︸ ︷︷ ︸

I

+
∫ t+∆t

t
eν(s−t−∆t)DtrdWi(s)︸ ︷︷ ︸

II

. (81)

To estimate term I in Equation (81), it is assumed that Ni remains constant during
the time interval [t, t+ ∆t], resulting in

I ≈ Ni(t)
1
ν

(
1− e−ν∆t

)
. (82)

To estimate term II in Equation (81), one may use Lemma I in [Cha43], which
reads as follows:

Let
R =

∫ t+∆t

t
g(s)dW (s). (83a)

Then,

R ∼ N
(
0, σ2

R

)
, with σ2

R =
∫ t+∆t

t
g(s)2ds. (83b)

In term II , g(s) = eν(s−t−∆t)Dtr, and consequently,

II ∼ N
(

0, D
2
tr

2ν
(
1− e−2ν∆t

))
, (84)

see, e.g., Section 4.5.6 in [Gar09].
Based on the intermediate results above, the numerical time step update of M

is proposed as

M̃n+1
i = e−ν∆tMn

i + 1
ν
e−ν∆t

(
1− e−ν∆t

)
Nn
i +

√
D2

tr

2ν (1− e−2ν∆t)ψtr,i, (85)

where ψtr is a vector of independent standard normal random numbers. Note
that the non-linear term contains an additional factor e−ν∆t, which is added to
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recover the consistent limit lim
∆t→∞

(M(t+ ∆t)−M(t)) ∼ N
(
0, D

2
tr

2ν

)
. As ∆t → 0,

Nn
i

1
ν
e−ν∆t

(
1− e−ν∆t

)
→ ∆tNi, so that the forward Euler scheme is recovered.

Proceeding similarly for the internal degrees of freedom, one may derive the
update equations

ωn+1
i = ωni e

− 1
2νrot∆t +

√
D2

rot

νrot
(1− e−νrot∆t)ψr,i (86)

and ξn+1
i = ξni e

− 1
2νvib∆t +

√
D2

vib
νvib

(1− e−νvib∆t)ψv,i, (87)

where ψr and ψv are again vectors of independent standard normal distributed
random numbers.

In order to make the scheme conservative, the translational degrees of freedom
are scaled by a correction factor Cf =

√
εn+1
tr

/
¯̃εn+1
tr , where the overbar over a

quantity denotes the corresponding ensemble average, in contrast to the analytical
value. The analytical value of the translational specific thermal energy is available
from the analytic expression of the energy evolution. Specifically, the average
rotational and vibrational specific thermal energies evolve as

εn+1
rot = εnrote

−νrot∆t + D2
rot

νrot

(
1− e−νrot∆t

)
(88)

and εn+1
vib = εnvibe

−νvib∆t + D2
vib

νvib

(
1− e−νvib∆t

)
, (89)

respectively. To conserve total energy, Cf follows as

Cf =
 ēn − ε̄n+1

rot − ε̄n+1
vib

¯̃εn+1
tr

1
2

, (90)

and the translational modes are updated via

Mn+1
i = CfM̃

n+1
i . (91)

In order to honor also the correct correlation of position and velocity, an exact
position integration scheme similar to the one given in Jenny et al. [JTH10] may
be used. The derivation of this scheme is relegated to Part V, Section 29. In the
present implementation, the positions are updated via the Euler scheme

ξn+1
i = ξni + µni ∆t, (92)

which corresponds to the free-flight assumption made in DSMC.
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Figure 7: Ranges of accuracy and computational efficiency in terms of local Knudsen
number for the Fokker-Planck and DSMC operators, assuming the relevant scales
are resolved.

3.5 The Fokker-Planck-DSMC (FP-DSMC) Algorithm

As mentioned above, DSMC requires the resolution of the collision scales, that
is, a grid spacing ∆ smaller than the mean free path λ, as well as a time step
size ∆t smaller than the mean collision time τ . This means that the number of
required grid cells for a resolved DSMC simulation scales as Kn−3. While the
computational complexity of both the NTC and Majorant Frequency schemes for
DSMC is a linear function of the number of particles, the statistical nature of
DSMC warrants a minimum number of computational particles per cell. This
means that the computational cost to simulate a given volume of gas over a given
time span also scales as Kn−4. For near-continuum flows, where Kn < 1, DSMC
quickly becomes computationally intractable.

Contrast this with the Fokker-Planck algorithm: here, the resolution require-
ments are far less stringent. The computational grid should resolve the relevant
gradients, and the time step size may be chosen according to the Courant-Friedrichs-
Lewy (CFL) condition, i.e., during one time step, particles should not travel further
than the grid spacing. The computational complexity of the FP collision oper-
ator itself is linear in the number of particles N . However, a low to moderate
Knudsen number is fundamental to the assumption that the FP operator ade-
quately approximates the Boltzmann collision operator. In fact, the Fokker-Planck
algorithm has been shown to be accurate for Knudsen numbers of up to ≈ 5
[JTH10; GTJ11; GJ14]. On the other hand, provided the resolution requirement
can be met, DSMC is accurate irrespective of Kn, as long as the gas dynamics
follow the Boltzmann equation. Assuming that the relevant scales are resolved,
the ranges of accuracy and computational efficiency in terms of the local Knudsen
number for the Fokker-Planck and DSMC operators are illustrated in Figure 7.

The complementary nature of the ranges of accuracy and efficiency of FP and
DSMC, together with the fact that both methods are stochastic particle algorithms,
differing only in the way that the particle velocity update occurs, immediately
suggest a combined algorithm: Fokker-Planck-DSMC (FP-DSMC), introduced by
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Gorji et. al. [GKJ13; GJ15]. At each time step of the simulation, in each cell of the
computational mesh, a local criterion approximating the local Knudsen number
is evaluated, and, if Kn is found to be less than one, the FP collision operator is
selected, and DSMC otherwise.

From a practitioner’s point of view, FP-DSMC may be thought of in two ways:
either maximum accuracy given fixed computational resources, or minimal cost.
For the former, one tries to achieve DSMC resolution in as large a region of the flow
field as possible. The FP-DSMC procedure will then ensure that, in cells where the
resolution requirements are not met, the Fokker-Planck operator is used instead, and
the assumption is that in these cells, the requirements for accurate FP are satisfied.
In case the mean free path is resolved throughout, DSMC is automatically used
everywhere, ensuring the consistency of the FP-DSMC algorithm. Alternatively, one
may wish to conduct a simulation with the least amount of computational resources
possible. In this case, the spatio-temporal discretization is chosen according to the
requirement of the FP operator. In cells where Kn is found to be too high for the
FP operator, FP-DSMC switches to DSMC, again assuming that in this case, the
relevant scales for DSMC are captured.

For the FP-DSMC algorithm, the switching criterion is the ratio of number NC
of computational particles in a given cell to the number N coll

C of collision among
these particles during the given time step. Specifically, FP is chosen whenever
NC

/
N coll

C < 1. It is obvious that if more collisions than particles occur, the
collision scales (mean free path, mean free time) are not resolved. In this case,
the computational cost of DSMC scales with the number of collisions, while the
cost of FP scales with NC regardless. The FP-DSMC algorithm thus allows for
computationally efficient simulations over the entire range of Knudsen numbers.

Following [GJ15], the FP-DSMC switching criterion is analyzed for the case
of minimal resolution, that is grid spacing and time step size chosen according to
gradient length scale and CFL criterion, respectively:

Defining the cell Knudsen number KnC,

KnC = λ/∆ , (93)

the spacial resolution requirement of DSMC, that ∆ resolves the mean free path λ,
may then be stated as KnC > 1. The relevant Knudsen number for the FP operator
is defined with respect to the local gradient length scale, i.e.,

Kn = λ/(Q/‖∇Q‖) , (94)

where Q is a relevant macroscopic quantity. As mentioned above, FP simulations
require Kn / 1. Further, the grid spacing ∆ should resolve the relevant macroscopic
gradients. If ∆ is assumed to be chosen according to

∆ = Q/‖∇Q‖ , (95)

the cell Knudsen number KnC equals the local Knudsen number Kn, and one may
conclude that the spatial resolution is sufficient for DSMC when KnC > 1, and
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the FP operator is accurate when KnC < 1. It remains to be shown that the cell
Knudsen number may be estimated proportional to the ratio NC

/
N coll

C . Let the
time step size ∆t be chosen according to the following CFL criterion:

∆t = 1
2

∆
‖U‖+

√
θ
, (96)

which is sufficient temporal resolution for the FP operator. In a gas of hard spheres
at equilibrium, the number of collisions among the NC computational particles in
a cell during the time ∆t may be calculated as

N coll
C =

√
2/π NC∆t

√
θ
/
λ. (97)

It follows that, together with Equation (96), the cell Knudsen number can be
written as

KnC = NC

N coll
C

1
√

2π
(√

γMa + 1
) ∝ NC

N coll
C

. (98)

In high Ma flows, care must be taken when using the NC
/
N coll

C = 1 as the switching
threshold, since the ∆ may not resolve λ even though there are more particles than
collisions per cell. Accordingly, in present implementation, a constant, runtime
selectable scaling factor is used to adjust the switching point. Further, since the
mesh nevertheless resolves the gradients, the phase density may be assumed to only
vary negligibly across each grid cell, which should limit the error introduced by
the too large mean collision spacing. Additionally, the use of collision sub-cells in
DSMC to maintain an appropriate spacing of the collision partners could improve
the accuracy in these situations. In any case, the FP algorithm already provides a
significant margin of safety in terms of accuracy at moderate Knudsen numbers.

Since the number of computed collisions per cell is not available a priori, the
ratio NC

/
N coll

C is estimated by a lower bound, that is, instead of the actual number
of collisions, the number of selected collision partners in the NTC DSMC procedure
is used (cf. Section 3.3). The estimate reads

NC

N coll
C
≈
[

(NC − 1)FN
2VC

(σT‖g‖)max∆t
]−1

, (99)

where (σT‖g‖)max is the maximum anticipated product of total collision cross section
and relative velocity in the cell, FN is the number of real molecules represented
by one computational particle, and VC the volume of the computational cell,
respectively. This conservative estimate of the particle to collisions ratio also
prevents switching to DSMC in cases where the mean free path is not fully resolved.
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Part II

Parallel Implementation of the
Fokker-Planck-DSMC Algorithm

This part is adapted from the article:
S. Küchlin and P. Jenny. “Parallel Fokker-Planck-DSMC algorithm for rarefied gas flow

simulation in complex domains at all Knudsen numbers”. In: Journal of Computational Physics
328 (Jan. 2017), pp. 258–277. doi: 10.1016/j.jcp.2016.10.018.

Most of the text, figures and equations are identical to the corresponding sections of the
publication.

4 Introduction
The FP-DSMC method—being a relatively recent development—had not been
implemented in the framework of a general purpose 3D code before. In this part,
an implementation is presented that is flexible enough to accommodate future
developments and yet is efficient enough to tackle relevant problems. The code is
capable of simulating 3D flows of diatomic molecules in and around complex geom-
etry, which is demonstrated by its application to various relevant test cases. The
simulation algorithm presented here—which does not require explicit specification
of an interface between continuum and rarefied regions—is ideally suited for the
study of complex flows. The present implementation is both flexible in terms of
treatment of various flow types, from internal flows in micro devices to hypersonic
reentry type flows, as well as efficient, i.e., it scales well with a large number of
computational particles.

There exist many parallel implementations of the pure DSMC method. Notable
examples include MONACO [DB96], SMILE [IMG98], DAC [LeB99], the code by
Wu and Lian [WL03], MGDS [GZS10; GS10; GS11] and recently, SPARTA [Gal+14].
Most of these, however, are either purely based on distributed memory parallelism
or on shared memory parallelism. Simulations on computer clusters with modern
multi-core processors may benefit from a combination of the two. For example,
the EULER cluster at ETH Zurich, on which the present implementation was
tested, uses 12-core Intel Xeon processors. A key feature of the implementation
is the use of both shared and distributed memory parallelism, which, on the
processors mentioned above, allows for twelve times fewer sub-domains and therefore
reduced communication overhead, while still being able to fully utilize the available
computational resources.

The object oriented code is written in C++ and is completely modular in the
sense that classical strategy patterns are employed for the implementation. The
desired combination of algorithms is runtime configurable via a configuration file.
Some of the run time options are:
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• Molecular model, that is, Hard Sphere (HS), Variable Hard Sphere (VHS)
and Variable Soft Sphere (VSS); both monatomic and diatomic.

• Collision operator, that is, Fokker-Planck, No Time Counter (NTC) DSMC,
Majorant Frequency (MF) DSMC, Fokker-Planck-DSMC using either of the
DSMC options.

• Geometry, that is, an arbitrary amount of primitives, i.e., any combination
of stl files, nastran files, as well as explicitly defined primitives such as disks,
spheres, cylinders, and parallelograms.

The rest of this part of the thesis is organized as follows: first, relevant features
of the implementation are described, specifically data structures, parallelization
and the treatment of complex geometries. In Section 8, results obtained with the
new implementation for several test cases are presented: hypersonic flow past a
corner profile, hypersonic flow around a sphere, as well as flow expansion through
a 3D micro-nozzle geometry into vacuum. The results of the FP-DSMC algorithm
are compared to those obtained by pure DSMC in terms of field quantities as well
as computational cost.

5 Data Structures

5.1 Grid and Geometry
The implementation relies on an implicit Cartesian grid structure with immersed
boundaries. In this part of the thesis, the domain is statically decomposed into
Cartesian blocks for simulations leveraging distributed memory parallelism. Each
block is simulated by one process, while inter-process communication is performed
via the Message Passing Interface (MPI). The extension of the implementation
to dynamic repartitioning of the domain is described in part III. Every process is
aware of the entire geometry and of the global grid decomposition. This allows for
the particle evolution step to be completed concurrently, and the communication
due to particles that moved into another processor’s domain is required only once.
If a processor were only aware of the geometry present in its domain and only of
connections to the adjacent domains, particles would potentially incur multiple
communication events as they cross domain boundaries. For example, in the
situation depicted in Figure 8, the particle trajectory (of one time step) labeled 1©
causes communication only between processes 4 and 3, while the trajectory labeled
2© will not cause any communication at all.

There exist previous implementations [DB96; LeB99; WL03; GZS10] that rely
on an outer loop over the move and communication routines to ensure that all
particles reach their final destinations. The benefit of reduced communication
has to be considered in view of additional memory required to store all geometry
information on every process. For the cases studied so far, even the memory required
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Figure 8: Particle-geometry interactions in a simulation on multiple processes.

for geometries with over 100× 103 geometric primitives is negligible compared to
the memory required for the particle data.

5.2 Particle Data
A defining characteristic of the present implementation is the handling of particle
data. Instead of using a linked list of particle data structures in every cell to
maintain cell-particle correspondence, the entire particle data are stored in a single
matrix, in which each column holds the state vector of one particle. This is
effectively an “array of structures” layout. Sorting this array by the cell index of
each particle makes it easy to access all particles that belong to a given cell: Each
cell only has to store the index of the column corresponding to the beginning of the
particle data attributed to that cell, as well as the number of particles currently in
the cell (see Figure 9).

key (cell index)

sorted particle data Φ1 Φ2 Φn1 Φn1+1 Φn

1 1 1 2 N

particles on grid

cell index 1 N

first[]

count[]

2

1 ΣN−1
i=1 ni + 1n1 + 1

n1 nNn2

Figure 9: Particle data layout and indexing to cells.

The main motivation for contiguous storage of particle data is data locality.
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Computational cost is often not dominated by floating point operations but by
memory access and more importantly by the success rate of predicting memory
access to avoid cache misses. In fact, many steps of the simulation algorithm are
loops over the particle data belonging to each cell. Maintaining sorted particle
data allows these loops to run as fast as possible. The importance of data locality
becomes even greater for multi-threaded applications. Because the particle data
are sorted, all data accessed by each individual thread are stored contiguously in
memory, thus eliminating so called “false sharing”.

A similar reasoning is discussed by Gao and Schwartzentruber [GS10; GS11]. In
their approach, particle information belonging to one grid cell, but distributed in
main memory, is first aggregated into a “cache-array” prior to processing, resulting
in large performance gains.

For simulations on distributed memory architectures, the communication of
particle data is a very costly step. It can only be performed efficiently, if the data
to be sent are stored in a contiguous buffer. In the current implementation, the
sorted particle matrix is the send buffer itself.

Obviously, sorting the particle data carries a non-negligible computational cost.
For large numbers of particles, however, permutation of the particle data is more
costly than the computation of the sorted order itself. In implementations without
explicit sorting this data movement occurs as well, but prior to communication,
when the send buffer is populated; and when looping over all cells. The sorting
algorithm chosen for the current implementation is further detailed below.

6 Algorithms

6.1 Abstract Parallel Simulation Algorithm

As mentioned above, domain decomposition is used to parallelize the computation
on distributed memory architectures. However, additional data parallelism exists
as particles independently interact with boundaries and as sampling and collisions
are performed independently for each grid cell. The implementation discussed here
uses OpenMP1 to execute these steps in parallel by a team of threads.

This leads to the following abstract parallel simulation algorithm:

1http://openmp.org/wp/
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Algorithm 2: Abstract parallel simulation algo-
rithm
1: on each MPI process, do
2: decompose total domain → domain decomposition grid
3: initialize local sub-domain
4: for each timestep, do
5: add particles at inflow
6: for each particle p, do in parallel
7: move p and apply boundary conditions
8: on domain decomposition grid, do in parallel
9: sort particles
10: communicate particle data via MPI
11: on local grid, do in parallel
12: sort particles
13: for each cell C on local grid, do in parallel
14: sample statistics of particles in C
15: apply collision operator to particles in C
16: perform MPI parallel output

total domain

domain decomposition grid
(identical on all processes)

i i+ 1

ith local sub-domain

local grid
(on process i)

i− 1

Figure 10: The grid hierarchy.

6.2 Parallel Sorting
The only non-trivially parallel portion of the algorithm is the sorting step. In the
present implementation, parallel, out-of-place, most significant digit (msd) radix
sort is employed (see e.g. Knuth [Knu98, pp.168]). This sorting algorithm has a
run time complexity of O(m·n/k·p), where m is the number of digits in the largest
occurring key, k is the number of digits in the radix, n is the number of particles
to be sorted and p the number of threads participating in the sorting. Note that m
is proportional to the logarithm of the number of grid cells.

Radix sort works by sorting data in m/k passes. Since copying the particle data
is expensive and since this would be necessary m/k times per sorting operation,
here the sorting step is split into two separate phases: First, an auxiliary array
containing the cell key and array index of each particle is sorted. Second, the sorted
array indices are used as a permutation vector to copy the particle data in sorted
order to the final output array (see Figure 11).

In terms of memory access, moving data is more efficient when repeated memory
access occurs to memory locations that are close together. This is the case when,
during a time step, particles of a given cell all travel to cells that have similar
keys. To improve the average proximity of cells in the key space, the cell keys are
assigned in Morton order [ABM04].

6.3 Boundaries
During the movement operation, each particle trajectory has to be tested for possible
boundary intersections. A common practice in DSMC codes is to index boundary
geometry primitives to grid cells and to trace particles through each gird cell, while
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key b a f c

1 2 i nindex

particle data

auxiliary array key a b c f

2 1 n iindex(sorted)

(sorted)

auxiliary array

particle data Φ1 Φ2 Φi Φn

Φ2 Φ1 Φn Φi

sort aux. array

permute particle data

by key

by index

Figure 11: Indirect sorting of particle data.

testing the trajectory for intersections with those geometric primitives associated
to the respective visited cell. An alternative is to use a cut-cell method, in which
each cell intersected by a geometry surface is linearly deformed to approximate the
boundary shape.

Here, a different approach is used, in which geometry and grid are kept com-
pletely separate. To avoid the necessity to test all trajectories against all geometry
elements, the ray-tracing library Embree [Wal+14] is used to sort the geometry
elements into a bounding volume hierarchy in a preprocessing step. Intersections of
a trajectory with the bounding volumes can then be detected efficiently by Embree
routines. The primitive tests themselves, e.g. ray-triangle intersections, are not
performed by Embree, but rather by custom double-precision routines.

Since the boundary geometries are immersed in the regular Cartesian structure,
cells which are intersected by the geometry have a smaller volume, which—if not
accounted for—would misrepresent volume dependent averages and lead to wrong
collision frequencies. Therefore, once the geometry bounding volume hierarchy
(BVH) has been constructed (before the actual simulation is executed), each grid
cell is tested for intersection with boundaries. If the cell is found to intersect, it is
discretized into 1000 sub-cells, which are then counted towards the volume of the
grid cell if their respective center lies inside the simulation domain. This volume
sampling process is very efficient, since the BVH allows for fast intersection queries.

Moving the particles and checking their trajectories for boundary intersections
is in itself embarrassingly parallel, since the particle trajectories are independent.
However, particles advanced by different threads may collide with the same bound-
ary, potentially causing race conditions when more than one thread tries to update
the boundary sampling data at the same time. This is avoided by using appropriate
atomic memory access directives provided by OpenMP.

6.4 MPI Communication
Since the particle data reside contiguously in memory and are sorted by their
respective domain decomposition cell prior to communication, all particle data may
be exchanged via a single all-to-all communication event. The memory occupied
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by the particle data directly serves as input buffer and the starting location and
element count of each message is directly available from the previous sorting step.
Since the sorting algorithm is “out-of-place” (with separate input and output
arrays), the input array to sorting can be reused as the output buffer for the
communication. Furthermore, as mentioned previously, since all particles have
been moved to their final positions for the present time steps prior to sorting, only
one communication step is needed in the algorithm.

7 Parallel Performance
Strong and weak scaling behavior of the implementation are analyzed on ETH’s
high-performance computing cluster EULER2. Each of EULER’s nodes is comprised
of two 12-core Intel Xeon processors with shared memory.

The test case used is the same as described by Gao and Schwartzentruber[GS10]
for the scaling analysis of their DSMC implementation called MGDS. That is,
DSMC is used to simulate free-stream Argon flow at 50 K through a channel with
dimensions 30 cm × 10 cm × 10 cm. The free stream velocity is 200 m s−1. Our
simulations employ between 100 and 1000 particles per cell on a 30× 10× 10 grid,
with a time-step size of 2.5× 10−5 s. The simulation wall clock time is measured
after steady state is attained at 2000 time steps. Averages are recorded over the
ensuing 8000 time steps. Note that although the results presented here are for
simulations using pure DSMC, the choice of the collision operator does not affect
the scaling and identical results can be expected for simulations using the FP or
FP-DSMC algorithms.

Strong scaling efficiency is measured by comparing the runtime for a constant
size problem divided among different numbers of cores to that of a serial run. The
results for a constant problem size with 1.92× 106 particles are shown in Figure 12.
As the number of particles per core becomes low, the efficiency drops since a greater
portion of the runtime is due to non-parallel tasks such as thread pool management
and loop overhead.

Weak scaling efficiency is measured by comparing the runtimes per core for a
problem size proportional to the number of cores. Here, weak scaling is analyzed
in terms of the number of full nodes, each running one process utilizing all 24
cores. The load per core is kept constant by adding 10 cm to the length of the
domain per 24 cores added (the size of one node). The results for three different
core-loadings—10× 103, 100× 103 and 1000× 103 particles per core—are shown
in Figure 13.

The decline in efficiency is due to the increased relative contribution of the
serial parts of the algorithm, including increased communication overhead. In part,
the latter may be further exacerbated by the strict separation of geometry and
grid: currently, sampling at inflow boundaries is distributed among all processes

2http://www.top500.org/site/47773
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(with particles being communicated to the correct process during the global com-
munication phase). In the specific problem simulated here, all particles sampled at
the inflow boundaries must be communicated to the same process, thus causing an
increase in per-node communication. This limitation will be removed by restricting
inflow sampling to those parts of the geometry located in the domain for which the
process is responsible. A further reason might be the inefficiency of the all-to-all
communication operation which is applied to the particle data. The vast majority
of communication occurs between processes responsible for adjacent sub domains.
This means that the source and destination vectors for the all-to-all communication
operation are sparse. This case might not be fully optimized by the MPI library.
Switching to the more recent neighbor all-to-all communication pattern is expected
to help alleviate the problem [HT09], and is discussed in part III of this thesis.
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Figure 12: Strong scaling efficiency for
DSMC simulation of free stream Argon
flow through a channel using 1.92× 106

particles. The vertical lines indicate the
number of cores per processor (12) and
per node (24), respectively. At 768 cores,
each core only processes about 2500 par-
ticles, which causes the run time to be
completely dominated by overhead.
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DSMC simulation of free stream Argon
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used in the computation, the domain
is extended in the x-direction by 10 cm.
Each node uses all 24 available cores.
The 100% reference is a simulation us-
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8 Validation Studies

8.1 Supersonic Corner Flow

To compare DSMC and FP-DSMC results, hypersonic Argon flow over a corner
profile was simulated. The geometry of the test case is similar to that used by
Bird [Bir94, Chapter 16.2] and is shown in Figure 14.
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8.1 Supersonic Corner Flow

Figure 14: Schematic of the simulation volume used in the 3D corner flow simulations
(Section 8.1).

Since the flow conditions simulated by Bird lead to a Knudsen number too high
for simulations using the FP method, the number density was chosen ten times
higher. The time step size was selected according to a CFL criterion based on the
mean inflow speed and the cell width. First, pure DSMC was used to simulate the
flow with 4 different grid resolutions. These simulations were then repeated—with
the same parameters—using the FP-DSMC algorithm. The simulation parameters
are listed in Table 3 in B.1.

Figure 15 shows a qualitative comparison of the results obtained by pure
DSMC and those obtained from an FP-DSMC simulation, both with the finest
grid. Pressure contours on the profile surface demonstrate that the results are in
very good agreement.

A quantitative comparison of the results is provided by the plot in Figure 16,
which shows a measure e of the solution errors. The latter is defined by the
normalized average of the magnitude of the local difference in temperature T with
respect to the pure DSMC result with the finest grid:

ehco := 1
Tref

∥∥∥T hco(x)− T hmin
DSMC(x)

∥∥∥, co ∈ {DSMC,FP-DSMC}, (100)

where the subscript co indicates the collision operator used in the simulation, h
is the cell-spacing of the grid, Tref = 300 K is the reference temperature and the
operator (·) denotes averaging over all points x.

The main two observations are that for a given grid the FP-DSMC simulations
are both faster and more accurate than the corresponding pure DSMC simulations.
Moreover, these trends become more prominent for coarser grids. For example,
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8 VALIDATION STUDIES

Figure 15: Qualitative comparison of the results from DSMC and FP-DSMC
simulations of hypersonic Argon flow over a corner profile. The surfaces of the
corner profile in the (X,Z) and (X, Y ) plane are colored by contours of surface
pressure obtained from pure DSMC and FP-DSMC simulations, respectively.

on the coarsest grid (h = 0.01 m), FP-DSMC runs over 4.5 times faster than pure
DSMC, while at the same time reducing the error measure by more than 25 %.

The higher efficiency of FP-DSMC, especially for coarser grids, can be explained
by the fact that in cells significantly larger than the mean free path length, each
particle experiences numerous collisions per time step, which renders classical
DSMC very costly. In the FP-DSMC algorithm, these cells are updated via the FP
collision operator, the computational cost of which scales linearly with the number
of particles, regardless of the collision frequency. If the grid resolution increases,
the FP collision operator is invoked less frequently and the computational cost
eventually reaches that of pure DSMC.

The observation that coarse FP-DSMC simulations are more accurate than
coarse DSMC simulations stems from the reduced resolution requirements of the
FP operator. More precisely, for an accurate FP simulation—provided the Knudsen
number is not too large—the grid only has to be fine enough to capture the variation
of the macroscopic averages. Unlike in DSMC, the collisional scales do not have to
be resolved [GTJ11].

8.2 Supersonic Flow Over a Sphere
Further assessment of the FP-DSMC method and its present implementation was
done via simulations of hypersonic flow of Argon over a sphere. Here, DSMC and
FP-DSMC simulations were performed with three different grid resolutions. Again,
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8.2 Supersonic Flow Over a Sphere

Figure 16: Results for simulations of hypersonic Argon flow over a corner profile
with different grid resolutions: The normalized solution error—as defined by
Equation (100)—is plotted versus normalized computational time.

except for the collision operator, the corresponding simulations were identical; the
simulation parameters are listed in Table 4 in B.1.

Figure 17 offers a qualitative comparison of the results obtained by DSMC and
FP-DSMC: The Mach number contours on a slice plane through the center of the
flow field, as well as the pressure distribution on the sphere surface, show good
agreement between the two methods.

Figure 18 shows the result of a typical FP-DSMC computation in terms of
how often the particles in a given cell were updated via the FP operator. The
FP operator is used in regions of high density, i.e. in the conical region between
compression shock and ensuing rarefaction. In this region, high density and high
temperature lead to a high collision rates. Wherever the collision rate exceeds
the number of particles, the FP operator is used, which leads to a reduction of
computational time.

The advantages of using the FP-DSMC scheme are further shown in Figure 19.
As in Section 8.1, the normalized average of the magnitude of the local difference
in temperature with respect to the pure DSMC result with the finest grid—as
defined by Equation (100)—is shown for different grid resolutions, plotted against
the normalized computational time. Again, for coarser grids, FP-DSMC results are
more accurate than pure DSMC results and the computational savings due to the
FP collision operator become more significant.

In terms of sphere drag coefficient, experimental values of about 1.1 − 1.2
are reported in the literature for the simulated conditions [BH71]. Figure 20
shows the values obtained from the current DSMC and FP-DSMC simulations.
The simulations approach the experimental value with increasing grid resolution,
with the finest simulation (at a grid spacing of 0.0025 m) yielding CD = 1.199.
Under-resolved simulations over-predict the drag coefficient. Since the resolution
requirements are less stringent for the FP than for the DSMC collision operator,
under-resolved (in terms of mean free path) FP-DSMC simulations tend to be more
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8 VALIDATION STUDIES

Figure 17: Qualitative flow field comparison of the results from DSMC and FP-
DSMC simulations of hypersonic Argon flow over a sphere. The slice plane is
colored by Mach number contours and the sphere surface by pressure contours.
The small difference in the bow shock location is below the grid resolution.

accurate than corresponding pure DSMC simulations, which is confirmed by the
results presented in Figures 19 and 20.

8.3 3D Micro-Nozzle Flow
Expansion of gas through a nozzle from continuum into vacuum is a challenging
test case for DSMC simulations, since the entire range of Knudsen numbers—from
Kn close to zero at the nozzle inlet, to Kn approaching infinity at the vacuum outlet
boundaries—is present in the flow field. The Fokker-Planck-DSMC algorithm is
ideally suited to deal with this kind of flow. 2D simulations of nozzle flow using
FP-DSMC have been presented by Gorji and Jenny [GJ15], where large performance
gains with respect to pure DSMC were demonstrated.

In the following, 3D simulation results for micro-nozzle flow are discussed, which
were obtained using the new implementation. The geometry and flow conditions
were chosen according to the work of Alexeenko et al. [Ale+02; Ale03]. Cold
Nitrogen expands through a flat micro-nozzle with a 15◦ opening angle and area
ratio of 10 : 1. The simulation domain contained the region from the nozzle throat
to about 2.5 mm downstream of the nozzle exit. The inlet conditions were specified
at the nozzle throat as Ma = 1 equilibrium flow with temperature and pressure
calculated from ideal nozzle theory. The nozzle geometry used in the simulations is
shown in Figure 21, and the simulation parameters are listed in Table 5 in B.1.

The resulting x-velocity fields on the nozzle center plane obtained from simu-
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8.3 3D Micro-Nozzle Flow

Figure 18: The slice plane is colored by the percentage of Fokker-Planck collision
operator choices over the course of the simulation of hypersonic Argon flow over a
sphere using the FP-DSMC scheme. The FP operator is chosen in regions where
many collisions occur.

lations with different grid resolutions are shown in Figure 22. It is immediately
apparent that the resolution has a great impact on the results. For comparison,
Figure 23 shows the velocity contours reported by Alexeenko et al. [Ale+02, Figure
12]. Unfortunately, the exact grid resolution used in that simulation is not available.
However, the velocity contours obtained from the simulation with a 900× 240× 18
grid (Figure 22d) are in very good agreement.

Figure 24 compares the translational temperature obtained with a 900×240×18
grid to the results published by Alexeenko et al. [Ale+02, Figure 13]. Again, good
agreement can be observed.
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8 VALIDATION STUDIES

Figure 19: Results for simulations of hy-
personic Argon flow over a sphere with
different grid resolutions: The normal-
ized solution error—as defined by Equa-
tion (100)—is plotted versus normalized
computational time.

Figure 20: Sphere drag coefficient ob-
tained from FP-DSMC and pure DSMC
simulations with different grid resolu-
tions.

Figure 21: Geometry used in the 3D simulations of micro-nozzle flow (Section 8.3).
The simulations presented here only consider the domain downstream of the nozzle
throat, i.e. in the region where x ≥ 0.

46



8.3 3D Micro-Nozzle Flow

(a) Velocity in x-direction, simulated on 450× 120× 9 grid.

(b) Velocity in x-direction, simulated on 600× 160× 12 grid.

(c) Velocity in x-direction, simulated on 750× 200× 15 grid.

(d) Velocity in x-direction, simulated on 900× 240× 18 grid.

(e) Velocity in x-direction, simulated on 1050× 280× 21 grid.

Figure 22: Comparison of x-velocity contours on the nozzle center plane simulated
with five different grids.
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Figure 23: Data reported by Alexeenko et al. [Ale+02, Figure 12]: contours of
x-velocity from 3D micro-nozzle simulation.

(a) Translational temperature on nozzle center plane, simulated on 900×
240× 18 grid.
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Figure 24: Comparison of translational temperature contours on the nozzle cen-
ter plane obtained from a FP-DSMC simulation with results reported by Alex-
eenko et al. [Ale+02].
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9 Conclusions
A general FP-DSMC algorithm for parallel computations of rarefied gas-flow in and
around 3D geometries is devised and its implementation is shown to be efficient
and accurate. The FP-DSMC solution algorithm, which is attractive since collision
time-scales do not have to be resolved (opposed to pure DSMC), has already been
presented previously for serial, 2D simulations with simple geometries. This is the
first time that an efficient, parallel algorithm and implementation of FP-DSMC for
3D, complex geometries have been developed and tested.

The implementation of the new algorithm makes use of coarse- and fine-grained
parallelism inherent to particle simulations by employing a hybrid OpenMP-MPI
programming paradigm. While message passing is necessary when particles cross
computational sub-domains, shared memory architecture is exploited to deal with
the evolution of particles within the same domain. In this way, the total com-
munication overhead can be reduced compared to a pure domain-decomposition
approach. A crucial factor for a good overall efficiency is the special data structure,
which ensures that the particle data of each thread are stored contiguously. This
renders the implementation cache friendly and simplifies the exchange of particle
data via message-passing.

To deal with complex, 3D geometries, Intel’s ray-tracing library Embree is
employed. Immersed surfaces are treated independently of the underlying Cartesian
sampling grid, and to avoid an iterative communication procedure, the entire
geometry is stored on each processor. During each time step, it has to be checked
for all particle trajectories with which geometric primitives collisions occur. To avoid
checking all primitives, Embree uses an efficient algorithm based on a bounding
volume hierarchy.

Efficiency and accuracy of the new code could be demonstrated for a series of
three-dimensional test cases, that is, simple channel flow, hypersonic flow over a
corner profile, hypersonic flow over a sphere and flow through a micro-nozzle into
vacuum. First, comparisons with pure DSMC (including results in the literature)
confirm that the FP-DSMC method leads to at least equally accurate results at
lower computational cost. Second, both strong and weak scalability of the parallel
algorithm have been investigated. As a rough guideline, it can be stated at this
point that at least 20 000 particles are necessary per core to achieve good parallel
efficiency.

The code is implemented in C++, and due to its modular and object-oriented
design, it is very flexible and easy to extend.
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Part III

Automatic Mesh Refinement and
Domain Decomposition via
Space-Filling Curves

This part is adapted from the article:
S. Küchlin and P. Jenny. “Automatic mesh refinement and parallel load balancing for

Fokker-Planck-DSMC algorithm”. In: Journal of Computational Physics 363 (June 2018),
pp. 140–157. doi: 10.1016/j.jcp.2018.02.049.

Most of the text, figures and equations are identical to the corresponding sections of the
publication.

10 Introduction
In this part of the thesis, several innovations related to the implementation are
discussed with the aim to further leverage the potential of the FP-DSMC method,
which has proven to be very effective in simulating flows covering the entire
Kn range. So far, the presented implementation was restricted to equidistant
spatial grids. To account for the multiple length scales typically involved in flows
covering a wide Kn range, the implementation is extended to use an automatically
refined, implicit octree mesh. In simulations employing locally adapted grids in
particular, but in general in any simulation of flow with large spatial variation of
the density of computational particles, balancing the computational load over the
set of processors involved in the parallel simulation becomes very important to
fully utilize the available computational resources both in terms of memory and
CPU time.

It turns out that using a space-filling curve as the underlying structure for the
spatial grid is an elegant solution to efficiently implement both local grid refinement
and parallel load balancing. Finally, the larger the number of processors involved
in the parallel execution of the simulation, the more important efficient data
communication becomes. A recently developed communication pattern addresses
the specific demands incurred by the code architecture.

10.1 Related Works
There exist many examples in the literature of space-filling curves (SFC) being
used to facilitate scientific computing applications; see for example the book by
Bader [Bad13] and references therein. Only a few can be mentioned explicitly
here: For example, Aftosmis et al. [ABM04] give a detailed description of the
application of SFCs to CFD, including mesh refinement and load balancing. Lin-
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11 DISCRETE SPACE-FILLING CURVES

termann et al. [Lin+14] and Schneiders et al. [Sch+15] use a hierarchical Cartesian
mesh ordered by a Hilbert curve for parallel grid generation, parallel load bal-
ancing and automatic mesh refinement in the context of CFD, and turbulent,
particle-laden flows in particular. In the technical note “CUDA Particles” [Gre08],
S. Green describes simulating an n-body system including long range interactions
and collisions on graphic cards, in which the Morton order is used for spatial
partitioning. The radix sort algorithm is used to index particles on the mesh after
movement. Harlacher and co-workers [Har+12] developed a dynamic load balancing
scheme for unstructured meshes based on space-filling curves, and use a heuristic
to compute a new partitioning of the mesh. Jambunathan and Levin [JL15; JL16b;
JL16a] have developed the DSMC code “CHAOS”, which uses a forest of octrees
linearized by the Morton order. In their approach, the particles are recursively
grouped into a forest of octrees at each time step, and the leaf nodes are then
distributed to multiple GPUs to perform load-balanced computations. Recently,
Pfeiffer and Gorji [PG16] described the implementation of the FP-DSMC algorithm
within the particle-in-cell framework “PICLas”. The implementation uses the Peano
SFC to dynamically aggregate sub cells based on a minimum required number of
particles.

11 Indexing Cartesian Grids using Discrete Ap-
proximations of Space-Filling Curves

The following gives an overview of the properties of space-filling curves, and
describes the implementation of SFC-based cell index computation on Cartesian
grids.

11.1 Definition and Properties of Space-Filling Curves
Formally, a curve is defined as the image f∗(I) of a mapping f : I → Rd from
the compact set I ⊂ R into Rd. If f : I → Q ⊂ Rd is surjective and Q
has non-zero volume, then f∗(I) is a space-filling curve. As is common in the
aforementioned literature, the term space-filling curve will be used to refer to their
discrete approximations. The purpose of a discrete SFC is then to assign a unique
integer index to any two- or three-dimensional discrete coordinate, and vice versa.
In particular, one is interested in bijective mappings fN from the compact set
IN ∈ N0 into QN ⊂ Nd

0. In the following, IN will be referred to as the index
space, Q as the data space, and QN as the discretized data space, respectively. For
example, in the context of Cartesian meshes, numbering the grid cells by the SFC
index of the respective cell vertex with the lowest coordinates induces an ordering
of the grid cells in terms of their respective index I ∈ IN . Traversing the mesh in
order of increasing SFC index of the cells corresponds to following the SFC through
the mesh.
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11.2 Morton Order

Space-filling curves that define useful sequentializations for simulation purposes
are characterized by the following properties:

Locality: If the distance of two points in data space is small, their distance
in the index space should be small as well. Compare this to the naive
ordering on a regular 3D Cartesian given by I = i + nij + ninjk, where ni
and nj are the number of cells in the i and j direction, respectively. Here,
neighboring cells do not have consecutive indices except in the i direction,
and the differences—especially in the k direction—can become very large.
The SFC-induced ordering should not favor any particular direction.

2d-tree sequentialization: Points contained within the same orthant (i.e.,
quadrant, octant, etc.) of data space should map to a compact subset of
index space. This property means that an SFC defines a unique ordering of
the cells in an arbitrary quad/octree. Different types of SFC may partition
the unit cube differently. For example, the Peano curve splits the unit cube
along each dimension into three equidistant parts to form 27 sub-cubes in
3D.

Local construction: The map from data to index space should only depend
on local properties, i.e. the data space coordinates as well as fixed parameters.
Compare this to the sequentialization of a multilevel Cartesian mesh, where
a cell index would be computed by recursive insertion starting at the top
level and requiring knowledge of the specific decomposition at each level.

The following two sections provide a brief description of the two different types
of SFCs that have the above properties and are used within the implementation
presented here. The relevant computational task in each case is the evaluation of
the inverse map f−1

N : QN → IN . To this end, any point P ∈ Q ⊂ Rd in real data
space, for which I ∈ IN is to be evaluated, is first mapped to PN ∈ QN ⊂ Nd

0 via
the component-wise relation Pi, N =

⌊
n(i)

P(i)−O(i)
l(i)

⌋
(with summation over indices in

brackets suppressed), where Oi is the origin, li the maximum extent, and ni the
number of representable discrete values in coordinate direction i ∈ [0, . . . , d− 1],
respectively.

11.2 Morton Order
The Morton order (also called N- or Z-order, due to the shape of the curve in 2D)
arises naturally from a depth-first traversal of a quad-/octree. It can be computed
very efficiently from the d-dimensional vector of integers PN via bit interleaving:
Let the ith discrete coordinate of PN be represented by B binary digits bi, k as
Pi, N = ∑B−1

k=0 bi, k × 2k. The corresponding Morton index IM is then given by

IM =
bB/dc−1∑
j=0

d−1∑
i=0

bi, j × 2i+dj. (101)
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11 DISCRETE SPACE-FILLING CURVES

A C++ code for this interleaving is included in Appendix C.1. Note that any SFC
index represented by B bits, regardless of which SFC is used, can only incorporate
bB/dc bits from each of the d coordinates of PN .

Drawing a curve through the centers of cells on a regular 2D grid in Morton
order produces a self-similar hierarchy of Z shapes with bB/dc levels. On every
coarsening level j, the Z in each cell defines the order in which the respective cell’s
four quadrants on level j − 1 are visited. Figure 25 shows a 2D example of the first
3 refinement levels of the Morton order on an 8× 8 grid.
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Figure 25: 2D Morton order at three levels of refinement. The values in the quadrant
corners denote their respective Morton key. In this example, the maximum number
of representable discrete values in each coordinate direction is 8. At the finest
representable refinement level of the Morton order, shown in the right-most panel,
all points within a given cell will be mapped to the same 6-digit key.

11.3 Hilbert Order
The Hilbert order has, in general, better locality than the Morton order. Further-
more, there are Hilbert orders that are face-continuous, i.e. neighboring cells in
index space will always share a face in 2D/3D. This means that for a 1D problem
decomposition, as discussed below in Section 13.3, the corresponding 2D/3D domain
will be compact. However, the Hilbert index is more complicated to construct than
the Morton index. Superiority of either ordering thus is problem dependent. As
shown by Haverkort [Hav17], there are more than 107 unique (self-similar) Hilbert
curves in three dimensions. In 2D, there exists only one Hilbert order, and drawing
a curve through the centers of cells on a regular 2D grid in Hilbert order produces
a self-similar hierarchy of U shapes, which are rotated and reflected appropriately
(see e.g. Figure 26).

Self-similar Hilbert curves are defined by the order in which the orthants of a
cube are visited (called the base order), along with the necessary transformation
that specifies the traversal of the sub-orthants within each base orthant. For
example, in 3D, the unit cube has 48 symmetries. Allowing also for a reverse
traversal order, there are thus, in general, a total of 96 different orders in which

54



11.3 Hilbert Order

the octants may be visited. A given orthant order will be referred to as the “state”
of the traversal in the following. In contrast to the Hilbert order, the traversal in
Morton order only has one state.

To map a vector of d coordinates to their index on the chosen Hilbert curve,
the corresponding Morton index is computed first. The mapping from Morton
index IM to Hilbert index IH then proceeds via an iterative look-up table approach,
similar to the procedure described by Campbell et al. [Cam+03]:

Let sj denote the current state of the traversal, initialized at j = bB/dc−1 to the
state corresponding to the base order. Let oj ∈ [0, . . . , 2d − 1] denote the orthant
of the unit cube at the current coarsening level j. Note that in d dimensions, o
will be a d-bit number. Two tabulated functions are used that fully define each
Hilbert curve: the state transition function sj−1 = S(sj, oj) that indicates the
transformation of the traversal when moving to the next lower coarsening level,
as well as the index function hj = H(sj, oj), h ∈ [0, . . . , 2d − 1] which defines the
ordering of the orthants at the current level. Again, h is a d-bit number. To
generate IH , the bB/dc d-tuples of bits in IM are examined sequentially in order
from most to least significant. The j-th d-tuple of bits represents the orthant
number oj at coarsening level j in which the encoded point is located. For each j,
the corresponding d bits in IH are set to hj, and s is updated via the transition
function S. Intuitively, each Morton “Z” is mapped to the appropriate Hilbert “U”.
Denoting again the individual bits of IM as bi, j, one may write more concisely:

IH =
bB/dc−1∑
j=0

H(sj, oj)× 2dj, (102)

where oj =
d−1∑
i=0

bi, j × 2i,

sj−1 = S(sj, oj),
and sbB/dc−1 = sbase.

For example, assuming 64 bit integers are used for both the Hilbert and Morton
index—of which 21 × 3 = 63 bits are relevant—generating the former from the
latter thus requires 42 table look-ups. A C++ code to generate the 3D Hilbert
index from the Morton index is included in C.1. Figure 26 shows a 2D example of
the first 3 iterations of the Hilbert curve on an 8× 8 grid, and Figure 27 illustrates
the construction of functions H and S for the 2D case.

For individual Hilbert curves, the sizes of the look-up tables may be reduced
significantly by identifying states that can never be reached from the base state
and eliminating the corresponding rows. For example, the curve nicknamed “Butz”
(illustrated in Figure 28) only uses 12 states, and the two required tables thus have
a combined storage cost of only 192 bytes. Since they can be kept in low-level
cache, the generation of the corresponding Hilbert index is very fast. The curve
nicknamed “Alfa”, on the other hand, uses 48 unique states.

By identifying cycles in the transformation, the transformation Morton to
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Figure 26: 2D Hilbert curve at three levels of refinement. The values in the quadrant
corners denote their respective Morton key, the boxed values are the corresponding
Hilbert indices. In this example, the maximum number of representable discrete
values in each coordinate direction is 8. At the finest representable refinement level
of the Hilbert curve, shown in blue in the right-most panel, all points within a
given cell will be mapped to the same 6-digit key.

Hilbert can be further accelerated for small Morton indices with correspondingly
many leading zero bits. Taking again the Butz curve as an example, it can be
seen that the base state reoccurs after three consecutive visits of the zeroth octant.
Thus, if the Morton index under consideration has 9 leading zero bits, the next
state will be again the base state and the first 9 bits of the corresponding Hilbert
index will be zero. The number of leading zero bits can be obtained at negligible
computational cost directly by special CPU instructions on many processors.

Note that the reverse transform—Hilbert to Morton index—proceeds completely
analogously, using the same state transition table and the orthant-to-key table which
specifies the inverse permutation. The choice of which Hilbert curve to use depends
on the performance in terms of locality metrics and isotropy, as well as table size.
The look-up tables for two of the Hilbert curves currently implemented—“Butz”
and “chI”—are provided in Appendix C.2.

12 Data Structures

12.1 Quad/Octree Cartesian Mesh
The present implementation relies on an implicit Cartesian mesh in d dimensions,
d ∈ [1, 2, 3], which is fully defined by the following properties: the extent of the
discretized physical space, given by the vector e ∈ Rd, a background resolution,
given by the vector n ∈ Nd, which specifies the maximum number of representable
cells per dimension, a sorted list of integer indices—“keys”—on the SFC, and a
corresponding list of integer cell “levels”. Each entry in the list of keys corresponds
to the unique point in each cell that is associated with the lowest representable
SFC index value in the cell. This is the point at which the SFC enters the cell. In
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Figure 27: 2D example of Hilbert curve lookup table construction. The base order
(state 0, red curve), together with its refinement (state 0, blue curve) completely
define the 2D Hilbert curve construction. The encountered transformations (ro-
tations and reflections) of the base order in each quadrant o are labeled as states
s with values 0 through 3. The order in which the curve (upper row) visits the
four quadrants in each state defines the function H in Equation (102). For the
definition of the function S, the state of the refined curve in each of the quadrants
(lower row) is tabulated for each state.

the case of “vertex gated” Hilbert curves, this is one of the cells’ corners. For the
Morton order, it is the cell corner with the lowest coordinate values.

The extent of the cell is determined by the corresponding entry in the list of
levels: a level l implies an extent of 2l e(i)/n(i), meaning that level 0 cells are the
finest representable cells and a cell at level l + 1 covers 2d cells at level l. The two
lists thus define an implicit 2d-tree. Note that the background resolution does not
need to be a power of two in any dimension and that any cell may be removed
from the list, e.g., if it is outside of the fluid volume, as long as the sorted order
along the SFC is maintained.

12.2 Particle Data
As described in Part II (cf. also [KJ17]), the entire particle data are stored in a single
matrix, with each column corresponding to the state vector of one particle. Grid-
particle correspondence is maintained by sorting the columns of the particle matrix
by the SFC index corresponding to the position of each particle. Since these indices
are integer values, fast sorting algorithms with linear runtime complexity (O(N))
may be used. In the present implementation, multi-threaded, least-significant digit
radix sort is used. Note that maintaining grid-particle correspondence by means
of sorting was previously described by Green [Gre08] for simulations on graphics
processing units. Due to the recursive nature of the SFC, a grid cell with key kc
and level l contains all positions with keys k for which kc <= k < kc + 2d×l. This
means that it is sufficient to store for each cell the index of the first particle in the
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Figure 28: The Hilbert curve “Butz”. Shown are points on a 4×4×4 grid, connected
in order of their index along the Hilbert curve.

matrix with key greater or equal to the cell’s key but smaller than the key of the
next cell. For convenience, also the number of particles in the cell is stored.

To summarize, sorting the particle matrix and counting the number of particles
per cell allows for O(N) complexity insertion of all N particles into an arbitrarily
refined quad/octree mesh. There is no need to explicitly trace the particles through
the mesh, since the SFC index calculation is mesh-independent. Besides the
convenience of being able to identify the parent cell of a given particle solely based
on local information (i.e., the particle’s coordinates), the ordering of the grid cells
along an SFC with good locality property may also benefit the computational
performance of the sorting step: when particles move through the mesh, a small
change in coordinates also corresponds to only a small change in the SFC index.
During the particle sorting step, this means that particle data stored in close
proximity in computer memory will be copied to locations that are again close
together. In the present multi-threaded implementation, this avoids interference
effects (“false sharing”) between the threads performing the sorting and data
movement.

13 Algorithms

13.1 Parallel Simulation
The parallel simulation algorithm, which was presented in Part II (cf. Algorithm 1
in [KJ17]), remains unchanged by the introduction of a locally refined mesh. In
particular, no grid-topology aware processing is required for particle movement
or communication. This underlines the elegance of the SFC approach. Below,
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13.2 Automatic Mesh Refinement

the main points of the parallel simulation algorithm are briefly summarized, with
emphasis on the parts relevant to the new SFC-based data structures:

Domain decomposition is used to distribute the simulation workload onto
multiple processes for the parallel computation on distributed memory architectures.
The processes exchange data via the Message Passing Interface (MPI). Each process
advances the simulation in a given sub-volume of the total simulation domain. The
relevant sub-volume is defined by a contiguous sub-set of the list of cells, sorted by
SFC index (cf. Section 13.3 below). Processes only store mesh data associated with
its sub-set. A sorted list of the key of the first cell of each sub-set is present on
each process and thus specifies the domain decomposition grid. At no point during
the simulation do data for a given cell reside on more than a single process, the
decomposition is performed fully in parallel.

MPI parallel file output operations are used to write simulation results to disk,
without having to gather the data on the root process. To this end, simulation
data are output in SFC order using the 1D “subarray” MPI datatype.

As the particles move through the simulation volume, they are communicated
to the process responsible for the simulation of their spatial location. Although the
sub-volumes formed by the SFC sub-sets may be highly irregular, this step is trivial
and constitutes one of the main advantages of the presented simulation architecture:
since the particles are sorted by their respective SFC index, they may be simply
binned on the domain decomposition grid, and—because they reside contiguously
in memory—directly communicated via a single message to the relevant process.
Recall that for (FP-)DSMC, no mesh data have to be communicated in order
to complete a time step, since the algorithm does not depend on information in
neighboring cells.

Further, the fine-grained data parallelism inherent in the stochastic particle
simulation is exploited: particles are sampled independently at inflow boundaries
and interact independently with solid boundaries and outflows. During sampling of
particle distribution moments and application of the collision operator, all operations
are independent for each cell. OpenMP is used to execute the independent steps in
parallel by a team of threads. As mentioned above (Section 12.2), the necessary
sorting of the particle data on each process before and after communication is also
done in parallel.

13.2 Automatic Mesh Refinement
Refining a grid cell amounts to replacing the corresponding entry of the cell with
index c, key kc and level lc > 0 in the key and level lists by 2d entries, each with
level l′ = lc − 1 and keys beginning at kc and spaced 2d×l′ . The corresponding
cell data (velocity moments, averages and macroscopic properties) are copied and
scaled appropriately in the case of extrinsic properties.

Note that all other cells’ keys and levels remain unchanged, since the keys k of
the newly inserted cells are guaranteed to have values in the range kc ≤ k < kc+1. A
2D example of the implicit refinement by key list modification is shown in Figure 29.
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Figure 29: 2D example of mesh refinement in implicit, Hilbert-ordered quad tree.
The cells with keys 10 11 00, 11 00 00 and 11 01 00 are refined by replacing their
respective key in the list by 22 = 4 new entries, marked in blue.

Various automatic refinement criteria are easy to implement: any map of cell
data (e.g., particle distribution moments, macroscopic quantities, cell geometry,
etc.) to a true/false value may be passed to the AMR routine as a function handle,
in which it is used to flag cells for refinement. Here static and dynamic criteria are
distinguished, the former being independent of the simulation result. At present,
one static and one dynamic criterion are implemented: before the actual simulation,
the cells may be automatically refined depending on their location with respect to
(potentially non-participating) geometry, i.e., one may define an arbitrary volume
in which the cells should be refined to a certain level prior to the simulation, or
specify that cells intersected by geometry are to be refined to a given level. During
the simulation, cells can be flagged for refinement based on the ratio of their size to
the local equilibrium mean free path λ0. For pure DSMC simulations, one should
choose dcell > λ0 as refinement criterion to ensure mean free path resolution. As
explained above, FP-DSMC simulations require less stringent thresholds.

Automatic refinement is carried out for solution independent criteria once
before the simulation, and for dynamic criteria later every ∆namr’th time step,
between time steps numbered nstartamr and nendamr, all three parameters being user input.
Typically, one would set nendamr < nta, where nta is the time step after which the flow
is assumed to be stationary and time averaging begins. The refinement interval
∆n should be chosen low enough to prevent spurious bifurcations of the solution
that may otherwise occur due to under-resolving of relevant flow regions, yet high
enough to allow for sufficient sample accumulation to mitigate the influence of the
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Monte-Carlo noise.
An automatic refinement step proceeds as follows: on each rank, the list of cells

is partitioned onto participating threads, which evaluate the refinement criterion
for each cell in parallel. A bit vector is set to true at the corresponding index if a
cell is marked for refinement. The values of this vector corresponding to cells on
the rank domain boundary are communicated to neighboring ranks. Taking these
values into account, a second pass over the cell list on each rank modifies the bit
vector to ensure a maximum level difference of one level between neighboring cells.
Note that cell neighbors may be located efficiently by binary search in the sorted
cell key array. Finally, the bit vector is passed to a serial routine that performs the
actual splitting/merging of the cells. The total number of modified cells on each
rank is summed up on the root rank. As long as the total number of modified cells
is greater than zero, the above procedure continues in a loop.

After the refinement, all changed cells are marked for cell volume correction:
cells outside the fluid volume are removed, and the respective volumes of cells
intersected by geometry are estimated via a Monte Carlo procedure.

13.3 Parallel Load Balancing
The decomposition of the simulation domain discretized by N cells onto P different
processes is specified by a list S of P + 1 cell indices, here referred to as separators,
since they separate the SFC index space into compact intervals. Each entry Si in
the separator list corresponds to the index of the first cell along the SFC belonging
to process i, and thus process i will advance the simulation in the domain spanned
by cells [Si, . . . , Si+1). A decomposition is only compatible with the presented
simulation algorithm if the cell list remains sorted across all processes. This means
that re-decomposing the domain can only be accomplished by shifting separator
cell indices along the SFC, and the value of the first and last separators S0 and SP
are fixed at S0 ≡ 0 and SP ≡ N , respectively.

The associated computational problem of finding the optimal separator cells
is known as the “Chain-on-Chains Partitioning” (CCP) problem, i.e. “[finding]
a sequence of P − 1 separators to divide a chain of N tasks with associated
computational weights [w] into P consecutive parts” [PTA08]. A partitioning is
optimal, if the load of the maximally loaded part (called the bottleneck value B) is
minimized. It is obvious that the ideal bottleneck value B∗ is the average load and
that the optimal bottleneck value is bounded from above by Bmax = B∗ + wmax.
Instead of computing the partitioning via a heuristic, a version of the “exact
bisection” (EB) algorithm according to Pinar and Aykanat [PA04; PTA08] is
implemented.

EB is an exact algorithm guaranteed to find the optimal partitioning in poly-
nomial run time. It is efficient because it performs binary search on the discrete
set of realizable bottleneck values B in the interval B = [B∗, . . . , Bmax], instead of
having to search the (infinite) set of all bottleneck values B. The computational
cost of EB itself is negligible; however, it is not local, i.e., it requires the indi-

61



13 ALGORITHMS

vidual computational load of all cells as input. In the present implementation, a
distributed, cooperative algorithm is used to avoid having to store this information
on the master process.

The computation itself is carried out on the root process, and required values are
requested from the other processes, which spin in a loop and use the non-blocking
probe MPI function to receive requests from the root process on demand. The
appropriate function handle to execute to serve the request is then determined by
a unique tag attached to the message. The root process exploits the fact that the
cells are distributed in sorted order across the processes, and can thus use binary
search to determine which process owns a cell with given global cell index. Once
the root process has completed the computation of the optimal separator positions,
it notifies the other processes to exit the loop.

Because the original formulation of the EB algorithm does not prevent empty
partitions, an additional step is carried out by the root process, where one of
two duplicate separator indices is shifted by one position to have at least one cell
assigned to each process. Note that this procedure will never alter an optimal
bottleneck value, since only the load of previously empty partitions is increased.

The new separator array is then sent from the root process to all other processes
and subsequently used to determine which data need to be communicated in order
to complete the re-partitioning.

In the present implementation, the total storage cost in bytes incurred by a
cell is used as load metric. This corresponds to a fixed value for the storage of the
moments of the velocity distribution and the state variables and a dynamic value
proportional to the number of computational particles in the cell. The latter value
may be run-time configured to be computed from an exponentially weighted time
average in order to avoid over-adaptation of the partitioning to the fluctuations in
particle numbers. Using only the number of particles in a given cell as load metric
would in principle result in faster simulations. Balancing total storage, however,
allows for simulation runs with a larger amount of particles and avoids exceeding
the available memory on a given process.

Note further that EB is trivially extensible to heterogeneous systems [PTA08]
in that it allows to compute optimal partitions also when the actual computational
power of the individual machines on which the processes run is taken into account.
The performance of each process could be dynamically estimated at run time by
the measurement of wall clock time per particle per time step, which is already
done in the code for profiling.

In the present implementation, the EB algorithm is also used locally on each
MPI process in its “native” (undistributed) form to compute an optimal partitioning
of the mesh onto the available OpenMP threads for sampling and collisions. Here,
the number of particles per cell is used directly as a load metric, which gives an
optimal partitioning for the FP collision operator, since its computational cost is
directly proportional to the number of particles. The necessary prefix sum of the
load weights is already available from the preceding sorting step in the form of the
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array containing the index of the first particle in each cell. For DSMC, the number
of collisions in each cell would be a more relevant metric, but would necessitate a
further preprocessing step.

13.4 Point-to-Point Communication

Because the domain decomposition is not given by planes aligned with the Cartesian
axes, but rather by indices along an SFC, it is not a priori clear which processes
will communicate particle information with each other, and every time step may
result in a different communication pattern. Since data of particles from a given
range of cells along the SFC are kept contiguous in memory, simply counting
the number of particles within each partition of the SFC allows to establish the
number, size and target processes for particle data exchange on each process. A
single “all-to-all” communication allows for the correct transfer of the particle
data. When the number of processes is large, however, the fraction of processes
that exchange non-empty messages compared to the total number will diminish.
A similar situation arises when mesh elements have to be redistributed after a
load-balancing step. Most processes will only have to communicate with direct
neighbors along the SFC when the domain decomposition does not change much,
but this cannot be guaranteed a priori. This situation is known as the “Dynamic
Sparse Data Exchange Problem” (DSDE).

In order to avoid sub-optimal sparse all-to-all communication, the “Nonblocking
Consensus” (NBX) communication algorithm due to Hoefler et al. [HSL10; Gro+14]
has been implemented. NBX uses non-blocking MPI routines which are functions
that return immediately, while the completion of the initiated operation may
be checked by calling small test routines. The send operations are furthermore
synchronous, i.e., only considered complete when the recipient has finished receiving
the message. After issuing all synchronous, non-blocking sends, each process spins
in a loop and dynamically receives any incoming message. Once a process has
verified that all its initiated sends have completed, it enters a non-blocking barrier,
but continues to receive messages dynamically. All send and receive operations are
thus guaranteed to have completed once all processes have entered the barrier.

NBX achieves efficient point-to-point data exchange in situations where the
communication neighborhood is small compared to the total number of processes.
Note that Harlacher et al. [Har+12] already proposed to use, but did not implement,
this communication pattern for the redistribution of mesh elements after load
balancing.
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14 Numerical Example: Flow Over a Planetary
Probe Geometry

Reentry flow over a 70 degree blunted cone resembling a simplified planetary probe
geometry [ABL97a] is a common test case for rarefied gas flow simulation (see, for
example, [DB96; GZS10; GZS11; PG16]), because experimental data are available.

Figure 30 shows the definition of the rotationally symmetric geometry. The
flow conditions and simulation parameters are listed in Table 6 in Appendix C.3.
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Figure 30: Planetary probe geometry and definition of surface coordinate s.

14.1 Automatic Mesh Refinement and Result Comparison
Figure 31 shows a cutaway of the automatically refined mesh during a typical
simulation run. Mesh elements residing on the same processor have the same
color. The probe geometry is shown in orange, together with the surface trian-
gulation. The overall structure of the refined mesh is similar to that reported in
Figure 5 in [GZS11].

In Figure 32, the simulation results in terms of surface heat flux to the probe
geometry are compared to experimental [ABL97b] and DSMC results [GZS11] in
the literature, as well as to a reference DSMC simulation, which was obtained using
the same parameters as the FP-DSMC simulation (listed in Table 6), but with
the time step reduced to ∆tDSMC = 5.0× 10−8 s and more aggressive refinement
criterion of (∆x/λ0)crit. = 0.5 to ensure that the collisional scales were resolved. The
figure shows the circumferentially averaged values of the heat flux to the surface,
plotted versus the non-dimensional surface coordinate s/Rn, as defined in Figure 30.
One may observe a slight underprediction of the heat fluxes on the windward side
by FP-DSMC compared to pure DSMC, while the overall level of agreement with
experimental data is equally satisfactory. The larger differences compared to the
results of Gao et al. at s/Rn ≈ 2 are probably due in part to the much finer surface
mesh in the shoulder area, cf. Figure 5 in [GZS11]. Note that the total wall clock
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Figure 31: Cutaway of the automatically refined mesh during a typical run of a
simulation of flow over a planetary probe geometry. Mesh elements residing on
the same processor have the same color. The probe geometry is shown in orange,
together with the surface triangulation.

time required for the pure DSMC simulation to simulate the same physical time as
the FP-DSMC simulation was higher by a factor of more than 11.

14.2 Performance Comparison of Simulations using differ-
ent Space-Filling Curves

Normalized total simulation run times are presented for seven runs for each of five
different SFCs: the classical Morton order, as well as the Hilbert curves nicknamed
“Sasburg”, “Alfa”, “Butz” and “ChI” in [Hav17]. Recall that computations using
different Hilbert curves are performed by simply using different lookup tables. All
simulations were carried out on 48 nodes of ETH’s “Euler III” cluster3. Each node
is equipped with a single Intel Xeon E3-1285Lv5 processor and 32 GB of memory.
In terms of parallel decomposition, on each node, a single MPI process is run using
8 OpenMP threads on the available 4 processor cores. The Euler III cluster is not
equipped with a fast interconnect between the nodes, which means that efficient
communication is even more important. Figure 33 shows the normalized lowest
run time achieved for each of the SFCs. The results show that only Hilbert curves

3https://scicomp.ethz.ch/wiki/Euler
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Figure 32: Comparison of heat flux to geometry surface, circumferentially averaged
and plotted over the non-dimensional surface coordinate s/Rn, where Rn is the nose
radius of the geometry.

“Butz” and “ChI” perform equal or better than the Morton ordering, with the
fastest run using the “ChI” order being ∼ 5 % faster than the fastest run using
the Morton ordering. Although the “Sasburg” and “Alfa” curves have very good
theoretical properties in terms of space isotropy and locality [Hav17, Table 6],
they perform worse than the Morton order. This is probably due to the larger
size of the required tables more than offsetting any potential gains from improved
communication and memory locality, cf. Section 14.5. The two Hilbert curves
offering comparable performance to the Morton order have the smallest lookup
tables of those studied.
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Figure 33: Comparison of lowest total simulation run time over seven runs for each
of five different SFCs. The values are normalized by the lowest run time incurred
using the Morton order. All simulations were carried out on 48× 4 processor cores.
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14.3 Evolution of the Load Balance Metric
As mentioned in Section 13.3, the load metric is defined as the combined storage
requirement of particle and grid cell data, and measure load balance as the ratio
of average load to the maximum load of any process, such that a value of one
constitutes perfect load balancing. Figure 34 shows the evolution of the load
balance metric during the transient simulation phase (the first 1000 time steps),
averaged over seven simulations, when using different space filling curves. The
load balance is evaluated every 25 time steps, once before and once after any
re-partitioning, which is carried out when the metric falls below 0.98. The results
show a strong tendency toward imbalance during the transient simulation phase.
The load balancing algorithm, however, achieves near perfect re-balancing. This
is evident in the large jumps in the individual curves, which occur when the re-
balancing is carried out, and which bring the metric back close to the ideal value of
1.00. Towards the end of the transient phase, the load balance stays approximately
constant within the specified corridor of 0.98 to 1.00 , as is to be expected due
to the stationary density field. One may further observe that, especially during
the beginning of the simulation, the Hilbert orderings tend to yield better load
balancing than the Morton order.
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Figure 34: Evolution of the load balance metric during transient simulation phase,
averaged over seven runs, using different SFCs. The metric is evaluated twice every
25 time steps, once before and once after any re-partitioning. The large jumps in
the curves occur at time steps where the re-partitioning was carried out.

14.4 Parallel Scaling Analysis for the Hilbert Curve “Butz”
Flow over a planetary probe geometry is simulated to examine strong scaling of the
implementation. The same simulation is repeated on varying numbers of cluster
nodes, each running a single MPI process using 8 threads. The flow and geometrical
setup are the same as for the other simulations presented in this work; however,
the number of particles is reduced by a factor of four and the total number of time
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steps is reduced. The results in Figure 35 show the typical diminishing returns
as each thread processes fewer particles and communication overhead starts to
dominate. Note that the chosen test case could not complete on a single node due
to lack of memory. Further, the runtime cost of file output was subtracted in the
shown results.
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Figure 35: Strong scaling analysis using the Hilbert curve “Butz”. All reported run-
times concern simulations of flow over a planetary probe using identical parameters
on different numbers of processor cores.

14.5 Relative Computational Cost of the Simulation Sub-
routines

A representative profiling of the relative computational cost in terms of wall clock
time of the different parts of the simulation algorithm is provided in Table 1. The
results were obtained using the Hilbert curves “Butz” and “Alfa”, as well as the
Morton order. Note that automatic load balancing and mesh refinement procedures
are only active during the first 1000 of the 2500 time steps, in accordance with
the assumption of a stationary density field after that point. Load-balancing was
evaluated every 25 time steps and re-balancing was carried out when the metric was
below 0.98 (see Section 14.3). Automatic mesh refinement was carried out every
50 time steps. Regardless of the respective intervals of evaluation, it is evident
from Table 1 that the automatic refinement and load balancing functions incur
negligible computational cost compared to the main simulation routines.

The results further indicate that the SFC look-up table size is indeed a major
contributor to computational cost, and thus explains the relatively poorer per-
formance of simulations using the “Alfa” curve. Computing the indices on the
“Butz” curve is, however, only slightly more expensive than only computing the
Morton index. Its superior locality properties compared to pure Morton ordering
are mainly evident in the particle communication step.
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Table 1: Representative profiling of relative computational time attributed to
different parts of the simulation algorithm, using three different SFCs (simulation
parameters listed in Table 6).

subroutine % of total wall clock time
Butz Alfa Morton

particle communication 23.66 17.26 25.61
sorting 23.45 16.47 23.64
sampling & collisions 19.89 13.99 20.04
SFC computation 8.62 32.88 6.30
movement & boundaries 6.44 4.68 6.54
inflow 6.41 4.50 6.47
file output 2.07 1.34 1.79
dynamic mesh refinement 0.57 0.53 0.60
particle-to-cell indexing 0.50 0.35 0.50
load balancing 0.20 0.17 0.20
other overhead 8.20 7.82 8.32

15 Numerical Example: Laval Nozzle Flow

In order to investigate the influence of surface compared to volume refinement on
SFC related performance, expansion of Argon at near-continuum conditions through
a Laval nozzle into a receiving chamber and subsequent interaction with a skimmer
geometry is simulated. Similar to the analysis in Section 14.2, the performance
impact of using different SFCs is compared. To save computational time, only a
quarter of the axisymmetric flow was simulated and symmetry conditions were
imposed on the relevant planes. In the receiving chamber, a background pressure
of 40 Pa is set as initial condition, as well as a reservoir boundary condition
at the cylindrical outer simulation boundary. Figure 36 shows the simulated
geometry together with the boundary mesh. The conditions at the nozzle inlet cross
section with diameter din = 10 mm are calculated from the stagnation temperature
T0 = 293 K and pressure p0 = 3 kPa using isentropic flow relations. The equilibrium
Knudsen number, based on the critical cross section diameter dc = 6.24 mm, ranges
from ≈ 2.7× 10−4 near the nozzle inlet to ≈ 2.1× 10−2 outside the jet, and >≈ 5
after the skimmer. This wide range of Kn covered by the simulation would pose a
significant challenge to pure DSMC. The FP-DSMC algorithm, together with a
locally refined mesh, makes the simulation tractable. For this study, only static
refinement was used: to resolve the axisymmetric flow on the Cartesian grid, all
cells in a cylindrical volume around the flow center line were refined. Further, all
cells intersected by the nozzle and skimmer geometry were refined as well. Note
that the flow through the skimmer itself were not resolved by the mesh chosen for
this study. All flow conditions and simulation parameters are listed in Table 7 in
Appendix C.3. Figure 37 shows the stationary solution on the symmetry planes in
terms of Mach number, together with the mesh.

Five simulations each per space-filling curve “Morton”, “Sasburg”, “Alfa”,
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Figure 36: Surface mesh for Laval nozzle flow simulation. The inflow (from the
left) is colored green, diffusive surfaces are orange, reservoir boundaries are purple,
and the low-pressure reservoir boundary is colored blue. The symmetry boundary
in the XZ plane is shown in gray, and the symmetry boundary in the YZ plane is
omitted for clarity.

“Butz” and “ChI” were performed. All simulations were carried out on 8 nodes of
ETH’s “Euler II”cluster, each equipped with two Intel Xeon E5-2680v3 12-core
processors and 32GB memory. On each processor, two MPI processes are run using
12 OpenMP threads each, for a total of 32 MPI ranks. The normalized lowest run
time achieved for each curve over five runs is reported in Figure 38. Curves “Butz”,
“ChI” and “Morton” again performed similarly (using “ChI” was 2 % faster than
“Morton” or “Butz”), while “Alfa” and “Sasburg” incurred a much higher overhead.
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Figure 37: Stationary solution obtained from Laval nozzle flow simulation. The
upper symmetry plane is colored by Mach number, the lower plane shows the
volume mesh, colored by process.
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Figure 38: Comparison of lowest total simulation run time over five simulations of
Laval nozzle flow for each of five different SFCs. The values are normalized by the
lowest run time incurred using the Morton order. All simulations were carried out
on 32× 6 processor cores.
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16 CONCLUSIONS

16 Conclusions
In this part of the thesis, the extension of the parallel Fokker-Planck-DSMC
implementation with automatic mesh refinement and load balancing is presented.
The use of an implicit octree grid in conjunction with an ordering of the grid cells
based on space filling curves allows for an efficient and comparatively succinct
implementation of both these features.

Various beneficial properties of using space filling curves in the context of DSMC
are discussed, and an efficient implementation of the curve index computation is
presented. The mapping of the mesh topology to 1D allows to use the exact load
balancing algorithm developed by Pinar and Aykanat [PA04] for both process level
domain decomposition and thread level partitioning of the collision and sampling
step. The dynamic sparse data exchange problem that arises from the chosen
domain decomposition is addressed via the implementation of the non-blocking
consensus algorithm due to Hoefler et al. [HT09] for both particle exchange and
repartitioning.

Numerical simulation of reentry flow over a planetary probe geometry demon-
strates the validity of the implementation via comparison to numerical and exper-
imental results in the literature. Comparing the computational performance of
the implementation when using different space filling curves reveals that certain
Hilbert curves can offer sufficient advantages in terms of locality of the domain
decomposition and the particle data to offset the additional processing step re-
quired for their computation. Further, a strong scaling study is presented, which
uses the same flow scenario as a test case. Profiling the execution time of the
different subroutines of the new simulation algorithm reveals that automatic mesh
refinement and load (re-)balancing carry negligible computational cost. However,
due to the serial nature of these algorithms, their relative contribution to the overall
computational cost will eventually become significant as the number of parallel
partitions becomes large.

The findings in terms of the performance impact of using different space filling
curves are confirmed for a second test case with higher surface-to-volume mesh
refinement ratio: the expansion of Argon through a Laval nozzle and downstream
wall interaction of the flow are simulated. This study further demonstrates the
ability of the implementation to simulate gas flow covering a wide range of Knudsen
numbers, from the near continuum to the rarefied regime.

To the best of the author’s knowledge, the parallel implementation presented
here is the first (FP-)DSMC code that is fundamentally based on space-filling
curves. Furthermore, the comparison of the performance impact on (FP-)DSMC
from using different SFCs is unique.
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Part IV

Kernel Estimation of Moment
Derivatives for Particle Methods

This part is adapted from the manuscript:
S. Küchlin and P. Jenny. “Kernel Estimation of Mixed Spatial Derivatives of Statistics of

Scattered Data”. Manuscript submitted for publication. 2018.
Most of the text, figures and equations are identical to the corresponding sections of the

manuscript.

17 Introduction
The subject of non-parametric density (derivative) estimation has received much
attention in the statistics and—more recently—machine intelligence literature,
see, for example, [Sin76] and [CM02]. When given as data N realizations xl,
l = 1, . . . , N , of a random variable with associated probability density ϕ(x), one is
interested in estimating ϕ(x) via the kernel density estimate

ϕ̂(x) = 1
hN

N∑
l=1

K

(
x− xl

h

)
,

see, e.g., the seminal work by Epanechnikov [Epa69]. Here, a related problem
is considered: estimation of the νth-order (ν = 0, 1, . . . ) mixed spatial derivative
of the generalized state space moments Eζ [g(ζ;x)] of a joint probability density
fξζ(x, c) at a given location x, i.e., ∂α1

x1 ∂
α2
x2 · · · ∂

αdx
xdx Eζ [g(ζ;x)] with ∑dx

i=1 αi = ν. To
this end, the aim is to derive optimal kernels and their respective asymptotic bias
and mean squared error expressions for the estimation of various mixed spatial
derivatives of the state space moments. The suggested approach may prove useful
for particle-based simulation methods ranging from molecular dynamics, direct
simulation Monte Carlo and related rarefied gas dynamics simulation algorithms to
astro-physics simulations; as well as for many data analysis tasks.

The remainder of this part of the thesis is organized as follows: after introducing
notation (Section 18), the kernel estimator for mixed spatial derivatives of density
weighted generalized state space moments is derived, along with necessary consis-
tency conditions for the kernels (Section 19). Next, the convergence properties of
the estimator are studied by deriving the relevant asymptotic bias and variance
expressions (Section 20), as well as the asymptotically optimal kernel bandwidth
(Section 21). Estimation of the unweighted generalized state space moments in
terms of the estimates of their density weighted counterparts is considered in
Section 22. Furthermore, it is shown in Section 23 that kernel interpolation of
mixed spatial derivatives of a (potentially unknown) function may be considered
as a special case of the results obtained for the generalized state space moments.
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19 KERNEL ESTIMATE OF MIXED SPATIAL DERIVATIVES OF
GENERALIZED STATE SPACE MOMENTS

Section 24 deals with the explicit construction of kernel functions: three classes of
kernels are derived, and a novel regularization of the associated variational problem
is proposed, which generalizes previous results in the literature. A Monte Carlo
study (Section 25) illustrates the root mean squared error behavior of various
estimates as a function of kernel type and sample size for a relevant test case.
Section 26 concludes.

18 Multi-Index Notation
For notational convenience, multi indices are used throughout this part of the
thesis. The relevant definitions from Appendix A in [Sei10] are restated (with slight
modification) here: a multi index is an ordered n-tuple α = (α1, α2, . . . , αn) ∈ Nn

0
of integers. For α ∈ Nn

0 , define the length |α| = α1 + α2 + · · ·+ αn and factorial
α! = α1!α2! · · ·αn!, respectively. Addition and subtraction, multiplication by
a scalar, and comparison of multi indices are defined component-wise, i.e., for
α,β ∈ Nn

0 , a ∈ N: α±β = (α1±β1, α2±β2, . . . , αn±βn), α ≤ β if (α1 ≤ β1, α2 ≤
β2, . . . , αn ≤ βn) and aα = (aα1, aα2, . . . , aαn). Note that subtraction α − β is
only defined for β ≤ α.

Further, for a vector x = (x1, x2, . . . , xn) ∈ Rn, define xα = xα1
1 x

α2
2 · · ·xαnn .

The mixed partial derivative operator w.r.t. coordinates x is abbreviated as ∂α =
∂α1

1 ∂α2
2 · · · ∂αnn = ∂|α|

∂
α1
x1 ∂

α2
x2 ···∂

αn
xn

. Some special multi indices are 0 = (0, . . . , 0), 1 =
(1, . . . , 1) and δi = (δ1i, δ2i, . . . , δni), where δij is the Kronecker delta. Consequently,
|0| = 0, 0! = 1, x0 = 1, ∂0f(x) = f(x), |1| = n, 1! = 1, x1 = ∏n

j=1 xj and xδi = xi,
where here and in the following, in expressions such as x1, the dimension of the
multi index in the exponent is implied by the dimension of the vector.

19 Kernel Estimate of Mixed Spatial Derivatives
of Generalized State Space Moments

19.1 Definitions
Recall the definition of the phase density from Part I, Section 2.1, restated here
with some modifications: multi indices are used to remain consistent with the
notation introduced above, the system under consideration is no longer restricted
to consist of an ensemble of molecules, and the explicit time dependence is dropped
for notational convenience.

Given data in a dx + dc-dimensional phase space, comprised of dx-dimensional
configuration space with coordinate vector x ∈ Rdx , and dc-dimensional state space
with coordinate vector c ∈ Rdc , this part of the thesis considers the case when said
data may be assumed to be realizations of the absolutely continuous random vectors
ξ : Ω→ Rdx and ζ : Ω→ Rdc , respectively, where Ω denotes the sample space. Let
B(Rn) be the Borel σ-algebra of subsets of Rn. Define the (non-normalized) phase

74



19.1 Definitions

density f : Rdx × Rdc → R, such that the probability of finding a data point in the
region B ∈ B

(
Rdx× Rdc

)
is given by

Pr({ξ, ζ} ∈ B) = 1∫∫
Rdx×Rdc f(x′, c′) dx′1dc′1

∫∫
B
f(x′, c′) dx′1dc′1, (103)

where dx′1dc′1 denotes dx′1dx′2 · · · dx′dxdc′1dc′2 · · · dc′dc . Hence, f(x, c) must be
non-negative and a Borel function. The phase density may be factored into the
(configuration) density ρ(x) and the normalized conditional state probability density
fζ(c,x) satisfying

∫
Rdc fζ(c,x)dc1 ≡ 1, i.e.,

f(x, c) = ρ(x)fζ(c,x). (104)

Define the normalization constant in Equation (103) as

M =
∫∫

Rdx×Rdc
f(x′, c′) dx′1dc′1 =

∫
Rdx
ρ(x′)dx′1. (105)

In the case where ρ(x) corresponds to a physical density with units of mass per
volume,M is equal to the total mass under consideration. The joint probability
density of the random vectors {ξ, ζ} follows as

fξζ(x, c) = 1
M

f(x, c). (106)

Finally, the expectation operator acting on Borel measurable functions g : Rdx ×
Rdc×Rdy → R of {ξ, ζ;y}, where the vector y ∈ Rdy denotes non-random elements
in the domain of g, is defined as usual:

Eξζ [g(ξ, ζ;y)] =
∫∫

Rdx×Rdc
g(x′, c′,y)fξζ(x′, c′)dx′1dc′1. (107)

In the following, only functions g for which E[|g|] < ∞ and E[g2] < ∞ exist are
considered. Further, the discussion will be restricted to the case where g is not a
function of ξ, but may depend on the measure space coordinate x. Accordingly,
one may set y ≡ x and g = g(ζ;x). In this case,

Eξζ [g(ζ;x)] = Eζ [g(ζ;x)] =
∫
Rdc
g(c′,x)fζ(c′,x)dc′1. (108)

Define Fg : Rdx → R as the density weighted, generalized state space moments with
spatial dependence, viz.

Fg(x) = Eζ [ρ(x)g(ζ;x)]

=
∫
Rdc
ρ(x)g(c′,x)fζ(c′,x)dc′1

=
∫
Rdc
g(c′,x)f(c′,x)dc′1.

(109)

The following sections are concerned with the estimation of the mixed spatial
derivatives ∂αFg from sample data.
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19 KERNEL ESTIMATE OF MIXED SPATIAL DERIVATIVES OF
GENERALIZED STATE SPACE MOMENTS

19.2 Derivation of the Kernel Estimate
To proceed, the integrand in Equation (109) is rewritten in terms of a convolution
in the measure space of ξ with the limit of a sequence of suitable functions
φh : Rdx → R with h ∈ Rdx , hi > 0, as follows ([DeV78, Chapter 7, Lemma 1]): for
φ : Rdx → R absolutely integrable and appropriately differentiable, with compact
support on the dx-dimensional interval [−1, 1]dx , satisfying

∫
Rdx φ(x)dx1 = 1,

g(c′,x)f(c′,x) = lim
h→0+

∫
Rdx
g(c′,x′)f(c′,x′) 1

h1φ
(
diag(h)−1(x− x′)

)
︸ ︷︷ ︸

φh

dx′1, (110)

where h1 = h(1,1,...,1) = ∏dx
j=1 hj . Note that here and throughout, [a, b]n denotes the

set {x ∈ Rn : a ≤ xi ≤ b, i = 1, . . . , n} ∈ B(Rn), i.e., an n-dimensional cube with
edge length b− a. Inserting Equation (110) into Equation (109), one finds

Fg(x) = lim
h→0+

∫∫
Rdx×Rdc
g(c′,x′)f(c′,x′) 1

h1φ
(
diag(h)−1(x− x′)

)
dx′1dc′1

=M lim
h→0+

Eξζ
[
g(ζ, ξ) 1

h1φ
(
diag(h)−1(x− ξ)

)]
.

(111)

The νth-order mixed spatial derivative ∂αFg of Fg, with |α| = ν, follows as

∂αFg(x) =M lim
h→0+

Eξζ
[
g(ζ, ξ) ∂α 1

h1φ
(
diag(h)−1(x− ξ)

)]
=M lim

h→0+
Eξζ

[ 1
hα+1φ

(α)
(
diag(h)−1(x− ξ)

)
g(ζ, ξ)

]
,

(112)

where the notation φ(α) signifies ∂|α|

∂
α1
r1 ∂

α2
r2 ···∂

αn
rn
φ(r).

An estimate ∂̂αFg(x) of ∂αFg(x) may be obtained by fixing h and estimating
the expected value in Equation (112) via the weighted average of a finite number
N of samples, each with index l, l = 1, . . . , N , weight wl, position xl, and with
state vector cl, viz.

∂̂αFg(x) = 1
hα+1

N∑
l=1

wlKα

(
(diagh)−1

(
x− xl

))
g(cl,xl), (113)

where the kernel Kα is the νth-order mixed partial derivative φ(α), with |α| = ν,
of the function φ, and the weights are assumed to satisfy

wl > 0,
N∑
l=1

wl ≡M, and lim
N→∞

wl = 0, (114)

which also implies ∑N
l=1

(
wl
)2

= 0. Define the random variable η : Ω→ R, which
depends on the random vectors ζ and ξ as follows:

η = 1
hα+1Kα

(
(diagh)−1(x− ξ)

)
g(ζ, ξ). (115)
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19.3 Kernel Consistency Constraints

The expected value of η may be calculated w.r.t. ξ and ζ, i.e., E[η] ≡ Eξζ [η]. For
all Kα and fξζ considered here, η is absolutely continuous and satisfies E[|η|] <∞
and E[η2] <∞. Let {ηi, i : 1 ≤ i ≤ N} be a collection of independent, identically
distributed random variables with the same distribution as η. The estimate (113)
may be written as a random variable in terms of the ηi as

∂̂αFg(x) =
N∑
l=1

wlηl, (116)

with expected value

E
[
∂̂αFg(x)

]
=

N∑
l=1

wlE
[
ηl
]

=ME[η]. (117)

Under the assumptions (114), the following strong law of large numbers holds
([LW07, Proposition 4.3]):

Pr
(

lim
N→∞

∂̂αFg =ME[η]
)

= 1. (118)

Accordingly, ME[η] = ∂αFg is a necessary condition for ∂̂αFg to consistently
estimate ∂αFg. For suitable Kα, Equation (112) shows that this condition is met
in the limit h → 0+. Consequently, set h = h(N), hi > 0, i = 1, . . . , dx, while
requiring

lim
N→∞

hi = 0, as well as lim
N→∞

∑N
l=1

(
wl
)2

h2α+1 = 0. (119)

The hi will be referred to as kernel bandwidths in the following, and, for dimensional
data xl, are assumed to have the same units as the coordinates x, so that the kernel
may be defined in a dimensionless reference frame. Under the assumptions (114)
and (119), it follows that the estimate (113) converges almost surely for suitable
Kα, i.e.,

Pr
(

lim
N→∞

∂̂αFg = ∂αFg

)
= 1. (120)

19.3 Kernel Consistency Constraints
In the following, constraints on the kernel Kα are derived in order to fulfill the
conditionM lim

h→0+
E[η] = ∂αFg. For η as defined in Equation (115), one obtains

ME[η] =
∫∫

Rdx×Rdc

1
hα+1Kα

(
(diagh)−1(x− x′)

)
g(c′,x′)f(x′, c′)dx′1dc′1

= 1
hα+1

∫
Rdx
Kα

(
(diagh)−1(x− x′)

)
Fg(x′)dx′1

= 1
hα

∫
Rdx
Kα(y′)Fg(x− (diagh)y′)dy′1,

(121)
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where the substitution x′i := xi − hiy′i, dx′i = −hidy′i, and lim
x′i→±∞

x′i = ∓ lim
x′i→±∞

y′i,

i = 1, . . . , dx was used; and dy′1 denotes dy′1dy′2 · · · dy′dx . Replacing the expression
Fg(x− (diagh)y′) in Equation (121) by the corresponding multivariate Taylor
series around the point x yields

ME[η] = 1
hα

∫
Rdx
Kα(y′)

∞∑
|γ|=0

(−1)|γ|
γ! hγy′

γ
∂γFg(x)dy′1

= 1
hα

∞∑
|γ|=0

(−1)|γ|
γ! hγµγ(Kα)∂γFg(x)

(122)

 = 1∏dx
i=1 h

αi
i

µ0(Kα)Fg(x)−
dx∑
j1=1

hj1µδj1(Kα)∂j1Fg(x)

+ 1
2

dx∑
j1=1

dx∑
j2=1

hj1hj2µ(δj1+δj2)(Kα)∂j1∂j2Fg(x)

−1
6

dx∑
j1=1

dx∑
j2=1

dx∑
j3=1

hj1hj2hj3µ(δj1+δj2+δj3)(Kα)∂j1∂j2∂j3Fg(x) + h.o.t.


,

where each term in the series is characterized by the multi index γ, and

µγ(Kα) =
∫
Rdx
y′
γ
Kα(y′)dy′1 =

∫
Rdx
y′1
γ1y′2

γ2 · · · y′dx
γdxKα(y′)dy′1 (123)

are the moments of order |γ| of the kernel Kα. It follows that Kα should satisfy
the following moment conditions to ensureM lim

h→0+
E[η] = ∂αFg:

µγ(Kα) !=

0, γ 6= α, |γ| < k

(−1)|γ|γ! γ = α,
(124)

where k = ν + 2i with ν = |α|, i ∈ N, is the kernel order (Gasser et al. [GMM85]),
defined as the lowest order of the kernel moments greater ν for which at least one
µγ: |γ|=k(Kα) is non-zero. Note that the conditions (124) also imply

µγ(Kα) = 0 ∀γ : |γ| < |α| ⇒ µγ(Kα) = 0 ∀γ : γ 6≥ α, (125)
since the integration in Equation (123) over the ith spatial dimension, corresponding
to an index with γi < αi, will always yield zero, due to the conditions (124) implying
µγiδi = 0.

For Kα satisfying the constraints (124), Equation (126) reads

ME[η] = ∂αFg(x) + (−1)k
hα

∑
|γ|=k
γ>α

hγ

γ! µγ(Kα)∂γF (x) + o


∑
|γ|=k
γ>α

hγ−α

, (126)

where the summation is over all multi indices γ of length |γ| = k satisfying γ > α,
and the “small oh” notation o{g(h)} denotes all terms that approach zero faster
than the argument g as h→ 0+.
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20 Convergence of the Kernel Estimate
To study the convergence of the estimate (113) as a function of N as N →∞, the
following expressions, defined point-wise, i.e., at every position x, are studied:

B
[
∂̂αFg

]
= E

[
∂̂αFg

]
− ∂αFg (bias), (127)

Var
[
∂̂αFg

]
= E

[(
∂̂αFg − E

[
∂̂αFg

])2]
(variance), (128)

and MSE
[
∂̂αFg

]
= E

[(
∂̂αFg − ∂αFg

)2]
(mean squared error), (129)

under the assumption that the kernel Kα satisfies the constraints (124).

20.1 Bias
For a kernel of order k, satisfying Equations (124), using Equations (117) and (126),
the point-wise bias of the estimate (113) reads

B
[
∂̂αFg(x)

]
= (−1)k

hα
∑
|γ|=k
γ>α

hγ

γ! µγ(Kα)∂γF (x) + o


∑
|γ|=k
γ>α

hγ−α

. (130)

Equation (130) shows that the order of the kernel determines the leading order
term in the expansion of the bias. The specific form of the leading bias term may
be controlled by imposing additional conditions on the kth-order moments, e.g.,

µγ: |γ|=k(Kα) !=

µKαγ!, γ = α+ (k − ν)δi, i ∈ {1, 2, . . . , dx}
0 else,

(131)

with scalar parameter µKα ∈ R (cf., for example, [Vas08] and references therein).
This choice of µγ ensures that the leading bias term only depends on the mixed
partial derivatives ∂γFg with γ > α, and equally weights the contribution of
each coordinate direction. Other choices are of course possible: for example, the
condition

µγ: |γ|=k(Kα) !=

µKαγ! |ω|!
ω! , γ = α+ 2ω

0 else,
(132)

with multi index ω, would ensure that the leading bias term is proportional to the
total trace of the mixed derivative tensor of order k − ν, ∂k−ν

∂j1∂j2 ···∂j(k−ν)
, 1 ≤ ji ≤ dx,

which, in contrast to the sum of elements with equal indices implied by the
constraints (131), is a tensor invariant. Alternative choices to Equation (131) are
not investigated in the following.
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20 CONVERGENCE OF THE KERNEL ESTIMATE

Under the additional assumption that the kernel Kα satisfies the kth-order
moment constraints (131), Equation (130) reads

B
[
∂̂αFg(x)

]
= (−1)kµKα

dx∑
i=1
h(k−ν)δi ∂α+(k-ν)δiFg(x) + o


∑
|γ|=k
γ>α

hγ−α

. (133)

For example, inserting α = δj, hi ≡ h, d = 3 and k = 5 into Equation (133) yields

B
[
∂̂jFg(x)

]
= −h4µKα∂j

(
∂4

1 + ∂4
2 + ∂4

3

)
Fg(x) + o

{
h4
}
. (134)

20.2 Variance and Mean Squared Error
Applying the variance operator to Equation (116) and using Bienaymé’s identity
for a weighted sum of independent random variables yields

Var
[
∂̂αFg

]
= Var

[
N∑
l=1

wlηl
]

=
(
E
[
η2
]
− E[η]2

) N∑
l=1

(
wl
)2
. (135)

Using the same change of variables as in Equation (121), one finds the intermediate
result

ME
[
η2
]

= 1
h2(α+1)

∫∫
Rdx×Rdc
Kα

(
(diagh)−1(x− x′)

)2
g(c′,x′)2

f(x′, c′)dx′1dc′1

= 1
h2(α+1)

∫
Rdx
Kα

(
(diagh)−1(x− x′)

)2
Fg2(x′)dx′1

= 1
h2α+1

∫
Rdx
Kα(y)2Fg2(x− (diagh)y)dy1

= R(Kα)Fg2(x)
h2α+1 + o{1},

(136)

where
R(g) =

∫
Rdx
g(y)2dy1 (137)

is defined for any square integrable function g : Rdx → R. Inserting Equation (136)
into Equation (135), the point-wise variance of the estimate (113) follows as

Var
[
∂̂αFg(x)

]
=

N∑
l=1

(
wl
)2(

E
[
η2
]
− E[η]2

)

= 1
M

N∑
l=1

(
wl
)2
(
R(Kα)Fg2(x)

h2α+1 + o{1} − 1
M

(∂αFg(x) + o{1})2
)

=
∑N
l=1

(
wl
)2

Mh2α+1 R(Kα)Fg2(x) + o

{
1

h2α+1

N∑
l=1

(
wl
)2
}
.

(138)
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By the assumptions (119) on h, Var
[
∂̂αFg(x)

]
approaches zero as N →∞. The

fastest rate of convergence of 1
M
∑N
l=1

(
wl
)2
→ 0 is obtained in the case of equally

weighted samples, i.e., with wl = w = M
N
, l = 1, . . . , N , which, in turn, implies

1
M
∑N
l=1w

2 = M
N
.

The point-wise mean squared error (MSE) of the estimate (113) follows as

MSE
[
∂̂αFg

]
= Var

[
∂̂αFg

]
+ B

[
∂̂αFg

]2

=
∑N
l=1

(
wl
)2

Mh2α+1 R(Kα)Fg2(x) + 1
h2α

∑
|γ|=k
γ>α

hγ

γ! µγ(Kα)∂γFg(x)


2

+ o

{
1

h2α+1

N∑
l=1

(
wl
)2
}
.

(139)

21 Asymptotically Optimal Bandwidth
Under the additional assumptions that hi = h, i = 1, . . . , dx, and wl = w =
M
N
, l = 1, . . . , N , assuming Kα satisfies conditions (131), the asymptotic values for

the point-wise bias, variance and mean squared error, i.e., the leading terms in
expressions (130), (138) and (139), read

AB
[
∂̂αFg(x)

]
= (−1)kh(k−ν)µKα

dx∑
i=1
∂α+(k-ν)δiFg(x), (140)

AVar
[
∂̂αFg(x)

]
= 1
Nhdx+2νR(Kα)MFg2(x), (141)

and AMSE
[
∂̂αFg(x)

]
= 1
Nhdx+2νR(Kα)MFg2(x)

+ h2(k−ν)
(
µKα

)2
 dx∑
i=1
∂α+(k-ν)δiFg(x)

2

,
(142)

respectively. Since for any kernel Kα satisfying conditions (124) and (131), the
scaled kernel Kδ

α := δ−(dx+ν)Kα(δ−1x), with δ ∈ R > 0, also satisfies Equa-
tion (124), as well as Equation (131) with µK

δ
α = δk−νµKα , one may choose a

scaling δ = δc such that
(
µK

δc
α

)2
= R

(
Kδc
α

)
=: T (Kα), with R as defined in

Equation (137), and such a kernel is referred to as canonical [WJ94]. Specifically,

R
(
Kδ
α

)
= δ−(2ν+dx)R(Kα), and hence δc =

(
R(Kα)
(µKα )2

) 1
2k+dx . It follows that

T (Kα) =
[
R(Kα)k−ν

∣∣∣µKα∣∣∣2ν+dx
] 2

2k+dx
. (143)
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22 KERNEL ESTIMATE OF UNWEIGHTED GENERALIZED MOMENTS

Note that T (Kα) is invariant to any re-scaling of Kα, i.e., T
(
Kδ
α

)
≡ T (Kα).

Equation (142) may be written in terms of T (Kα) as

AMSE
[
∂̂αFg(x)

]
= T (Kα)

 1
Nhdx+2νMFg2(x)

+h2(k−ν)

 dx∑
i=1
∂α+(k-ν)δiFg(x)

2
.

(144)

Assuming AB
[
∂̂αFg(x)

]
6= 0, differentiating Equation (144) w.r.t. h and equating

to zero formally yields the point-wise AMSE-optimal bandwidth hAMSE, i.e.,

hAMSE(x, N ; dx, k, ν, Fg, Fg2) =

 1
N

(dx + 2ν)
2(k − ν)

MFg2(x)(∑dx
i=1 ∂

α+(k-ν)δiFg(x)
)2


1

2k+dx

. (145)

22 Kernel Estimate of Unweighted Generalized
Moments

In case the density ρ is known at the sample locations xl, one may set g̃(cl,xl) :=
g(cl,xl)

/
ρ(xl) , in which case ∂̂αFg̃(x) (Equation (113)) yields a consistent esti-

mate for the unweighted, generalized moment ∂αEζ [g(ζ;x)] directly. In the general
case, an estimate of ∂αEζ [g(ζ;x)] may be obtained by applying the generalized
Leibniz rule to expand the mixed derivative ∂αFg, i.e.,

∂αFg(x) = ∂α Eζ [ρ(x)g(ζ;x)] = α!
∑

η+ω=α

∂ηρ(x)
η!

∂ωEζ [g(ζ;x)]
ω! , (146)

where the summation is over all multi indices η,ω for which η + ω = α. Re-
arranging Equation (146) yields

∂αEζ [g(ζ;x)] = 1
ρ(x)

∂αFg(x)−α!
∑

η+ω=α
ω 6=α

∂ηρ(x)
η!

∂ωEζ [g(ζ;x)]
ω!

, (147)

where the unknown partial derivatives ∂ηρ on the right hand side may be estimated
by setting g ≡ 1 in Equation (113) (since F1(x) ≡ ρ(x)), and the unknown partial
derivatives ∂ωEζ [g(ζ;x)] with ω 6= α, all of which of order smaller |α|, may be
estimated by applying the procedure recursively. Obviously, the case α = 0 leads
to Eζ [g(ζ;x)] = Fg(x)/F1(x) .
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23 Kernel Interpolation
It is worth noting that kernel-based interpolation of a (deterministic but potentially
unknown) function u : x ∈ Rdx → R is directly related to the estimate ∂̂αFg(x)
with g(c,x) ≡ g(x), since

∂αFg(x) = ∂α Eζ [ρ(x)g(x)] ≡ ∂α(ρ(x)g(x)). (148)

Given as data N values ul := u(xl) at (random) locations xl, l = 1, . . . , N , one may
directly use the data ul in Equation (113) by setting g(xl) := ul. By the results
obtained in Section 19, ∂̂αFg(x) then yields a consistent estimate for ∂α(ρ(x)u(x)).
The quantity ∂αu(x) may, in turn, be estimated via the procedure outlined in
Section 22.

24 Explicit Kernel Functions
To derive explicit expressions for Kα, again, only the case hi = h, i = 1, . . . , dx
is considered. Following Gasser et al. [GMM85], two classes of kernels are inves-
tigated: “minimum variance kernels” Kv

α, that minimize the asymptotic variance
(Equation (141)), and “optimal kernels” Ko

α, minimizing the asymptotic MSE
(Equation (142)). In the following, only continuous kernels with compact support
on the dx-dimensional interval [−1, 1]dx will be considered.

24.1 Minimum Variance Kernels
For a given configuration space dimension dx, mixed partial derivative operator
∂α of order |α| = ν, and kernel order k > ν, the goal is to find the kernel Kv, k

α

that minimizes the functional R
(
Kk
α

)
=
∫
Kk
α(x)2dx1 (cf. Equation (137)) on the

dx-dimensional interval [−1, 1]dx , subject to the moment conditions (124), and no
condition on the values of the kth-order moments. Using the method of Lagrangian
multipliers, this may be stated as the following minimization problem over the
square-integrable functions u : Rdx → R:

Kv, k
α (x) = argmin

u

∫ 1

−1

u(x)2 + u(x)
∑
|ω|<k

λωx
ω

dx1

= argmin
u

∫ 1

−1
L(x, u(x))dx1,

(149)

where the summation is over all multi indices ω with length |ω| < k, and the
Lagrange multipliers λω ∈ R are indexed by the respective multi index ω. The
solution of the associated (trivial) Euler-Lagrange equation ∂L

∂u
= 0 is

Kv, k
α (x) =

∑
|ω|<k

λ?ωx
ω, (150)
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24 EXPLICIT KERNEL FUNCTIONS

where the coefficients λ?ω ∈ R are determined by the solution of the linear system
(124).

Explicit expressions for minimum variance kernels of orders k = {ν + 2, ν + 4}
in dx = {1, 2, 3} for the estimation of mixed partial derivatives of orders ν =
{0, 1, 2, 3, 4} are given in Appendix D.1.

24.2 Optimal Kernels
For a given configuration space dimension dx, mixed partial derivative operator ∂α
of order |α| = ν, and kernel order k > ν, the goal is to find the kernel Kv, k

α that
minimizes the functional T

(
Kk
α

)
(cf. Equation (143)) on the dx-dimensional interval

[−1, 1]dx , subject to the moment conditions (124) and (131). The corresponding
variational problem is equivalent to the following minimization problem over square-
integrable functions u : Rdx → R:

Ko, k
α = argmin

u
min
I1,I2

max
λ1,λ2

Ia1 Ib2 + λ1

(
I1 −

∫ 1

−1
u(x)2dx1

)

+λ2

I2 −
∫ 1

−1
u(x)

∑
|ω|=k

xωdx1

,
(151)

subject to conditions (124) and (131), where the constants a and b are shorthand for
k−ν and 2ν−d, respectively, and I1, I2, λ1, λ2 ∈ R. Carrying out the minimization
w.r.t. I1, I2 to determine λ1 and λ2, and using Lagrange multipliers λω ∈ R, indexed
by the multi index ω, to incorporate the constraints (124) and (131), problem (151)
reduces to

Ko, k
α = argmin

u

∫ 1

−1

aIa−1
1 Ib2u(x)2 + bIa1 I

b−1
2 u(x)

∑
|ω|=k

xω

+u(x)
∑
|ω|≤k

λωx
ω

dx1

= argmin
u

∫ 1

−1

u(x)2 + u(x)
∑
|ω|≤k

λ?ωx
ω

dx1,

(152)

where the coefficients λ?ω ∈ R are given by

λ?ω = (aIa−1
1 Ib2)−1

λω, |ω| < k(
λω − bIa1 Ib−1

2

)
|ω| = k,

(153)

and I1, I2 are fixed. The solution of the associated Euler-Lagrange equation is

Ko, k
α =

∑
|ω|≤k

λ??ω x
ω, (154)
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24.3 Explicit Coefficient Expressions

where the coefficients λ??ω ∈ R are determined by the solution of the linear system
implied by conditions (124) and (131). However, µKα remains as a free parameter,
which means that problem (151) is actually degenerate, since the functional T may
be made arbitrarily small by choosing µKα arbitrarily close to zero. In order to
regularize problem (151), two choices of additional constraints are considered: let
optimal kernels be designated as Type I, if µKα is chosen according to

µK
I
α = argmin

µKα

∫
B

(
Ko, k
α

(
x;µKα

))2
dx1, (155)

and as Type II, if µKα is chosen according to

µK
II
α = argmin

µKα

∫
∂B

(
Ko, k
α

(
x;µKα

))2
dx1, (156)

where B denotes the region of support of K, i.e., [−1, 1]dx , and ∂B its boundary.
In dx = 1, kernels of Type I are equivalent to minimum variance kernels, and
kernels of Type II coincide with the “minimal kernels” defined and derived by
Gasser et al. [GMM85].

Explicit expressions for kernels of Type I and II of orders k = {ν + 2, ν + 4}
in dx = {1, 2, 3} for the estimation of mixed partial derivatives of orders ν =
{0, 1, 2, 3, 4} are given in Appendices D.2 and D.3, respectively.

24.3 Explicit Coefficient Expressions
Both the minimum variance and the “optimal” kernels are polynomials, with
coefficients determined by fixing their moments as defined by Equation (123). To
derive explicit expressions for the coefficients, an expression for a general polynomial
K : Rdx → R of degree l in terms of its moments is required (similar to the procedure
in Gasser et al. [GMM85] for dx = 1):

Let Pn : [−1, 1]→ R, n = 0, 1, 2, . . . , be a polynomial sequence satisfying the
orthogonality property ∫ 1

−1
Pm(x)Pn(x)dx = pmδmn. (157)

Define Pω(x) = Pω1(x1)Pω2(x2) · · ·Pωdx (xdx) : [−1, 1]dx → R, and, correspondingly,
pω = pω1pω2 · · · pωdx . If Pn has coefficients ckn, that is, Pn(x) = ∑n

k=0 cknx
k, then

Pω(x) =
∑
|γ|≤|ω|

cγωx
γ , (158)

where cγω = cγ1ω1cγ2ω2 · · · cγdxωdx , and the summation is over all multi indices γ of
length |γ| ≤ |ω|. The multivariate extension of Equation (157) retains its simple
form in the multi-index notation, viz.∫ 1

−1
Pω(x)Pη(x)dx1 = pωδωη, (159)
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24 EXPLICIT KERNEL FUNCTIONS

where δωη = δω1η1δω2η2 · · · δωdxηdx . A natural choice for the Pn are the Legendre
polynomials, in which case

ckn,L = 2n
(
n

k

)(
n+k−1

2
n

)
, pn,L = 2

2n+ 1

and cγω,L = 2|ω|
(
ω

γ

)(
ω+γ−1

2
ω

)
, pω,L = 2dx (2ω)!

(2ω + 1)! ,
(160)

respectively, where(
ω

γ

)
=
(
ω1

γ1

)(
ω2

γ2

)
· · ·

(
ωdx
γdx

)
,(

ω+γ−1
2
ω

)
=
(
ω1+γ1−1

2
ω1

)(
ω2+γ2−1

2
ω2

)
· · ·

(ωdx+γdx−1
2
ωdx

)

and
(
a

k

)
= a(a− 1)(a− 2) · · · (a− k + 1)

k! , a ∈ R, k ∈ N.

(161)

The Legendre polynomials further satisfy

Pn(−1) = (−1)n and Pn(1) = 1. (162)

Since the polynomials Pω form a basis in the space of polynomials of degree
|ω| with support [−1, 1]dx , any polynomial K : [−1, 1]dx → R of degree l with
coefficients λη may be expressed in terms of Pω as

K(x) =
∑
|η|≤l

ληx
η =

∑
|η|≤l

λ∗ηPη(x), (163)

with new coefficients λ∗η ∈ R. Recall Equation (123), the definition of the moments
µγ : K →

∫ 1
−1 x

γK(x)dx1. With Pω as in Equation (158), one finds
∫ 1

−1
Pω(x)K(x)dx1 =

∫ 1

−1

∑
|γ|≤|ω|

cγωx
γK(x)dx1 =

∑
|γ|≤|ω|

cγωµγ(K), (164)

and for K given by Equation (163), using Equation (159), one obtains∫ 1

−1
Pω(x)K(x)dx1 =

∫ 1

−1
Pω(x)

∑
|η|≤l

λ∗ηPη(x)dx1 = λ∗ωpω. (165)

Comparing Equations (164) and (165), and inserting fixed values µ?γ for the moments
µγ(K), determines the unique set of coefficients λ∗ω = λ?ω for which µγ(K(x;λ?ω)) =
µ?γ :

λ?ω = 1
pω

∑
|γ|≤|ω|

cγωµ
?
γ . (166)
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Combining Equations (163) and (166), the explicit expression for the polynomial
K(x) of degree l, in terms of the given moment conditions µ?γ and the basis
polynomial coefficients cγω, is

K(x) =
∑
|ω|≤l

1
pω

 ∑
|γ|≤|ω|

cγωµ
?
γ

Pω(x). (167)

Recall Equation (137), the definition of the functional R : K →
∫ 1
−1K(x)2dx1.

Using Equation (159), one finds

R(K) =
∑
|ω|≤l

pω(λ?ω)2 =
∑
|ω|≤l

1
pω

 ∑
|γ|≤|ω|

cγωµ
?
γ

2

. (168)

24.3.1 Coefficients for Minimum Variance Kernels

For the minimum variance kernels of order k (Equation (150)), inserting the
conditions (124) into Equations (167) and (168) yields

Kv, k
α (x) = (−1)να!

∑
ν≤|ω|<k

cαω
pω

Pω(x) (169)

and

R
(
Kv, k
α

)
= (α!)2∑

ν≤|ω|<k

c2
αω

pω
, (170)

respectively.

24.3.2 Coefficients for Optimal Kernels

For notational convenience, define

bkαω =
dx∑
i=1

c(α+(k−ν)δi)ω(α+ (k − ν)δi)!. (171)

For the “optimal” kernels of order k (cf. Equation (154)), subject to conditions (124)
and (131), Equations (167) and (168) read

Ko, k
α (x) = (−1)να!

∑
ν≤|ω|≤k

cαω
pω

Pω(x) + µKα
∑
|ω|=k

bkαω
pω

Pω(x) (172)

and

R
(
Ko, k
α

)
= (α!)2∑

ν≤|ω|≤k

c2
αω

pω
+ 2(−1)να!µKα

∑
|ω|=k

cαωb
k
αω

pω

+
(
µKα

)2∑
|ω|=k

(
bkαω

)2

pω
,

(173)
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24 EXPLICIT KERNEL FUNCTIONS

respectively. Differentiating Equation (173) w.r.t. µKα and equating to zero yields
the value µKI

α for “optimal” kernels of Type I according to Equation (155), i.e.,

µK
I
α = (−1)ν+1α!

 ∑
|ω|=k

(
bkαω

)2

pω


−1 ∑
|ω|=k

cαωb
k
αω

pω
. (174)

To derive the value µKII
α for “optimal” kernels of Type II according to Equa-

tion (156), it will be assumed in the following that the basis polynomials satisfy
Equation (162). Let ∂B be the surface of the dx-dimensional cube with edge length
2, centered at the origin, i.e., the boundary of the region [−1, 1]dx . It follows that

∫
∂B
Pω(x)Pη(x)dx1 =

dx∑
i=1

pω
pωi

(
1 + (−1)ωi+ηi

)
δ(ω−ωiδi)(η−ηiδi), (175)

where δ(ω−ωiδi)(η−ηiδi) ≡ δω1η1δω2η2 · · · δωi−1ηi−1δωi+1ηi+1 · · · δωdxηdx . Accordingly, for
K as in Equation (163),

∫
∂B
K(x)2dx1 =

dx∑
i=1

∑
|ω|≤k

λ?ω pωpωi
k−|ω|+ωi∑

j=0
λ?ω+(j−ωi)δi

(
1 + (−1)ωi+j

). (176)

Inserting Equation (166), subject to conditions (124) and (131), into Equation (176)
and expanding terms, yields
∫
∂B
K(x)2dx1 =

dx∑
i=1

(−1)να!
∑

ν≤|ω|≤k

(−1)να!
k−|ω|+ωi∑
j=max(

ν−|ω|+ωi,0)

cαωcα(ω+(j−ωi)δi)

pωpj

(
1 + (−1)ωi+j

)

+ µKα
cαωb

k
α(ω+(k−|ω|)δi)

pωpk−|ω|+ωi

(
1 + (−1)2ωi+k−|ω|

)
+
∑
|ω|=k

(−1)να!µKα
ωi∑

j=max(
ν−k+ωi,0)

bkαωcα(ω+(j−ωi)δi)

pωpj

(
1 + (−1)ωi+j

)

+2
(
µKα

)2
(
bkαω

)2

pωpωi


.

(177)
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Equation (177) is minimized by

µK
II
α =

4
dx∑
i=1

∑
|ω|=k

(
bkαω

)2

pωpωi


−1

(−1)ν+1α!
dx∑
i=1


∑

ν≤|ω|≤k

cαωb
k
α(ω+(k−|ω|)δi)

pωpk−|ω|+ωi

(
1 + (−1)2ωi+k−|ω|

)

+
∑
|ω|=k

ωi∑
j=max(

ν−k+ωi,0)

bkαωcα(ω+(j−ωi)δi)

pωpj

(
1 + (−1)ωi+j

).

(178)

25 Numerical Study: Sample from Maxwellian
with Quadratic Spatial Parameter Variation

Define the state space moments of f(x, c) as

F s
β(x) =

∫
Rdc
c′

2s
c′
β
f(x, c′)dc′1, (179)

where c2s =
(∑dc

k=1 c
2
k

)s
= ‖c‖2s, β is a multi index, and dc′1 denotes the differential

volume element of state space dc′1dc′2 · · · dc′dc . Equation (179) corresponds to
Equation (109), the definition of Fg(x), with g(c) := c2scβ.

To assess the expected quality of the moment derivative estimates obtainable by
the presented method, M samples of size N are generated from a space-dependent
Maxwellian phase density defined on the domain B = [−L,L]dx , L > 0, i.e., samples
with position vector x ∈ B and state vector c ∈ Rdc are generated with probability

P (x, c) ∼ ρ(x)
θ(x)

dc
2

exp
(
−‖c− v(x)‖2

2θ(x)

)
. (180)

For the spatial dependence of the quantities ρ, θ : Rdx → R+ and v : Rdx → Rdc ,
the following polynomial forms are chosen:

ρ(x) = ρ0

(
1 + 1

L

∑
k

αρkxk + 1
2L2

∑
k

∑
l

βρklxkxl

)
,

θ(x) = θ0

(
1 + 1

L

∑
k

αθkxk + 1
2L2

∑
k

∑
l

βθklxkxl

)
(181)

and vi(x) =
√
θ0

(
1
L

∑
k

αvik xk + 1
2L2

∑
k

∑
l

βviklxkxl

)
,

with parameters ρ0, θ0 ∈ R > 0, α ∈ Rdx , β ∈ R2dx and βkl ≡ βlk, k, l ∈ {1, . . . , dx}.
To generate a sample {xl, cl} according to Equation (180), first, a vector x̃ is
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25 NUMERICAL STUDY: SAMPLE FROM MAXWELLIAN WITH
QUADRATIC SPATIAL PARAMETER VARIATION

chosen with uniform probability from the region B, and accepted as sample xl

with probability ρ(x̃)
/

max
B

ρ . Next, a sample for the state vector cl is obtained

by setting cl = v
(
xl
)

+
√
θ(xl)ψ, where ψ ∈ Rdc is a vector of samples from the

standard normal distribution.
Subsequently, various kernels are used to estimate the normalized derivatives

Lν

ρ0
∂αF 0

0 , Lν

ρ0
√
θ0
∂αF 0

δi
and Lν

ρ0θ0
∂α 1

2F
1
0 at x = 0, where the quantities F s

β are defined
according to Equation (179), with the multi index α successively chosen from
{0, δm1 , δm1 + δm2}, with m1,m2 ∈ {1, . . . , dx}. From the phase density implied by
Equation (180), one finds:

F 0
0
ρ0

= 1
ρ0
ρ(x),

F 0
δi

ρ0
√
θ0

= ρ(x)vi(x)
ρ0
√
θ0

and
1
2F

1
0

ρ0θ0
= ρ(x)
ρ0θ0

(
1
2‖v(x)‖2 + dc

2 θ(x)
)
.

(182)

The exact expressions for the estimated quantities are thus:

F F
∣∣∣
x=0

∂xm1
F
∣∣∣
x=0

∂xm1
∂xm2

F
∣∣∣
x=0

F 0
0
ρ0

1 αρm1 βρm1m2
F 0
δi

ρ0
√
θ0

0 αvim1 βvim1m2 + αρm1α
vi
m2 + αρm2α

vi
m1

1
2F

1
0

ρ0θ0
dc
2

dc
2

(
αθm1 + αρm1

) dc
2

(
βθm1m2 + βρm1m2α

ρ
m1α

θ
m2 + αρm2α

θ
m1

)
+∑dc

k=1 α
vk
m1α

vk
m2

(183)

Here, the case dx = dc = 2 is considered. Minimum variance and optimal Type I
and Type II kernels of orders ν + 2 and ν + 4 are used to estimate the quantities in
Equations (183) with sample sizes up to N = 1× 107 from M = 500 independent
realizations. Four different sets of parameters α and β—listed in Table 2—are
investigated. Since the reference parameters ρ0, θ0 and the domain size L do not
appear on any right hand side of the Equations (183), they are set to unity.

The results in terms of the root mean squared error (RMSE) of the estimation
of the quantities in Equations (183) are presented in Figures 45, 46, 47 and 48 in
Appendix D.4. For comparison, also the analytical form of the RMSE is plotted.
Two result series, concerning the estimation of 1

2F
1
0 with parameter set 2, as well as

the estimation of 1
2∂

2
x1F

1
0 with parameter set 4, are presented enlarged in Figures 39

and 40, respectively. All plots confirm the expected trends: at first, RMSE is
dominated by the variance contribution and decreases with N−1/2, until the bias
becomes dominant, see, e.g., Figure 39. For the cases where the bias is not zero by
construction, its value is approached asymptotically. To achieve lower RMSE, the
bandwidth would have to be adjusted as a function of the sample size, as per the
consistency requirements (119). Since for this study, the variation of the estimated
quantities is normalized over the kernel support, one may equivalently compare
the parameter cases with large and small values of the coefficients α and β, see, for
example, Figure 40. From the presented results, one may conclude that for small
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Table 2: Coefficients for four different polynomial spatial variations of the specified
macroscopic parameters for the kernel RMSE Monte Carlo study.

1 2
ρ θ v1 v2 ρ θ v1 v2

α1 0 0 .025 .025 .025 .025 .025 .025
α2 0 0 .05 −.025 .05 −.025 .05 −.025
β11 0 0 .0125 .05 .0125 .05 .0125 .05
β12 0 0 .0125 −.025 .0125 −.025 .0125 −.025
β22 0 0 .025 −.025 .025 −.025 .025 −.025

3 4
ρ θ v1 v2 ρ θ v1 v2

α1 0 0 0 0 −.5 −.5 −.5 −.5
α2 0 0 0 0 .25 .25 .25 .25
β11 .05 .0125 .05 .0125 .75 .75 .75 .75
β12 −.025 .0125 −.025 .0125 −.5 −.5 −.5 −.5
β22 −.025 .025 −.025 .025 .0125 .0125 .0125 .0125

sample sizes and limited spatial variation of the phase density, lower order kernels
are the preferred choice. The differences between kernel classes (minimum variance
vs. Type I vs. Type II) are less pronounced, but may become significant at large
sample sizes and large spatial variation of the phase density, as illustrated by the
results using parameter set 4 in Figure 48. For the estimates with moderate spatial
variation (parameter sets 1, 2, and 3), using kernels of order ν + 2, about 1× 105

samples are required to achieve a RMSE on the order of 0.01.

26 Discussion and Conclusion

26.1 Other Kernels
Besides the kernels derived above, many other functions satisfy the necessary
requirements (124) for moment derivative estimation. Some interesting choices,
which have equal or worse variance compared to the optimal choices Kv, k

α , and do
not, in general, fulfill the additional conditions (131), are mentioned below.

26.1.1 Derivatives of Density Kernels

Due to the linearity of Equations (109) and (113), any kernel defined by Kd
α(x) :=

a∂αK(x), where K is an appropriately differentiable kernel satisfying the con-
ditions (124) for α = 0, and a ∈ R a normalization factor, may be used in the
estimate ∂̂αFg. For example, Duong et al. [Duo+08] developed the appropriate for-
malism along with significance tests in the context of multivariate density derivative
estimation.

Kernel interpolation (cf. Section 23) is at the heart of the Smoothed Particle
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26 DISCUSSION AND CONCLUSION
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set 4 using various kernels.

Hydrodynamics (SPH) method [Mon92], and it might be worthwhile to investigate
the consequences of using derivative kernels Kα in place of derivatives of kernels
∂αK—the standard practice—in this method.

26.1.2 Product Kernels

The product kernel (see, e.g. [Sin76])

Kπ
α(r) :=

dx∏
i=1

Kαi(ri), (184)

fulfills conditions (124), if the kernels Kαi : [−1, 1] → R fulfill the corresponding
conditions in dx = 1. Conditions (131) are only fulfilled in specific cases (e.g., if
α = a1 and Kαi ≡ K ∀i). The order of the kernel Kπ

α is given by the maximum
order of the kernels Kαi . The case |α| = 1 for density gradient estimation has
received significant attention in literature, cf., e.g., Refs. [FH75; GMM85; CM02].

26.1.3 Uniform Kernel for ν = 0

Kernels for the case α = 0, ν = |α| = 0 are equivalent to density estimation kernels,
which have been studied extensively, cf., e.g., Refs. [Epa69; WJ94; GMM85; Sco15].
Note that the simplest possible kernel, the uniform kernel, which is a constant over
the support [−1, 1]dx , i.e.,

Ku(x) := 1
2dx , (185)
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26.2 Time Averaging of Estimates

is of particular relevance to particle methods such as Direct Simulation Monte
Carlo (DSMC), since the corresponding moment estimates are simple arithmetic
averages. It may be, for example, more important to estimate the total kinetic
energy of particles in a given volume of space than to have a potentially superior
estimate of that quantity at a given location. In DSMC, the state space moments
defined in Equation (179) within a grid cell Bcell ∈ B

(
Rdx

)
are typically estimated

by
F̂ s
β = 1

Vcell

∑
l:xl∈Bcell

wl
(
cl
)2s(

cl
)β
, (186)

where Vcell = |Bcell| is the volume of the cell. If the cell is a rectangular cuboid, this
is equivalent to Equation (113) using K = Ku and setting h equal to the vector of
cell half-widths.

26.1.4 Discontinuous Kernel for ν = 1

The analogue to the uniform kernel (cf. Equation (185)) for the case α = δm,
m ∈ {1, . . . , dx}, ν = |α| = 1, is the function

Ks
δm(x) := − 1

2dx−1 Sgn(xm) = − 1
2dx−1 ×


−1, xm < 0
0, xm = 0
1 else,

(187)

also with support [−1, 1]dx , which yields the finite difference estimate of the mth
component of the moment gradient. The estimate is equivalent to first computing
separate estimates F̂−g and F̂+

g using a uniform kernel in each of the intervals
[−1, 0]m×[−1, 1]dx−1 and [0, 1]m×[−1, 1]dx−1, respectively, and subsequently setting
∂̂mFg :=

(
F̂+
g − F̂−g

)
.

26.2 Time Averaging of Estimates
One may additionally use time averaging to increase the quality of the estimates
∂̂αFg, according to the procedure discussed in [JTH10]: let ˜̂Fgn−1

be the time-
averaged estimate of quantity Fg up to time step number n − 1, and F̂g

n the
estimate of Fg based on the sample currently available at time step n. The update
of ˜̂Fgn−1

to ˜̂Fgn then reads

˜̂
Fg

n

= (1− µ)F̂g
n + µ

˜̂
Fg

n−1
, (188)

where µ ∈ R, 0 ≤ µ ≤ 1, is a weighting factor. Setting µ := n−1/n results in a simple
arithmetic average of all samples, and this factor should be chosen for statistically
stationary sample processes.
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26 DISCUSSION AND CONCLUSION

26.3 Conclusions
This part of the thesis presents the extension of established non-parametric density
estimation techniques to the estimation of mixed spatial derivatives of statistics
of the phase density in arbitrary dimensions. Specifically, it is demonstrated that
kernel estimation may be used to estimate mixed spatial derivatives of generalized
state space moments of the phase density, from which kernel interpolation of mixed
spatial derivatives of deterministic functions of the position follows as a special
case. Consistency requirements for kernels, together with asymptotic bias and
variance expressions, as well as the asymptotically optimal bandwidth, are derived.
Three classes of kernels are investigated: “minimum variance”, and two types of
“optimal” kernels, minimizing asymptotic variance and asymptotic mean squared
error, under additional regularization conditions, respectively. In addition to closed-
form expressions for the kernels in d dimensions for the estimation of the νth-order
mixed spatial derivatives, several explicit kernel functions for dimensions 1, 2 and
3 for the estimation of mixed derivatives up to order 4 are provided. A Monte
Carlo study illustrates the root mean squared error dependence on kernel type
and sample size for the estimation of state space moments from samples from a
two-space-two-state-dimensional Maxwellian phase density with parameters varying
quadratically in space.

The presented estimation idea may prove useful for any computational task
where spatial derivatives of scattered data are sought: in the context of computations
where physical space is discretized into axis aligned grid cells, one would choose
the kernel bandwidth vector equal to the cell half-width vector. The estimation of
any desired spatial derivative of the data at each cell center may then proceed in
an “embarrassingly” parallel fashion, only requiring the sample data within each
cell. This inherent locality of the kernel approach makes it particularly simple
to implement in the context of locally refined computational grids and parallel
algorithms based on domain decomposition. In fact, the asymptotically optimal
bandwidth may be used to inform automatic mesh refinement procedures. Further,
all obtained values may be time-averaged to reduce noise. Potential applications
that may benefit from these properties include molecular dynamics, smoothed
particle hydrodynamics, particle-in-cell, direct simulation Monte Carlo, and n-
body simulations, as well as spatial econometrics, computer vision and machine
intelligence.

For this contribution, the explicit kernels were derived under the assumption
that they should be continuous functions with compact support on [−1, 1]dx . It
would be worthwhile to investigate and compare the performance of other kernels
that do not share these restrictions. For applications in which data are investigated
in a nearest neighbor fashion, kernels with support on the unit sphere may be useful.
With regards to non-continuous kernels, the approach presented by Boykin [Boy03]
could be used to generalize the finite difference kernel.
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Part V

Gradient-Based Automatic Mesh
Refinement
In Parts II & III of this thesis, it was demonstrated that the FP-DSMC algorithm
offers numerous advantages over “pure” DSMC in terms of computational resources
needed to achieve a desired level of accuracy. As mentioned in the introduction
(Part I, Section 3.5), if the greatest accuracy given certain computational resources
is desired, the FP collision operator can serve as an automatic fall-back to prevent
excessive increase of execution time and load imbalance which would occur if cells
in the domain fail to fulfill the DSMC resolution requirements, necessitating the
computation of a large number of binary collisions compared to the number of
particles. Indeed, in Part II it was demonstrated that using FP where DSMC
would be under-resolved also improves accuracy. However, the full potential of
FP-DSMC has not yet been leveraged. In order to further improve the performance,
one would like to apply the FP operator in even larger regions of the simulated
physical domain. To this end, the computational mesh needs to be as coarse as
possible, but still fine enough to satisfy the FP resolution requirements. Now,
DSMC serves as the fall-back, in cells where there are not enough collisions to
justify the drift-diffusion ansatz, and where DSMC is more efficient anyway.

The following sections describe the necessary extensions of the implementation
presented so far in order to maximize performance and accuracy for the FP-
DSMC procedure. While the implementation of the gradient-based automatic
mesh refinement and the local variable time stepping are completed, and the
necessary changes to the code to incorporate the improved position integration
scheme outlined below have been made, the necessary numerical validation studies
are still “work in progress” at the time of writing.

27 Computing the Mesh Refinement Criterion

The Fokker-Planck algorithm requires the resolution of the spatial gradients of
the macroscopic quantities. This ensures that a given particle is subject to con-
stant coefficients along its trajectory during one time step. While the necessary
developments to efficiently adapt the mesh according to any desired local criteria
have been developed and presented in Part III, the next step is to make use of the
theory developed in Part IV to base the automatic mesh refinement on the length
scales implied by the gradients of the macroscopic fields.

One would like all cells of the mesh to satisfy the following gradient resolution
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27 COMPUTING THE MESH REFINEMENT CRITERION

requirement with threshold parameter κ:
dx∑
i=1

∆2
i max

j
L2
ij < κ2, (189)

where the matrix L contains the normalized gradients of selected macroscopic fields
Qj, i.e.,

Lij = 1
Qref

(j)

(
∂xiQ(j)

)
, (190)

where no summation over the index j is implied, and Qref 6= 0 is a suitable reference
value for the quantity Q.

27.1 Conversion of Derivatives of Full Moments to Their
Centered Counterparts

Of the relevant quantities Q for gas dynamics, i.e., the macroscopic fields, only
density and momentum are directly defined in terms of the “full” moments

F a,b,s
β = 〈

(
b∑
i=a

c2
i

)s
cβ〉, (191)

cf. Equation (179), where β is a multi index, and, if omitted, a = 1 and b = dc is
assumed. To compute other macroscopic fields, also the centered moments ρa,b,sβ

are required, defined as

ρa,b,sβ = 〈
(

b∑
i=a

C2
i

)s
Cβ〉, (192)

where C is the state vector with the velocity components replaced by their thermal
counterparts, i.e., C = c−U0, with U0 := (U ,0), where Ui ≡ F 0

δi

/
F 0

0 , i = 1, 2, 3,
and, as before, δi = (δ1i, δ2i, . . . , δni) (cf. Sec. 18). Since only derivatives of the full
moments may be directly computed via the kernel approach, an explicit expression
to compute the derivatives of the centered moments from their full counterparts is
required, which will be derived in the following.

Equation (192) may be re-cast using the multinomial theorem to yield

ρa,b,sβ =
∑
|η|=s

supp(η)={a,...,b}

(
s

η

)
〈(c−U0)2sη+β〉, (193)

where supp(η) is the support of the multi index η, defined as the set of indices
{i : ηi > 0}. Equation (193), in turn, allows the straightforward application of
the multi-binomial theorem to write the centered moments in terms of the full
moments F 0

β , viz.

ρa,b,sβ =
∑
|η|=s

supp(η)={a,...,b}

(
s

η

)
(2sη + β)!

∑
γ+ν=(2sη+β)

(−1)|ν|
F 0
γ

γ!
Uν

0
ν! . (194)
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27.1 Conversion of Derivatives of Full Moments to Their Centered Counterparts

The νth-order mixed partial spatial derivatives of the moments ρa,b,sβ follow from
the generalized Leibniz rule:

∂αρa,b,sβ =
∑
|η|=s

supp(η)={a,...,b}

(
s

η

)
(2sη + β)!

∑
γ+ν=(2sη+β)

(−1)|ν|α!
∑

µ+ω=α

∂µF 0
γ

µ!γ!
∂ωUν

0
ω!ν! . (195)

Explicitly evaluating the term ∂ωUν
0 requires the multivariate extension of the

chain rule, here given for a general function z : x ∈ Rdx → y ∈ Rdc → R [Ma09,
Equation (6)]:

∂αz = α!
∑

(l,p,m)∈D
z(m)

l∏
k=1

1
mk!

[
1
pk!
∂pky

]mk

. (196)

In Equation (196), D is the set of all possible decompositions of the multi index
α into l parts p1, . . . ,pl, |pi| > 0, with multiplicities m1, . . . ,ml, |mi| > 0, for
which α = |m1|p1 + · · ·+ |ml|pl, such that pi 6= pj ∀i 6= j, with total multiplicity
m = m1 + · · ·+ml. Note that the parts pi and multiplicitiesmi are multi indices
of orders dx and dc, respectively. Further, z(m) ≡ ∂|m|

∂
m1
y1 ···∂

ms
ys
z(y), and for z = yν ,

z(m) =


ν!

(ν−m)!y
ν−m if m ≤ ν,

0 otherwise.
(197)

As before, 00 ≡ 1. Also, note that[
1
pk!
∂pky

]mk

≡
[

1
pk!
∂pky1

]mk1

× · · · ×
[

1
pk!
∂pkydc

]mkdc
. (198)

For the application presented in this part of the thesis only gradients are of
interest, i.e., α = δi, i = 1, . . . , dx. In this case, Equation (195) simplifies to

∂δiρa,b,sβ =
∑
|η|=s

supp(η)={a,...,b}

(2sη + β)!
∑

γ+ν=(2sη+β)
(−1)|ν|

Uν
0 ∂

δiF 0
γ + F 0

γ ∂
δiUν

0

γ!ν! . (199)

Inserting α = δi and z = Uν
0 into Equation (196), it is obvious that in this case

each decomposition will have only one part, i.e, l = 1, with p1 ≡ δi. There exist dc
such decompositions, each with |m1| = 1. Due to Equation (197), with y = U0
and the definition of U0, only the dx decompositions with m1 = δj, j = 1, . . . , dx,
contribute to ∂δiUν

0 . It follows that

∂δiUν
0 =

dx∑
j=1

ν!
(ν − δj)!

U
ν−δj
0 ∂xiUj

=
dx∑
j=1

νjU
ν−δj
0 ∂xiUj.

(200)
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28 LOCAL VARIABLE TIME STEPS

27.2 Gradients of Selected Macroscopic Quantities for Au-
tomatic Mesh Refinement

The following macroscopic fields are chosen as components of the vector Q:

ρ = F 0
0 , (density) (201)

Ui = F 0
δi

/
ρ, i = 1, 2, 3, (mean velocity) (202)

and θ = ρ1,3,1
0

/
3ρ

= 2
3∑
i=1

(1
2F

0
2δi − FδiU

δi
0 + 1

2ρU
2δi
0

)/
3ρ

=
(
F 1,3,1

0 − ρ‖U‖2
)/

3ρ.

(temperature in
energy units) (203)

The respective gradients, in terms of the gradients of the full moments F , read

∂xiρ = ∂xiF
0
0 , (204)

∂xiUj =
(
ρ ∂xiF

0
δj
− F 0

δj
∂xiρ

)/
ρ2 , (205)

and ∂xiθ =
(
ρ∂xiρ

1,3,1
0 − ρ1,3,1

0 ∂xiρ
)/

3ρ2

=
∂xiF 1,3,1

0 − ‖U‖2∂xiρ− 2ρ
3∑
j=1

Uj∂xiUj

/3ρ

−
(
F 1,3,1

0 − ρ‖U‖2
)
∂xiρ

/
3ρ2

= ∂xiF
1,3,1
0

/
3ρ − 2

3

3∑
j=1

Uj∂xiUj − F 1,3,1
0 ∂xiρ

/
3ρ2 .

(206)

For the estimation of the gradients of the full moments, that is, the quantities
∂xiF

a,b,s
β , the third-order minimum variance kernel K(x) = −3

8x is used (cf. 24.1).
Since the gradient estimates suffer from greater noise than the non-derivated
moments, for practical purposes, exponentially weighted time averaging is used,
and further, the grid adaption is limited to cells where the averages contain a
certain minimal amount of samples, on the order of 10× 105. Similarly, a suitable
compromise between numerical accuracy and stability of the refinement process
must be found when choosing the refinement threshold κ (see Equation (189)).
Typical values for κ will be on the order of 5–10%, see also [PG16].

28 Local Variable Time Steps
Both the DSMC operator and the Fokker-Planck operator place restrictions on the
time step size. For the Fokker-Planck operator, a CFL criterion should be satisfied.
DSMC additionally requires that the time step size be smaller than the mean
collision time. When using a locally refined mesh, the CFL limitation can become
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28.1 Particle Weight Adjustment

severe. In particular, the octree grid used in the work presented here introduces
significant differences in the cell sizes. Having to choose the time step according to
the smallest cells on the grid may thus cause significant (unnecessary) overhead.
Furthermore, regardless of the choice of the collision operator, if the grid is not
refined to ensure a uniform number of particles in each cell, small cells may suffer
from too few particles being present per time step, and hence slow convergence of
the averages in the best case, and wrong results in the worst.

A common solution to address both issues is to introduce a cell local time
step size [KB00]. This means that a single iteration of the particle algorithm no
longer represents the same amount of physical time in each cell. Clearly, such a
scheme may only be used for stationary flows. In order to reduce the particle-count
imbalance throughout the domain of a mean free path adjusted grid, Kannenberg
and Boyd [KB00] suggest choosing a time step size inversely proportional to density.
If the grid spacing is proportional to the mean free path, this may be realized by
scaling the time step according to the cell volume V . Here, the motivation is to
satisfy the CFL criterion on the time step size. Accordingly, the time step should
be proportional to V 1/dx . For the octree grid layout presented in Part III, the cell
volume is V = Vref2dx×l, where l is the grid level.

To maintain some degree of flexibility, the local time step in cell i is computed
according to

∆ti = ∆tref(f)li , (207)
where f is an input parameter. Local time stepping is disabled by setting f = 1.
f = 2 maintains the CFL criterion, and f = 2dx produces cell-volume proportional
time steps. In general, it may be desirable to choose the time step according to
local flow properties. This would be difficult to realize within the current code
architecture, cf. the paragraph concerning implementation below.

28.1 Particle Weight Adjustment
The inter-cell differences in time step size are compensated by adjusting the particles’
statistical weights [Kan98; WTW04]: let the reference time step be ∆tref, and the
time step in a cell with index i be adjusted to σi∆tref. Let Nij be the number of
particles, each with index l and weight ςiwl, crossing from cell i to cell j during a
given time step, where ςi is the weight factor applied to particles in cell i. Cell i
will “emit” a numerical flux of a macroscopic quantity Q = 〈g〉 to cell j equal to

Φij =
Nij∑
l=1

ςiw
l
ig
l

/
Aijσi∆tref , (208)

where Aij is the area of the interface shared between cells i and j. During the same
iteration, if the time size step in cell j is σj∆tref, the same particle flux will result
in cell j receiving a corresponding numerical flux

Φji =
Nji∑
l=1

ςjw
l
ig
l

/
Ajiσj∆tref . (209)
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28 LOCAL VARIABLE TIME STEPS

Clearly, Φij
!= Φji. Since Nij ≡ Nji and Aij ≡ Aji, this condition necessitates

σi
ςi

!= σj
ςj
. (210)

Without loss of generality, this requirement is enforced by setting σi ≡ ςi ∀i
according to Equation (207).

28.2 Implementation
A defining characteristic of the code developed and presented in this thesis is that
the particle movement at each time step can be computed on each subdomain (with
dedicated MPI process) without communication. In other words, the final particle
position should not depend on the grid and/or solution, but only on the boundaries.
To implement local time steps, the particles should be traced through the mesh,
with their remaining flight time updated precisely at the point where they cross
an interface between cells with different weights. Clearly, this would violate the
design assumption above, necessitating techniques such as “ghost cells” (halo cells)
on every subdomain to avoid per-particle communication events. To avoid this
difficulty, the time step in each cell is computed according to Equation (207). To
complete the particle movement on each MPI process, after each dynamic grid
adaptation step, only the manifold defined by the union of all interfaces between
cells of different levels needs to be combined and duplicated on all MPI processes.
A flow-dependent criterion would necessitate a ghost cell value exchange at every
time step. The manifold is stored as a collection of quadrilaterals and treated the
same as all other boundaries in the simulation, that is, the ray tracing library
computes the particle trajectory intersection.

After a particle is determined to hit the “time zone” boundary, it is moved to
the intersection location, and its remaining time of flight scaled by the factor f ,
if the crossing occurs from a smaller to a larger cell, and by 1/f otherwise. Note
that the actual levels of the cells in each region with homogeneous cell level (time
zone) does not matter. This procedure relies on the fact that levels of neighboring
cells are ensured to differ by at most one.

Note that the interface manifold for a 4-level grid for the planetary probe
simulations presented in Part III requires on the order of 10 MB of memory, while
the entire grid requires on the order of 4 GB, and, for a simulation with 400× 106

particles, the particle storage requires more than 75 GB.

28.2.1 Boundary Sampling

The code presented here uses immersed boundaries. In the context of local variable
time steps and particle weights, particles of different weights and time steps might
interact with the same boundary element. This would complicate the computation
of the various average surface fluxes. A far greater difficulty arises at inflows, since
it is not clear a priori which weight and time step the particles should receive when
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they are sampled. Both difficulties are avoided by statically refining cells intersected
by geometry to a pre-defined level and preventing these cells from being refined
or coarsened during the simulation. This ensures that the time zone boundary
does not intersect any geometry, and, consequently, all particles interacting with
geometry will have equal weights. At inflow boundaries, the permanent cell level is
used to compute the initial particle weights and time steps.

29 Fokker-Planck Algorithm with Higher-Order
Position Integration

As the cell size and the time step are pushed to the gradient and CFL limits,
respectively, the time step may become large with respect to the mean collision time.
The Fokker-Planck algorithm due to Gorji et al. [GJ14] described in Part I naturally
conserves momentum and enforces energy conservation due to the correction factor.
However, as time steps increase, the error introduced by the first-order integration
of the position, i.e., the free-flight assumption, is expected to become significant.
In order to improve the evolution of the position variance and position velocity
covariance, an improved position integration scheme may be used. In the following,
the original derivation of the scheme presented in [GTJ11] is slightly extended to
include consistent treatment of the non-linear drift. As before, it is assumed that
all coefficients remain constant in integrals over a time step.

29.1 Conservation of Energy during Velocity Update
In order to conserve energy, instead of using a correction factor as in Equation (91),
a modified diffusion factor D̃2

tr is employed. The modified system of SDEs (74) for
the velocities and positions reads

dMi = [−νMi +Ni]dt+ D̃trdWi, (211a)
dξi = µidt, (211b)

and the numerical velocity update Equation (85) becomes

Mn+1
i = e−ν∆tMn

i + 1
ν
e−ν∆t

(
1− e−ν∆t

)
Nn
i +

√
D̃2

tr

2ν (1− e−2ν∆t)ψtr,i, (212)

where, as before, ψtr,i is a random number drawn from the standard normal
distribution, i.e., ψtr,i ∼ N (0, 1).

To determine D̃2
tr, the exact and numerical integration of translational thermal

energy over a time step ∆t are compared. Based on Equation (42c), the exact
evolution equation for the trace of the stress tensor reads

d〈VsVs〉 = ΠFP
VsVsdt

= 2〈Atr sVs〉dt+ 3ρD2
trdt

= −2ν〈VsVs〉dt+ 3ρD2
trdt.

(213)

101



29 FOKKER-PLANCK ALGORITHM WITH HIGHER-ORDER POSITION
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Using the integrating factor e2νt, the above may be integrated from time t at time
step n to time t+ ∆t at time step n+ 1, viz.

〈VsVs〉(t+ ∆t) = e−2ν∆t〈VsVs〉(t) + 3ρ
2νD

2
tr

(
1− e−2ν∆t

)
. (214)

From the velocity update due to the numerical scheme Equation (212), on the
other hand, one obtains

Mn+1
s Mn+1

s = e−2ν∆tMn
sM

n
s + 2

ν
e−2ν∆t

(
1− e−ν∆t

)
Mn

s N
n
s

+ 1
ν2 e

−2ν∆t
(
1− e−ν∆t

)2
Nn
s N

n
s + 3ρ

2ν D̃
2
tr

(
1− e−2ν∆t

)
,
(215)

where over-lined terms denote their weighted ensemble average, i.e.,

g(ζ) = 1
|Ω|

N∑
l=1

wlg
(
cl
)
, (216)

where |Ω| is the volume of the grid cell under consideration. Note that Equa-
tion (215) assumes that the vectors ψl satisfy ψiψj = ρδij. Comparing coefficients
in Eqns. (214) and (215), one finds

D̃2
tr

2ν
(
1− e−2ν∆t

)
= D2

tr
2ν

(
1− e−2ν∆t

)
− 2
ν
e−2ν∆t

(
1− e−ν∆t

)
Mn

s N
n
s

/
3ρ

− 1
ν2 e

−2ν∆t
(
1− e−ν∆t

)2
Nn
s N

n
s

/
3ρ. (217)

29.2 Position Update as Time Integral of the Velocity Pro-
cess

In the following, the position integration scheme with increased accuracy is derived,
i.e., for the position process dξ = µdt, instead of the approximation µ(t+ s) ≈
µ(t), 0 ≤ s ≤ ∆t, which leads to ξn+1

i = ξni + µni ∆t, the integration is carried out
explicitly. Formally,

ξi(t+ ∆t) = ξi(t) + Ui∆t+
∫ t+∆t

t
Mi(s)ds. (218)

Recall the formal solution for M (t+ ∆t) (Equation (81)), repeated here with the
modified diffusion:

Mi(t+ ∆t) = e−ν∆tMi(t) +
∫ t+∆t

t
eν(s−t−∆t)Ni(s)ds+

∫ t+∆t

t
eν(s−t−∆t)D̃trdWi(s). (219)
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29.2 Position Update as Time Integral of the Velocity Process

The integral in Equation (218) follows as∫ t+∆t

t
Mi(s)ds =

∫ ∆t

0
Mi(t+ s′)ds′

=
∫ ∆t

0
e−νs

′
Mi(t)ds′ +

I︷ ︸︸ ︷∫ ∆t

0

∫ t+s′

t
eν(s−t−s′)Ni(s)dsds′

+
∫ ∆t

0
e−νs

′
∫ t+s′

t
eν(s−t)D̃trdWi(s)ds′︸ ︷︷ ︸

II

= 1
ν

(
1− eν∆t

)
Mi(t) + I + II .

(220)

As before, the term I is approximated by assuming Ni(t+ s) ≈ Ni(t), viz.

I ≈ 1
ν2

(
ν∆t+ e−ν∆t − 1

)
Ni(t). (221)

Following Equations (164)–(171) in [Cha43], term II is simplified by integrating by
parts:

II =
[
−1
ν
e−νs

′
∫ t+s′

t
eν(s−t)D̃trdWi(s)

]∆t

s′=0

+
∫ ∆t

0

1
ν
e−νs

′ ∂

∂s′

(∫ t+s′

t
eν(s−t)D̃trdWi(s)

)
ds′

= − 1
ν
e−ν∆t

∫ t+∆t

t
eν(s−t)D̃trdWi(s) +

∫ ∆t

0

1
ν
e−νs

′
eν(t+s′−t)D̃trdWi(s′)

=
∫ t+∆t

t

1
ν

(
1− eν(s−t−∆t)

)
D̃trdWi(s),

(222)

where the last step follows from
∫∆t

0 dWi(s′) having the same distribution as∫ t+∆t
t dWi(s). According to Equation (83),

II ∼ N
(
0, B2

)
, with B2 = 1

2ν3

(
2ν∆t+ 4e−ν∆t − e−2ν∆t − 3

)
D̃2

tr. (223)

Using Equation (223), the formal position evolution Equation (218) may be
written as

ξi(t+ ∆t) = ξi(t) + Ui∆t−
1
ν

(
1− e−ν∆t

)
Mi(t)

+
∫ ∆t

0

∫ t+s′

t
eν(s−t−s′)Ni(s)dsds′ +

∫ t+∆t

t

1
ν

(
1− eν(s−t−∆t)

)
D̃trdWi(s),

(224)

which, together with Equations (221) and (223), leads us to propose the numerical
position update

ξn+1
i = ξni + Ui∆t+ 1

ν

(
1− e−ν∆t

)
Mn

i

+ 1
ν2 e

−ν∆t
(
ν∆t+ e−ν∆t − 1

)
Nn
i +B ψx,i,

(225)
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with B as in Equation (223), and where ψx,i ∼ N (0, 1). As in Equation (85), the
additional factor e−ν∆t in the non-linear term ensures consistency with the fact
that lim

∆t→∞
N = 0, while maintaining the exact evolution as ∆t→ 0, i.e.,

as ∆t→ 0 : 1
ν2 e

−ν∆t
(
ν∆t+ e−ν∆t − 1

)
Ni →

∆t2
2 Ni. (226)

The numerical integration schemes given by Equations (212) and (225) are
statistically exact to the level of approximation of the non-linear term N with
regards to the marginal distributions of velocity and displacement, since both
the analytical displacement and the analytical velocity change follow Gaussian
distributions, and the numerical schemes reproduce the desired means and variances.

29.3 The Correct Joint Statistics of Position and Velocity
To recover the full joint distribution of displacement and velocity change, the
stochastic terms in Equations (212) and (225) need to be appropriately correlated.
To this end, Equation (212) is modified to read as follows:

Mn+1
i = e−ν∆tMn

i + 1
ν
e−ν∆t

(
1− e−ν∆t

)
Nn
i +

√
A2 − C2

B2 ψtr,i +
√
C2

B2 ψx,i, (227)

where A2 = 1
2ν

(
1− e−2ν∆t

)
D̃2

tr, and ψx is the same vector of samples of independent
standard normal random numbers as used in the position update. Note that the
statistical evolution ofM implied by Equation (227) and the original scheme (212)
are identical. To determine the new constant C, the exact update of the weighted
position-velocity covariance is derived: Itō’s Lemma leads to

d(ξiMj) = Midξ + ξidMj

= (MiUj +MiMj)dt+ ξi(−νMj +Nj)dt+ ξiD̃trdWj,
(228)

where dξ and dM are given by Equation (211). Applying the expectation operator
to both sides, and assuming that position and the nonlinear acceleration are
instantaneously uncorrelated, i.e., E[ξiNj] ≡ 0, yields

dE[ξiMj] = −ν E[ξiMj]dt+ E[MiMj]dt. (229)

The formal solution of the above is obtained using the integrating factor eν∆t:

E[ξiMj](t+ ∆t) = e−ν∆t E[ξiMj](t) + e−ν(t+∆t)
∫ t+∆t

t
eνs E[MiMj](s)ds. (230)

To derive the evolution of MiMj, Itō’s Lemma is invoked yet again, viz.

d(MiMj) = MidMj +MjdMi + dMidMj, (231)
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with dM as in Equation (211). Expanding terms and applying the expectation
operator, and recalling that dWidWj = δijdt, one finds

dE[MiMj] = −2ν E[MiMj]dt+ δijD̃
2
trdt, (232)

which is readily integrated using the integrating factor e2νt:

E[MiMj](t+ ∆t) = e−2ν∆t E[MiMj](t) + δij
1

2ν
(
1− e−2ν∆t

)
D̃2

tr. (233)

Inserting the above into Equation (230), one obtains

E[ξiMj](t+ ∆t) = e−ν∆t E[ξiMj](t) + e−ν(t+∆t)
∫ ∆t

0
eν(t−s) E[MiMj](t)ds

+ e−ν(t+∆t)
∫ ∆t

0
δij

1
2ν
(
eν(t+s) − eν(t−s)

)
D̃2

trds

= e−ν∆t E[ξiMj](t) + 1
ν

(
e−ν∆t − e−2ν∆t

)
E[MiMj](t)

+ δij
1

2ν2

(
1− e−ν∆t

)2
D̃2

tr.

(234)

The corresponding expression due to the proposed numerical integration scheme is
obtained by multiplication of Equation (227) with Equation (225) and subsequent
(weighted) averaging, viz.

ξn+1
i Mn+1

j = e−ν∆t ξni M
n
j −

1
ν

(
e−ν∆t − e−2ν∆t

)
Mn

i M
n
j

+ 1
ν3 e

−2ν∆t
(
1− e−ν∆t

)(
ν∆t+ e−ν∆t − 1

)
︸ ︷︷ ︸

O(∆t3) as ∆t→0

Nn
i N

n
j + δijρ

√
C2. (235)

By comparing Equations (234) and (235), while neglecting the third-order contri-
bution by the non-linear terms in the latter, one obtains

C2 =
( 1

2ν2

(
1− e−ν∆t

)2
D̃2

tr

)2
. (236)

In summary, the final result, the statistically exact (to the order of approximation
of the non-linear term) numerical integration scheme for the positions ξ and
velocities M , reads as follows:

Mn+1
i = e−ν∆tMn

i + 1
ν
e−ν∆t

(
1− e−ν∆t

)
Nn
i

+
√
A2 − C2

B2 ψtr,i +
√
C2

B2 ψx,i

(237a)

and
ξn+1
i = ξni + Ui∆t+ 1

ν

(
1− e−ν∆t

)
Mn

i

+ 1
ν2 e

−ν∆t
(
ν∆t+ e−ν∆t − 1

)
Nn
i +
√
B2 ψx,i,

(237b)
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where
D̃2

tr = D2
tr −

1
ν2 e

−2ν∆t
(
1− e−ν∆t

)2
Nn
s N

n
s

/3ρ
2ν
(
1− e−2ν∆t

)
, (237c)

A2 = 1
2ν
(
1− e−2ν∆t

)
D̃2

tr, (237d)

B2 = 1
2ν3

(
2ν∆t+ 4e−ν∆t − e−2ν∆t − 3

)
D̃2

tr (237e)
and

C2 =
( 1

2ν2

(
1− e−ν∆t

)2
D̃2

tr

)2
. (237f)

29.4 Implementation
Some observations regarding the implementation of the numerical scheme (237)
are given in the following: First, note that per particle, three additional samples
from the standard normal distribution are required. The implementation presented
here uses the highly efficient counter-based random number generation library
Random123 [Sal+11] to generate random integers, which serve as input to a custom
implementation of the Ziggurat algorithm due to Marsaglia and Tsang [MT00]
to sample the standard normal distribution. This procedure avoids the costly
evaluation of trigonometric functions, and is efficient enough to render the impact
of the additionally required normal variates on overall performance negligible.

A further technical point concerns the modified diffusion coefficient D̃2
tr. From

the definition of D̃2
tr, Equation (237c), it is not guaranteed a priori that D̃2

tr is
positive. Should a negative value for D̃2

tr occur during a simulation, the time step
in the respective cell may be subdivided into equal parts while maintaining the
values of the coefficients, until a positive value is obtained. Since for the negative
term in the definition of D̃2

tr,

as ∆t→ 0 : 1
ν2 e

−2ν∆t
(
1− e−ν∆t

)2
Nn
s N

n
s

/3ρ
2ν
(
1− e−2ν∆t

)
→ ∆tN

n
s N

n
s

3ρ , (238)

this procedure is guaranteed to find a positive value for D̃2
tr after a finite number

of subdivisions.
The most severe implication of the accurate position integration scheme for

the implementation, however, is that particle time-step trajectories are no longer
straight lines. This is fundamentally at odds with the ray-tracing procedure
outlined in Part II, Section 6.3 to find intersections of particle trajectories with the
boundaries. The only way to circumvent this problem is to augment the numerical
particle state by an “effective” velocity vector

µn+1
eff = ξn+1 − ξn

∆t , (239)

and to base the particle movement algorithm on µeff instead of µ. As before, if
a particle trajectory is found to intersect a boundary, the particle is moved to
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the intersection point, and, after its state is modified according to the boundary
condition, the particle travels along a straight line according to its new velocity for
the remainder of the time step. In essence, this means that the higher-order position
integration scheme outlined above becomes again first-order near boundaries. In
the context of a locally refined mesh with local variable time stepping, however, the
boundaries are usually resolved to a relatively high degree. This means that the
local time step in the vicinity of boundaries is usually low, which should mitigate
the error introduced by the linearized trajectories.

107





Part VI

Conclusion
The most prevalent numerical tool to study the dynamics of rarefied gases is the
Direct Simulation Monte Carlo (DSMC) method. However, since it is based on the
explicit calculation of binary collisions, its computational cost becomes intractable
in the near-continuum regime. The Fokker-Planck (FP) method, on the other
hand, relies on the time integration of continuous stochastic processes, and is both
accurate and efficient in the near continuum. Since both methods share the same
fundamental structure, i.e., they are both stochastic particle methods, coupling the
two is straightforward. The resulting FP-DSMC algorithm is capable of simulating
flows of dilute gas ranging from the near-continuum to the fully rarefied regime.
This thesis is concerned with the analysis and parallel implementation of the
Fokker-Planck-DSMC algorithm.

30 Summary and Conclusions
After giving some background on rarefied gas dynamics and the Fokker-Planck
method in particular, the general purpose, parallel implementation of the coupled
FP-DSMC algorithm is presented. The implementation exploits both coarse-grained
and fine-grained parallelism via distributed- and shared-memory multiprocessor
programming, and is thus optimally suited for state-of-the-art high-performance
computer cluster technologies. The external ray-tracing library Embree is used to
deal efficiently with complex geometries. Several improvements to algorithms and
data structures for particle-based simulations are introduced, which are relevant
beyond the scope of the FP-DSMC method itself. The new algorithm is applied
to various three-dimensional test cases. It is demonstrated that accurate, efficient
simulations of gas flows in and around complex geometries, covering the entire
range of Knudsen numbers, are possible using FP-DSMC.

In a next step, it is shown how ordering the grid and particle data structures
according to locally computable space-filling curves (SFCs) allows to elegantly solve
many challenges with regards to performance of particle simulations, especially
in the context of hybrid shared-distributed memory computer architectures: the
presented algorithms ensure cache-friendly computations, efficient inter-process
communication, and parallel load balancing both at the fine- and coarse-grained
parallelism level. The SFC-ordered data structures allow for efficient automatic
mesh refinement, which is of particular relevance for the (FP-)DSMC algorithm.
Additionally, a detailed explanation, as well as source code, for the fast computation
of the relevant SFC indices, based on bit-wise operations and a look-up table
approach, are provided. The modular simulation architecture allows to study the
performance impact of using different SFCs for relevant rarefied gas dynamics test
cases.
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31 OUTLOOK

Motivated by the goal to perform automatic mesh refinement based on the
gradients of macroscopic quantities, the theoretical foundation for a general ap-
proach to compute estimates of spatial derivatives of statistics—such as generalized
moments—of scattered data was developed. The kernel-based method allows for
the direct computation of these quantities as weighted sums of given data, without
having to compute finite differences of the statistics. This “local” nature of the
approach makes it simple to implement, as well as ideally suited for parallel algo-
rithms based on domain decomposition and locally refined computational grids.
Explicit expressions for kernel functions to estimate mixed spatial derivatives of
arbitrary order in arbitrary dimensions are derived, and it is shown that the kernel
approach trivially extends to kernel interpolation of mixed spatial derivatives of
deterministic functions of position. The suggested approach may prove useful for
any computational task where estimates of spatial derivatives of scattered data
could be of interest: from molecular dynamics, smoothed particle hydrodynamics,
particle-in-cell, DSMC, and other particle-based physics simulation algorithms, to
spatial econometrics, computer vision, and machine intelligence.

The final steps towards maximally efficient parallel Fokker-Planck-DSMC simu-
lations on gradient-capturing meshes are the implementation of the kernel method,
the use of local variable time steps to cope with the large scale-variations and
hence particle resolution imbalance, as well as a position integration scheme with
improved accuracy for large time steps. To this end, the necessary theory and
implementation of the above are discussed.

31 Outlook
“Now, here, you see, it takes all the running you can do, to keep in the same place.
If you want to get somewhere else, you must run at least twice as fast as that!”

—Lewis Carroll, Through the Looking-Glass

Software for scientific numerical simulation is never “finished”; instead, it is the
author’s hope that the developments described in this thesis may lay the foundation
for the pursuit of future research.

A worthwhile next area of investigation after the completion of the final imple-
mentation steps mentioned above would be to study different dynamic switching
criteria for the FP and DSMC collision operators. The current approach is well
suited for maximum performance, however, other groups have suggested using
various equilibrium breakdown parameters, which may offer better guarantees on
accuracy. Performing a comparison of different switching criteria would require
minimal additions to the current implementation.

While there may still be room for algorithmic improvements, the presented
simulation code was demonstrated to efficiently produce results for meaningful
problem sizes. Incorporating next-generation computing hardware seems to be
more promising: since the Fokker-Planck algorithm is inherently parallel on the
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particle level, it would be worthwhile to extend the implementation to utilize general
purpose graphics processing units (GPUs), which may offer large performance gains.

To expand the simulation capabilities, the focus of further development should
be on the modeling side: after implementing and validating the recent Entropic
Fokker-Planck model, its extension to mixtures of polyatomic gases may be pursued.
Further, a consistent treatment of quantized internal degrees of freedom seems
necessary. To perform realistic numerical simulations of reentry-type flows, also
dissociation, recombination, ionization, and potentially radiation effects need to be
considered.

The software presented in this thesis is meant to be released “open source”
in the near future, in the hope that it may prove useful in accommodating such
developments.
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Part VII

Appendices
A Appendix to Part I

A.1 System of Constitutive Equations
The macroscopic coefficients c̃i,j and γi in the cubic Fokker-Planck algorithm are
determined by requiring identical relaxation rates of phase density moments up
to third order (heat fluxes) to those implied by the Boltzmann collision operator.
The corresponding constitutive equations (63b) and (66) form a linear system for
the coefficients, viz. (

Lc Lγ
Mc Mγ

)(
c̃
γ

)
=
(
z
r

)
, (240)

where c̃ =
(
c̃11 c̃12 c̃13 c̃22 c̃23 c̃33

)>
denotes the vector of unknowns in the

symmetric coefficient matrix c̃ij and the matrices Lc ∈ R6×6, Lγ ∈ R6×3,Mc ∈ R3×6,
and Mγ ∈ R3×3, as well as the vectors z ∈ R6 and r ∈ R3, are defined below.

Recall the definition of the weighted moments (Eq. (50)),

usi1...ik =
∫
‖V ′‖sV ′i1 · · ·V

′
ik
f(·, c′)dc′. (241)

Note also that u2/ρ ≡ 3θ, and consequently, σij ≡ u0
ij − ρθδij. The matrices Lc,

Lγ, Mc, and Mγ follow as:

Lc =



2u0
11 2u0

12 2u0
13 0 0 0

u0
12 u0

11 + u0
22 u0

23 u0
12 u0

13 0
u0

13 u0
23 u0

11 + u0
33 0 u0

12 u0
13

0 2u0
12 0 2u0

22 2u0
23 0

0 u0
13 u0

12 u0
23 u0

22 + u0
33 u0

23
0 0 2u0

13 0 2u0
23 2u0

33


, (242)

Lγ =



2u2
1 0 0

u2
2 u2

1 0
u2

3 0 u2
1

0 2u2
2 0

0 u2
3 u2

2
0 0 2u2

3


, (243)

Mc =

u
2
1 u2

2 u2
3 0 0 0

0 u2
1 0 u2

2 u2
3 0

0 0 u2
1 0 u2

2 u2
3



+ 2

u
0
111 2u0

112 2u0
113 u0

122 2u0
123 u0

133
u0

112 2u0
122 2u0

123 u0
222 2u0

223 u0
233

u0
113 2u0

123 2u0
133 u0

223 2u0
233 u0

333

,

(244)
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and

Mγ =

u
4 − 3θu2 0 0

0 u4 − 3θu2 0
0 0 u4 − 3θu2



+ 2

u
2
11 − 3θu0

11 u2
12 − 3θu0

12 u2
13 − 3θu0

13
u2

12 − 3θu0
12 u2

22 − 3θu0
22 u2

23 − 3θu0
23

u2
13 − 3θu0

13 u2
23 − 3θu0

23 u2
33 − 3θu0

33

.

(245)

The right hand side vectors z and r are given by

z> =
(
Π?
V〈1V1〉

Π?
V〈1V2〉

Π?
V〈1V3〉

Π?
V〈2V2〉

Π?
V〈2V3〉

Π?
V〈3V3〉

)
+ 2ν

(
u0

11 − ρθ u0
12 u0

13 u0
22 − ρθ u0

23 u0
33 − ρθ

)
− 2Λ

(
u2

11 u2
12 u2

13 u2
22 u2

23 u2
33

)
(246)

and

ri = Π∗‖V ‖2Vi
+ 3νu2

i − 3Λ
(
u4
i − θu2

i

)
+ 2Λ

ρ

(
u0
i1u

2
1 + u0

i2u
2
2 + u0

i3u
2
3

)
, (247)

where ν = p/2µ , the coefficient Λ is defined in Eq. (49), and the Boltzmann
production terms Π?

V〈iVj〉
and Π∗‖V ‖2Vi

are as in Eq. (41) and Eq. (67), respectively.
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B.1 Tables of Simulation Parameters

Table 3: Simulation parameters for the supersonic corner flow simulations (Part II,
Section 8.1).

geometry
domain size (x, y, z) [m] (0.3, 0.18, 0.18)
corner profile rectangle (x, y, z) [m] (0.05 . . . 0.3, 0.0 . . . 0.18, 0.0)

rectangle (x, y, z) [m] (0.05 . . . 0.3, 0.0, 0.0 . . . 0.18)
bottom rectangle (x, y, z) [m] (0.0 . . . 0.05, 0.0 . . . 0.18, 0.0)
front rectangle (x, y, z) [m] (0.0 . . . 0.05, 0.0, 0.0 . . . 0.18)
top rectangle (x, y, z) [m] (0.0 . . . 0.3, 0.0 . . . 0.18, 0.18)
back rectangle (x, y, z) [m] (0.0 . . . 0.3, 0.18, 0.0 . . . 0.18)
left rectangle (x, y, z) [m] (0.0, 0.0 . . . 0.18, 0.0 . . . 0.18)
right rectangle (x, y, z) [m] (0.3, 0.0 . . . 0.18, 0.0 . . . 0.18)
discretization
time step [s] 2.0× 10−6 . . . 5.0× 10−7

cell width [m] 0.01 . . . 0.0025
simulation
total number of time steps [#] 15 000
number of sampling time steps [#] 10 000
average number of particles per cell [#] ≈ 100
gas model (Argon)
potential VHS
molecular mass [kg] 6.63× 10−26

reference diameter [m] 4.17× 10−10

reference temperature [K] 273.0
viscosity exponent ω [−] 0.81
ratio of specific heats γ [−] 1.67
inflow
number density [m−3] 1.0× 1021

temperature [K] 300.0
Mach number [−] 6.0
boundary conditions
corner profile type fully diffusive

temperature [K] 1000.0
bottom and front type specular
other type stream
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Table 4: Simulation parameters for the simulations of supersonic flow around a
sphere (Part II, Section 8.2).

geometry
domain size (x, y, z) [m] (1.0, 1.0, 1.0)
sphere radius [m] 0.1

center (x, y, z) [m] (0.0, 0.0, 0.0)
bottom rectangle (x, y, z) [m] (−0.5 . . . 0.5,−0.5 . . . 0.5,−0.5)
top rectangle (x, y, z) [m] (−0.5 . . . 0.5,−0.5 . . . 0.5, 0.5)
front rectangle (x, y, z) [m] (−0.5 . . . 0.5,−0.5,−0.5 . . . 0.5)
back rectangle (x, y, z) [m] (−0.5 . . . 0.5, 0.5,−0.5 . . . 0.5)
left rectangle (x, y, z) [m] (−0.5,−0.5 . . . 0.5,−0.5 . . . 0.5)
right rectangle (x, y, z) [m] (0.5,−0.5 . . . 0.5,−0.5 . . . 0.5)
discretization
time step [s] 7.576× 10−6 . . . 3.788× 10−6

cell width [m] 0.03 . . . 0.015
simulation
total number of time steps [#] 12 500
number of sampling time steps [#] 10 000
average number of particles per cell [#] ≈ 100
gas model (Argon)
potential VHS
molecular mass [kg] 6.63× 10−26

reference diameter [m] 4.17× 10−10

reference temperature [K] 273.0
viscosity exponent ω [−] 0.81
ratio of specific heats γ [−] 1.67
inflow
number density [m−3] 5.0× 1020

temperature [K] 300.0
Mach number [−] 6.0
boundary conditions
sphere type fully diffusive

temperature [K] 1000.0
other type stream
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Table 5: Simulation parameters for the simulations of micro-nozzle flow (Part II,
Section 8.3).

geometry
domain size (x, y, z) [mm] (7.5, 2.0, 0.15)
nozzle & outlet CAD model see Figure 21
inlet rectangle (x, y, z) [mm] (0.0, 0.0 . . . 0.15, 0.15 . . . 0.3)
y-symmetry rectangle (x, y, z) [mm] (0.0 . . . 7.5, 0.0, 0.15 . . . 0.3)
z-symmetry rectangle (x, y, z) [mm] (0.0 . . . 7.5, 0.0 . . . 2.0, 0.15)
discretization
time step [s] 2.0× 10−9

grid dimensions (nx, ny, nz) [−] (450, 120, 9) . . . (1050, 280, 21)
cell width [mm] 1.67× 10−2 . . . 7.14× 10−3

simulation
total number of time steps [#] 100 000
number of sampling time steps [#] 20 000
number of particles in simulation [#] ≈ 1.0× 106 . . . ≈ 1.0× 108

gas model (Nitrogen)
potential VSS
molecular mass [kg] 4.65× 10−26

reference viscosity [Pa s−1] 1.656× 10−5

reference temperature [K] 273.0
scattering angle exponent α [−] 1.36
viscosity exponent ω [−] 0.74
Z∞rot [−] 18
T ref

rot (= T ∗) [K] 91.5
C1 9.1
C2 220.0
T ref

vib (defines ν0) [K] 3340.0
ratio of specific heats γ [−] 1.4
inflow
pressure [Pa] 5282.8
temperature [K] 250.0
Mach number [−] 1.0
boundary conditions
nozzle type fully diffusive

temperature [K] 300.0
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C Appendix to Part III

C.1 C++ Code to Generate Morton and Hilbert Codes
// " Insert " two 0 bit after each of the 21 low bits of x
uint64_t part1By2 ( uint64_t x) {

x &= 0 x00000000001fffff ;
x = (x ^ (x << 32)) & 0 x001f00000000ffff ;
x = (x ^ (x << 16)) & 0 x001f0000ff0000ff ;
x = (x ^ (x << 8)) & 0 x100f00f00f00f00f ;
x = (x ^ (x << 4)) & 0 x10c30c30c30c30c3 ;
x = (x ^ (x << 2)) & 0 x1249249249249249 ;
return x; }

// given indices in N3 i,j,k in range 0...2^21 -1 = 2 ’097 ’151 , compute Morton index
uint64_t mortonFromN3 ( const uint64_t i, const uint64_t j, const uint64_t k) {

return ( part1By2 (i) << 2) ^ ( part1By2 (j) << 1) ^ part1By2 (k); }

// given Morton index m, compute Hilbert index h
uint64_t morton2Hilbert ( uint64_t m) {

uint64_t h = 0;
uint8_t state = start_state ;
for ( uint8_t shift = 60; shift != uint8_t ( -3); shift -= 3){ // for each three bit digit

const uint8_t orthant = (m >> shift ) & 7; // get orthant ( Morton digit )
h ^= uint64_t ( keyLUT [ state ][ orthant ]) << shift ; // save Hilbert digit
state = stateLUT [ state ][ orthant ]); } // state transition

return h; }

C.2 Look-Up Tables for Selected Hilbert Curves
C.2.1 The Curve “Butz”

The base order of the “Butz” curve corresponds to state 3, and repeats after three
consecutive visits of the zeroth octant.

2 1 3 0 5 6 4 7
0 1 7 6 3 2 4 5
2 3 5 4 1 0 6 7
0 7 3 4 1 6 2 5
2 5 1 6 3 4 0 7
0 3 1 2 7 4 6 5
4 5 3 2 7 6 0 1
4 7 5 6 3 0 2 1
4 3 7 0 5 2 6 1
6 5 7 4 1 2 0 3
6 7 1 0 5 4 2 3
6 1 5 2 7 0 4 3

Figure 41: Table of function H (Equa-
tion (102)) to generate the Hilbert code
on curve “Butz” from the Morton code.
If the encoding is in state i and the next
3-bit Morton digit is j, the entry at row
i, column j specifies the next 3-bit digit
of the Hilbert code.

8 8 5 10 4 4 5 2
3 5 8 9 2 5 2 9
7 1 0 1 7 11 0 4
5 7 4 4 1 10 1 10
6 2 6 2 3 3 9 0
1 0 3 3 6 0 11 11
10 5 10 9 11 5 4 9
9 10 3 3 9 2 11 11
11 11 9 0 1 10 1 10
8 8 1 7 4 4 6 7
7 3 0 8 7 6 0 6
6 2 6 2 5 7 8 8

Figure 42: State transition table (func-
tion S, Eq. (102)) to generate the
Hilbert code on curve “Butz” from the
Morton code. If the encoding is in state
i and the next 3-bit Morton digit is j,
the table entry at row i, column j spec-
ifies the next state.
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C.2.2 The Curve “Ca00.chI”

The base order of the curve “Ca00.chI” corresponds to state 4, and repeats after
three consecutive visits of the zeroth octant.

2 3 5 4 1 0 6 7
2 1 3 0 5 6 4 7
2 5 1 6 3 4 0 7
0 1 7 6 3 2 4 5
0 7 3 4 1 6 2 5
0 3 1 2 7 4 6 5
4 3 7 0 5 2 6 1
4 5 3 2 7 6 0 1
4 7 5 6 3 0 2 1
6 5 7 4 1 2 0 3
6 7 1 0 5 4 2 3
6 1 5 2 7 0 4 3

Figure 43: Table of function H (Equa-
tion (102)) to generate the Hilbert code
on curve “Ca00.chI” from the Morton
code. If the encoding is in state i and
the next three-bit Morton digit is j, the
entry at row i and column j specifies
the next 3-bit digit of the Hilbert code.

0 9 0 5 8 11 1 2
1 6 11 10 1 2 4 0
2 2 7 0 10 3 9 1
4 5 6 9 1 3 8 3
5 8 0 7 3 10 4 4
3 2 4 5 7 6 11 5
0 7 9 1 6 6 3 10
1 7 8 7 11 5 2 9
2 10 8 4 6 0 8 11
6 9 3 11 2 9 7 4
8 4 1 6 10 9 10 5
7 0 11 11 5 8 10 3

Figure 44: State transition table (func-
tion S, Equation (102)) to generate the
Hilbert code on curve “Ca00.chI” from
the Morton code. If the encoding is in
state i and the next three-bit Morton
digit is j, the table entry at row i and
column j specifies the next state.
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C.3 Tables of Simulation Parameters

Table 6: Parameters for simulation of reentry flow over 70 degree blunted cone
(Part III, Section 14).

geometry
domain size (x, y, z) [m] (0.14, 0.14, 0.14)
simulation
time step size [s] 5.44× 10−7

total number of time steps 2500
number of sampling time steps 1500
average number of particles per cell ≈ 2000
mesh refinement
initial number of grid cells (nx,ny,nz) (32, 32, 32) (level 4)
pre-refinement at geometry, to level 2
dynamic adaptation at time steps no. 50, 100, . . . , 1000

cell split criterion cellwidth > 2.0× λ0

gas model (Nitrogen)
potential VHS
molecular mass [kg] 4.65× 10−26

reference diameter [m] 4.17× 10−10

reference temperature [K] 273.0
viscosity exponent ω [−] 0.75
Z∞rot [−] 18.1
T ref

rot (= T ∗) [K] 91.5
C1 9.1
C2 220.0
T ref

vib (defines ν0) [K] 3340.0
ratio of specific heats γ [−] 1.4
inflow
number density [m−3] 3.72× 1020

temperature [K] 13.3
Mach number [−] 20.2
boundary conditions
cone geometry type fully diffusive

temperature [K] 300.0
other type stream
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Table 7: Parameters for simulation of nozzle flow (Part III, Section 15).

geometry
domain size (x, y, z) [m] (0.05, 0.05, 0.17)
simulation
time step size [s] 2.5× 10−7

total number of time steps 16 000
number of sampling time steps 4000
approx. number of particles in steady state ≈ 208× 106

approx. number of grid cells in steady state ≈ 275× 103

mesh refinement
initial number of grid cells (nx,ny,nz) (20, 20, 74) at level 4
pre-refinement at geometry, to level 0

in cylinder on z-axis (r = 5 mm), to level 1
gas model (Argon)
potential VHS
molecular mass [kg] 6.63× 10−26

reference diameter [m] 4.17× 10−10

reference temperature [K] 273.0
viscosity exponent ω [−] 0.81
ratio of specific heats γ [−] 1.67
inflow
pressure [Pa] 2875.5
temperature [K] 288.1
Mach number [−] 0.226
boundary conditions
walls type fully diffusive

temperature [K] 293.0
background type stream

temperature [K] 293.0
pressure [Pa] 40.0
Mach number [−] 0

outflow type stream
temperature [K] 293.0
pressure [Pa] 0.1
Mach number [−] 0
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D Appendix to Part IV

D.1 Some Minimum Variance Kernels

Table 8: Minimum Variance Kernels in d = 1 with support on [−1, 1] according to
Eq. (150).

ν=|α| k α Kα(x) AB ∂αf  R(Kα)

0 2 ( 0 )
1

2

f ′′

6
0.5

4 ( 0 ) -
3

8
5 x1

2 - 3 -
f (4)

280
1.125

1 3 ( 1 ) -
3 x1

2

f (3)

10
1.5

5 ( 1 )
15

8
x1 7 x1

2 - 5 -
f (5)

504
9.375

2 4 ( 2 )
15

4
3 x1

2 - 1 f (4)

14
22.5

6 ( 2 ) -
105

32
45 x1

4 - 42 x1
2 + 5 -

f (6)

792
275.625

3 5 ( 3 ) -
105

4
x1 5 x1

2 - 3 f (5)

18
787.5

7 ( 3 )
945

32
x1 77 x1

4 - 90 x1
2 + 21 -

f (7)

1144
15946.9

4 6 ( 4 )
945

16
35 x1

4 - 30 x1
2 + 3 f (6)

22
49612.5

8 ( 4 ) -
10 395

64
273 x1

6 - 385 x1
4 + 135 x1

2 - 7 -
f (8)

1560
1500778.

Table 9: Minimum Variance Kernels in d = 2 with support on [−1, 1]2 according to
Eq. (150).

ν=|α| k α Kα(x) AB ∂αf  R(Kα)

0 2 ( 0 0 )
1

4

1

6
f (0,2) + f (2,0) 0.25

4 ( 0 0 )
1

16
-15 x1

2 - 15 x2
2 + 14 -9 f (0,4)-70 f (2,2)-9 f (4,0)

2520
0.875

1 3 ( 1 0 ) -
3 x1

4

1

30
5 f (1,2) + 3 f (3,0) 0.75

5 ( 1 0 )
15

16
x1 7 x1

2 + 3 x2
2 - 6 -9 f (1,4)-42 f (3,2)-5 f (5,0)

2520
5.625

2 4 ( 2 0 )
15

8
3 x1

2 - 1 1

42
7 f (2,2) + 3 f (4,0) 11.25

( 1 1 )
9 x1 x2

4

1

10
f (1,3) + f (3,1) 2.25

6 ( 2 0 ) -
45

64
105 x1

4 + 30 x2
2 x1

2 - 108 x1
2 - 10 x2

2 + 15 -99 f (2,4)-330 f (4,2)-35 f (6,0)

27 720
151.875

( 1 1 ) -
9

16
x1 x2 35 x1

2 + 35 x2
2 - 46 -25 f (1,5)-126 f (3,3)-25 f (5,1)

12 600
25.875

3 5 ( 3 0 ) -
105

8
x1 5 x1

2 - 3 1

18
3 f (3,2) + f (5,0) 393.75

( 2 1 ) -
45

8
3 x1

2 - 1 x2
1

70
7 f (2,3) + 5 f (4,1) 33.75

7 ( 3 0 )
105

64
x1 693 x1

4 + 150 x2
2 x1

2 - 860 x1
2 - 90 x2

2 + 219 -3861 f (3,4)-10 010 f (5,2)-945 f (7,0)

1 081 080
8465.62

( 2 1 )
315

64
x2 45 x1

4 + 30 x2
2 x1

2 - 60 x1
2 - 10 x2

2 + 11 -55 f (2,5)-198 f (4,3)-35 f (6,1)

27 720
590.625

4 6 ( 4 0 )
945

32
35 x1

4 - 30 x1
2 + 3 1

66
11 f (4,2) + 3 f (6,0) 24806.3

( 3 1 )
315

8
x1 5 x1

2 - 3 x2
1

90
9 f (3,3) + 5 f (5,1) 1181.25

( 2 2 )
225

16
3 x1

2 - 1 3 x2
2 - 1 1

14
f (2,4) + f (4,2) 506.25

8 ( 4 0 ) -
945

128
3003 x1

6 + 525 x2
2 x1

4 -

4410 x1
4 - 450 x2

2 x1
2 + 1635 x1

2 + 45 x2
2 - 92

-429 f (4,4)-910 f (6,2)-77 f (8,0)

120 120
781397.

( 3 1 ) -
315

64
x1 x2 693 x1

4 + 350 x2
2 x1

2 - 1020 x1
2 - 210 x2

2 + 315 -715 f (3,5)-2002 f (5,3)-315 f (7,1)

360 360
30121.9

( 2 2 ) -
225

128
945 x2

2 x1
4 - 315 x1

4 + 945 x2
4 x1

2 -

1692 x2
2 x1

2 + 375 x1
2 - 315 x2

4 + 375 x2
2 - 62

-49 f (2,6)-198 f (4,4)-49 f (6,2)

38 808
11896.9
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D.1 Some Minimum Variance Kernels

Table 10: Minimum Variance Kernels in d = 3 with support on [−1, 1]3 according
to Eq. (150).

ν=|α| k α Kα(x) AB ∂αf  R(Kα)

0 2 ( 0 0 0 )
1

8

1

6
f (0,0,2) + f (0,2,0) + f (2,0,0) 0.125

4 ( 0 0 0 )
1

32
-15 x1

2 - 15 x2
2 - 15 x3

2 + 19 1

2520
-9 f (0,0,4) - 70 f (0,2,2) - 9 f (0,4,0) -

70 f (2,0,2) - 70 f (2,2,0) - 9 f (4,0,0)
0.59375

1 3 ( 1 0 0 ) -
3 x1

8

1

30
5 f (1,0,2) + 5 f (1,2,0) + 3 f (3,0,0) 0.375

5 ( 1 0 0 )
15

32
x1 7 x1

2 + 3 x2
2 + 3 x3

2 - 7 1

2520
-9 f (1,0,4) - 70 f (1,2,2) - 9 f (1,4,0) -

42 f (3,0,2) - 42 f (3,2,0) - 5 f (5,0,0)
3.28125

2 4 ( 2 0 0 )
15

16
3 x1

2 - 1 1

42
7 f (2,0,2) + 7 f (2,2,0) + 3 f (4,0,0) 5.625

( 1 1 0 )
9 x1 x2

8

1

30
5 f (1,1,2) + 3 f (1,3,0) + 3 f (3,1,0) 1.125

6 ( 2 0 0 ) -
15

128

315 x1
4 + 90 x2

2 x1
2 + 90 x3

2 x1
2 - 354 x1

2 - 30 x2
2 - 30 x3

2 + 55

1

27 720
-99 f (2,0,4) - 770 f (2,2,2) - 99 f (2,4,0) -

330 f (4,0,2) - 330 f (4,2,0) - 35 f (6,0,0)
82.9688

( 1 1 0 ) -
9

32
x1 x2 35 x1

2 + 35 x2
2 + 15 x3

2 - 51 1

12 600
-45 f (1,1,4) - 210 f (1,3,2) - 25 f (1,5,0) -

210 f (3,1,2) - 126 f (3,3,0) - 25 f (5,1,0)
14.3438

3 5 ( 3 0 0 ) -
105

16
x1 5 x1

2 - 3 1

18
3 f (3,0,2) + 3 f (3,2,0) + f (5,0,0) 196.875

( 2 1 0 ) -
45

16
3 x1

2 - 1 x2
1

210
35 f (2,1,2) + 21 f (2,3,0) + 15 f (4,1,0) 16.875

( 1 1 1 ) -
27

8
x1 x2 x3

1

10
f (1,1,3) + f (1,3,1) + f (3,1,1) 3.375

7 ( 3 0 0 )
105

128
x1 693 x1

4 + 150 x2
2 x1

2 +

150 x3
2 x1

2 - 910 x1
2 - 90 x2

2 - 90 x3
2 + 249

1

1 081 080

-3861 f (3,0,4) - 30 030 f (3,2,2) - 3861 f (3,4,0) -

10 010 f (5,0,2) - 10 010 f (5,2,0) - 945 f (7,0,0)

4478.91

( 2 1 0 )
45

128
x2

315 x1
4 + 210 x2

2 x1
2 + 90 x3

2 x1
2 - 450 x1

2 - 70 x2
2 - 30 x3

2 + 87

1

27 720
-99 f (2,1,4) - 462 f (2,3,2) - 55 f (2,5,0) -

330 f (4,1,2) - 198 f (4,3,0) - 35 f (6,1,0)
316.406

( 1 1 1 )
27

32
x1 x2 x3 35 x1

2 + 35 x2
2 + 35 x3

2 - 67 1

12 600
-25 f (1,1,5) - 126 f (1,3,3) - 25 f (1,5,1) -

126 f (3,1,3) - 126 f (3,3,1) - 25 f (5,1,1)
56.5313

4 6 ( 4 0 0 )
945

64
35 x1

4 - 30 x1
2 + 3 1

66
11 f (4,0,2) + 11 f (4,2,0) + 3 f (6,0,0) 12403.1

( 3 1 0 )
315

16
x1 5 x1

2 - 3 x2
1

90
15 f (3,1,2) + 9 f (3,3,0) + 5 f (5,1,0) 590.625

( 2 2 0 )
225

32
3 x1

2 - 1 3 x2
2 - 1 1

42
7 f (2,2,2) + 3 f (2,4,0) + 3 f (4,2,0) 253.125

( 2 1 1 )
135

16
3 x1

2 - 1 x2 x3
1

70
7 f (2,1,3) + 7 f (2,3,1) + 5 f (4,1,1) 50.625

8 ( 4 0 0 ) -
945

256
3003 x1

6 + 525 x2
2 x1

4 + 525 x3
2 x1

4 - 4585 x1
4 - 450 x2

2 x1
2 -

450 x3
2 x1

2 + 1785 x1
2 + 45 x2

2 + 45 x3
2 - 107

1

360 360

-1287 f (4,0,4) - 10 010 f (4,2,2) - 1287 f (4,4,0) -

2730 f (6,0,2) - 2730 f (6,2,0) - 231 f (8,0,0)

406202.

( 3 1 0 ) -
315

128
x1 x2 693 x1

4 + 350 x2
2 x1

2 +

150 x3
2 x1

2 - 1070 x1
2 - 210 x2

2 - 90 x3
2 + 345

1

1 081 080

-3861 f (3,1,4) - 18 018 f (3,3,2) - 2145 f (3,5,0) -

10 010 f (5,1,2) - 6006 f (5,3,0) - 945 f (7,1,0)

15799.2

( 2 2 0 ) -
675

256
315 x2

2 x1
4 - 105 x1

4 + 315 x2
4 x1

2 -

594 x2
2 x1

2 + 90 x2
2 x3

2 x1
2 - 30 x3

2 x1
2 + 135 x1

2 -

105 x2
4 + 135 x2

2 - 30 x2
2 x3

2 + 10 x3
2 - 24

1

194 040
-693 f (2,2,4) - 2310 f (2,4,2) - 245 f (2,6,0) -

2310 f (4,2,2) - 990 f (4,4,0) - 245 f (6,2,0)
6264.84

( 2 1 1 ) -
945

128
x2 x3

45 x1
4 + 30 x2

2 x1
2 + 30 x3

2 x1
2 - 78 x1

2 - 10 x2
2 - 10 x3

2 + 17

1

138 600
-275 f (2,1,5) - 1386 f (2,3,3) - 275 f (2,5,1) -

990 f (4,1,3) - 990 f (4,3,1) - 175 f (6,1,1)
1151.72
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D.2 Some Optimal Kernels of Type I

Table 11: Optimal Kernels of Type I in d = 1 with support on [−1, 1] according to
Eqs. (154) and (155).

ν=|α| k α Kα(x) AB ∂αf  R(Kα) k!μKα  T(Kα) (k!)
2 d+4 ν
d+2 k

0 2 ( 0 )
1

2

f ′′

6
0.5 0.333333 0.370107

4 ( 0 ) -
3

8
5 x1

2 - 3 -
f (4)

280
1.125 0.0857143 0.643235

1 3 ( 1 ) -
3 x1

2

f (3)

10
1.5 0.6 0.813706

5 ( 1 )
15

8
x1 7 x1

2 - 5 -
f (5)

504
9.375 0.238095 2.32774

2 4 ( 2 )
15

4
3 x1

2 - 1 f (4)

14
22.5 1.71429 7.2621

6 ( 2 ) -
105

32
45 x1

4 - 42 x1
2 + 5 -

f (6)

792
275.625 0.909091 29.5049

3 5 ( 3 ) -
105

4
x1 5 x1

2 - 3 f (5)

18
787.5 6.66667 126.413

7 ( 3 )
945

32
x1 77 x1

4 - 90 x1
2 + 21 -

f (7)

1144
15946.9 4.40559 695.822

4 6 ( 4 )
945

16
35 x1

4 - 30 x1
2 + 3 f (6)

22
49612.5 32.7273 3486.3

8 ( 4 ) -
10 395

64
273 x1

6 - 385 x1
4 + 135 x1

2 - 7 -
f (8)

1560
1500778. 25.8462 25233.6

Table 12: Optimal Kernels of Type I in d = 2 with support on [−1, 1]2 according
to Eqs. (154) and (155).

ν=|α| k α Kα(x) AB ∂αf  R(Kα) k!μKα  T(Kα) (k!)
2 d+4 ν
d+2 k

0 2 ( 0 0 )
1

4

1

6
f (0,2) + f (2,0) 0.25 0.333333 0.190786

4 ( 0 0 )
9

64
5 x1

2 - 3 5 x2
2 - 3 1

280
-f (0,4) - f (4,0) 1.26563 0.0857143 0.451924

1 3 ( 1 0 ) -
15

304
x1 7 x1

2 - 21 x2
2 + 18 2

19
f (1,2) + f (3,0) 0.888158 0.631579 0.595213

5 ( 1 0 )
3 x1 693 x1

4-17 850 x2
2 x1

2+9940 x1
2-3465 x2

4+15 720 x2
2-7782

2176
-

29 f (1,4)+f (5,0)
14 280

10.7289 0.243697 1.89788

2 4 ( 2 0 )
21

160
15 x1

4 - 90 x2
2 x1

2 + 60 x1
2 + 30 x2

2 - 23 11

150
f (2,2) + f (4,0) 15.75 1.76 5.93646

( 1 1 )
9 x1 x2

4

1

10
f (1,3) + f (3,1) 2.25 2.4 3.95482

6 ( 2 0 ) -
1

67 328
5 48 048 x1

6 - 3 728 025 x2
2 x1

4 +

2 171 295 x1
4 - 720 720 x2

4 x1
2 + 4 097 250 x2

2 x1
2 -

2 127 630 x1
2 + 240 240 x2

4 - 620 145 x2
2 + 268 087

-
505 f (2,4)+f (6,0)

397 656
316.01 0.914358 24.8354

( 1 1 )
225

64
x1 7 x1

2 - 5 x2 7 x2
2 - 5 1

504
-f (1,5) - f (5,1) 87.8906 1.42857 17.5226

3 5 ( 3 0 ) -
315 x1 1155 x1

4-11 550 x2
2 x1

2+7220 x1
2+6930 x2

2-4827
22 336

59 f (3,2)+f (5,0)
1047

610.933 6.76218 108.504

( 2 1 )
315

832
x2 -45 x1

4 + 90 x2
2 x1

2 - 60 x1
2 - 30 x2

2 + 29 1

13
f (2,3) + f (4,1) 45.4327 9.23077 69.0939

7 ( 3 0 )
1

7 856 896
2835 x1 57 915 x1

6 - 11 816 035 x2
2 x1

4 +

6 996 066 x1
4 - 2 027 025 x2

4 x1
2 + 15 548 400 x2

2 x1
2 -

8 417 790 x1
2 + 1 216 215 x2

4 - 4 265 025 x2
2 + 2 033 055

-
215 f (3,4)+f (7,0)

245 528
18224.3 4.41335 595.791

( 2 1 ) -
1

20 224
225 x2 -9009 x1

6 + 174 195 x2
2 x1

4 -

112 140 x1
4 + 27 027 x2

4 x1
2 - 192 612 x2

2 x1
2 +

118 470 x1
2 - 9009 x2

4 + 29 365 x2
2 - 15 775

-
53 f (2,5)+f (6,1)

39 816
2636.05 6.70886 344.45

4 6 ( 4 0 )
1

8416
1155 1365 x1

6 - 20 475 x2
2 x1

4 + 12 495 x1
4 +

17 550 x2
2 x1

2 - 11 685 x1
2 - 1755 x2

2 + 1201

217 f (4,2)+f (6,0)
4734

41155.1 33.0038 3074.57

( 3 1 )
675

736
x1 x2 231 x1

4 - 770 x2
2 x1

2 + 420 x1
2 + 462 x2

2 - 351 19

322
f (3,3) + f (5,1) 2311.14 42.4845 1937.03

( 2 2 )
225

16
3 x1

2 - 1 3 x2
2 - 1 1

14
f (2,4) + f (4,2) 506.25 51.4286 1649.12

8 ( 4 0 ) -
1

29 668 864

3465 1 531 530 x1
8 - 711 878 895 x2

2 x1
6 + 424 268 481 x1

6 -

107 207 100 x2
4 x1

4 + 1 095 823 575 x2
2 x1

4 -

609 898 905 x1
4 + 91 891 800 x2

4 x1
2 -

430 792 425 x2
2 x1

2 + 218 793 375 x1
2 -

9 189 180 x2
4 + 26 129 745 x2

2 - 11 731 297

-
13 381 f (4,4)+f (8,0)

20 860 920
1709509. 25.8628 21867.8

( 3 1 ) -
1

242 432

1575 x1 x2 128 700 x1
6 - 4 593 897 x2

2 x1
4 + 3 073 455 x1

4 -

900 900 x2
4 x1

2 + 6 370 490 x2
2 x1

2 - 3 955 350 x1
2 +

540 540 x2
4 - 1 853 481 x2

2 + 1 013 115

-
61 f (3,5)+f (7,1)

68 184
154180. 36.0718 10863.7

( 2 2 )
11 025 45 x1

4-42 x1
2+5 45 x2

4-42 x2
2+5

1024

1

792
-f (2,6) - f (6,2) 75969.1 50.9091 11630.8
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Table 13: Optimal Kernels of Type I in d = 3 with support on [−1, 1]3 according
to Eqs. (154) and (155).

ν=|α| k α Kα(x) AB ∂αf  R(Kα) k!μKα  T(Kα) (k!)
2 d+4 ν
d+2 k

0 2 ( 0 0 0 )
1

8

1

6
f (0,0,2) + f (0,2,0) + f (2,0,0) 0.125 0.333333 0.118847

4 ( 0 0 0 )
1

128
225 x2

2 x1
2 + 225 x3

2 x1
2 -

210 x1
2 - 210 x2

2 + 225 x2
2 x3

2 - 210 x3
2 + 151

1

280
-f (0,0,4) - f (0,4,0) - f (4,0,0) 1.17969 0.0857143 0.295273

1 3 ( 1 0 0 ) -
15

656
x1 14 x1

2 - 21 x2
2 - 21 x3

2 + 22 9

82
f (1,0,2) + f (1,2,0) + f (3,0,0) 0.503049 0.658537 0.463238

5 ( 1 0 0 )
1

4480
3 x1 1386 x1

4 - 18 375 x2
2 x1

2 -

18 375 x3
2 x1

2 + 15 610 x1
2 - 3465 x2

4 - 3465 x3
4 +

18 720 x2
2 - 7875 x2

2 x3
2 + 18 720 x3

2 - 13 389

-
61 f (1,0,4)+f (1,4,0)+f (5,0,0)

29 400
8.96585 0.24898 1.32349

2 4 ( 2 0 0 )
35

272
15 x1

4 - 45 x2
2 x1

2 - 45 x3
2 x1

2 + 39 x1
2 + 15 x2

2 + 15 x3
2 - 16 23

306
f (2,0,2) + f (2,2,0) + f (4,0,0) 10.0368 1.80392 4.9013

( 1 1 0 )
9 x1 x2 35 x1

2+35 x2
2-210 x3

2+174
1168

15

146
f (1,1,2) + f (1,3,0) + f (3,1,0) 1.34075 2.46575 3.50876

6 ( 2 0 0 ) -
1

810 496
15 192 192 x1

6 - 7 479 675 x2
2 x1

4 -

7 479 675 x3
2 x1

4 + 6 718 950 x1
4 - 1 441 440 x2

4 x1
2 -

1 441 440 x3
4 x1

2 + 8 928 900 x2
2 x1

2 -

2 137 050 x2
2 x3

2 x1
2 + 8 928 900 x3

2 x1
2 - 6 912 822 x1

2 +

480 480 x2
4 + 480 480 x3

4 - 1 480 365 x2
2 +

712 350 x2
2 x3

2 - 1 480 365 x3
2 + 933 028

-
1019 f (2,0,4)+f (2,4,0)+f (6,0,0)

797 832
255.874 0.919592 17.7952

( 1 1 0 ) -
1

8576
9 x1 x2 693 x1

4 - 82 075 x2
2 x1

2 -

35 175 x3
2 x1

2 + 69 580 x1
2 + 693 x2

4 - 6930 x3
4 +

69 580 x2
2 - 35 175 x2

2 x3
2 + 52 170 x3

2 - 57 549

-
113 f (1,1,4)+f (1,5,0)+f (5,1,0)

56 280
60.3942 1.44563 12.5676

3 5 ( 3 0 0 ) -
1

22 496
315 x1 1155 x1

4 - 5775 x2
2 x1

2 - 5775 x3
2 x1

2 +

4910 x1
2 + 3465 x2

2 + 3465 x3
2 - 3441

241 f (3,0,2)+f (3,2,0)+f (5,0,0)
4218

412.513 6.85633 91.7098

( 2 1 0 )
63 x2 -405 x1

4+600 x2
2 x1

2+630 x3
2 x1

2-540 x1
2-200 x2

2-210 x3
2+261

2368

29

370
f (2,1,2) + f (2,3,0) + f (4,1,0) 28.7331 9.40541 62.5874

( 1 1 1 ) -
27

8
x1 x2 x3

1

10
f (1,1,3) + f (1,3,1) + f (3,1,1) 3.375 12. 45.3729

7 ( 3 0 0 )
1

31 445 504

105 x1 6 254 820 x1
6 - 638 429 715 x2

2 x1
4 - 638 429 715 x3

2 x1
4 +

585 763 794 x1
4 - 109 459 350 x2

4 x1
2 - 109 459 350 x3

4 x1
2 +

886 101 600 x2
2 x1

2 - 138 188 250 x2
2 x3

2 x1
2 +

886 101 600 x3
2 x1

2 - 725 994 790 x1
2 +

65 675 610 x2
4 + 65 675 610 x3

4 - 258 048 225 x2
2 +

82 912 950 x2
2 x3

2 - 258 048 225 x3
2 + 182 470 308

-
431 f (3,0,4)+f (3,4,0)+f (7,0,0)

491 336
14545.1 4.42109 438.962

( 2 1 0 ) -
1

297 472

15 x2 -1 087 086 x1
6 + 19 216 575 x2

2 x1
4 + 8 235 675 x3

2 x1
4 -

14 988 960 x1
4 + 2 952 180 x2

4 x1
2 + 1 545 390 x3

4 x1
2 -

23 045 820 x2
2 x1

2 + 5 490 450 x2
2 x3

2 x1
2 -

12 305 520 x3
2 x1

2 + 16 812 582 x1
2 -

984 060 x2
4 - 515 130 x3

4 + 3 838 625 x2
2 -

1 830 150 x2
2 x3

2 + 2 454 705 x3
2 - 2 451 104

-
1175 f (2,1,4)+f (2,5,0)+f (6,1,0)

878 472
1695.55 6.74125 249.554

( 1 1 1 ) -
27

128
x1 x2 x3 1225 x2

2 x1
2 + 1225 x3

2 x1
2 -

1610 x1
2 - 1610 x2

2 + 1225 x2
2 x3

2 - 1610 x3
2 + 1591

1

504
-f (1,1,5) - f (1,5,1) - f (5,1,1) 335.602 10. 176.785
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Table 13: Optimal Kernels of Type I in d = 3 with support on [−1, 1]3 according
to Eqs. (154) and (155) (contd.).

ν=|α| k α Kα(x) AB ∂αf  R(Kα) k!μKα  T(Kα) (k!)
2 d+4 ν
d+2 k

4 6 ( 4 0 0 )
1

101 312
3465 5460 x1

6 - 40 950 x2
2 x1

4 - 40 950 x3
2 x1

4 +

34 965 x1
4 + 35 100 x2

2 x1
2 + 35 100 x3

2 x1
2 -

33 870 x1
2 - 3510 x2

2 - 3510 x3
2 + 3517

439 f (4,0,2)+f (4,2,0)+f (6,0,0)
9498

28700.3 33.2786 2638.02

( 3 1 0 )
1

145 216
1575 x1 x2

11 781 x1
4 - 31 990 x2

2 x1
2 - 21 840 x3

2 x1
2 + 22 460 x1

2 +

19 194 x2
2 + 13 104 x3

2 - 18 525

271 f (3,1,2)+f (3,3,0)+f (5,1,0)
4538

1461.6 42.9969 1736.45

( 2 2 0 )
25

704
315 x2

2 x1
4 - 105 x1

4 + 315 x2
4 x1

2 +

2502 x2
2 x1

2 - 3780 x2
2 x3

2 x1
2 + 1260 x3

2 x1
2 - 897 x1

2 -

105 x2
4 - 897 x2

2 + 1260 x2
2 x3

2 - 420 x3
2 + 320

43

594
f (2,2,2) + f (2,4,0) + f (4,2,0) 355.398 52.1212 1579.35

( 2 1 1 ) -
945

992
x2 x3

-45 x1
4 + 45 x2

2 x1
2 + 45 x3

2 x1
2 - 42 x1

2 - 15 x2
2 - 15 x3

2 + 23

5

62
f (2,1,3) + f (2,3,1) + f (4,1,1) 80.0202 58.0645 1243.34

8 ( 4 0 0 ) -
1

356 076 544

2835 22 462 440 x1
8 - 5 221 180 965 x2

2 x1
6 - 5 221 180 965

x3
2 x1

6 + 4 831 172 346 x1
6 - 786 185 400 x2

4 x1
4 -

786 185 400 x3
4 x1

4 + 8 341 341 750 x2
2 x1

4 -

912 793 875 x2
2 x3

2 x1
4 + 8 341 341 750 x3

2 x1
4 -

7 084 329 525 x1
4 + 673 873 200 x2

4 x1
2 +

673 873 200 x3
4 x1

2 - 3 420 306 525 x2
2 x1

2 +

782 394 750 x2
2 x3

2 x1
2 - 3 420 306 525 x3

2 x1
2 +

2 607 831 460 x1
2 - 67 387 320 x2

4 -

67 387 320 x3
4 + 217 716 820 x2

2 -

78 239 475 x2
2 x3

2 + 217 716 820 x3
2 - 145 074 553

-
26 783 f (4,0,4)+f (4,4,0)+f (8,0,0)

41 727 720
1353691. 25.8795 16510.

( 3 1 0 ) -
1

32 018 944
315 x1 x2

45 598 410 x1
6 - 1 516 834 935 x2

2 x1
4 - 650 072 115 x3

2 x1
4 +

1 226 485 260 x1
4 - 297 054 450 x2

4 x1
2 -

110 672 100 x3
4 x1

2 + 2 212 424 200 x2
2 x1

2 -

328 319 250 x2
2 x3

2 x1
2 + 1 051 677 900 x3

2 x1
2 -

1 632 045 030 x1
2 + 178 232 670 x2

4 +

66 403 260 x3
4 - 677 382 405 x2

2 +

196 991 550 x2
2 x3

2 - 352 404 405 x3
2 + 438 391 008

-
1345 f (3,1,4)+f (3,5,0)+f (7,1,0)

1 500 888
96335.6 36.1322 7985.73

( 2 2 0 ) -
1

6 453 248
225 576 576 x2

2 x1
6 - 192 192 x1

6 - 312 657 975 x2
4 x1

4 +

320 804 820 x2
2 x1

4 - 89 330 850 x2
2 x3

2 x1
4 +

29 776 950 x3
2 x1

4 - 44 403 345 x1
4 + 576 576 x2

6 x1
2 +

320 804 820 x2
4 x1

2 - 17 297 280 x2
2 x3

4 x1
2 +

5 765 760 x3
4 x1

2 - 326 633 220 x2
2 x1

2 -

89 330 850 x2
4 x3

2 x1
2 + 174 771 000 x2

2 x3
2 x1

2 -

40 390 830 x3
2 x1

2 + 44 634 408 x1
2 - 192 192 x2

6 -

44 403 345 x2
4 + 5 765 760 x2

2 x3
4 - 1 921 920 x3

4 +

44 634 408 x2
2 + 29 776 950 x2

4 x3
2 -

40 390 830 x2
2 x3

2 + 7 508 220 x3
2 - 5 970 011

-
2011 f (2,2,4)+f (2,6,0)+f (6,2,0)

1 588 104
45553.8 51.0568 8694.21

( 2 1 1 )
1

88 576

135 x2 x3 -180 180 x1
6 + 1 907 325 x2

2 x1
4 + 1 907 325 x3

2 x1
4 -

2 261 070 x1
4 + 270 270 x2

4 x1
2 + 270 270 x3

4 x1
2 -

2 843 400 x2
2 x1

2 + 1 271 550 x2
2 x3

2 x1
2 - 2 843 400 x3

2 x1
2 +

2 844 210 x1
2 - 90 090 x2

4 - 90 090 x3
4 +

566 335 x2
2 - 423 850 x2

2 x3
2 + 566 335 x3

2 - 470 116

-
121 f (2,1,5)+f (2,5,1)+f (6,1,1)

87 192
8669.81 55.9538 4807.41
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D.3 Some Optimal Kernels of Type II

Table 14: Optimal Kernels of Type II in d = 1 with support on [−1, 1] according
to Eqs. (154) and (156).

ν=|α| k α Kα(x) AB ∂αf  R(Kα) k!μKα  T(Kα) (k!)
2 d+4 ν
d+2 k

0 2 ( 0 ) -
3

4
(x1 - 1) (x1 + 1)

f ′′

10
0.6 0.2 0.349086

4 ( 0 )
15

32
(x1 - 1) (x1 + 1) 7 x1

2 - 3 -
f (4)

504
1.25 0.047619 0.619892

1 3 ( 1 )
15

4
(x1 - 1) x1 (x1 + 1)

f (3)

14
2.14286 0.428571 0.747705

5 ( 1 ) -
105

32
(x1 - 1) x1 (x1 + 1) 9 x1

2 - 5 -
f (5)

792
11.9318 0.151515 2.16788

2 4 ( 2 ) -
105

16
(x1 - 1) (x1 + 1) 5 x1

2 - 1 f (4)

18
35. 1.33333 6.68457

6 ( 2 )
315

64
(x1 - 1) (x1 + 1) 77 x1

4 - 58 x1
2 + 5 -

f (6)

1144
381.635 0.629371 27.1656

3 5 ( 3 )
945

16
(x1 - 1) x1 (x1 + 1) 7 x1

2 - 3 f (5)

22
1288.64 5.45455 117.125

7 ( 3 ) -
10 395

64
(x1 - 1) x1 (x1 + 1) 39 x1

4 - 38 x1
2 + 7 -

f (7)

1560
23388.8 3.23077 638.983

4 6 ( 4 ) -
10 395

32
(x1 - 1) (x1 + 1) 21 x1

4 - 14 x1
2 + 1 f (6)

26
83959.6 27.6923 3252.45

8 ( 4 )
135 135

512
(x1 - 1) (x1 + 1) 495 x1

6 - 597 x1
4 + 173 x1

2 - 7 -
f (8)

2040
2295308. 19.7647 23198.3
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Table 15: Optimal Kernels of Type II in d = 2 with support on [−1, 1]2 according
to Eqs. (154) and (156).

ν=|α| k α Kα(x) AB ∂αf  R(Kα) k!μKα  T(Kα) (k!)
2 d+4 ν
d+2 k

0 2 ( 0 0 )
1

48
-15 x1

2 - 15 x2
2 + 22 1

9
f (0,2) + f (2,0) 0.319444 0.222222 0.171444

4 ( 0 0 )
9

640
105 x1

4 + 250 x2
2 x1

2 - 240 x1
2 + 105 x2

4 - 240 x2
2 + 108 -

3 f (0,4)+f (4,0)
1400

1.36688 0.0514286 0.3918

1 3 ( 1 0 )
15

152
x1 14 x1

2 + 15 x2
2 - 21 3

38
f (1,2) + f (3,0) 1.18421 0.473684 0.51547

5 ( 1 0 ) -
9 x1 6237 x1

4+11 900 x2
2 x1

2-14 070 x1
2+3325 x2

4-11 350 x2
2+6870

4352
-

29 f (1,4)+f (5,0)
21 420

11.8883 0.162465 1.55091

2 4 ( 2 0 ) -
3 7035 x1

4+7290 x2
2 x1

2-11 460 x1
2-2430 x2

2+2413
1600

22

375
f (2,2) + f (4,0) 21.195 1.408 5.11466

( 1 1 ) -
9

80
x1 x2 35 x1

2 + 35 x2
2 - 62 2

25
f (1,3) + f (3,1) 3.195 1.92 3.48137

6 ( 2 0 )
1

471 296
5 16 345 329 x1

6 + 26 096 175 x2
2 x1

4 - 37 946 790 x1
4 +

5 840 415 x2
4 x1

2 - 29 362 500 x2
2 x1

2 + 22 544 160 x1
2 -

1 946 805 x2
4 + 4 568 265 x2

2 - 2 260 409

-
2525 f (2,4)+f (6,0)

2 783 592
362.391 0.653113 20.1282

( 1 1 )
45

896
x1 x2

693 x1
4 + 3430 x2

2 x1
2 - 3220 x1

2 + 693 x2
4 - 3220 x2

2 + 2080
-

5 f (1,5)+f (5,1)
3528

92.626 1.02041 13.5322

3 5 ( 3 0 )
35 x1 56 133 x1

4+56 400 x2
2 x1

2-102 110 x1
2-33 840 x2

2+37 209
11 168

295 f (3,2)+f (5,0)
6282

829.119 5.63515 94.2062

( 2 1 )
105

208
x2 45 x1

4 + 105 x2
2 x1

2 - 135 x1
2 - 35 x2

2 + 36 5

78
f (2,3) + f (4,1) 60.5769 7.69231 59.6364

7 ( 3 0 ) -
1

62 855 168

2835 x1 65 484 705 x1
6 + 94 528 280 x2

2 x1
4 - 162 499 953 x1

4 +

17 533 075 x2
4 x1

2 - 125 515 950 x2
2 x1

2 + 115 878 570

x1
2 - 10 519 845 x2

4 + 34 797 450 x2
2 - 21 712 540

-
645 f (3,4)+f (7,0)

982 112
21508.1 3.31001 485.434

( 2 1 ) -
1

161 792
135 x2 463 463 x1

6 + 2 322 600 x2
2 x1

4 -

2 290 995 x1
4 + 544 005 x2

4 x1
2 - 2 772 210 x2

2 x1
2 +

1 888 590 x1
2 - 181 335 x2

4 + 459 550 x2
2 - 237 540

-
53 f (2,5)+f (6,1)

53 088
2764.96 5.03165 264.579

4 6 ( 4 0 ) -
1

33 664
315 321 321 x1

6 + 316 575 x2
2 x1

4 - 654 150 x1
4 -

271 350 x2
2 x1

2 + 331 185 x1
2 + 27 135 x2

2 - 25 468

31

789
f (4,2) + f (6,0) 56262.1 28.289 2697.39

( 3 1 ) -
45 x1 x2 69 993 x1

4+194 950 x2
2 x1

2-239 820 x1
2-116 970 x2

2+113 895
10 304

57 f (3,3)+f (5,1)
1127

2878.71 36.4153 1654.81

( 2 2 ) -
225

896
945 x2

2 x1
4 - 315 x1

4 + 945 x2
4 x1

2 -

2124 x2
2 x1

2 + 519 x1
2 - 315 x2

4 + 519 x2
2 - 110

3

49
f (2,4) + f (4,2) 738.712 44.0816 1474.02

8 ( 4 0 )
1

118 675 456
35 208 718 986 905 x1

8 +

281 904 042 420 x2
2 x1

6 - 558 751 201 008 x1
6 +

44 519 368 950 x2
4 x1

4 - 435 716 442 000 x2
2 x1

4 +

467 124 429 240 x1
4 - 38 159 459 100 x2

4 x1
2 +

172 111 205 700 x2
2 x1

2 - 127 780 722 900 x1
2 +

3 815 945 910 x2
4 - 10 499 119 560 x2

2 + 5 799 290 051

-
93 667 f (4,4)+f (8,0)

187 748 280
2064366. 20.1155 17986.2

( 3 1 )
1

242 432

175 x1 x2 10 068 201 x1
6 + 41 345 073 x2

2 x1
4 - 45 796 212 x1

4 +

9 587 655 x2
4 x1

2 - 58 978 360 x2
2 x1

2 + 44 193 660 x1
2 -

5 752 593 x2
4 + 17 667 699 x2

2 - 10 245 315

-
427 f (3,5)+f (7,1)

613 656
162452. 28.0558 8409.95

( 2 2 )
1

1024

175 18 018 x2
2 x1

6 - 6006 x1
6 + 127 575 x2

4 x1
4 - 143 640 x2

2 x1
4 +

22 365 x1
4 + 18 018 x2

6 x1
2 - 143 640 x2

4 x1
2 +

127 512 x2
2 x1

2 - 16 350 x1
2 - 6006 x2

6 +

22 365 x2
4 - 16 350 x2

2 + 1835

-
7 f (2,6)+f (6,2)

7128
78457.4 39.596 8924.02
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Table 16: Optimal Kernels of Type II in d = 3 with support on [−1, 1]3 according
to Eqs. (154) and (156).

ν=|α| k α Kα(x) AB ∂αf  R(Kα) k!μKα  T(Kα) (k!)
2 d+4 ν
d+2 k

0 2 ( 0 0 0 )
1

112
-15 x1

2 - 15 x2
2 - 15 x3

2 + 29 5

42
f (0,0,2) + f (0,2,0) + f (2,0,0) 0.163265 0.238095 0.103756

4 ( 0 0 0 )
1

1408
945 x1

4 + 2475 x2
2 x1

2 + 2475 x3
2 x1

2 - 3120 x1
2 + 945 x2

4 +

945 x3
4 - 3120 x2

2 + 2475 x2
2 x3

2 - 3120 x3
2 + 1904

1

440
-f (0,0,4) - f (0,4,0) - f (4,0,0) 1.24245 0.0545455 0.239621

1 3 ( 1 0 0 )
15

656
x1 21 x1

2 + 30 x2
2 + 30 x3

2 - 49 7

82
f (1,0,2) + f (1,2,0) + f (3,0,0) 0.640244 0.512195 0.390015

5 ( 1 0 0 ) -
1

58 240
3 x1 108 801 x1

4 + 238 875 x2
2 x1

2 + 238 875 x3
2 x1

2 -

343 840 x1
2 + 64 260 x2

4 + 64 260 x3
4 - 259 830 x2

2 +

102 375 x2
2 x3

2 - 259 830 x3
2 + 207 546

-
183 f (1,0,4)+f (1,4,0)+f (5,0,0)

127 400
9.49663 0.17237 1.03334

2 4 ( 2 0 0 ) -
15 4095 x1

4+5310 x2
2 x1

2+5310 x3
2 x1

2-9294 x1
2-1770 x2

2-1770 x3
2+2279

11 968

23

374
f (2,0,2) + f (2,2,0) + f (4,0,0) 12.4477 1.47594 4.10574

( 1 1 0 ) -
9 x1 x2 2240 x1

2+2240 x2
2+2985 x3

2-5289
12 848

135 f (1,1,2)+f (1,3,0)+f (3,1,0)
1606

1.7706 2.01743 3.00713

6 ( 2 0 0 )
1

810 496
64 438 374 x1

6 + 112 195 125 x2
2 x1

4 +

112 195 125 x3
2 x1

4 - 192 585 960 x1
4 + 24 831 450 x2

4 x1
2 +

24 831 450 x3
4 x1

2 - 136 684 800 x2
2 x1

2 +

32 055 750 x2
2 x3

2 x1
2 - 136 684 800 x3

2 x1
2 + 134 843 160 x1

2 -

8 277 150 x2
4 - 8 277 150 x3

4 + 23 122 575 x2
2 -

10 685 250 x2
2 x3

2 + 23 122 575 x3
2 - 15 636 010

-
11 209 f (2,0,4)+f (2,4,0)+f (6,0,0)

11 967 480
276.372 0.674368 13.8814

( 1 1 0 )
1

42 880
9 x1 x2 74 844 x1

4 + 410 375 x2
2 x1

2 +

175 875 x3
2 x1

2 - 434 910 x1
2 + 74 844 x2

4 + 46 515 x3
4 -

434 910 x2
2 + 175 875 x2

2 x3
2 - 271 020 x3

2 + 326 052

-
1243 f (1,1,4)+f (1,5,0)+f (5,1,0)

844 200
62.5383 1.06013 9.58544

3 5 ( 3 0 0 )
1

584 896
105 x1 410 949 x1

4 + 486 600 x2
2 x1

2 + 486 600 x3
2 x1

2 -

963 790 x1
2 - 291 960 x2

2 - 291 960 x3
2 + 402 153

2651 f (3,0,2)+f (3,2,0)+f (5,0,0)
54 834

508.759 5.80151 77.6218

( 2 1 0 )
1

15 392
27 x2 4515 x1

4 + 14 175 x2
2 x1

2 + 10 860 x3
2 x1

2 -

20 805 x1
2 - 4725 x2

2 - 3620 x3
2 + 6032

319 f (2,1,2)+f (2,3,0)+f (4,1,0)
4810

35.5419 7.95842 53.0212

( 1 1 1 )
27

208
x1 x2 x3 35 x1

2 + 35 x2
2 + 35 x3

2 - 89 11

130
f (1,1,3) + f (1,3,1) + f (3,1,1) 4.63314 10.1538 39.69

7 ( 3 0 0 ) -
1

534 573 568
105 x1 7 032 618 450 x1

6 + 10 853 305 155 x2
2 x1

4 +

10 853 305 155 x3
2 x1

4 - 21 490 135 128 x1
4 +

2 003 362 200 x2
4 x1

2 + 2 003 362 200 x3
4 x1

2 -

15 185 915 700 x2
2 x1

2 + 2 349 200 250 x2
2 x3

2 x1
2 -

15 185 915 700 x3
2 x1

2 + 17 608 235 780 x1
2 -

1 202 017 320 x2
4 - 1 202 017 320 x3

4 +

4 460 132 925 x2
2 - 1 409 520 150 x2

2 x3
2 +

4 460 132 925 x3
2 - 3 699 089 706

-
5603 f (3,0,4)+f (3,4,0)+f (7,0,0)

8 352 712
16005.4 3.38083 345.638

( 2 1 0 ) -
1

5 057 024
15 x2

59 147 088 x1
6 + 326 681 775 x2

2 x1
4 + 140 006 475 x3

2 x1
4 -

360 668 070 x1
4 + 74 615 310 x2

4 x1
2 + 29 972 880 x3

4 x1
2 -

418 921 440 x2
2 x1

2 + 93 337 650 x2
2 x3

2 x1
2 -

212 366 340 x3
2 x1

2 + 327 232 644 x1
2 -

24 871 770 x2
4 - 9 990 960 x3

4 + 74 304 125 x2
2 -

31 112 550 x2
2 x3

2 + 42 787 485 x3
2 - 45 393 518

-
15 275 f (2,1,4)+f (2,5,0)+f (6,1,0)

14 934 024
1753.36 5.15507 190.835

( 1 1 1 ) -
1

2176
27 x1 x2 x3 3465 x1

4 + 20 825 x2
2 x1

2 +

20 825 x3
2 x1

2 - 31 220 x1
2 + 3465 x2

4 + 3465 x3
4 -

31 220 x2
2 + 20 825 x2

2 x3
2 - 31 220 x3

2 + 29 522

-
13 f (1,1,5)+f (1,5,1)+f (5,1,1)

8568
342.827 7.64706 134.413
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Table 16: Optimal Kernels of Type II in d = 3 with support on [−1, 1]3 according
to Eqs. (154) and (156) (contd.).

ν=|α| k α Kα(x) AB ∂αf  R(Kα) k!μKα  T(Kα) (k!)
2 d+4 ν
d+2 k

4 6 ( 4 0 0 ) -
1

202 624

21 12 699 687 x1
6 + 14 204 925 x2

2 x1
4 + 14 204 925 x3

2 x1
4 -

31 774 155 x1
4 - 12 175 650 x2

2 x1
2 -

12 175 650 x3
2 x1

2 + 18 163 785 x1
2 +

1 217 565 x2
2 + 1 217 565 x3

2 - 1 514 005

5707 f (4,0,2)+f (4,2,0)+f (6,0,0)
142 470

35411.5 28.8414 2261.85

( 3 1 0 ) -
1

72 608
21 x1 x2 403 326 x1

4 + 1 436 750 x2
2 x1

2 + 879 975 x3
2 x1

2 -

1 943 865 x1
2 - 862 050 x2

2 - 527 985 x3
2 + 993 465

3523 f (3,1,2)+f (3,3,0)+f (5,1,0)
68 070

1716.49 37.264 1469.36

( 2 2 0 ) -
1

4224

5 85 365 x2
2 x1

4 - 28 455 x1
4 + 85 365 x2

4 x1
2 - 241 470 x2

2 x1
2 +

125 010 x2
2 x3

2 x1
2 - 41 670 x3

2 x1
2 + 63 417 x1

2 - 28 455

x2
4 + 63 417 x2

2 - 41 670 x2
2 x3

2 + 13 890 x3
2 - 15 448

559 f (2,2,2)+f (2,4,0)+f (4,2,0)
8910

460.455 45.1717 1371.89

( 2 1 1 ) -
315 x2 x3 45 x1

4+420 x2
2 x1

2+420 x3
2 x1

2-702 x1
2-140 x2

2-140 x3
2+225

1984

13

186
f (2,1,3) + f (2,3,1) + f (4,1,1) 99.0726 50.3226 1067.02

8 ( 4 0 0 )
1

13 530 908 672
945 416 418 740 595 x1

8 + 595 214 630 010 x2
2 x1

6 +

595 214 630 010 x3
2 x1

6 - 1 332 848 637 120 x1
6 +

93 759 091 650 x2
4 x1

4 + 93 759 091 650 x3
4 x1

4 -

954 456 350 400 x2
2 x1

4 + 104 058 501 750 x2
2 x3

2 x1
4 -

954 456 350 400 x3
2 x1

4 + 1 259 530 891 920 x1
4 -

80 364 935 700 x2
4 x1

2 - 80 364 935 700 x3
4 x1

2 +

392 952 136 050 x2
2 x1

2 - 89 193 001 500 x2
2 x3

2 x1
2 +

392 952 136 050 x3
2 x1

2 - 379 938 160 860 x1
2 +

8 036 493 570 x2
4 + 8 036 493 570 x3

4 -

25 123 436 700 x2
2 + 8 919 300 150 x2

2 x3
2 -

25 123 436 700 x3
2 + 18 878 074 441

-
26 783 f (4,0,4)+f (4,4,0)+f (8,0,0)

52 855 112
1513162. 20.4311 13159.5

( 3 1 0 )
1

608 359 936
315 x1 x2

6 559 684 560 x1
6 + 28 819 863 765 x2

2 x1
4 + 12 351 370 185

x3
2 x1

4 - 35 299 153 890 x1
4 + 6 622 723 800 x2

4 x1
2 +

2 251 056 150 x3
4 x1

2 - 43 123 492 300 x2
2 x1

2 +

6 238 065 750 x2
2 x3

2 x1
2 - 20 108 982 600 x3

2 x1
2 +

36 707 284 320 x1
2 - 3 973 634 280 x2

4 -

1 350 633 690 x3
4 + 13 522 725 195 x2

2 -

3 742 839 450 x2
2 x3

2 + 6 771 945 195 x3
2 - 9 082 723 302

-
6725 f (3,1,4)+f (3,5,0)+f (7,1,0)

9 505 624
100063. 28.5254 6171.4

( 2 2 0 )
1

122 611 712

225 786 197 412 x2
2 x1

6 - 262 065 804 x1
6 + 5 940 501 525 x2

4 x1
4 -

7 182 317 520 x2
2 x1

4 + 1 697 286 150 x2
2 x3

2 x1
4 -

565 762 050 x3
2 x1

4 + 1 206 005 535 x1
4 +

786 197 412 x2
6 x1

2 - 7 182 317 520 x2
4 x1

2 +

366 656 220 x2
2 x3

4 x1
2 - 122 218 740 x3

4 x1
2 +

6 933 972 960 x2
2 x1

2 + 1 697 286 150 x2
4 x3

2 x1
2 -

3 353 227 200 x2
2 x3

2 x1
2 + 778 285 170 x3

2 x1
2 -

987 174 732 x1
2 - 262 065 804 x2

6 + 1 206 005 535 x2
4 -

122 218 740 x2
2 x3

4 + 40 739 580 x3
4 -

987 174 732 x2
2 - 565 762 050 x2

4 x3
2 +

778 285 170 x2
2 x3

2 - 146 275 980 x3
2 + 125 295 109

-
10 055 f (2,2,4)+f (2,6,0)+f (6,2,0)

10 057 992
46678.7 40.308 6680.65

( 2 1 1 )
1

1 682 944

135 x2 x3 4 570 566 x1
6 + 36 239 175 x2

2 x1
4 + 36 239 175 x3

2 x1
4 -

53 861 220 x1
4 + 7 650 720 x2

4 x1
2 + 7 650 720 x3

4 x1
2 -

56 819 700 x2
2 x1

2 + 24 159 450 x2
2 x3

2 x1
2 -

56 819 700 x3
2 x1

2 + 58 871 520 x1
2 -

2 550 240 x2
4 - 2 550 240 x3

4 + 11 692 065 x2
2 -

8 053 150 x2
2 x3

2 + 11 692 065 x3
2 - 9 504 534

-
605 f (2,1,5)+f (2,5,1)+f (6,1,1)

552 216
8832.99 44.174 3685.1
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Figure 45: Empirical (symbols) and exact (lines) RMSE for the estimation of the
quantities (183) with parameter set 1 using various kernels. Each plot is titled by
the true value in parenthesis. The estimation of F 0

0 (α = 0) using the minimum
variance kernel or the optimal kernel of order 2 yields an exact result (RMSE = 0).
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D APPENDIX TO PART IV
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Figure 46: Empirical (symbols) and exact (lines) RMSE for the estimation of the
quantities (183) with parameter set 2 using various kernels. Each plot is titled by
the true value in parenthesis.

132



D.4 Results of the Monte Carlo Study
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Figure 47: Empirical (symbols) and exact (lines) RMSE for the estimation of the
quantities (183) with parameter set 3 using various kernels. Each plot is titled by
the true value in parenthesis.
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Figure 48: Empirical (symbols) and exact (lines) RMSE for the estimation of
quantities (183) with parameter set 4 using various kernels. Each plot is titled by
the true value in parenthesis.
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