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Abstract

Many applications in robotics require awareness of the state of the robot and its en-
vironment. Faced with ambiguities arising in measurements from any single sensor,
many applications turn to integrating multiple sensors with often complementary cha-
racteristics. This work addresses calibration of multi-sensor systems. It focuses on
popular combinations of devices with numerous applications in robotics. Specifical-
ly, this work investigates sensor suites comprising cameras and Inertial Measurement
Units (IMUs), cameras, an IMU and a Laser Range Finder (LRF), and cameras and an
LRF. In this context, it pursues the objectives of providing accurate estimates of the
spatial and temporal relations between these sensors and of advancing the understan-
ding of individual measurement models to further improve robustness and accuracy
in state estimation.
This thesis builds on a large body of previous work on continuous-time estimati-
on and formalizes each calibration problem in terms of probabilistic sensor models.
Consequently, each calibration solution lives in the domain of Maximum Likelihood
Estimation (MLE), which—under the condition of accurate sensor models—yields
the most probable set of parameters to explain the sensor measurements. To this end,
it introduces a novel approach to modelling of range measurements recorded by an
LRF. This model allows for accurate spatial and temporal calibration of the popu-
lar combination of cameras and LRFs, yielding precisions in the order of 2 mm, 1

10 °
and 1

20 ms for spatial and temporal parameters respectively. In contrast to established
approaches that commonly employ an algebraic error formulation, the probabilistic
model is extensible which enables improvements in the understanding of determini-
stic errors in range measurements. This capability is demonstrated for a deterministic
range bias which, if accounted for, improves calibration precision. In many robotic
systems, state estimation and low-level controls employ separate IMUs, yielding a
need for an accurate estimate of the transformation between these two devices. This
thesis proposes a novel estimator that makes use of measurements from all cameras
and IMUs in a joint calibration. Building on the same underlying principle, it further
advances the model of accelerometers by accounting for different displacements of
the sensor structures that perceive specific forces in a single axis. The resulting cali-

i



ABSTRACT

bration determines spatial and temporal parameters to precisions of 1
5 mm, 1

100 °, and
2 µs respectively—to date the most precise for this class of approaches. Joint calibra-
tion is limited in the novel insights it can generate by the least sophisticated sensor
model. Consequently, this work explores a more elaborated approach to formulating
image sensor measurements. Drawing inspiration from similar approaches in state
estimation, it models these directly on intensities rather than on abstracted quantities
such as interest point locations. However, currently established direct methods lack a
number of important factors. This thesis introduces a chain of models accounting for
a number of factors ranging from target illumination over the Point Spread Functi-
on (PSF) of the optics to motion blur from camera movements. Results highlight the
potential of this approach, for example in rolling-shutter camera calibration, but also
the challenges in matching precisions delivered by classical interest point methods.
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Zusammenfassung

Genaue Kenntnisse des Zustands eines Roboters und seiner Umgebung sind die
Grundvoraussetzung für den erfolgreichen Betrieb der meisten autonomen Systeme.
In vielen Fällen kann es bei der Verwendung eines einzelnen Sensortyps zu Mehrdeu-
tigkeiten bezüglich dieses Zustands kommen.
Diese Arbeit behandelt die Kalibrierung von Systemen, die mehrere Arten von Sen-
soren verwenden, wobei spezielles Augenmerk auf Kombinationen aus Kameras und
Inertialsensoren, Kameras, Inertialsensoren und Laser-Distanzmessern und Kameras
und Laser-Distanzmessern gelegt wird. Dabei konzentriert sich die Arbeit auf zwei
Hauptziele: Zum einen stellt sie Methoden zur Kalibrierung der räumlichen und zeit-
lichen Beziehung zwischen den Sensoren vor, zum anderen erweitern die folgenden
Kapitel das bestehende Wissen um Sensormodelle mit Mitteln der Kalibrierung und
mit dem Ziel, die Zustandsschätzung robuster und genauer zu machen.
Die Arbeit kann dabei auf wichtige Vorleistungen im Bereich der Schätzung konti-
nuierlicher Zustandsrepräsentationen zurückgreifen. Allen vorgestellten Sensormo-
dellen liegen bewusst gewählte Annahmen über die Verteilung von Messfehlern zu-
grunde, was “Maximum Likelihood” Kalibrierungen ermöglicht. Durch eine neuar-
tige Formulierung des Messmodells von Laser-Distanzsensoren können diese Mes-
saufnehmer sowohl zeitlich als auch räumlich besser zu anderen Sensoren in Bezug
gesetzt werden, wobei Präzisionen von 2 mm, 1

10 ° und 1
20 ms für diese räumlichen

und zeitlichen Parameter erreicht werden. Gleichzeitig ist das Modell—im Gegen-
satz zu etablierten Methoden, die nicht auf eine explizite Modellierung der Messfeh-
ler setzen—einfach um weitere deterministische Fehlerquellen erweiterbar, wie am
Beispiel eines konstanten, additiven Distanzfehlers gezeigt wird.
Viele autonome Systeme sind so aufgebaut, dass Regelung und Zustandsschätzung
nicht dieselben Inertialsensoren verwenden, sondern jeweils eigene. Dies macht ge-
naue Kenntnisse der Transformation zwischen den Sensoren zum Betrieb des Systems
erforderlich. Diese Arbeit stellt eine Kalibrierungsmethode vor, bei der Messungen
aller Inertialsensoren und aller Kameras gleichzeitig verarbeitet werden—der folg-
lich alle Informationen gleichzeitig zur Verfügung stehen. Eine Erweiterung dieses
Ansatzes erlaubt es überdies, die genaue Position der Strukturen zu schätzen und
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fortan zu berücksichtigen, die Beschleunigungen in einzelnen Raumachsen messen.
Dieser Ansatz resultiert in Schätzpräzisionen von 1

5 mm und 1
100 ° für die räumliche

Anordnung und 2 µs für relative zeitliche Fehler in der Zuweisung von Zeitstempeln.
Die Kalibrierung eines Systems mit mehreren Sensoren ist ein geeignetes Mittel um
tiefere Einblicke in die Modellierung der beteiligten Sensoren zu gewinnen. Die Tiefe
dieser Einblicke wird aber wenigstens zum Teil durch das am wenigsten differenzier-
te Modell begrenzt: Die Suche nach subtileren deterministischen Fehlern in einem
Sensor kann durch nicht modellierte Fehler in einem anderen erheblich beeinträch-
tigt werden. Vor diesem Hintergrund stellt diese Arbeit ein Messmodell für Kameras
vor, das anstelle der üblichen Merkmalspositionen direkt Bildintensitäten verwendet.
Es stützt sich dabei auf vergleichbare Ansätze der Zustandsschätzung, erweitert diese
aber erheblich um den gesteigerten Anforderungen der Kalibrierung nach Modellge-
nauigkeit gerecht zu werden, wobei speziell die Schätzung der Punktspreizfunktion
zur Modellierung der Optik und eine additive Komposition von Bildern zur Nachbil-
dung von Bewegungsunschärfe hervorzuheben sind. Dieser Ansatz hat sich speziell
bei der Kalibrierung von Kameras, bei denen individuelle Zeilen sequentiell belichtet
werden (“rolling-shutter”), bewährt. Weniger eindeutig ist ihr Vorteil bei der Kali-
brierung von Systemen mit Kameras und Inertialsensoren.
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1
Introduction

To answer such fundamental question like “Where am I?” or “At which speed am
I moving?”, a robot needs awareness of its own state as well as of that of its sur-
rounding. Consequently, the problem of inferring the underlying state of a setup
and its environment from prior knowledge and sensor measurements is central to
robotics. In this pursuit, robotic applications commonly deal with the challenge of
obtaining sufficient information to unambiguously determine the state. Such ambi-
guities may for example arise in localization, when a robot equipped with a Laser
Range Finder (LRF) travels down a corridor, or in visual odometry, where views of
an untextured wall may cause the temporary loss of all feature tracks. In many cases,
the problem is efficiently addressed by adding another sensing modality to the plat-
form. Popular combinations of sensors—often coined a sensor suite—draw from the
complementary strengths of exteroceptive and interoceptive sensors. In the afore-
mentioned examples, the additional sensor adds valuable information about the state.
This information could be estimates of the relative motion coming from an Inertial
Measurement Unit (IMU) that bridge tracking gaps or ticks from a wheel odometer
that provide observations about the travelled distance along the hallway when range
measurements only constrain the lateral position of the robot in the corridor.

These examples illustrate that the use of multiple different sensors enables a richer
perception of information about the state of the robot. At the same time, their use adds
a new level of complexity to state estimation: In addition to modelling the measure-
ment process of the individual sensors, their relationship with respect to each other
in the spatial as well as in the temporal domain has to be accounted for—a challenge
that does not arise in systems exclusively relying on a single source of measurements.
Often, the performance of multi-sensor systems is limited by inadequate modelling of
inter-sensor relationships and not by the fidelity of the models of individual sensors.
The popular combination of a camera and an IMU is a good example of such a case:
Many applications fail to correctly account for the varying delay induced by a fluc-
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1. INTRODUCTION

tuation in exposure time and equally disregard the static temporal offset arising from
digital filtering inside the IMU. Yet, best performance can only be achieved in sys-
tems where both temporal and spatial relationships between sensors and individual
measurement processes are accurately modelled. This is where multi-sensor calibra-
tion can provide a benefit: By equipping state estimation with accurate insights into
the transformation between sensors and the relative offsets in timestamping, calibra-
tion can significantly improve the accuracy and robustness of the system.

However, the domain of multi-sensor system calibration is not limited to estimating
transformations and delays. Redundancy in the information collected by sensor suites
comprising complementary sensing modalities affords the opportunity for an intro-
spection into the sensor suite itself. Accordingly, it can further be a tool to advance
the understanding of individual sensor models. Improved modelling of sensor suites
is particularly valuable in applications where accuracy is of paramount importance
such as inertial-aided photogrammetry or augmented reality applications.

The motivation for this work is rooted in the objective of providing an accurate cali-
bration for multi-sensor systems and advancing the understanding of models of popu-
lar sensors. In this pursuit, it investigates specifically sensor suites comprising one or
multiple cameras and one or more IMUs as well as combinations of an LRF, cameras,
and optionally an IMU.

1.1 Contributions
The work compiled in this thesis advances the understanding of multi-sensor systems
as well as of individual sensor models in a number of ways.

The contributions are

• a center-exposure synchronization scheme for sensor systems comprising mul-
tiple cameras,

• a probabilistic model for laser range measurements and a spatial and temporal
maximum likelihood estimator for calibrating sensor systems comprising laser
range finders,

• an estimator enabling the calibration of sensor systems comprising multiple
IMUs and of the displacement of individual accelerometer axes,

• and a direct formulation for camera calibration.

The following sections will briefly detail on these contributions individually and link
to the respective chapters for further reading.
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1.1.1 Multi-Camera Synchronization

Accurate synchronization is one of the dominating challenges in the design of multi-
sensor systems and constitutes a basic prerequisite for correct handling of temporal
relations. For sensor suites comprising an IMU and one or multiple cameras, publi-
cations commonly propose a strategy that synchronizes cameras through a common
trigger signal (e.g. Eling et al. (2015), Grießbach et al. (2012), and Schmid and
Hirschmüller (2013)). The time instant of this signal usually determines the times-
tamp of the respective measurement. Such a synchronization scheme neglects the
nature of cameras as a realization of an integrating sensor: Instead of perceiving a
measurement at an instant, an image sensor integrates irradiance over time. The trig-
ger time relates to the start of the integration process, but it disregards all information
about the duration of it. Yet, this duration has a profound impact on the signal, as it
leads to motion blur which affects any image, even for short exposure times.

Furgale, Rehder, and Siegwart (2013) confirm that a synchronization approach which
assigns the trigger time as measurement instant suffers from an observable delay be-
tween camera and IMU that directly depends on camera exposure time. The au-
thors conclude that the mid-exposure time marks a more adequate measurement in-
stant, drawing upon similar observations from the geodesy community (Maune, Pho-
togrammetry, and Sensing, 2007). Nikolic et al. (2014a) implement these findings for
a multi-camera system by proposing a novel triggering scheme which compensates
for varying exposure times of individual cameras, spacing out mid-exposure instants
evenly over time and assigning image timestamps accordingly. Such a synchroniza-
tion yields measurement delays independent of exposure time as demonstrated by
Nikolic et al. (2014a) and echoed in Section 3.4.8. It thus enables correct synchro-
nization of multi-camera systems such that measurements of all cameras correspond
to the same time instant. Consequently, they can be modelled more correctly as de-
pendent a single, discrete state—an assumption which would be violated by other
synchronization schemes.

These efforts in proper design of a multi-sensor system mark the foundation for all
subsequent findings in this thesis: The effect of incorrect synchronization can easily
eclipse other factors. It would thus severely impact potential insights into more subtle
modelling inaccuracies, as for example the displacement of individual accelerometer
axes presented in Section 4.3.2.

Finally, confidence in accurate synchronization and spatial and temporal calibration
enabled the publication of the European Robotics Challenges (EUROC) visual/iner-
tial dataset (Burri et al., 2016), which has since gained some traction in the robotics
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1. INTRODUCTION

community. It also provided the baseline for deriving informed recommendations
about synchronization in software as detailed on in Section 3.4.7.

1.1.2 Probabilistic Modelling of LRF Measurements

Sensor suites comprising cameras and laser range finders are popular in robotics,
and there exist numerous approaches for calibrating the transformation between the
two perception modalities (e.g. Bok et al. (2014), Vasconcelos, Barreto, and Nunes
(2012), and Zhang and Pless (2004)). However, most of these approaches fall short
of the objectives outlined in Chapter 1: Popular methods focus entirely on spatial
calibration and completely neglect the temporal relation between sensors. For ap-
plications with dynamic motions, a failure to account for temporal offsets between
camera and laser range finder measurements can have a profound impact on system
performance as highlighted in Fig. 3.1. These effects can easily eclipse those of inac-
curately estimated spatial transformations, rendering any calibration efforts focused
entirely on spatial relations futile.

Furthermore, established calibration approaches often minimize an algebraic error
formulation rather than a quantity informed by a consciously chosen probabilistic
model of the sensor. Commonly, these methods employ camera measurements to
estimate the parameters of planes in the environment and subsequently model LRF
measurement errors as the distances of the transformed range measurements to these
planes in the direction of their normals. Such an approach is suboptimal in two re-
spects: It completely disregard uncertainties in camera measurements, and it omits
any information about the direction of the laser beam with respect to the plane nor-
mal. Consequently, none of the established approaches marks a Maximum Likelihood
Estimation (MLE) with respect to any meaningful probabilistic model of the LRF.

Chapters 2 and 3 present a novel method aligned with the idea of providing optimal
spatial and temporal calibration while advancing the understanding of deterministic
errors in range measurements. It treats inputs from camera and LRF consistently
and yields transformation estimates that are precise to 2 mm and 1

10 ° respectively
and temporal offset estimates with sub-millisecond precision. The probabilistically
motivated LRF model enables further insights into the sensor, suggesting a consistent
bias of the range measurements returned by the device under test.

1.1.3 Multi IMU Calibration and Estimation of the Displacement
of Individual Accelerometer Axes

Numerous robotic systems employ multiple IMUs. The cause for this redundancy
is rooted in heterogeneous system design meant to decouple low-level controls from
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1.1. CONTRIBUTIONS

higher level algorithms: For many of these systems, inertial measurements are
required–and sufficient–to stabilize the robotic platform. Commonly, a low-level
controller with a dedicated IMU is tasked with this stabilization. A secondary IMU
is often employed in more advanced estimation of an extended state which serves as
input to higher level planning and controls tasks. The spatial relation between these
IMUs must be known precisely in order for the low-level controller to correctly exe-
cute plans devised in the reference frame of the secondary IMU. Chapter 4 presents
a novel estimator for jointly calibrating sensor systems comprising cameras and mul-
tiple IMUs. The approach makes use of all sensor information at hand in a single
MLE.

The significance of the underlying principle is not limited to systems using multi-
ple IMUs, but further informs an advanced model of IMUs in general: Even IMU
vendors can be surprisingly ambiguous in reporting the location of the origin of the
reference frame for their products. Xsens, for example, specifies the origin as located
“at the accelerometers” inside their MTi-10 and MTi-100 series (MTi User Manual).
Given the positioning and dimensions of the accelerometers, this specification con-
strains the location to about a volume of 1 cm3, a seemingly unacceptable tolerance
for applications where accuracy is crucial and for sensor setups with displacements
between cameras and IMU of a few centimeters.

Chapters 4 and 6 highlight the fact that the finite extent of the sensing elements in
Microelectromechanical Systems (MEMS) accelerometers invalidates the idea that
the specific force in perceived in one spot and, as a consequence, any notion of a well
defined origin of the IMU reference frame as a whole. This applies equally to se-
tups featuring individual Integrated Circuits (ICs), such as the aforementioned Xsens
device, and to more integrated IMUs which als comprise MEMS structures of finite
size. This work advances the prevalent model for accelerometers to further account
for the displacement of individual accelerometer axes. It derives a novel estimator
that determines these displacements along with IMU scale factor and misalignment
corrections. Fig. 6.6a demonstrates that calibration precision increases dramatically
when all of these parameters are taken into account. The implications of these find-
ings extend beyond calibration: To date and to our knowledge, all existing approaches
to visual/inertial state estimation neglect the individual displacements of the axes in
accelerometers. Yet, system designers often integrate large inertial sensor units com-
posed of multiple ICs due to their seemingly superior specifications. Chapters 4 and 6
add a previously neglected perspective on these specifications and raise the question
of whether the advantages of these devices in terms of better noise performance and
increased bias stability can be leveraged in all applications.
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1. INTRODUCTION

1.1.4 A Direct Camera Measurement Model for Calibration

Chapters 4 and 6 as well as the literature (Furgale, Rehder, and Siegwart, 2013;
Nikolic et al., 2016b) demonstrate extraordinary precision in estimating constant tem-
poral offsets for camera/IMU systems—often in the order of merely a few microsec-
onds. In indoor settings, exposure time typically ranges in the order of milliseconds
and is thus significantly larger than the estimation precision of constant temporal off-
sets. This discrepancy challenges the universal truth in mid-exposure time being the
most adequate measurement instant to assign to an interest point detection: Such an
observation is the output of a comparatively complex function of local image gradi-
ents. Given the aforementioned integrating characteristics of image sensors, it is not
immediately clear why the result of this detection function should always correspond
to the projection of a target point at mid-exposure time, independently of the camera
motion during image exposure.

To circumvent this issue and ultimately improve camera/IMU calibration, Chapters 5
and 6 explore different routes to directly model intensity measurements–a novelty for
geometric calibration. By formulating the measurements as image intensities rather
than as abstracted quantities, motion blur can be consistently folded into the model.
This capability alleviates the approach from speculatively assigning timestamps at
finer granularity than exposure time. As a side product, the direct calibration method
enables a novel path to calibrating the line delay in rolling-shutter cameras, resulting
in a more intuitive treatment of measurement uncertainties.

However, abolishing the advantages of abstraction provided by interest point detec-
tion in favor of a more accurate modelling of motion blur comes at a cost: Predicting
accurate intensities entails a host of modelling challenges ranging from uneven illu-
mination of the target over reproducing the camera response function to estimating
the Point Spread Function (PSF) of the camera setup. Chapter 6 derives this entire
modelling chain and introduces estimation of the PSF as an integral part of the cali-
bration pipeline. It proposes a novel, joint estimator for camera poses and PSF. The
results raise the question of whether established direct approaches to visual state es-
timation may equally benefit from modelling these optical effects to higher fidelity
.

1.2 Organization

This work is organized as a collection of peer-review publications. These map to the
aforementioned contributions as follows.
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1.2. ORGANIZATION

Chapter 2

This chapter has been published as

Rehder, J., Beardsley, P., Siegwart, R., and Furgale, P. (2014). „Spatio-Temporal
Laser to Visual/Inertial Calibration with Applications to Hand-Held, Large Scale
Scanning“. In: Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). Chicago, IL, USA, pp. 459–465

It introduces the probabilistic LRF measurement model and demonstrates joint spatial
and temporal calibration of a sensor suite comprising a stereo camera, an IMU, and
an LRF. This chapter further highlights the importance of accurate synchronization
with examples from three-dimensional (3D) reconstruction.

Chapter 3

This chapter has been published as

Rehder, J., Siegwart, R., and Furgale, P. (2016). „A General Approach to Spa-
tiotemporal Calibration in Multisensor Systems“. IEEE Transactions on Robotics
32.2, pp. 383–398

It further comprises findings from

Furgale, P., Rehder, J., and Siegwart, R. (2013). „Unified Temporal and Spatial
Calibration for Multi-Sensor Systems“. In: Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)

Nikolic, J., Rehder, J., Burri, M., Gohl, P., Leutenegger, S., Furgale, P. T., and
Siegwart, R. (2014a). „A synchronized visual-inertial sensor system with FPGA
pre-processing for accurate real-time SLAM“. in: 2014 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 431–437

This chapter broadens the use-case of the LRF model to sensor suites consisting only
of cameras and an LRF. It further extends the model to account for determinis-
tic biases and contributes a comprehensive experimental analysis. This analysis in-
cludes an investigation into the efforts necessary to synchronize devices in software.
It also demonstrates that aligning mid-exposure times in multi-camera systems and
assigning timestamps accordingly marks an effective strategy to mitigate exposure
depended relative time offsets between sensors.

9



1. INTRODUCTION

Chapter 4

This chapter has been published as

Rehder, J., Nikolic, J., Schneider, T., Hinzmann, T., and Siegwart, R. (2016).
„Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual
axes“. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 4304–4311

It extends work by Furgale, Rehder, and Siegwart (2013) to systems comprising mul-
tiple IMUs and by augmenting the inertial sensor model with additional intrinsic pa-
rameters. This chapter introduces the displacement of individual accelerometer axes
as an intrinsic parameter with significant impact on calibration performance.

Chapter 5

This chapter has been published as

Rehder, J., Nikolic, J., Schneider, T., and Siegwart, R. (2017). „A Direct For-
mulation for Camera Calibration“. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 6479–6486

It applies the concept of direct modelling of image measurements to calibration. This
approach yields an intuitive formulation of rolling-shutter camera calibration with
correct treatment of uncertainties. It further enables the estimation of exposure time
from motion blur in images.

Chapter 6

This chapter has been published as

Rehder, J. and Siegwart, R. (2017). „Camera/IMU Calibration Revisited“. IEEE
Sensors Journal 17.11, pp. 3257–3268

It combines and extends findings from

Rehder, J., Nikolic, J., Schneider, T., Hinzmann, T., and Siegwart, R. (2016).
„Extending kalibr: Calibrating the extrinsics of multiple IMUs and of individual
axes“. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, pp. 4304–4311
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Rehder, J., Nikolic, J., Schneider, T., and Siegwart, R. (2017). „A Direct For-
mulation for Camera Calibration“. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 6479–6486

To this end, it introduces an improved formulation of the direct camera model, which
further accounts for uneven illumination and the PSF of the optics. A comprehen-
sive experimental analysis showcases the impact of high-fidelity IMU models and
highlights the complexity of accurate intensity modelling.
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2
Spatio-Temporal Laser to
Visual/Inertial Calibration with
Applications to Hand-Held, Large
Scale Scanning
Joern Rehder, Paul Beardsley, Roland Siegwart, and Paul Furgale

2.1 Introduction

Time-of-flight laser scanning for three-dimensional (3D) reconstruction is a mature
technology with applications in fields ranging from reverse engineering of industrial
plants, to architecture, to archaeology (Leica Geosystems, 2014). However, the vast
majority of commercially available scanners operates stationarily, and in order to
completely capture more complex environments where occlusions are present, the
device has to be repositioned multiple times. On the other hand, triangulating, hand-
held 3D scanners for small scale objects are widely applied in industry due to their
easy deployment (Nikon, 2014).

This work is motivated by the goal of developing a system that can be used to scan
large scale structures, but that provides the same ease of deployment of a hand-
held sensor, like the one depicted in Fig.2.1, comprised of a Hokuyo UTM-30LX

Published in:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2014,
©2014 IEEE
DOI: 10.1109/iros.2014.6942599
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Laser Range Finder (LRF), rigidly connected to a visual/inertial sensor (Nikolic et
al., 2014b). Arising from the extended range of dynamic motions of a human oper-
ator as compared to a ground vehicle, we employ a novel calibration approach that
extends current state of the art by estimating the spatial transformation between the
sensors as well as the time offset at which measurements are recorded. Additionally,
our framework allows for the calibration of a broader variety of sensor configurations
by discarding of the requirement of an overlapping field of view between camera and
LRF.

To this end, a continuous-time batch estimation framework (Furgale, Barfoot, and
Sibley, 2012) is employed, extending our previous work on camera/Inertial Mea-
surement Unit (IMU) calibration (Furgale, Rehder, and Siegwart, 2013) to integrate
laser range measurements. As we perceive the requirement of an overlap in the field
of view between the camera and the laser as unnecessarily constraining, ubiquitous
planes are identified in the scan data and exploited for modelling the range measure-
ments.

Section 2.4 presents quantitative results for the calibration, demonstrating that the
transformation can be estimated to millimeter accuracy and the time delay is deter-
mined up to about 5 ms precision. Furthermore, point cloud reconstructions obtained
with our system prove the accuracy of the overall system and are well comparable
with results reported for similar hand-held scanners (Bok et al., 2011; James and
Quinton, 2014).

2.2 Related Work

Intensive research has gone into calibrating the transformation between laser scanners
and cameras. Many approaches are designed for setups where the scanning plane is
rotated (Alismail, Baker, and Browning, 2012; Scaramuzza, Harati, and Siegwart,
2007; Unnikrishnan and Hebert, 2005), or for multi-beam systems (Geiger et al.,
2012; Mirzaei, Kottas, and Roumeliotis, 2012; Pandey et al., 2012), and are hence
not applicable to our setup. For calibrating a setup of a rigidly connected camera and
single-beam laser scanner, Zhang and Pless (2004) proposed an approach, where a
set of simultaneously acquired images and static scans of a planar calibration target
is used to establish the transformation between the two sensors. Other groups im-
proved upon this algorithm (Li et al., 2007; Vasconcelos, Barreto, and Nunes, 2012),
while maintaining the same fundamental principle. Similarly, Núñez et al. (2009)
use simultaneous observations of a planar pattern, but additionally employ an inertial
measurement unit to further constrain the problem. Mei and Rives (2006) present an
algorithm that makes use of the laser trace being visible in the image, which, while
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Figure 2.1: The handheld scanning device comprised of a Hokuyo UTM-30LX laser
range finder and a visual/inertial sensor (Nikolic et al., 2014b).

not relaxing the requirement of an overlapping field of view, constitutes a different
approach to calibration. Bok et al. (2011) generally follow the calibration procedure
of Zhang and Pless (2004), but additionally extract measurements of the edges of the
calibration pattern from laser data to improve the results. Finally, Moghadam, Bosse,
and Zlot (2013) proposes a calibration method that matches edges detected in the im-
age to plane intersections and boundaries in point clouds recorded with their Zebedee
system (Bosse, Zlot, and Flick, 2012). The approach is capable of calibrating for
devices, where the field of view of the camera does not overlap with the field of view
of the range sensor. However, it requires the setup to be able to generate an accurate
point cloud irrespectively of the transformation that is calibrated for, and hence is not
applicable to our case.

With the exception of Moghadam, Bosse, and Zlot (2013), these approaches have in
common that they calibrate the setup based on static scans and completely neglect
the temporal relationship between camera and laser scanner. While this might be
sufficient for platforms with slow dynamics, it may result in significantly distorted
reconstructions for hand-held systems, where angular velocities can reach hundreds
of degrees per second. In contrast to these stationary calibration approaches, our cal-
ibration is based on continuous-time batch estimation (Furgale, Barfoot, and Sibley,
2012), which allows for a seamless integration of time delays into the calibration
framework, and it is an extension of Furgale, Rehder, and Siegwart (2013). The
Zebedee system (Bosse, Zlot, and Flick, 2012) continuously estimates the delay be-
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tween different sensors in operation. While we can see the beauty in this system, our
work takes a different approach: In order to increase robustness and decrease the size
of the state estimated online, we try to accurately calibrate such quantities beforehand
in an offline procedure in a lab environment.

2.3 Methodology

2.3.1 Experimental Setup

The scanning device is based on the visual/inertial sensor detailed in Nikolic et al.
(2014b). This sensor combines two global shutter MT9V034 Wide Video Graphics
Array (WVGA) image sensors in a plane-parallel stereo setup with an ADIS16448 in-
ertial measurement unit. The integration of a XILINX Zynq, a combination of a dual
core Advanced RISC Machine (ARM) processor with Field Programmable Gate Ar-
ray (FPGA) fabric, allows for accurate, exposure-compensated triggering of the cam-
eras as well as synchronized polling of inertial data. The sensor has been augmented
with a Hokuyo UTM-30LX, which has been rigidly mounted to the visual/inertial
sensor.

2.3.2 Calibration

Our calibration is based on the continuous-time batch estimation framework proposed
in Furgale, Barfoot, and Sibley (2012). In order to estimate the transformation be-
tween the laser range finder and the visual/inertial sensor and the inter-sensor delays,
we extend our previous work on visual/inertial calibration presented in Furgale, Re-
hder, and Siegwart (2013). In the following, a brief recapitulation of the visual/inertial
calibration framework will be provided, before the contribution to the objective func-
tion arising from laser measurements is derived in detail. With this, the description
of the algorithm closely follows its processing procedure, as a two step approach is
employed, where a smooth sensor path is estimated in a first step, followed by a step
that adds laser terms to the estimation. We follow this two step approach, since a
sufficiently accurate sensor trajectory is a prerequisite for obtaining an initial point
cloud, which in turn is used to obtain a model for the laser measurements. The cal-
ibration procedure itself is similar—the setup is waved in front of a checkerboard in
a way that excites all degrees of freedom sufficiently to render the calibration pa-
rameters observable—but we additionally require the sequence to be recorded in an
environment, where a subset of the laser measurements are induced by at least one
plane.
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Recapitulation Camera/IMU Calibration

We employ B-splines to represent time-varying states and parametrize the time-varying
transformation from the inertial coordinate frame into the world frame as a 6× 1
spline, applying a Euclidean parametrization to translations and an angle/axis repre-
sentation to orientations. With C(·) being a function that constructs a rotation matrix
from our orientation parametrization ϕ and t being the translation, the transformation
from the body reference frame defined to coincide with the one of the IMU into the
world reference frame Tw,i at time t may be expressed as

Tw,i(t) =
[

C(ϕ(t)) t(t)
0T 1

]
. (2.1)

Given translations represented as composition of continuously differentiable basis
functions, velocities v(t) and accelerations a(t) can be obtained by derivation. An-
gular velocities ω(t) are obtained similarly with an additional transformation S(·)
relating parameter rates to angular velocities.

With this, the contributions from visual and inertial measurements to the objective
function are

eym j := ym j−h
(
Tc,iTw,i(t j)

−1pm
w
)

(2.2a)

Jy :=
1
2

J

∑
j=1

M

∑
m=1

eT
ym j

R−1
ym j

eym j (2.2b)

eαk := αk−C(ϕ(tk))
T (a(tk)−gw

)
+ba(tk) (2.2c)

Jα :=
1
2

K

∑
k=1

eT
αk

R−1
αk

eαk (2.2d)

eωk := ϖk−C(ϕ(tk))
T

ω(tk)+bω(tk) (2.2e)

Jω :=
1
2

K

∑
k=1

eT
ωk

R−1
ωk

eωk (2.2f)

eba(t) := ḃa(t) (2.2g)

Jba :=
1
2

∫ tK

t1
eba(τ)

T Q−1
a eba(τ)dτ (2.2h)

ebω
(t) := ḃω(t) (2.2i)

Jbω
:=

1
2

∫ tK

t1
ebω

(τ)T Q−1
ω ebω

(τ)dτ (2.2j)
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where h(·) is an arbitrary projection model, accepting checkerboard corners pm
w trans-

formed from the world frame into the camera frame via the transformation T−1
w,i at

time t j and the rigid transformation between inertial and camera frame Tc,i. In con-
trast to Furgale, Rehder, and Siegwart (2013), a time delay between camera and IMU
is not considered, since it is compensated for in hardware (Nikolic et al., 2014b). In-
ertial measurements at times tk contribute accordingly, with gw being the estimated
gravity and b denoting inertial sensor biases, parametrized as B-splines and mod-
elled as driven by zero-mean white Gaussian processes, governed by covariance Q.
All measurements are weighted according to the inverse covariances, R−1, of the
additive, zero-mean Gaussian distributed perturbation assumed to corrupt the mea-
surement.

With these terms, the initial objective function J for estimating the sensor trajectory is
composed as J := Jy + Jα + Jω + Jba + Jbw , which is minimized using the Levenberg-
Marquardt (LM) algorithm (Marquardt, 1963). Note that with the error term formu-
lation provided above, this constitutes the maximum-likelihood estimation assuming
that the perturbation model is sufficiently accurate.

Incorporating Laser Range Measurements

In the following section, we will derive the approach to modelling laser range mea-
surements for a seamless integration into the objective function J. While there exist
calibration approaches based on minimizing point cloud entropy (Sheehan, Harrison,
and Newman, 2010) that omit assumptions about the scanned structure, we decided
to explicitly model the laser range measurements as induced by a structure. For this,
some knowledge about the structure is indispensable. Due to their ubiquity, we de-
cided to identify laser measurements induced by planes and model them accordingly.
Not relying on a calibration pattern for modelling laser measurements has distinct
advantages: Intuitively, the observability of the transformation improves with target
size, and manufacturing large targets can quickly become impractical. In contrast to
this approach, most calibration approaches rely on an overlapping field of view be-
tween camera and laser (Li et al., 2007; Núñez et al., 2009; Vasconcelos, Barreto, and
Nunes, 2012; Zhang and Pless, 2004), which limits the applicable sensor configura-
tions. For modelling the laser measurement, we make the following assumptions.

• The visual/inertial sensor is capable of estimating a sufficiently accurate trajec-
tory.

• The initial guess for the transformation between laser and sensor is sufficiently
accurate.
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• A subset of all individual distances measured by the LRF is induced by planar
structures.

• The range measurements are corrupted by additive zero-mean Gaussian dis-
tributed noise.

• There is zero error on the beam directions reported by the range finder.

Of these assumptions, the accuracy of the initial estimate of the transformation is the
most constraining, as it may be hard to obtain for some setups. In this context, accu-
racy is sufficient if planes can reliably be identified in the point cloud obtained from
the sensor trajectory and with the initial transformation, which is the case when a
majority of laser measurements induced by a plane falls within an envelop defined by
the chosen Random Sample Consensus (RANSAC) threshold (Fischler and Bolles,
1981).

Given a continuous trajectory of the sensor estimated by minimizing J as defined
in Section 2.3.2 and an initial guess of the transformation Ti,l between the inertial
sensor and the laser, an initial point cloud can be obtained by transforming the laser
measurements mk = [αk, lk]

T of a single beam, cast at angle αk and measuring range
lk into a common coordinate frame:

[λpk,λ ]
T = Tw,i(tk +δ t)Ti,l [lkcos(αk), lksin(αk),0,1]

T , (2.3)

where Tw,i denotes the transformation from the inertial into the world coordinate
frame, tk is the timestamp of a laser range measurement lk with corresponding beam
angle αk, and δ t the unknown inter-sensor delay. Fig. 2.2a shows an initial point
cloud acquired from a calibration sequence. While some planes are visible, the entire
point cloud appears cluttered, with many measurements not stemming from planar
structures. In order to identify measurements induced by planes, a RANSAC scheme
is applied to the point cloud, with plane hypotheses generated from a minimal set of
three non-collinear points and model support being evaluated according to threshold
t

|nT
i pk−di|< t , (2.4)

with ni being the normal of plane i, di the distance to the origin, and pk being a
point evaluated for support. Note that not only measurements induced by this plane
satisfy this condition, but points on any structure within the threshold t from the
intersection with the plane defined by ni and di. To avoid outliers, the points on each
plane are clustered by evenly discretizing them into spatial bins and, starting from
the most populated bin, invoking adjacent bins into the plane until the ratio of points
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in adjacent bins falls below a threshold. As the laser itself scans in a plane, resting
the sensor during calibration may result in an accumulation of points that may be
detected as a plane in the RANSAC step. To avoid picking such accumulations as
planes, we further require the number of points that fall into bins invoked into the
plane to represent a certain percentage of all potential plane points and discard of the
plane hypothesis otherwise. Having identified the measurements induced by plane i
in the environment, and assuming zero error on the beam angle, a prediction of the
range l̂k measured by the LRF can be modelled as

l̂k =
∣∣∣∣nT

i tw,l(tk +δ t)−di

nT
i rk(tk +δ t)

∣∣∣∣ , (2.5)

with

tw,l(tk +δ t) = Cw,i(tk +δ t)ti,l + tw,i(tk +δ t) (2.6)

rk(tk +δ t) = Cw,i(tk +δ t)Ci,l [cos(αk),sin(αk),0]
T . (2.7)

With this, the contribution of the laser range measurements to the objective function
J can be determined as

el := l̂k− lk (2.8a)

Jl :=
I

∑
i=1

K

∑
k=1

eT
l R−1el (2.8b)

where R denotes covariance on the range measurements. The laser calibration quan-
tities Ti,l and δ t—along with the plane parameters ni and di—are then estimated by
minimizing the augmented objective function J := Jy + Jα + Jω + Jba + Jbw + Jl anal-
ogously to Section 2.3.2, using the result of the trajectory generation as initial guess.
To improve robustness to outliers, we further employ the Huber cost function (Hartley
and Zisserman, 2000) for the LRF error terms.

Note that the number of planes identified in the RANSAC step is a design parameter
that can be adapted to the number of dominant planes in the environment scanned
during calibration. Also note that we chose to implement the two different error
metrics mostly for convenience: While the distance to the plane in the RANSAC step
can be evaluated rapidly with minimal data association, the second metric models the
plane induced distance measurement more accurately.
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(a)

(b)

Figure 2.2: Different stages of point cloud processing during calibration. Fig. 2.2a
shows the initial point cloud generated from a calibration sequence. While planes are
visible, the point cloud is cluttered with measurements stemming from non planar
objects. Fig. 2.2b depicts the point cloud after identifying the three most dominant
planes and clustering.
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2.3.3 Model Generation

After calibration, the rig can be used to generate 3D models that consist of points from
the LRF colored by intensity obtained with the cameras. To estimate the ego-motion
of the sensor, the approach presented in Leutenegger et al. (2015) is employed. This
algorithm administers a non-linear optimization over a sliding window of key-frames
and corresponding inertial measurements. In order to keep computational complexity
at bay and allow for real-time operation, entries that correspond to past velocities
and inertial sensor biases are continuously marginalized from the estimated state. A
detailed description of this framework is outside of the scope of this work, and the
interested reader is kindly referred to the original publication.

We use the Robot Operating System (ROS) framework (Quigley et al., 2009) for
transforming the laser range measurements from the coordinate frame of the scanner
into the global coordinate frame given the static transformation between the laser
and the visual/inertial sensor and state estimates from our visual/inertial framework.
State estimates are published at the rate of the inertial measurements and interpolated
to accommodate for the fact that the range measurements of a single scan are not
acquired instantaneously but consecutively over a period of multiple milliseconds.

The laser scan data is augmented with image intensity values using the static trans-
form between the two sensors. To this end, the range measurements are transformed
into the camera coordinate frame and projected into the camera using its previously
calibrated intrinsics and distortion model. Intensities are sampled at the projections
of the laser range respective measurements. This approach constitutes a rather ad-
hoc method to laser point cloud coloring, as it neglects the consecutive nature of laser
range scans and does not take varying exposure times and gains in successive images
into account. There are other approaches that employ more sophisticated coloring
schemes, e.g. Chenga et al. (2014). However in that approach, global exposure and
gain equalization is performed in post-processing, which makes the method less well
suited for immediate model feedback. Furthermore, by considering a single image
and scan, the necessity for sophisticated occlusion reasoning is reduced. Although
Fig. 2.5 seems to provide a counter argument for that, given that the method would
sample incorrect intensity values for the cupboard occluded by the upper left corner
of the checkerboard, one has to consider that this problem is induced by the baseline
of the laser with respect to the camera, which is mitigated by the distance to the ob-
ject, and thus less apparent for the majority of scanning use cases, as obvious from
the correctly textured building shown in Fig. 2.7.
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2.4 Results

All following experiments employed the sensor device detailed on in Section 2.3.1,
hand guided by an operator. To this end, stereo pairs were recorded on a laptop
computer at a rate of 20 Hz, inertial measurements at 200 Hz, and laser range scans
at 40 Hz.

Calibration Results

This section details on results for the spatial and temporal calibration of the LRF
with respect to the visual/inertial sensor. Apart from measurement covariances of all
sensors and the parameters for the Gaussian processes modelling inertial biases, an
initial guess for the transformation between LRF and sensor is required along with
a set of free parameters, that can be roughly categorized into parameters inherent to
continuous-time batch estimation and parameters governing plane identification and
robust estimation. For the continuous time estimation, we employed 6th order B-
splines with 120 support points per second. We chose to identify three planes and
picked a RANSAC threshold t of 50 mm, allowing for some envelope around the
plane to account for errors due to time-delay and the inaccurate initial guess for the
inter-sensor calibration. We stopped invoking bins into the plane when the neighbour-
ing bin contained less then half as many points as the current, and discarded a plane
hypotheses as potentially having been induced by the scanning plane rather than a
structure when the number of clustered points represented less than half of all plane
inlier. For down-weighting potential outliers via the Huber cost function, an outlier
threshold of 20 mm was chosen in accordance with the measurement accuracies of
the Hokuyo as reported by the manufacturer. For all experiments, we assumed zero
delay and zero displacement of the laser with respect to the visual/inertial sensor.
The relative orientation between the two in Euler angles in XZY convention was ap-
proximated by 180°, 0° and 90° Note that the correct selection of these parameters is
crucial for achieving accurate calibration results, and we noticed that the approach is
sensitive to a correct choice of the RANSAC threshold, which we found to be best set
within the range of the accuracy of the LRF.

Fig. 2.3 displays the distribution in errors of the modelled range readings with respect
to measured distance for a single plane in one dataset of about 10 s. After initializing
the point cloud, but prior to performing the estimation (Fig. 2.3a) errors span an
interval of up to 12 cm distance. Optimizing over the augmented cost function and
including the spatio-temporal system parameters as well as plane parameters drives
down the error to within the tolerance reported by the datasheet of the LRF, with
few outliers (Fig. 2.3b). Neglecting the temporal relationship between the sensors
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results in a broader distribution of errors, with many modelled measurements falling
outside of the range specified by the manufacturer (Fig. 2.3c). This suggests that
neglecting the temporal relationship between the LRF and other sensors results in
impaired reconstruction results.

Fig. 2.4 visualizes an experiment for evaluating the accuracy of the temporal calibra-
tion. As we lack information on the true delay between the sensors, we simulated
different delays by altering the timestamps of the range measurements by −20 ms,
0 ms, and 20 ms respectively. We then estimated each time-offset on ten datasets of 4
seconds of data taken from a longer calibration sequence. Of these ten estimates, the
mean delays are 47.5 ms, 64.5 ms, and 82.2 ms with standard deviations σ of 4.78 ms,
5.49 ms, and 6.26 ms respectively. These results show that the approach is capable of
estimating the simulated additions, which suggests that it can measure the absolute
offset with similar accuracy.

In order to evaluate the spatial calibration, a total of 20 datasets, each of about 40
seconds length, was recorded. The mean and standard deviation of all translation esti-
mates expressed in the coordinate frame of the LRF is 6.34 cm ± 0.84 cm, −1.59 cm
± 0.64 cm, and −7.97 cm ± 2.75 cm, as compared to approximate hand measure-
ments of 6.2 cm, −1.4 cm, and −9.4 cm. The large uncertainty in estimating the z
component of the translation may be explained with a lack of rotational excitement
in one axis in the datasets, likely caused both by a conservative operation by the user
and by the narrow field of view of the image sensors that causes the sensor to lose
track of the calibration pattern more easily when rotating in a certain axis. Orienta-
tion in Euler angles in XZY convention was estimated to be 179.73°± 0.10°,−1.47°
± 0.47°, and 90.78° ± 0.46°.

Fig. 2.5 provides an visual impression of the accuracy of the spatial calibration. As
the image sensors on our device are susceptible to infra-red light, the scan line is vis-
ible as illuminated band on table and calibration pattern. The image is superimposed
with the scan line modelled using the initial guess (blue) and the transformation as
estimated by the framework (red). Although the intersection of the scan plane with
two planes leaves unconstrained degrees of freedom, the resemblance of modelled
and observed scan line in combination with the other results presented in this work
suggest an accurate spatial calibration between the LRF and the visual/inertial sensor.

Preliminary Reconstruction Results

Fig. 2.6 provides the motivation for this work: In order to illustrate the necessity of
a sufficient temporal calibration, the range scan measurements for generating the de-
tail view in Fig. 2.6a were artificially delayed by 60 ms. The resulting point cloud
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(a)

(b)

(c)

Figure 2.3: Histogram of laser distance errors prior to (Fig. 2.3a) and after (Fig. 2.3b)
estimation of the inter-sensor transformation and delay. Fig. 2.3c depicts results when
the time delay between sensors is neglected, resulting in larger overall errors.
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Figure 2.4: Distribution of the intersensor delay. As ground truth was not available for
the delay, the accuracy was evaluated by adding a simulated delay of −20 ms, 0 ms,
and 20 ms respectively to sets of each ten calibration sequences. Results suggest
that the proposed approach is capable of accurately estimating the time delay for this
sensor combination.

Figure 2.5: Illustration of the calibration accuracy. The laser scanner emits infra-red
light that the image sensors are susceptible to, rendering some of the points sampled
by the laser range finder visible. The image is superimposed with a projection of the
laser measurement into the camera using the initial guess (blue) and the calibrated
transformation (red). The degree of coincidence of projected and visible scan line
suggests an accurate calibration of the transformation between the sensors.
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exhibits noticeable distortions and incorrect coloring, most apparent for the right col-
umn, while correctly synchronized measurements allow for a crisp reconstruction(see
Fig. 2.6b).

(a)

(b)

Figure 2.6: Detail views of the rendered reconstructions. Laser range data in Fig. 2.6a
exhibited a simulated delay of 60 ms with respect to the visual/inertial measurements,
while in 2.6b, the sensors were correctly synchronized, resulting in an improved re-
construction of details, which is particularly apparent for the coloring of the column
right of the door.

Fig. 2.7 depicts a sample reconstruction result obtained by scanning a church build-
ing. The dataset spans roughly 140 s with about 2800 image pairs, 5600 laser range
scans and 28000 inertial measurements. The scanning path followed the contours of
the façade. Please note the level of details both in reconstruction and coloring of the
model, particularly in the details of the stone wall, which suggests that the calibration
is reasonably accurate in estimating time delays as well as the transformation between
the LRF and the camera sensor.
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(a)

(b)

Figure 2.7: Two views of a 3D reconstruction of a church building. Only laser scan
points are visualized for which an intensity value could be retrieved from the camera
images. Please note the level of detail, particularly apparent on the stone wall, that
suggest—besides accurate state estimation—a precise calibration of the laser with
respect to the visual/inertial sensor.

2.5 Conclusion and Future Work

This work proposed a spatio-temporal calibration for a combination of laser range
finder, camera and inertial measurement unit. Furthermore, it presented preliminary
results of colored point cloud reconstructions of buildings, acquired with a hand-held
device. Its narrative follows previous work (Furgale, Rehder, and Siegwart, 2013) in
that it suggests an accurate and more complete offline-calibration of a multi-sensor
setup, and part of its significance lies in the demonstration of unified spatio-temporal
calibration applied to a novel combination of sensors. Another contribution lies in the
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demonstrated application to hand-held, large-scale scanning with results that compare
well to other solutions (Bok et al., 2011; James and Quinton, 2014). However, its
broader applicability depends on the premise of a fixed time-delay between different
sensors, which is not subject to changes on start-up or clock drift. In future work,
it remains to be demonstrated that accurate timing can be reproduced over multiple
start-ups of the system and that clock drift remains negligible within the time frame
of a data collection campaign. Furthermore, by adding regularization terms to the
objective function of the estimate, the approach could also be applied to a sensor
suite without an IMU, and in the future, we would like to investigate this further.
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3
A General Approach to
Spatio-Temporal Calibration in
Multi-Sensor Systems
Joern Rehder, Roland Siegwart, and Paul Furgale

3.1 Introduction

Most methods for state estimation that fuse data from multiple sensors assume and
require that the timestamps of all measurements faithfully indicate the measurement
instant with respect to a single clock.

Fig. 3.1 depicts reconstructions obtained with our hand-held scanning device shown
in Fig. 3.4b. The reconstruction in the middle exhibits distortions arising from a fixed
temporal offset corrupting the timestamps of the laser range measurements, while the
bottom figure displays a reconstruction where all temporal relations were handled
correctly. While Fig. 3.1 provides compelling visual evidence for the importance of
considering temporal relationships in multi-sensor systems, we would like to illus-
trate a core concept of this work with a simpler example: Assume that we would
like to add a fixed-exposure camera to our robot. The camera of choice possesses
an internal clock and records images at constant rate. The state of this internal clock
at the instant at which the camera started exposing is conveyed with the image. The
camera further exposes an interrupt line that signals when the image sensor initiates

Published in:
IEEE Transactions on Robotics 32.2, pp. 383–398, 2016, ©2016 IEEE
DOI: 10.1109/TRO.2016.2529645
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Figure 3.1: Reconstructions obtained from data recorded with our hand-held scanning
device (Fig. 3.4b), as well as a photograph for comparison. We used visual/inertial
odometry (Leutenegger et al., 2015) for recovering the motion of the sensor and em-
ployed the estimated state to transform the range scans into a common coordinate
frame. The figure in the middle depicts distortions in the reconstruction caused by
a constant temporal offset corrupting the timestamps of the range measurements. In
contrast, temporal relations were considered correctly in the figure on the bottom,
resulting in a more accurate reconstruction. Image insets highlight features of the
rightmost column.
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exposure. Finally, the camera implements a protocol that allows the host computer to
query the state of the camera’s internal clock with minimal latency.

Given these outputs from the camera, it is possible to synchronize the clocks between
the robotic system and the camera in a number of different ways. However, the mea-
surement instant of the image needed by an estimation framework is the mid-exposure
time (see Sections 3.4.4 and 3.4.8 for justification). This implies that, even after clock
synchronization, the measurements from the camera exhibit a constant temporal off-
set. This is typical of many sensors where deterministic temporal offsets arise due to
signal integration, transmission times or filter delays.

Consequently, we will distinguish between clock synchronization as the process of
establishing a single temporal reference for all sensors, and temporal calibration as
the process of determining constant offsets between measurement instants and times-
tamps. In the following, we will use the terms temporal offset and delay interchange-
ably and will not make any assumptions about the sign of this offset.

Approaches to clock synchronization can be grouped into three different schemes:

1. Hardware synchronization: In such a setup, either temporal information about
the measurement is conveyed by a change of signal on a dedicated synchro-
nization line or a measurement is initiated by a hardware trigger. In both cases,
a central unit records the time at which a trigger was received or generated with
respect to a single clock.

2. Software synchronization with bidirectional communications: Each sensor as-
signs timestamps to measurements based on its own internal clock. It further
provides a bidirectional communication protocol that allows for synchroniza-
tion with respect to a common clock. Software synchronization then corrects
for jitter (stochastic delay of individual messages), skew (the difference in
clock rates), and the communication delay between each sensor and the host
system.

3. Software synchronization with unidirectional communications: Such a method
is usually used when devices do not provide communication protocols for syn-
chronization. These may be sensors that send data at a fixed rate or that are
polled regularly. The sensors themselves may have independent clocks accord-
ing to which they assign device timestamps to their measurements. In this case,
software synchronization refers to jitter and skew removal based on an estimate
of the measurement rate as perceived by the host system and under the assump-
tion that communication delays, though subject to noise, remain constant over
time.
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Regardless of the clock synchronization method used, it is still important to account
for temporal offsets. These quantities are notoriously hard to obtain from manufac-
turer’s information, and may be dependent on the particulars of integration such as
Ethernet switches or other devices that may introduce delays. Even when a device
provides a trigger line, it is unclear whether asserting a triggering signal immediately
initiates a measurement procedure, or if there is some deterministic delay between
the trigger and the measurement. Similarly, sensors that allow for clock synchroniza-
tion through a communication protocol are often comparatively complex black-box
systems and it requires faith to assume that all temporal relationships have been con-
sidered adequately inside the device.

In this work, we propose an offline calibration technique which estimates the rigid
transformation between sensors, while it simultaneously determines constant tempo-
ral offsets of sensor timestamps with respect to their measurement instants. The ap-
proach is designed for applications with demanding accuracy requirements and can
be combined with any of the clock synchronization schemes introduced before.

Conventional discrete-time estimation techniques generally require a state at each
measurement time, which makes the estimation of temporal offsets difficult as mea-
surement times shift when the offsets are updated. This has led to the development
of specialized algorithms just for estimating time offsets (Kelly, Roy, and Sukhatme,
2014; Mair et al., 2011), that are applied prior to spatial calibration of the sensors.

In contrast, the continuous-time batch estimation algorithm proposed by Furgale,
Barfoot, and Sibley (2012) makes it easy to fold time offsets directly into a prin-
cipled maximum-likelihood estimator. Although we agree with the authors of Mair
et al. (2011) that jointly estimating uncorrelated quantities may potentially impair
results, we believe that, given accurate measurement models, the optimality impli-
cations of maximum likelihood estimation extend to our approach. Consequently,
we can achieve the highest accuracy—both for temporal and spatial parameters—by
incorporating all available information into a unified estimate.

The contributions of this paper are as follows:

1. we propose the first general method for spatio-temporal maximum-likelihood
estimation that comes as a natural extension to batch, continuous-time estima-
tion (Furgale, Barfoot, and Sibley, 2012) (Section 3.3.1);

2. we derive estimators for sensor suites where temporal calibration has been
demonstrated before (e.g. camera/gyroscopes (Kelly, Roy, and Sukhatme,
2014; Mair et al., 2011)) and for novel combinations of sensors (e.g. cam-
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era/accelerometer, camera/Laser Range Finder (LRF)) in support of the gener-
ality claim (Section 3.3.2.4);

3. we demonstrate temporal calibration, accurate to a fraction of the shortest
measurement interval (Section 3.4.4), and spatial calibration of millimeter-
precision (Section 3.4.5);

4. we answer questions about the applicability of the approach to different clock
synchronization modalities (Section 3.4.5); and

5. we provide a compact account of practical considerations for synchronization
in software (Section 3.4.7).

This work compiles findings from our previous contributions (Furgale, Rehder, and
Siegwart, 2013; Nikolic et al., 2014b; Rehder et al., 2014), but extends experimen-
tal work to specifically answer the question of its applicability to synchronization
schemes other than hardware synchronization. It also provides a correction to and
extension of the laser range finder measurement model (see Eq. 3.20), which was
unfortunately incorrectly stated in Rehder et al. (2014).

3.2 Related Work

The focus of this work is on a general approach to incorporating temporal quanti-
ties into inter-sensor calibration. To demonstrate this generality, we derive estimators
for spatio-temporal camera/Inertial Measurement Unit (IMU), camera/IMU/LRF, and
camera/LRF calibration. Accordingly, this section presents an overview of existing
approaches for temporal calibration, as well as for spatial camera/IMU and
camera/LRF calibration.

Earlier work by Tungadi, Kleeman, et al. (2008) estimates the temporal offset be-
tween wheel encoders and a laser range finder by determining the phase shift in the
orientation measured independently by both sensors when undergoing a periodic ro-
tational motion. Kelly, Roy, and Sukhatme (2014) propose a procedure, which deter-
mines the temporal offset between a camera and an IMU by using a variation of the
Iterative Closest Point Algorithm (ICP) to temporally align orientation curves sensed
by a camera and gyroscopes individually. This method is intended as a preprocess-
ing step before performing full spatial calibration (Kelly and Sukhatme, 2011). Mair
et al. (2011) also recommend independent estimation the time offset by either (a)
temporally aligning the independent absolute rotational velocities of the camera and
IMU or (b) by determining the phase shift of common frequencies in these signals.
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Separating the estimation of temporal and spatial parameters comes at a cost. For
example, both (Kelly, Roy, and Sukhatme, 2014) and Mair et al. (2011), neglect tem-
poral evolution of IMU biases over the course of a dataset, which may affect this
estimate and in turn bias the subsequent spatial parameter estimation. Furthermore,
they all rely on orientation measurements and it is not immediately clear how to ex-
tend the approaches to sensor suites where orientation or angular velocity information
is not available from every sensor. Unlike these approaches, our method extends to
any calibration problem that can be cast in terms of maximum-likelihood estimation
of the states and parameters—regardless of whether or not orientations are involved.
Furthermore, it uses the full model to jointly solve for temporal and spatial parame-
ters, avoiding the compounding of errors as approximations cascade through multiple
steps.

There exist online estimation approaches that are capable of estimating the transfor-
mation between camera and IMU (Jones and Soatto, 2011; Weiss et al., 2012), but
which entirely neglect the temporal relationship. Recently, the integration of temporal
offset calibration into a state estimation framework has been demonstrated for sensor
setups comprised of a camera and an IMU (Li and Mourikis, 2013; Li and Mourikis,
2014) and for a combination of an IMU and a laser range finder (Bosse, Zlot, and
Flick, 2012). Additionally, (Li and Mourikis, 2014) provides an identifiability analy-
sis for the time delay in visual/inertial sensor suites, the implications of which, espe-
cially in terms of degenerate calibration motions, also extend to this work. Although
these works show that it is possible to add both temporal and spatial calibration pa-
rameters to an online estimator, we advocate to separate these steps for two reasons.
First, the addition of extra calibration parameters increases the implementation effort
and computational complexity of the online filter. Second, the biggest drawback to
online self calibration is that the extended estimation problem has several additional
unobservable modes of operation that the user of the filter has to worry about. In the
camera/IMU case, these include planar motion, standing still, and other actions that
are clearly very likely for a large class of robots and use cases. While there has been
some work addressing unobservability during online calibration (Maye, Furgale, and
Siegwart, 2013), the problem remains largely unsolved. In our offline calibration
procedure, we can control the motion of the sensor during calibration, ensuring that
all parameters are observable. Approaches for online estimation (Bosse, Zlot, and
Flick, 2012; Li and Mourikis, 2013; Li and Mourikis, 2014) could equally be em-
ployed in a preceding calibration step to determine temporal offsets and inter-sensor
transformations from controlled motions. However, we believe that a batch approach,
which takes all measurements in the calibration dataset into account and re-linearizes
frequently, is likely to yield more accurate results than a real-time method, which
operates on a subset of the measurements at any time or which linearizes only once.
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Early efforts in spatial camera/IMU calibration required elaborate calibration settings
(Alves, Lobo, and Dias, 2003) and estimated orientation and displacement in sepa-
rate procedures (Lobo and Dias, 2007). More recently, recursive approaches were
employed to jointly estimate relative rotation and translation from measurements ac-
quired by dynamically moving a visual/inertial sensor combination in front of a cal-
ibration pattern (Kelly and Sukhatme, 2011; Mirzaei and Roumeliotis, 2008). Both
studies further address the question of the observability of the calibration, deriving
that it can be determined when sufficient rotational velocity is present in the dataset.
Other approaches estimated the transformation using batch optimization over a set of
inertial measurements and calibration pattern observations (Fleps et al., 2011; Mirzaei
and Roumeliotis, 2007). Among those, our algorithm is most similar to Fleps et al.
(2011) in that it also employs B-splines to parameterize the motion of the device.
In general, we believe that batch approaches (like ours) will always be more accu-
rate than filtering approaches because of the ability to relinearize all model equations
during iterative optimization.

For camera/LRF calibration, we will limit our literature overview to work concern-
ing sensor configurations similar to ours with a rigid link between a camera and a
two-dimensional (2D) laser range finder. So and Menegatti (2012) provide a compre-
hensive survey of the state of the art in this field. According to this work, established
approaches either minimize the distance from ranges sampled on a plane from its
visually perceived estimate (e.g. Mei and Rives (2006), Vasconcelos, Barreto, and
Nunes (2012), and Zhang and Pless (2004)) or solve for a set of equations that arises
from correspondences of point range measurements to lines detected in the image
(e.g. Bok et al. (2011) and Li et al. (2007)). These approaches are mostly practical
for setups with overlapping field of view between camera and LRF. The approach
by Bok et al. (2014) dropped the requirement that range measurements considered
in the calibration had to be induced by a visually perceived entity, making it a more
convenient approach for setups with non-overlapping fields of view. In contrast to
all aforementioned approaches, our work employs a fully probabilistic model of the
range measurements, which allows a maximum likelihood estimate of the calibration
parameters. We recently discovered that So and Menegatti (2012) proposed a simi-
lar model called “line-of-sight” distance. While the authors remained vague on the
computation of this distance, we present a mathematical derivation and develop the
model further based on insights from a characterization of the LRF (Demski, Mikul-
ski, and Koteras, 2013). Furthermore, our method overcomes the limitations stated in
So and Menegatti (2012) by simultaneously estimating the plane parameters such that
uncertainties can be treated consistently. Finally, none of the established techniques
addresses the temporal relationship between LRF and camera, despite the fact that
this quantity is of practical interest in many applications.
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3.3 Theory

This section presents the theory for joint estimation of spatial and temporal calibration
parameters. Throughout this section, we follow the basis function approach for batch
continuous-time state estimation presented in Furgale, Barfoot, and Sibley (2012).

Time-varying states are represented as the weighted sum of a finite number of known
analytical basis functions. For example, a D-dimensional state, x(t), may be written
as

Φ(t) :=
[
φ 1(t) . . . φ B(t)

]
, x(t) := Φ(t)c, (3.1)

where each φ b(t) is a known D× 1 analytical function of time and Φ(t) is a D×B
stacked basis matrix. To estimate x(t), we simply estimate c, a B× 1 column of
coefficients.

3.3.1 Estimating Time Offsets using Basis Functions

Here we explain the extensions to Furgale, Barfoot, and Sibley (2012) needed to
estimate temporal offsets. This section assumes that the system used some form
of clock synchronization such that all timestamps are expressed with respect to a
common clock.

When estimating time offsets from measurement data, we will encounter error terms
such as

e j := y j−h
(
x(t j +d)

)
, (3.2)

where y j is a measurement that arrived with timestamp t j, h(·) is a measurement
model that produces a predicted measurement from x(·), and d is the unknown time
offset. Using basis functions, this becomes

e j = y j−h
(
Φ(t j +d)c

)
, (3.3)

which is easy to evaluate for different values of d as it changes during optimization.
The analytical Jacobian of the error term, needed for nonlinear least squares estima-
tion, is derived by linearizing (3.3) about a nominal value, d̄, with respect to small
changes, ∆d. This results in the expression

e j ≈ y j−h
(
Φ(t j + d̄)c

)
−HΦ̇(t j + d̄)c∆d, (3.4)
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where the over dot represents a time derivative and

H :=
∂h
∂x

∣∣∣∣
x(Φ(t j+d̄)c)

. (3.5)

In (3.4), Φ(t) is a known function and we assume its time derivative, Φ̇(t), is available
analytically.

This approach has two clear benefits. Firstly, it allows us to treat the problem of esti-
mating time offsets within the rigorous theoretical framework of maximum likelihood
estimation. Secondly, it allows us to leave the problem in continuous time so that the
delayed measurement equations and their Jacobians can be evaluated analytically.

In short, estimating the time offsets in a principled way becomes easy.

3.3.2 Multi-Sensor Calibration for Combinations of Cameras, an
IMU and an LRF

Rather than delving further into the general case, we will proceed with specific exam-
ples. The goal of calibration is to determine the relative rotation, translation, and time
offset between the sensors. We suggested that a continuous-time batch formulation of
the calibration problem is well-suited for a broad range of sensor combinations and
in order to substantiate this claim, we will derive a set of estimators for camera/IMU,
camera/IMU/LRF and camera/LRF spatio-temporal calibration.

To perform calibration, we collect a set of data over a short time interval, T = [t1, tK ]
(typically 1–2 minutes), as the sensor head is waved in front of a static calibration
pattern, while exciting all rotational degrees of freedom. This procedure forms the
basis for calibrating all of the aforementioned sensor suites with the addition that
for setups including an LRF, we further require the environment to be at least partly
comprised of planes.
Fig. 3.4a shows the basic problem setup. Estimation is performed with respect to an
inertial world coordinate frame, F−→w. The linear acceleration and angular velocity
are measured in the IMU frame, F−→i. The camera coordinate frame, F−→c, is placed at
the camera’s optical center with the z-axis pointing down the optical axis. Fig. 3.4b
depicts the sensor combination employed in LRF calibration. The additional frame
F−→l coincides with the center of the LRF with the x,y-axes spanning the scanning
plane.
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3.3.2.1 Parameterization of Time-Varying States

Time-varying states are represented by B-spline functions. B-splines produce simple
analytical functions of time with good representational power. Please see (Bartels,
Beatty, and Barsky, 1987) for a thorough introduction.

The IMU pose is parameterized as a 6×1 spline, using three degrees of freedom for
orientation and three for translation. The transformation that takes points from the
IMU frame F−→i to the world frame F−→w at any time t can be built as

Tw,i(t) :=
[

Cw,i(t) t(t)
0T 1

]
, (3.6)

with Cw,i(t) := C
(
ϕ(t)

)
, where C(·) is a function that builds a rotation matrix from

orientation parameters ϕ(t) := Φϕ(t)cϕ , and t(t) := Φt(t)ct encodes the transla-
tion. The velocity, v(t), and acceleration, a(t), of the platform with respect to and
expressed in the world frame F−→w are

v(t) = ṫ(t) = Φ̇t(t)ct , a(t) = ẗ(t) = Φ̈t(t)ct . (3.7)

For a given rotation parameterization, the relationship to angular velocity is of the
form

ω(t) = S
(
ϕ(t)

)
ϕ̇(t) = S

(
Φ(t)cϕ

)
Φ̇(t)cϕ , (3.8)

where S(·) is the standard matrix relating parameter rates to angular velocity (Hughes,
1986). In this paper we used the axis/angle parameterization of rotation where ϕ(t)
represents rotation by the angle ϕ =

√
ϕ(t)T ϕ(t) about the axis ϕ(t)/ϕ(t).

In our work, the IMU pose is encoded as a sixth-order B-spline (a piecewise fifth-
degree polynomial), which allows for encoding accelerations as a cubic polynomial.
We found this was necessary to accurately capture the dynamics for the motions ex-
citing the sensor during calibration.

Time-varying biases are represented by cubic B-splines:

b(t) := Φb(t)cb (3.9)

B-splines are just one possible realization of these basis functions Φ(t). For more de-
tails on the choice of basis functions and their desired properties, please see (Furgale,
Barfoot, and Sibley, 2012).
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3.3.2.2 Quantities Estimated

The following parameters and states, or a subset thereof, are determined by the esti-
mators proposed in this work:

Time-Invariant

gw direction of gravity expressed in F−→w
Tc,i transformation between IMU and camera
Ti,l transformation between LRF and IMU
dc delay in the image timestamps
dl delay in the range timestamps
nh
w normal of plane πh expressed in F−→w

dh distance of plane πh to the origin
bl cumulative range bias in LRF measurements

Time-Varying

Tw,i(t) pose of the IMU expressed in F−→w, represented as sixth-order B-
spline

ba(t) accelerometer bias, represented as cubic B-spline
bω(t) gyroscope bias, represented as cubic B-spline

3.3.2.3 Measurement and Process Models

Each accelerometer measurement, αk, and gyroscope measurement, ϖk, is sampled
at time tk, where k = 1 . . .K. We use the standard, discrete-time IMU measurement
equations,

αk := Cw,i (tk)
T (a(tk)−gw

)
+ba(tk)+νak(tk), (3.10a)

ϖk := Cw,i (tk)
T

ω(tk)+bω(tk)+νωk(tk). (3.10b)

In Eq. 3.10a, 3.10b, 3.11 and 3.12, ν(t) denotes a white Gaussian process
ν ∼ GP (0,Rδ (t− t ′)) with mean 0 and covariance function Rδ (t− t ′), where δ (·)
denotes Dirac’s delta function. These noise processes are assumed to be statistically
independent between sensors.

The pixel location of landmark pm
w seen at time t j +dc is denoted ym j, where t j is the

image timestamp, dc is the unknown delay of the image timestamps, and j = 1 . . .J
indexes the images. There are M landmarks, {pm

w |m = 1 . . .M}. In this notation, the
subscript denotes the frame that the entity is expressed in, here F−→w, and the super-
script marks an identifier, in this case establishing an association with coordinates
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of a specific landmark on the calibration pattern. With function h(·) denoting any
nonlinear camera model, the projection equation is

ym j := h
(
Tc,iTw,i(t j +dc)

−1pm
w

)
+νym j . (3.11)

Individual laser range measurements, lhi, at angle ψi in the LRF reference frame are
recorded at time ti + dl and modelled as induced by plane πh, where h = 1 . . .H,
with H denoting the number of planes detected in the environment. Plane πh is pa-
rameterized by its normal nh

w, expressed in F−→w, and a distance dh ≥ 0, such that
pi
w

T nh
w−dh = 0 holds true for all pi

w ∈ πh. The range measurement equation can be
expressed as

lhi := f
(

ψi,Tw,i(ti +dl)Ti,l,nh
w,dh

)
+bl +νlhi , (3.12)

where f (·) models the range measurement based on planes, πh, in the environment
and bl is a constant range bias. This laser model will be explained in more detail in
Section 3.3.2.5.

In our formulation of the error terms, the time reference is provided by the IMU. This
assumption is only for convenience as it is easier to write out and implement delayed
low rate measurements.

We model the IMU biases as driven by white Gaussian processes:

ḃa(t) = wa(t) wa(t)∼ GP
(
0,Qaδ (t− t ′)

)
(3.13a)

ḃω(t) = wω(t) wω(t)∼ GP
(
0,Qω δ (t− t ′)

)
(3.13b)

with mean 0 and covariance function Qδ (t− t ′). We assume the bias processes are
statistically independent so that E

[
wa(t)wω(t ′)T

]
= 0 for all t, t ′, where E[·] is the

expectation operator.

In some experiments, we present full spatio-temporal calibration between reduced
sensor combinations where the measurements do not contain enough information to
adequately constrain the trajectory: between a camera and a 3-axis accelerometer as
well as between a stereo camera setup and an LRF. We can cope with these cases by
making assumptions about the distribution of accelerations exciting the motion of the
sensor:

ϕ̈(t) = wϕ(t) wϕ(t)∼ GP
(
0,Qϕ δ (t− t ′)

)
(3.14a)

ẗ(t) = wt(t) wt(t)∼ GP
(
0,Qtδ (t− t ′)

)
(3.14b)
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Informally, this weak motion prior tells the estimator that, in the absence of other
information, it should assume a minimum acceleration path. This setup that fits mea-
surements while minimizing acceleration is typical of spline smoothing used in other
disciplines (c.f. (Wahba, 1990)).

3.3.2.4 The Estimators

The previously introduced measurement and process models form the basis from
which we compose different estimators. Error terms are constructed as the differ-
ence between the measurement and its prediction given the current state estimate.
The continuous-time models for IMU biases and motion regularization give rise to
integral error terms (refer to Furgale, Barfoot, and Sibley (2012) for more details).
In the following, we will introduce the individual components from which the dif-
ferent objective functions will later be composed. These include the IMU cost terms
and continuous-time bias models arising from (3.10a) and (3.10b), and (3.13a) and
(3.13b),

eαk := αk−
(

Cw,i (tk)
T (a(tk)−gw

)
+ba(tk)

)
, (3.15a)

Jα :=
1
2

K

∑
k=1

eT
αk

R−1
αk

eαk , (3.15b)

eωk := ϖk−
(

Cw,i (tk)
T

ω(tk)+bω(tk)
)
, (3.15c)

Jω :=
1
2

K

∑
k=1

eT
ωk

R−1
ωk

eωk , (3.15d)

Jba :=
1
2

∫ tK

t1
ḃa(τ)

T Q−1
a ḃa(τ)dτ, (3.15e)

Jbω
:=

1
2

∫ tK

t1
ḃω(τ)

T Q−1
ω ḃω(τ)dτ, (3.15f)

cost terms associated with the camera arising from (3.11),

eym j := ym j−h
(
Tc,iTw,i(t j +dc)

−1pm
w

)
, (3.16a)

Jy :=
1
2

J

∑
j=1

M

∑
m=1

eT
ym j

R−1
ym j

eym j , (3.16b)

and cost terms from the LRF measurements based on (3.12),

elhi := lhi−
(

f
(

ψi,Tw,i(ti +dl)Ti,l,nh
w,dh

)
+bl

)
, (3.17a)
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Jl :=
1
2 ∑
(i,h)∈A

eT
lhi

R−1
lhi

elhi , (3.17b)

whereA is a set of tuples associating range measurement i with plane πh. Cost terms
from continuous-time motion models based on (3.14) to regularize the estimate when
the full IMU is not available result in contributions

Jϕ :=
1
2

∫ tK

t1
ϕ̈(τ)T Q−1

ω ϕ̈(τ)dτ, (3.18a)

Jt :=
1
2

∫ tK

t1
ẗ(τ)T Q−1

ω ẗ(τ)dτ. (3.18b)

Table 3.1 shows the set of estimators composed from these error terms and evalu-
ated in Section 4.4. The Levenberg-Marquardt (LM) algorithm (Nocedal and Wright,
2006) is used to minimize the respective objective functions to find the maximum
likelihood estimate of all unknown parameters at once. Estimator J has since been
released as part of the open-source calibration toolbox kalibr (Furgale et al., 2015b).
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3.3.2.5 Probabilistic Range Measurement Model

In the following, we will derive a probabilistic model for laser range measurements.
It is an extension of the model we proposed in Rehder et al. (2014) and similar to
the “line-of-sight” distance mentioned in So and Menegatti (2012). As stated earlier,
range measurements are modelled as being induced by a plane, πh. Literature on
characterizing laser range finders (Demski, Mikulski, and Koteras, 2013) identifies
factors such as thermal effects, the angle of incidence at which the beam hits the
surface, and surface reflectivity as affecting the distance output. Bosse, Zlot, and
Flick (2012) suggest that gyroscopic effects might further impact the device when
subjected to dynamic motions. While we acknowledge the existence of all these
factors, we chose to not model them individually and instead to make the following
simplifying assumptions:

• There is no error on the beam directions reported by the range finder.

• Range measurements are corrupted by additive zero-mean Gaussian noise, the
distribution of which is independent of the measured distance.

• The different factors causing an incorrect mean distance to be reported by the
LRF can be approximated by a single cumulative range bias.

The results presented in Section 4.4 suggest that this model is valid with respect to
our requirements on accuracy.

Given a measurement induced by a plane πh, defined by its normal nh
w and a distance

dh, range lhi can be modelled as

lhi := f
(

ψi,Tw,i(ti +dl)Ti,l,nh
w,dh

)
+bl +νlhi (3.19)

with νlhi ∼N (0,Rl), and where f (·) is calculated according to

f (·) :=

∣∣∣∣∣nh
w

T tlw(ti +dl)−dh

nh
w

T rw(ti +dl)

∣∣∣∣∣ . (3.20)

The position of F−→l in the world coordinate frame F−→w is calculated according to
[tlw(ti +dl),1]T = Tw,i(ti +dl)[tli,1]T , where tli denotes the translational component
of transformation Ti,l. The unit vector in beam direction is calculated as

rw(ti +dl) = Cw,i(ti +dl)Ci,l [cos(ψi),sin(ψi),0]
T , (3.21)
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F−→w

F−→l

rw

nh
w

F−→i

lhi

dh

Tw,i

Ti,l

tlw

ψi

Figure 3.2: Illustration of the range computation given sensor pose Tw,i and plane πh.
The range in beam direction can be computed by means of similar triangles. These
relate lhi and the distance of the LRF to the plane (nh

w

T tlw−dh) to unit length and the
projection of the unit vector in beam direction onto the normal direction rwT nh

w.

where Ci,l marks the rotational component of Ti,l. Fig. 3.2 visualizes these quanti-
ties and provides an intuition for the range computation. The cumulative range bias,
bl , is representative of properties of the environment the calibration was conducted
in, such as reflectivity and mean depth and slant of identified planes. Hence, it is not
genuinely suited to correct measurements in other environments.

3.3.2.6 Automatic Plane Detection

The previously introduced probabilistic model is only valid for measurements in-
duced by planes and the problem remains of identifying those measurements as well
as the corresponding planes, πh.

With the sensor trajectory recovered in a previous step (either through estimator J or,
in the absence of an IMU, by minimizing the objective function Jy + Jϕ + Jt ), and
assuming a sufficiently accurate initial estimate of the transformation, Ti,l, an initial
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point cloud can be obtained by transforming the laser measurements of a beam cast
at angle, ψi, and measuring range, li, into the world coordinate frame, F−→w:[

pi
w

1

]
= Tw,i(ti +dl)Ti,l [licos(ψi), lisin(ψi),0,1]

T . (3.22)

Fig. 3.3 depicts such an initial point cloud acquired from a calibration sequence. As
a result of the errors in the initial estimate for the transformation, Ti,l, and the tem-
poral calibration parameter, dl , the point cloud appears fuzzy despite most features
of the room being visible. In order to automatically identify candidates for mea-
surements having been induced by planes, a Random Sample Consensus (RANSAC)
scheme (Fischler and Bolles, 1981) is applied to the point cloud, with plane hypothe-
ses generated from a minimal set of three non-collinear points and model support
being evaluated according to threshold, ε ,

|nh
w

T pi
w−dh|< ε , (3.23)

with pi
w being a point evaluated for support.

Finding planes in this way is not easy. Not all inliers are necessarily induced by
the identified plane and the parameters determined by RANSAC might not even cor-
respond to a physically meaningful entity at all; points on any structure within the
distance, ε , from plane, πh, will be included. This complication can be illustrated
with the table shown in Fig. 3.3: Using the same parameters, πh, (3.23) would hold
true for the table top, but also for any point on the wall that has the same distance
to the ground as the surface of the table. Similarly, the range finder samples points
in the scanning plane and a lack of dynamics in the calibration motion or frequent
revisiting of similar sensor poses results in accumulations of points that satisfy (3.23)
even though they are only induced by the scanning plane of the laser rather than a
physical structure. Finally, while the plane identification is based on an error measur-
ing the distance of a point to a plane in normal direction, our probabilistic measure-
ment model considers the distance of the point to the plane in beam direction, and
intuitively these two errors can be vastly different1. For these reasons, a subsequent
processing step aims at omitting all spurious data points.

A simple region growing is employed to remove outliers that stem from the inter-
section of plane πh with other structures in the environment as well as incorrect as-
sociations arising at the intersection of two physical planes. Starting from a set of

1A RANSAC support measure based on the distance in beam direction is equally feasible. However,
evaluating support according to (3.23) is more efficient and does not require to maintain associations
between points and beam directions during plane detection.
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Ceiling

Floor

Table

Walls

Figure 3.3: An illustration of the automatic plane identification. Measurements in-
duced by planes are marked in red, while blue points mark range data not considered
in the calibration process. The majority of planes in the environment are detected
correctly, while points at the intersection of two planes are excluded to avoid issues
arising from incorrect associations. The lack of crispness in the point cloud is due
to discrepancies in the initial guess for the inter-sensor transformation Ti,l and dl to
their true values.

seed points, neighbouring measurements are incorporated into the plane hypothesis
if they (a) are considered a RANSAC inlier, (b) are within a certain distance, and (c)
not a single point in the same neighbourhood is considered an outlier. Of all seeded
regions, the most populated is selected and subjected to a heuristic test based on the
ratio of the eigenvalues of the matrix expressing the second central moment of its
points as well as their absolute number in order to exclude regions induced by the
scanning plane or of insufficient extent to reliably constrain the normal estimation.
Finally, all measurements within the region are filtered with respect to their range
error in beam direction. Subtle disruptions of planes, such as flat ceiling lamps, may
be eclipsed by an inaccurate initial Ti,l. We mitigate their effect on the estimation by
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employing the Blake-Zisserman robust cost function (Blake and Zisserman, 1987) on
range residuals.

We iterate the plane detection while removing measurements corresponding to veri-
fied detections until the number of remaining points falls below the threshold of what
we accept as a plane hypothesis. In cases where a plane hypothesis is rejected by
our heuristic as presumably induced by the scanning plane, a certain percentage of
randomly selected inliers is excluded from the data to avoid selecting similar config-
urations in future iterations. A result of automatic plane identification is depicted in
Fig. 3.3, where red points mark measurements identified as being induced by planar
structures. Ceiling, floor and most walls are reliably detected, while the transition
from ceiling to wall is not considered to avoid incorrect associations.

3.4 Experiments

In this section, we will demonstrate the stability and accuracy of the estimators pro-
posed in Section 3.3.2.4 and highlight the applicability of our temporal calibration to
the different synchronization modalities introduced in Section 3.1.

3.4.1 Equipment

Our experiments used two hardware setups: Setup I, depicted in Fig. 3.4a, and Setup II,
shown in Fig. 3.4b. Central to both are different generations of a visual/inertial sensor
(Nikolic et al., 2014b) comprised of multiple Aptina MT9V034 Wide Video Graphics
Array (WVGA) global shutter image sensors and an Analog Devices
ADIS16488/ADIS16448 IMU respectively. In addition, the setup shown in Fig. 3.4b
features a Hokuyo UTM-30LX laser range finder. For experiments conducted with
Setup I, only a single camera was employed. For evaluations with Setup II, error term
contributions from both cameras were considered. In both setups, data inside the vi-
sual/inertial sensor was routed through a Field Programmable Gate Array (FPGA) so
timestamps could be assigned in hardware with true concurrency to all sensor read-
ings including the LRF trigger output. Datasets were collected by dynamically mov-
ing the sensor suite in front of a checkerboard while exciting all rotational degrees
of freedom to render all calibration parameters observable (Li and Mourikis, 2014;
Mirzaei and Roumeliotis, 2008). The geometry of the checkerboard was known a
priori, and the pattern was approximately aligned with gravity to facilitate an initial
estimate of gw.
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F−→w

F−→iF−→c

(a)

F−→i

F−→c

F−→l

(b)

Figure 3.4: In Setup I (Fig. 3.4a) F−→c marks the coordinate frame of the single
MT9V034 global shutter image sensor used in the experiments. F−→i shows the IMU
coordinate frame (Analog Devices ADIS16488), while F−→w marks the inertial frame
attached to a static calibration pattern. Setup II (Fig. 3.4b) additionally employs an
LRF, whose coordinate frame is denoted with F−→l . In this setup, both cameras were
employed and the IMU used was an ADIS16448.
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Table 3.2: Experiments

Section Sensor
Setup

Dataset Est. Objective

3.4.3 simulated 500 sinusoidal motions,
90 second each, 5 tempo-
ral offsets

J show accuracy, lack of
bias for spatio-temporal
calibration with accu-
rately known references

3.4.4 Setup I
(Fig. 3.4a)

40 hand-guided motions,
∼90 second each, 4 fixed
camera exposures

J, G,
A

show accuracy in
recovering exposure-
dependent temporal
offsets, general appli-
cability through novel
estimator (A)

3.4.5 Setup II
(Fig. 3.4b)

30 hand-guided motions,
60 second each, 3 simu-
lated temporal offsets

L, C demonstrate general ap-
plicability through novel
estimators (L, C), accu-
racy of spatial estimates
through visual overlay

3.4.6 Setup II 100 hand-guided mo-
tions, 30 second each,
varying initial estimates

L, J provide a general intu-
ition about the conver-
gence domain

3.4.7 Setup II 30 hand-guided motions,
60 second each, 3 sim-
ulated temporal offsets,
ranges timestamped on
arrival

L highlight impaired cali-
bration caused by non-
deterministic corruptions
of timestamps, evaluate
remedies

3.4.8 Setup II 30 hand-guided motions,
∼60 second each, 3 fixed
camera exposures, delay
compensation

J demonstrate temporal
offset removal through
filter delay and exposure
compensation
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3.4.2 Description of experiments

We will adhere to the naming conventions for estimators established in table 3.1.
Table 3.2 provides an overview of the experiments covered in the following sections.

For estimators J, G and A, 4 sets of 10 continuous motions were recorded with
Setup I. Each run was of about 90 s in length, and different sets exhibited different,
fixed exposure times. In order to evaluate estimators L and C, Setup II was employed
to record a single dataset of about 30 minutes length in a mostly empty room with
uncluttered walls, floor and ceiling. The dataset was subsequently split into 3 sets
of 10 one minute recordings. The timestamps of range measurements within one set
were artificially offset by −5 ms, 0 ms and 5 ms respectively. For this dataset, we
fixed the exposure time and allowed the LRF to warm up to avoid range bias drift
(Demski, Mikulski, and Koteras, 2013). With both platforms, inertial measurements
were recorded at a rate of 200 Hz, while the frame rate of the cameras was fixed to
20 Hz. The Hokuyo UTM-30LX provided full 270° range scans at a rate of 40 Hz.
In order to limit run time of the calibration, range measurements were sub-sampled
to about 15 % of their initial count. We performed an Allan Variance analysis (IEEE
Aerospace and Electronic Systems Society. Gyro and Accelerometer Panel and In-
stitute of Electrical and Electronics Engineers, 1998, 1999) for both types of IMU
to identify the parameters of our noise model. Using the well established camera
calibration toolbox (Bouguet, 2004), lens distortion was modeled according to the
equidistant model (Kannala and Brandt, 2006), and it was assumed that the the pro-
jections of landmarks into the images were subject to isotropic, zero-mean Gaussian
distributed noise with a standard deviation of 0.5 pixels. Based on the findings in
Demski, Mikulski, and Koteras (2013), the standard deviation of additive zero-mean
Gaussian distributed noise corrupting range measurements was set to 7.5 mm.

To initialize the pose spline, we first employed the perspective n-point algorithm from
Bouguet (2004) to obtain initial estimates of the pose of the sensor at times when
images had been taken. These estimates were transformed into the IMU frame using
the initial estimate of the inter-sensor transformation. Finally, the IMU pose spline
was initialized using the linear solution of Schoenberg and Reinsch (Chapter XIV of
de Boor (2001)).

In addition to experiments on real data, we conducted a study of estimator J on sim-
ulated data, using noise characteristics identical to those assumed for Setup I and
a similar sensor configuration with a slightly longer lever arm between camera and
IMU. Five sets of 100 realizations of a 90 s experiment were simulated, where the
sensor moved in front of landmarks distributed in a planar, regular grid. The motion
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in position and orientation followed compositions of sinusoidal functions. Each set
exhibited a different simulated delay of −8 ms, −4 ms, 0 ms, 4 ms, and 8 ms respec-
tively.

3.4.3 The estimation J constitutes a well-posed problem.

We simulated a camera rotated by 180° about the optical axis and displaced by
ticsim =

[
103, −15, −10

]T mm, where tic marks the translational component of the
transformation Tc,i. The initial estimate for the relative orientation was accurate up to
a few of degrees, while an initial displacement estimate of ticinit =

[
0, 0, 0

]T mm
was provided to the estimator. The initial estimate of the delay was set to 0 ms.
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Figure 3.5: A histogram of the error in the estimated time offset over 500 simulation
trials with the time offset varying between−8 ms and 8 ms. The marginal uncertainty
returned by the estimator is plotted as a Gaussian probability density function (solid
black line). The results clearly show that, if the correct noise models are known,
this method is able to estimate the time offset between the two devices and return a
reasonable uncertainty of the estimate.

Figure 3.5 depicts a histogram of errors in time offset estimation overlaid with the
marginal uncertainty returned by estimator J and plotted as a Gaussia Probability
Density Function (PDF). The plot shows that, given the correct noise models, the ap-
proach is capable of accurately estimating the time offset and returning a reasonable
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Figure 3.6: The cost function evaluated for different values of the time offset, dc, in
the neighborhood of the minimum, d̄c, on 40 real datasets from Section 3.4.4. In this
neighborhood, the cost function is convex with respect to dc.

uncertainty of the estimate. The mean and standard deviation of all estimates of the
displacement between camera and IMU was
ticest = [103.73,−15.18,−9.98]T ± [0.38,0.98,0.17]T mm. Yaw, pitch and roll were
estimated as ϕest = [179.999◦,−0.010◦,0.000◦]T ± [0.003◦,0.009◦,0.007◦]T .

Figure 3.6 shows the cost function evaluated in the neighborhood of the minimum on
the 40 real datasets also employed in Section 3.4.4. The figure clearly shows that the
cost function in the neighborhood of the minimum is convex and steep with respect
to changes in dc. This further suggests that the optimization problem is well-posed.
While these experiments do not constitute a formal proof, they suggest that, given an
accurate noise model, the estimator faithfully recovers the calibration quantities.

3.4.4 The temporal offset estimate is accurate to a fraction of the
shortest measurement interval

This section describes the evaluation of estimators J, G and A and compares our ap-
proach to temporal calibration with the existing state of the art. We used a dataset
consisting of 4 sets of 10 recordings collected with Setup I. For each set of 10, the
camera had a different fixed exposure time. Hardware clock synchronization (see
scheme 1, Section 3.1) was used; timestamps were assigned to images according to
their triggering instant and inertial measurements were timestamped when a polling
operation was initialized. For all experiments, we used an initial guess of 0 ms tem-
poral offset, no translation between IMU and camera, and a relative orientation of
180° rotation about the optical axis of the camera.
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(b) Difference of offset estimation to the line of best fit.

Figure 3.7: Results from Section 3.4.4 on camera to IMU calibration. Figure 3.7a de-
picts the time offset estimated for four different, fixed exposure times and ten datasets
per exposure setting. The estimation made use of all inertial sensors available in the
IMU. The slope of the line of best fit (drawn as a solid gray line) is estimated as
0.498, which compares well with its theoretical value of 0.5 (marked by the dashed
gray line). Figure 3.7b shows a histogram of the difference between the estimates and
the line of best fit for all 40 experiments. For all datasets, the difference stays within
a domain of ±0.2 m, which constitutes just 4 % of the measurement interval of the
IMU.
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Figure 3.8: Images of the checkerboard may be blurred due to the motion of the
camera. This figure shows details from two images taken from one of the datasets.
The corner finding algorithm used in this paper performs well for images taken with
a static camera (left) as well as under motion blur (right), returning the location of the
corner near the middle of the exposure time for the vast majority of motions.

Figure 3.7 depicts the key results for the temporal calibration as a comparison be-
tween estimated time offsets and fixed exposure times. The middle of the exposure
time constitutes the ideal point to timestamp an image (Maune, Photogrammetry, and
Sensing, 2007) and Fig. 5.5 illustrates this; each corner point extracted from an im-
age in the presence of motion blur resembles the position of the projection of the
corresponding world point in the middle of the exposure time. In this experiment,
we expected the time offset to account for fixed communication and filter delays plus
half the exposure time as the images were timestamped at the start of the exposure
time. Hence, we expect that a plot of temporal offset versus exposure time should
show a linear relationship with slope 0.5. As the true delays are unavailable for our
experiments, we evaluate the results using (a) the deviation in slope of the line of best
fit from the theoretical value and (b) the Root Mean Square (RMS) error with respect
to a line of slope 0.5, fitted in a least squares sense.

Figure 3.7a shows that our framework is capable of reproducing the inter-sensor time
delay up to high accuracy, estimating a slope of 0.498. Figure 3.7b shows the differ-
ences of the estimates to the line of best fit, which are all below 0.2 ms. This suggests
that the method is accurate to a fraction of the IMU sampling period of 5 ms. Over all
experiments, mean and standard deviation of the spatial calibration between camera
and IMU were determined as tciest = [74.54,−8.68,12.39]T ± [1.61,0.91,0.76]T mm
for displacement and ϕest = [180.753◦,0.178◦,−0.165◦]T±[0.021◦,0.060◦,0.042◦]T

for yaw, pitch and roll.
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We compared our approach to reference implementations of two established approaches
based on distinctively different principles. The approach proposed by Mair et al.
(2011) completely separates spatial and temporal calibration using the frame inde-
pendent absolute angular velocity (labeled S). Our measurement models will rarely
be an absolute faithful representation of all processes involved when assigning a nu-
meric value to a physical quantity. Whether a separation of independent entities in
the estimator is advantageous depends on the degree of discrepancy between model
and reality and the amount of information omitted in the separation. The Time Delay
Iterative Closest Point Algorithm (TD-ICP) algorithm by Kelly, Roy, and Sukhatme
(2014) estimates the relative orientation between camera and gyroscopes along with
a temporal offset by aligning orientation curves in a fashion resembling the iterative
closest point algorithm (labeled T). Our comparison further included subsets of the
sensor suite to enable an evaluation of the gain from considering richer information,
but also to allow a direct comparison to established approaches and even to highlight
the broad applicability of our approach by demonstrating spatio-temporal calibration
for a combination of a camera and accelerometers (labeled A) or camera and gyro-
scopes (labeled G).

Figure 3.9 visualizes this comparison and provides a table comparing the estimated
slope and RMS error for each estimator. The results suggest that incorporating mea-
surements from all available sensors into a continuous-time batch optimization yields
significantly more accurate and consistent results compared to algorithms that only
make use of a subset of the measurements at hand. In our experiments, the gain from
the additional information comprised in the accelerometer readings appears to out-
weigh possible drawbacks of jointly estimating parameters that could be separated
otherwise. Under the assumption that the distribution of accelerations approximates
a Gaussian distribution, Tc,i is fully observable for estimator A. We empirically de-
termined the parameters of this distribution using a single dataset and applied them
to all subsequent evaluations.

3.4.5 The approach extends to other sensor configuration and syn-
chronization modalities

This section compares spatio-temporal calibration results using different clock syn-
chronization methods, either (a) hardware synchronization (scheme 1), or (b) unidi-
rectional software synchronization (scheme 3). To correct the host timestamps in the
second case, the algorithm of Zhang, Liu, and Honghui Xia (2002) was employed
to remove jitter and skew (see Section 3.4.7 for more details on synchronization in
software).
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Figure 3.9: Comparison of approaches for determining the time offset between a cam-
era and IMU. The joint estimation (J) incorporating all sensor information available
results in significantly increased precision in the estimates and the most consistent
results. Using a subset of all sensors—either only the gyroscopes (estimator G) or
only the accelerometer (A) in addition to the camera—yields less precise estimates.
A separation of temporal and spatial calibration (S) as proposed in Mair et al. (2011)
resulted in less precise estimates, suggesting that the calibration may benefit more
from additional measurements than from the separation of uncorrelated parameters.
Employing the same sensors as estimator G, the TD-ICP (T) approach (Kelly, Roy,
and Sukhatme, 2014) produced less accurate estimates.
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The experiments in this section use the dataset recorded with Setup II. In order to
quantify the performance of the temporal calibration, simulated offsets of −5 ms,
0 ms, and 5 ms were applied to three disjoint sets of 10 recordings. Each recording
was one minute long. Using this data, we ran the following experiments:

1. Estimator L (Camera/IMU/LRF) combined with hardware synchronization,
outlined as synchronization scheme 1 in Section 3.1.

2. Estimator L (Camera/IMU/LRF) with synchronization scheme 3.

3. Estimator C (Camera/LRF) with synchronization scheme 3.

The approach can be tuned through a small set of parameters, and we employed
an independent dataset recorded in a different environment to adapt the RANSAC
threshold, ε , to 60 mm and the M-Estimator parameter to 15 mm, twice the standard
deviation of the noise assumed to corrupt the range measurements. Plane hypotheses
were rejected when they were supported by less that 10 points or the ratio of the two
largest eigenvalues of the matrix expressing the second central moment of the sup-
porting points with respect to the smallest eigenvalue fell below a threshold 10 and 5
respectively. The same preliminary experiment was used to determine the parameters
of the Gaussian processes, (3.14), governing the accelerations in estimator C. The
initial estimate was set to 0 ms temporal offset and no translation between F−→i and
F−→l . The initial orientation estimate was correct to about a degree.

Fig. 3.10 depicts the results of recovering the simulated delays. For the Hokuyo
UTM-30LX, the device timestamp and hardware trigger mark different instants within
one scanning cycle. For improved comparability, we compensated for this in Fig. 3.10
by removing a fixed offset from the estimates obtained using hardware synchroniza-
tion. The accuracy of these results suggests that the applicability of our approach is
not limited to camera/IMU calibration, but that it extends to other sensor suites as
well. Table 3.3 shows results for different quantities estimated in this experiment.
For estimator L, both hardware and software synchronization yielded similar mean
displacements with comparable 1σ precision. Omitting inertial measurements in es-
timator C resulted in a similar spatial offset and only slightly increased variance in
the estimates over all datasets.2 These values compare well with the displacement,
tlimeas = [69,−42,−65]T mm, determined by hand measurement.3 The temporal off-

2In this experiment, the transformation between F−→l and F−→c is estimated. For improved comparability,
results were transformed with Tc,i determined in the second experiment.

3The discrepancy in this measurement to previous work (Rehder et al., 2014) can be attributed to a different
displacement in the movable LRF mount as well as to an improved understanding of the location of F−→i
with respect to the IMU package. These measurements are only accurate to a few millimeters.
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set, dl , estimated for different synchronization modalities, comes close to the respec-
tive value stated in the Hokuyo UTM-30LX product and communication protocol
specifications.4 These documents state an expected offset of 2.725 ms for the syn-
chronization trigger signal and of 0 ms with respect to the timestamps assigned by
the device. The results further suggest that the estimated range bias was reproducible
across different synchronization modalities and individual 60 s recordings.

Arguably, misalignments in the orientation of the LRF with respect to F−→i will have
the most impact in the majority of applications. Given that the alignment of F−→i with
respect to the physical IMU package was not accurately known, there was no way of
obtaining an accurate reference for the relative orientation for Setup II. To assess the
repeatability of the orientation estimate, we evaluated the square root of the variance
with respect to the Fréchet expectation (Pennec, 1999) over all experiments. Val-
ues of 0.096° for estimator L and 0.121° for estimator C suggest precise orientation
estimates.

Table 3.3: Results for LRF Spatio-Temporal Calibration

estimator L,
hardware

synchronized

estimator L,
software

synchronized

estimator C,
software

synchronized

spatial displace-
ment tliest [mm]

 70.0 ± 1.4
−40.9 ± 1.5
−67.4 ± 1.0

  69.8 ± 1.4
−40.8 ± 1.7
−67.3 ± 0.9

  71.2 ± 2.0
−41.8 ± 1.4
−66.9 ± 1.1


temporal offset
d̄l [ms]

2.603±0.045 −0.023±0.106 0.106±0.088

cumulative bias
[mm] b̄l

−16.6±4.0 −17.4±4.2 −21.8±7.1

Fig. 3.11 provides a visual validation of the accuracy of both spatial and temporal cal-
ibration of the LRF with respect to the camera. The hardware synchronization scheme
1 was employed to produce this plot. The points sampled by the LRF were observ-
able in the images as a bright line. The resemblance of this line with the simulated
projection of the sampled ranges is representative of the entire calibration chain: Both
spatial transformations Tc,i and Ti,l were expressed with respect to F−→i and chained
to form Tc,l. In addition, the projection employed the camera intrinsics and distor-
tion parameters obtained in a separate calibration procedure (using the calibration

4Accessible at http://www.hokuyo-aut.jp/02sensor/07scanner/download/pdf/
UTM-30LX_spec_en.pdf and http://www.hokuyo-aut.jp/02sensor/07scanner/
download/pdf/URG_SCIP20.pdf (Jan. 2015)
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procedure for fisheye lenses provided in Bouguet (2004)). Finally, the timestamps of
the image and the range scan were corrected according to dc and dl . In the figure,
the green line corresponds to a projection modelled according to the initial estimate,
while blue and red plots mark the projection for these quantities determined by mea-
suring by hand and through calibration respectively. The top Fig. 3.11 depicts a su-
perimposition for an extended exposure time and clearly shows the improvement over
the initial estimate as well as over the measured transformation. The bottom Fig. 3.11
visualizes an overlay for a short exposure time of about 2.5 ms, which allows for an
evaluation of the temporal calibration. The close resemblance of the red line with the
visible scan suggests that the temporal offset was estimated accurately. The green
and blue plots are based on delays of 0 ms and 2.725 ms respectively.

Fig. 3.11 allows for a visual assessment of the accuracy of the approach, but it pro-
vides little intuition about the impact of spatio-temporal calibration on real applica-
tions. Fig. 3.1 provides this context, demonstrating the improvement in reconstruction
results produced by correctly handling temporal relationships between sensors.

3.4.6 The convergence domain suggests practical applicability

To assess the applicability of the approach to a particular calibration problem, the
accuracy to which the calibration parameters have to be known a priori is of vital
importance. Following Kelly, Roy, and Sukhatme (2014), we will label this region of
initial estimates for which the calibration produces “correct” parameters the domain
of convergence. Here, we will present on a brief study conducted for estimators J
and L. The shape of this domain is highly dependent on factors that are difficult to
quantify, such as the precise motion of the setup during calibration. Consequently,
this study is qualitative in nature and merely provides an intuition about the accuracy
to which the calibration parameters have to be known a priori.

We used 100 thirty seconds chunks of the 30 one minute datasets recorded with Setup
II. For each realization of the experiment, the mean estimate of transformations Tc,i

and Ti,l from Section 3.4.5 was perturbed by a random translation and rotation. We
used an axis-angle representation for the rotation and sampled the axis uniformly on
the sphere, while the angle was sampled from a uniform distribution within some
bounds. Analogously, the direction of the translatory perturbation was sampled on
the entire sphere, and the magnitude was sampled from a uniform distribution. A
corruption to the initial estimate of the temporal offsets dc and dl was sampled from
a uniform distribution. Automatic plane detection almost certainly fails for vastly
incorrect initial estimates, and hence we limited their range to accuracies that are
realistically achievable by careful system design and measurements by hand. The
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Figure 3.10: Estimated temporal offsets between an LRF and additional sensors using
either hardware clock synchronization (L/1) or unidirectional timestamp correction
(L/3, C/3). In order to quantify the performance of the temporal calibration, differ-
ent simulated offsets were applied to three disjoint sets of 10 recordings, each of one
minute length. These results are consistent with values determined from the Hokuyo
UTM-30LX product specification and they suggest that the approach is capable of
accurately estimating delays. They also show that careful software clock synchro-
nization has precision and accuracy comparable to hardware clock synchronization.
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calibrated
measured
initial estimate

calibrated
measured
initial estimate calibrated

measured
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Figure 3.11: Superimposition of camera images and modelled projections of laser
scans. The green line depicts a projection using the initial estimate for Tc,l and dl
prior to calibration. Blue and red lines visualize projections based on these quantities
determined by measuring by hand and by our calibration procedure respectively. The
top figure shows an image recorded with extended camera exposure time. In the
bottom figure, the camera exposure was set to 2.5 ms, capturing the fraction of the
scan that falls within the shutter time as a bright line. The close resemblance between
the visible band of points sampled by the LRF and its modelled projection suggest an
accurate spatial and temporal calibration. Note the significant improvement over the
initial estimate provided to our calibration approach.
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corruption to dl was sampled in the bounds of ±50 ms, while translations and ro-
tations were sampled in the bounds of 0.2 m and 10° respectively. For estimator J,
we sampled from a much wider range, allowing initial perturbations in the bounds
of ±100 ms, 1.0 m and 90° respectively. Based on the precision of the estimates ob-
served in Section 3.4.4 and 3.4.5, we defined a metric for classifying calibration re-
sults as correct. Estimator J was considered successful, if the error in dc was smaller
than 100 µs and the magnitude of the error translation and rotation did not exceed
5 mm and 0.5° respectively. For estimator L, these bounds were set to 2.0 ms, 10 mm
and 1°. Additionally, calibration with estimator L could fail at the plane detection
stage, and it was considered unsuccessful when a fewer than 2 planes were detected.

By this metric, estimator J provided correct calibrations in 92 experiments, while
estimator L was successful in 79 cases. We observed a weak correlation between
the magnitude of the perturbation and the success rate of both estimators, with the
probability of an unsuccessful calibration increasing with larger errors in the initial
estimate. Nevertheless, successful runs were observed over the entire range of per-
turbations. A stronger correlation could be observed between the initial temporal
offset dl and its post calibration error, with estimates biased in the direction of the
perturbation and in the order of around 2 ms at 50 ms initial corruption. Presumably,
this deterioration in accuracy is rooted in the automatic plane detection returning a
biased set of measurements in support of the initial temporal offset. This effect could
potentially be mitigated by iterating the calibration multiple times, initializing each
plane detection with the previously calibrated quantities. For the temporal offset dc,
this effect could not be observed.

While the significance of our quantitative findings is limited to the very realisation of
the experiment, the results generally suggest that the approach is applicable to initial
estimates within the range of accuracy that can be realistically achieved by measuring
by hand.

3.4.7 A closer look at synchronization in software

This section describes the effort that is required to get good host timestamps from a
device that only provides measurement timestamps based on its internal clock. Many
off-the-shelf devices operate this way and we believe it is useful to present a full
example, describe the tools needed to clean up the host timestamps, highlight some
common pitfalls of timestamp processing, and show what happens when these effects
are not accounted for.

Mair et al. (2011) propose a procedure to recover host timestamps for devices that
do not provide internal timing information. Their method removes the effects of
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stochastic corruptions and corrects “data jams” where several messages are delayed
and then arrive together. While their work can serve as guidance for such systems,
here we will take the Hokuyo UTM-30LX as an example to focus on synchronization
with sensors that do not allow for bidirectional communication, but provide device
timestamps along with their measurements. Although the Hokuyo UTM-30LX does
implement a communication protocol for synchronization, we chose to use it in this
section because it exhibits timestamp quantization. Hence, treating the device as
a one-way communicator allows us to examine all timestamp issues with a single
example. Specifically, we will look at (a) clock offsets, (b) jitter, (c) clock skew,
and (d) timestamp quantization in systems with multiple clocks and exclusively uni-
directional communication. As before, we require communication delays, though
subject to noise, to remain constant.

Figure 3.12: The difference between host time and device time for the example of
Hokuyo UTM-30LX, plotted over host time. Slightly different rates in individual
clocks result in skew, which can be significant even for short datasets. At the same
time, various effects in the host system corrupt the timestamps non-deterministically.

Fig. 3.12 depicts the difference between device timestamps and host timestamps for a
period of about 8 minutes of the 30 minutes dataset recorded with Setup II. The plot
highlights all the previously listed effects: First, there is a distinct lower bound to
the difference in timestamps, resulting from a combination of the offset between the
clocks and the communication delay between sensor and host system. Second, the
delay exhibits significant randomness, often referred to as jitter. Third, even over this
short period, the clocks diverge, caused by slightly differing rates and apparent as an
increasing lower bound. Forth and more subtly, the upper bound of the plot shows a
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Figure 3.13: Difference in timestamps of successive scans as perceived by differ-
ent modalities. Timestamping on arrival at the host results in excessive jitter. The
Hokuyo UTM-30LX provides device timestamps with 1 ms granularity, which results
in frequent spikes in the perceived measurement intervals. Improving timestamp res-
olution by means of interpolation increases accuracy significantly and corresponds
well to timings independently measured in hardware by recoding the trigger instant
as highlighted in the scaled view, Fig 3.13b.

staircase profile with 1 ms steps, which hints to the coarse quantization of the device
timestamps.

Fig. 3.13 depicts the difference in timestamps of successive measurements and iden-
tifies the host timestamps as the obvious source of jitter. In contrast, differences in
device timestamps are significantly closer to the nominal value of 25 ms. In Sec-
tions 3.4.4 and 3.4.5, we demonstrated estimation of delays well below the shortest
measurement period and with sub-millisecond precision. The jitter eclipses these
delays by far.

Relying solely on device timestamps is equally undesirable, since Fig. 3.12 suggests
that even for short datasets, clock skew would noticeably affect the estimated offset.
Finally, Fig. 3.13b shows a 200 µs step in the scan rate occurring in the dataset and
independently recorded by timestamping the hardware trigger output. Omitting tim-
ing information provided by the sensor and following the host timestamp correction
approach outlined in Mair et al. (2011) would render the synchronization incapable
of perceiving such a change and in turn affect accuracy.

The synchronization approach proposed by Zhang, Liu, and Honghui Xia (2002)—
an extension of previous work by Moon, Skelly, and Towsley (1999)—exploits the
absence of randomness in device timestamps. It estimates a lower convex hull to
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the delays in order to determine the skew between host and device clock. Subse-
quently, the approach administers appropriate corrections to the device timestamps
to obtain skew- and jitter-corrected host timestamps. Zhang’s correction algorithm
assumes that device timestamps faithfully represent the state of the device clock. For
the Hokuyo UTM-30LX, this does not strictly hold true, since device timestamps are
quantized with 1 ms, while measurement intervals do not strictly adhere to millisec-
ond boundaries. As a result of this coarse quantization, the difference in consecutive
timestamps exhibits spikes, as depicted in Fig. 3.13. In our experiments, the coarse
quantization resulted in reduced precision in the estimates of the temporal offset as
well as in biased results.

In order to counter quantization effects, the resolution of the device timestamps can
be increased. Assuming that the quantized timestamps are the result of a rounding
operation, we assign the respective timestamp ±0.5 ms to the spikes and interpolate
linearly to obtain timestamps for measurements in between. We do not know that
rounding was used internally; it could just as easily be a ceiling or floor operation.
But, at most, this would introduce a ±0.5 ms temporal offset that would be estimated
by our calibration routine. It is important that, after calibration, we use the same
timestamp correction and upsampling methods in the device driver so that any delay
introduced is still present.

Fig. 3.13b shows the corrected differences in black. While the original timestamps
result in discrete steps, the correction yields timings closely resembling those inde-
pendently recorded in hardware. Fig. 3.13b also highlights the importance of having
access to device timestamps in applications with high accuracy demands: Albeit on
the scale of a few 100 µs, the measurement period is clearly non-constant and exhibits
rapid changes. The varying scanning period has a direct effect on the temporal spac-
ing of the individual range samples, and correcting for this yielded slightly increased
precision in the spatial calibration over all realizations of the experiment.

To highlight the importance of removing jitter from measurement timestamps, we
repeated the spatio-temporal calibration with estimator L on the same dataset, but
using the timestamps assigned to the range measurements on arrival. Fig. 3.14 de-
picts the results as compared to estimates obtained with corrected timestamps. The
timestamp correction (Zhang, Liu, and Honghui Xia, 2002) fits a lower convex hull
based on messages of minimal delay, while timestamps assigned on arrival exhibit
a significantly different distribution. Consequently, the estimated temporal offset is
(and is expected to be) different in both cases, and we removed this fixed difference
in Fig. 3.14 to improve comparability.

The distribution of the estimated offset over multiple trials exhibits a significantly in-
creased standard deviation, despite the fact that the simulated additional offsets were
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Figure 3.14: Temporal calibration (estimator L) using timestamps assigned on arrival
as compared to one using timestamps corrected according to Zhang, Liu, and Honghui
Xia (2002). The jitter present in timestamps assigned on arrival results in significantly
increased standard deviations of the delays estimated for 30 recordings. Nevertheless,
the simulated additional delays are approximately recovered.

approximately recovered. The impairment in estimating the temporal relationship
reflected in reduced precision in the spatial calibration, with the translation being
determined as tliest = [64.1,−40.3,−67.3]T ± [12.1,6.6,3.2]T mm. In this case, the
square root of the orientation variance with respect to the Fréchet expectation was
0.854° and thus significantly increased over the calibration experiment with corrected
timestamps reported in Section 3.4.5.

3.4.8 Delay estimation informs better sensor design

Fig. 3.7 suggests that the proposed method is capable of estimating static delays with
very high precision. We advocate for making temporal calibration an essential part of
any sensor design and for taking any deterministic delays into account at the design
stage. This measure reduces the need for post-processing of sensor data and eases the
implementation of discrete-time state estimation algorithms by ensuring that mea-
surements are precisely synchronized.

In this section, we highlight some design considerations using Setup II (Fig. 3.4b) as
an example. In our work, these insights directly informed the hardware description
specifying the configuration of an FPGA, which can be considered as delay compen-
sation in hardware. Implementing the same compensation mechanisms in software
on a dedicated processor is equally feasible.
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Figure 3.15: Estimated time delays for a compensated sensor setup. In this experi-
ment, the exposure-dependent time delay has been mitigated by bringing the trigger
forward by half the exposure time, while filtering and communication delays in the
IMU have been compensated for by offsetting the polling of the sensor with respect to
the timestamp assigned to the measurements. As a consequence, the delay virtually
vanishes.

In order to remove the need to interpolate measurements in discrete-time estimators,
we spaced mid-exposure times equally in time and aligned them with time instants
at which inertial measurements were sampled. To this end, individual camera trig-
ger instants were brought forward in time by half the exposure time of the image.
In contrast, inertial measurements traverse a cascade of buffers and analog and dig-
ital filters, thus their output appears delayed. This filter offset is notoriously hard
to obtain from manufacturer’s information, and the overall delay is further impacted
by communication delays that may be specific to the sensor hardware. In order to
estimate the IMU offset, we recorded about 30 one minute datasets for 3 fixed ex-
posure times with an uncompensated setup (resembling the experiment proposed in
Section 3.4.4). The gray line in Fig. 3.15 depicts the estimated delays. Using this
data, the combined filter and communication delay was determined from extrapolat-
ing the time delay curve for zero exposure time. Subsequently, we postponed inertial
sensor polling with respect to the timestamp by this value. The black line in Fig. 3.15
marks the result of delay estimation for repeating the experiment, but using a sen-
sor employing the proposed delay compensation. After compensating for exposure
time and offsetting the IMU polling, the discrepancy in the timestamps of the two
measurement modalities virtually vanished. Without additional information, only the
relative time delay is observable. However, given information from the manufacturer
of this particular image sensor that specifies the offset between receiving a trigger
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pulse and starting exposure of an image at around 10 µs, we could take camera timing
as reference. For additional details on the design of the visual/inertial sensor, please
see (Nikolic et al., 2014b).

3.5 Conclusion and Future Work

In this study, we presented the first general approach to jointly calibrate for tempo-
ral offsets and spatial transformations between multiple sensors. Using a continu-
ous state representation allows us to treat the problem of estimating temporal offsets
within the rigorous theoretical framework of maximum likelihood estimation.

Established approaches use a two-stage procedure, exploit domain-specific properties
and often require making overly simplifying assumptions. In contrast, our approach
does not suffer from any of these shortcomings and we believe that the range of
estimators presented in this work supports our claim of its general applicability.

For the case of camera/IMU calibration, we showed that it was beneficial to calibrate
for time offsets and inter-sensor transformations in a single estimator based on all
sensor measurements available. The same estimator then formed the basis for a novel
spatio-temporal calibration approach for camera/LRF setups.

Furthermore, this work answered the question about applicable synchronization schemes
raised in Furgale, Rehder, and Siegwart (2013) and Rehder et al. (2014), providing
experimental results that suggest that the accuracy of calibrations using timestamps
corrected for jitter and skew in software, resembles that of hardware synchronized
systems. In this context, we also highlighted that this correction can potentially be
complex.

Future work will investigate improvements in the model governing range measure-
ments and might extend the IMU model to reflect our improved understanding of
accelerations not being perceived in a single location.
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4
Extending kalibr:
Calibrating the Extrinsics of Multiple
Inertial Measurement Units (IMUs)
and of Individual Axes
Joern Rehder, Janosch Nikolic, Thomas Schneider, Timo Hinzmann,
and Roland Siegwart

4.1 Introduction

With the costs for inertial measurement units steadily declining and the emergence of
integrated visual/inertial sensors, an increasing number of robotics platforms feature
multiple inertial measurement units. An example for such a system is the Boston
Dynamics quadrupedal platform (Ma et al., 2015) equipped with a tactical grade
IMU rigidly mounted to a stereo camera setup and used for visual/inertial odome-
try and with a navigation grade IMU positioned inside the body of the robot. An-
other example is the quadrotor platform by Shen, Michael, and Kumar (2015), which
employs a low-cost IMU for low-level controls in the autopilot and an additional,
high-performance IMU for visual/inertial motion estimation. These platforms have
in common that they employ a main IMU positioned and aligned in a way meaningful
for locomotion (i.e. mounted close the center of gravity and aligned with the main

Published in:
2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, ©2016 IEEE
DOI: 10.1109/icra.2016.7487628
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axes of the platform) and a second, auxiliary IMU mounted in the vicinity of some ex-
teroceptive sensors in a location with minimal obstruction by the platform itself. For
most platforms, these two locations will be vastly different. In order to make sense
of ego-motion estimates from the auxiliary sensor suite for controls and locomotion,
they will have to be transformed to the coordinate frame of the main IMU. To this
end, an accurate estimate of the transformation between the two coordinate frames is
required.

While it is possible to estimate the transformation of both IMUs with respect to the
exteroceptive sensor and subsequently chain them, little work presents on fusion of
measurements from multiple IMUs inside a single estimator. We suspect one of the
reasons for this to lie in the fact that angular accelerations are required to model ac-
celerations perceived in any location outside the Accelerometer Input Axes (IA)—a
quantity that is often not measured directly.1 While it would be possible to derive
an estimate of angular acceleration from numerically differentiating angular velocity
measurements perceived by the gyroscopes, we pursued a different approach here:
The well-established continuous-time batch estimation framework presented by Fur-
gale, Barfoot, and Sibley (2012) fits a spline representing the evolution of the relative
orientation of two coordinate frames over time to a series of orientation and angular
velocity measurements. Assuming that angular velocity varies smoothly, an estimate
of angular acceleration can be directly derived from this orientation curve.

The same estimator enables further applications: High-end IMUs often employ one
Integrated Circuit (IC) per axis for acceleration measurements rather than a single IC
that combines all axes on a single die. Individual axes may be multiple centimeters
apart, which violates the assumption that they are subject to the same acceleration
under general motion. If unaccounted for, this introduces errors which are sometimes
referred to as the “size effect” in the navigation literature (Hung et al., 1979). Conse-
quently, the offsets of individual axes to the origin of the Input Reference Axes (IRA)
should be considered for maximum calibration performance.

The contributions of this work are the following:

• We derive an estimator for simultaneous intrinsic and extrinsic calibration of
multiple IMUs with respect to one or multiple exteroceptive sensors.

1There exist different approaches for measuring angular accelerations, a not so recent review of which
is provided in Ovaska and Valiviita (1998). More recently, consumer grade Microelectromechanical
Systems (MEMS) angular acceleration sensors have been announced (Murata announces world’s first
surface mount MEMS angular acceleration sensor). However, these devices are currently not widely
employed.
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• We generalize this estimator to additionally determine the location of individual
accelerometer axes.

• We present a comprehensive experimental study demonstrating precise intrin-
sic calibration and showing that it is possible to locate individual accelerometer
axes inside a commercial grade IMU.

The approach was implemented as an extension to the open-source camera/IMU cal-
ibration toolbox kalibr2 (Furgale, Rehder, and Siegwart, 2013) and will be released
as an update to it.

4.2 Related Work

This work is concerned with calibrating a sensor suite comprising one or multiple
IMUs and one or multiple exteroceptive sensors. The goal of the calibration is to
improve state estimation results obtained from fusing measurements from all sensors
available. Accordingly, estimating the extrinsics of the IMUs with respect to an ex-
teroceptive sensor is an integral part of the approach, and we will limit the review of
related work to approaches similar in scope.

Nevertheless, there exists a large body of work addressing the problem of calibrating
redundant IMUs for applications where fusion with additional sensors is not a focus.
Possible starting points for further literature review in this direction could be the work
by Pittelkau (2005), Hwangbo, Kim, and Kanade (2013),Nilsson, Skog, and Handel
(2014).

Mirzaei and Roumeliotis (2008) and Kelly and Sukhatme (2009) proposed an ex-
tended Extended Kalman Filter (EKF)-based framework that estimated the transfor-
mation between an IMU and a camera from a calibration sequence recorded by mov-
ing the setup in front of a visual target. Using a similar calibration procedure, Fleps
et al. (2011) determined these quantities by means of batch optimization. Their ap-
proach estimated a continuous trajectory encoded as a spline rather than representing
the motion as a discrete sequence of states. Furgale, Rehder, and Siegwart (2013)
pursued a similar continuous-time approach, but additionally folded the estimation
of a temporal offset between camera and IMU into the estimator—a parameter that
had previously been estimated in a separate procedure (Kelly, Roy, and Sukhatme,
2014; Mair et al., 2011). Krebs extended the approach by IMU intrinsics (Krebs,
2012). Similarly, Zachariah and Jansson (2010) incorporated intrinsic parameters

2https://github.com/ethz-asl/kalibr
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into a discrete-time Sigma-Point Kalman Filter (SPKF) estimation framework. Re-
cently, Li et al. (2014) demonstrated the estimation of camera/IMU extrinsics, a time
delay and IMU intrinsics as an integral part of an online state estimation framework
using a Multi-State Constraint Kalman Filter (MSCKF). In contrast to other methods
reviewed here, their approach uses natural visual landmarks rather than a dedicated
calibration pattern and additionally estimates the camera intrinsic parameters focal
length fc, principle point cc and distortion parameters kc.

Our approach is based on (Furgale, Rehder, and Siegwart, 2013) and extends that
method to incorporate multiple IMUs into a single estimator. The same formulation
can be employed to determine the displacement of individual accelerometer axes,
arriving at a more complete model even in sensor suites comprising only a single
IMU. Borrowing from Krebs (2012), IMU intrisics were added to the calibration
parameters to improve results.

Table 4.1 summarizes these approaches using the notation that will be introduced in
Section 4.3.4. Asterisks mark approaches where temporal calibration is performed in
a separate, preceding step.

F−→B

F−→W

F−→A

F−→C

Arx

Ary

Arz

Figure 4.1: Coordinate frame convention. F−→W denotes the world reference frame,
and F−→B and F−→A mark the input reference axes (IRA) and the eccentric IMU frame
respectively. A camera was used as exteroceptive sensor, denoted here with F−→C.
F−→B, F−→C and F−→A are connected through a rigid mechanical link. Gray boxes mark
the locations of individual accelerometer ICs, which are displaced with respect to
F−→A by individual lever arms Arx,y,z. For simplicity, we will assume Arx = 0 in the
following.
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4.3 Method

4.3.1 Coordinate frame conventions

Fig. 4.1 visualizes the different coordinate frames used in this work. The inertial
frame F−→W is attached to the calibration pattern. F−→B marks the body IRA, while F−→A

and F−→C denote the IMU frame and the frame of the exteroceptive sensor respectively.
F−→B, F−→C and F−→A are rigidly connected through a mechanical link. We will estimate
the time-varying relative orientation and position of F−→B with respect to F−→W .

In order for the IRA to be well defined in practice, the spatial offset to at least one
axis of at least one IMU needs to be fixated. This could be an arbitrary displacement,
but for convenience, we choose to align the IRA with one IMU when calibrating
with multiple devices, and the x-axis of the IRA with the accelerometer sensing the
specific force in x direction when calibrating for displacements of individual axes (i.e.
Arx = 0).

4.3.2 Accelerometer model

Here, we will derive the model of inertial measurements used for calibration in the
estimator.

Let W tWB(t) denote the time-varying vector from the origin of coordinate frame F−→W

to coordinate frame F−→B expressed in F−→W . With this, the acceleration of the origin of
coordinate frame F−→B expressed in F−→W is given by W ẗWB(t).

The measurements of an ideal accelerometer (i.e. the specific force) at coordinate
frame F−→B can be expressed as

BaWB(t) = CBW (t)
(

W ẗWB(t)−W g
)

(4.1)

where CBW (t) denotes the time-varying direction cosine matrix that transforms a vec-
tor from F−→W to F−→B, and W g marks the gravitational force.

Now assume that we would like to model the acceleration of a coordinate frame F−→A,
rigidly attached to F−→B with constant displacement BrBA. The temporal evolution of
the origin of this coordinate frame, expressed in F−→W , is given by
W tWA = W tWB(t)+CT

BW (t)BrBA. Accordingly, AaWA(t) is given by

AaWA(t) = Cα
AB(CBW (t)(W ẗWB(t)−W g)

+ bBω̇WB(t)c×BrBA

+ bBωWB(t)c2×BrBA)

(4.2)
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where Cα
AB marks the rotation matrix relating F−→A and F−→B, BωWB(t) denotes the

angular velocity of F−→W with respect to F−→B and Bω̇WB(t) denotes the angular accel-
eration. The operator b·c× denotes the skew-symmetric matrix expressing the cross
products.

In the most simplistic accelerometer model, we assume that the IA are aligned with
F−→A and that the accelerometer measurements α(t) are only affected by noise:

α(t) = AaWA(t)+bα(t)+να (4.3a)

ḃα(t) = νbα (4.3b)

where να and νbα are zero-mean, white Gaussian noise processes of strength σ2
α I and

σ2
bα

I. In other words, the accelerometer measurements are independently affected by
white noise να and a slowly varying random walk process of diffusion σ2

bα
I, bα(t).

This model is a good approximation for devices with factory calibrated intrinsics, but
may produce impaired calibration results for low-cost, consumer grade inertial sen-
sors which exhibit significant axis misalignment and scale factor errors. Hence, for
these sensors, the model is augmented to include misalignment and incorrect scales:

α(t) = Sα Mα AaWA(t)+bα(t)+να (4.4)

where Sα is a diagonal matrix comprising scaling effects and Mα is a lower unitrian-
gular matrix, with lower off-diagonal elements corresponding to misalignment small
angles.

Equation 6.35 can be extended to accommodate a design trait common to many high-
end IMUs: These often employ an individual sensor IC per measurement axis, and
there are physical limits on the proximity in which the sensors can be mounted. Con-
sequently, each axis is displaced differently from the IRA. With ω(t) := BωWB(t)
and ω̇(t) := Bω̇WB(t), the complete model with individually displaced accelerometer
axes amounts to

AaWA(t) =Cα
AB(CBW (t)(W ẗWB(t)−W g)

+diag(bω̇(t)c×Rα + bω(t)c2×Rα)),
(4.5)

where diag(·) extracts the N × 1 vector from the diagonal of a matrix and Rα is
composed of the lever arms of individual accelerometers (identified by the subscripts)
according to

Rα =
[

BrBAx BrBAy BrBAz

]
. (4.6)
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4.3.3 Gyroscope model

Analogously, given the angular velocity BωWB governing the time-varying change in
orientation between F−→B and F−→W expressed in F−→B, the angular velocity expressed in
F−→A is given as

AωWB(t) = Cω
ABBωWB(t) (4.7)

The rationale behind estimating Cω
AB and Cα

AB separately lies in sensor imperfections:
The gyroscopes may not be perfectly aligned with the accelerometers, and estimating
a single CAB would in turn be a source of deterministic errors in the model.

Again, a properly factory calibrated gyroscope can be modelled as

ϖ(t) = AωWB(t)+bω(t)+νω (4.8a)

ḃω(t) = νbω (4.8b)

where νω and νbω are zero-mean, white Gaussian noise processes of strength σ2
ω I

and σ2
bω

I, i.e. the gyroscopes are independently affected by white noise and a random
walk process, analogously to the accelerometers.

For consumer grade devices, the influence of axis misalignment and incorrect mea-
surement scaling as well as of linear accelerations on gyroscope measurements (“g-
sensitivity”) can be modelled as

ϖ(t) = Sω Mω AωWB(t)+Aω AaWA(t)+bω(t)+νω (4.9)

where Sω and Mω are defined analogously to Sα and Mα in (4.4), and Aω is a fully
populated matrix. Despite presumably having different displacements from the IRA,
only a single lever arm is considered in the calculation of AaWA(t). In general, the
effect of linear accelerations on gyroscope measurements is small and insufficient to
properly constrain the estimate of a spatial displacement. In this work, we assume
the accelerometer and gyroscopes to be sufficiently close and employ the lever arm
estimated for the accelerometers. In cases where an individual lever arm per ac-
celerometer axis is determined, the estimate of one axis is employed for all axes of
the gyroscope.

4.3.4 The estimator

So far, we established the basis for modelling accelerometer and gyroscope measure-
ments from devices mounted with an offset to the IRA. Generally, these models could
be employed in any estimator. However, both, (6.35) and, to a lesser extent, (4.9),
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depend on angular accelerations, and this quantity is not measured directly in most
sensor suites. Accordingly, it has to be inferred, and we employ the continuous-time
batch optimization paradigm (Furgale, Barfoot, and Sibley, 2012), which estimates a
continuously differentiable sensor trajectory, yielding a smooth estimate of angular
accelerations.

In the following, we will give a brief introduction to continuous-time estimation,
which will follow Furgale, Rehder, and Siegwart (2013) very closely. For a more
thorough derivation, please see the original publication (Furgale, Barfoot, and Sibley,
2012).

Time-varying states are represented as the weighted sum of a finite number of known
analytical basis functions. For example, a D-dimensional state, x(t), may be written
as

Φ(t) :=
[
φ 1(t) . . . φ B(t)

]
, x(t) := Φ(t)c, (4.10)

where each φ b(t) is a known D× 1 analytical function of time and Φ(t) is a D×B
stacked basis matrix. We estimate x(t) by determining c, a B×1 vector of coefficients.

While various basis functions are feasible, we employ B-splines due to their sim-
ple analytical derivatives, good representational power and finite temporal support,
yielding a sparse system of equations in the estimator that can be solved efficiently.

The pose of F−→B is parameterized as a 6× 1 spline with 3 degrees of freedom for
relative translation and 3 degrees of freedom for relative orientation:

W tWB(t) := Φt(t)ct (4.11)

ϕ(t) := Φϕ(t)cϕ . (4.12)

In this paper, we use the axis/angle parameterization for rotations, where ϕ(t) rep-
resents rotation by the angle ϕ =

√
ϕ(t)T ϕ(t) about the axis ϕ(t)/ϕ(t). The orien-

tation of F−→W with respect to F−→B at time t is given by CBW (t) := C
(
ϕ(t)

)T , where
C(·) is a function that builds a direction cosine matrix from the orientation parameters
ϕ(t).

Acceleration W ẗWB(t) is computed as

W ẗWB(t) = Φ̈t(t)ct (4.13)

from the spline parameters ct .
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Angular velocity and angular acceleration as perceived in F−→B are computed as

BωWB(t) = CBW (t) W ωWB(t) (4.14)

Bω̇WB(t) = CBW (t) W ω̇WB(t) (4.15)

with

W ωWB(t) = S
(
ϕ(t)

)
ϕ̇(t) = S

(
Φ(t)cϕ

)
Φ̇(t)cϕ (4.16)

W ω̇WB(t) = S
(
ϕ(t)

)
ϕ̈(t) = S

(
Φ(t)cϕ

)
Φ̈(t)cϕ (4.17)

where S(·) is the matrix relating parameter rates to angular velocities and accelera-
tions (Hughes, 1986).

For both, orientation and translation, a sixth-order B-spline is employed, which en-
codes linear and angular acceleration as a cubic polynomial.

Time-varying sensor biases are represented by cubic B-splines:

b(t) := Φb(t)cb (4.18)

The estimator further requires inputs from exteroceptive sensors to sufficiently con-
strain the trajectory. This can be any sensor that acquires measurements sufficient to
render all quantities of interest observable. Since this work is an extension of kalibr,
we employed a global shutter camera with a static calibration pattern for this purpose.

Projections of reference points on the calibration pattern W pi are modelled according
to the well-established pinhole camera model

yi
k = f (CT

BC(CBW (tk +dc)
(

W pi +W tWB(tk +dc)
)

+ BrBC))+νy ,
(4.19)

where the function f (·) denotes a perspective projection. dc is an unknown relative
temporal offset that compensates for either the IMU or the camera assigning times-
tamps with a fixed offset with respect to their measurement instant. We assume that
the projections are corrupted in the image plane by a zero-mean, discrete-time, white
Gaussian noise process of variance σ2

y I.

The estimator is formulated as a non-linear least-square optimization problem. Our
previously introduced measurement models ((4.4), (4.9), and (4.19)) are all of the
form m(t) := h(Θ, t)+ν , where Θ is a vector containing all estimated quantities, t
denotes the instant at which the measurement was recorded and the model is evalu-
ated, and ν is a zero-mean, white Gaussian noise process of strength σ2I. Accord-

82



4.3. METHOD

ingly, the contribution of measurements m̃i
k recorded with sensor i at times [t1, . . . , tN ]

to the objective function J can be formulated as

Ji :=
N

∑
k=1

1
σ2

i

∣∣m̃i
k−hi(Θ, tk)

∣∣2 . (4.20)

Contributions from bias terms are evaluated according to

Jb :=
∫ tN

t1

1
σ2

b

∣∣ḃ(τ)∣∣2 dτ. (4.21)

The objective function is composed from these sensor and bias terms, and the estimate
is determined as the Θ that minimizes J:

Θ = argmin
Θ

(Jα + Jϖ + Jy + Jbα
+ Jbω

) . (4.22)

We employ the Levenberg-Marquardt algorithm (Nocedal and Wright, 2006) for non-
linear optimization.

The following table lists the parameters and states comprised in Θ and partitions them
into time-varying and time-invariant, and IMU and “auxiliary” parameters.

Time-Invariant

Cα
AB orientation of the accelerometers

Cω
AB orientation of the gyroscopes

BrBA displacement of the IMU
Sα accelerometer scale factors
Mα accelerometer misalignment
Sω gyroscope scale factors
Mω gyroscope misalignment
Aω effect of linear accelerations on gyroscopes

CBC orientation of the camera
BrBC displacement of the camera
dc temporal offset between IMU and camera
W g direction of gravity

Time-Varying

W tWB position of the IRA expressed in F−→W
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ϕ orientation parameters of the IRA
ba accelerometer bias
bω gyroscope bias

4.4 Experiments

4.4.1 Experimental setup and dataset collection

Figure 4.2: The experimental setup used in this work. The integrated visual/iner-
tial sensor(Nikolic et al., 2014b) is equipped with two global shutter image sensors,
as well as three MEMS IMU. A factory calibrated Analog Devices ADIS16448
is mounted centrally on the sensor frame; the two consumer grade Invensense
MPU9150 IMUs are located on the back of each image sensor board.

For our experiments, we employed a visual/inertial sensor (Nikolic et al., 2014b),
which was equipped with an Analog Devices ADIS16448 and two Invensense
MPU9150 IMUs. The latter fall into the class of consumer grade devices, while
the ADIS16448 was calibrated intrinsically by the manufacturer. The sensor unit was
manufactured by Skybotix, but retrofitted with custom firmware to provide control
over the filtering of inertial measurements. Both IMUs were sampled at a rate of
800 Hz. For the ADIS16448, a 2-tap filter was enabled; for the MPU9150, we chose
a cut-off frequency of about 190 Hz. For exteroceptive perception, two MT9V034
Wide Video Graphics Array (WVGA) global shutter image sensors were employed.
The cameras were triggered at a rate of 20 Hz and set to a constant, low exposure
time. We calibrated the cameras intrinsically and the stereo extrinsics using the cam-
era calibration functionality of kalibr on a separate dataset beforehand.
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This setup was dynamically moved by hand in front of a checkerboard of known
dimensions. Subsequently, the recorded dataset was split into 20 chunks of only 10 s
length. We ensured that all rotational degrees of freedom were excited sufficiently.

The parameters of the accelerometer and gyroscope noise models (4.3) and (4.8) were
determined from static sensor data, i.e. from measurements where the IMUs were at
rest. For this purpose, the sensors were mechanically fixated, and raw sensor mea-
surements were captured at a rate of 800 Hz for a duration of 5 h. The sensor filter
and range settings were identical to those used during the experiments. Table 4.3 lists
the parameters that were identified and used for the experimental evaluation. Fig. 4.3
shows the sample Allan deviation of the gyroscopes and accelerometers, and the Al-
lan deviation that corresponds to the selected noise model parameters.

For all experiments, we used 50 knots per second for the B-spline representing biases
and 250 knots per second for the spline encoding the sensor trajectory.

4.4.2 IMU intrinsics and the extrinsics of multiple IMUs can be
precisely inferred in a single estimator

For the experiment on extrinsic calibration of multiple IMUs, measurements of the
two MPU9150 devices were employed. We defined F−→B to align with one of the de-
vices and included IMU intrinsics—Sα,ω ,Mα,ω and Aω —for both sensors, as well as
extrinsics—Cα,ω

AB and BrBA—into the estimator. The displacement between the IMUs
was estimated as BrBA = [−5.98,120.4,−1.02]T mm with standard deviation of σ =

[1.44,0.67,1.20] mm. These values compare well with those determined through
measuring by hand ([−10.0,121.0,0.0]± [8.0,8.0,0.0] mm). Note that the displace-
ment between the centroids of the packages was measured, and that the uncertainty
bounds (given by the package dimensions of 4× 4 mm and the relative orientations
of the two devices) reflect our lack of knowledge about the accurate position of the
accelerometer axes inside the device. Due to imperfections in soldering devices to
the Printed Circuit Board (PCB) and in the mechanical mount connecting the PCBs
holding both MPU9150 IMUs, it is impossible to acquire accurate reference mea-
surements for the relative orientation of the two devices. Instead, we assessed the
precision as the square root of the orientation variance with respect to the Fréchet
expectation (Pennec, 1999). For Cω

AB, this was evaluated to about 0.01°, for Cα
AB to

1.95°. Note that absolute accuracy cannot be inferred from this assessment. While
the relative orientation of the gyroscopes to the IRA exhibits a small variance, the
estimate of the orientation of the accelerometers is noticeably less precise.

To ensure comparability between devices, we repeated the experiment to demonstrate
intrinsic calibration for a single MPU9150 and for the ADIS16448. The estimation
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Figure 4.3: Allan deviation of the MPU9150 gyroscopes (top) and accelerometers
(bottom). The sample Allan deviations are shown in grey, and the Allan deviations
corresponding to the noise model parameters used during the experiments are shown
in black (solid).
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Table 4.3

sym. unit ADIS16448 MPU9150
Gyroscopes
White noise str. σω °/(h

√
Hz) 3.85×101 1.84×101

Bias diffusion σbω rad/(s2
√

Hz) 2.66×10−5 1.08×10−5

Accelerometers
White noise str. σα m/(s2

√
Hz) 1.86×10−3 2.24×10−3

Bias diffusion σbα m/(s3
√

Hz) 4.33×10−4 7.53×10−5

results for Sα,ω ,Mα,ω and dc are summarized in Table 4.4. While the ADIS16448
appears to be well calibrated by the manufacturer, significant gyroscope scale factor
errors and axes misalignments were estimated for the MPU9150 (up to 1 % and 1°).
For both IMUs, a device intrinsic time delay of approximately 3 ms was estimated.
Over the 20 datasets, the standard deviation in the estimates were only about 15 µs
and 20 µs respectively.

4.4.3 Positions of individual accelerometer axes can be discerned

In this experiment, three different calibrations were performed for the ADIS16448
and one of the MPU9150: A) Assuming that scaling and misalignment errors are
compensated for or negligible, a standard IMU/camera calibration was performed,
B) misalignment, scale errors and the effect of linear accelerations on gyroscopes
were estimated, but individually different accelerometer axis displacements were ne-
glected, and C) a full calibration including individual axis offsets was performed.

Fig. 4.4 depicts the estimated accelerometer positions expressed in F−→C for both
IMUs. We determined a rough estimate of the sensor package dimensions by hand
and visualized it as gray wire frames in the figures. Crosses (×) mark the estimated
position of F−→A for calibration A. For the ADIS16448, the estimates lie clearly within
the sensor package and shows a comparatively small dispersion. For the MPU9150—
which is not factory calibrated—this estimate exhibits a bias and is located out-
side the approximate sensor dimensions. Consequently, estimating misalignment,
g-sensitivity and scale in calibration B yields improved results for this device as de-
picted as pluses (+) in Fig. 4.4b. In Fig. 4.4b, the measured footprint does not align
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Table 4.4

symbol unit ADIS16448 MPU9150
Accelerometer
Sα − I ppm 1.73×103±1.8×103 −4.20×103±2.9×103

ppm −6.37×103±4.1×103 7.76×103±1.2×103

ppm 6.60×103±6.2×103 7.92×103±2.7×103

Mα
′′ −0.80×103±0.81×103 −0.17×103±0.53×103

′′ −1.77×103±1.11×103 0.85×103±0.54×103

′′ −0.11×103±1.74×103 −0.36×103±0.44×103

Gyroscope
Sω − I ppm −1.85×103±1.6×103 3.01×103±0.6×103

ppm 1.85×103±1.1×103 −9.29×103±0.5×103

ppm 0.99×103±0.3×103 2.74×103±0.2×103

Mω
′′ −0.14×103±0.16×103 −0.31×103±0.09×103

′′ −0.14×103±0.17×103 −1.71×103±0.18×103

′′ 0.03×103±0.25×103 3.13×103±0.13×103

dC µs 2.94×103±20 3.03×103±15

perfectly with our estimates. While the reason for this could lie in biased calibra-
tions, it is similarly plausible that the device footprint measurements are inaccurate,
particularly given the complications associated with determining the origin of F−→C.
For the Analog Devices product, estimating IMU intrinsics did not yield improved
precision, again suggesting that the factory calibration accurately compensates for
these effects. Calibration C produced clearly separated estimates for the location of
individual accelerometer axes in Fig. 4.4a. The x-axis was estimated to be located
about a centimeter apart from the y- and z- axis. This may suggest that it is housed
inside a different IC, while the other two axes may share the same die. This separa-
tion of axes is less pronounced for the Invensense product, since this IMU is a single
4× 4 mm chip. Nevertheless, the order of axes on the device can be discerned and
their approximate location can be inferred. Table 4.5 compiles the estimates of the
y- and z-axis position expressed in F−→A. Note that F−→A is defined in a way that its
x-axis aligns with the x-axis of the device. Estimates for both devices yielded similar
precision.
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Table 4.5

x y z

ADIS16448 y-axis [mm] 5.27±0.53 −11.19±0.31 0.67±2.00
z-axis [mm] 2.91±1.12 −11.14±1.36 −1.15±2.59

MPU9150 y-axis [mm] 0.71±0.20 0.33±0.33 0.32±0.72
z-axis [mm] 1.76±0.49 −0.80±0.64 0.71±1.27
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(b) MPU9150

Figure 4.4: Visualization of CpCA, the estimated displacement between camera and
IMU. Crosses (×) mark the estimated position of F−→A when intrinsics are neglected
(estimator A). Each cross indicates the result from one experiment. Pluses (+) visual-
ize the position when IMU intrinsics are included in the estimation (estimator B). The
results of the full-scale estimator C are indicated with dots marking the estimated po-
sition of each individual accelerometer axis (red: x-axis, green: y-axis, blue: z-axis).
Results suggest that the approach is capable of discerning the positions of individual
axes. The results are less pronounced for the MPU9150, where all axes are integrated
in a package of 4×4 mm.
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4. EXTENDING kalibr:
CALIBRATING THE EXTRINSICS OF MULTIPLE IMUS AND OF INDIVIDUAL AXES
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Figure 4.5: Camera-IMU extrinsic translation estimation errors for experiments with
the MPU9150, with and without estimating the IMU intrinsic calibration parameters.
These results indicate that incorporating IMU intrinsic calibration terms improves the
accuracy of the extrinsic calibration parameter estimates.

4.4.4 Estimating IMU intrinsics improves camera/IMU extrinsic
calibration

Fig. 4.4b suggests that IMU scale errors and misalignments do not only result in
increased variance in the estimates, but even in noticeably biased quantities. Ac-
cordingly, intrinsic calibration should be an integral part of calibration involving
low-cost devices. Fig. 4.5 visualizes the results of Section 4.4.3 quantitatively for
the MPU9150: Using reference measurements extracted from Computer-Aided De-
sign (CAD) data, we determined the accuracy of the approach. Note that the estimate
of the y-axis is significantly biased when IMU intrinsics are not incorporated into the
estimator. Including them yields both, higher precision and greater accuracy. Please
note that the aforementioned problems regarding the acquisition of reference mea-
surements apply here as well.

4.5 Conclusion

In this work, we presented an extension to the open-source calibration toolbox kalibr
that allows for determining the extrinsics and intrinsics of multiple IMUs in a single
estimator. We further demonstrated that it is feasible to infer the location of individual
accelerometer axes to millimeter precision.

We believe that the significance of this contribution extends beyond the application
of calibrating multiple IMUs, and we intend to further investigate this in future work:
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• Neglecting the physical displacement of individual accelerometer axes in high-
end IMUs yields a source of deterministic error, which might be worth address-
ing in applications where accuracy is crucial.

• Where multiple IMUs are available, state estimation may benefit from incor-
porating measurements from all devices. Recently, different approaches to
continuous-time Simultaneous Localization and Mapping (SLAM) have been
proposed (e.g. Anderson, MacTavish, and Barfoot (2015) and Patron-Perez,
Lovegrove, and Sibley (2015)), and it would be straight-forward to extend these
to consider inputs from more than one IMU.

The biggest drawback of fusing data from multiple IMUs or individually displaced
accelerometer axes lies in the dependence on angular accelerations, which in most
sensor suites are not sensed directly. While this work showed that the continuous-
time batch estimation framework is capable of inferring reasonable angular acceler-
ations for our calibration use-case, it remains future work to demonstrate this fact
for other applications and estimation frameworks. Furthermore, we did not include
temporal offsets (apart from an image delay dc) in the estimator, and future work
will estimate individual delays for different IMUs as well as for accelerometers and
gyroscopes, acknowledging the fact that these may not employ filters with identical
characteristics.
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5
A Direct Formulation for Camera
Calibration
Joern Rehder, Janosch Nikolic, Thomas Schneider, and Roland Sieg-
wart

5.1 Introduction
Camera intrinsic calibration is a mature technology with a growing number of cali-
bration toolboxes freely available (Bouguet, 2004; Furgale et al., 2015b; Scaramuzza,
2006). The majority of these toolboxes relies on some sort of a calibration pattern
composed of visual identifiers for known three-dimensional (3D) points. Their cal-
ibration routines are based on extracting the position of these identifiers in the cal-
ibration images. Subsequently, the positions in the images and the location of the
associated points in the world are used to estimate the parameters of a projection
model. Commonly, this is achieved via an initialization step which minimizes some
algebraic constraints arising from multiple view geometry. The initialization is fol-
lowed by a probabilistically motivated optimization step which typically minimizes
the reprojection error.

This procedure has clearly stood the test of time and is applied widely, both in indus-
try and in research.

However, reducing the richness of image measurements to mere interest point posi-
tions as the very first step of the calibration marks a substantial abstraction. We ar-
gue that for certain use-cases, valuable information is omitted that could either yield
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5. A DIRECT FORMULATION FOR CAMERA CALIBRATION

higher precision in calibration or that would otherwise allow for a more intuitive for-
mulation of the parameter estimation problem.

Throughout this work, we will highlight motion blur and the rolling shutter effect
as two examples of such use-cases: Motion blur results from camera motion dur-
ing image exposure. Since the camera pose varies over the course of the exposure,
what is the timestamp that should be assigned to the interest point observations? In
rolling shutter cameras, image lines are exposed individually and consecutively. This
property leads to distortions in the image when the camera is subjected to motion
during the acquisition of a frame. How is uncertainty in the localization of the visual
identifiers modelled correctly in the presence of these complex distortions?

To avoid premature abstraction, we drew inspiration from a growing number of ap-
proaches to visual state estimation referred to as either direct (Forster, Pizzoli, and
Scaramuzza, 2014; Tykkälä, Audras, and Comport, 2011) or (semi-)dense (Comport,
Meilland, and Rives, 2011; Engel, Sturm, and Cremers, 2013). Rather than formulat-
ing the camera measurement model on discrete interest point positions, these methods
employ image intensities.

Using intensities allows for modelling the image exposure process. Accordingly, the
aforementioned use-cases become more intuitive: Rather than assigning an arbitrary
timestamp inside the bounds given by the exposure time to an interest point, intensity
can be modelled as a function of the exposure time and the camera trajectory during
this period. Similarly, instead of modelling the effect that rolling shutter distortion
exerts on the uncertainty of corner detections, camera frames can be treated as a com-
position of individually exposed rows which reduces the modelling of measurement
uncertainty to the noise corrupting image intensities.

The scope of this work is not to remove the need for interest point extraction alto-
gether. We acknowledge their necessity for proper initialization of all calibration pa-
rameters, and we employ the Perspective-n-Point algorithm(Lepetit, Moreno-Noguer,
and Fua, 2009) based on corner detections to initialize camera poses in our optimiza-
tion. Instead, we advocate for replacing the reprojection error with a direct error
formulation in the optimization step—particularly in applications where discrete in-
terest point positions mark an inadequate abstraction.

This idea may appear incremental, but we believe that it constitutes an (albeit small)
paradigm shift from abstracted quantities with often arbitrarily chosen uncertainties
to probabilistically more correct modelling of measurements acquired by cameras.
Furthermore, this approach will enable future estimators to account for properties
that are currently commonly neglected, such as defocus blur, as well as calibrations
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directly on Bayer pattern images, circumventing inaccuracies arising from interpola-
tion in demosaicing.

The contributions of this work are as follows:

– We highlight cases where modelling the image acquisition process yields dis-
tinct advantages over abstraction to discrete interest points.

– We derive a direct error formulation analogously to the state estimation lit-
erature and present a complete calibration pipeline comprising adaptive point
selection and dimensionality reduction.

– We extend this basic formulation in different ways to cover the use-cases of
line delays in rolling shutter cameras and motion blur in camera/Inertial Mea-
surement Unit (IMU) calibration.

– We present a comprehensive evaluation suggesting that the direct formulation
yields competitive results for estimating camera intrinsics from static images,
but further allows for estimating exposure time from motion blur and line de-
lays for rolling shutter cameras, both to high accuracy.

5.2 Related Work
This work is motivated by what we perceive as a gap in the camera calibration liter-
ature: Recent advances in state estimation based on a direct formulation of the cam-
era measurement model have not been matched by similar methods for calibration—
despite some potential advantages of this formulation.

Many prevailing methods in camera intrinsic and multi-camera extrinsic calibration
(Mei and Rives, 2007; Scaramuzza, Martinelli, and Siegwart, 2006; Zhang, 2000) are
based on extracting the position of visual identifiers of known world points from the
images. Subsequently, these approaches operate exclusively on the positions and omit
all image data. In most implementations, noise on keypoints is modelled as isotropic
zero-mean Gaussian corruptions. This choice may be an inaccurate model of the de-
tection uncertainty for views where the target is significantly distorted due to projec-
tive foreshortening. In contrast, the direct model is formulated on the lowest level of
abstraction from the sensor measurement and hence facilitates a correct treatment of
measurement uncertainties. Furthermore, certain calibration use-cases require cam-
era motion during calibration (e.g. camera/IMU calibration (Furgale, Rehder, and
Siegwart, 2013; Mirzaei and Roumeliotis, 2008), rolling shutter calibration (Oth et
al., 2013)). In this context, (Furgale, Rehder, and Siegwart, 2013) observed that a fi-
nite exposure time—and the resulting motion blur—have a profound impact on delay
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estimation. The authors concluded that the mid-exposure time should be assigned as a
timestamp to keypoint observations. Under general motion however, it is not obvious
why the corner position returned by the detector should always correspond to the pro-
jection at mid-exposure time. Instead, we suspect that the mid-exposure time yields
the smallest average error in timestamping. Nevertheless, these errors likely correlate
with the motion, which violates fundamental assumptions about their distributions. In
applications where camera measurements are leveraged to estimate intrinsic param-
eters of other sensors (e.g. Rehder et al. (2016) and Zachariah and Jansson (2010)),
these correlations and the resulting inaccuracy in timing may severely limit possible
insights. In contrast, (Meilland, Drummond, and Comport, 2013) proposed a direct
model which incorporates motion blur and would remove the need to assign times-
tamps at finer granularity than exposure time. Similarly, modelling the uncertainty of
interest points detected in images from rolling shutter cameras is highly involved (Oth
et al., 2013). Employing a measurement model directly based on intensities yields a
more intuitive formulation (Kim, Cadena, and Reid, 2016; Meilland, Drummond, and
Comport, 2013).

The direct formulation will introduce radiometric entities into the calibration proce-
dure. In this work, many of the complications arising from this fact are mitigated
by careful experimental design and simplifying assumptions. We adopted naming
conventions and concepts from Grossberg and Nayar (2004) and Debevec and Ma-
lik (2008), and we will incorporate ideas from Kim and Pollefeys (2008) for folding
geometric and radiometric calibration into a single estimator in future work.

5.3 Method

In this work, we employ non-linear weighted least-squares optimization over a batch
of measurements for parameter estimation. A set of parameters Θ is determined by
minimizing an objective function based on some sensor model f(·), measurements m̃,
and the covariance Σ of the error corrupting the measurements:

Θ = argmin
Θ

(f(Θ)− m̃)T
Σ
−1 (f(Θ)− m̃) . (5.1)

In a direct formulation of camera measurements, the measurement vector m̃ is com-
posed of image intensities at individual pixels. The sensor model f(·) corresponds to
a rendering of the respective camera view based on the parameters Θ. Next, we will
introduce the sensor model in general terms, followed by the more concrete exam-
ple of a pinhole camera observing an evenly lit checkerboard. For this setup, further
considerations concerning motion blur and rolling shutter sensors will be presented.
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5.3.1 Basic Formulation

5.3.1.1 Direct error formulation

For the direct error formulation, we are interested in the mapping from target radiance
to image intensities:

L(W p) 7→ B(Ip). (5.2)

We will make the assumption that the target behaves perfectly Lambertian. Hence,
the radiance function of the target is formulated as dependent on its coordinates W p
expressed in the world coordinate frame F−→W , but not as dependent on the viewing
direction. The function governing image intensities is expressed in terms of image
coordinates Ip. Mapping (5.2) can be decomposed into a geometric component that
concerns the mapping from F−→W into the image (W p 7→ Ip) and a radiometric compo-
nent that concerns the mapping from scene radiance to image intensity.

The geometric mapping is given by a coordinate transformation and a subsequent
projection π(·):

W p TCW7−−→ Cp
π(·)7−−→ Ip. (5.3)

Given the camera pose TCW , a world point W p is transformed into the coordinate
frame of the camera, F−→C, via

Cp = TCW (W p). (5.4)

The camera is characterized by a projection function Ip = π(Cp) that maps points
from F−→C onto the image plane.

The radiometric part is given by

L
S(·)7−−→ E

∫
dt7−−→ X

R(·)7−−→ B (5.5)

where E and X mark sensor irradiance and exposure respectively and the functions
S(·) and R(·) denote the optical transmission function and the sensor response func-
tion.

Here, we adhere loosely to the naming conventions introduced in Grossberg and Na-
yar (2004) and Debevec and Malik (2008)—work which is recommended for more
detailed insights into the radiometric aspects of the image forming process. We fur-
ther follow Debevec and Malik (2008) in justifying the use of the term irradiance
while echoing the authors’ note that this use neglects the weighting with the spectral
response function of the sensor.
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Image intensity B(·) at an image point Ip is given by the target radiance at the cor-
responding point W p and the radiometric mapping of the optical setup as well as the
characteristics of the image sensor used:

B(Ip) = R
(∫ t0+te

t0
S(L(W p))dt

)
; Ip = π (TCW (W p)) (5.6)

where t0 marks the start of exposure and te is the exposure time.

In practice, two more aspects are of interest: Image sensors are composed of many
sensitive elements (“pixels”) which have a finite area. Accordingly, the intensity
perceived at a discrete pixel location ˆIp is given by the integral of the sensor irradiance
E(·) over the area of the respective sensitive element and over exposure time te. The
finite size of the sensor element is neglected here in order to reduce the computational
complexity. However, the sensor might not be at rest during image exposure. In this
case, different W p(t) will map to a single image location Ip during image formation;
an effect we exploit to estimate exposure time.

The predicted measurement error eB( ˆIp) for a single pixel is given as the difference
between the predicted intensity B( ˆIp) and the measured intensity B̃ ˆIp at this position:

eB( ˆIp) := B( ˆIp)− B̃ ˆIp. (5.7)

The error for an entire image or a subset of an image is composed of the errors of all
the individual pixels:

eB :=

 eB( ˆIp1)
...

eB( ˆIpN)

 ; ˆIp1, . . . , ˆIpN ∈ P, (5.8)

where P denotes the set of all pixels active in the error term.

The intensity error (5.8) depends on a set of different parameters:

– The unknown pose of the camera with respect to F−→W , TCW (t).

– The result of π(·) depends on parameters such as focal length, the location of
the principal point, and parameters of the lens distortion model.

– L(·) as well as S(·) and R(·) may be described by models depending on un-
known parameters. These parameters may be coefficients of a polynomial de-
scribing vignetting or factors weighing basis functions that form the response
function (Grossberg and Nayar, 2004; Kim and Pollefeys, 2008).
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– For certain applications, the exposure time te may be of interest but unknown.

The optimization problem (5.1) is solved iteratively for these parameters. In each
iteration, a set of error functions (5.8) is linearized around the current parameters
estimates. With Jχ := δeB

δ χ
and using the function names as an identifier for their

parameter set, the linearization is given as

J =
[

JR Jte JS JE Jπ JTCW

]
. (5.9)

To implement (5.9), we render exposure images X( ˆIp) and compute their spatial
derivatives numerically by means of an image gradient operation, using a Sobel ker-
nel for increased robustness. The individual Jacobians can then be computed through
repeated application of the chain rule (Tykkälä, Audras, and Comport, 2011).

5.3.1.2 Point selection

For rendering X(·) with the aforementioned assumptions, L(·) must be evaluated at
discrete positions Ŵ p. To reduce the amount of computation, L(·) should be queried
as sparsely as possible. Hence, we focus on the most informative areas, which cor-
respond to pixel positions ˆIp where X( ˆIp) exhibits large gradients. To identify these,
a reverse approach is taken: Assuming that the estimated parameters are reasonably
close to the true values, the rendered exposure image will be similar to the exposure
that induced the measured image B̃ ˆIp. Accordingly, pixel locations with large gra-
dients in the measured image B̃ are likely to also yield informative regions in X(·).
This is formalized as a classification function C(·) dependent on threshold t:

C( ˆIp) :=

{
1 if

∣∣∇B̃ ˆIp
∣∣> t

0 else
(5.10)

The set of active pixels ˆIp ∈ P is composed of all locations with C( ˆIp) = 1. These
locations are projected back onto the target given the current parameter estimates.
Linearization (5.9) requires the gradient of the rendered exposure to be defined for
all ˆIp for which error terms are considered. To achieve this, the exposure image
is additionally rendered for all pixels adjacent to pixels with large gradients. This
functionality is implemented as a morphological dilation operation on C(·). Fig. 5.1
visualizes the individual steps of the process.

For this approach to be correct, the parameters do not need to be known precisely.
In the worst case, the radiance function is sampled in less informative regions, but
since it is defined in terms of W p, the association between L(·) and W p will always
be correct.
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(a) (b) (c)

Figure 5.1: Visualization of the point selection process. Fig. 5.1a depicts the magni-
tude of the result of the Sobel operation on the input image. Fig. 5.1b and Fig. 5.1c
show the result of the subsequent classification C(·) and the dilation operations.

5.3.1.3 Error compression

The aforementioned point selection yields a varying number of equations of the form
(5.8), where the number mostly depends on the distance of the camera to the calibra-
tion target. This number is usually large compared to the number of parameters on
which the error terms for a single image (or an image line in the rolling shutter case
5.3.2.2) depend. Accordingly, the system is generally overdetermined. We deem a
vast and varying number of our error terms undesirable for implementation purposes
and for reasons of computational efficiency. If the error terms were of fixed size,
the block-sparsity pattern of the normal equation governing the entire measurement
sequence (i.e. all camera frames) could be precomputed which would allow for more
efficient solving (Furgale, Rehder, and Siegwart, 2013).

Fixating the number of error terms is accomplished through QR decompositions (Golub
and Loan, 1996). The Jacobian J of all intensity errors associated with a single image
(or an image line) can be decomposed as

JP = QR =
[
Q1 Q2

][R1
0

]
(5.11)
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where P is a column permutation matrix, Q is an orthogonal matrix, and R an upper
triangular matrix. P is selected such that R1 is invertible by ensuring that all its
diagonal elements are non-zero. The compressed Jacobian can then be computed as

Ĵ := R1PT (5.12)

and the corresponding intensity errors are given as

êI := QT
1 eI . (5.13)

5.3.2 Applications
So far, we introduced the concept in a broader scope. In this section, concrete man-
ifestations will be presented. For the following, we will make some simplifying as-
sumptions:

– A simple radiance model is a sufficiently faithful representation of the re-
flectance properties of our target; target illumination does not change over the
course of a dataset collection.

– Camera gain and exposure are fixated during acquisition of the calibration
dataset; the optical transmission function is approximated by an attenuation
factor that affects the image uniformly (i.e. no vignetting); the camera response
function is assumed to be linear.

– The sensor motion during calibration is sufficiently smooth.

We used a checkerboard pattern due to its simplicity. For points W p on the target, the
radiance function is modelled as

L(W p) :=

{
L0 if (bW px

dx
c+ bW py

dy
c) mod 2 = 0

0 else
(5.14)

where the operator b·c denotes a floor operation and dx and dy the extent of indi-
vidual checkerboard tiles in x and y direction. L0 was chosen arbitrarily, and is not
observable without additional information as will be highlighted in (5.18).

The projection function uses a pinhole camera model with distortion modelled as a
4th degree polynomial of the incidence angle (Kannala and Brandt, 2006):

π(Cp,k) := d

arctan

√(Cpx

Cpz

)2

+

(
Cpy

Cpz

)2
 ˇIp (5.15)
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where ˇIp is the ideal pinhole projection

ˇIp :=

[
k0

Cpx
Cpz

+ k2

k1
Cpy

Cpz
+ k3

]
(5.16)

and d(·) denotes the distortion function

d(α) := α + k4α
3 + k5α

5 + k6α
7 + k7α

9. (5.17)

With the aforementioned assumption about the transmission function S(·) and the
target radiance, all radiometric relations can be collapsed into a single linear mapping.
For convenience, we will nevertheless refer to this mapping as the response function
R(·) depending on exposure X:

R(X) := sX+o. (5.18)

where s denotes a scale factor and o an offset. There exist ambiguities in the map-
ping from target radiance to exposure and image intensity. In absence of additional
information, the functions R(·) and X(·) as well as the parameters s and o elude any
physically meaningful interpretation. The parameters even transcend the domains of
scene characteristics and camera properties: As an example for image sensors with
linear response, offset o will correspond to an inseparable amalgamation of the dark
current of the sensor and the radiance of the dark patches in the target weighted by the
attenuation induced by the optics. This model marks a vast simplification. Whether
the effects of this reduction of complexity are negligible in practice depends on such
factors as the shape of the true camera response function and the amount of vignetting
induced by the optics. Our results for two different sets of camera makes and optics
presented in Section 5.4 suggest that these assumptions do not necessarily constitute
an over-simplification that renders the approach inapplicable in practice. To further
broaden the applicability of the approach, we are currently working on additionally
modelling uneven illumination of the target and vignetting effects.

In the following, camera specific models will be introduced.

5.3.2.1 Global shutter

In the global shutter case with negligible exposure time, the error term eB corre-
sponding to a single image is composed of the set of pixels ˆIpi ∈ P in the frame for
which the classification (6.24) yields C( ˆIpi) = 1. Since the entire image is exposed
simultaneously eB depends only on a single camera pose TCW (t j) at some time t j.
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Table 5.1: Estimated parameters

Parameter Symbol

Camera poses TCW
Camera intrinsics k
Radiometric properties s, o
Exposure time te see 5.3.2.3
Temporal offset between lines tl see 5.3.2.2

5.3.2.2 Rolling shutter

In the rolling shutter case—again for negligible exposure time—each image line is
exposed individually and consecutively. According to Flea3 USB 3.0 Digital Camera
Technical Reference (2016), the temporal offset tl between lines is further constant
and corresponds to the line readout time. To account for this behavior, the intensity
error is not formulated on the entire image but on individual rows. The set of pixels
ˆIpi ∈ P contributing to the error at line k is determined by (C( ˆIpi) = 1)∩ ( ˆIpi

y = k).
Accordingly, each error term ek

B depends on a different camera pose TCW (t j + ktl)
where t j marks the time at which line 0 is exposed.

Contrary to other rolling shutter calibration approaches (see (Oth et al., 2013) for
examples), no specific accommodation were made as compared to the global shutter
use-case beyond formulating the error on subsets of the entire image. This highlights
that the direct error formulation lends itself well to extending existing frameworks
designed for global shutter cameras to rolling shutter use-cases.

5.3.2.3 Motion blur

Analogously to Meilland, Drummond, and Comport (2013), motion blur is imple-
mented as discretization of (5.6). With the simplifications introduced in Section 5.3.2,
this is achieved as discretization of X(·) in time:

X( ˆIp) :=
K

∑
k=0

L
(

W p
(

t0 +
k
K

te

))
1
K

te (5.19)
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where t0 marks the start of the exposure time and te is the estimated exposure time.
The term W ptk := W p

(
t0 + k

K te
)

denotes the surface point that projects onto ˆIp at time
t0 + k

K te. The mapping is given by

Ip = π

(
TCW

(
t0 +

k
K

te

)
W ptk

)
. (5.20)

The above formulation is similar in function to the one presented in Section 5.3.2.1,
but it addresses the case when exposure time cannot be neglected. Accordingly, a
model for rolling shutter cameras in the presence of motion blur can be derived from
it analogously to Section 5.3.2.2.

5.4 Results

We conducted experiments using the setup depicted in Fig. 6.5. The sensor suite com-
prises an MT9V034 Complementary Metal-Oxide-Semiconductor (CMOS) global
shutter camera, a Point Grey Flea3 FL3-U3-32S2C rolling shutter camera and an
ADIS16448 IMU. The global shutter cameras and the IMU were synchronized in
hardware and ran at 20 Hz and 800 Hz respectively. The rolling shutter camera was
later synchronized in software. During the collection of a single dataset, exposure
times and gains were fixated. In all experiments, we assumed intensity measure-
ments to be corrupted by additive zero-mean Gaussian-distributed noise with σ =

5.0. The calibration target were static checkerboards with 8×7 quadratic tiles of size
50×50 mm and 70×70 mm. We illuminated the targets evenly using two large Light-
Emitting Diode (LED) light bar modules powered by a direct current power supply.
We further disabled any fluorescent lighting in the vicinity to avoid flickering. While
the experiments were set up with particular consideration on even illumination, we
observed comparable performance with regular office lighting in preliminary exper-
iments. For data collection, the setup was moved in front of the visual target while
ensuring that a) the visual target was in the field of view of the camera for most of
the dataset, b) all rotational degrees of freedom were sufficiently excited and c) that
the maximum velocity of the motion was limited to values such that corner detection
and initial parameter estimation still yielded acceptable results despite the presence
of motion blur.

In the estimators determining line delay (Section 5.4.2) and exposure time (Sec-
tion 5.4.3), we represented the sensor pose TCW (t) as continuous quantity and further
fused IMU measurements to constrain the sensor trajectory, drawing inspiration from
Furgale, Barfoot, and Sibley (2012). An IMU is not strictly required in either ap-
plication: For the approach to yield reasonable results, estimates of the camera pose
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during image acquisition have to follow realistic trajectories. Such estimator behavior
can be enforced by penalizing physically infeasible temporal changes in the sensor
pose. While fusion with inertial measurements is one realization of this objective,
it can also be achieved via a motion prior, trading measurements for models of the
distribution of linear and angular accelerations (Oth et al., 2013).

Table 5.1 compiles a list of all parameters relevant to the different use-cases pre-
sented in this section. For each estimator, we will identify those parameters that are
estimated in addition to the camera poses TCW and the parameters that govern the
radiometric model, s and o. Any quantity that is not estimated is either not present in
the model (as for example the line delay tl when a global shutter camera is employed)
or is known and constant. In either case, (5.9) is adjusted to only reflect the estimated
parameters.

Figure 5.2: The experimental setup and visual target employed in this work. The
sensor suite features a visual/inertial sensor comprising two MT9V034 global shutter
image sensors and an ADIS16448 IMU (Nikolic et al., 2014b). In addition, a Point
Grey Flea3 FL3-U3-32S2C rolling shutter camera with C-mount optics was rigidly
attached to the other sensors. The laser range finder present in the setup was not used
in this work.
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5.4.1 The direct method exhibits performance similar to estab-
lished approaches for static images

In this experiment, we used the FL3-U3-32S2C camera to record roughly 500 static
images of the larger calibration target. The camera was operated at its native res-
olution of 2080×1552 px. Images were converted to grayscale and subsequently
down-sampled by a factor of eight.

At this resolution, calibration using a single set of images took approximately 5 min-
utes on an Intel Core i7-2720QM at 2.2 GHz. Calculating the direct error is only
marginally more expensive than computing a reprojection error. However, the error
is evaluated for a significantly larger number of points, yielding a runtime increase
in the order of the ratio of evaluated intensities to interest points in the target. Ac-
cordingly and in contrast to approaches based on interest point locations, the cost
accruing in the estimation scales with image resolution. We believe that the benefits
of a more correct treatment of uncertainties and timestamps in the rolling shutter and
motion blur use case outweigh the drawback of increased processing time in offline
calibration. Runtime improvements currently under development will offset some of
the additional computation, which will make the advantages of this approach more
distinct in the future.

In this experiment, camera intrinsics k were calibrated. For 30 random subsets of 20
images and using corner position extracted from the images, a vanishing point based
initialization of camera intrinsics k0−3 (Hughes et al., 2010) and the Perspective-n-
Point algorithm for pose initialization (Lepetit, Moreno-Noguer, and Fua, 2009) were
employed. The distortion estimate k4−7 was initialized to zero. Subsequently, the ini-
tial estimate was refined on these subsets using an implementation of the optimization
step a) based on the reprojection error (using the implementation provided in Furgale
et al. (2015b)) and b) based on the direct formulation as described in Section 5.3.2.1.

Table 5.2 lists the results in terms of mean and standard deviation for both approaches.
They suggest that the direct formulation exhibits performance similar to the repro-
jection error in static cases. In our experiments, the interest point based approach
demonstrated greater precision. This can likely be attributed to our simplifying as-
sumption that a single radiance sample is sufficient to determine the intensity for a
pixel.

5.4.2 The approach yields accurate estimates of the line delay in
rolling shutter cameras

In this experiment, the FL3-U3-32S2C rolling shutter camera as well as the ADIS16448
IMU were used. Again, images were converted to grayscale and down-sampled by
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a factor of eight. Exposure time was set to 2 ms. The camera did not provide an
interface to directly manipulate the line delay tl (or its reciprocal, the line frequency
fl), but it allowed for setting different video modes with two distinctively different
line frequencies of 24193.6 Hz and 96774.2 Hz respectively (Flea3 USB 3.0 Digital
Camera Technical Reference 2016). With these settings, the camera provided images
at a rate of 15 Hz and 20 Hz with a resolution of 1920×1080 px. For each line de-

Table 5.2: Standard vs. direct method for estimation of the camera intrinsics.

Standard method Direct method Unit
k0 176.72±0.85 175.43±0.90 px
k1 176.76±0.85 175.32±1.02 px
k2 129.91±0.54 129.92±0.81 px
k3 96.07±0.87 96.08±0.71 px
k4 0.11±0.01 0.10±0.02
k5 0.08±0.07 0.06±0.13
k6 −0.08±0.25 −0.03±0.41
k7 0.20±0.32 0.25±0.59

(a) (b)

Figure 5.3: A comparison of the modelled target given the initial estimate based on
a global shutter approximation (Fig. 5.3a) and after estimating the calibration pa-
rameters (Fig. 5.3b). Albeit subtle, the effect of consecutively exposed image lines is
visible as a distortion of the pattern, resulting in an incorrect fit of the initial rendering
of the target. This effect is most pronounced in the lower left corner. After calibra-
tion, the rolling shutter distortion is correctly accounted for, resulting in a seamless
superimposition of camera image and rendered target.
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lay, a dataset of approximately 60 s length was recorded and subsequently split into
chunks of 10 s. In this experiment, the line delay tl as well as the camera intrinsics
and distortion k were estimated. As initial estimate, we set tl to 0 s and initialized the
intrinsics with the values calibrated in Section 5.4.1, despite the different resolutions
in the two experiments.

Table 5.3 shows the results of estimating the line frequency 1/tl . The results suggest
that the approach is capable of accurately estimating the line frequency with mean
absolute estimation errors below 1 %.

Table 5.3: True vs. estimated line frequency.

line frequency [Hz] fl [Hz] σ fl [Hz] e fl [Hz]
24193.6 24147.3 138.5 133.4
96774.2 96401.0 929.6 751.4

Camera intrinsics were determined as k0−3 = [176.56,176.33,120.02,67.21] px with
standard deviations σ0−3 = [1.65,1.577,0.735,1.169] px over all estimates. The fo-
cal length is similar to the value estimated in Section 5.4.1, suggesting that image
resolution was reduced through a cropping operation. Distortion was estimated as
k4−7 = [0.106,0.058,0.122,−0.319] with standard deviation
σ4−7 = [0.01,0.129,0.65,1.238], which compares well with the values determined
in the static experiment. The parameters governing mapping (5.18), s and o, were de-
termined as s = 0.8 with σs = 0.05 and o = 13.35 with σo = 1.61 respectively. While
these values are representative exclusively of the conditions present during data col-
lection (e.g. the target, lighting, optics, camera make and settings, and the specific
choice of L0 in (5.14)), they suggest that s and o can be estimated in a repeatable fash-
ion over multiple datasets—a prerequisite for our direct approach to yield meaningful
results.

Fig. 5.3 is representative of the magnitude of the rolling shutter effect in the dataset.
Assuming a zero line delay tl as initial estimate yields subtle inconsistencies when
superimposing the target rendering onto the image, most apparent in the lower left
corner of Fig. 5.3a. After calibration, these are resolved by accounting for the con-
secutive nature of rolling shutter frame exposure (Fig. 5.3b).

5.4.3 Exposure time can be accurately inferred from motion blur

In this experiment, we used the MT9V034 Wide Video Graphics Array (WVGA)
global shutter camera in combination with the ADIS16448 IMU to estimate exposure
time te. Using the smaller calibration target, three datasets of approximately 60 s each
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were recorded with 2, 4, and 6 ms exposure time. These datasets were subsequently
split into chunks of 5 s length. For estimating the exposure time, the blurred image
was additively composed of images rendered for 10 discrete poses. Our camera setup
assigned timestamps at mid-exposure time, which was accounted for by extending
(5.19) by additionally subtracting half the exposure time te. This adjustment gave rise
to an ambiguity in the sign of the estimate of the exposure time. Accordingly, the
evaluation was performed on the absolute value of the estimate.
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Figure 5.4: Exposure time estimates inferred from motion blur in global shutter im-
ages. The estimator accurately determined exposure times of 4 ms and 6 ms, while
returning biased results for 2 ms. In the 2 ms case, the effect of motion blur is subtle,
which—in combination with our discretization approach—could potentially explain
the bias.

Fig. 5.4 depicts a box plot of the estimated exposure times. The median values of
the estimates are 2.50 ms, 4.09 ms, and 5.97 ms. Longer exposure times (4 ms and
6 ms) could be accurately inferred from motion blur alone. Note that this result is
different from Furgale, Rehder, and Siegwart (2013) where conceptually exposure
time could be observed by reconciling sensor trajectories perceived by the camera
and the IMU by means of a fixed, relative temporal offset. For sensor setups that
assign image timestamps at mid-exposure time, such an approach is not capable of
inferring exposure as demonstrated in Nikolic et al. (2014b). For short exposure
times (2 ms), our approach returned a biased estimate. From examining the images
in the dataset, we concluded that the effect of motion blur was rather subtle, and our
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temporal discretization—in addition to the current lack of support for sub-pixel effect
in rendering—may have made it difficult to perceive short exposure times.

(a)

(b)

Figure 5.5: A comparison of the target rendered onto the real image. Fig. 5.5a depicts
a rendering based on the initial guess of o, s and te, while Fig. 5.5b shows the ren-
dering after calibration. The effect of motion blur is realistically captured as apparent
from the close resemblance of the rendered checkerboard squares with the squares in
the right column of the target.

We use the estimation of exposure time as a proxy to shed light on an underlying con-
cept: There exists a number of approaches (e.g. Rehder et al. (2016) and Zachariah
and Jansson (2010)) that employ camera measurements to improve the models of
other devices comprised in the same sensor suite. However, these approaches are
likely limited by the least sophisticated model contributing to the estimator. For-
mulating the camera model directly on image intensities paves the way for more
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comprehensive modelling of image measurements and in turn for further advances
in the models of the additional sensor comprised in the setup. Fig. 5.5 highlights
the accuracy of the currently implemented model for motion blur. Starting from an
initial estimate (Fig. 5.5a) of negligible exposure time and with inaccurate estimates
of the parameters s and o, the approach converges to estimates that yield a realistic
impression of the target recorded under camera motion (Fig. 5.5b), as obvious from
the close resemblance of the rendered part of the checkerboard with its right column.
Fig. 5.5b also highlights a limitation of our simplified radiance model: In contrast to
our assumption, the checkerboard is not perfectly evenly lit, resulting in an intensity
gradient. This mismatch between model and reality yields subtle seams, especially
visible in the top row of the target.

5.5 Conclusion

Our results suggest that camera calibration benefits from a direct formulation of the
camera measurement model—an approach that increasingly gains traction in visual
state estimation. The direct method is computationally more involved, but it exhibits
some distinct advantages: It marks the lowest level of abstraction from image sensor
readings which facilitates a correct treatment of measurement uncertainties. It further
allows for more comprehensive measurement models that bypass complex issues like
assigning a timestamp to an interest point extracted from an image blurred by motion
or determining the uncertainty of a corner detection in an image distorted by the
rolling shutter effect.

However, this comes at the cost of incorporating radiometric aspects into the cali-
bration even in cases where we are exclusively interested in temporal or geometric
parameters.

Currently, we are working on relaxing some of the assumptions made in this work by
extending the model to incorporate uneven illumination and optical vignetting. We
are further addressing defocus by estimating the point spread function of the optical
system. Reducing computation time is an additional concern of ours.
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6
Camera/Inertial Measurement
Unit (IMU) Calibration Revisited
Joern Rehder and Roland Siegwart

6.1 Introduction

With an increasing number of approaches emerging which leverage the complemen-
tary strengths of IMUs and cameras (e.g. Jones and Soatto (2011), Leutenegger et
al. (2015), and Mourikis and Roumeliotis (2007)), camera/IMU extrinsic calibration
has equally seen a surge in interest. Among the different approaches, offline meth-
ods that estimate the relative orientation and displacement between camera and IMU
from data collected while moving the sensor suite in front of a stationary calibration
target have gained most traction in the robotics community (Fleps et al., 2011; Kelly
and Sukhatme, 2011; Mirzaei and Roumeliotis, 2008). Early on, temporal offsets
have been identified as a significant source of deterministic error (Kelly, Roy, and
Sukhatme, 2014; Mair et al., 2011). Consequently, the estimation of temporal quan-
tities has been incorporated as an integral part into camera/IMU calibration (Furgale,
Rehder, and Siegwart, 2013; Nikolic et al., 2016b).

Similarly, incorrect IMU intrinsics have been eyed as a factor that limits calibra-
tion precision, with a number of approaches extending calibration to include more
comprehensive inertial measurement models (Krebs, 2012; Nikolic et al., 2016b;
Zachariah and Jansson, 2010).

Published in:
IEEE Sensors Journal 17.11, pp. 3257–3268, 2017, ©2017 IEEE
DOI: 10.1109/JSEN.2017.2674307
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Recently, different approaches for online calibration of camera/IMU systems have
been proposed. Some methods are limited to the transformation between camera and
IMU (Jones and Soatto, 2011; Leutenegger et al., 2015) while others additionally also
determine the time offset (Li and Mourikis, 2014) and IMU and camera intrinsics (Li
et al., 2014). Online approaches exhibit distinct advantages for volatile parameters.
In contrast, offline approaches benefit from controlled environments with dedicated
calibration motion and are able to expend significantly more computation, which en-
ables batch solutions over large sets of measurements. For these reasons, offline
approaches can potentially yield more accurate results for constant parameters.

This work revisits the topic of offline camera/IMU calibration for a more in-depth
view at sensor modelling.

With respect to the IMU model, we show that the displacement of individual ac-
celerometers, sometimes referred to as size-effect(Hung et al., 1979), can be a sig-
nificant source of deterministic error. This effect is generally more pronounced for
high-quality devices that employ multiple, single axis sensors.

For the camera, we propose a direct formulation, motivated by the work of Meilland,
Drummond, and Comport (2013). This formulation can source more information per
image than corner position based methods. It further circumvents the issue of assign-
ing measurement timestamps at finer granularity than image exposure time: While
start and duration of image exposure can be determined accurately, it is more difficult
to resolve the time instant within the exposure window corresponding to a corner ob-
servation. More speculatively, the direct approach may further leverage the motion
information comprised in motion blur, similar to the visual gyroscope proposed by
Klein and Drummond (2005), and it is able to treat defocus blur explicitly. The later
incorporates insights from Joshi, Szeliski, and Kriegman (2008) into estimating the
point spread function for modelling blur. The approach differs from similar mod-
elling proposed by Meilland and Comport (2013) in that it estimates the blur kernel
from data to achieve high-fidelity renderings that suffice the demanding requirements
of calibration.

This work combines findings from our previous contribution on modelling accelerom-
eter measurements as perceived in different locations inside the IMU (Rehder et al.,
2016) with a direct image measurement formulation (Rehder et al., 2017). It extends
this work by a novel formulation of the direct image error that facilitates modelling
uneven target illumination.
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6.2 Method

6.2.1 Problem Statement

Most fundamentally, calibration aims at establishing a set of parameters Θ that govern
some sensor model h(·) such that, given the system state x(t), h(·) accurately predicts
the measurement m̃ for that sensor.

F−→W

F−→C

F−→A

Figure 6.1: The general calibration setup. Camera and IMU are rigidly attached to
each other and moved in front of a stationary visual calibration target. This work is
concerned with finding the fixed transformation from the IMU reference frame, F−→A,
to the camera reference frame, F−→C, as well as IMU intrinsics and a fixed tempo-
ral offset. Fig. 6.4 motivates these intrinsics by providing a close-up view into the
internal structure of a prototypical IMU.

This work addresses the well-studied problem of camera/IMU calibration. Fig. 6.1
depicts the general calibration setup: A sensor suite, comprising an IMU rigidly at-
tached to an intrinsically calibrated, global-shutter camera, is moved in front of a
stationary visual calibration target. Using the images, accelerometer data, and gy-
roscope readings recorded in this process as measurements and an estimate of the
sensor trajectory as state, a set of parameters comprising the relative pose between
camera and IMU, a constant temporal offset and a set of intrinsic parameters of the
IMU is determined.

Table 6.1 compiles all states and parameters estimated in this work.
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6.2.2 Coordinate Frame Conventions

The different coordinate frames used in this work are shown in Fig. 6.1. We will refer
to the target frame as F−→W , while the camera and the IMU frame will be denoted with
F−→C and F−→A respectively.

The relative pose of two coordinate frames, e. g. of F−→W with respect to F−→C, is
fully described by means of a 4×4 transformation matrix TCW denoting the mapping
Cp = (TCW )W p of points expressed in homogeneous coordinates:

TCW :=
[

RCW CtCW

0 1

]
, (6.1)

where RCW is a rotation matrix and CtCW marks the vector from the origin of F−→W to
the origin of F−→C expressed in F−→C.

In addition to these coordinate frames, we will further consider the two-dimensional
(2D) image coordinate frame F−→I which describes coordinates on the image plane
{Cp : Cz = 1} scaled and translated according to the camera intrinsics KIC introduced
in (6.14).

6.2.3 Estimator Formulation

The calibration is formulated as a Maximum Likelihood Estimation (MLE) over a
batch of images and accelerometer and gyroscope measurements.

Each sensor contributes an error term of the form eh := h(x(t),Θ)− m̃ to the estima-
tor, where the measurement vector m̃ is composed of all measurements recorded with
the respective sensor and vector h(·) comprises the corresponding, modelled values.
We will further consider time-varying inertial sensor biases via process models of the
form ẋ(t) = f(x(t))+w(t) where w(t) marks a zero-mean, white Gaussian process.
This yields the corresponding contribution
e f (t) := ẋ(t)− f(x(t)).

We assume that all measurements m̃ are corrupted by zero-mean, white Gaussian
noise processes, either discrete in time as for the camera, or continuous in time for
accelerometers and gyroscopes, the characteristics of which are captured by matrices
R. The processes f(·) are modelled as affected by a zero-mean white Gaussian process
with characteristics Q.

With these assumptions, the estimator can be formulated as
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Table 6.1: States x(t) and parameters Θ estimated in this work.

Symbol Description Section

States x(t)

TAW (t) Time-varying pose of the IMU 6.2.4
bα(t) Time-varying accelerometer bias 6.2.7.1
bω(t) Time-varying gyroscope bias 6.2.7.2

Parameters Θ

TCA Fixed relative transformation between F−→A and F−→C 6.2.6.1
dC Fixed temporal offset of image timestamps with re-

spect to accelerometer timestamps
6.2.6.1

ak Coefficients of a polynomial illumination model for
image k

6.2.6.2

ρk
b Reflectance of the black tiles of the calibration pattern

for image k
6.2.6.2

te Exposure time of the camera 6.2.6.2
o offset of the linear camera response function 6.2.6.2

Sα,ω Accelerometer and gyroscope scaling factors 6.2.7.1,6.2.7.2
Mα,ω Accelerometer and gyroscope misalignments 6.2.7.1,6.2.7.2
ArAαy,z Displacement of accelerometer axes y and z from F−→A 6.2.7.1
CAω Relative rotation between F−→A and the gyroscope

frame F−→ω

6.2.7.2

Aω Influence of linear acceleration on gyroscope mea-
surements (“g-sensitivity”)

6.2.7.2

W g Direction of gravity expressed in F−→W 6.2.7.1

Θ,x(t) = argmin
Θ,x(t)

(
ehC(x(t),Θ)T R−1

C ehC(x(t),Θ)

+ehα
(x(t),Θ)T R−1

α ehα
(x(t),Θ)

+
∫

e fα (τ)
T Q−1

α e fα (τ)dτ

+ehω
(x(t),Θ)T R−1

ω ehω
(x(t),Θ)

+
∫

e fω (τ)
T Q−1

ω e fω (τ)dτ

)
,

(6.2)

where subscripts C, α , and ω identify contributions as originating from the camera,
accelerometer, and gyroscope model respectively.
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We solve (6.2) iteratively for x(t) and Θ using the Levenberg-Marquardt (LM) algo-
rithm (Nocedal and Wright, 2006).

6.2.4 State Parametrization

Our implementation extends the open-source toolbox kalibr (Furgale et al., 2015b),
which uses a continuous-time state parametrization. For completeness, we will present
a brief introduction here that follows the original work very closely; for a detailed
derivation of the underlying concepts, please see (Furgale et al., 2015a).

The state is represented as a weighted sum of a finite number of known analytical
basis functions. Kalibr—and by extension this approach—employ B-splines as basis
functions due to their simple analytical derivatives, good representational power and
finite temporal support. The finite support yields a sparse system of equations in the
estimator which can be solved efficiently.

A D-dimensional state, x(t), may be written as

Φ(t) :=
[
φ 1(t) . . . φ B(t)

]
, x(t) := Φ(t)c, (6.3)

where each φ b(t) is a D× 1 B-spline and Φ(t) is a D×B stacked basis matrix. The
state x(t) is then determined by estimating the B×1 coefficient vector c.

The time-varying transformation TAW (t) from F−→W into F−→A is parameterized as a 6×
1 spline with 3 degrees of freedom for relative translation and 3 degrees of freedom
for relative orientation:

W tWA(t) := Φt(t)ct (6.4)

ϕ(t) := Φϕ(t)cϕ . (6.5)

In this work, we use the axis/angle parameterization for rotations, where ϕ(t) repre-
sents a rotation by the angle ϕ =

√
ϕ(t)T ϕ(t) about the axis ϕ(t)/ϕ(t). The orien-

tation of F−→W with respect to F−→A at time t is given by

CAW (t) := C
(
ϕ(t)

)T
, (6.6)

where C(·) is a function that builds a direction cosine matrix from the orientation
parameters ϕ(t).

For both, orientation and translation, a sixth-order B-spline is employed, which en-
codes linear and angular acceleration as a cubic polynomial. The extent of the domain
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of support of individual basis functions is adjusted to match the expected bandwidth
of the motion through the number of knots per second Nx.

Time-varying sensor biases are represented by cubic B-splines

b(t) := Φb(t)cb (6.7)

with Nb knots per second.

6.2.5 Baseline Camera Measurement Model

The baseline approach (Furgale, Rehder, and Siegwart, 2013) uses the projection of
known three-dimensional (3D) points W pm corresponding to corner m ∈ [1, . . . ,M] in
the visual calibration target to model camera measurements.

The camera measurement function hC(·) is composed of contributions hk
C(·) from

individual images k ∈ [1, . . . ,K] as

hC (x(t),Θ) :=

 h1
C (x(t),Θ)

...
hK

C (x(t),Θ)

 , (6.8)

where the hk
C(·) are calculated according to

hk
C (x(t),Θ) :=

 π (TCW (tk +dC)W p1)
...

π (TCW (tk +dC)W pM)

 . (6.9)

Here, π(·) denotes a projection function that maps from F−→C to F−→I . The temporal
offset dC refers to a mismatch between the timestamp assigned to the image and the
actual measurement instant, relative to the timing of the IMU. Without additional
information, the source of the offset cannot be disambiguated (Furgale, Rehder, and
Siegwart, 2013).

The measurement vector m̃C is constructed accordingly from the corresponding cor-
ner locations ˜Ipk

m in all k images with covariance RC = σ2
IpI, where I marks the iden-

tity matrix of matching size.

6.2.6 Direct Camera Measurement Model

This work further assesses a direct formulation of the camera model formulated on
image intensities.
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For this model, the contribution of a single image k to the camera measurement model
hC(·) is given by

hk
C (x(t),Θ) :=

 B
(

Ipk
1,x(t),Θ

)
...

B
(

Ipk
M,x(t),Θ

)
 , (6.10)

where B(·) models image intensity, or brightness, at image points Ipk
m. For efficiency

reasons, only a subset of all image points is used as detailed on in Section 6.2.6.3. The
contribution to the measurement vector m̃ is compiled analogously from the intensity
values at Ipk

m in image k. The noise process covariance is computed as RC = σ2
BI.

The measurement model describes a mapping from the radiance L(·) at some location
W p on the target onto image intensity B(·) in the corresponding pixel location Ip:

L(W p) 7→ B(Ip) (6.11)

This mapping can be decomposed into a geometric component, the mapping from W p
to Ip, and a radiometric one, the mapping from L(·) to B(·).

We use radiometric terms rather loosely in this work. Given that a single camera
with unknown spectral response function is the sole source of information, it is im-
possible to obtain an estimate of the true sensor irradiance or of target illumination
and reflectance. Instead, all estimates are distorted by the weighting of the spectral
response curve and are only determined up to a scaling factor (Debevec and Malik,
2008).

6.2.6.1 Geometric mapping

Rather than projecting a point W p on the target onto coordinates Ip in the image, our
approach performs the reciprocal mapping from Ip onto W p.

Assuming that the target is planar and aligned with the plane W z = 0, there exists
a homography, H−1

IW , that maps from F−→I to F−→W . For points {W p : W z = 0} on the
target, the mapping is computed as

Ip = H−1
IW

 W x
W y
1

 (6.12)

with homography
HIW = KIC

[
1RCW

2RCW CtCW
]
, (6.13)
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where KIC denotes the camera matrix, RCW and CtCW are defined according to (6.1)
and superscripts denote individual columns of the rotation matrix RCW .

Here, we will assume that π(·) describes a pinhole camera model and that distortion
has been compensated for. Other projection models are equally feasible, but require
an adaptation of (6.13). For the pinhole model, camera intrinsics can be represented
by the camera matrix KIC:

KIC :=

 fx 0 cx

0 fy cy

0 0 1

 , (6.14)

where fx,y denote the focal length and cx,y the principal point.

Casting the homography in terms of the sensor trajectory TAW (t) and the fixed tem-
poral offset dC between the timestamp assigned to an image and the effective time
period the sensor was exposed yields

HIW (t) = KIC


(
RCA

1RAW (t +dC)
)T(

RCA
2RAW (t +dC)

)T

(CtCA +RCAAtAW (t +dC))
T


T

(6.15)

where RCA and CtCA are the fixed rotation and translation relating F−→A to F−→C.

6.2.6.2 Radiometric mapping

The radiometric part of the model is given by

L
S(·)7−−→ E

∫ ∫
A

dAdt

7−−−−→ X
R(·)7−−→ B (6.16)

where E and X mark sensor irradiance and exposure respectively and the functions
S(·) and R(·) denote the optical transmission function and the sensor response func-
tion.

We will address all stages of (6.16) individually in the following.

The target radiance L(·) is multiplicatively composed of the target’s reflectance ρ(·)
and an illumination term α(·):

L(W p) = ρ(W p)α(W p) (6.17)
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(a) (b) (c)

Figure 6.2: The rendered target superimposed onto the corresponding camera image.
The triangular insets show the color-coded difference image for clarity. Mismatches
between image and model are most visible in two top rows. Fig. 6.2a shows the ren-
dering prior to optimization. The intensity of the model clearly does not match the
camera image. Fig. 6.2b displays the post optimization result using an even illumi-
nation model as proposed in Rehder et al. (2017). The result exhibits subtle incon-
sistencies. Fig. 6.2c was generated using the polynomial illumination model (6.19).
The image lacks any obvious visual seams, suggesting that a 2nd degree polynomial
is sufficient to capture the lighting environment present in our datasets. Best viewed
in color.

For the checkerboard pattern, reflectance ρ(W p) is given as

ρ(W p) :=

{
ρw if (bW x

∆x c+ bW y
∆y c) mod 2 = 0

ρb else
(6.18)

where the operator b·c denotes a floor operation and ∆x and ∆y the extent of individual
checkerboard tiles in x and y direction. The values ρw and ρb mark the reflectance
of the black and white tiles respectively. Since their true values and their ratio with
respect to each other is unknown, we assume ρw to be 1, while ρb is estimated.

Target illumination is modelled as a 2nd degree polynomial:

α(W p) :=a1 +a2W x+a3W y+a4W x2+

a5W y2 +a6W xW y,
(6.19)

where a := [a1, . . . ,a6] denotes a set of model coefficients. This model is informed
by the assumption that illumination varies smoothly over the target coordinates W p.
Fig. 6.2 suggests that it has sufficient representational power to capture the nature of
the lighting present in our experiments.
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The sensor irradiance E(·) results from applying the optical transmission function
S(·) to L(·). This term commonly models vignetting (Kim and Pollefeys, 2008). The
optics used in our experiments exhibit negligible dependence of attenuation on inci-
dence angle. Accordingly, we assume constant attenuation and hence omit explicit
modelling.

Sensor exposure X(·) is defined as integral of the sensor irradiance over exposure
time (Debevec and Malik, 2008).

We further fold the integration over the finite extent of an individual pixel on the im-
age sensor as well as the effect of imperfectly focussing optics into this step. Fig. 6.3a
provides the rationale behind accounting for focussing effects: A perfectly focussed
system would exhibit a sharp transition between checkerboard tiles, while real images
show a more gradual change in intensities.

Correctly, exposure would be modelled as the integral of g∗E(W p(t)) over the tra-
jectory marked by W p(t) = H−1

IW (t)Ip during image exposure and over the area of
the pixel, where the operator ∗ denotes a convolution and g marks the Point Spread
Function (PSF) of the optics.

We make the simplifying assumptions that the range of target depths present in the
calibration dataset is sufficiently small such that the dependence of the PSF on dis-
tance can be neglected. We further omit its dependence on the position in image space
(Heide et al., 2013).

We approximate the integrals as summations of the irradiance function discretized in
time and image space. The convolution with the PSF is folded into the sum as discrete
weights.

E∗(Ip, t) :=
1
J2

J

∑
i=1

J

∑
j=1

Wi jE
(

H−1
IW (t)

(
Ip+µ

[ J
i − 1

2
J
j − 1

2

]))
(6.20)

X(Ip) =
N

∑
n=1

E∗
(

Ip, t0 +
n

N−1
te

)
1
N

te (6.21)

Here, N denotes the number of images rendered to emulate motion blur. Equation
(6.20) marks a convolution of a super-resolution rendering of the irradiance image
with a discretized kernel followed by down-sampling. In this view, J marks the size of
the kernel, while µ denotes an up-scaling factor. The weights W := [W11,W12, . . . ,WJJ ]

constituting this kernel are determined in a separate step using a set of static images of
the calibration target. This calibration step is formulated as a minimization over the
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subset Θ̂ of the parameters that govern the image forming process, excluding expo-
sure time te which is unobservable for static images, as well as a set of static camera
poses Tk

CW combined into state x̂:

Θ̂, x̂,Ŵ = argmin
Θ̂,x̂,Ŵ

K

∑
k=1

(
hk

C
(
Θ̂, x̂,Ŵ

)
− m̃k

C

)2
(6.22)

Only positive weights are physically meaningful, which is enforced by estimating
Ŵi j :=

√
Wi j rather than Wi j directly. Without additional knowledge about illumi-

nation and reflectance of the target, the weights can only be determined up to an
unknown scaling factor. Hence, we normalize the weights such that max(W) = 1.

For the optimization, Θ̂ is initialized according to Section 6.2.8 and x̂ from target
corners using the Perspective-n-Point algorithm (Lepetit, Moreno-Noguer, and Fua,
2009), while all weights W are initialized to 1. Fig. 6.3b depicts the kernel estimated
from 50 images for the optics used in the experiments in Section 6.3.

The black square in the figure marks the boundaries of the respective pixel, high-
lighting that significant weights extend over an area of multiple pixels. Our current
implementation lacks a principled approach to determining this extent and instead
relies on multiple iterations of estimation (6.22) to determine a suitable combination
of µ and J, starting from a large initial estimate for the kernel size J.

The sensor response R(·) marks the mapping from sensor exposure to intensity.

Most sensors are designed for this mapping to be linear, and we disabled all digital
processing of the signal in the sensor that would have altered the response curve.
Accordingly, the camera response curve is modelled as linear as

B(Ip) := sX(Ip)+o, (6.23)

where s denotes a scaling factor and o an offset. In this formulation, s is unobserv-
able since any change could be compensated by scaling the illumination term (6.19)
accordingly. Hence, s is assumed to be 1 and its estimation is omitted.

6.2.6.3 Camera error term reduction

Computing camera error terms is comparatively costly and not all pixels carry the
same amount of information: Intensities at Ip corresponding to target locations W p
close to discontinuities in the reflectance function ρ(·) yield more information about
the camera pose than points located centrally inside a checkerboard tile. Assuming
that the initial estimate of the camera pose is sufficiently accurate, locations Ip with
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Figure 6.3: Imperfect focussing has a noticeable impact on image forming. Fig. 6.3a
shows a magnification of a checkerboard corner recorded with our experimental setup
at rest. For perfectly focusing optics, a narrow transition margin of 1 px between
checkerboard tiles is expected. The real image exhibits a more gradual transition
spanning multiple pixels. This behavior is modelled by rendering a super-resolution
irradiance image, convolving it with the estimated blur kernel, Fig. 6.3b, and subse-
quently down-sampling the result.
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large gradients in the image B̃ will correspond to informative locations on the target.
This point selection is formalized as a classification function C(·) depending on a
gradient threshold τ where direct error terms are only evaluated for C(Ip) = 1:

C(Ip) :=

{
1 if

∣∣∇B̃Ip
∣∣> τ

0 else
(6.24)

Despite this reduction, the resulting set of error terms will still yield a vastly over-
constrained system of equations. Furthermore, the number of equations will change
with the viewpoint.

We deem a large and varying number of error terms undesirable for implementation
purposes and for reasons of computational efficiency. If the error terms were of fixed
size, the block-sparsity pattern of the normal equation could be precomputed which
would allow for more efficient solving (Furgale, Rehder, and Siegwart, 2013).

Fixating the number of error terms is accomplished through QR decompositions
(Golub and Loan, 1996).

The Jacobian J := [ ∂hk
C/∂Θ ∂hk

C/∂x ] of the camera measurement model associ-
ated with a single image k can be decomposed as

JP = QR =
[
Q1 Q2

][R1
0

]
(6.25)

where P is a column permutation matrix, Q is an orthogonal matrix, and R an upper
triangular matrix. P is selected such that R1 is invertible by ensuring that all its diag-
onal elements are non-zero. The Jacobian of the reduced error term can be computed
as

Ĵk := R1PT (6.26)

and the corresponding intensity error is given by

êk
hC

:= QT
1 ek

hC
. (6.27)

6.2.7 IMU Measurement Model

The IMU model predicts accelerometer and gyroscope measurements given the sen-
sor trajectory TAW (t).
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Accelerometers and gyroscopes contribute the terms hα(·) and hω(·) to (6.2) as

hα(x(t),Θ) :=

 α (x(t1),Θ)
...

α (x(tK),Θ)

 (6.28)

and

hω(x(t),Θ) :=

 ϖ (x(t1),Θ)
...

ϖ (x(tK),Θ)

 , (6.29)

with α(·) and ϖ(·) as defined in (6.37) and (6.40) respectively, and where tk ∈
[t1, . . . , tK ] marks times at which the IMU recorded measurements. The contribu-
tion to the measurement vector is composed of accelerometer and gyroscope mea-
surements α̃k and ω̃k accordingly, with corresponding noise covariance functions
Rα = σ2

α Iδ (t− t ′) and Rω = σ2
ω Iδ (t− t ′). Here, δ (·) denotes Dirac’s delta function,

which is 1 for t = t ′ and 0 otherwise.

F−→ω

ArAαz

ArAαy

F−→A
M yz

ω

M yx
ω

Sy
ω ω̃y

Figure 6.4: Conceptual drawing of the internal structure of an IMU composed of
single-axis accelerometers (dark gray) and gyroscopes (light gray). We chose to align
the input reference axes, F−→A, with the accelerometer measuring in x direction. Con-
sequently, the displacements ArAαy and ArAαz are estimated. Imperfections in the
mechanical alignment yield both, non-orthogonal sensing axes, as illustrated by the
misalignment terms Myx

ω and Myz
ω , and an unknown rotation between F−→A and F−→ω .

Measurements might further be corrupted by an unknown scale factor S, visualized
here as affecting ω̃y. These concepts equally transfer to IMUs realized inside a single
IC despite their different mechanical design.
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Fig. 6.4 shows the internal structure of an IMU schematically to illustrate the IMU
intrinsics estimated in this work.

These intrinsics are an unknown rotation CωA between F−→A and F−→ω , the displace-
ments ArAαy,z of individual accelerometers with respect to F−→A, misalignments of ac-
celerometer and gyroscope axes with respect to the other axes as well as scale factor
errors.

All IMU intrinsic parameters are further listed in Table 6.1.

The inertial measurement models require linear acceleration, angular velocity, and
angular acceleration which are derived from the continuous time formulation of the
system state x(t) introduced in Section 6.2.4.

Acceleration W ẗWA(t) is computed as

W ẗWA(t) = Φ̈t(t)ct (6.30)

from the spline parameters ct .

With CAW (t) defined according to (6.6), angular velocity and angular acceleration as
perceived in F−→A are computed as

AωWA(t) = CAW (t) W ωWA(t) (6.31)

Aω̇WA(t) = CAW (t) W ω̇WA(t) (6.32)

with

W ωWA(t) = S
(
ϕ(t)

)
ϕ̇(t) = S

(
Φ(t)cϕ

)
Φ̇(t)cϕ (6.33)

W ω̇WA(t) = S
(
ϕ(t)

)
ϕ̈(t) = S

(
Φ(t)cϕ

)
Φ̈(t)cϕ (6.34)

where S(·) is the matrix relating parameter rates to angular velocities and accelera-
tions (Hughes, 1986).

6.2.7.1 Accelerometer model

The specific force perceived by the accelerometers is composed of a component in-
duced by the linear acceleration of F−→A relative to F−→W , the gravitational force W g, and
Euler and centrifugal forces induced by rotational motion at the position of individual
accelerometers.
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With ω(t) := AωWA(t), ω̇(t) := Aω̇WA(t), the specific force is computed as

AaWA(t) = CAW (t)(W ẗWA(t)−W g)

+diag(bω̇(t)c×Rα + bω(t)c2×Rα),
(6.35)

where diag(·) extracts the N × 1 vector from the diagonal of a matrix and opera-
tor b·c× denotes the skew-symmetric matrix that computes the cross product. The
matrix Rα is composed of the lever arms of individual accelerometers identified by
subscripts according to

Rα :=
[

ArAαx ArAαy ArAαz

]
. (6.36)

We chose to align the position of the Input Reference Axes (IRA) with the position
of the x-axis accelerometer, i. e. ArAαx = 0, and consequently do not include this
quantity in the estimation.

Incorporating the IMU intrinsic parameters scaling, Sα , and misalignment, Mα , as
well as a time-varying sensor bias bα(t), yields the complete accelerometer model

α(t) := Sα Mα AaWA(t)+bα(t) (6.37)

where Sα is a diagonal matrix comprising scaling effects and Mα is a lower uni-
triangular matrix, with off-diagonal elements corresponding to misalignment small
angles.

The sensor bias bα(t) is modelled as being driven by a zero-mean, white Gaussian
process (Furgale, Rehder, and Siegwart, 2013):

ḃα(t) = wα(t) (6.38)

with
wα(t)∼ GP

(
0,σ2

bα
Iδ (t− t ′)

)
(6.39)

and hence Qα = σ2
bα

I.

6.2.7.2 Gyroscope model

Gyroscope measurements are modelled as

ϖ(t) := Sω Mω CωAAωWA(t)

+Aω CωAAaWA(t)

+bω(t)

(6.40)
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where bω(t) marks the gyroscope bias. The rotation matrix CωA denotes the unknown
relative rotation between F−→A and F−→ω and Sω and Mω are defined analogously to Sα

and Mα in (6.37). The fully populated matrix Aω models the impact of the specific
force on angular velocity measurements. Displacements of the gyroscopes from the
IRA are not considered in AaWA(t), since the influence of the specific force on the
measurement is insufficient to render these displacements properly observable.

The gyroscope bias is modelled analogously to (6.38) as

ḃω(t) = wω(t) (6.41)

with
wω(t)∼ GP

(
0,σ2

bω
Iδ (t− t ′)

)
(6.42)

and Qω = σ2
bω

I.

6.2.8 Initialization

Sufficiently faithful initial estimates for the parameters Θ and the state x(t) are re-
quired in order for (6.2) to converge to an accurate solution.

Most of the IMU intrinsic parameters are initialized assuming “perfect” sensors: The
scaling factor matrices Sα,ω and the rotation between gyroscope and accelerometers
CAω are set to identity and misalignment Mα,ω and “g-sensitivity” Aω to 0. We
initially assume that individual accelerometer axes perceive the specific force in an
identical location, i. e. ArAαy,z = 0.

The parameters governing the illumination model are initialized as 1 for coefficient a1
and 0 for a2,...,6. Reflectance ρb and intensity offset o are initially set to 0. Exposure
time te is initialized to zero.

The estimates of TCA, the temporal offset dC and the direction of gravity W g are
initialized from data. To this end, a set of camera poses T̂CW (tk) for all image times-
tamps tk is determined from corner observations by means of the Perspective-n-Point
algorithm (Lepetit, Moreno-Noguer, and Fua, 2009). Subsequently, an orientation
curve ϕ̂(t), parametrized as a B-spline, is fitted to the camera orientations ĈCW (tk).
We employ a simplified model for the gyroscope measurements based on this orien-
tation curve:

ϖ̂(t) := CωACT
CACω̂WC(t)+ b̂ω (6.43)
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The relative orientation CCA and the constant bias b̂ω are initialized to identity and
zero respectively and subsequently estimated iteratively by minimizing

CCA, b̂ω = argmin
CCA,b̂ω

K

∑
k=1

(ϖ̂(tk)− ω̃k)
2
. (6.44)

The translation component of TCA, CtCA, is initialized to zero.

Following the approach proposed by Mair et al. (2011), the temporal offset dC is
initialized by correlating the absolute angular velocity as perceived independently by
camera and gyroscopes. To this end, angular velocities W ω̂WCk are sampled from
the spline ϕ̂(t) at the timestamps tk of gyroscope measurements. A coarse initial
estimate for dC is then derived as dC = dxcorrT where T is the measurement interval
of the gyroscopes and dxcorr maximizes the cross-correlation between the two signals:

dxcorr = argmax
d

K

∑
k=1

∣∣W ω̂WC(k+d)
∣∣ |ω̃k| (6.45)

The direction of gravity W g is initialized as the mean of the accelerometer readings
transformed into F−→W . Using the estimate of CCA initialized with the previously in-
troduced procedure and camera orientations ĈCW (tk) sampled from ϕ̂(t) at the time
instants of the accelerometer readings, the initial value is computed as

W ā =
1
K

K

∑
k=1

Ĉ−1
CW (tk +dC)CCAãk (6.46)

W g = g0
W ā
|W ā| , (6.47)

where g0 is the magnitude of the gravitational acceleration.

Accelerometer and gyroscope biases are initialized to zero and the IMU trajectory is
initialized by fitting a spline to the set of initial IMU poses, computed from camera
poses TCW (tk) transformed by the initial estimate of T−1

CA.

6.3 Results

6.3.1 Experimental setup and dataset collection

All data were recorded with the visual/inertial sensor (Nikolic et al., 2014b) shown
in Fig. 6.5 featuring an Analog Devices ADIS16448 IMU, an InvenSense MPU9150
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Figure 6.5: The experimental setup comprises an Analog Devices ADIS16448 IMU,
an InvenSense MPU9150 IMU, and two Aptina MT9V034 global shutter image sen-
sors of which only one was used.

IMU, and two Aptina Wide Video Graphics Array (WVGA) MT9V034 global shutter
image sensors of which only one was used. The ADIS16448 is a factory-calibrated
Microelectromechanical Systems (MEMS) device marketed specifically for naviga-
tion and robotics.

In contrast, the MPU9150 is a consumer-grade device. The camera was triggered at
a rate of 20 Hz and used mid-exposure timestamping. IMUs were polled at 350 Hz.
Timestamps for camera and IMUs were assigned by a single Field Programmable
Gate Array (FPGA) to avoid clock drift and limit jitter.

As calibration target, we used a checkerboard with square tiles of 70 mm. The board
was illuminated by standard fluorescent office lighting.

We recorded 3 datasets by rapidly moving the sensor suite in front of a visual calibra-
tion target for about 200 s for each dataset. The datasets differed in camera settings:
For the duration of each dataset, we fixated the exposure time to 0.96 ms, 2.24 ms,
and 3.19 ms respectively. Indoor lighting conditions did not allow for exposure times
significantly below 1 ms. The analog gain was further adjusted to yield similar image
brightness across all datasets. We took care to excite all rotational degrees of free-
dom sufficiently without saturating the inertial sensors. Furthermore, we attempted
to produce similar motion patterns for all datasets.

The approach exhibits a number of variables used to parametrize the algorithm as
well as a number of noise parameters specific to the sensor setup. Table 6.2 lists all
variables together with the values used to generate the results.
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Table 6.3 compiles the noise model parameters. The noise model parameters for
accelerometers and gyroscopes were determined using the approach proposed by
Nikolic et al. (2016a). The strength σB of the noise process acting on image in-
tensities was determined from sequences of static images. The strength of the noise
process assumed to affect the corner projections, σIp, was determined from the pre-
ceding intrinsic calibration.

Table 6.2: Variables used to parametrize the algorithm

Variable Description Value Section
O Order of the B-spline 6 6.2.4
Nx Knots per second supporting the pose spline 150 6.2.4
Nb Knots per second supporting the bias splines 50 6.2.4

τ Threshold on the gradient in the image 7 6.2.6.3
N Number of images used to emulate motion blur 5 6.2.6.2
J Size of the weighting window W 17 6.2.6.2
µ Up-scaling factor for rendering the irradiance im-

age
3.5 6.2.6.2

Table 6.3: Noise model parameters

Symbol Value Unit
Gyroscopes
White noise str. σω 3.85×101 °/(h

√
Hz)

Bias diffusion σbω 2.66×10−5 rad/(s2
√

Hz)
Accelerometers
White noise str. σα 1.86×10−3 m/(s2

√
Hz)

Bias diffusion σbα 4.33×10−4 m/(s3
√

Hz)
Image sensor
White noise str. σB 1.98, 2.40, 1.77 —
White noise str. σIp 0.07 px

The direct approach is computationally significantly more expensive than the base-
line method. On an Intel Core i7-2720QM at 2.2 GHz, the baseline method took on
average about 30 s to converge on a 10 s chunk of data, while our implementation of
the direct model required multiple minutes to find a solution.
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6.3.2 Appropriate IMU modelling is key to high calibration pre-
cision.

The fidelity of the inertial measurement models directly impacts calibration perfor-
mance.

Using the baseline approach (6.9) which models camera measurements as reprojec-
tion errors, this experiment asses the precision of camera/IMU extrinsics as well as of
the time delay dC. As input data 10 chunks of each 20 s length of the 0.96 ms dataset
were used.

For both IMUs, three models of increasing complexity were considered. These mod-
els were

• assuming a perfectly calibrated IMU perceiving the specific force in a single
spot, i. e. Sα,ω = I, Mα,ω = 0, ArAαx,y,z = 0, Cα,ω = I, and Aω = 0.

• assuming an uncalibrated IMU perceiving the specific force in a single spot, i.
e. ArAαx,y,z = 0.

• assuming the full IMU model described in Section 6.2.7.

Table 6.4: Calibration results for the baseline camera error (6.9) and IMU models of
different fidelity

IMU Model σCtCA [mm] σF [°] σdC [µs]

ADIS16448
calibrated [0.75,1.11,0.52] 0.040 19.05
uncalibrated [0.58,0.83,1.77] 0.062 16.85
uncalibrated, size-effect [0.36,0.17,0.32] 0.016 15.55

MPU9150
calibrated [0.68,1.02,1.6] 0.102 16.76
uncalibrated [0.11,0.14,0.16] 0.008 1.92
uncalibrated, size-effect [0.15,0.17,0.25] 0.008 2.13

Fig. 6.6 depicts the CxCA and CyCA of the camera/IMU displacement CtCA as well as
the position of individual accelerometer axes where estimated. Table 6.4 displays the
same results numerically.
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Figure 6.6: Estimated displacement CtCA between camera and IMU for different lev-
els of IMU model fidelity. The gray lines mark the approximate outline of the respec-
tive IMU packages measured in CAD drawings of the sensor setup.
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Fig. 6.6a shows estimates for the ADIS16448, a factory calibrated, navigation-grade
IMU. The calibrated and the uncalibrated model yield estimates of similar preci-
sion and located inside the IMU package which is highlighted as gray outline. Given
that the device is factory calibrated, we would assume that scale factor errors and
misalignments were compensated for by the manufacturer. Accordingly, calibration
should not benefit from estimating these quantities. Table 6.4 confirms this intu-
ition, suggesting that including these parameters impacts the precision of extrinsic
calibration negatively. This deterioration is consistent over the parameters relative
displacement, relative orientation—assessed as the square root of the variance with
respect to the Fréchet expectation (Pennec, 1999) denoted as σF —and the temporal
offset dC alike. Fig. 6.6a further shows that estimating IMU intrinsics can result in a
shift of the mean estimate of CtCA. Including the estimation of the displacement of
individual accelerometer axes into the calibration significantly increases precision of
the parameters. It further reveals the presumed positions of the corresponding sensor
elements as shown in Fig. 6.6a. While y and z axis are estimated to be in close vicin-
ity to each other, the x axis element is displaced by about 1 cm, suggesting that it is
housed in a different IC.

Fig. 6.6b shows results for the MPU9150, an uncalibrated, consumer-grade device.
For this device, neglecting IMU intrinsics results in biased estimates located outside
the package outline. Including intrinsic calibration yields improved calibration with
significantly increased precision, where all estimates lie solidly inside the IMU pack-
age. These results confirm previous findings in literature (Krebs, 2012; Nikolic et al.,
2016b; Rehder et al., 2016) which suggested that neglecting IMU intrinsic calibra-
tion does not only decrease precision but also causes biased estimates. Calibrating
for the size-effect deteriorates results again with increased standard deviations in the
estimates of relative translation and orientation as well as dC.

These findings are significant for a number of reasons: They show that the relative
transformation between camera and IMU can be estimated to sub-millimeter preci-
sion and to below 1

100 °. They also confirm observations from Nikolic et al. (2016b)
that the standard deviation in the estimates of dC can be a small fraction of the mea-
surement interval of the IMU.

The results further highlight that best calibration precision can be achieved for models
that match the device: Estimating IMU intrinsics for calibrated units does not yield
a benefit while it significantly improves results for uncalibrated devices. Conversely,
determining the displacement of individual accelerometer axes boosts calibration per-
formance for IMUs composed of multiple ICs while it slightly deteriorates precision
in small devices.
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Given that this calibration approach shares much of the fabric of many visual/inertial
state estimation frameworks, the results raise the question whether integrating a fac-
tory calibrated IMU pays off in all applications: The errors incurred by neglecting the
displacements of individual accelerometer axes may devour all advantages of higher
quality sensors and factory calibration—especially for applications with dominant
motion patterns such as planar motion.

6.3.3 Exposure time can be accurately inferred from motion blur.

A prerequisite for the direct approach to yield accurate estimates is its capability to
faithfully reproduce motion blur.

In this experiment, we used 10 segments of 10 s of each dataset.

Fig. 6.7 depicts the rendered target superimposed onto an image taken from the
dataset at 3.19 ms exposure time. The exposure time is initialized to zero as in-
troduced in Section 6.2.8, resulting in the absence of motion blur in the rendered
view shown in Fig. 6.7a. Following calibration, the exposure time is accurately esti-
mated. Consequently, the rendered target closely resembles the image as apparent in
Fig. 6.7b.

We use the estimated exposure time te as a proxy here to shed light on how accurately
motion blur—and consequently the motion of the camera during exposure—can be
recovered. Fig. 6.8 shows a box plot of the exposure times te estimated for the 3
datasets. The narrow distribution of estimates close to their true value suggests that
motion blur was equally accurately recovered. The mean and standard deviations of
the exposure time estimates are 0.964± 0.007, 2.260± 0.013 and 3.21± 0.016 ms
respectively.

These results are fundamentally different from our previous work (Furgale, Rehder,
and Siegwart, 2013), where exposure time was equally inferred from data. Concep-
tually, the previous approach estimated half the exposure time by consolidating infor-
mation about the trajectory provided by the different sensor modalities by means of
adjusting a fixed temporal offset. In contrast, this approach estimates exposure time
by emulating motion blur in the images. Our experimental setup uses an exposure
compensated triggering scheme as detailed on in Nikolic et al. (2014b) which renders
te unobservable for our previous method.

6.3.4 The direct error formulation yields competitive results.

This experiment asses the direct camera measurement model on the same ten 20 s
chunks used in Section 6.3.2. It further exclusively focuses on the MPU9150 and the
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(a) (b)

Figure 6.7: Motion blur is emulated as an additive composition of target views ren-
dered for a set of N camera poses spaced evenly over exposure time te. Fig. 6.7a
depicts the rendered target superimposed onto an image prior to calibration. Fig. 6.7b
shows the result after calibration, suggesting that the effect of motion blur can be
accurately captured by the direct approach. Merely the absence of noise in the cen-
tral patch of the checkerboard hints to its synthetic nature. Insets show color-coded
difference images for clarity. Best viewed in color.
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Figure 6.8: Estimation offset versus true exposure times for 3 datasets with different
camera settings. The mean estimate is accurate to about 2

100 ms, suggesting that the
camera trajectory during exposure can be equally faithfully recovered.

138



6.4. CONCLUSION

more sophisticated IMU models, since these combinations returned the most precise
results. We fixated exposure time te to its nominal value of 0.96 ms and rendered
images for 5 subsequent camera poses to emulate motion blur. Table 6.5 compiles the
results achieved with these settings and assuming an uncalibrated IMU with negligi-
ble accelerometer displacements as well as an uncalibrated device and accounting for
size-effect.

Table 6.5: Calibration results for the direct camera error (6.10) and IMU models of
different fidelity

IMU Model σCtCA [mm] σF [°] σdC [µs]

MPU9150
uncalibrated [0.15,0.18,0.21] 0.010 2.62
uncalibrated, size-effect [0.25,0.20,0.25] 0.011 2.79

While precision is of a similar order as the results demonstrated in Section 6.3.2, the
direct approach performs slightly worse than the baseline.

Different reasons may contribute to this: First, our sensor suite employs a polling
scheme for inertial measurements that retrieves data from the internal registers of
the IMU at constant rate. The IMU itself sample internally at another constant rate.
This scheme corrupts the timestamps of the measurements since the time of external
polling—rather than internal sampling—is assigned as timestamp. The errors likely
eclipse the improvements in timing resulting from the direct formulation. Further-
more, we noticed that the image sensor exhibits a number of isolated, “hot” pixels
that behave differently from the rest of the sensor array and in turn cause large resid-
uals. Such effects are currently not captured by the direct model and hence distort the
result of optimization (6.2).

Nonetheless and despite the deteriorated performance of the direct method, the results
suggest that modelling intensities rather than projections of corner points poses a
viable approach to camera/IMU calibration. Improvements in the experimental setup
as well as in modelling faulty sensor elements may enable the approach to leverage
its presumed benefits detailed on in Section 6.1.

6.4 Conclusion
This work presented and assessed measures to increase precision in camera/IMU cali-
bration. Improving the IMU model to account for the size-effect increased calibration
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precision significantly for our navigation-grade IMU. For the ADIS16448 IMU, the
model clearly discerned the position of individual accelerometer axes. We saw similar
separation of the x axis in the MPU9150, but were unable to equally clearly discern
the location of the other two axes.

The direct formulation succeeded in accurately estimating exposure time, but failed
to improve results over the baseline approach. We identified issues in the timestamp-
ing of inertial measurements in our experimental setup as well as a lack of modelling
of “hot” pixels as potential sources of deteriorated performance. Future work will
investigate these issues and extend the modelling of defocus effects to support dif-
ferent blur kernels in different parts of the image. We entertain the idea that motion
blur may contain valuable information about the trajectory of the image sensor dur-
ing exposure that may be leveraged to improve calibration, similar to the single frame
visual gyroscope conceived by Klein and Drummond (2005). Future work may in-
volve reproducing identical sensor trajectories for different exposure times to assess
the value of this idea.

We believe that our results are the most precise reported to date for camera/IMU cal-
ibration (see (Furgale, Rehder, and Siegwart, 2013; Nikolic et al., 2016b; Rehder et
al., 2016; Yang and Shen, 2016) for comparison). This precision can partly be at-
tributed to improvements in the inertial measurement models. However, another key
factor in increased precision over our previous work lies in a more dynamic calibra-
tion motion with average absolute angular velocities of around 270 °/s as compared
to about 150 °/s in (Rehder et al., 2016) and only about 55 °/s in Furgale, Rehder, and
Siegwart (2013).
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Conclusion and Future Directions

Each of the previous chapters contains a conclusion that provides a particular per-
spective on the significance of the work within the domain of calibration. Ultimately
however, an adequate calibration is merely a prerequisite for accurate and robust state
estimation, and the previously introduced methods are solely tools for generating such
a calibration. Rather than echoing insights already contained in the previous chapters,
this section will examine previous findings for significance that extends beyond the
immediate domain of calibration and into those of state estimation and system design.

The findings in this work suggest that synchronization should be informed by a deeper
understanding of the inner working of the sensors comprised in a robotic system. Far
too often, system designer mistake a signal merely temporally related to the measure-
ment instant as an indication of its exact occurrence. This work provides a number
of examples of such misunderstandings: Many applications understand cameras as
providing an instantaneous irradiance snapshot on assertion of a trigger signal which
completely neglects the image exposure process. Similarly, the time of arrival at the
host system is commonly assigned to Inertial Measurement Unit (IMU) measure-
ments, as system designers are often unaware of the existence of analog and digital
filters which delay the measurement. And while many publications model scanning
Laser Range Finders (LRFs) as sampling distances consecutively in time, little work
focuses on properly synchronizing these devices to other sensors in the same system.
Consequently, the findings of this work serve as a reminder to treat all aspects of a
robotic system with the same level of diligence. Negligence at an early stage in the
perception pipeline will adversely impact all following efforts and in turn consume
some of the improvements from any algorithmic advancements in the state estimation
step.

This work proposes a plane-based, probabilistic an LRF measurement model which
accounts for the beam direction. In contrast, established approaches commonly for-
mulate the measurement error in the direction of the normal of the plane. While this
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established model is computationally less expensive to evaluate, it marks a simplifi-
cation that induces a deterministic error which grows with the incidence angle. Obvi-
ously, this simplification is one of many, and it is difficult to predict its effect on the
accuracy of the overall state estimation system. Nonetheless, it is not unlikely that
LRF based state estimation approaches would benefit from the presented model—
particularly in applications where accuracy is paramount and which can tolerate the
additional computational effort required to evaluate it. Furthermore, the presented
model is extensible as demonstrated by the consistently estimated range bias which
allows for further improvements in accuracy in state estimation as the understanding
of deterministic errors in LRF measurements advances.

An increasing number of robotic systems rely on visual/inertial state estimation as an
input to planning and controls. It has been common wisdom in the robotics commu-
nity that best state estimation results can be achieved with large, factory-calibrated
IMUs composed of single axis, high-quality inertial sensors. Many of the arguments
for such a device are valid, but this work adds another nuance to the discussion: Re-
sults show that size is an important factor as well and that in terms of calibration
precision, an inexpensive consumer-grade IMU can outperform a navigation-grade
device. Unfortunately, the significance of these findings is limited by imperfections in
synchronization that affected the two devices under test in different ways. Nonethe-
less, it challenges the idea that the specific force can be perceived in a single spot
and, by extension, that integrating larger, higher-quality sensor packages always pays
off. Applications that neglect the displacement of individual accelerometer axes ul-
timately face the issue of a perceived shift in the position of the reference frame that
depends on the motion and that can be in the order of the distances between the ac-
celerometer axes. The implications of this shift are particularly severe for applications
that demand millimeter accurate location estimates.

Modelling camera measurements in terms of image intensities enables an intuitive
formulation of rolling shutter calibration with consistent treatment of uncertainties.
However, modelling intensities with a fidelity that provides additional value for
camera/IMU calibration is a highly involved process which touches on a variety of
different aspects ranging from illumination over optics to sensor response curves.
Consequently, this work indirectly sheds light on the value in abstraction from inten-
sities: The Point Spread Function (PSF) is difficult to model as it generally depends
on the position in image space and on the distance to the object. Yet, it is an essential
building block in modelling optics. Sub-pixel accurate interest point detection and
polynomial distortion models appear to capture the cumulative effect of the PSF well
and hence alleviate approaches from explicit modelling it.

This work could be taken forward in a number of directions.
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The understanding of individual sensor models could be advanced further, and in
the course of this work, a number of improvements to the sensor models were con-
sidered: For inertial sensors, these improvements included individual time delays
for accelerometers and gyroscopes to account for different filter characteristics (In-
venSense, 2011), non-linearities modelled as polynomials (Looney, 2010), and gyro-
scope scale factors that vary with linear accelerations (Park et al., 2015). The direct
model for camera measurements was augmented to further consider vignetting as well
as non-linear sensor response curves. PSF dependence on the position in image space
was approximated by estimating multiple kernels on a fixed spatial grid. Similarly,
the impact of chromatic aberrations on tracking was investigated, and mitigations
using color sensors and channel-wise modelling of the PSF were explored (Schulz,
2016). The LRF model equation was extended by terms reflecting a range dependent
offset as a polynomial rather than a constant bias, and modelling gyroscopic effects,
a factor hypothesized in Bosse, Zlot, and Flick (2012), was considered (Holtmann,
2016).

Many of these experiments remained inconclusive which may in parts be attributed to
the shortcomings in sensor synchronization highlighted in Chapter 6. Consequently,
further investigations would likely require improvements in the hardware setup—
an effort that appeared to be prohibitively time-consuming within the time frame of
this work. However, such improvements could potentially yield novel insights into
deterministic sources of measurement errors for these sensors.

Chapter 6 raises the intriguing question of whether motion blur comprises informa-
tion about the sensor trajectory during image exposure that could be leveraged to
improve camera/IMU calibration. The answer to this question does not seem obvi-
ous, and designing an experiment that would unambiguously settle it is likewise not
trivial. In order to isolate influencing factors, identical trajectories would have to be
performed for different exposure times, a task that is more appropriately addressed
by a robotic arm than by a human operator. A positive outcome of this test would
spawn the follow-up question of an optimal exposure time.

Finally, while offline calibration is a valuable tool to advance the understanding of
sensor models, its suitability as part of the deployment process of any robotic ap-
plication heavily depends on the volatility of the calibration parameters. Sensor pa-
rameters may change on short time scales, for example due to temperature changes,
or over longer periods of time through mechanical wear and component ageing. It
seems plausible that such change affects virtually all types of sensors. Accordingly,
offline calibration can only be one facet in successfully deploying robots: A truly ro-
bust process would likely employ offline calibration only as a first step to estimate an
initial set of parameters that govern its sensor models. It would then identify a sub-
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set of these parameters which change over time or through external influences and
optimality find a lower-dimensional solution space that sufficiently captures possible
changes. Consequently, the system would track the volatile subset of parameters in
this lower-dimensional space online, either continuously as part of the state or repeat-
edly at a frequency dictated by the time constants of the expected changes.
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