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The only thing greater than the power of the mind
is the courage of the heart.

– John Nash



Abstract

For centuries, scientists have been studying macroscopic forces, for
instance by witnessing the motion of stars and planets, or the fall of
an apple. But the twenty-first century has brought miniaturization
and therefore the need to also investigate forces that act at the micro-
and nanoscale. Force sensors have developed alongside, to become
ever more sensitive. In this thesis, we use a nanoparticle, levitated
with light very close to a surface, as a force sensor. Receiving the
Nobel prize in Physics in 2018, optical levitation is perfectly suited
for sensing due to the object’s isolation from the environment, and
the precise control we have over the levitated object. We develop a
protocol for the precise positioning of a levitated dielectric particle
at submicron distance from a planar surface, in order to measure
short-range forces. We experimentally measure the separation between
the sensing particle and the surface using an imaging method based
on interferometry. Beyond measuring the particle-to-surface distance,
we control it using an optical conveyor belt scheme. The ability of
varying this distance is a requirement for the investigation of surface
forces, that scale strongly with the separation between the two objects.
However, these surface forces are weaker than the optical forces that
trap the nanoparticle. Therefore, we employ a recently developed
method, the free-fall of nanoparticles, that allows the trapping light
to be switched off for a short time during the force measurement. We
present an experiment that is the first step towards the application of
our system for short-range forces measurement.
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Résumé

Historiquement, la science est une discipline largement fondée sur
l’observation, aussi les scientifiques ont-ils pu étudier les forces macro-
scopiques à l’oeuvre dans le mouvement des astres ou la chute d’une
pomme. Toutefois, depuis plus d’un siècle la tendance à la miniaturi-
sation encourage les chercheurs à approfondir notre compréhension du
petit, du micro, du nanoscopique et notamment des forces intervenant
à ces échelles. Les capteurs ou outils de mesure de ces forces invisibles à
l’oeil nu évoluent alors eux aussi, gagnant en sensibilité et en précision.

Dans cette thèse, nous utilisons pour capteur une nanoparticule
maintenue en lévitation à très faible distance d’une surface plane, par
un laser. Reconnue par le Prix Nobel de Physique 2018, la lévitation
optique est une technique parfaitement adaptée à la mesure des forces
microscopiques puisqu’elle permet une isolation des perturbations ex-
térieures ainsi qu’un contrôle précis de l’objet en lévitation. Nous
mettons en place un protocole permettant de positionner précisement
la nanoparticule à une distance submicronique de la surface plane, afin
de mesurer les forces à courte portée. La distance entre la nanoparticule
et la surface est mesurée expérimentalement à l’aide d’une méthode
d’imagerie basée sur l’interférométrie. Cette distance est non seulement
mesurée mais également contrôlée par un procédé de convoyeur optique.
La capacité à faire varier cette distance est fondamentale à l’étude des
forces de surface, fortement dépendantes de la distance entre les deux
objets. Cependant ces forces de surface sont plus faibles que les forces
optiques maintenant la nanoparticule en lévitation. Par conséquent,
nous employons une méthode développée récemment, dite de chute
libre des nanoparticules, nous permettant d’éteindre le laser du piège
optique pendant une très courte durée, durant laquelle la mesure des
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Résumé

forces est réalisée. Le travail que nous présentons a pour ambition
d’être un premier pas vers l’application de notre système pour la mesure
des forces à courte portée.
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Chapter 1

Introduction

Deriving from the greek word for dwarf, the prefix nano is nowadays
spreading beyond the scientific laboratories to enter our everyday life.
The development of technologies is increasingly oriented towards minia-
turization, reaching length scales of nanometers [1]. As devices become
always smaller, new physical phenomena come into play and need to be
investigated. At the nanoscale, the predominant players are short-range
forces, such as the Van der Waals force, the Casimir force, the strong
force or the weak force [2, 3]. In every scientific community, from biol-
ogy to chemistry to quantum physics, understanding the interactions
at the nanoscale level is of crucial importance, as these interactions
for example dictate the structuring of matter, and therefore also the
properties of materials. In order to understand these interactions, we
need to measure them, a non-trivial task due to the fact that they fall
off very quickly with increasing distance.

Amongst these short-range forces, there is the Van der Waals force.
It is an attractive force between two objects, originating from the
existence of vacuum fluctuations [4]. For example, the Van der Waals
force is what binds graphene sheets together to make graphite. We
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1. Introduction

refer to the Van der Waals force when we investigate the interactions
between atoms or molecules that are separated by a few nanometers
maximum. When we consider objects with a separation exceeding a few
nanometers, we refer to the same force as Casimir force [5]. Even though
the Casimir force becomes negligible beyond a few microns separation, it
is of relevance for everyday life applications, such as smartphones, inkjet
printers or hard drives [6, 7]. Indeed, the effects of Casimir forces play
a important role in the fabrication of micro/nano-electromechanical
devices (MEMS/NEMS) where the size of the elements and the distance
between them reach the submicron scale [8].

There are two different regimes where the Casimir force is well
understood and has been extensively studied. We refer, amongst the
two bodies subject to the Casimir force, to one as a sensor, that senses
the Casimir force resulting from the presence of the second body. The
two regimes are distinguished by the scaling of the sensor size l in
relation to the separation length L, i.e., either l � L or l � L. The
first regime, where the sensor size is much bigger than its separation
to the second body (l � L), is called the regime of proximity force
approximation (PFA) [9]. Systems such as a metal-coated sphere on
an atomic force microscope (AFM) cantilever [10, 11, 12], where the
deflection of the cantilever due to Casimir forces is measured, or micro-
machined oscillators [13, 14], where the frequency change due to the
Casimir forces is detected, allow the investigation of Casimir forces
within the PFA. They also enable the study of corrections to the theory
due to real metal properties, surface roughness, different configurations
or temperature-induced modifications [15].

The other regime occurs when the separation L between the two
objects subject to the Casimir force is much larger than the sensor
size l, i.e., l � L. As Casimir forces have an effect solely over short
distances, scientists turned to atoms as a sensor due to the small size of
atoms. Atom clouds [16], Bose-Einstein condensates [17], which consist
of a large number of optically levitated atoms, or atomic beams [18]
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have been utilized for such a purpose due to their high sensitivity to
forces. Nevertheless, the intermediate regime, i.e., when the separation
is of the order of the sensor size, has remained unexplored and lacks a
theoretical understanding to date [19].

Optically levitated dielectric nanoparticles [20, 21], i.e., particles
spatially confined in the focus of a laser beam, constitute a very good
force sensing system due to the decoupling from the environment, in
contrast to mechanically clamped nano-devices (except for specifically
engineered structures using soft clamping [22]). Historically operated
first in liquids or in air at atmospheric pressure, optical tweezers allow
the measurement of biologically relevant forces [23, 24], rewarding
Arthur Ashkin, the father of optical tweezers, with the Nobel prize
in Physics in 2018 [25]. However, in this overdamped regime, the
impact of the environment on the particle is still too significant for the
detection of weak forces such as the Casimir force. The outstanding
force sensitivity of optical levitation unfolds when used in vacuum [26].
Indeed, in vacuum (underdamped regime), the particle oscillates in the
trap and the damping the particle experiences can not only be dramat-
ically reduced but also finely tuned by controlling the surrounding gas
pressure. The particle position can also be accurately determined and
controlled via the trapping laser field [27, 28, 29, 30], yielding an un-
precedented sensitivity to weak forces for vacuum levitated sensors [31,
32, 33, 34, 35]. By positioning a levitated dielectric nanoparticle with
a diameter of a few hundreds of nanometers at a submicron distance
from a surface, the study of Casimir forces in the intermediate regime
therefore becomes possible [19].

However, placing a surface in close proximity from a levitated
particle in order to sense surface forces is a non-trivial task. Indeed, the
presence of the surface will disturb the trapping field. The reflection
of the trapping light from the surface generally creates a standing
wave-like intensity distribution [36, 37, 38, 39]. It has recently been
realized that optically levitated nanoparticles in such a configuration
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1. Introduction

are sensitive enough to measure weak forces [36, 39, 40].

Outline of the thesis

In this thesis, we develop an experimental technique to position an
optically levitated nanoparticle at a subwavelength distance from a
dielectric interface. With optical levitation of dielectric particles being
at the heart of this work, Chap. 2 is devoted to a review of the
principle of optical trapping of dielectric nanoparticles. We introduce
the experimental setup to perform optical trapping, and explain the
strongly focused beam theory that applies in our conditions. With the
goal to bring the levitated particle in close proximity to a surface, we
study the consequences of introducing a dielectric membrane in the
beam path after the particle in Chap. 3. The experimental modifications
compared to a standard optical trap are described as well as how
the membrane position is calibrated. We then investigate, for the
first time in vacuum, the effects of the membrane on the optical
potential and therefore on the particle dynamics when the membrane
is far away and when it is close to the particle in two successive
sections. First, the experimental results are presented, followed by the
corresponding theoretical description, providing a comparison between
theory and experiments. We conclude by discussing the limitations of
our theoretical model.

Because the particle is used as a probe to map out the optical
potential, it is of crucial importance to know the absolute distance
between the particle and the membrane. We use an interferometric
measurement technique in Chap. 4 to determine the absolute distance
between the particle and the membrane, independently from the optical
trap. Together with the experimental results, we present a theoretical
model used to analyze the interference patterns and extract the distance
between the particle and the membrane. We address at the end the
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existence of the Gouy phase for focused beams and its implication in
our results.

In addition to the measurement of the particle-to-surface distance,
we are interested in gaining more control over this distance. To this
end, we present a technique based on phase modulation in Chap. 5,
liberating us from the stationary standing wave restrictions that dictate
the position of the particle regarding the surface.

Having established a powerful sensing system with a levitated
nanoparticle at a precisely measured submicron distance from an
interface, we propose an experiment inspired by Ref. [41] in Chap. 6,
that should enable the measurement of short-range surface forces. We
introduce the feedback cooling scheme used to cool the center-of-mass
motion of the particle [27], provide a proof-of-principle of the Casimir
force measurement, and suggest an experimental realization.

Besides the sensing of short-range forces, the precise positioning of
a levitated dielectric nanoparticle at a subwavelength distance from an
interface developed in this thesis can be utilized for other applications.
To this end, in the outlook, we discuss the benefit of our system in
thermodynamics studies and in the development of building blocks for
integrated photonic circuits.

5





Chapter 2

Particle trapping in vacuum

In this chapter, we review the standard optical trap for dielectric
nanoparticles that has been extensively studied and constitutes the
state-of-the-art of optical levitation in vacuum [19, 27, 28, 29, 42, 43,
44, 45, 46, 47, 48]. We first introduce the standard experimental setup,
measurement techniques, and trapping protocols that are common in
many optical trapping experiments. In the second part, we summarize
the theoretical background necessary to understand optical trapping
and particle detection. We finish by explaining the calibration method
used to measure the particle position (in nm) (detailed and discussed
in Ref. [49]).

2.1 Experimental setup

To experimentally levitate a dielectric nanoparticle in vacuum and to
control its motion and charge state, we need an optical setup that
includes
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2. Particle trapping in vacuum

• an optical trap formed by a laser beam focused through a lens or
an objective,

• a detection system to read out the position of the trapped particle
as a function of time,

• a vacuum chamber, equipped to measure and control the pressure
and thus the damping the particle experiences, and

• a charge control system, to monitor and modify the charge-to-
mass ratio of the levitated sphere.

All these elements will be detailed in the following sections of this
chapter. Whenever elements need to be added to the standard vacuum
levitation setup for a specific experiment, they will be introduced in
the corresponding chapter.

2.1.1 Optical setup

All the experiments in this thesis are carried out on an optical table,
floating on vibration-isolating legs to hinder vibrations from the outside
from coupling to the optical setup. A schematic of the setup is shown
in Fig. 2.1. The trapping laser is a solid state Nd:YAG laser1, emitting
at a wavelength of 1064 nm with a 1 kHz linewidth. This particular
wavelength was chosen because it has proven to be suitable for particle
trapping in vacuum [43]. The relative intensity noise (RIN) of this laser
is specified to be below -140 dB/Hz. A low RIN is important because a
fluctuation in the intensity results in an uncontrolled modulation of the
optical trap, which can lead to heating of the particle’s center-of-mass
motion [50]. The laser beam is sent into a polarization-maintaining
single-mode fiber (PMSM) to clean the profile of the beam and to
improve its pointing stability. A careful alignment of this optical

1Coherent Mephisto 2W
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2.1. Experimental setup
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Figure 2.1: Schematic of the basic optical trapping setup with the charge control
system. A silica nanoparticle is trapped inside a vacuum chamber in the focus of
a laser beam (1064 nm), which is spatially filtered by a polarization-maintaining
single-mode fiber (PMSM). A telescope then expands the beam to match the
objective’s back aperture size. The forward-scattered light from the nanoparticle
is detected by a quadrant photodetector (QPD). While the detection along the
transverse directions is self balanced through alignment, the detection along the
optical axis direction requires a reference beam picked up before the trap, using a
PBS. The signals from the QPD are sent to a lock-in amplifier and recorded by
a data acquisition card (DAQ) as a function of time. The recorded time traces
represent the particle motion. To monitor the charge-to-mass ratio of the particle,
we create a capacitor with the grounded objective and the metallic holder of the
collection lens as capacitor plates. We apply a sinusoidal voltage of amplitude 10 V
between those plates. To control the charge-to-mass ratio, we create a plasma by
applying −1.5 kV to a wire inside the chamber. Free charges are generated and
eventually collide with the trapped particle, modifying its charge.

fiber (using a half-wave plate placed before the fiber and a polarizer
after the fiber [51, pp. 11f.]) is necessary to minimize temperature or
strain-induced intensity fluctuations at the output of the PMSM. We
place a telescope after the fiber to match the beam size to the back
aperture of the objective. The polarization of the trapping beam may
be controlled by adding additional wave plates in the beam path (not
drawn here). A high numerical aperture (NA) objective provides a
strong confinement of the trapping field. Throughout this thesis, we
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2. Particle trapping in vacuum

use a Nikon objective2. Only in Chaps. 5 and 6 do we use an Olympus
objective3. The optical power in the focus is around 100 mW.

In the laser focus, we trap silica nanoparticles4 of nominal radius
68 nm. Silica is well suited for trapping at visible and near-infrared
(NIR) wavelengths because it has a low absorption [52], leading to minor
heating under the illumination of a laser beam. The nanoparticles are
provided in a monodisperse solution, which we dilute with isopropanol.
We use a nebulizer5, which consists of a 2-µm mesh attached to a
piezoelectric actuator. It produces small droplets of the liquid solution.
These droplets are sprayed inside the chamber, close to the laser focus.
As a drop with a particle inside falls towards the focus, the isopropanol
evaporates and the particle can be trapped. Assuming a drop volume
of about 10 fL, we have adjusted the dilution concentration such that
we expect one silica nanoparticle per drop [42, p. 35].

2.1.2 Detection of the particle motion

To detect the particle motion, we collect the forward scattered light
from the particle with a collection lens. To collect the maximum of the
light, we use a high NA lens (NA = 0.83). This lens is placed such that
its focus coincides with the particle position, so that the light from the
focus of the objective (light from the particle and forward propagating
trapping beam) is transformed into a collimated beam by the collection
lens. We then send this beam onto our quadrant photodetector (QPD).
For the detection of the motion along the optical axis z, we pick up
a reference beam with a polarizing beam splitter (PBS) before the

2TU Plan Fluor 100x (NA = 0.9, focal length f = 2 mm, working distance =
1 mm)

3100x (NA = 0.85, focal length f = 1.8 mm)
4microparticles SiO2-R-L2902
5Omron MicroAir U22
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2.1. Experimental setup
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Figure 2.2: (a) Time trace of the particle motion recorded at 10 mbar on the
z-detector. (b) PSD obtained by Fourier transforming the time trace in (a).
We distinguish the oscillation peak of the z-mode at 50 kHz but also the peak
corresponding to the oscillation along x (around 140 kHz) which appears due to
optical cross-talk.

PMSM, as shown in Fig. 2.1, to perform the balanced detection [43].
The electronic signals are then sent both to a lock-in amplifier6 and
to a data acquisition card7 to record the voltages from the detector,
which are proportional to the particle position.

Figure 2.2(a) shows a sample of a typical time trace of the particle
position from the z-detector, recorded at 10 mbar. The inset shows the
motion on a shorter time scale so that we can observe the oscillations
of the particle. As we are interested in the oscillation frequencies, we

6Zurich Instruments HF2LI
7GaGe card CSE4342
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2. Particle trapping in vacuum

transform the time trace into Fourier space and calculate the power
spectral density [43, 42, 44] [see also Sec. 2.2.2], plotted in Fig. 2.2(b).
We observe an oscillation along the optical axis z at around 50 kHz. We
also see the peak corresponding to the x-mode at Ωx ≈ 2π × 140 kHz
because of optical cross-talk. Indeed, a slight misalignment of the laser
beam at the photodetector, in this case an imbalance between left
and right half of the QPD, or a slight misalignment of the collection
lens, results in the z-channel of the detector being also sensitive to the
motion along x.

To perform any quantitative measurements, we need a calibration
factor to translate a voltage or a digital signal in bits into a particle
displacement in nm. This calibration step is crucial. Indeed, it is
needed to calculate the energy of the particle or the amplitude of the
oscillation. A detailed study of the calibration process has been done
in Refs. [42, 49] and we will explain the methods used for this thesis in
Sec. 2.2.4.

2.1.3 Vacuum setup

The optical trap and the collection lens are placed in a vacuum cham-
ber8. The pressure inside the chamber is controlled by two pumps (a
backing and a turbo pump9) and is monitored with a gauge10 with an
accuracy of ±10%. This gauge uses a combination of Pirani and hot
cathode sensors. The Pirani sensor, used for high pressures, measures
the heat conduction of gases with a heated wire and infers the total
gas pressure from the resistance of the wire. The hot cathode sensor,
used typically for pressures lower than 10−4mbar, ionizes the gas by
electron bombardment, attracts the ionized gas molecules to an elec-
trode, and measures the resulting current which is proportional to the

8Kimball Physics MCF600-SphOct-F2C8
9Edwards T-STATION 75

10Smartline Vakuum Transmitter VSH89DL from Thyracont
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2.1. Experimental setup

gas pressure [53]. The generation of free charges during this pressure
measurement plays an important role since it can eventually impact
our measurements, as we will explain in Chap. 6. With our system, we
can reach a pressure of 10−7mbar inside the vacuum chamber. Con-
trolling the pressure enables us to tune the gas damping the particle
experiences. We can therefore transition from the overdamped regime,
where the particle only undergoes Brownian motion (above 10 mbar),
to the underdamped regime, where the particle’s motion is dominated
by sustained oscillations at its characteristic frequencies.

2.1.4 Trapping protocol and particle discharging

To perform an experiment with a levitated particle, we need to prepare
the particle in a suitable initial state. We do so by following the
protocol explained in this section.

1. At ambient conditions, we spray particles inside the chamber
using the nebulizer until one particle gets trapped in the laser
focus.

2. We start pumping down while monitoring the oscillation frequen-
cies of the particle, until we observe a sudden change in the
frequencies (usually around 1× 10−1 mbar) [42, pp. 89f.]. We
believe this change is due to a modification of the structure of the
nanoparticle. Indeed, as the pressure in the chamber goes down,
fewer and fewer gas molecules are available for the particle to
thermalize. The internal temperature of the silica sphere there-
fore increases due to absorption, possibly enough to cause a phase
change of the material. The particle, initially made of porous
Stöber silica, transforms into fused silica with a higher density
(ρStöber = 1840(10) kg/m−3, ρSiO2 = 2200 kg/m−3 [54]). We con-
jecture that residues of the solvent, here isopropanol, got trapped
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2. Particle trapping in vacuum
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Figure 2.3: (a) Power spectral density of the z-peak under electric driving. The
response of the particle to this drive is the narrow peak at 57 kHz. (b) Phase of the
particle’s response with respect to the drive over time, when the plasma is activated.
The phase is either π (in blue regions) or 0 (in red regions), depending on the sign
of the particle charge. In grey areas, the phase is undefined, corresponding to a
neutral particle. For this particular measurement, we switch off the plasma after
4 s, to keep the particle in a neutral state.

in the pores of the sphere, and are then released during the glass
restructuring. As the oscillation frequency scales inversely with
the density [42, p. 90], we expect a drop in frequency (a few kHz),
which is what we observe experimentally. We also note that this
abrupt change in phase leads to a change in charge-to-mass ratio
of the particle.

3. Once the particle has reached its final structure, we want to
assure that it is neutral, to avoid electrostatic interactions with
its environment [55]. To measure and to remove the charges

14



2.1. Experimental setup

that it carries, we use the technique described in Ref. [56] and
illustrated in Fig. 2.1. The grounded objective and the metallic
housing of the collection lens form a capacitor. We apply a
voltage V (t) = V0 cos(ωcapt) to the lens holder (V0 = 10V ),
creating an electric field in the region where the particle levitates.
The particle feels a force F = QE where Q is the charge of the
particle and E = Ed cos(ωcapt). Given our configuration, Ed is
around 1 kV/m. If we choose ωcap close to Ωz, then the particle
is driven by the electric field, and we observe an additional peak
in the PSD, as shown in Fig. 2.3 (a), where ωcap = 2π × 57 kHz
and Ωz = 2π× 50 kHz. We monitor the phase difference between
the driving signal and the response peak with a lock-in amplifier.
The phase value (in or out of phase) depends on the sign of
the charges on the particle (a correspondence can be established
using the transfer function of the electronics, but it was not done
here, as we are only interested in the neutral state). From the
data shown in Fig. 2.3 (a), we can deduce the charge-to-mass
ratio of the particle. However, we also need to control this charge-
to-mass ratio. To this end, we create a plasma in the chamber
(in purple in Fig. 2.1) by applying a high voltage (−1.5 kV) to
a wire fixed inside the chamber. The air around this wire is
ionized, and positive and negative charges are emitted, whose
travel range depends on the pressure. Experimentally, pressures
between 1× 10−1 and 4× 10−1 mbar turn out to be well suited
for controllably modifying the charge of the particle. We rely on
these charges colliding with the trapped particle and changing
its charge state. As we are continuously monitoring the charge-
to-mass ratio, we are able to switch off the plasma as soon as the
phase becomes undefined, i.e., once the particle does not respond
to the electric drive anymore and its charge is 0 (see Fig. 2.3 (b)).
Once the plasma is switched off, the charge state of the particle
remains unchanged, as shown in Ref. [56].
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2. Particle trapping in vacuum

4. Finally, we increase the pressure back to 10 mbar to perform the
calibration of the particle motion. For this purpose, we record a
time trace of a few seconds of the particle position and extract a
calibration factor as described in Sec. 2.2.4. Then the particle is
ready for any further measurements.

2.2 Trapping theory

2.2.1 Optical forces

An object irradiated with an electromagnetic field is subject to optical
forces. If we assume a monochromatic field at wavelength λ and a
small spherical object of radius r, so that 2r � λ, with no static dipole
moment and with an isotropic polarizability, we can use the dipole
approximation and express the force on the particle as [57, p. 457]

〈Fopt〉 =
α′

2

∑
i

Re {E∗i∇Ei}+
α′′

2

∑
i

Im {E∗i∇Ei} , (2.1)

where α = α′ + iα′′ is the complex-valued polarizability of the particle,
and Ei is the complex field amplitude along the spatial coordinate
i ∈ {x, y, z}. The first term in Eq. (2.1) corresponds to a conservative
force as it can be expressed as the gradient of a potential U (Fgrad =
−∇U) and is called the gradient force. It is proportional to the real
part of the polarizability α′, and attracts the particle to extrema of
the intensity. If α′ < 0, for example for metallic particles, the gradient
force attracts the particle towards regions of low field intensity. On the
other hand, if α′ > 0, for instance for dielectric particles, the gradient
force attracts the particle towards region of high field intensity. That’s
why we can use a focused laser beam to spatially confine a dielectric
particle in the focal region, where the intensity is maximal.
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2.2. Trapping theory

For a homogeneous sphere of volume V and complex relative per-
mittivity ε(ω), the polarizability α is given by the Clausius-Mossotti
relation [58]

α(ω) = 3ε0V
ε(ω)− εm(ω)

ε(ω) + 2εm(ω)
, (2.2)

where ω is the light frequency, ε0 is the vacuum dielectric constant
and εm(ω) is the relative permittivity of the surrounding medium and
equals 1 for vacuum.

However, to take into account the radiation reaction [57], i.e., the
change of electric field due to the scattering of the dipole, we need to
add a correction to the polarizability to obtain an effective polarizability

αeff(ω) =
α(ω)

1− i k3

6πε0
α(ω)

≈ α(ω) + i
k3

6πε0
α2(ω) (2.3)

with the wavenumber k = 2π/λ in air or vacuum11.
The second term in Eq. (2.1) is a non-conservative force, the scatter-

ing force, also known as radiation pressure. This force pushes the object
in the direction of the field propagation. Both scattering and gradient
forces compete in the focus of a laser beam, therefore only allowing
stable trapping whenever the scattering force cannot push the particle
out of the potential formed by the gradient force [43]. If the scattering
force is too strong, the particle can still be spatially confined by adding
a counteracting force, such as gravity [21] or a counter-propagating
beam [20]. We see [from Eq. (2.3)] that the scattering force scales with
r6 whereas the gradient force scales with r3, such that for small enough
particles, the gradient force always dominates.

11the approximation is valid if we assume
(

k3

6πε0

)2

α2(ω)� 1.
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Figure 2.4: (a) Schematic of the incoming Gaussian beam Einc focused by a lens.
The reference sphere of radius f is depicted as a dashed line. The relation between
Cartesian and spherical coordinates is also illustrated. (b) Intensity map in the xy
plane for z = 0 in the focus. We see that the waist of the focus is larger in the x
direction than in the y direction, due to the polarization of the beam along x. The
white contour lines are a guide for the eye.

We have seen that focusing a laser beam allows us to create an
optical trap for dielectric particles. Now we want to have a look at
the electric field distribution in the focal region where the particle
is confined. We assume here that a Gaussian beam (in the paraxial
approximation) polarised along x enters the objective. Following the
theory described in Ref [57], we write this field as E inc = Eincnx. We
only consider the transverse electric (0,0) mode and thus write the field
on the reference sphere before the objective in spherical coordinates
(sketched in Fig. 2.4(a), adapted from Ref [57]) as

Einc = E0e
−f2 sin2(θ)/w2

0 , (2.4)

where E0 is the field amplitude, f is the focal length of the objective
and w0 is the waist of the beam. |E0| is given by the total power P of
the incoming beam as |E0| =

√
4P/(cε0πw2

0) where c is the speed of
light. The field directly after the objective on the reference sphere can
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2.2. Trapping theory

be written as

E∞ = Einc

(
kx
k
,
ky
k

) k2
y + k2

xkz/k
−kxky + kxkykz/k
0− (k2

x + k2
y)kx/k

 √kz/k

k2
x + k2

y

, (2.5)

where we have used kx = k sin(θ) cos(φ), ky = k sin(θ) sin(φ) and
kz = k cos(θ). We are interested in the field in the focal region, where
we use the fact that the angular spectrum is proportional to the far-field
E∞ [57, p. 55]. Then, propagating the field from the reference sphere
into the focus and transforming back to real space, we find the focal
field

Ef (x, y, z) = − ife−ikf

2π

∫∫
kx,ky

E∞
(
kx
k
,
ky
k

)
1

kz
ei(kxx+kyy+kzz) dkx dky.

(2.6)

This field can be numerically calculated (contrary to the Gaussian
beam approximation, where the focused field can be analytically solved)
and an intensity map in the xy plane in the focus (z = 0) is shown in
Fig. 2.4(b). We note that the intensity distribution is not circularly
symmetric in this plane, the focus being tighter along the y axis,
which is perpendicular to the polarization axis. We can use Ef as the
electromagnetic field in Eq. (2.1) to calculate the forces applied to the
trapped nanoparticle in the focus of the laser beam. For the gradient
force, we calculate the optical potential at the particle position q using

U(q) =
−α′eff

2

I(q)

cε0
, (2.7)

where I(q) = cε0
2
|E(q)|2 is the field intensity and α′eff is the real part

of the effective polarizability [Eq. (2.3)]. We plot in Fig. 2.5(a) the cal-
culated optical potential in the xz plane corresponding to the intensity
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Figure 2.5: (a) Calculated optical potential in the xz plane of a strongly focused
beam. The white contour lines are a guide for the eye. (b) Calculated optical
potential profile along the optical axis z.

distribution shown in Fig. 2.4(b). Figure 2.5(b) shows a potential pro-
file along the optical axis z of the same potential. Expanding Eq. (2.7)
to second order shows a quadratic spatial dependence of the optical
potential [42, p. 11]. An expansion to fourth order reveals quartic
terms, that are only relevant for large oscillation amplitudes, when the
particle explores the non-linearities of the optical potential. The odd
expansion orders cancel out due to symmetry reasons.

2.2.2 Particle dynamics

After investigating the optical forces existing in the focus, we can study
the motion of a trapped particle subject to those forces. As previously
mentioned, the potential is to first approximation quadratic and, for
small oscillation amplitude, we can work under the harmonic oscillator
approximation and treat the three-dimensional harmonic oscillator as
three decoupled 1D harmonic oscillators with oscillation frequencies
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2.2. Trapping theory

defined as

Ωq =

√
kq
m
, (2.8)

where q ∈ {x, y, z}, Ωq is the angular oscillation frequency of the
particle along the direction q, m is the nominal particle mass (2.01 fg),
and the coefficient kq is the trap stiffness along the direction q. These
trap stiffnesses cannot be calculated analytically if we consider the
strongly focused field described in Eq. (2.6). However, if we work
under the paraxial approximation, and assume the focused field to be a
Gaussian field, we obtain the expressions derived in Ref. [42, p. 12]. It
is important to notice that kq is inversely proportional to the waist of
the beam along direction i. In particular, as we have seen in Fig. 2.4(b),
ky > kx leads to Ωy > Ωx.

Besides optical forces, the particle also interacts with the surround-
ing gas molecules, leading to damping and driving forces. The equation
of motion of the particle reads

q̈(t) + γq̇(t) + Ω2
qq(t) =

1

m

[
F

(q)
fluct(t) + F

(q)
scat(t)

]
, (2.9)

where γ is the damping rate, F (q)
scat(t) is the scattering force along the

axis q and F (q)
fluct(t) is the total fluctuating force along q, related to the

damping rate γ through the fluctuation-dissipation theorem, which
states [27, 59, 60]

〈Ffluct(t)Ffluct(t+ τ)〉 = 2mγkBTδ(τ), (2.10)

where kB is the Boltzmann constant, T is the bath temperature and
δ is the Dirac delta distribution. This autocorrelation of Ffluct is zero
for τ 6= 0, which means that this fluctuating force at time t does not
depend on its values at previous times.
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2. Particle trapping in vacuum

A convenient way of characterizing an oscillator is to work in
frequency space. Throughout this thesis, we will use the following
definition for the Fourier transform of q(t):

q̃(Ω) =
1

2π

∫
q(t)eiΩt dt. (2.11)

As we are interested only in the frequency of the oscillator and
in the amplitude of the motion, but not in the phase, we can work
with the quantity |q̃(Ω)|2, which is related to the double-sided power
spectral density (PSD) by

Sqq(Ω) = 2π lim
τ→∞

1

τ
|q̃(Ω)|2 . (2.12)

The Wiener-Khinchin theorem [61, 62] states

Sqq(Ω) =
1

2π

∫ +∞

−∞
〈q(t)q(t+ τ)〉 eiΩτ dτ, (2.13)

which is the Fourier transform of the autocorrelation function defined
as

〈q(t)q(t+ τ)〉 = lim
τ→∞

1

τ

∫ τ/2

−τ/2
q(t)q(t+ τ) dt. (2.14)

Now, if we take the inverse Fourier transform of Eq. (2.13), we find
that ∫ +∞

−∞
Sqq(Ω) dΩ =

〈
q(t)2

〉
, (2.15)

where 〈·〉 represents a time average. Accordingly, the variance of
the particle position 〈q(t)2〉 is the integrated area below the power
spectral density. We also know that the potential energy of the particle
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2.2. Trapping theory

along one axis can be expressed as 〈Epot〉 = 1
2
mΩ2

0 〈q(t)2〉 = 1
2
kBT ,

with Ω0 the center oscillation frequency, and its kinetic energy as
〈Ekin〉 = 1

2
m 〈q̇(t)2〉. We can therefore calculate the total energy of

the particle as 〈Etot〉 = 〈Ekin〉 + 〈Epot〉. We can also estimate the
root-mean-square amplitude of the oscillations at room temperature
for a particle of mass m = 2.01 fg, using typical frequencies of Ωz =
2π× 50 kHz, Ωx = 2π× 140 kHz and Ωy = 2π× 165 kHz. Doing so, we
find

√
〈z(t)2〉 ≈ 150 nm,

√
〈x(t)2〉 ≈ 50 nm and

√
〈y(t)2〉 ≈ 44 nm.

We note that one might be interested in other characteristics of the
oscillation, for example the center oscillation frequency Ω0 or the width
of the oscillation peak, which is related to the damping γ. To access
these parameters, we transform the equation of motion [Eq. (2.9)] into
Fourier space [42, p. 16]. Using Eqs. (2.10, 2.12, 2.13), we find that
close to resonance in the underdamped regime (Ω ≈ Ω0 and γ � Ω0 ),
we can approximate the peak in the spectrum with a Lorentzian12

Sqq(Ω) =
kBT

2πmΩ2
0

γ
2

(Ω− Ω0)2 + (γ
2
)2
. (2.16)

with kBT/(mΩ2
0) being the area under the curve.

2.2.3 Detecting the light scattered by the particle

In this section, we study the detection mechanism of the particle in
more detail. We consider the different fields that are impinging on the
photodetector, in order to understand the effect of the particle motion
on the detector signal. However, the goal of this section is not to derive
analytical formulae but to get an understanding of what affects the
signal that we measure with the photodetectors.

We determine the particle position by collecting the light it scatters.
Considering only elastic scattering, the scattered light has the same

12the mathematical equality
∫
δ(τ)eiΩτ dτ = 1 is useful here
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2. Particle trapping in vacuum

wavelength and polarization as the trapping beam. The phase of the
scattered field varies depending on the position of the particle within
the trap. We therefore use a phase sensitive interferometric detection
mechanism to detect the particle position.

The particle is illuminated by the focal field Ef [see Eq. (2.6)].
Since the particle is much smaller than the wavelength, we can use the
dipole approximation. The induced dipole moment of the particle at
position q is therefore [57, p. 235]

p = αEf (q). (2.17)

Let’s examine the polarization of Ef , which is determined by E∞
according to Eq. (2.6). The expression given in Eq. (2.5) is not conve-
nient to estimate the field component, especially along the optical axis
where kx = ky = 0. An equivalent expression [57, p. 60] reads

E∞ = Einc(θ, φ)
1

2

(1 + cos θ)− (1− cos θ) cos(2φ)
−(1− cos θ) sin(2φ)
−2 cosφ sin θ

√cos θ (2.18)

and provides a more intuitive idea of what happens. On the optical
axis (θ = 0), only the x-component of E∞ survives, which is the axis
along which the incident trapping beam is polarized. Away from the
optical axis, y- and z-components can be non-zero. If the particle
is displaced by 100 nm from the optical axis, which corresponds to a
typical oscillation amplitude (see Sec. 2.2.2), the y- and z-components
are at least 20 times smaller than the x-component. Therefore, we will
assume from now on that the induced dipole moment is directed along
x.

The fields of an electric dipole at an observation point r are deter-
mined by the Green function

←→
G (r, q) [57, p. 235]. As we are collecting

the scattered light several mm away from the particle, we can account
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2.2. Trapping theory

only for the far-field component, which is described in free space by

←→
G FF(r, q) =

eikR

4πR

[←→
I − RRT

R2

]
(2.19)

with R = r − q, R = |r − q|, and ←→I the identity tensor. Assuming
the observation point is far enough from the particle, and remembering
that the position information is contained in the phase of the emitted
field, we can approximate the emitted field as 13

Edp(r) ≈ ω2µ0

←→
G FF(r, q)p =

ω2µ0 |p|
4π |r| exp

[
i

(
k |r| − kr · q|r|

)]
nx,

(2.20)

where µ0 is the vacuum permeability.
This emitted field is collected by a lens with focal length f , which

mathematically transforms spherical wavefronts on the reference sphere
rref = (rx, ry, r

ref
z )T of radius f into plane waves and vice versa.

Thus, the collimated field after the collection lens at a position r′ =
(rx, ry, rz − f)T reads [42, p. 40]

E ′
dp(r′, q) = Edp(rref) exp(−ikf) exp[ik(rz − f)]

≈ ω2µ0 |p|
4πf

exp

[
ik′r′ − ikz

(
1− ρ2

2f 2

)]
nx,

(2.21)

where we used rref
z =

√
f 2 − r2

x − r2
y ≈ f − ρ2/2f , ρ2 = r2

x + r2
y and

k′ = k(−x/f,−y/f, 1)T. We see in Eq. (2.21) that a displacement of
the particle in the transverse directions x and y modifies the angle
of the phase fronts of the emitted field (first term in the exponent)
and a displacement along the optical axis z causes a global phase

13detailed derivation can be found in Ref. [42, pp. 39f.]. Only the field component
along x survives for small observation angles, i.e., in the paraxial approximation.
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2. Particle trapping in vacuum

shift (second term in the exponent). As we want to detect a phase
change, we need to implement an interferometric detection scheme. It
is most straight forward to use the interference naturally occurring
between the forward scattered light from the particle and the trapping
laser propagating beyond the particle. This configuration is commonly
called “common-path interferometry”. If we would like to use the
backward scattered light from the particle, we would need to interfere
it with an external reference field. Intrinsically, such a measurement
configuration is more sensitive to drifts as the path lengths of both
beams can drift independently, and drift-triggered phase difference
adds to the phase difference due to the particle motion, reducing the
quality of the detection. A way to circumvent these drifts is to use
a heterodyne interferometric technique, where the reference beam,
usually called “local oscillator”, is frequency shifted compared to the
measurement beam [44, p. 28]. In this thesis, the particle motion was
only detected with the forward scattering scheme.

The signal that hits the detector is an interference signal, namely

I(r′, q) =
cε0
2

∣∣E ′
dp(r′, q) + E ′

trap(r′)
∣∣2

=
cε0
2

∣∣E ′
trap

∣∣2 + cε0Re[E ′
trapE ′

dp
∗
] +

cε0
2

∣∣E ′
dp

∣∣2 , (2.22)

where E ′
trap(r′) is the collimated trapping beam (that didn’t interact

with the particle) after the collection lens. The last term is much
weaker than the first and the second terms, so it can be neglected. The
first term does not depend on the particle position. Accordingly, all the
information sits in the middle interference term. To calculate E ′

trap(r′),
we apply similarly the transfer function of the lens on the field Ef .
To calculate E ′

dp(r′, q) as a function of Ef , we use the relations (2.17)
and (2.21). We do not provide here further analytical formulae for
E ′

trap(r′) and E ′
dp(r′, q) as the focal field distribution Ef cannot be

expressed in a brief analytical form but remains a double integral.
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Figure 2.6: Working principles of the
quadrant photodetector (QPD) and
the balanced detection.

This interference signal is sent onto a quadrant photo detector
(QPD) developed and built within the Photonics group at ETH Zurich [42,
pp. 46ff.]. The principle is to use a balanced detection scheme to elimi-
nate the first term of Eq. (2.22). To detect the longitudinal motion of
the particle, we integrate the entire beam on the photodiode and shine
a reference beam of equivalent power, picked up before the trap, on
the reference photodiode. After subtracting these two signals,

∣∣E ′
trap

∣∣2
cancels out, as does the classical intensity noise in the trapping laser,
which is common to the reference and the particle signal. For the
transverse motion detection, the integrated power on the upper half
of the detector is subtracted from the integrated power on the lower
half (for y motion), as illustrated in Fig. 2.6. For the x motion, we
subtract the right half to the left half of the detector. As a result, for
small oscillation amplitudes, the detector signals are proportional to
the particle position in the optical trap [42, p. 44]. The advantage of
using a QPD over a D-shaped mirrors scheme (see Ref. [43]) is an easier
implementation and more stable alignment but also a theoretically
higher signal to noise ratio as the power does not need to be split for
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2. Particle trapping in vacuum

detecting the particle motion along three axes.

2.2.4 Calibration of the particle motion

The displacement of the trapped particle is recorded as a voltage gener-
ated by the photodetector. To convert this signal into a displacement,
we need a conversion factor, that we call the calibration factor, in units
of Volt/nm or bit/nm.

If the oscillator can be approximated as harmonic, we can calculate
the calibration factor ccalib using the equipartition theorem [49], which
states that the mean of the potential energy for each oscillation mode
of a harmonic oscillator in thermal equilibrium is

〈Epot〉 =
1

2
mΩ2

0

〈
q2
〉

=
1

2
mΩ2

0

〈V 2〉
c2

calib

=
1

2
kBTbath, (2.23)

with Tbath the bath temperature, q the position displacement of the
particle and V the measured voltage. To calculate the variance of the
signal 〈V 2〉, we integrate the PSD SVV over the frequencies [according to
Eq.(2.15)], i.e., we calculate the area under the curve. The boundaries
chosen for the integration of the PSD are crucial here. A wrong choice
can lead to underestimation of the energy or attribution of energy to
the wrong mode, especially in case of optical cross-talk, as observed in
Fig. 2.2. To circumvent this issue, we fit the PSD with Lorentzian peaks
[see Eq.(2.16)] and integrate the fit over all frequencies, as illustrated
in Fig. 2.7. We then calculate

c2
calib =

mΩ2
0 〈V 2〉

kBTbath

(2.24)

for each mode, assuming that the particle is in thermal equilibrium
with the surrounding gas at room temperature, i.e., Tbath = 300K.

Unfortunately, this calibration method has two limitations [42, 49].
First, the calibration factor may change over time (due to drifts of the
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Figure 2.7: Power spectral densities of the x-, y- and z-detectors recorded at
10 mbar. The Lorentzian fits are calculated using Eq.(2.16). The calibration
factor for each mode is calculated by integrating the area under the fit for the
corresponding mode.

optics inducing misalignment), especially if we perform experiments at
low pressures, that require some time to pump down. A solution would
be to perform this calibration procedure directly at low pressures. How-
ever, in the low pressure regime, we cannot assume a bath temperature
of 300 K anymore. Indeed, the energy transfer between the particle and
gas molecules, due to convection, is decreased because of the reduced
number of gas molecules. Therefore, the laser absorption leads to an
increase of the particle internal temperature, resulting in an unknown
increased effective bath temperature [63] (Teff.bath > 300K). A method
using the particle response to a driving electrostatic field can provide a
solution for a calibration method resistant to variations with time [49].
It is however unusable in our case as it requires the particle to carry
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2. Particle trapping in vacuum

at least one charge, and we want a neutral particle for the experiments
close to a surface, to avoid electrostatic interactions with the latter.
Moreover, the electrostatic field strength would be modified by the
presence of the surface (which acts as a capacitor plate) and therefore
would depend on the surface position.

Second, the Lorentzian fitting function used to calculate the variance
of the signal assumes a harmonic oscillator. In reality, our oscillator is
slightly non-linear. We infer an overestimation of the calibration factor
by 5 to 10% [42, pp. 69ff.]. Nevertheless, we will employ the described
method to calibrate the time traces of the particle position throughout
the thesis, in the absence of a more suitable method.
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Chapter 3

Approaching particles to
planar surfaces

Optically levitated nanoparticles have enabled scientists to study iso-
lated systems due to their very low coupling with the environment. On
one side, many studies have focused on the investigation of the levitated
nanoobject itself, its mechanical, optical and electronic properties [27,
28, 48]. On the other side, the levitated nanostructures have been uti-
lized as sensors due to their outstanding sensitivity [63, 64, 65]. Placing
a nanoparticle close to another object allows studies of the interactions
between the levitated particle and the object. However, any added
elements will modify the initial optical trap and therefore the particle
dynamics. Hence, we first need to understand the modifications of the
trap before studying any direct interaction between the particle and
the close object, in our case, a planar surface.

In this chapter, we add to the previously described setup a planar
surface, a membrane, to study the behavior of the trapped particle
when the membrane is close. A surface placed in the beam path reflects
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3. Approaching particles to planar surfaces

some of the trapping light. The presence of the membrane creates a
standing wave, inducing a trapping optical potential with several local
minima, as depicted in Fig. 3.2 [66]. There are two distances that
are of importance in this thesis, and whose distinction is crucial. dfoc

is the distance between the membrane surface and the focal plane of
the objective, and dpart is the distance between the particle and the
membrane surface. Especially for short focus-to-surface distances, the
particle will not reside in the focal plane, therefore dfoc and dpart will
be different. In this entire chapter, the experiments are performed with
a 500 nm-thick silicon nitride membrane. In Chap. 5, membranes with
different thicknesses will be used, because the reflection coefficient,
and therefore the trapping potential, highly depend on the membrane
thickness.

3.1 Experimental realization

3.1.1 Addition of the membrane

Adding a surface to an optical trap brings modifications mainly inside
the vacuum chamber. The new experimental configuration is illustrated
in Fig. 3.1. The silicon nitride (SiN) membrane1 is placed in the
beam path between the particle and the collection lens. It is fixed
to a metal holder and mounted onto a piezo-electric stage2 to enable
3D positioning, with a precision of 1 nm. The piezolectric stage has
position sensors, so that it can operate in closed loop and provides
its absolute position. The membrane holder as well as the positioners
are electrically grounded. The membrane is semi-transparent for a
wavelength of 1064 nm, which allow us to still detect the particle motion
in forward direction. An additional photodetector (PD1) and a quarter-

1Norcada NX series
2Smaract SLC 1720
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Figure 3.1: Modifications of the experimental setup to add a surface close to the
trapped particle. The silicon nitride (SiN) membrane is fixed on a piezoelectric stage,
to enable 3D motion. These piezoelectric elements are independently controlled
with a controller box, operated either manually or through a computer, with a
precision of 1 nm. A quarter-wave plate (λ/4) and a photodetector (PD1) allow for
the detection of back scattered light for calibration purposes. The signal from PD1
is recorded with an oscilloscope.

wave plate are used to calibrate the position of the membrane relative
to the trap, as explained in the following section. We read the voltage
from PD1 with an oscilloscope3. In this schematic, the charge control
elements, described in the previous chapter, have been omitted for
clarity, but they are still present in this configuration and allow to
control the particle charge even with the surface inside the vacuum
chamber. Working with a neutral particle is crucial to avoid undesired
electrostatic interactions with the membrane [55].

3.1.2 Determination of the membrane position
relative to the focus

We first need to calibrate the z position of the membrane relative to the
vacuum chamber. The reference point chosen for that purpose is the
focus of the trapping objective. Accordingly, we will calibrate the stage

3Lecroy Waverunner 610Zi
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Figure 3.2: Relevant geometrical parameters (not to scale) in the configuration
with the membrane of thickness tmbn. dfoc is the distance between the focal plane
of the objective and the front surface of the SiN membrane. The optical potential
illustrated in red, resulting from the interference between the trapping beam and
the reflections from the membrane, determines the distance dpart between the
particle and the membrane surface.

position relative to the focus position, i.e., we want the stage position to
be zero when the membrane is in the focal plane. To this end, we place
the quarter-wave plate as described in Fig. 3.1 before the objective in
the optical path, such that the polarization of the back-reflected light
is turned by 90°. This enables to separate the forward propagating
trapping beam from the reflected beam with a polarizing beam splitter
(PBS). The PMSM acts as a spatial filter, so that the maximum power
collected by the photodetector PD1 corresponds to the surface being in
the focus of the trapping laser. This means we are effectively imaging
the focal plane of the objective on the photodetector. We then move
the membrane along the z direction through the focus and we record
the light scattered back from the surface on the photodetector PD1.
Fig. 3.3 shows as blue points the voltage recorded on PD1, as the stage
position is swept through the focus. The envelope of the curve has a
bell-like shape, originating from the spatial filter, i.e., the fiber. The
modulation on top of the envelope comes from the interference between
the field reflected from the membrane and the back-reflected light
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3.1. Experimental realization

from other optic surfaces in the beam path. To determine the precise
position where the membrane is in the focus, we fit the measured
intensity profile with a simple model explained in the following.

We only consider the fields along the optical axis that are prop-
agating backwards and that reach the detector PD1. We assume a
strongly focused beam [see Eq. (2.6)] that has been reflected from
the membrane. This reflected field interferes with a back-propagating
plane wave, originating from reflections from the surfaces of optics in
the laser path. We model this field as Eple

iξ where Epl represents the
amplitude and ξ is the phase. We fit the blue data points in Fig. 3.3
with such a model. In the fitting function, we allow for an offset and a
scaling factor as free parameters, together with Epl and ξ. Let us note
here that we have to use Eq.(2.6) with the argument 2(z− zfoc) instead
of just z, where zfoc represents the position of the focus along the z
axis4, to consider the focused beam that has been reflected from the
membrane. Figure 3.3 shows in orange the resulting fit of the intensity
profile. We extract the focus position in the coordinate system of the
stage zfoc = 125.56 µm. We remark that the intensity of the peaks do
not perfectly agree with the measurement, because of the assumptions
we have made for the model. Indeed, we calculated the intensity in
the geometrical focus and not on the detector PD1, neglecting the
intensity that is not on the optical axis, but that still contributes to
the detector signal. However, this approximation does not influence
the determination of the focus position, as the latter only relies on the
phase information and the fact that the intensity is maximum when
the membrane sits in the focal plane. Repeating the measurement
several times, we average the extracted focus positions and obtain
zfoc = (125.54± 0.03)µm. We can therefore set this value as the zero
for the stage readout, as dfoc = 0. From now on, the stage readout

4zfoc is the position of the focal plane in the coordinates system of the piezo
stage.
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Figure 3.3: Voltage recorded on the photodetector PD1 as the membrane position
is swept across the focus towards the objective (blue). We fit (orange) the mea-
surement according to a simple model taking into account back reflections from
optics surfaces in the beam path as a plane wave. We extract from the fit the
parameter zfoc = 125.56 µm, which is the position of the focus along the z axis in
the coordinate system of the stage.

gives directly the distance dfoc.

3.2 Potential mapping at large distances

Experimentally, the membrane is introduced in the beam path at large
distances from the particle (≈ 1 mm) and is slowly moved towards
the particle. In this section, we want to study the particle behavior
during the membrane approach for distances dfoc > 20 µm. We will
first present the experimental results and then propose a theoretical
model to qualitatively explain the experimental observations.
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3.2. Potential mapping at large distances

3.2.1 Measurement of the trapping potential at
large distances

In order to study the optical potential in the presence of the membrane,
we measure the particle behavior as the distance between the membrane
and the particle is reduced. To this end, we trap a silica nanoparticle
in the way described in the previous chapter, when the membrane is
retracted, i.e., not in the laser path5. Moreover, to avoid contamination
of the membrane during the spraying of the particles, we manually cover
the membrane. We remove this cover once a particle has been trapped.
We perform the first pump down to trigger the structural change
observed around 1× 10−1 mbar (see Sec. 2.1.4) and we discharge the
particle. Then we position the membrane in the laser path6 at a pressure
of 1.5 mbar, approximately 1 mm away from the focus (dfoc = 1 mm).
The focus-to-surface distance dfoc has been calibrated prior to the
loading of the particle into the trap with the method explained in
Sec. 3.1.2. We then move the membrane along the optical axis, towards
the particle, at a constant speed of 20 nm/s. The approach speed is
not a critical parameter. The only requirement is that the approach
stays slow enough for the particle to thermalize at every position. As
the membrane approaches the particle, the surface’s influence on the
trapping field increases. We observe a modulation of the oscillation
frequency Ωz. The modulation amplitude increases during the approach.
We plot in Fig. 3.4(a) the PSD calculated from 30 s-long time traces
of the particle position (recorded at 1.5 mbar) as a function of the
distance dfoc around 40 µm. These time traces are calibrated using the
method explained in Sec. 2.2.4. The salient feature in each spectrum
represents the oscillation frequency Ωz, which varies between 20 and
85 kHz with a periodicity of ≈ 540 nm.

5This is performed by maximally displacing the piezo-electric stage along the x
direction.

6using the piezo-actuator motion in the transverse directions
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Figure 3.4: (a) Power spectral densities calculated from measured 30 s-long time
traces of the particle position along z, recorded at 1.5 mbar, as a function of
the distance focus-to-surface dfoc. The dark feature represents the oscillation
frequency peak at Ωz, which oscillates with a period of λ/2 between 20 and 85 kHz.
(b) Optical potentials reconstructed from the time traces used in (a), assuming a
Boltzmann distribution of the particle positions along z. The particle is oscillating
around its equilibrium position, which corresponds to dfoc since the optical potential
minimum is in the focal plane. The color code indicates to which dfoc position,
i.e., to which time trace, each potential corresponds. We observe a λ/2-periodic
variation in the shape of the optical potential, corresponding to the λ/2 periodicity
of a standing-wave pattern.
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3.2. Potential mapping at large distances

We can intuitively understand the experimentally observed varia-
tions of the oscillation frequency while approaching the membrane by
considering the intensity distribution created by a laser beam focused
near an dielectric interface. The interference of the trapping beam
with the back-reflected field from the membrane creates a standing
wave, which has an intensity distribution that is λ/2-periodic along
the optical axis z. We also observe that the width of the peak is larger
when the oscillation frequency is low and that the peak shape is not
Lorentzian anymore. As the oscillation frequency is related to the
trap stiffness, as seen in Eq. (2.8), we conjecture that the variation
of Ωz is due to a change in the optical potential shape. To inves-
tigate this further, we can reconstruct the optical potential probed
by the particle, for every time trace of the particle position along z
used in Fig. 3.4(a). To this end, we histogram the particle positions.
We assume a Boltzmann distribution of the positions along z, i.e.,
p(z) ∝ e−U(z)/kBT [42, 67], where p(z) is the probability to find the
particle at position z. U(z) represents the optical potential profile,
that we can therefore reconstruct, and that we plot in Fig. 3.4(b) for 5
values of dfoc [the colors of the data points correspond to the colored
rectangles outlined in Fig. 3.4(a)]. The optical potential is plotted in
units of kBT . We observe that the orange and red potentials, taken
for dfoc values separated by λ/2, are very similar in shape compared
to the three others potentials. Indeed, they appear wider and less
quadratic, which fits with the observation of a deviation of the particle
behavior from the harmonic oscillator, in the regions of low frequencies
[Fig. 3.4(a)]. Similarly, the blue, green and purple potentials, taken for
dfoc positions again separated by λ/2, look also alike.
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3. Approaching particles to planar surfaces

3.2.2 Theoretical model: large distances analysis

Theory of strongly focused field near surfaces

In this section, we describe in more detail the standing-wave pattern
created by the interference of the trapping beam with the reflections
from the membrane. Similarly to Sec. 2.2.1, we want to investigate
the electromagnetic field in the focal region. However, we have now
positioned an interface at z = dfoc (z = 0 corresponds to the focus
position), which reflects the focused field. In a similar way as in
Eq. (2.6), we derive for the reflected field [57]

Er(x, y, z) = − ife−ikf

2π

∫∫
kx,ky

Er∞
(
kx
k
,
ky
k

)
1

kz1
ei(kxx+kyy−kz1z) dkx dky

(3.1)

with

Er∞ = −Einc

(
kx
k
,
ky
k

)
e2ikz1dfoc

 −rsk2
y + rpk2

xkz1/k
rskxky + rpkxkykz1/k
0 + rp(k2

x + k2
y)kx/k

 √kz1/k

k2
x + k2

y

,

(3.2)

where we introduce kz1 = 2πnair/λ with nair = 1 the refractive index
of air, and the Fresnel reflection coefficients rs and rp, for s- and
p-polarized field components respectively [57, p. 22].

Notice that the sign of kz1 in Er(x, y, z) changed in the exponent
compared to Eq. (2.6) because the reflected field is propagating in
the opposite direction than the incoming trapping beam. The total
field between the objective and the surface is given by E tot = Ef + Er.
We can integrate Eqs. (2.6) and (3.1) numerically for φ ∈ [0, 2π] and
θ ∈ [0, θmax] where θmax = arcsin(NA).
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3.2. Potential mapping at large distances

Whenever we are only interested in the field along the optical axis
z, E tot can be further analytically simplified into7

E tot(0, 0, z) =
ikfE0e

−ikf

2
nx

∫ θmax

0

Eince
ikz cos(θ) sin(θ)

√
cos(θ)[

cos(θ)
{

1− rp(θ)e−2ik(z−dfoc)cos(θ)
}

+{
1 + rs(θ)e−2ik(z−dfoc) cos(θ)

}]
dθ,

(3.3)

where a single integral remains, saving computation time.
So far, we considered a single interface. To take into account

the finite thickness of the membrane, which will result in multiple
reflections inside the membrane, we just need to replace the reflection
Fresnel coefficients rs and rp by [57, p. 319]

r
(p,s)
slab =

r
(p,s)
1,2 + r

(p,s)
2,3 e2ikz2tmbn

1 + r
(p,s)
1,2 r

(p,s)
2,3 e2ikz2tmbn

, (3.4)

where the subscripts indicate the media forming the interfaces, kz2 =
2πnSiN/λ with nSiN = 2.54 the refractive index of SiN at a wavelength
of 1064 nm, and tmbn is the thickness of the membrane. We then plot in
Fig. 3.5(a) the intensity distribution in the xz plane for a 500 nm-thick
membrane at a distance of dfoc = 40 µm, and in (b) the intensity along
the optical axis, i.e., for x = y = 0. We notice a slight change in the
intensity distribution compared to an optical trap without membrane
(dashed orange line), due to the reflections. Yet, this perturbation
is very subtle and we still have a global intensity maximum centered
around z = 0.

7based on a private note by L.Novotny
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Figure 3.5: (a) Intensity distribution in the xz plane when the membrane is 40 µm
away from the focus (dfoc = 40 µm). (b) Intensity profile along the optical axis z
for x = y = 0 and dfoc = 40 µm (blue). For comparison, we plot the intensity when
there is no surface as a dashed orange line.

Optical potential in the standing wave configuration

Using Eq. (2.7), we calculate the optical potential from the intensity
distribution in Fig. 3.5 in units of kBT and plot a potential map in the
xz plane in Fig. 3.6(a). The corresponding potential profile along the
optical axis z is shown in Fig. 3.6(b). Again, as for the intensity, we
observe a small modification of the optical potential. To help visualizing
the influence of the membrane position on the optical potential, we
plot the potential for two other membrane positions dfoc = 40.26 µm
and dfoc = 40.53 µm in Fig. 3.6(c) and (d), respectively . We observe
firstly that the little feature at the bottom of the potential moves as the
membrane approaches. Secondly, we notice that after the membrane
has been displaced by 532 nm, the potential profile repeats itself. The
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3.2. Potential mapping at large distances

periodicity of 532 nm matches the λ/2 periodicity expected from a
standing-wave pattern when using λ = 1064 nm and matches also the
periodicity of the frequency variations observed experimentally. It
therefore confirms that the potential shape modification is the origin
of the variations of Ωz. Importantly, the optical potential is henceforth
not quadratic anymore and we cannot use the harmonic oscillator
approximation to analytically calculate the oscillation frequency of the
particle, as mentioned in Sec. 2.2.2. Therefore, we will implement a
dynamic simulation of the particle motion in an arbitrarily shaped
optical potential.

Simulation of the particle motion in a potential landscape

In order to investigate the particle behavior in optical potentials like
the ones described in the previous section (Fig. 3.6), we implement a
simulation of the particle oscillating in such a potential8. This simula-
tion is performed using the Gaussian beam approximation, and not the
strongly focused beam model, to reduce the computation time. Indeed,
whereas the Gaussian approximation can be expressed as an analytical
formula, the focused beam model requires solving numerical integrals
(as mentioned in Sec. 2.2.1), which is computationally significantly
more expensive.

In the simulation, we first calculate the optical field from the focused
laser beam using the Gaussian beam approximation and then add the
reflected Gaussian beam. We obtain the values for the optical field of
the standing wave at every point in space. We then calculate the optical
forces (gradient force and scattering force) and the random fluctuating
force that acts on the particle, as described by the equation of motion in
Eq. (2.9). We do not provide all computational details [42, pp. 153ff.],

8The initial code is described in the appendix A of Ref. [42, pp. 153ff.] and has
been modified to take into account the standing wave created by the reflections
from the membrane.
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Figure 3.6: (a) Optical potential map in the xz plane when the membrane is
40 µm away from the focus (dfoc = 40 µm). (b,c,d) Optical potential profile along
the optical axis z for x = y = 0 and for dfoc = 40 µm, 40.266 µm and 40.532 µm
respectively. We observe a periodicity of λ/2 = 532 nm of the potential shape as a
function of distance focus-to-surface dfoc.
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3.2. Potential mapping at large distances

but we just remind that this simulation solves an initial value problem
formulated by ẇ(t) = f(t,w(t)), where w(t) = (qx, qy, qz, q̇x, q̇y, q̇z). To
initiate the simulation, we provide initial potential and kinetic energies
to the particle, and fix the focus-to-surface distance dfoc. We set a
time step for solving the initial value problem (20 ns), and the length
of the time trace (50 ms) to be calculated for each distance dfoc. At
the end of each time-trace simulation, the final values for the positions
and the velocities of the particle are stored and used as initial values
for the next time-trace calculation. This way, we realize a dynamic
simulation which resembles closely the experiment where the membrane
is constantly moved. Typical computation time is around 1.5 hour for
a time trace of 50 ms. Laser noise is not included in the simulation.

We show in Fig. 3.7 the result of a simulation performed with the
parameters summarized in Table 3.1. We calculate the PSD for each
50-ms time trace and plot the spectra as a function of the distance
dfoc. We are interested in the evolution of the oscillation frequency Ωz

over time when the membrane is approached. We observe a periodic
variation of Ωz with a period of λ/2, which agrees with both the
standing-wave periodicity and the experimental observations (Fig. 3.4).
The Ωz peak is wider (and not Lorentzian-shaped) for low oscillation
frequencies whereas the peak becomes narrower for high Ωz. This
observation goes along with the anharmonicity of the optical potential
found in Fig. 3.6(b,d). We note a deviation for the absolute values of Ωz

compared to the Fig. 3.4 (a), that we attribute to the Gaussian beam
approximation and to a possible slight mismatch between the power
in the simulation compared to the experimental value. However, the
striking qualitative agreement between the model and the experiment
leads us to consider that the Gaussian beam approximation is a good
model for the optical field when the surface is a few tens of Rayleigh
lengths away from the focus.

45



3. Approaching particles to planar surfaces

Table 3.1: Parameters used in the simulation of the nanoparticle in the optical trap
for large distances of the membrane.

Parameter Value

Time step 20 ns
Length of the timetrace 50 ms
Power in focus 120 mW
Step size for membrane approach 20 nm
Initial dfoc 41 µm
Final dfoc 39 µm
Number of time traces 100
Particle diameter 136 nm
COM temperature 300 K
Waist along x [43] 687 nm
Waist along y [43] 542 nm
Rayleigh length [43] 1362 nm
Wavelength 1064 nm
Refractive index of fused silica 1.45
Density of the particle 2200 kg/m3

Damping rate γ 2π × 1000 Hz
Membrane thickness 500 nm
Refractive index of SiN 2.54
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Figure 3.7: Simulation of the particle oscillations along z for a membrane approach
from 41 µm to 39 µm. We calculate a 50-ms-long time trace for each membrane
position and derive the corresponding PSD. We plot these PSDs and display the
frequency Ωz as a function of the focus-to-surface distance dfoc. We observe a
λ/2-periodic variations of Ωz. We also note that the width of the oscillation peak
is larger for low Ωz and narrower for high Ωz.

3.3 Potential mapping at short distances

As the membrane is brought even closer to the focal region, its influence
on the electromagnetic field distribution grows stronger. We study in
this section the optical potential and the behavior of the particle for
focus-to-surface distances dfoc smaller than 10 micrometers. Similarly
to the previous section, we first interrogate our oscillator experimentally,
and then try to understand the observation through a theoretical model.
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3. Approaching particles to planar surfaces

3.3.1 Measurement of the trapping potential at
short distances

Frequency behavior during the membrane approach

During the last few micrometers of the approach (speed of the mem-
brane of 20 nm/s), we continuously record time traces of the particle
motion of 600 ms with a sampling rate of 667 kHz. For every single
time trace, we calculate the PSD and we plot it in Fig. 3.8(a) as
a function of the focus-to-surface distance dfoc. The salient feature
corresponds to the z oscillation at frequency Ωz. Until dfoc is reduced
to 3 µm, we continue to observe the periodic oscillatory pattern that
we already observed in the case of larger distances dfoc. The mod-
ulation amplitude of Ωz is however larger than before, reaching up
to Ωz/(2π) = 150 kHz. We show in Fig. 3.8(b) the PSD recorded
at dfoc = 540 nm and dfoc = 3.78 µm respectively [indicated by the
dashed lines in Fig. 3.8(a)]. For smaller dfoc, we observe a more sig-
nificant frequency increase, reaching more than 250 kHz for dfoc = 0,
i.e., when the membrane is exactly in the focus of the laser beam.
In Fig. 3.8(a), we note that the frequency Ωz also undergoes discrete
“jumps”, for example at dfoc ≈ 1.9 µm and at dfoc ≈ 1.1 µm. We observe
also two weaker peaks corresponding to the oscillations of the particle
in the transverse directions, with frequencies Ωx ≈ 2π × 150 kHz and
Ωy ≈ 2π×175 kHz. These peaks can be observed on the z detector due
to optical cross-talk, as referred to in Sec. 2.1.2. Ωx and Ωy decrease
significantly for dfoc < 0.5 µm, a behavior that we attribute to the
widening of the potential along the transverse directions as well 1 is
pushed away from the focal plane.

For small distances dfoc, the intensity in the focal plane, of the
field reflected from the membrane is stronger, enough to create an
intensity distribution with several local intensity maxima. As we
have seen with Eq. (2.7), the intensity maxima correspond to optical
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Figure 3.8: (a) Measured power spectral density of the particle motion for decreasing
focus-to-surface distances dfoc, recorded on the z detector. The strongest peak
corresponds to the oscillation mode along z with frequency Ωz and increases
for shorter dfoc while being subject to periodic modulations. The two weaker
peaks, around 150 kHz and 175 kHz correspond to the oscillations along x and y,
respectively . We observe that Ωz performs discrete jumps for dfoc < 2 µm. The
boxed numbers indicate in which well the particle is, the wells are numbered starting
from 1 for the closest to the membrane. (b) Two examples of PSD, extracted from
(a) at the position of the dashed blue lines, for dfoc = 540 nm (left spectrum) and
dfoc = 3.78 µm (right spectrum). We mainly notice the change in frequency of the
z peak.
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potential minima, where our dielectric nanoparticle is confined. There
are now several stable traps for the particle, and it can hop from
one to another as the overall potential landscape is modulated by the
approaching membrane, as we will investigate in more detail in the
following section. The wells are numbered starting from 1 for the well
closest to the membrane, based on the interferometric measurement
technique explained in Chap. 4.

To study in more detail what happens when the frequency “jumps”,
we plot in Fig. 3.9 a sample of the time trace of the particle position,
corresponding to the “jump” around dfoc ≈ 1.9 µm. We observe that
the position of the particle along the z axis undergoes a discrete step
of an amplitude of ≈ 350 nm exactly when the frequency Ωz jumps,
corresponding to the jump from well 3 to well 2. The jump amplitude
read on the detector signal is slightly smaller than a separation of
λ/2 between two intensity maxima for a standing wave. We attribute
this discrepancy to multiple origins: an error in the calibration of the
position axis, the non-linearity of the detector transfer function and
the AC filter of the detector [42, p. 44].

2Ωx peak due to non-linearities

We witness the appearance in Fig. 3.8(a) of an additional peak in the
PSD for dfoc ≈ 0, around 250 kHz. This peak corresponds to twice
the oscillation frequency Ωx and appears because the particle starts
to probe the non-linearities of the optical potential along the x axis9.
Indeed, we already mentioned that for dfoc < 0.5 µm, well 1 does not
longer reside in the focal plane. This results in the particle being
confined in an asymetric potential. In this case, the Taylor expansion
of the optical potential [see Eq. (2.7)] reveals third order terms, in
particular the terms in zx2, zy2. The derivative of the potential with

9and also along y but it is not visible on this measurement
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Figure 3.9: Time trace of the particle position along the z axis around dfoc =
1.924 µm. The time axis was started at an arbitrary position and just illustrates the
time frame of the jumping process. The position along the z axis has been calibrated
using the method described in Sec. 2.2.4. We observe the particle jumping from
well 3 into well 2 (indicated by the boxed numbers).

respect to z, expressing the force exerted on the particle along z, yields
the Ωz component as usual, but also the components 2Ωx and 2Ωy,
hence the appearance of the peak at 2Ωx in the PSD.

Anti crossing between modes

For other measurements similar to the one described in Fig. 3.8(a), a
slightly different alignment (mostly due to drifts of optics over time)
or a different trapping objective leads to slightly different oscillation
frequencies, and we can sometimes observe an overlap of Ωx or Ωy with
Ωz, for 1.1 µm < dfoc < 1.9 µm. We show in Fig. 3.10 the example of
such a measurement, where we observe an avoided crossing between
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Figure 3.10: (a) Measured power spectral density of the particle motion for de-
creasing focus-to-surface distances dfoc, recorded on the z detector, for a different
measurement than in Fig. 3.8. We display the region around dfoc = 1.5 µm to
observe the anti crossing between the z- and x-modes. (b) Another way of plotting
the PSD as a function of dfoc where the anti crossing between Ωz and Ωx is more
visible. The dashed red lines are a guide for the eye to follow the trajectory of the
frequency peaks. The curves for dfoc < 1.75 µm are offset for clarity.
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3.3. Potential mapping at short distances

Ωx and Ωz. This is indicating a coupling between the oscillator modes.
To characterize a coupling as weak or strong [68], we need to compare
the frequency splitting to the sum of the peak linewidths. In our case
the frequency splitting is smaller than the sum of the linewidths so
we are in the weak coupling regime. We conjecture that the coupling
mechanism is the anharmonicity of the potential, which is probed
by a particle with large oscillation amplitudes, as mentioned for the
2Ωx peak. This coupling can be reduced by cooling the oscillators
center-of-mass motion (Sec. 6.2).

Potential reconstruction

As we have seen in Sec. 2.2.2, the frequencies Ωx, Ωy and Ωz are a direct
measure of the curvature of the optical potential where the particle
is trapped. As for the case of large distances dfoc (Sec. 3.2.1), we can
reconstruct the optical potential probed by the particle at any time.
To do so, we record a 60 s-long time trace of the particle motion at
1.5 mbar, for example at dfoc = 390 nm. Using again the Boltzmann
distribution assumption, we extract from the histogrammed particle
positions the potential U(z) and plot it in Fig. 3.11. If we assume a
harmonic oscillator, we can write along the optical axis

U(z) =
1

2
mΩ2

zz
2. (3.5)

By fitting the reconstructed potential U(z) with a quadratic function
of the form βz2 (green line in Fig. 3.11), we obtain the fit parameter
β = 1

2
mΩ2

z. We can therefore calculate the oscillation frequency
corresponding to the reconstructed potential and we find Ωz = 2π ×
224 kHz. This frequency shows a 12% deviation from the frequency
Ωz = 2π × 256 kHz that we observe in the PSD in Fig. 3.8(a). This
deviation most likely originates from an inaccuracy in the calibration of
the z axis [49, p. 80]. Moreover, we note that the reconstructed optical
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Figure 3.11: Reconstructed optical potential (green data points) along the z axis
from a 60 s-long time trace of the particle position recorded at 1.5 mbar, for
dfoc = 390 nm. To reconstruct the potential, we histogram the particle positions
and assume they follow a Boltzmann distribution. We fit a quadratic function
(green line) to the data and we extract an oscillation frequency Ωz = 2π × 224kHz.

potential appears very harmonic. It is not in contradiction with the
remark we made in the previous paragraph about the anharmonicity of
the potential showed by the avoided crossing and the presence of the
2Ωx peak. The reconstructed potential may appear quadratic even if it
is in reality non-linear. Indeed, the oscillation frequency Ωz is higher at
dfoc = 390 nm than at dfoc ≈ 1.5 µm, which means that a particle with
constant energy probes less of the potential at dfoc = 390 nm than it
does at dfoc ≈ 1.5 µm [see Eq. (2.23)], especially not the outer regions
of the potential, which feature the non-linearities.
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3.3. Potential mapping at short distances

3.3.2 Theoretical model: short distances analysis

In this section, we explain the expected modifications of the trapping
field due to the presence of the membrane within a few micrometers
from the focus.

Similar to the standard trapping experiment, the dielectric particle
will be attracted towards regions of high intensity. In the standing wave
configuration, where the membrane is closer than a few micrometers,
there exist several local intensity maxima where the particle can be
spatially confined, as we show in Fig. 3.12 with an intensity distribution
in the xz plane (a) and along the optical axis z (b), for dfoc = 0.5 µm.
Consequently, there are now several local optical potential minima, as
we observe in Fig. 3.12 in the xz plane (c) and along the optical axis
(d). These potential wells are deep enough to confine the particle [43].
We do not know a priori in which well the particle resides. This highly
depends on the history of the potential landscape during the approach.
As the membrane is approached, the potential landscape is constantly
modified. To visualize more easily this constantly evolving optical
potential, we plot it along z in Fig. 3.13 as a function of dfoc, i.e.,
the membrane position. The potential profile displayed in Fig. 3.13(a)
corresponds to dfoc = 1.4 µm. As we vary dfoc, we obtain many profiles
that we gather in Fig. 3.13(b), for membrane positions ranging from
2 µm to −0.2 µm. We see in this figure how the different wells are
pushed through the focus (z = 0) and how the depth of each well
changes when we approach the membrane (represented by the purple
slice) towards the focus.

Oscillation Frequencies in the multiple wells landscape

As we already explained, for a harmonic oscillator, we can deduce Ωz

from the optical potential, for each well.
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Figure 3.12: Calculated intensity distribution for dfoc = 500 nm, in the xz plane
(a) and along the optical axis z (b). Corresponding calculated optical potential
landscape in the xz plane (c) and along the optical axis z (d). The boxed numbers
indicate the well numbers (starting with 1 for the closest to the membrane). The
purple stripe represents the membrane position.
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Figure 3.13: (a) Calculated optical potential profile along z for a distance dfoc =
1.4 µm. The membrane is schematically represented by the purple slab (thickness
not to scale). (b) Evolution of the calculated potential landscape around the focal
region as we vary dfoc. For dfoc = 2 µm, we observe many wells that are not very
deep as the color contrast stays low. The two deepest wells are located around
z = 0. On the contrary, for dfoc < 0, we see that one well is much deeper than the
other ones (high color contrast). During the approach of the membrane, which
corresponds to reading the plot in (b) vertically downwards, every potential well is
scanned through the focal plane in the −z direction, and its depth first increases
when approaching the focal plane and then decreases as the well is shifted beyond
the focal plane.

It is also possible to deduce Ωx and Ωy if we have the potential
as a function of x and y but we focus here on the behavior of the
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Figure 3.14: (a) Calculated oscillation frequency Ωz as a function of focus-to-surface
distance dfoc for the first six wells. (b) Separation between the bottom of the well
and the membrane as a function of the distance dfoc, for the first six wells. The
distance between two adjacent wells is roughly λ/2 and is increasing for decreasing
dfoc values due to the contribution of the Gouy phase (see Chap. 4.2.2).

particle along the optical axis. For every position of the membrane,
i.e., for every dfoc value, the potential landscape is different from the
one for the previous membrane position. Therefore, for every dfoc,
the trap frequency of each well is also different. We can repeat the
calculations from Eq. (3.1), i.e., derive the Taylor expansion of the
potential U(z) for varying focus-to-surface distances dfoc, to get an idea
of the evolution of the oscillation frequency during the experimental
approach of the membrane towards the particle. In Fig. 3.14(a), we plot
the trap frequencies Ωz as a function of the focus-to-surface distance
dfoc for the first six wells, calculated from the strongly focused beam
model. We observe that, for dfoc > 1 µm, during the approach, the
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3.3. Potential mapping at short distances

frequency Ωz of a well first rises until its maximum and then decreases.
The frequency maximum is reached when the well is located close to
the focal plane and is the deepest. For dfoc < 1 µm (wells 1 and 2), Ωz

increases and reaches its maximum when the membrane is in the focus
(dfoc = 0). The frequency evolution over the entire range of dfoc agrees
qualitatively with the experiment in Fig. 3.8(a). In Fig. 3.14(b), we
plot the distance between each well and the membrane as a function
of dfoc. We notice that this separation stays rather constant, slightly
increasing for decreasing dfoc. Furthermore, we remark that well 1 is
displaced by ∼ 350 nm when the membrane is in the focus.

Dynamics of the particle in a multiple-well landscape

We have analyzed the evolution of the potential landscape created
by the trapping beam and its reflections from the membrane. Now
we want to understand the motion and trajectory of the particle in
such a landscape. To try to visualize the dynamics of our oscillator,
we sketch three consecutive potential configurations in Fig. 3.15 and
retrace the particle trajectory along the optical axis z. In (a), the
particle is in well 4. As the membrane is moved towards the focal
plane, the potential landscape is shifted towards the left and the
particle is displaced along with the standing wave, staying in well 4.
As the membrane is approached even further, the optical potential
configuration becomes such that the potential barrier between well 4
and well 3 is small enough for the thermally activated particle to jump
into well 3 [depicted in (b)]. With the particle now in well 3, the
further approach of the membrane again shifts the potential landscape
towards the left and the particle moves along, staying in well 3 (c)
until the barrier between wells 3 and 2 will become small enough for
the particle to cross. This process repeats itself until the particle sits
in well 1 and is at the shortest distance to the membrane.
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Figure 3.15: Sketches of the optical potential along the optical axis as the membrane
is moved towards the focal plane, illustrating the transition of the particle from
well 4 to well 3. (a) The particle is in well 4. (b) As the membrane is moved
towards the focal plane, the optical potential landscape is shifted towards the left,
and the particle is moved along. When the potential barrier between well 4 and
well 3 is small enough, the particle can jump into well 3. (c) The particle now sits
in well 3.

Simulation of the particle motion in a multiple-well landscape

For distances dfoc < 5 µm, we can perform similar simulations than for
large focus-to-surface distances, still using the Gaussian beam approxi-
mation. However, the results of these simulations do not agree with
the experimental observation. For example, simulating the membrane
approaching from dfoc = 2.4 µm to dfoc = 0.4 µm predicts that the par-
ticle should stay in well 3 (the same parameters than in Table. 3.1 have
been used). This is not what we observe experimentally in Fig. 3.8(a),
where the particle jumps to from well 3 to well 2 and then to well 1.
We consider this mismatch as a strong indication that the strongly
focused beam model is even more indispensable when the region of
interest is the focus itself. Unfortunately, a simulation including the
strongly focused beam model has not yet been realized due to its very
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3.3. Potential mapping at short distances

high computational cost.

Limitations of the model

We have compared our experiments and the theoretical model we use
to understand the particle behavior as the membrane is brought closer
to the particle. Although we have observed qualitative agreements, we
also notice some discrepancies which we discuss in this section.

The observation is that the model predicts deeper potential wells
and higher oscillation frequencies Ωz [Fig. 3.14(a)] than in the measure-
ment [Fig. 3.8(a)]. We suspect that some experimental details have
not been accounted for in the model.

The particle back action has already been taken into account by
using the effective polarizability of the particle in the calculation of the
optical potential [Eq. (2.7)]. But other forces than the optical forces
have not been included in the model. Surface forces such as Casimir
forces could have an influence on the particle, especially when it is
close to the membrane. However, estimations [19] show a variation of
the oscillation frequencies Ωz of less than 1 kHz, which can not explain
our observation. A more detailed analysis of the surface forces will be
done in Chap. 6.

We then consider that experimental parameters might have been
wrongly estimated for the model calculation, such as the trapping NA
(which can be overestimated if the laser beam is not exactly of the
diameter of the back aperture of the objective), the filling factor (which
again depends on the diameter of the laser beam) or the dielectric
constant of the SiN membrane [given by the manufacturer with a
tolerance range (6 ∼ 7)]. Experimental inaccuracies such as laser beam
misalignment also impact the trap stiffness and therefore the oscillation
frequencies. A tilted beam entering the objective would for example
lead to effectively reducing the power transmitted through the objective
and reducing the filling factor. However, varying these parameters in
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3. Approaching particles to planar surfaces

an experimentally reasonable range could not explain fully the lower
experimental Ωz.

Another assumption incriminates the surface roughness of the mem-
brane, that can be due to material characteristics or to particles that
adhered to the membrane (silica, dust). These imperfections would
act like scatterers of the trapping light impinging on the membrane
and therefore reduce the intensity of the reflected light that forms
the standing wave. But the difference of factor 2 between expected
and measured Ωz would require only 1/16 of the trapping power to
be reflected, while the rest is being scattered by these surface defects,
which seems unreasonable.

So far, we assumed the membrane to be a rigid surface. But
in reality, it is a drum that can vibrate and be displaced. The first
mechanical mode is estimated to be around 2 kHz at room temperature,
which is too low to impact on the particle motion. But radiation
pressure from the trapping laser can in fact push the membrane in the
propagation direction. An estimation10, assuming point load (which
we consider to be an upper limit for the displacement due to radiation
pressure [69, 70]) yields a displacement of the membrane of the order
of 100 nm when the membrane is in the focal plane (dfoc = 0). The
effect of radiation pressure is therefore to stretch non-uniformly the
horizontal axis in Fig. 3.14(a) but does not affect the vertical axis Ωz

if we consider the membrane to stay a planar surface from the particle
point of view. If the membrane would be deformed and acquire a
finite radius of curvature, then the reflected field forming the standing
wave would be affected and maybe the curvatures of the potential
wells would be modified, resulting in different oscillations frequencies
(see also Chap. 4). However, we conjecture that a curved membrane
would result in higher intensities in the focal region, leading to higher
oscillation frequencies, which is not what we see.

10based on a private note from L.Novotny
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Finally, we consider the existence of electrostatic gradients that
could affect the particle to second order. Indeed, in a homogeneous
electrostatic field, the uncharged particle is not subject to a force. But
if the electrostatic field has a gradient, the particle would get polarized
and then feel a force. To rule out this hypothesis, we did the same
measurement as the one shown in Fig 3.8 with a particle carrying one
charge. This charged particle should be subject to an electrostatic
force arising from the homogeneous electrostatic field, which is much
stronger than possible gradients. However, the frequencies Ωz measured
during the membrane approach were exactly the same than in the case
of the uncharged particle, showing that the electrostatic gradients can
not be the reason for the deviation of the experimental Ωz compared
to the model.

3.4 Conclusion

In this chapter, we have approached a SiN membrane to an optically
levitated silica nanoparticle. We have mapped the optical potential
created by the trapping field and the field reflected from the membrane,
using the levitated particle as a probe. To this end, we have observed
the frequency behavior of the particle when the membrane was at
large distances but also at short distances from the particle. In both
situations, we have proposed a theoretical model to explain the ex-
perimental observations, supported by dynamic simulations whenever
it was possible. We have found qualitative agreements between the
experiments and the theory and have discussed the limitations of our
model.
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Chapter 4

Interferometric measurement
of distances

So far, we have conducted all of our measurements as a function of the
focus-to-surface distance dfoc. We have probed the optical potential
created by the trapping beam and its reflection from the SiN membrane
as a function of dfoc. However, for short distances dfoc, we have seen
that the potential wells are deep enough for the particle not to reside
in the focal plane but that it can be moved away from the focus. In
such situations, the distance focus-to-surface dfoc and the distance
particle-to-surface dpart are different. Since the particle is our optical
potential probe, we need a precise measurement of its separation from
the membrane surface. Therefore, in this section, we establish an
independent interferometric measurement of the particle-to-surface
distance dpart. It is important to note that, in the following section, we
consider the distance dpart averaged over the particle oscillations. On
the contrary, we have previously observed the variation of dpart over
one oscillation in Fig. 3.4 (b).
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4. Interferometric measurement of distances

4.1 Experimental setup

To measure the particle-to-surface distance dpart, we use an interfero-
metric technique based on the interference between the scattered light
from the particle and the light which is scattered by the particle and
is then back reflected from the membrane.

The experimental setup is shown in Fig. 4.1. Because most of
the light back reflected from the membrane is originating from the
trapping beam (λtrap = 1064 nm) that did not interact with the
particle, the signal to noise ratio of the trapping-light interference
signal is expected to be very low. To circumvent this issue, we use a
green laser (λG = 532 nm) to illuminate the optically trapped particle
from the side. Using a different wavelength than 1064 nm allows us
to minimize noise and background signals by spectrally separating
the green light from the trapping light. Therefore, in addition to
the previously explained optical trapping setup, a green laser beam
(80 mW), linearly polarized along y, is focused on the particle from
the side using a low NA lens to obtain a weakly focused green laser
beam, with a waist of a few tens of micrometers. The green light
scattered by the particle is collected with the trapping objective and
separated from the 1064 nm light using a dichroic mirror (DM). The
lenses L1 (f1 = 250 mm) and L2 (f2 = 200 mm) are placed such that
the back focal plane of the objective is imaged on the camera (CCD).
The signal impinging on the CCD is the interference between the
light directly scattered by the particle, and the light scattered by the
particle and reflected by the membrane, similar as in self-interference
microscopy [71].
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Figure 4.1: Experimental setup with the addition of a green laser for the interfero-
metric measurement of dpart. The green beam (λG = 532 nm, ≈ 80 mW) is weakly
focused on the particle from the side. The trapping objective collects the scattered
green light that gets separated from the back-reflected trapping light by a dichroic
mirror (DM). The back focal plane of the objective is imaged on a camera (CCD)
by the means of two lenses (L1 and L2). The signal imaged on the CCD originates
from the interference of the light scattered by the particle directly and the light
scattered by the particle which is then reflected from the membrane.

4.2 Interferometric measurement

4.2.1 Back-focal-plane imaging: results and
model

By imaging the back focal plane of the objective [72], we observe
the dipolar radiation pattern of a point scatterer, modulated with
a specific ring pattern, in which the information about the distance
between the particle and the surface is encoded. We display such an
image in Fig. 4.2(a), recorded for dfoc ≈ 4.2 µm. The ring structure (7
concentric bright rings) is an interference pattern that depends on the
phase difference between the two fields interfering, i.e., that depends
on the distance dpart between the point scatterer and the reflecting
surface. The components of the wave vector kx and ky are related
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Figure 4.2: (a) Measured back-focal-plane image for dfoc ≈ 4.2 µm. We witness the
interference pattern of concentric bright rings. The very narrow straight fringes
and the lateral intensity asymmetry are experimental imperfections. (b) Geometry
of the interferometric measurements. kx and ky denote the in-plane components
of the wavevector. The intensity distribution evaluated on the reference sphere is
projected onto the CCD. The position on the CCD depends on the emission angle
of the light, which depends on the particle-to-surface distance dpart.

to the emission angle θ by k sin(θ) =
√
k2
x + k2

y. The geometry of
the measurement is depicted in Fig. 4.2(b). The intensity asymmetry
along kx appears due to unwanted reflection of the green light from
other optical elements in the vacuum chamber. However, the sides
being brighter than the top and bottom is a characteristic of linearly
polarized dipole emission (polarization along y). We also observe a
lot of straight and faint stripes at a higher spatial frequency, that are
caused by reflections from the other elements in the vacuum chamber.

Our goal is to extract the particle-to-surface distance dpart from
these back-focal-plane images. To this end, we implement a theoretical
model that predicts the back-focal-plane images depending on parame-
ters gathered in Tab. 4.1, amongst which the distance dpart is listed. We
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leave the membrane thickness tmbn as a fitting parameter as we a priori
do not know its exact value within the tolerance range provided by the
manufacturer. The theoretical model is based on Ref. [57, pp. 312ff.]
and we summarize the main points below.

We are interested in the far-field emission of a dipole close to a
planar interface between two media, in our case air and SiN. The
excitation field Eexc (green laser beam) is linearly polarized along the
y axis. Therefore the dipole moment of the particle is

pxpy
pz

 =

 0
αEyexc

0

 . (4.1)

We can then evaluate the far-field EFF using [57, p. 325]

EFF =

[
Eθ
Eφ

]
EFF =

k2

4πε0εair

exp(ikr)

r

[
(px cosφ+ py sinφ) cos θΦ(2) − pz sin θΦ(1)

−(px sinφ− py cosφ)Φ(3)

]
(4.2)

with

Φ(1) = exp(−ikdpart cos θ) + rp
slab(θ) exp(ikdpart cos θ),

Φ(2) = exp(−ikdpart cos θ)− rp
slab(θ) exp(ikdpart cos θ),

Φ(3) = exp(−ikdpart cos θ) + rs
slab(θ) exp(ikdpart cos θ),

(4.3)

where θ and φ are the angles defined in Fig. 2.4(a), εair is the dielectric
constant of air, r the radius of the reference sphere where we evaluate
the electric field [as defined in Fig. 2.4(a)] and rp

slab(θ), rs
slab(θ) the

Fresnel reflection coefficients for the membrane defined in Eq. (3.4),
depending on the incident angle of the light θ.
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The field components Eθ and Eφ are then calculated for θ ∈ [0, π/2],
φ ∈ [0, 2π], which correspond to the half sphere of back-scattered light.
We can deduce the intensity on this half sphere by Itot ∝ (EθE∗θ +EφE∗φ).
As we want to calculate the intensity distribution representing a back-
focal-plane image, the distribution on the half sphere needs to be
projected onto a plane. Therefore, we plot Itot/ cos θ for theoretical
back-focal-plane images. To take into account the collection NA, we
only plot the calculated intensity for sin θ < 0.9. To represent the
experimental conditions in our model more accurately, we also consider
the oscillation amplitude of the particle in our calculations. Indeed,
the oscillation causes a variation of the particle position along the z
axis in time, causing a concomitant variation of the ring pattern in the
back focal plane. Since the particle oscillations are much faster than
the acquisition time of one back-focal-plane image with the CCD, the
resulting image is an average over several ring patterns. We therefore
calculate the superposition of the different patterns by calculating the

Table 4.1: Parameters used in the back-focal-plane imaging model. Besides the
overall power, the fitting parameters are dpart and tmbn.

Parameter Value

Collection NA (trapping objective) 0.9
Particle diameter 136 nm
Wavelength λG 532 nm
Refractive index of fused silica 1.45
Nominal mass of the particle 2.01× 10−18 kg
Membrane thickness tmbn fitting parameter
Distance dpart fitting parameter
Refractive index of SiN 2.54
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Figure 4.3: Calculated back-focal-plane intensity distribution, using the parameters
from Tab. 4.1, dpart = 3 µm and tmbn = 500 nm. (a) The particle position along z is
fixed at 3 µm. (b) The back-focal-plane images are averaged according to the particle
positions distribution, corresponding to an oscillation frequency Ωz = 100 kHz,
i.e., a root-mean-square oscillation amplitude around 50 nm. We observe that the
averaging only results in a decrease of the fringe visibility but does not affect the
spatial distribution of the interference rings.

intensity pattern for several particle positions and weighing them with
the position probability, assuming a Boltzmann distribution for the
potential energy of the particle, like in Sec. 3.2.1. Thus, our weighing
function is

W =
1

B
exp

(−mΩ2
z(z − dpart)

2

2kBT

)
(4.4)

with the normalization factor B =
√

2πkBT
mΩ2

z
.

Resulting theoretical back-focal-plane images are shown in Fig. 4.3
for dpart = 3 µm and a membrane thickness of tmbn = 500 nm, (a)
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without and (b) with the averaging over the particle positions, re-
spectively. We recognize the bright sides, resulting from the linear
polarization of the dipole scatterer and the interference ring pattern (6
bright rings). We notice that the averaging over the particle positions
only modifies the image slightly, resulting in a decrease of the contrast
between bright and dark fringes. But the spatial distribution of the
rings stays identical as expected. All the theoretical back-focal-plane
images shown in the rest of this chapter have taken into account the
particle oscillations in the intensity distribution. We can now mea-
sure the back-focal-plane images of the trapped particle and obtain
dpart continuously during measurements by fitting those measurements
with the developed theoretical model. We perform this interferometric
measurement simultaneously with the approach of the membrane per-
formed in Fig. 3.8(a) and therefore deduce the value of dpart for each
value of dfoc.

4.2.2 Measurement of dpart during the membrane
approach

While performing the membrane approach shown in Fig. 3.8(a), we
record the back-focal-plane images every 250 ms with the CCD camera.
We display the recorded image at dfoc = 2.34 µm (particle in well 3)
in Fig. 4.4(a, left). Comparing recorded 2D images with theoretical
ones is not a very accurate way of determining the distance dpart

from the measured image. To precisely extract dpart from a measured
back-focal-plane image, we therefore radially average the intensity
distribution and obtain an intensity profile plotted with blue data
points in Fig 4.4(b). On the horizontal axis, we plot the sine of the
angle θ, with sin θmax = 0.9 = NA. To eliminate the intensity signal
coming from directly scattered light not originating from the particle
(that is considered as noise in the intensity profile), we subtract the
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Figure 4.4: Back-focal-plane imaging of a nanoparticle levitated in front of a
SiN membrane. (a, left) Measured back-focal-plane image at dfoc = 2.34 µm.
(a, right) Calculated back-focal-plane image intensity distribution for a scatterer
levitated at dpart = 1.62 µm [extracted from the fit in (b)]. (b) Radially average
intensity profile (blue points) of the measured image in (a). The blue shaded
area represents the experimental standard deviation. We fit (orange curve) the
intensity profile according to our model and extract the value dpart = 1.62 µm.
Panels (c,d) and (e,f) analog to (a,b) but for images recorded at dfoc = 1.62 µm
(particle in well 2) and dfoc = 0.18 µm (particle in well 1), respectively. Adapted
with permission from Ref. [66].
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4. Interferometric measurement of distances

background intensity from the measurement intensity profile with
particle. Note that removing the background in this way does not
eliminate the interference between the signal and the background. The
background intensity profile is recorded at exactly the same position
dfoc as the measurement intensity profile but without particle. The
blue shaded area indicates the experimental standard deviation after
background subtraction. We note that the standard deviation is much
smaller for high sin θ values, which originates from the fact that a
radial average contains more data points for the outer radii than for
the central part of the image. We then fit the intensity profile with the
model described previously [orange curve in Fig 4.4(b)]. Our fitting
function is based on the least squares model, with dpart and tmbn as
fitting parameters1 and weighs the importance of each data point in the
minimization residuals according to the measured standard deviation.
In other words, the fitting function attributes a higher importance to
the intensity points at large sin θ values. We obtain the best fit for
dpart = [1.62±0.05(sys)±0.0002(stat)] µm. We estimate the systematic
error on dpart based on the residuals from the fit (twice the minimum
residual). The statistical error is calculated by evaluating dpart for
repeated measurements at the same membrane position, and amounts
to 0.2 nm. For visual comparison, we display in Fig. 4.4(a, right) the
theoretical image calculated for the extracted value dpart = 1.62 µm.
We observe a good agreement. We go through the same process for back-
focal-plane images recorded at dfoc = 1.62 µm (particle in well 2) and
dfoc = 0.18 µm (particle in well 1), and display these images in Fig. 4.4(c,
left) and (e, left) respectively. We observe that the number of rings
decreases for smaller distances dfoc, as expected. Our analysis of the
corresponding radially averaged intensity profiles [shown in Fig. 4.4(d)

1We left the membrane thickness tmbn as a fitting parameter for all the images,
as a sanity check regarding the meaningfulness of the fit. An unreasonable value
of tmbn would mean that the fit probably failed and the corresponding dpart value
should be ignored.
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4.2. Interferometric measurement

and (f)] yields particle-to-surface distances of dpart = 1.04 µm and
dpart = 450 nm. We acknowledge a smaller agreement between the
theory and the experiment in Fig. 4.4(f), that we attribute to the fact
that, in well 1, the particle-to-surface distance and the particle size
become of similar order of magnitude, which does not fully correspond
to the point-dipole-scattering assumption we have made in the model.

We show in Fig. 4.5 the extracted dpart as a function of dfoc, during
the entire membrane approach. The data points circled in orange
correspond to the images displayed in Fig. 4.4. We firstly notice the
discrete steps in dpart values to coincide exactly with the frequency
discontinuities observed in Fig. 3.8(a), because both effects arise from
the particle jumping from one well to another. Secondly, we note
that besides the overall power and dpart, the membrane thickness tmbn

is also extracted for every image. We consistently obtain a value
tmbn = (516± 1) nm, which lies within the tolerance range provided by
the membrane manufacturer [(500± 25) nm]. Finally, we measure the
step size in dpart to be around λ/2, which correspond to the spacing
between intensity maxima in a standing wave and therefore further
supports our theoretical model, which is based on the standing wave
structure. However, two peculiarities are observed in the measurement
displayed in Fig. 4.5, namely that the step size increases for small dfoc

and that the distance dpart in well 1 is larger than expected from our
calculation in Fig. 3.14(b). We will discuss these two points successively.

We attribute the increase in the step height for small dfoc values to
the Gouy phase that is acquired in the focus of a laser beam. To justify
this attribution, we proceed with a simplified calculation of a Gaussian
beam reflected from a planar single dielectric interface located at dfoc

(the focal plane is located at z = 0) and we calculate the intensity
distribution along the optical axis z. We assume the Gaussian beam
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Figure 4.5: Values of dpart extracted from the fit of the measured back-focal-plane
images as a function of dfoc. We observe steps in dpart, corresponding to the
jump of the particle into the next well. The corresponding values of dfoc for these
steps perfectly match the positions of the frequencies discontinuities witnessed in
Fig. 3.8(a). The step height increases for decreasing dfoc due to the existence of the
Gouy phase in the focus. The boxed numbers indicate the well number. The orange
circles locate the three examples of back-focal-plane images shown in Fig. 4.4.

of the form [43] :

EGauss(z) = E0

(
1 +

z

z0

2
)−1/2

exp(iΦ), (4.5)

where Φ = kz − η(z) with η(z) = arctan(z/z0) being the Gouy phase
and z0 the Rayleigh length. We calculate the intensity I as

I = [EGauss(z) +REGauss(2dfoc − z) exp(iπ)]×
[E∗Gauss(z) +RE∗Gauss(2dfoc − z) exp(−iπ)]

(4.6)

with R the reflection Fresnel coefficient for this dielectric interface (R
is real) and exp(iπ) coming from the reflection-induced phase shift.
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4.2. Interferometric measurement

After simplification, we find

I = B2 + C2 − 2BC cos[2k(z − dfoc) + η(2dfoc − z)− η(z)] (4.7)

with B = E0

(
1 + ( z

z0
)2
)−1/2

, C = RE0

(
1 +

4d2foc−4dfocz+z
2

z20

)−1/2

. The
term 2k(z − dfoc) is the propagation-induced phase delay. To know the
position of the potential wells along the optical axis, we need to look for
the intensity maxima, i.e., when the cosine term is minimal. We plot
in Fig. 4.6(a) this cosine function as a blue curve, for dfoc = 100 nm
and z0 = 1362 nm [43, pp. 31f.]. For comparison, we plot in orange
the same function but for no Gouy phase (η = 0). We measure the
separation between two consecutive minima and plot it in Fig. 4.6(b),
for both cases, with or without Gouy phase. We observe that in the
absence of Gouy phase (similarly to a plane wave case), the separation
between adjacent wells is constant and equal to λ/2. On the contrary,
in the presence of Gouy phase, this separation increases the closer
the wells are from the surface. This corresponds to our observation
in Fig. 4.5 and was also observed in Fig. 3.14(b) in the simulation
which accounts for the Gouy phase. Additionally, we note a slight
displacement of well 1 due to the Gouy phase.

We now turn to the discussion concerning the value dpart = 450 nm
for well 1. This distance is set by the complex reflection coefficient of
the dielectric membrane and depends on both the refractive index and
the thickness of the membrane. Some analytical expressions can be
found in the literature [73, 74] that relate the position of the closest
well with the refractive index and the membrane thickness. However, in
Refs. [73, 74], the weakly focused beam approximation was made, from
which we know that it does not describe our experiment accurately.
Estimations from both the literature and our calculation in Fig. 3.14(b)
seem to underestimate the distance between well 1 and the surface (by
25% for our model, by 40% for literature models). A possible reason for
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Figure 4.6: (a) Calculation of the interference term of a Gaussian beam with
wavelength λ = 1064 nm reflected from a semi-infinite dielectric surface along the
optical axis z, located at dfoc = 100 nm. The blue plot takes into account the
existence of the Gouy phase, the orange plot does not (similar to a plane wave).
We plot the cosine component of the intensity, and we look at the minima of the
cosine function, which correspond to the positions of optical potential wells. We
see that the existence of the Gouy phase shifts the minima position away from the
surface. (b) We measure the separation between two consecutive minima of the
cosine function in (a) and plot it as a function of well number. The terminology
“1 ∼ 2” signifies “between well 1 and well 2”. We observe that for a plane wave
model (no Gouy phase), the separation between two consecutive wells is constant
(orange points) whereas it increases for the model including the Gouy phase the
closer we are to the surface (blue points).
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4.3. Conclusion

this mismatch could be the fact that the membrane acquires a curvature
due to radiation pressure, and we want to verify this hypothesis in the
following. From the membrane displacement due to radiation pressure
calculated in Sec. 3.3.2, which is around 100 nm, we can estimate
the radius of curvature of the deformed membrane. Assuming the
membrane is deformed spherically where the laser beam is impinging,
and is linearly stretched otherwise, we find a corresponding radius of
curvature of 5 mm. Using a simplified model based on ABCD matrix
for a weakly focused beam reflected on a curved surface with radius
of curvature 5 mm, we can estimate the displacement of well 1 due to
this curvature. We find a displacement of the order of a few nm (away
from the membrane).

We conclude that both the Gouy phase and the deformation of the
membrane contribute to a minor displacement of well 1 away from
the membrane. However, the approximations performed do not allow
us to conclude that these two effects are solely responsible for the
discrepancy between model and experiments.

4.3 Conclusion

We have measured the particle-to-surface distance dpart for all mem-
brane positions using an interferometric technique. Our particle having
a radius of 68 nm, we claim a minimum net distance between the sur-
face of the particle and the surface of the membrane of 380 nm. We
have discussed the discrepancy between our theoretical model and the
experiment regarding the distance between well 1 and the surface of
the membrane, identifying the Gouy phase and the membrane defor-
mation as possible causes. Additionally, we note that the extraction of
dpart using the back-focal-plane images is very sensitive to the NA of
the objective, whose value we assumed constant and equal to 0.9, as
provided by the manufacturer of the objective.
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Chapter 5

Active control of the
particle-to-surface distance

We have mapped out the optical potential created by a strongly fo-
cused beam reflected from a SiN membrane, using a levitated silica
nanoparticle as a probe. We have been able to precisely position the
nanoparticle anywhere within this potential landscape, and especially
at subwavelength distance from the membrane. Indeed, when the
particle resides in the potential well closest to the membrane, the
particle-to-surface distance was measured to be dpart = 450 nm. Yet,
this distance is set by experimental parameters, like the membrane
thickness and the membrane refractive index, which cannot be tuned
in-situ. It would be interesting to be able to tune the distance dpart to
bring more versatility to the experiments we can perform. To this end,
we introduce in this chapter an additional electromagnetic field, to
control the standing-wave pattern where the particle is trapped. The
experiments and the calculations are carried out with a 200 nm-thick
SiN membrane.
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5. Active control of the particle-to-surface distance

5.1 The optical conveyor belt concept

The idea behind an optical conveyor belt is to spatially displace a
standing-wave pattern generated by two counter-propagating beams.
This technique is already used in the atom-trapping community [75,
76], where acousto-optic modulators are utilized to detune the two
counter-propagating beams in frequency in order to create a moving
standing wave. Optical conveyor belts have also been applied in optical
tweezer applications [77, 78]. Instead of a frequency detuning between
the two counter-propagating beams, we will, in the following, consider
shifting the phase of one of the fields constituting the standing wave.
Let’s consider two counter-propagating monochromatic plane waves
expressed as E1e

i(kz−ωt) and E2e
i(−kz−ωt+φCB), where φCB is the phase

difference between the two waves. These two waves interfere to form a
standing wave with the intensity I = |E1|2 + |E2|2 + 2|E1||E2| cos(2kz −
φCB). We can see that adjusting the phase φCB results in spatially
displacing the standing wave along the propagation axis z. This is the
concept we will use to spatially shift the trapping potential.

5.2 Experimental setup

We sketch in Fig. 5.1 the experimental setup used to realize a con-
trollable standing wave. After the vacuum chamber, we introduce a
beamsplitter (90:10) that picks up 90% of the power of the beam to
focus it on an additional mirror (not present in the setup used in the
previous chapters) through the lens L3 (f3 = 100mm). This additional
mirror is fixed to a piezoelectric actuator (we call it piezo-mirror for clar-
ity) and can be displaced along the optical axis with a precision below
0.05 nm over a range of 3 µm. Note that in this chapter, the trapping
objective is an Olympus 100x (NA = 0.85, focal length f = 1.8 mm).
In the inset of Fig. 5.1, we illustrate the new field configuration in the
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Figure 5.1: Experimental setup allowing for a shift of the potential wells along the
optical axis. The setup is identical as previously introduced in Chap. 4, except for
the trapping objective (NA = 0.85), an additional beam splitter (BS), a lens L3
and a mirror placed after the vacuum chamber. The additional mirror is mounted
on a piezoelectric actuator, enabling us to modulate its position along the optical
axis, with a precision below 0.05 nm. Inset: Sketch of the different fields interacting
in the focal region. The new field Econv is created by the reflection from the
piezo-actuated mirror followed by the transmission through the membrane. It
interferes with the trapping field Etrap and the field reflected from the membrane
Erefl. The standing-wave pattern is now resulting from the interference between
the three fields.

focal region. The forward propagating trapping field E trap is partially
reflected by the membrane (E refl) and partially transmitted through
the membrane. The transmitted field hits the piezo-mirror and gets
partially transmitted again through the membrane, to give the field
Econv.

5.3 Theoretical considerations

In this section, we calculate the intensity distribution along the optical
axis z in the focal region (see inset Fig. 5.1). The treatment follows the
methods introduced in Sec. 3.2.2, with the important difference that
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5. Active control of the particle-to-surface distance

we include a counter-propagating beam Econv, such that the intensity
distribution in the focal region arises from the interference of not two
but three fields E trap, E refl and Econv. The interference between E trap

and E refl is calculated following Eq. (3.3), with a membrane thickness
of tmbn = 200 nm and a membrane refractive index of 2.54. We assume
Econv to be a Gaussian beam strongly focused with the collection lens
of the form Econv = Econve

iφCBnx, where φCB is the adjustable phase.
Econv is calculated using the model described in Sec. 2.2.1 and with
the parameters summarized in Table 5.1. To calculate the total field,
we perform DEconv + E trap + E refl, where D is an amplitude correction
factor. D includes the power losses due to the optical elements in the
beam path (beam splitters, lenses, windows, transmission through the
membrane). We plot the resulting optical potential along the optical
axis z as a function of the phase φCB in Fig. 5.2(b), for a focus-to-
surface distance dfoc = 0 and D = 0.3. The purple line at z = 0
represents the membrane (thickness tmbn = 200 nm) and Fig. 5.2(a)
shows in red the potential profile extracted from (b), at the position
indicated by the dashed red line. A change of φCB shifts the optical
potential wells along z. We observe that well 2 for φCB = 0 becomes
well 1 for φCB > 2π. Accordingly, by varying the phase φCB, we can
continuously tune the particle-to-surface distance dpart without the
particle having to jump into a different well. It turns out that the

Table 5.1: Parameters used in the calculation of Econv.

Parameter Value

Wavelength 1064 nm
NA (collection lens) 0.83
Focal length (collection lens) 15 mm
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Figure 5.2: Calculated optical potential along z for dfoc = 0. (a) Potential profiles
for φCB = π, in the above-threshold configuration (red) and in the below-threshold
configuration (black). (b) Potential as a function of the phase φCB of the additional
reflected field Econv for the above-threshold configuration. The dashed red line
corresponds to the red profile in (a). An increase in the phase φCB, originating
from a displacement of the piezo-mirror, results in a linear and continuous shift
of the potential wells towards the membrane. The membrane is represented by a
purple slice (thickness not to scale). (c) Potential as a function of the phase φCB

for the below-threshold configuration. The dashed black line corresponds to the
black profile in (a). A change in the phase φCB results in an oscillation of the well
position around a mean value and not into a continuous shift. The position of a
well cannot be tuned more than a few tens of nm.
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membrane thickness is a critical experimental parameter. The main
difference between different membrane thicknesses is the reflection
coefficient. We show in Fig. 5.2(c) a plot corresponding to the one
in Fig. 5.2(b), but where D has been reduced by 80% (D = 0.06).
We notice that a change in the phase φCB is not sufficient anymore
to shift the wells along z. The depth of the wells varies with φCB

but their position along z stays constant. That means there exists a
threshold for the intensity of the “tunable field” Econv, below which the
change in phase φCB does not change the z position of the potential
wells (D = 0.3 seems to be the threshold value of D allowing the
shift of the wells along z, as we also have to ensure that the well
where the particle resides remains deeper than 10kBT at all times [43]).
In other words, for the potential landscape to be dominated by the
trapping field and the field reflected from the mirror (instead of the
field reflected by the membrane), enough power needs to reach the
piezo-mirror, i.e., the reflection coefficient of the membrane has to be
small enough (if the transmission through the other optical elements
has already been optimized). The 500 nm-thick membrane (used in
the previous chapters) reflects 51%1 of the power for normal incidence,
which appeared to be too much for this application. This is the reason
why we turned towards a 200 nm-thick membrane, which reflects only
2%1 of the power (the smallest reflection coefficient available to us),
allowing more power to go through the membrane and to be reflected
on the piezo-mirror. We hope it will yield a value of D above threshold,
enabling the well shifting.

1This value is calculated for normal incidence and for a dielectric constant of
SiN of 6.5.
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5.4. Experimental tuning of dpart with a conveyor belt

5.4 Experimental tuning of dpart with a
conveyor belt

In this section, we perform the tuning of dpart with the 200 nm-thick
membrane. We start with the conveyor belt switched off by placing a
beam block in front of the piezo-mirror. The 136 nm-diameter nanopar-
ticle is trapped and discharged following the procedure described in
Sec. 2.1.4. Then, the membrane approach protocol is conducted as
described in Chap. 3 until the particle is in well 2 (monitored with
the interferometric technique described in Chap. 4). Only then, the
piezo-mirror is unblocked, turning on the conveyor belt. As long as
no voltage is applied to the piezo-mirror, the potential wells are not
shifting along z. We start simultaneously the recording of the back-
focal-plane images allowing the measurement of dpart and the ramping
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Figure 5.3: Distance dpart extracted from the analysis of the measured back-focal-
plane images as a function of the mirror displacement and the phase φCB. The
phase φCB change is proportional to the mirror displacement, which is proportional
to the applied voltage on the piezoelectric actuator. The value dpart oscillates with
a λ/2 periodicity around a mean value of 835 nm. According to our model, we are
in the regime below threshold, where dpart cannot be continuously shifted because
of lack of power in the conveyor belt beam.
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5. Active control of the particle-to-surface distance

of the voltage applied to the piezo-mirror. We show in Fig. 5.3 the
value of dpart extracted from the back-focal-plane images as a function
of the piezo-mirror displacement (which is linear with the applied volt-
age). We observe that dpart can indeed be tuned over a 50 nm range by
changing the phase φCB (which is linear with the mirror displacement).
However, we do not observe a linear shift of the distance dpart as ex-
pected in Fig. 5.2(b). Instead, we observe an oscillation of dpart (of
periodicity λ/2, as expected) around a mean value, indicating that we
are in the case represented on Fig. 5.2(c), below the power threshold.
We conclude that, experimentally, D < 0.3, even with the 200 nm-thick
membrane.

We notice that, in Fig. 5.3, the mean value dpart (≈ 835 nm) is
different from the 1.04 µm measured in Chap. 4 although the particle
is in well 2. This is because we use a thinner membrane in this chapter,
and as we mentioned previously (see Sec. 4.2.2), the positions of the
potential wells highly depend on the refractive index and the thickness
of the membrane. The fact that we use an objective with a different
NA might also play a role.

5.5 Conclusion

We have demonstrated a proof-of-principle of a conveyor belt system
to tune the particle-to-surface distance dpart while the particle remains
in the same well. Using this technique, we should be able to control
and vary the distance dpart, which would no longer be determined
solely by the standing-wave pattern created by the reflection from the
membrane. Currently, we can vary dpart over 50 nm around 835 nm
due to experimental limitations, namely power losses. To circumvent
these issues, and benefit fully from the capability of the conveyor-belt
system, we need to harvest a bigger fraction of the trapping power
to be sent onto the actuated mirror. A suggestion is to use an anti-
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reflection coated surface in order to reduce reflections from the surface
to a minimum. Commercially available coatings can reach reflectivities
of less than 0.1%, however, only for a limited range of small angles
of incidence. In contrast, for our application, the coated surface is
placed in the focus of a high-NA objective, where the incident light
impinges on the surface with many different angles of incidence (up
to 64° for the highest incidence angle when using an objective with
NA=0.9). Moreover, most of the optical power resides in the high
angles components of the field, angles for which the reflectivity is
higher than for normal incidence. As a result, the total power reflected
from an anti-reflection coated surface will typically not be below 1% in
our configuration. Another way to circumvent these technical hurdles
would be to replace the piezo-mirror with a plate beam splitter (90:10
R:T) mounted on a translation stage in the vacuum chamber, directly
after the collection lens. Doing so would increase the power arriving
at the piezo-mirror since there are no vacuum window or additional
beam splitters for the light to traverse. Moreover, it would drastically
reduce vibration-induced instabilities of the piezo-mirror, that impact
directly on the optical potential. Additionally, we could replace the
collection lens by an objective, to benefit from a better quality and
confinement of the focus of the Econv field. The best configuration
would be a symmetric system, with the trapping and the collecting
objectives being the same. This way, the two counter-propagating
beams would overlap better.
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Chapter 6

Towards sensing of surface
forces

With our levitated nanoparticle at a subwavelength distance from a
surface, we enter the range at which surface forces become measurable.
Two well-known types of such forces are the Casimir and the Van
der Waals force. As previously mentioned in Chap. 1, these forces
originate from the existence of vacuum fluctuations, and the different
names represent limiting cases for the expression of this attractive
force. The name Van der Waals forces applies in the regime of atomic
separations of a few nanometers at most, where retardation effects
can be neglected [4]. The same attractive force is called Casimir force
when the objects are further apart, which is the case in this thesis. The
functional form of Casimir forces depends on the distance between the
two bodies relative to their size, and on their shapes. The configuration
that we use in this thesis is the sphere-plane configuration, with the
levitated particle being the sphere and the dielectric membrane being
the plane. If the separation between the sphere and the plane is smaller
than the radius of the sphere (proximity force approximation), the
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6. Towards sensing of surface forces

Casimir force is of the form [5, 19]

Fc = −η ~rcπ3

360(dpart − r)3
, (6.1)

where r is the particle radius, dpart is the distance between the center
of the sphere and the surface, and η is a dimensionless prefactor
accounting for the fact that we do not have perfect conductors [79, 80].
However, if the separation between the sphere and the plane is larger
than r, then the force takes the Casimir-Polder form [19]

Fcp = − 3~cα
8π2ε0

1

d5
part

. (6.2)

Let’s consider a sphere of radius 68 nm at 450 nm1 from a SiN mem-
brane, which are the parameters realized in the experiment discussed
in Chaps. 3 and 4. The particle-to-surface distance is bigger than
the radius of the sphere, therefore we are in the large distance regime,
where the Eq. (6.2) should apply. Considering that we proposed in
Chap. 5 a method to reduce the distance dpart to reach the regime
where dpart ≈ r, our experimental system may allow us to investigate
the transition from the Casimir regime, described by Eq. (6.1), to the
Casimir-Polder regime, described by Eq. (6.2).

Having discussed the length scales involved in a measurement of
short-range forces using an optically levitated nanoparticle, let us turn
to the force sensitivity required to carry out such a measurement. For
dpart = 450 nm, we estimate Fcp ≈ 70 aN. However, the particle is
additionally subject to the optical forces that form the trap. For a
particle in well 1, we estimate optical forces of the order of a few
pN for typical oscillation amplitudes at room temperature, i.e., 5
orders of magnitude larger than the Casimir force. The equilibrium

1center-to-surface distance
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position displacement induced by the Casimir force can be estimated
to first order to be ≈ 0.5 nm. However, the measurement of such a
displacement is impossible in our case for two main reasons. First,
measuring a displacement requires to have a reference measurement,
which would mean to measure the equilibrium position without the
Casimir force, which is impossible because the surface creates the
optical potential. There is no way of deactivating the Casimir force
to realize a reference measurement. Second, this displacement is very
small, which means we would need to measure for a long time to resolve
it. Unfortunately, during this time, drifts would impact the detector
signal more than the displacement we want to measure. Therefore, we
can not expect to be able to detect surface forces while the particle is
trapped. That is why we consider using a free-fall force-sensing scheme,
based on Ref. [42, pp. 121ff.], that we detail in the following section.

6.1 A free-falling particle as a force
sensor

Recent work within the Photonics group at ETH Zurich has shown the
use of a free-falling particle as a very sensitive sensor for static forces [41].
In this section, we describe the underlying concept, depicted in Fig. 6.1.
The particle is trapped and cooled to low-amplitude oscillations (a).
At one instance of time, the trapping laser is switched off, so the
particle is not subject to optical forces anymore (b). It can therefore
interact with the remaining forces F , for example gravity (hence the
name free-fall) or electric forces if the particle is charged. After a
short time τ , the trap is switched on again, catching the particle that
has been displaced by the static forces (c). This displacement results
in a larger oscillation amplitude after the free-fall as compared to
before. Measuring the oscillation amplitude allows us to retrieve the
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Figure 6.1: Principle of a force measurement with a free-falling particle. (a) A
nanoparticle is levitated in an optical potential. The particle’s COM motion has
been cooled along the three oscillation axes. (b) The trapping laser is switched
off, and the particle is subject to the remaining force F , resulting in a particle
displacement along the direction of the force. (c) After a very short time, the
laser is switched back on and the particle is recaptured in the optical potential. It
oscillates with a larger amplitude than in (a) as it acquired potential energy during
the fall in (b). The oscillation amplitude is related to the displacement acquired
during the free-fall and therefore to the magnitude of the force F . Adapted with
permission from Ref. [41].

displacement and therefore to deduce the force the particle has been
subject to during the free-fall. A force sensitivity of 10 aN has been
demonstrated, which is sufficient to detect the Casimir force acting
on a particle residing in well 12 [41]. A crucial point in the free-fall
experiments is the efficient cooling of the particle’s center-of-mass
(COM) motion before the free-fall, which we implement in the next
section.

2Well 1 is the well closest to the membrane, as introduced in Sec. 3.3.
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6.2 Feedback cooling the center-of-mass
motion of a particle

As the particle is not standing still in the trap when the laser is
switched off, it still has kinetic energy and therefore a finite velocity at
the moment when it is released from the optical trap. The particle will
therefore continue to move with this velocity during the fall duration
τ and will be displaced. The larger the initial velocity, the larger the
displacement. The displacement induced by the remaining velocity
scales linearly with the fall duration τ , whereas the displacement due
to the investigated force acting on the particle scales quadratically with
the fall duration, as we will derive in the next section. Accordingly,
a certain minimum fall duration is required for the displacement due
to the force acting on the particle to overcome the displacement due
to the initial velocity. Importantly, the overall displacement during
the fall is limited by the finite size of our optical trap, since we have
to recapture the particle after the fall. Therefore, we need to reduce
the initial velocity of the particle to reduce its effect on the particle
displacement. Only then, the displacement due to the investigated
force becomes detectable within a fall duration compatible with the
size of our trap.

After motivating the implementation of a cooling scheme for the
particle’s COM motion, we present in the following the experimental
realization. We cool the COM motion using a parametric feedback
scheme [27, 43]. The experimental setup is described in Fig. 6.2. In
comparison to the setup used in Chaps. 3 and 4, an additional electro-
optic modulator (EOM) has been placed after the laser to modulate the
beam intensity. A phase-locked loop (PLL) is detecting the particle’s
oscillation frequency (and phase). We generate a second harmonic
signal (with the appropriate phase) and feed this signal to the EOM. As
a result, the intensity, i.e., the trap stiffness, is modulated at twice the
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Figure 6.2: Experimental setup for the feedback cooling scheme and free-fall
measurements. The electro-optic modulator (EOM) placed after the laser allows
the intensity modulation that is necessary for feedback cooling the particle’s COM
motion. The phase locked loop (PLL) detector is tracking the particle oscillation
frequencies, and the second harmonic signals are generated and fed into the EOM
for the laser intensity modulation. An acousto-optic modulator (AOM) is added in
series with the EOM to enable the high-contrast intensity modulation required for
the free-fall. The laser beam can be switched off by simultaneously controlling the
EOM and the AOM with function generators.

oscillation frequency3. We note that the trapping objective used in this
chapter is an Olympus 100x (NA = 0.85, focal length f = 1.8 mm) [42,
pp. 127f.].

After introducing the experimental setup necessary to perform
feedback cooling of the particle’s COM motion, we present some results.
We place the discharged particle in well 1, we cool its COM motion,
and we record, at 10−4 mbar, a 1 s-long time trace of the cooled particle
position along z. From this calibrated time trace4, we calculate the
PSD Szz and plot it in Fig 6.3 in orange. For comparison, we plot
in green the PSD of the uncooled particle at 1.5 mbar. To calculate
the COM temperature, i.e., the total energy Etot of the particle, we

3The acousto-optic modulator (AOM) and the function generators (func. gen.)
in Fig. 6.2 are not used for feedback cooling but will be utilized for the free-fall
experiments described in the next section.

4The calibration is done following the procedure explained in Sec. 2.2.4.
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Figure 6.3: Power spectral density Szz calculated from the time traces of the
positions along z. The green PSD corresponds to an uncooled particle (1.5 mbar).
The orange PSD corresponds to the particle cooled to 1 K (10−4 mbar). The
particle’s COM temperature is proportional to the area under the peak.

refer to Sec. 2.2.2, where we found for a harmonic oscillator, that
〈Epot〉 = 1

2
kBT = 〈Ekin〉. Thus, the total energy is given by 〈Etot〉 =

〈Epot〉+ 〈Ekin〉 = kBT = mΩ2
0 〈q(t)2〉. We have seen that 〈q(t)2〉 is the

integrated area below the PSD. Accordingly, we calculate for this cooled
particle a COM temperature of 1 K. We note that the peak of the
cooled oscillator in Fig. 6.3 has a non-Lorentzian shape. This is due to
frequency fluctuations that become significant whenever the oscillator is
cooled close to the membrane. Indeed, at high pressures, the linewidth
is dominated by the gas damping, whereas at low pressures, under
feedback cooling, frequency fluctuations that may originate from the
instability of the membrane, become apparent. During the 1 s-long
acquisition, the z frequency of the particle fluctuates and the resulting
peak in the PSD is an average over these frequency fluctuations.

97



6. Towards sensing of surface forces

6.3 Free-fall measurement without
surface

Besides a low initial COM temperature, another key ingredient to
controllably let a particle fall is a fast and high-contrast switching of the
trapping beam. We want no transient regime to influence the particle
motion, nor a residual trap induced by remaining intensity in the focus.
To achieve such a high-contrast intensity ratio, we introduce an AOM
(see Fig. 6.2) after the EOM as an additional intensity modulator.
Similarly to Ref. [42, pp. 124f.], the EOM extinction ratio is 50:1 and
the AOM on:off ratio reaches 30000:1. If both modulators are switched
at the same time, we can obtain a power extinction ratio of 1.5× 106:1.
The modulators are controlled by two functions generators as depicted
in Fig. 6.2. Additionally, we need a fast switching time of the beam for
the particle to suddenly fall, and not to slowly equilibrate with transient
optical potentials. Therefore, we need a switching time much faster
than the oscillation period of the particle (≈ 1 µs). Experimentally, we
measure a switching time below 100 ns [41].

The procedure for a free-fall measurement is sketched in Fig. 6.4(a).
We first trap, discharge and cool the particle (both trap and feedback
(FB) are on). At t = 0, we switch the trap and the feedback off, using
the EOM and the AOM. The particle is freely falling for a duration
τ , after which the trap is switched back on, but the feedback remains
deactivated. The entire measurement cycle including preparation and
readout lasts typically 90 ms. The neutrality of the particle during the
measurement is crucial to avoid electrostatic forces to influence the
particle displacement. We want the only force acting on the particle to
be the force under investigation, which is gravity in this experiment,
and a Casimir-type force in the future. To ensure the particle remains
uncharged throughout the experiment, we have found it necessary
to physically shield the pressure gauge with an aluminium sheet, as
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Figure 6.4: (a) Control signals for trap and feedback during a free-fall measurement.
The system is initialized by feedback-cooling the motion of the particle levitated in
the optical trap. Both the feedback and the trap are switched off at t = 0 for a
duration τ (120 µs in this example). At t = τ , the trap is switched back on but
the feedback remains deactivated. (b) Time trace of the particle position along x
around the fall. For t < 0, the COM motion is cooled to 10 K. After a fall duration
of τ = 120 µs, the particle is caught again by the trap and oscillates with larger
amplitudes than before the fall due to the displacement during the free evolution.
(c) Time trace of the particle position along y around the fall. Similarly to (b), the
particle is cooled to 3 K before the fall and oscillates with larger amplitude after
the free-fall. The ratio between after/before oscillation amplitude is larger than for
x, due to gravity acting in the y direction during the free-fall.

charged particles are emitted when the hot cathode sensor is on (see
Sec. 2.1.3).

99



6. Towards sensing of surface forces

We record 90 ms-long times traces of the particle position along x
and y for a fall duration of τ = 120 µs and show them in Fig. 6.4(b)
and (c), respectively. In Fig. 6.4(b), before t = 0, the particle is cooled
to 10 K and we therefore observe small oscillation amplitudes of less
than 10 nm. At t = 0, the trapping laser is switched off, so we have
no signal, i.e., no scattering from the particle, during the fall duration
τ . At t = τ , the trap is switched back on, and the particle is trapped
again. We observe now a higher oscillation amplitude than before the
fall.

The time trace of the positions along y in Fig. 6.4(c) is very similar,
with the particle initially cooled at 3 K. We observe that the difference
in amplitude before and after the fall is bigger than for x. We attribute
this finding to the fact that gravity acts along the y axis and therefore
has displaced the particle during the fall in the y direction.

In order to verify that the effect we observed is due to the gravi-
tational force, we investigate the evolution of the COM energy of the
particle as a function of the fall duration. If we calculate the total
energy of a particle, with initial position and velocity (qini, q̇ini), after a
free evolution without external forces, we obtain

〈Eq
tot〉 (τ) =

〈
Eq

pot

〉
+ 〈Eq

kin〉+
〈
Eq

pot,acquired

〉
〈Eq

tot〉 (τ) =
1

2
mΩ2

0

〈
q2

ini

〉
+

1

2
m
〈
q̇2

ini

〉
+

1

2
mΩ2

0

〈
(q̇iniτ)2

〉 (6.3)

with
〈
Eq

pot,acquired

〉
the potential energy acquired during the free evolu-

tion. The velocity stays invariant during a free evolution, so no kinetic
energy was acquired. The displacement of the particle due to its initial
velocity is q̇iniτ , hence the expression for

〈
Eq

pot,acquired

〉
. For a harmonic

oscillator, we deduce for the total energy after the fall 〈Eq
tot〉 (τ) [42,
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p. 138]

〈Eq
tot〉 (τ) = kBT +

1

2
mΩ2
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2
〈
q̇2

ini

〉
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tot〉 (τ) = kBT

(
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0

2
τ 2

)
.

(6.4)

We see that the total energy of the particle scales quadratically with
the fall duration when no force is acting on the particle during the free
evolution.

Now, if we assume that there is a static force F acting on the
particle along the axis q (q ∈ {x, y, z}), we obtain for the total energy
of the particle

〈Eq
tot〉 (τ) = kBT

(
1 +

Ω2
0

2
τ 2

)
+

1

2m
F 2τ 2

(
1 +

1

4
Ω2

0τ
2

)
. (6.5)

The presence of a static force results in a τ 4 scaling of the energy
for long fall durations. The scaling of the particle energy with the
fall duration can therefore indicate the presence or the absence of a
force acting on the particle. We are aware that, as the Casimir force is
distance dependent, the magnitude of the force will increase over time
during the free fall. In this thesis, we consider, as a first approximation,
the case where the force is minimal, i.e., the largest separation between
the particle and the surface, in order to check the feasibility of our
experiment.

To experimentally measure the particle energy, we record time
traces of the positions, similar to those shown in Fig. 6.4(b,c). We
calculate the PSD from the time trace for t > τ and the variance of
the position by integrating the PSD, as described by Eq. (2.15). We
deduce the energy of the particle (expressed as a temperature) from
the expression of the potential energy.
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Figure 6.5: COM temperature as a function of fall durations τ . (a) For the x-mode,
the evolution of the COM temperature (blue data) scales with τ2 as shown by the
fit (dashed line). The quadratic component is so small that it is not displayed
on the graph (Initial COM temperature = 10 K). (b) For the y-mode, the COM
temperature scales with τ4 for large fall durations, as shown by the quartic fit
(solid black line), revealing the existence of a force (gravity) acting along y during
the free evolution of the particle (Initial COM temperature = 3 K). (c) Similarly
to x, the COM temperature of the z-mode scales with τ2 (dashed line), confirming
the absence of a force acting along z (the particle has been cooled to 22 mK prior
to free-fall). As a dotted line, we show the evolution of the total energy in the
z-mode if Casimir forces would act on the particle. The amplitude assumed for the
Casimir forces is 70 aN. We conclude that our sensitivity along z is good enough
to detect such a force. The statistical error is smaller than the markers for all
the data points. However, we note that a systematic error is observed, especially
for the z axis. We assume it originates from drifts of the system over time but a
further investigation would be required to confirm this hypothesis.
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In order to account for the randomness of the initial conditions and
get statistical results, we repeat the measurement cycle sketched in
Fig. 6.4(a) a thousand times for each fall duration. We plot in Fig. 6.5
the results of these measurements, for fall durations from 40 µs to
120 µs, for x, y and z. These measurements were carried at a pressure
of 2× 10−6 mbar with an uncharged particle.

As we have theoretically derived the expected energy scaling with
the fall duration, we fit the data with the sum of a quadratic (dashed
black line) and a quartic (solid black line) function. For x and z
(a,c), we observe a dependence of the energy with τ 2, showing that no
detectable force is acting on the particle along these axes. However, the
evolution of the energy along the y axis (b) shows a τ 4 scaling for fall
durations τ > 70 µs. This is the signature of the presence of a static
force, acting along the y axis, which corresponds to gravity. From the
fitting coefficient, we calculate the magnitude of this force to be 4.3 aN,
yielding a gravitational acceleration of 1.5 N/kg. We can attribute the
discrepancy of the result to imprecisions on the calibration of the time
traces [49] and to a possible overestimation of the particle mass. The
particle mass is indeed omnipresent in all the calculations leading to
the value of the measured force. Therefore a small error on the mass
can have a big impact on the deduced force value.

6.4 Perspectives

We have shown our ability to detect a small static force such as gravity.
We plot in Fig. 6.5(c) as a dotted line the expected scaling of the energy
in the presence of a 70 aN static force (estimation of the Casimir force
in well 1), that would act on the particle along the optical axis z. We
can clearly detect such a force with the sensitivity of our measurement.
The challenge is now to perform these 1000 repetitions of the free-fall
close to the membrane (in well 1). Experimental difficulties arise from
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the required long-term stability of the system regarding drifts and
frequency noise. Indeed, reaching a pressure of ≈ 10−6 mbar starting
at ambient conditions requires several hours, during which vibrations or
drifts can affect the membrane. As the membrane creates the standing
wave, the particle is closely coupled to the membrane motion, becoming
much more sensitive to the environment than when being solely trapped
in a standard optical trap. So far, a complete cycle of 1000 free-falls
has not been successfully completed with the particle being in well 1.

In trying to identify the source of the instabilities, we analyzed
the frequency stability of the oscillator and we present the results
in the following. Indeed, the oscillation frequency is an indicator
of the trap fluctuations. Moreover, frequency fluctuations affect the
performance of the parametric feedback cooling. To characterize the
frequency stability, we use a well-known technique, the Allan variance,
also called two-sample variance. All the details of this method can
be found in Refs [42, 81]. The Allan variance helps to identify noise
types and to understand probable measurement limitations. The
variance is calculated as the expectation value of the square of the
difference between two consecutive values, following Eqs. (3.1) and
(3.2) from Ref. [42]. We show in Fig. 6.6 the Allan deviation (the
square root of the Allan variance) of the z-mode in the configuration
“particle in well 1”. On the horizontal axis, the integration time T
corresponds to how long we measure the oscillator frequency. The red
data points represent the frequency fluctuations of a particle in well 1
at 1× 10−1 mbar. We observe for short integration times a decrease
in frequency fluctuations the longer the measurement, which is an
averaging effect. The slope is T −1/2 as indicated by the dashed line
in Fig. 6.6 and characterizes white noise [81]. We find the optimum
measurement time to be ≈ 10 s. For longer integration time, the Allan
deviation increases again due to slow drifts in the system. The error
bars on the Allan deviation have been calculated according to Eq. (3.3)
of Ref. [42]. The black data points correspond to the particle in well 1
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Figure 6.6: Allan deviation of the oscillation frequency Ωz for a particle in well 1.
The red data is measured at 10−1 mbar. The black data is recorded at 10−4 mbar
with the feedback cooling activated. The optimum measurement time has drastically
decreased compared to high pressures (red). Drifts have a more significant impact.
The green data was measured in the same conditions as the black (pressure range
and feedback cooling), but a PID loop was additionally controlling the membrane
position, locked on Ωz. The long term drifts can be eliminated by using the PID
loop, therefore increasing the optimum measurement time. We note that the white
noise, scaling with T −1/2 (dashed line), is similar in the three configurations.

at a pressure of 2×10−4 mbar, with the feedback cooling activated. We
see that the optimum measurement time decreased drastically to below
1 s compared to high pressures, and that drifts become significant
earlier at low pressures. The white noise contribution is similar than
in the high pressure case. In order to reduce the drifts that could
be the reason for the instability at low pressures, we set up a PID
loop that corrects the membrane position along the optical axis z as a
function of the oscillation frequency Ωz. We plot in Fig. 6.6, as green
data points, the Allan deviation for similar conditions than for the
black data points but with the PID loop activated. We observe that
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the drifts are indeed reduced, and that the optimal measurement time
increased to 20 s. However, the correction for drifts was not enough to
make the free-fall measurements close to the interface possible. We still
need to investigate further what causes the instability of the system.
If the source cannot be found and eliminated, technical alternatives
are considered, such as an anti-reflection coated surface to replace
the membrane. We hope to reduce drastically the influence of the
membrane on the trapping potential and therefore efficiently decouple
the particle from the membrane vibrations. This however constitutes
a new approach to the positioning of the levitated particle close to a
surface, which does not involve a standing wave.
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Chapter 7

Outlook

Throughout this thesis, we have developed, characterized, and under-
stood a protocol that enables the precise positioning of an optically
levitated nanoparticle in close proximity to an interface. The configu-
ration implemented in this work can be utilized for studies involving
microscale effects. In Chap. 6, we have suggested to use the levitated
particle as a sensor for short-range forces, such as Casimir forces, and
we have demonstrated the feasibility of such a measurement with our
experimental setup. Besides, our system offers other applications and
we would like to mention in this last chapter three additional uses
of the proximity of a levitated particle to a surface. The first one
aims at integrating optically levitated objects into photonic circuits by
coupling the motion of this object to an electromagnetic field which is
guided in the photonic circuit. The second application turns towards
thermodynamic studies at the micro- and nanoscale [82], where we en-
vision to investigate the radiative heat transfer between a nanoparticle
and a surface [83]. Finally, the third study focuses on the measurement
of rotational friction in vacuum [84].
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7.1 Integrating optical traps on a chip

We have considered in this thesis a standard optical trapping setup
with a free space laser. Nevertheless, with the ongoing miniaturization
of technologies, we might want to consider also miniaturizing and
integrating optical traps into more complex and multitasking structures
such as integrated photonic circuits. Levitation has emerged as a
precious tool for the development of inertial sensors [85, 86, 87, 88].
The development of more sensitive and more stable inertial sensors
has exponentially increased during the last decades, especially for
navigation systems (smartphones, automobiles) [89]. Using levitated
sensors, the sensitivity is no longer limited by mechanical losses due to
clamping [90].

If we want to integrate optical levitation into chips, the challenge
is to replace the external trapping laser by a trapping field generated
in optical resonators on the chip. The intensity gradients necessary
for particle trapping, as we have seen in Chap. 2, can be realized
by coupling the levitated particle to a field confined in a resonator.
The self-induced back-action (SIBA) effect, where the particle motion
couples to the intra-resonator trapping field [91], has been used to
develop such traps. The most common optical resonators used for
on-chip trapping are plasmonic structures and photonic crystals [92, 93,
94, 95, 96]. Since these traps are relying on the optical near field (the
SIBA effect scales with the mode volume overlap between the particle
and the resonator), the particle needs to be in very close proximity
to the structure in order to interact maximally with the field in the
resonator. Therefore, in most configurations, we want the particle to
be trapped just above the structure. At these short separations, surface
forces will have a significant effect on the particle, as we have shown in
Chap. 6. Therefore, we think that the tool we developed can be used to
measure these surface forces due to the proximity of the structure, and
gain a deeper understanding of the forces competing in the trapping
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region. Realizing such on-chip optical traps has several advantages.
The input power in these trapping structures can be drastically reduced
compared to free-space trapping due the enhancement factor of the
resonators. Moreover, specifically engineered structures could allow
specific shaping of the trapping potential, offering more versatility than
the standard focus of a laser beam. Those improvements could bring
optical traps even closer to industrial applications.

7.2 Radiative heat transfer at the
microscale

The second application we suggest, using the configuration of a levitated
nanoparticle at subwavelength distance from an interface, is the study
of radiative heat transfer.

Levitated nanoparticles have an internal temperature, that can be
measured and controlled [63, 64]. We have developed the positioning
of a levitated particle close to a surface. If the particle and the
surface have different temperatures, there will be a heat exchange
between the two bodies. This heat transfer is characterized by the
thermal wavelength λthermal. With our particle placed at a submicron
distance from the surface, we are in the regime where the separation
between the two bodies is smaller than the thermal wavelength (in
our case, we estimate λthermal = ~c/(kBT ) ≈ 2 µm assuming a particle
internal temperature around 1000 K [42, 97]). In this regime, the
radiative heat transfer is supported by evanescent fields, which do
not contribute to the far-field radiation. Therefore, in the near-field
regime, heat transfer rates can be enhanced [97, 98, 99, 100, 101, 102].
Levitated nanoparticles seem a very suitable system for the study of
thermodynamics at the microscopic scale [82, 97, 103]. Indeed, they
offer the advantage of a simple sphere/plane geometry (perfect sphere
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Figure 7.1: Experimental setup suited to perform a relaxation measurement,
inspired by Ref [63]. The optical trapping setup presented in previous chapters
remains unchanged. We add a CO2 laser (λCO2

= 10.6 µm) weakly focused on the
particle. This additional laser does not affect the trap [42, p. 98] but increases
the internal temperature of the nanoparticle due to high absorption of silica at a
wavelength of 10.6 µm [52]. An AOM, controlled by a function generator, is used
to switch on and off the heating beam.

compared to scanning probes) and of a very good isolation from the
environment (no clamping to external structures, that would introduce
an additional heat transfer channel). Studying thermal exchange in
the near-field regime opens up routes for several applications such as
thermophotovoltaics or heat-assisted magnetic recording [104, 105, 106,
107, 108, 109, 110, 111].

In the following, we explain a measurement principle that would
allow us to measure the heat transfer between the levitated particle
and the SiN membrane. Based on the theory developed in Refs. [83,
102], we suggest to measure the time the internal temperature of the
particle needs to equilibrate back to the gas temperature after being
heated for a short time. This time is called the thermal relaxation time
of the levitated particle. The thermal relaxation time is expected to
vary periodically with the separation between the two objects [83]. The
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goal is therefore to measure the dependence of the thermal relaxation
time as a function of the particle-to-surface distance, as calculated
in Fig. 2 of Ref. [83]. To this end, we would perform an experiment
similar to the one from Ref. [63] where the internal temperature of the
particle is increased by weakly focusing a CO2 laser on the particle for
a short time. We then measure the time it needs to equilibrate back
to the bath temperature (see Fig. 5.2 in Ref. [42]).

Figure 7.1 shows the experimental setup for such a measurement. A
CO2 laser is used to heat the particle because silica has a high absorp-
tion at this laser wavelength (λCO2 = 10.6 µm) [52]. The rest of the
setup is identical to the one used in this thesis. For the measurement,
the particle is placed in a specific well (following the protocol described
in Chap. 3) and feedback cooled to a few K. At t = 0, the CO2 laser is
switched on for 1 s using the AOM as an amplitude modulator, similarly
to Chap. 6. The CO2 laser pulse heats the internal temperature of
the particle, due to the strong absorptivity of silica at this wavelength.
The particle’s internal temperature can be directly monitored via the
oscillation frequency in the trap, as the material properties are temper-
ature dependent [63]. Therefore, by recording the time evolution of the
particle’s oscillation, we can deduce the time evolution of the internal
temperature of the particle. We can therefore measure the internal
temperature cooling rate from the exponential decay of the oscillation
frequency, after the CO2 laser has been switched off. Repeating this
measurement for different particle-to-surface distances would enable to
provide an experimental evolution of the radiative heat transfer as a
function of distance. Nevertheless, we will undoubtedly face technical
challenges. The first one is that we have to ensure that the CO2 laser
does not heat the surface because we need a temperature gradient
between the particle and the surface. Therefore, we propose to turn
towards a ZnSe surface [112], due to a very low absorption of ZnSe
around 10 µm (and also at 1064 nm). Secondly, we need to ensure that
the cooling rate due to the surface is significant compared to the other
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dissipation channels. Indeed, at pressures higher than 10−3mbar, the
convective dissipation of energy via the gas [46] dominates over black
body radiation (see Fig 5.7(a) in Ref. [42]). As we want to observe the
influence of the surface on the black body radiation of the particle, we
need to operate below 10−3 mbar.

7.3 Vacuum friction

If we consider two neutral objects, one being translational invariant like
a plane, that move relative and parallel to each other, they are subject
to a dissipative force, even though they are not in contact. This force
is called vacuum friction [57, 84, 113, 114]. This non-conservative force
originates from thermal fluctuations of the polarization. In dissipative
materials (where the imaginary part of the dielectric constant is non-
zero), the fluctuation-dissipation theorem leads to a fluctuation of the
polarization in the material. If the two objects are in relative motion,
then the image charges induced on the opposite surface will lag behind
and tend to pull back the fluctuating charges. To be able to observe
such a phenomenon, we need two objects in parallel relative motion,
very close to each other, because the friction force scales strongly
with the separation distance [113]. Let’s consider the configuration we
have implemented in this thesis, i.e., a levitated particle at submicron
distance from a surface.

We see two opportunities in using this system for the purpose of
observing vacuum friction. The first one relies on the motion of the
trapped particle transverse to the optical axis (i.e., along x and y). The
particle should experience the vacuum friction force when oscillating
very close to the surface. We speculate that we should be able to
observe the additional damping due to this friction force by measuring
the width of the oscillation peaks for x and y in the PSD, since this
width is related to the damping, as explained in Sec. 2.2.2. We expect
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7.3. Vacuum friction

to witness a broader peak when the particle is close to the surface
compared to when it is levitating in free space. However, non-linearities
and frequency fluctuations might be experimental hurdles.

The second configuration we propose is a rotating particle in close
proximity to a surface. Indeed, we have recently demonstrated that
levitated nanoparticles in vacuum can be rotated, even up to 1 GHz
rotation frequency [115, 116, 117]. The rotation of the nanoparticle is
triggered by shining a circularly polarized light onto it, which can be
experimentally realized by adding a quarter-wave plate in the beam
path before the trapping objective. Due to its rotation, the particle
should also experience vacuum friction, and the steady state angular
velocity should decrease when the particle is close to a surface compared
to when it is in free space. Therefore, by combining both the abilities
to bring the particle very close to a surface and to rotate this particle,
we could potentially offer a configuration where the investigation of
vacuum friction can be undertaken.
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(x, y, z) Cartesian coordinates

(ρ, θ, φ) spherical coordinates

α = α′ + iα′′ particle polarisability

αeff effective particle polarizability

ε(ω) complex relative permittivity of the particle

ε0 vacuum dielectric constant

εm(ω) relative permittivity of the surrounding medium

η(z) Gouy phase

γ damping rate

λ wavelength of light in vacuum

T time length of a time trace of the particle position

V particle volume

k trap stiffness

µ0 vacuum permeability

ω optical angular frequency

ωcap frequency of the alternating voltage applied to the capacitor
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Ωq mechanical angular frequency along direction i

τ fall duration

E electric field

p dipole moment

q particle position

c speed of light

ccalib calibration factor

dfoc focus-to-surface distance

dpart particle-to-surface distance

E energy

f focal length

I intensity

k = 2π/λ wavenumber in vacuum

kB Boltzmann constant

m nominal particle mass

P power

Q charge of the particle

r particle radius

r
(p,s)
1,2 reflection Fresnel coefficient for the interface between two semi-

infinite media 1 and 2
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r
(p,s)
slab reflection Fresnel coefficients for a dielectric slab with finite

thickness

Sqq double-sided power spectral density of variable q in angular
frequency

T temperature

tmbn membrane thickness

U optical potential

V voltage

wx,y,z beam waist along the direction x, y or z

z0 Rayleigh length

117





List of Figures

2.1 Schematic of the basic optical trapping setup with the
charge control system . . . . . . . . . . . . . . . . . . . . . 9

2.2 Time trace of the particle position and power spectral density 11
2.3 Discharging the particle . . . . . . . . . . . . . . . . . . . 14
2.4 Focusing a Gaussian beam, schematic and intensity in the

focal plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Optical potential of a strongly focused beam . . . . . . . . 20
2.6 Quadrant photodetector . . . . . . . . . . . . . . . . . . . 27
2.7 Calibration of the particle signal . . . . . . . . . . . . . . . 29

3.1 Experimental setup with a membrane behind the particle . 33
3.2 Relevant geometrical parameters (not to scale) in the con-

figuration with the membrane of thickness tmbn . . . . . . 34
3.3 Voltage recorded on the photodetector PD1 as the mem-

brane position is swept across the focus towards the objective 36
3.4 PSD of the particle position along z as a function of the dis-

tance focus-to-surface dfoc and corresponding reconstructed
optical potentials . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Intensity distribution for dfoc = 40 µm . . . . . . . . . . . . 42
3.6 Calculated optical potential for dfoc ≈ 40 µm . . . . . . . . 44
3.7 Simulation of the particle oscillations along z for a mem-

brane approach from 41 µm to 39 µm . . . . . . . . . . . . 47
3.8 Measured power spectral density of the particle motion for

decreasing focus-to-surface distances dfoc, recorded on the
z detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

119



List of Figures

3.9 Time trace of the particle position along the z axis around
dfoc = 1.924 µm . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Measured power spectral density of the particle motion for
decreasing focus-to-surface distances dfoc, recorded on the
z detector, for a different measurement than in Fig. 3.8 . . 52

3.11 Reconstructed optical potential along the z axis for dfoc =
390 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Calculated intensity distribution for dfoc = 500 nm and
corresponding calculated optical potential landscape . . . . 56

3.13 Evolution of the calculated potential landscape around the
focal region as we vary dfoc . . . . . . . . . . . . . . . . . . 57

3.14 Calculated oscillation frequency Ωz as a function of focus-
to-surface distance dfoc for the first six wells . . . . . . . . 58

3.15 Sketches of the optical potential along the optical axis as
the membrane is moved towards the focal plane, illustrating
the transition of the particle from well 4 to well 3. . . . . . 60

4.1 Experimental setup with the addition of a green laser for
the interferometric measurement of dpart . . . . . . . . . . 67

4.2 Measured back-focal-plane image for dfoc ≈ 4.2 µm and
geometry of the interferometric measurements . . . . . . . 68

4.3 Calculated back-focal-plane intensity distribution, using the
parameters from Tab. 4.1, dpart = 3 µm and tmbn = 500 nm. 71

4.4 Back-focal-plane imaging of a nanoparticle levitated in front
of a SiN membrane . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Values of dpart extracted from the fit of the measured back-
focal-plane images as a function of dfoc . . . . . . . . . . . 76

4.6 Effect of the Gouy phase on the optical potential . . . . . 78

5.1 Experimental setup allowing for a shift of the potential
wells along the optical axis . . . . . . . . . . . . . . . . . . 83

120



List of Figures

5.2 Calculated optical potential along z for dfoc = 0 as a function
of φCB and D . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Distance dpart extracted from the analysis of the measured
back-focal-plane images as a function of the mirror displace-
ment and the phase φCB . . . . . . . . . . . . . . . . . . . 87

6.1 Principle of a force measurement with a free-falling particle [41] 94
6.2 Experimental setup for the feedback cooling scheme and

free-fall measurements . . . . . . . . . . . . . . . . . . . . 96
6.3 Power spectral density Szz with and without feeback cooling 97
6.4 Free-fall measurement cycle and time traces for x and y

before and after the free-fall . . . . . . . . . . . . . . . . . 99
6.5 COM temperature as a function of fall durations τ . . . . 102
6.6 Allan deviation of the oscillation frequency Ωz for a particle

in well 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Experimental setup to study radiative heat transfer . . . . 110

121





References

[1] G. E. Moore. “Cramming more components onto integrated
circuits”. Proc. IEEE 86 (1), p. 82, 1998.

[2] C. Quigg. “Elementary Particles and Forces”. Sci. Amer. 252 (4),
p. 84, 1985.

[3] D. J. Griffiths. Introduction to Elementary Particles. Wiley-
VCH, 2004.

[4] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko.
“The Casimir force between real materials: Experiment and
theory”. Rev. Mod. Phys. 81 (4), p. 1827, 2009.

[5] H. Casimir. “On the attraction between two perfectly conducting
plates”. Proc. K. Ned. Akad. 360, p. 793, 1948.

[6] J. Bárcenas, L. Reyes, and R. Esquivel-Sirvent. “Scaling of micro-
and nanodevices actuated by Casimir forces”. Appl. Phys. Lett.
87 (26), p. 263106, 2005.

[7] J. N. Ding, S. Z. Wen, and Y. G. Meng. “Theoretical study of
the sticking of a membrane strip in MEMS under the Casimir
effect”. J. Micromech. Microeng. 11 (3), p. 202, 2001.

[8] F. M. Serry, D. Walliser, and G. J. Maclay. “The role of the
Casimir effect in the static deflection and stiction of membrane
strips in microelectromechanical systems (MEMS)”. J. Appl.
Phys. 84 (5), p. 2501, 1998.

[9] A. Almasi, P. Brax, D. Iannuzzi, and R. I. Sedmik. “Force sensor
for chameleon and Casimir force experiments with parallel-plate
configuration”. Phys. Rev. D 91 (10), p. 102002, 2015.

123

http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1109/JPROC.1998.658762
http://dx.doi.org/10.1038/scientificamerican0485-84
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/citeulike-article-id:8810715
http://dx.doi.org/citeulike-article-id:8810715
http://dx.doi.org/10.1063/1.2152835
http://dx.doi.org/10.1063/1.2152835
http://dx.doi.org/10.1088/0960-1317/11/3/307
http://dx.doi.org/10.1088/0960-1317/11/3/307
http://dx.doi.org/10.1088/0960-1317/11/3/307
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/10.1103/PhysRevD.91.102002
http://dx.doi.org/10.1103/PhysRevD.91.102002
http://dx.doi.org/10.1103/PhysRevD.91.102002


References

[10] U. Mohideen and A. Roy. “Precision Measurement of the Casimir
Force from 0.1 to 0.9 um”. Phys. Rev. Lett. 81 (21), p. 4549,
1998.

[11] J. L. Garrett, D. A. T. Somers, and J. N. Munday. “Measurement
of the Casimir Force between Two Spheres”. Phys. Rev. Lett.
120 (4), p. 040401, 2018.

[12] B. W. Harris, F. Chen, and U. Mohideen. “Precision measure-
ment of the Casimir force using gold surfaces”. Phys. Rev. A
62 (5), p. 052109, 2000.

[13] R. S. Decca, D. López, E. Fischbach, and D. E. Krause. “Mea-
surement of the Casimir Force between Dissimilar Metals”. Phys.
Rev. Lett. 91 (5), p. 3, 2003.

[14] Y. Bao, R. Guérout, J. Lussange, A. Lambrecht, R. A. Cirelli, F.
Klemens, W. M. Mansfield, C. S. Pai, and H. B. Chan. “Casimir
force on a surface with shallow nanoscale corrugations: Geome-
try and finite conductivity effects”. Phys. Rev. Lett. 105 (25),
p. 250402, 2010.

[15] A. O. Sushkov, W. J. Kim, D. A. R. Dalvit, and S. K. Lamoreaux.
“Observation of the thermal Casimir force”. Nat. Phys. 7 (3),
p. 230, 2011.

[16] A. Landragin, J. Y. Courtois, G. Labeyrie, N. Vansteenkiste,
C. I. Westbrook, and A. Aspect. “Measurement of the van der
Waals Force in an Atomic Mirror”. Phys. Rev. Lett. 77 (8),
p. 1464, 1996.

[17] J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S.
Stringari, and E. A. Cornell. “Measurement of the temperature
dependence of the casimir-polder force”. Phys. Rev. Lett. 98 (6),
p. 063201, 2007.

124

http://dx.doi.org/10.1103/PhysRevLett.81.4549
http://dx.doi.org/10.1103/PhysRevLett.81.4549
http://dx.doi.org/10.1103/PhysRevLett.120.040401
http://dx.doi.org/10.1103/PhysRevLett.120.040401
http://dx.doi.org/10.1103/PhysRevA.62.052109
http://dx.doi.org/10.1103/PhysRevA.62.052109
http://dx.doi.org/10.1103/PhysRevLett.91.050402
http://dx.doi.org/10.1103/PhysRevLett.91.050402
http://dx.doi.org/10.1103/PhysRevLett.105.250402
http://dx.doi.org/10.1103/PhysRevLett.105.250402
http://dx.doi.org/10.1103/PhysRevLett.105.250402
http://dx.doi.org/10.1038/nphys1909
http://dx.doi.org/10.1103/PhysRevLett.77.1464
http://dx.doi.org/10.1103/PhysRevLett.77.1464
http://dx.doi.org/10.1103/PhysRevLett.98.063201
http://dx.doi.org/10.1103/PhysRevLett.98.063201


References

[18] A. Anderson, S. Haroche, E. A. Hinds, W. Jhe, and D. Meschede.
“Measuring the van der Waals forces between a Rydberg atom
and a metallic surface”. Phys. Rev. A 37 (9), p. 3594, 1988.

[19] A. A. Geraci, S. B. Papp, and J. Kitching. “Short-Range Force
Detection Using Optically Cooled Levitated Microspheres”.
Phys. Rev. Lett. 105 (10), p. 101101, 2010.

[20] A. Ashkin. “Acceleration and Trapping of Particles by Radiation
Pressure”. Phys. Rev. Lett. 24 (4), p. 156, 1970.

[21] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu. “Obser-
vation of a single-beam gradient force optical trap for dielectric
particles”. Opt. Lett. 11 (5), p. 288, 1986.

[22] Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser. “Ul-
tracoherent nanomechanical resonators via soft clamping and
dissipation dilution”. Nat. Nanotechnol. 12 (8), p. 776, 2017.

[23] M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block.
“Stretching DNA with optical tweezers”. Biophys. J. 72 (3),
p. 1335, 1997.

[24] S. M. Block, L. S. B. Goldstein, and B. J. Schnapp. “Bead move-
ment by single kinesin molecules studied with optical tweezers”.
Nature 348 (6299), p. 348, 1990.

[25] A. Grant. “Ashkin, Mourou, and Strickland share 2018 Nobel
Prize in Physics”. Phys. Today 2018.

[26] A. Ashkin and J. M. Dziedzic. “Optical levitation in high vac-
uum”. Appl. Phys. Lett. 28 (6), p. 333, 1976.

[27] J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny. “Subkelvin
Parametric Feedback Cooling of a Laser-Trapped Nanoparticle”.
Phys. Rev. Lett. 109 (10), p. 103603, 2012.

125

http://dx.doi.org/10.1103/PhysRevA.37.3594
http://dx.doi.org/10.1103/PhysRevA.37.3594
http://dx.doi.org/10.1103/PhysRevLett.105.101101
http://dx.doi.org/10.1103/PhysRevLett.105.101101
http://dx.doi.org/10.1103/PhysRevLett.24.156
http://dx.doi.org/10.1103/PhysRevLett.24.156
http://dx.doi.org/10.1364/OL.11.000288
http://dx.doi.org/10.1364/OL.11.000288
http://dx.doi.org/10.1364/OL.11.000288
http://dx.doi.org/10.1038/nnano.2017.101
http://dx.doi.org/10.1038/nnano.2017.101
http://dx.doi.org/10.1038/nnano.2017.101
http://dx.doi.org/10.1016/S0006-3495(97)78780-0
http://dx.doi.org/10.1038/348348a0
http://dx.doi.org/10.1038/348348a0
http://dx.doi.org/10.1063/PT.6.1.20181002a
http://dx.doi.org/10.1063/PT.6.1.20181002a
http://dx.doi.org/10.1063/1.88748
http://dx.doi.org/10.1063/1.88748
http://dx.doi.org/10.1103/PhysRevLett.109.103603
http://dx.doi.org/10.1103/PhysRevLett.109.103603


References

[28] V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and
L. Novotny. “Direct Measurement of Photon Recoil from a
Levitated Nanoparticle”. Phys. Rev. Lett. 116 (24), p. 243601,
2016.

[29] A. Pontin, P. F. Barker, and N. P. Bullier. “Millikelvin cooling
of the center-of-mass motion of a levitated nanoparticle”. In:
Optical Trapping and Optical Micromanipulation XIV. Ed. by
K. Dholakia and G. C. Spalding. SPIE, 2017, p. 56.

[30] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt. “Cavity
optomechanics”. Rev. Mod. Phys. 86 (4), p. 1391, 2014.

[31] Z.-Q. Yin, A. Geraci, and T. Li. “Optomechanics of levitated
dielectric particles”. Int. J. Mod. Phys. B 27 (26), p. 1330018,
2013.

[32] M. Armano and et al. “Sub-Femto-g Free Fall for Space-Based
Gravitational Wave Observatories: LISA Pathfinder Results”.
Phys. Rev. Lett. 116 (23), p. 231101, 2016.

[33] D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid,
and H. Ulbricht. “Force sensing with an optically levitated
charged nanoparticle”. Appl. Phys. Lett. 111 (13), p. 133111,
2017.

[34] F. Monteiro, S. Ghosh, A. G. Fine, and D. C. Moore. “Optical
levitation of 10-ng spheres with nano-g acceleration sensitivity”.
Phys. Rev. A 96 (6), p. 063841, 2017.

[35] A. Arvanitaki and A. A. Geraci. “Detecting High-Frequency
Gravitational Waves with Optically Levitated Sensors”. Phys.
Rev. Lett. 110 (7), p. 071105, 2013.

[36] G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci. “Zep-
tonewton force sensing with nanospheres in an optical lattice”.
Phys. Rev. A 93 (5), p. 053801, 2016.

126

http://dx.doi.org/10.1103/PhysRevLett.116.243601
http://dx.doi.org/10.1103/PhysRevLett.116.243601
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1142/S0217979213300181
http://dx.doi.org/10.1142/S0217979213300181
http://dx.doi.org/10.1103/PhysRevLett.116.231101
http://dx.doi.org/10.1103/PhysRevLett.116.231101
http://dx.doi.org/10.1063/1.4993555
http://dx.doi.org/10.1063/1.4993555
http://dx.doi.org/10.1103/PhysRevA.96.063841
http://dx.doi.org/10.1103/PhysRevA.96.063841
http://dx.doi.org/10.1103/PhysRevLett.110.071105
http://dx.doi.org/10.1103/PhysRevLett.110.071105
http://dx.doi.org/10.1103/PhysRevA.93.053801
http://dx.doi.org/10.1103/PhysRevA.93.053801


References

[37] A. Jonáš, P. Zemánek, and E.-L. Florin. “Single-beam trapping
in front of reflective surfaces”. Opt. Lett. 26 (19), p. 1466, 2001.

[38] R. S. Dutra, P. A. M. Neto, H. M. Nussenzveig, and H. Flyvbjerg.
“Theory of optical-tweezers forces near a plane interface”. Phys.
Rev. A 94 (5), p. 053848, 2016.

[39] Z. Xu and T. Li. “Detecting Casimir torque with an optically
levitated nanorod”. Phys. Rev. A 96 (3), p. 033843, 2017.

[40] G. Winstone, M. Rademacher, R. Bennett, S. Buhmann, and
H. Ulbricht. “Direct measurement of short-range forces with a
levitated nanoparticle”. arXiv 1712.01426 2017.

[41] E. Hebestreit, M. Frimmer, R. Reimann, and L. Novotny. “Sens-
ing Static Forces with Free-Falling Nanoparticles”. Phys. Rev.
Lett. 121 (6), p. 063602, 2018.

[42] E. Hebestreit. “Thermal Properties of Levitated Nanoparticles”.
PhD thesis. ETH Zurich, 2017.

[43] J. Gieseler. “Dynamics of Optically Levitated Nanoparticles in
High Vacuum”. PhD thesis. ICFO Barcelona, 2014.

[44] V. Jain. “Levitated Optomechanics at the Photon Recoil Limit”.
PhD thesis. ETH Zurich, 2017.

[45] L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and
L. Novotny. “Direct measurement of Kramers turnover with
a levitated nanoparticle”. Nat. Nanotechnol. 12 (12), p. 1130,
2017.

[46] D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye,
O. Painter, H. J. Kimble, and P. Zoller. “Cavity opto-mechanics
using an optically levitated nanosphere”. PNAS 107 (3), p. 1005,
2010.

127

http://dx.doi.org/10.1364/OL.26.001466
http://dx.doi.org/10.1364/OL.26.001466
http://dx.doi.org/10.1103/PhysRevA.94.053848
http://dx.doi.org/10.1103/PhysRevA.96.033843
http://dx.doi.org/10.1103/PhysRevA.96.033843
http://dx.doi.org/10.1038/nnano.2017.198
http://dx.doi.org/10.1038/nnano.2017.198
http://dx.doi.org/10.1103/PhysRevLett.121.063602
http://dx.doi.org/10.1103/PhysRevLett.121.063602
http://dx.doi.org/10.1038/NNANO.2017.198
http://dx.doi.org/10.1038/NNANO.2017.198
http://dx.doi.org/10.1073/pnas.0912969107
http://dx.doi.org/10.1073/pnas.0912969107


References

[47] N. Kiesel, F. Blaser, U. Delic, D. Grass, R. Kaltenbaek, and M.
Aspelmeyer. “Cavity cooling of an optically levitated submicron
particle”. PNAS 110 (35), p. 14180, 2013.

[48] T. Li, S. Kheifets, and M. G. Raizen. “Millikelvin cooling of
an optically trapped microsphere in vacuum”. Nat. Phys. 7 (7),
p. 527, 2011.

[49] E. Hebestreit, M. Frimmer, R. Reimann, C. Dellago, F. Ricci,
and L. Novotny. “Calibration and energy measurement of opti-
cally levitated nanoparticle sensors”. Rev. Sci. Instrum. 89 (3)
2018.

[50] M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas.
“Dynamics of noise-induced heating in atom traps”. Phys. Rev.
A 58 (5), p. 3914, 1998.

[51] M. Khudaverdyan. “A controlled one and two atom-cavity sys-
tem”. PhD thesis. Rheinische Friedrich-Wilhelms-Universitat
Bonn, 2009.

[52] R. Kitamura, L. Pilon, and M. Jonasz. “Optical constants of
silica glass from extreme ultraviolet to far infrared at near room
temperature”. Appl. Opt. 46 (33), p. 8118, 2007.

[53] Thyracont Vacuum Instruments. url: https://thyracont-
vacuum.com/products/smartline- vacuum- transducers/
vsh-smartline-vacuum-transducer/vsh8xdl-smartline-
vacuum-transducer-with-lcd-display/.

[54] T. Sugimoto. Fine Particles: Synthesis, Characterization, and
Mechanisms of Growth. Surfactant Science. Taylor & Francis,
2000.

[55] M. Brownnutt, M. Kumph, P. Rabl, and R. Blatt. “Ion-trap
measurements of electric-field noise near surfaces”. Rev. Mod.
Phys. 87 (4), p. 1419, 2015.

128

http://dx.doi.org/10.1073/pnas.1309167110
http://dx.doi.org/10.1073/pnas.1309167110
http://dx.doi.org/10.1038/nphys1952
http://dx.doi.org/10.1038/nphys1952
http://dx.doi.org/10.1063/1.5017119
http://dx.doi.org/10.1063/1.5017119
http://dx.doi.org/10.1103/PhysRevA.58.3914
http://dx.doi.org/10.1364/AO.46.008118
http://dx.doi.org/10.1364/AO.46.008118
http://dx.doi.org/10.1364/AO.46.008118
https://thyracont-vacuum.com/products/smartline-vacuum-transducers/vsh-smartline-vacuum-transducer/vsh8xdl-smartline-vacuum-transducer-with-lcd-display/
https://thyracont-vacuum.com/products/smartline-vacuum-transducers/vsh-smartline-vacuum-transducer/vsh8xdl-smartline-vacuum-transducer-with-lcd-display/
https://thyracont-vacuum.com/products/smartline-vacuum-transducers/vsh-smartline-vacuum-transducer/vsh8xdl-smartline-vacuum-transducer-with-lcd-display/
https://thyracont-vacuum.com/products/smartline-vacuum-transducers/vsh-smartline-vacuum-transducer/vsh8xdl-smartline-vacuum-transducer-with-lcd-display/
https://thyracont-vacuum.com/products/smartline-vacuum-transducers/vsh-smartline-vacuum-transducer/vsh8xdl-smartline-vacuum-transducer-with-lcd-display/
https://books.google.ch/books?id=lurWPtFnTRsC
https://books.google.ch/books?id=lurWPtFnTRsC
http://dx.doi.org/10.1103/RevModPhys.87.1419
http://dx.doi.org/10.1103/RevModPhys.87.1419


References

[56] M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit,
and L. Novotny. “Controlling the net charge on a nanoparticle
optically levitated in vacuum”. Phys. Rev. A 95 (6), p. 061801,
2017.

[57] L. Novotny and B. Hecht. Principles of Nano-Optics. 2nd ed.
Cambridge University Press, 2006.

[58] C. Bohren and D. Huffman. Absorption and Scattering of Light
by Small Particles. Wiley-VCH Verlag GmbH, 1998.

[59] H. B. Callen and T. A. Welton. “Irreversibility and generalized
noise”. Phys. Rev. 83 (1), p. 34, 1951.

[60] C. Langevin and D. Huffman. Sur la theorie du mouvement
brownien. Vol. 146. 1908.

[61] F. Marquardt. Quantum-optical phenomena in nanophysics.
Fluctuation spectra. 2010. url: https://www.video.uni-
erlangen.de/clip/id/946.html.

[62] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R. J. Schoelkopf. “Introduction to quantum noise, measurement,
and amplification”. Rev. Mod. Phys. 82, p. 1155, 2010.

[63] E. Hebestreit, R. Reimann, M. Frimmer, and L. Novotny. “Mea-
suring the internal temperature of a levitated nanoparticle in
high vacuum”. Phys. Rev. A 97 (4), p. 43803, 2018.

[64] J. Millen, T. Deesuwan, P. Barker, and J. Anders. “Nanoscale
temperature measurements using non-equilibrium Brownian
dynamics of a levitated nanosphere”. Nat. Nanotechnol. 9 (6),
p. 425, 2014.

[65] C. Tischer, S. Altmann, S. Fišinger, J. K. Hörber, E. H. Stelzer,
and E. L. Florin. “Three-dimensional thermal noise imaging”.
Appl. Phys. Lett. 79 (23), p. 3878, 2001.

129

http://dx.doi.org/10.1103/PhysRevA.95.061801
http://dx.doi.org/10.1103/PhysRevA.95.061801
http://dx.doi.org/10.1103/PhysRev.83.34
http://dx.doi.org/10.1103/PhysRev.83.34
https://www.video.uni-erlangen.de/clip/id/946.html
https://www.video.uni-erlangen.de/clip/id/946.html
https://www.video.uni-erlangen.de/clip/id/946.html
https://www.video.uni-erlangen.de/clip/id/946.html
http://dx.doi.org/10.1103/PhysRevA.97.043803
http://dx.doi.org/10.1103/PhysRevA.97.043803
http://dx.doi.org/10.1103/PhysRevA.97.043803
http://dx.doi.org/10.1038/nnano.2014.82
http://dx.doi.org/10.1038/nnano.2014.82
http://dx.doi.org/10.1038/nnano.2014.82
http://dx.doi.org/10.1063/1.1423404


References

[66] R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M.
Frimmer, and L. Novotny. “Optical levitation and feedback
cooling of a nanoparticle at subwavelength distances from a
membrane”. Phys. Rev. A 98 (1), p. 013851, 2018.

[67] L. Landau and E. Lifshitz. “Chapter III - The Gibbs Distribu-
tion”. In: Statistical Physics (Third Edition). Ed. by L. Landau
and E. Lifshitz. Third Edition. Oxford: Butterworth-Heinemann,
1980, p. 79.

[68] L. Novotny. “Strong coupling, energy splitting, and level cross-
ings: A classical perspective”. Am. J. Phys 78 (11), p. 1199,
2010.

[69] E. Schwerin. “Ober Spannungen und Formanderungen kreisring-
formiger Mem branen.” Ztschr. f. angew. Math. und Mech. 6,
p. 482, 1929.

[70] C. Jin, A. Davoodabadi, J. Li, Y. Wang, and T. Singler. “Spher-
ical indentation of a freestanding circular membrane revisited:
Analytical solutions and experiments”. J. Mech. Phys. Solids
100 (August 2016), p. 85, 2017.

[71] B. J. Davis, M. Dogan, B. B. Goldberg, W. C. Karl, M. S. Ünlü,
and A. K. Swan. “4Pi spectral self-interference microscopy”. J.
Opt. Soc. Am. A 24 (12), p. 3762, 2007.

[72] L. Dai, I. Gregor, I. von der Hocht, T. Ruckstuhl, and J. En-
derlein. “Measuring large numerical apertures by imaging the
angular distribution of radiation of fluorescing molecules”. Opt.
Express 13 (23), p. 9409, 2005.

[73] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V.
Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, and M. D. Lukin.
“Coupling a Single Trapped Atom to a Nanoscale Optical Cavity”.
en. Science 340 (6137), p. 1202, 2013.

130

http://dx.doi.org/10.1103/PhysRevA.98.013851
http://dx.doi.org/10.1103/PhysRevA.98.013851
http://dx.doi.org/10.1103/PhysRevA.98.013851
http://dx.doi.org/10.1119/1.3471177
http://dx.doi.org/10.1119/1.3471177
http://dx.doi.org/10.1016/j.jmps.2017.01.005
http://dx.doi.org/10.1016/j.jmps.2017.01.005
http://dx.doi.org/10.1016/j.jmps.2017.01.005
http://dx.doi.org/10.1364/JOSAA.24.003762
http://dx.doi.org/10.1364/OPEX.13.009409
http://dx.doi.org/10.1364/OPEX.13.009409
http://dx.doi.org/10.1126/science.1237125


References

[74] L. Magrini, R. A. Norte, R. Riedinger, I. Marinković, D. Grass, U.
Delić, S. Gröblacher, S. Hong, and M. Aspelmeyer. “Nanopho-
tonic near-field levitated optomechanics”. arXiv 1804.06676
2018.

[75] S. Kuhr. “Deterministic Delivery of a Single Atom”. Science
293 (5528), p. 278, 2001.

[76] D. Schrader, S. Kuhr, W. Alt, M. Müller, V. Gomer, and D.
Meschede. “An optical conveyor belt for single neutral atoms”.
Appl. Phys. B: Lasers Opt. 73 (8), p. 819, 2001.

[77] T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez,
and K. Dholakia. “Optical sorting and detection of submicrome-
ter objects in a motional standing wave”. Phys. Rev. B 74 (3),
p. 035105, 2006.

[78] D. Grass, J. Fesel, S. G. Hofer, N. Kiesel, and M. Aspelmeyer.
“Optical trapping and control of nanoparticles inside evacuated
hollow core photonic crystal fibers”. Appl. Phys. Lett. 108 (22),
p. 221103, 2016.

[79] A. Lambrecht and S. Reynaud. “Casimir force between metallic
mirrors”. Eur. Phys. J. D 16 (1-3), p. 309, 2000.

[80] H. B.G. C. Polder and D. “The influence of ratardation on the
London-van der Waals forces”. Phys. Rev. 73, p. 360, 1948.

[81] D. Allan. “Statistics of atomic frequency standards”. Proc. IEEE
54 (2), p. 221, 1966.

[82] J. Gieseler and J. Millen. “Levitated Nanoparticles for Micro-
scopic Thermodynamics—A Review”. Entropy 20 (5), p. 326,
2018.

[83] M Tschikin, S.-A. Biehs, F. Rosa, and P. Ben-Abdallah. “Radia-
tive cooling of nanoparticles close to a surface”. Eur. Phys. J.
B 85 (7), p. 233, 2012.

131

http://dx.doi.org/10.1126/science.1062725
http://dx.doi.org/10.1007/s003400100722
http://dx.doi.org/10.1103/PhysRevB.74.035105
http://dx.doi.org/10.1103/PhysRevB.74.035105
http://dx.doi.org/10.1063/1.4953025
http://dx.doi.org/10.1063/1.4953025
http://dx.doi.org/10.1007/s100530170117
http://dx.doi.org/10.1007/s100530170117
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1109/PROC.1966.4634
http://dx.doi.org/10.3390/e20050326
http://dx.doi.org/10.3390/e20050326
http://dx.doi.org/10.1140/epjb/e2012-30219-7
http://dx.doi.org/10.1140/epjb/e2012-30219-7


References

[84] A. I. Volokitin and B. N. Persson. “Theory of friction: The
contribution from a fluctuating electromagnetic field”. J. Phys.
Condens. Matter 11 (2), p. 345, 1999.

[85] N. Barbour and G. Schmidt. “Inertial sensor technology trends”.
IEEE Sens. J. 1 (4), p. 332, 2001.

[86] M. Kraft, M. M. Farooqui, and A. G. R. Evans. “Modelling
and Design of an Electrostatically Levitated Disk for Inertial
Sensing Applications”. J. Micromechanics Microengineering 11,
p. 423, 2001.

[87] B. Ando, S. Baglio, V. Marletta, and A. Valastro. “Short-Range
Inertial Sensor Exploiting Magnetic Levitation and an Inductive
Readout Strategy”. IEEE Trans. Instrum. Meas. 67 (5), p. 1238,
2018.

[88] J. Prat-Camps, C. Teo, C. C. Rusconi, W. Wieczorek, and O.
Romero-Isart. “Ultrasensitive Inertial and Force Sensors with
Diamagnetically Levitated Magnets”. Phys. Rev. Appl 8 (3),
p. 034002, 2017.

[89] J.-O. Nilsson and I. Skog. “Inertial sensor arrays — A literature
review”. In: 2016 European Navigation Conference (ENC). ii.
IEEE, 2016, p. 1.

[90] M. Imboden and P. Mohanty. “Dissipation in nanoelectrome-
chanical systems”. Phys. Rep. 534 (3), p. 89, 2014.

[91] L. Neumeier, R. Quidant, and D. E. Chang. “Self-induced back-
action optical trapping in nanophotonic systems”. New J. Phys.
17 (12), p. 123008, 2015.

[92] N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R.
Houdré. “Observation of Backaction and Self-Induced Trapping
in a Planar Hollow Photonic Crystal Cavity”. Phys. Rev. Lett.
110 (12), p. 123601, 2013.

132

http://dx.doi.org/10.1088/0953-8984/11/2/003
http://dx.doi.org/10.1088/0953-8984/11/2/003
http://dx.doi.org/10.1109/7361.983473
http://dx.doi.org/10.1109/TIM.2017.2785022
http://dx.doi.org/10.1109/TIM.2017.2785022
http://dx.doi.org/10.1109/TIM.2017.2785022
http://dx.doi.org/10.1103/PhysRevApplied.8.034002
http://dx.doi.org/10.1103/PhysRevApplied.8.034002
http://dx.doi.org/10.1016/j.physrep.2013.09.003
http://dx.doi.org/10.1016/j.physrep.2013.09.003
http://dx.doi.org/10.1088/1367-2630/17/12/123008
http://dx.doi.org/10.1088/1367-2630/17/12/123008
http://dx.doi.org/10.1103/PhysRevLett.110.123601
http://dx.doi.org/10.1103/PhysRevLett.110.123601


References

[93] M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant.
“Self-induced back-action optical trapping of dielectric nanopar-
ticles”. Nat. Phys. 5 (12), p. 915, 2009.

[94] P. Mestres, J. Berthelot, S. S. Acimovic, and R. Quidant. “Unrav-
eling the optomechanical nature of plasmonic trapping”. Light
Sci. Appl 5 (7), e16092, 2016.

[95] P. Padhy, M. Zaman, P. Hansen, and L. Hesselink. “On the
substrate contribution to the back action trapping of plasmonic
nanoparticles on resonant near-field traps in plasmonic films”.
Opt. Express 25 (21), p. 5581, 2017.

[96] P. Schein, P. Kang, D. O’Dell, and D. Erickson. “Nanophotonic
Force Microscopy: Characterizing Particle–Surface Interactions
Using Near-Field Photonics”. Nano Lett. 15 (2), p. 1414, 2015.

[97] R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah.
“Fluctuation-electrodynamic theory and dynamics of heat trans-
fer in systems of multiple dipoles”. Phys. Rev. B 88 (10),
p. 104307, 2013.

[98] D. Polder and M. Van Hove. “Theory of radiative heat transfer
between closely spaced bodies”. Phys. Rev. B 4 (10), p. 3303,
1971.

[99] J. Loomis and H. Maris. “Theory of heat transfer by evanescent
electromagnetic waves”. Phys. Rev. B 50 (24), p. 18517, 1994.

[100] A. I. Volokitin and B. N. J. Persson. “Radiative heat transfer
between nanostructures”. Phys. Rev. B 63 (20), p. 205404, 2001.

[101] A. Narayanaswamy, S. Shen, and G. Chen. “Near-field radiative
heat transfer between a sphere and a substrate”. Phys. Rev. B
78 (11), p. 115303, 2008.

133

http://dx.doi.org/10.1038/nphys1422
http://dx.doi.org/10.1038/nphys1422
http://dx.doi.org/10.1038/lsa.2016.92
http://dx.doi.org/10.1038/lsa.2016.92
http://dx.doi.org/10.1364/OE.25.026198
http://dx.doi.org/10.1364/OE.25.026198
http://dx.doi.org/10.1364/OE.25.026198
http://dx.doi.org/10.1021/nl504840b
http://dx.doi.org/10.1021/nl504840b
http://dx.doi.org/10.1021/nl504840b
http://dx.doi.org/10.1103/PhysRevB.88.104307
http://dx.doi.org/10.1103/PhysRevB.88.104307
http://dx.doi.org/10.1103/PhysRevB.4.3303
http://dx.doi.org/10.1103/PhysRevB.4.3303
http://dx.doi.org/10.1103/PhysRevB.50.18517
http://dx.doi.org/10.1103/PhysRevB.50.18517
http://dx.doi.org/10.1103/PhysRevB.63.205404
http://dx.doi.org/10.1103/PhysRevB.63.205404
http://dx.doi.org/10.1103/PhysRevB.78.115303
http://dx.doi.org/10.1103/PhysRevB.78.115303


References

[102] J. P. Mulet, K. Joulain, R. Carminati, and J. J. Greffet. “Nanoscale
radiative heat transfer between a small particle and a plane
surface”. Appl. Phys. Lett. 78 (19), p. 2931, 2001.

[103] A. E. R. Lopez, C. Gonzalez-Ballestero, and O. Romero-Isart.
“Internal Quantum Dynamics of a Nanoparticle in a Thermal
Electromagnetic Field: a Minimal Model”. arXiv 1807.03811
2018.

[104] J. B. Pendry. “Radiative exchange of heat between nanostruc-
tures”. J. Phys.: Condens. Matter 11 (35), p. 6621, 1999.

[105] M. Krüger, T. Emig, and M. Kardar. “Nonequilibrium Electro-
magnetic Fluctuations: Heat Transfer and Interactions”. Phys.
Rev. Lett. 106 (21), p. 210404, 2011.

[106] C. Otey and S. Fan. “Numerically exact calculation of electro-
magnetic heat transfer between a dielectric sphere and plate”.
Phys. Rev. B 84 (24), p. 245431, 2011.

[107] M. Laroche, R. Carminati, and J. J. Greffet. “Near-field ther-
mophotovoltaic energy conversion”. J. Appl. Phys. 100 (6) 2006.

[108] S. Basu, Z. M. Zhang, and C. J. Fu. “Review of near-field
thermal radiation and its application to energy conversion”. Int.
J. Energy Res. 33 (13), p. 1203, 2009.

[109] W. A. Challener et al. “Heat-assisted magnetic recording by a
near-field transducer with efficient optical energy transfer”. Nat.
Photonics 3 (4), p. 220, 2009.

[110] E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier,
and J. J. Greffet. “Radiative heat transfer at the nanoscale”.
Nat. Photonics 3 (9), p. 514, 2009.

[111] B. Guha, C. Otey, C. B. Poitras, S. Fan, and M. Lipson. “Near-
field radiative cooling of nanostructures”. Nano Lett. 12 (9),
p. 4546, 2012.

134

http://dx.doi.org/10.1063/1.1370118
http://dx.doi.org/10.1063/1.1370118
http://dx.doi.org/10.1063/1.1370118
http://arxiv.org/abs/1807.03811
http://arxiv.org/abs/1807.03811
http://stacks.iop.org/0953-8984/11/i=35/a=301
http://stacks.iop.org/0953-8984/11/i=35/a=301
http://dx.doi.org/10.1103/PhysRevLett.106.210404
http://dx.doi.org/10.1103/PhysRevLett.106.210404
http://dx.doi.org/10.1103/PhysRevB.84.245431
http://dx.doi.org/10.1103/PhysRevB.84.245431
http://dx.doi.org/10.1063/1.2234560
http://dx.doi.org/10.1063/1.2234560
http://dx.doi.org/10.1002/er.1607
http://dx.doi.org/10.1002/er.1607
http://dx.doi.org/10.1038/nphoton.2009.26
http://dx.doi.org/10.1038/nphoton.2009.26
http://dx.doi.org/10.1038/nphoton.2009.144
http://dx.doi.org/10.1021/nl301708e
http://dx.doi.org/10.1021/nl301708e


References

[112] Cystran UV-visible-IR specialist optics. url: https://www.
crystran.co.uk/optical-materials/zinc-selenide-znse.

[113] G. V. Dedkov and A. A. Kyasov. “Electromagnetic friction forces
on the scanning probe asperity moving near surface”. Phys. Lett.
A 259 (1), p. 38, 1999.

[114] M. Tomassone and A. Widom. “Electronic friction forces on
molecules moving near metals”. Phys. Rev. B 56 (8), p. 4938,
1997.

[115] R. Reimann, M. Doderer, E. Hebestreit, R. Diehl, M. Frimmer,
D. Windey, F. Tebbenjohanns, and L. Novotny. “GHz Rotation
of an Optically Trapped Nanoparticle in Vacuum”. Phys. Rev.
Lett. 121 (3), p. 033602, 2018.

[116] J. Ahn, Z. Xu, J. Bang, Y. H. Deng, T. M. Hoang, Q. Han, R. M.
Ma, and T. Li. “Optically Levitated Nanodumbbell Torsion
Balance and GHz Nanomechanical Rotor”. Phys. Rev. Lett.
121 (3), p. 33603, 2018.

[117] F. Monteiro, S. Ghosh, E. C. van Assendelft, and D. C. Moore.
“Optical rotation of levitated spheres in high vacuum”. Phys.
Rev. A 97 (5), p. 051802, 2018.

135

https://www.crystran.co.uk/optical-materials/zinc-selenide-znse
https://www.crystran.co.uk/optical-materials/zinc-selenide-znse
https://www.crystran.co.uk/optical-materials/zinc-selenide-znse
http://dx.doi.org/10.1016/S0375-9601(99)00362-X
http://dx.doi.org/10.1016/S0375-9601(99)00362-X
http://dx.doi.org/10.1103/PhysRevB.56.4938
http://dx.doi.org/10.1103/PhysRevB.56.4938
http://dx.doi.org/10.1103/PhysRevLett.121.033602
http://dx.doi.org/10.1103/PhysRevLett.121.033602
http://dx.doi.org/10.1103/PhysRevLett.121.033603
http://dx.doi.org/10.1103/PhysRevLett.121.033603
http://dx.doi.org/10.1103/PhysRevA.97.051802




List of Publications

Publication Related to this Thesis

Diehl, R., Hebestreit, E., Reimann, R., Tebbenjohanns, F., Frim-
mer, M., and Novotny, L. Optical levitation and feedback cooling
of a nanoparticle at subwavelength distances from a membrane.
Physical Review A, 98(1), 013851 (2018).

Other Publications by the Author

Reimann, R., Doderer, M., Hebestreit, E., Diehl, R., Frimmer,
M., Windey, D., Tebbenjohanns, F. and Novotny, L. GHz Rota-
tion of an Optically Trapped Nanoparticle in Vacuum. Physical
Review Letters, 121(3), 033602 (2018).

A. Descombin, P. Poncharal, A. Pascale-Hamri, M. Choueib, R.
Diehl, P. Vincent, S.T. Purcell, A. Ayari, and S. Perisanu Giant,
Voltage Tuned, Q-factors of Single Wall Carbon Nanotubes and
Graphene at Room Temperature. Submitted (2018).

Diehl, R., Choueib, M., Choubak, S., Martel, R., Perisanu, S.,
Ayari, A., Vincent, P., Purcell, S.T. and Poncharal, P. to be
published (2019).

137





Curriculum Vitae

Rozenn Diehl, born on September 28th, 1991 in Saint-Nazaire, France

Professional Experience

2014–2018 Doctoral Student and Research Assistant
Photonics Laboratory, ETH Zurich, Switzerland

2014 Research Assistant
Institut Lumière-Matière, Lyon, France

2013 Research Assistant
Institut des Sciences Analytiques, Lyon, France

2013 Research Assistant
Laboratoire de Mécanique des Contacts et des Struc-
tures, Lyon, France

2012 Research Assistant
Laboratoire de Spéctroscopie Ionique et Moléculaire,
Lyon, France

Education

2012–2014 Master of Science, Nanoscale Engineering
Ecole Centrale de Lyon, Lyon, France

2011–2012 Bachelor of Science, Physics
Université Claude Bernard, Lyon, France

2009–2011 Classes Préparatoires aux Grandes Ecoles, Math-Physics
Lycée du Parc, Lyon, France

139


	Abstract
	Résumé
	Introduction
	Particle trapping in vacuum
	Experimental setup
	Optical setup
	Detection of the particle motion
	Vacuum setup
	Trapping protocol and particle discharging

	Trapping theory
	Optical forces
	Particle dynamics
	Detecting the light scattered by the particle
	Calibration of the particle motion


	Approaching particles to planar surfaces
	Experimental realization
	Addition of the membrane
	Determination of the membrane position relative to the focus

	Potential mapping at large distances
	Measurement of the trapping potential at large distances
	Theoretical model: large distances analysis

	Potential mapping at short distances
	Measurement of the trapping potential at short distances
	Theoretical model: short distances analysis

	Conclusion

	Interferometric measurement of distances
	Experimental setup
	Interferometric measurement
	Back-focal-plane imaging: results and model
	Measurement of dpart during the membrane approach

	Conclusion

	Active control of the particle-to-surface distance
	The optical conveyor belt concept
	Experimental setup
	Theoretical considerations
	Experimental tuning of dpart with a conveyor belt
	Conclusion

	Towards sensing of surface forces
	A free-falling particle as a force sensor
	Feedback cooling the center-of-mass motion of a particle
	Free-fall measurement without surface
	Perspectives

	Outlook
	Integrating optical traps on a chip
	Radiative heat transfer at the microscale
	Vacuum friction

	List of Symbols
	List of Figures
	References
	List of Publications
	Curriculum Vitae

