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Accepted 2019 February 5. Received 2019 January 28; in original form 2017 September 15

S U M M A R Y
Our physical understanding of earthquakes, along with our ability to forecast them, is hampered
by limited indications on the current and future state of stress on faults. Integrating indirect
observations, laboratory experiments and physics-based numerical modelling to quantitatively
estimate this evolution is crucial. However, quantitative integrations are tenuous in light of the
scarcity and uncertainty of observations and the difficulty of modelling the physics governing
earthquakes. We show that observations and prior physical knowledge, along with their errors,
can be efficiently integrated through the statistical framework of ensemble data assimilation
(EDA), which is adopted from weather forecasting. To evaluate whether fault stress estimation
and forecasting is possible, we perform a perfect model test in a subduction zone setup that
mimicks a scaled laboratory experiment. Synthetic noised data on velocities and stresses from
one point near the surface are assimilated using an Ensemble Kalman Filter. These data update
the velocity and stress states throughout 150 ensemble members, whose dynamics is governed
by a seismic cycle model. This visco-elasto-plastic forward model forecasts the system’s evo-
lution through solving Navier–Stokes equations with a strongly rate-dependent friction coeffi-
cient. The ensemble assimilation of data from a single location provides probabilistic estimates
of fault stress and dynamic strength evolution, which capture the true solution exceptionally
well. This is possible, because the sampled error covariance matrix contains prior information
from the physics that relates velocities, stresses and pressure at the surface to those at the fault.
In the analysis step, this covariance allows stress and strength distributions to be reconstructed.
In the subsequent forecast step the physical equations are solved to propagate the updated states
forward in time. This provides probabilistic information on the likelihood of occurrence of the
next earthquake in this synthetic laboratory setting. Throughout the ensemble simulations the
forecasting ability for large, quasi-periodic events turns out to be significantly better than that
of a periodic recurrence model. For example, it only requires an alarm to sound for 17 per cent
instead of 68 per cent of the time to forecast 70 per cent of 21 events. We show that combin-
ing our prior knowledge of physical laws with observations through a Bayesian framework
provides distinct added value with respect to using observations or numerical models indepen-
dently. This educational test thus shows vast potential for including physics-based information
into probabilistic seismic hazard assessment using EDA. To analyze its real world potential
assumptions on an exact representation of the physics in a 2-D simplified system remain to be
explored.

Key words: Inverse theory; Numerical modelling; Probabilistic forecasting; Earthquake in-
teraction, forecasting, and prediction; Statistical seismology; Dynamics and mechanics of
faulting.
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1 I N T RO D U C T I O N

1.1 Stress estimation and forecasting

Understanding the dynamics of the solid Earth is hampered by lim-
ited indications on the state of stress and strength of the Earth’s
crust. Stress and strength govern deformation over timescales from
millions of years for tectonic processes down to hundreds of years
for earthquake cycles and seconds for earthquakes. During an earth-
quake cycle stress builds up in the interseismic period between
earthquakes. When accumulated stresses reach the frictional, static
strength over a large enough area, an earthquake propagates and
releases the elastic stresses in the coseismic period. Knowing the
present and forecasting the future state of stress on seismogenic
faults is thus a pivotal part of earthquake forecasting. The cur-
rent state of stress and strength on faults is, however, largely un-
known and inaccessible (e.g. Townend 2006 and references therein).
This is one of the reasons why earthquakes cannot be predicted
in terms of a specific time, location and magnitude (e.g. Geller
1997). Hence earthquake forecasting through providing a proba-
bilistic statement about future earthquake occurrence or ground
shaking is the highest achievable goal (e.g. Marzocchi et al. 2017).
Since stress and strength change due to neighbouring, local and
previous slip, creep and fluid flow processes, it is challenging to
incorporate such physics-based understanding into a probabilistic
assessment of seismic hazard (e.g. Segou et al. 2013). To do the
best possible, scientists focus on including pieces of physical in-
formation through, for example, Coulomb stress transfer (e.g. King
et al. 1994; Cattania et al. 2018), physical approximations driving
earthquake simulators (Shaw et al. 2018) or physically extrapolat-
ing processes influencing different aspects of seismic hazard (e.g.
Dalguer et al. 2017, and references therein). However, we do have
some information on the state of stress on faults from different lines
of research.

1.2 Observations

Observations that provide indications on the in-situ stress state are
gradually improving (e.g. Townend 2006; Heidbach et al. 2018
and references therein). Moderate estimates come from nearby
or regional borehole measurements (e.g. Zoback et al. 2003; Lin
et al. 2013, resp.), earthquake focal mechanisms (e.g. Hardebeck
& Michael 2006; Abolfathian et al. 2018; Terakawa & Hauksson
2018), active fault orientations and slip directions (e.g. Angelier
1984) and heat flow measurements (e.g. Fulton et al. 2013). Al-
ternative data on gradual stress or strength changes could also
come from active, coda wave interferometry (Grêt et al. 2006),
passive image interferometry (Wegler & Sens-Schönfelder 2007),
seismic imaging (e.g. Tsuji et al. 2014) or b-values estimates
of the Gutenberg–Richter earthquake frequency–magnitude rela-
tion (e.g. Scholz 2015). Additionally, we have seen a tremen-
dous increase in other observations that provide information
on the state of the fault and earthquake physics (e.g. Dragert
et al. 2001; Moreno et al. 2010; Section 4.2). This increase
in data is expected to continue or accelerate (e.g. Nagao 2014;
Lindsey et al. 2017).

All observations face technical and economic difficulties for
the following reasons: (i) they are indirect, since they are lim-
ited to depths of a few kilometres, while seismogenic faults pen-
etrate to depths of ten(s) of kilometres or rely on inversions that
require assumptions, (ii) they are very sparse in space and time,

and (iii) they typically contain large (and potentially non-Gaussian)
errors. These difficulties make estimation of the current state of
stress on a fault highly challenging. Additionally, they make the
next steps of continuous forecasting through space and time even
more precarious. However, it is not known what observations
are needed to provide reasonable constraints on current and fu-
ture state of stress. How much data do we need? Which types
of data do we need? How often do we need them? How do we
account for measurement errors? And what level of accuracy is
required?

1.3 Physical models

The evolution of fault stress and strength is extensively modelled
using physics-based numerical forward models, which range from
tectonic (e.g. Buiter et al. 2006; Billen 2008), to earthquake se-
quence (e.g. Lapusta & Barbot 2012), and earthquake timescales
(e.g. Harris et al. 2018). Earthquake sequence models rely on
observations from laboratory experiments (e.g. Dieterich 1979;
Di Toro et al. 2011) and physical laws (e.g. Rice 1993; Lapusta
et al. 2000; Lyakhovsky et al. 2011; van Dinther et al. 2013a;
Erickson et al. 2017). They are important to enlarge our physi-
cal understanding of earthquake source processes (e.g. Lapusta et
al. 2019), including understanding seismic versus slow and aseis-
mic fault slip (e.g. Goswami & Barbot, 2018), rupture styles (e.g.
Michel et al. 2017), rupture propagation to the trench (e.g. Noda
& Lapusta 2013), and long-term recurrence patterns (e.g. Herren-
doerfer et al. 2015). It is more challenging for models directly
based on physical laws to reproduce statistical observations of seis-
micity. Nonetheless, various models capture several key observa-
tions, including a magnitude-invariant stress drop (e.g. Lin & La-
pusta 2018), a Gutenberg-Richter earthquake magnitude–frequency
of occurrence relation (e.g. Dal Zilio et al. 2018) and a modi-
fied Omori’s relation for decay of aftershocks (e.g. Ben-Zion &
Lyakhovsky 2006).

They, however, face challenges, since (i) the physics controlling
earthquakes is not (well) known, (ii) the dynamics involves non-
linearity, and (iii) a wide range of temporal and spatial scales is
involved (e.g. Rundle et al. 2000, 2003; Ben-Zion 2008; Geller
et al. 2016). Nonetheless, predictive power can be maintained if
care is taken not to compromise essential physics. It is difficult,
however, to calibrate these physical models to a current, natural
setting and its stress level (e.g. Barbot et al. 2012). So how can
we use the predictive power of our physics-based forward models
for stress estimation and/or earthquake forecasting? Is our current
physical understanding of earthquakes good enough for this? How
should we improve it? How can we update our models if data be-
comes available? How do we account for model errors? And on a
related remark, how do we account for prior expert knowledge and
uncertainties in laboratory experiments?

1.4 Ensemble data assimilation

These questions could be answered quantitatively by ensemble data
assimilation, which is well-suited for combining insights from ob-
servations, statistics and physical models (e.g. Evensen 2009b). It
is extensively developed in meteorology and oceanography, such
that all available information from observations and physical mod-
els can be combined to estimate and forecast the state of atmo-
spheric or oceanic flow (e.g. Daley 1991; Talagrand 1997; Evensen
2009b; van Leeuwen 2009). Solid earth dynamicists instead aim
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to estimate the state of flow in the solid earth and in that face
similar—albeit less constrained—challenges (e.g. Fournier et al.
2013; de la Torre Guzman et al. 2014; Bocher et al. 2016; Gregg &
Pettijohn 2016).

Data assimilation (or filtering/smoothing in the engineering com-
munity) entails solving a ‘time-dependent inverse’ problem for
the computation of a probability density function (PDF) that de-
scribes the approximate dynamical numerical model solution, con-
ditioned on noisy observations scarcely distributed in time and space
(Evensen 2009b). At the same time, the measurement and modelling
errors are taken into account to obtain probabilistic estimates of the
involved states (i.e. physical variables) and parameters.

This is efficiently achieved through sequential data assimilation
methods, which integrate information from one observation un-
til the next. They are more straightforward than variational data
assimilation methods (cf. Talagrand 1997) and they efficiently sub-
tract time-dependent information in problems involving a loading
history (Murakami et al. 2012). Within sequential data assimilation
methods, we focus on ensemble- or Monte Carlo-based approaches
to account for nonlinear dynamics and non-Gaussian probabilities
(Section 2).

1.5 Data assimilation for seismicity

EDA, as defined in the sense of time-dependent state estimation,
has not been done for estimating or forecasting the fault state for
earthquake sequences. However, earthquake scientists have been
combining observations with various statistical or physical models
and observations in a variety of ways.

The main efforts relating to earthquake forecasting are under-
taken by the statistical community based on stochastic point pro-
cesses that effectively describe earthquake data (for an overview
see Werner et al. 2011). They use probabilistic rules for gener-
ating random events and a range of Monte Carlo integration and
Bayesian inference techniques conditioned on paleoseismological
or historical earthquake data (e.g. Ogata 1999; Varini 2007). These
techniques typically have difficulties to account for (i) measurement
and model errors, (ii) non-Gaussian probabilities and (iii) sequen-
tial updating as data becomes available. These aspects are tackled
by EDA using sequential Monte Carlo methods. The potential of
EDA for estimating space–time occurrence of events has been ex-
tended to point processes in a pioneering study by Werner et al.
(2011). Their forward model is a renewal model in which interevent
times are randomly drawn, but it cannot exploit prior information
available from physics.

From a physical model perspective, several studies have included
information from earthquake sequence observations to calibrate
their model through an informed trial-and-error procedure (Rundle
et al. 2006; van Aalsburg et al. 2007; Zöller & Ben-Zion 2014; Yo-
der et al. 2015). In a more informed manner, Monte Carlo searches
are used to calibrate parameters to reproduce induced seismicity
and extrapolate it using physical considerations (e.g. Dempsey &
Suckale 2017). These approaches, amongst others, cannot assimi-
late data as it becomes available. This could be done in an off-line
version of EDA that is used to weigh a few tens of scenario’s,
which solve for one or two states or parameters on a fault within a
quasi-dynamic forward model (Hori et al. 2014a,b,c). However, this
approach becomes computationally expensive for the large number
of scenario’s required, because actual states are not estimated or up-
dated to account for observations. Interestingly, for imaging aseis-
mic slip transients (e.g. Segall & Matthews 1997), an Extended

Kalman Filter has been used to estimate the stressing rate using
a rate-and-state friction model (Llenos & McGuire 2011). How-
ever, ensemble-based data assimilation methods are preferred for
the nonlinear dynamics involved in earthquake sequences.

1.6 Objectives through perfect model test

The purpose of this paper is to explore whether and how EDA could
be used for fault stress state estimation and eventually for earth-
quake forecasting. This rigorous statistical framework for combin-
ing observations and physical models has tremendous potential for
quantitatively answering the questions posed in Sections 1.2 and 1.3.
Actually answering these questions requires extensive future stud-
ies, but in light of the challenges posed it is not evident whether
EDA is feasible for these goals. Therefore, we start to explore its
feasibility in an educational test case involving a perfect model test
of a scaled laboratory or analogue experiment, which reproduces
earthquake sequences in a subduction zone (Corbi et al. 2013). In
this synthetic test, a numerical model provides both the data to be as-
similated and the corresponding true spatiotemporal solution to be
retrieved. Such a test is the only quantitative way to explore and test
a new contribution, but avoids dealing with not well-known physics.
A comparison between our ensemble results and the truth demon-
strates that very reasonable probabilistic estimates of the current
and future state of stress, strength and slip at faults can be obtained.

We forward model sequences of earthquakes using the seismo-
mechanical version of the seismo-thermo-mechanical modelling
framework (e.g. van Dinther et al. 2013a,b; 2014). This has been
shown to capture the essential physics of the stress evolution within
this simplified laboratory model (van Dinther et al. 2013b). Stresses
evolve in cycles from slow tectonic loading in the interseismic pe-
riod, to coseismic release through spontaneous frictional instabil-
ities, and postseismic rate-strengthening afterslip and viscoelastic
relaxation. These natural processes are captured through solving
the first physical principles of conservation of mass and momen-
tum (and energy), while using experimentally derived visco-elasto-
plastic constitutive equations (Gerya & Yuen 2007) and a slip-
rate-dependent friction (van Dinther et al. 2013b). This continuum
formulation allows us to directly apply data assimilation techniques,
which have been developed to deal with nonlinearities and uncer-
tainties in the atmospheric dynamics described by similar partial
differential equations.

This forward modelling approach is described in more detail in
Section 2.4. Sections 2.1 to 2.3 explain the framework of EDA and
Ensemble Kalman Filters (EnKF), while section 2.5 describes the
application of an Ensemble Kalman Filter to earthquake sequences.
Section 3 demonstrates that—and explains how—the underlying
fault state is estimated at a single point in time (Section 3.1). The
reasonable estimation of stress and strength, which govern earth-
quake propagation, then allow us to fit the pattern of analogue
seismic cycles surprisingly well (Section 3.2, as quantified in Ap-
pendix A). The resulting potential for earthquake forecasting for
this test case is demonstrated in Section 3.3. We then discuss the
limitations, implications, difficulties and opportunities for future
applications to nature for both fault stress estimation and other
solid earth problems (Section 4). These sections contain extensive
explanations of the theory, application and interpretation of EDA
to provide a basis for understanding for earthquake seismologists.
They are, however, also intended as an introduction for other dy-
namic solid earth scientists, since they face similar challenges and
could exploit benefits in a similar fashion. At the same time, data
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assimilation specialists are introduced to the study of earthquake
sequences.

2 M E T H O D S

This section summarizes EDA methods and focuses on EnKFs. The
novice reader is encouraged to read the accompanying Appendix C,
when referenced, or to read the unified overview in the online sup-
plements. For more in-depth reading we suggest a book (Evensen
2009b), a review (Carrassi et al. 2018) or an implementation sum-
mary (Evensen 2003).

2.1 Ensemble data assimilation

Data assimilation methods aim at deriving probabilistic estimates
for the temporal evolution of unobserved physical variables (i.e.
state and parameters) and their uncertainties. Their goal is to cap-
ture the evolving truth by combining information from both obser-
vations and a physical model, while taking errors for both informa-
tion sources into account (see Fig. 1). Data assimilation alternates
between two steps. In the first step, the so-called propagation or
forward or forecast step, the previous estimate and its uncertainty
are propagated forward in time by the physical model to provide
the forecast of the current state and its uncertainty. In the second
step, the so-called analysis or update or assimilation step, the new
observations are used to correct the forecast to obtain a new best
estimate. This analysis becomes the input for the next propagation
step (Fig. 1a). This procedure ensures that the data is informed by
the prior knowledge of the physical equations on how to extrapolate
in space and time, while the evolution of the physical state-space
model is corrected by the data.

To describe these two steps in more detail, we first introduce
some notation in which vectors are denoted in lower case bold
and matrices are denoted as upper case bold. State variables are
discretized on a 2-D numerical grid with spatial coordinates χ and
ψ . They include all physical variable types r needed to calculate
the future evolution of the system. For clarity, state vectors of form
xχ , ψ , r and length S are simply denoted as x and observation vectors
of length O are denoted as y. A time index is omitted as well, since
the sense of time within the single assimilation step is clarified
through the use of superscript f for forecast or first guess (i.e.
coming from previous time t − 1 to current time t) and a for analysis
(i.e. estimate including all information up to t).

We use p f (x) to denote the forecast PDF (or density) and x f to
denote its mean (expected value), the best forecast value. Similarly
we use pa(x) for the analysis PDF and xa for its mean, the best esti-
mate after the new observations have been taken into account. The
true state of x is unattainable and differs from x f and xa because of
model errors εx due to, for example, propagation and discretization
errors, measurement errors εy and unobservable components. We
thus write

x = x f + ε f
x = xa + εa

x . (1)

The forecast errors ε f
x and assimilation errors εa

x have mean zero

and their covariances matrices C f
xx = ε

f
x (ε f

x )T and Ca
xx = εa

x (εa
x )T

describe the uncertainty of the forecast and the analysis, respec-
tively.

In the propagation step, the analysis distribution at the previ-
ous time (pa(x)) is propagated forward in time according to the
dynamics of the physical model to give the forecast distribution at
the current time (p f (x)). The implementation of the propagation

step depends on the chosen assimilation method. In case of a lin-
ear dynamics, the propagation step can be done analytically by the
Kalman Filter (KF Kalman 1960; Appendix C). The best forecast
estimate x f is obtained by propagating xa from the previous time
step. Similarly the forecast covariance C f

xx can be computed from
the analysis covariance one step before. For nonlinear dynamics one
can use linearization, leading to the Extended Kalman Filter (EKF;
Jazwinski 1970).

When the dynamics of the physical processes is very nonlinear,
ensemble methods that use Monte Carlo techniques are preferred.
These methods construct ensembles of size N and approximate
p f (x)and pa(x) by a sum of N Dirac functions (Fig. 1). The forecast
ensemble at the current time is obtained by propagating each mem-
ber of the analysis ensemble at the previous time according to the
dynamics of the physical model. The main advantage of ensemble
methods is that the physical model propagation of the ensemble
correctly forward integrates the error statistics and the spread of the
forecasted ensemble around the best estimate. No approximation of
the dynamics is necessary.

The update step involves the assimilation of observations
through using Bayes’ theorem (Bayes & Price 1763)

p(x |y) ∝ p(x)p(y|x). (2)

This theorem describes how prior knowledge about a variable x in
the form of a prior PDF p(x) is modified by information from an
uncertain measurement y. Here p(y|x) describes the distribution of
the measurement when the value of x is known, and p(x|y) contains
the posterior knowledge about x when the value y has been observed.
In data assimilation, the prior is equal to the forecast PDF, which
contains our prior knowledge based on the physical evolution of the
system and all previous observations. The likelihood p(y|x) follows
from assumptions on the measurement error. The posterior is the
analysis PDF which is further propagated in time by the physical
model until the next data becomes available.

The implementation of the update step typically assumes the
observation vector y to be of the form

y = Mx + εy, (3)

where εy is a vector of measurement errors and the measurement
matrix M locates the measurement location on the numerical grid.
M is of size S × S and contains zeros everywhere, but for a few
ones on the locations where observations are available. If both the
model and measurement errors are Gaussian, then the analysis PDF
is Gaussian and the analysis mean and covariances can be computed
analytically. This leads to the update step of the regular Kalman filter
(Section 2.2).

There are two ensemble methods which only differ in how the
update step is implemented. The EnKF (Evensen 1994) uses an en-
semble version of the Kalman filter update (Section 2.3). It directly
corrects the state variables based on the data misfit or innovation
of each state variable. The particle filter (e.g. Gordon et al. 1993;
van Leeuwen et al. 2018) does not update state variables directly. It
instead reweighs each ensemble member based on the data misfit of
each ensemble member. This is typically followed by a resampling
step to achieve an equally weighted ensemble.

In this paper we apply an EnKF, since it is the current method of
choice for large-dimensional nonlinear problems (Evensen 2009b;
Fournier et al. 2013). Its computational requirements remain afford-
able for high-dimensional systems, while it is conceptually simpler
and easier to implement. Moreover, its performance in practical
problems is remarkable. However, a particle filter (or a combination
of both, as in e.g. Frei & Künsch 2013) could turn out to be more

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/3/1453/5307884 by ETH

 Zürich user on 24 April 2019



Ensemble data assimilation for seismicity 1457

X

TimeAS 1 AS 2 AS 3 AS 4 AS 5 AS 6 AS 7 AS 8 AS 9 AS 10

(a)

σχψ,21

vχ,2

State evolution of:
Truth
Forecasted mean
Ensemble spread
Observation
Analysis
Ensemble members

Propagation of PDE provides forecast Analysis

Model error M Cf
xx

e MT

vχ,2

How to update?

1

pf(Xvχ,2)

2

21

pf(Xσχψ,21)
Covariance matrix Cf

xx
e 

M xVχ,2

σχψ,21

vχ,2

pa(Xvχ,2)
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pa(Xσχψ,21)Bayes’ Theorem
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Grid forward model

p(Y|Xvχ,2)

Propagation
Analysis

xV

Figure 1. Schematic diagram explaining the concept of Ensemble Kalman Filters. (a) Temporal evolution of a true (black), forecasted (green), analysed (blue)
and observed (red) state variable with ensemble data assimilation at each Assimilation Step (AS). The goal is to bring the forecast, propagated based on a
physical model, in line with the truth. The concept of the (b) propagation and (d) update steps is illustrated for many ensemble members forming a probability
density function of the (b) prior pf(x), (c) data likelihood p(y|x) and (d) analysis pa(x|y) for an observed velocity vχ at the surface (at grey grid node 2) and
a hidden stress σχ , ψ at the fault (at grid node 21). In (d) note that each ensemble member is moved by the coloured arrows to form a posterior, which is the
multiplication of the transparent prior and data likelihood. This possibly non-Gaussian posterior ideally approximates the truth (black bar).

appropriate, if underlying assumptions of an EnKF are principally
violated. That is if either the measurement error or forecasted prior
turns out to be strongly non-Gaussian (e.g. using bi-modal errors
as illustrated in Werner et al. 2011), or the measurement relation
between the observable and the unknown state is too nonlinear.

2.2 Kalman filter

To understand an EnKF, the derivation of the equations, assump-
tions and challenges for a regular Kalman Filter are explained in
Appendix C. In summary, we additionally assume model and mea-
surement errors have a Gaussian distribution with zero mean. Along
with a Gaussian initial distribution, this leads to a prior or forecast
PDF that is Gaussian with mean x f and covariance C f

xx . This model
error covariance matrix contains how each component of the state
vector covaries with each other component in the state vector. The
measurement PDF p(x|y) is Gaussian with mean Mx and covari-
ance Cyy . The measurement error covariance matrix Cyy is defined
as εyεT

y .
By multiplying the prior and measurement Gaussian densities

as in Bayes’ theorem and then finding the maximum likelihood
estimate xa (Appendix C and D) one obtains

xa = x f + K(y − Mx f ), (4)

where matrix K is usually called the Kalman gain

K = C f
xx MT (MC f

xx MT + Cyy)−1. (5)

The Kalman gain is also used to calculate the analysis error covari-
ance matrix Ca

xx (eq. C7).

These equations show how to update the forecasted mean of each
state variable based on the data misfit or innovation y − Mx f for
each measurement. The Kalman gain is a matrix weighting two
terms, which together determine the size of the correction by the
data misfit. The first term is a transpose of the influence functions
MC f

xx (size S × S), which quantifies how each state variable relates
to the observation. The second term contains the Kalman weights
(each of size O × O), or inverted error covariances, which weigh the
update for each measurement as a function of the level of confidence
in both the model and the measurement. This thus means that update
is small if (i) the model forecast at the measurement location lies
close to the data, and/or (ii) the Kalman weights are low. The inverted
covariance weights are relatively low when either (i) the data error
for that measurement is large (i.e. it is better to ignore a deviation of
this measurement) and/or (ii) the model spread (or error/variance)
for a certain state variable–measurement combination is large (i.e.
the model does not know how the state and observation are related
and thus how to update the state). However, if the dynamics of
the physical processes is very nonlinear, it becomes very difficult
to forward propagate the entries into the forecasted model error
covariance matrix C f

xx in particular.

2.3 Ensemble Kalman filter

Forward propagation of nonlinear dynamics is tackled in an EnKF
through representing the forecast and analysis distributions by en-
sembles (Evensen 1994; Burgers et al. 1998). In the propagation
step, every member (or particle or evolving Markov Chain target-
ing pa(x)) of the previous analysis ensemble is forward propagated
according to the nonlinear partial differential equations (Figs 1a
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and b and Section 2.4) to form the forecast ensemble Xf (or x f
n

with n = 1, ..., N). The state variables from every ensemble mem-
ber are contained in a designated column of the forecast matrix
Xf of size S x N. The forecast ensemble can then be used to ap-
proximate the error covariance matrix C f

xx . This is done for each
entry (p, q) by averaging the deviations of all forecasted ensem-
ble members from the mean of the ensemble x f for each state
variable as

C f,e
xx = (c f,e

xx )pq = 1

N − 1

N∑
n=1

[(x f )p − (x f )p][(x f )q − (x f )q ]

= [X f − X f ][X f − X f ]T . (6)

We use a superscript e and write C f,e
xx to emphasize that the error

covariance is based on the ensemble. The ensemble update will also
correctly propagate the uncertainty forward in time, such that anal-
ysed error covariance matrix can also be obtained through sampling
the ensemble.

Correct propagation of the error statistics, however, also requires
the assimilation of an ensemble of perturbed observations (Burgers
et al. 1998). For this we generate N artificial measurement errors
according to the prescribed Gaussian measurement error distribu-
tion N (0, Cyy) and add them in the columns of E y and to the actual
observation y, such that

Y = y + Ey . (7)

For computational efficiency the ensemble measurement error co-
variance can then be sampled as (Evensen 2003)

Ce
yy = 1

N − 1

N∑
n=1

ε y,nε y,n
T = EyET

y . (8)

These ensemble estimates in terms of the average of the Dirac
measures at xa

n will converge to the posterior pa (eqs C3 and C5) as
the ensemble size goes to infinity.

Using these ensemble-based approximations, the EnKF calcu-
lates the posterior density or analysis ensemble as

Xa = X f + Ke(Y − MX f ), (9)

where each column of the perturbed observation matrix Y (size
O × N) and the posterior matrix Xa (size S × N) again contains
one ensemble member. The superscript e in Ke indicates that the
Kalman Gain of size S × O is calculated using ensemble-based
approximations to the error covariances as

Ke = C f,e
xx MT (MC f,e

xx MT + Ce
yy)−1. (10)

The update eq. (9) means that each forecast member is updated in
the same way as the mean is updated in the Kalman filter (eq. C6),
but with its own, perturbed observation. In particular, the discussion
on how the update equation (eq. 9) depends on the data misfit also
applies for the EnKF. The interpretation of these equations in light
of our earthquake sequence model is further discussed in the results
(Section 3.1).

Finally, the state estimates analysed to reflect the observed data
are inserted back into each forward model for the next propagation
step. This inclusion is the only adaptation needed within the core of
the forward model code to link it to the EDA framework.

In summary, the relaxation of Gaussian assumptions on the prior
and model error leads to a solution that lies between a linear Gaus-
sian update and a full Bayesian computation (Figs 1b and d). To

apply these equations, we only need to know (i) the evolution equa-
tions from the physical model to forecast X f and C f

xx , and (ii) the
measurement values y and their error εy and location for M.

2.4 Continuum modelling of seismicity

The continuum seismo(-thermo)-mechanical modelling framework
reproduces cycles of spontaneous analogue earthquakes without
predefining fault planes. It is based on a 2-D, coupled thermome-
chanical code developed for long-term, geodynamic deformation
(Gerya & Yuen 2007), which is extended and validated to simulate
analogue earthquakes (van Dinther et al. 2013b). These references
contain a description of the forward model, which is summarized
here to understand the data assimilation scheme proposed.

We use a fully staggered Eulerian, conservative finite difference
scheme, in combination with a Lagrangian marker-in-cell tech-
nique, to implicitly solve Navier–Stokes equations for the conser-
vation of mass and momentum in an incompressible medium

∂vχ

∂χ
+ ∂vψ

∂ψ
= 0, (11)

∂σ ′
χχ

∂χ
+ ∂σ ′

χψ

∂ψ
− ∂ P

∂χ
= ρ

Dvψ

Dt
, (12)

∂σ ′
ψχ

∂χ
+ ∂σ ′

ψψ

∂ψ
− ∂ P

∂ψ
= ρ

Dvψ

Dt
− ρg. (13)

This provides us with horizontal and vertical velocities, vχ and
vψ , and pressure P (defined as mean normal stress). The last two
equations of motion are written in terms of deviatoric stress tensor
components (nodal cell normal σχχ

′
and nodal cell shear σχψ

′
)

and include both gravity acceleration g (=9.81 m s−2) and inertia
(density ρ times the Lagrangian time derivative of the respective
velocity components Dv

Dt ).
These equations are solved using constitutive relations that relate

deviatoric stresses and strain rates ε̇i j in a nonlinear visco-elasto-
plastic manner as

ε̇ ′
i j = 1

2ηv

σ ′
i j + 1

2 G

Dσ ′
i j

Dt
+

{
0 for σ ′

I I < σyield

λ
σ ′

i j

2σ ′
I I

for σ ′
I I = σyield,

(14)

where i and j are coordinate indices (χ and ψ each), ηv is viscosity, G
is shear modulus, D/Dt is the objective corotational time derivative,
λ is the plastic multiplier connecting plastic strain rates and stresses
and σ ′

I I is the second invariant of the deviatoric stress tensor

σ ′
I I =

√
σ ′2

χχ + σ ′2
χψ . (15)

The elastic update of both stress components from the previous time
step σ ′0

i j is solved using a forward Euler, explicit time integration
scheme (Schmalholz et al. 2001; Moresi et al. 2003; Gerya 2010).
Through introducing an effective viscosity corrected for plasticity
ηvp, eq. (14) can be rewritten as

σ ′
i j = 2ηvp ε̇i j Z + σ ′0

i j (1 − Z ), (16)

Z = G�t

G�t + ηvp
. (17)

Here the viscoelasticity factor Z weighs the contribution of viscous
with respect to elastic stresses, as determined by the local shear
modulus, viscoplastic viscosity and time step �t. The contribution
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of plasticity comes in through adapting the ductile viscosity to
ensure that stresses do not exceed the yield strength, defined in the
non-associated Drucker–Prager plastic yielding model (Drucker &
Prager 1952). Brittle/plastic faulting occurs at a Lagrangian marker,
when the second invariant of the deviatoric stress tensor is equal to
(or larger than) a pressure-dependent yield strength σ yield

σyield = C + μ(V )P, (18)

where C is cohesion and μ(V) is the slip-rate-dependent friction
coefficient.

Frictional instabilities, and subsequent healing, are introduced
through an invariant formulation of strongly slip-rate-dependent
friction formulation (van Dinther et al. 2013b following e.g. Bur-
ridge & Knopoff 1967 and Cochard & Madariaga 1994) as

μ(V ) = μs(1 − γ ) + μs
γ

1 + V
Vc

. (19)

Here γ denotes the amount of rate-induced weakening that is equiv-
alent to 1 − μd/μs, where μs and μd are the static and minimum
dynamic friction coefficient. The viscoplastic slip rate V is calcu-
lated as half a viscoplastic strain rate σ yield/η times the grid size
dχ , where strain rate is a function of both velocity components
through ε̇i j = 1

2 ( ∂vi
∂x j

+ ∂v j

∂xi
). This invariant rate-dependence allows

for spontaneous fault plane development, as a drop in effective
viscosity localizes deformation and ensures local stress–strain rate
equilibrium during plastic yielding.

In summary, a synthetic, analogue earthquake occurs sponta-
neously, when a large enough local stress drop is able to overcome
neighbouring stresses and induce plastic yielding there as well.
Since local plastic yielding occurs when√

σ ′2
χχ + σ ′2

χψ ≥ C + μ(vχ , vψ )P, (20)

we need to capture both stress and velocity components and pres-
sure along the fault to forecast earthquake occurrence and the cor-
responding behaviour of the wedge or medium.

2.5 Setup perfect model experiment

We perform a perfect model experiment to test whether EDA
could be used to estimate fault stresses and resulting earthquake
sequences. The crucial assumption is that the modelled physics
perfectly represents the evolution of the system, that is, there is
no representativeness error. The numerical model that produces
the forecasts is thus run once more to provide synthetic obser-
vations, onto which Gaussian noise is added. This synthetic data
model represents the true solution, which provides a means to
quantify how well hidden state variables are estimated by our
EnKF. This approach of a synthetic twin experiment is the best
way to test initial feasibility and is a classical requirement tested
extensively in geophysical data assimilation applications (e.g.
Evensen 2009b).

The script in which the EnKF was implemented (freely available
on ETH’s Research Data Repository) is checked for consistency of
the error statistics (appendix A in Evensen 2003). In our existing
mechanical code, only two things are changed; (i) state variables
are input, interpolated to markers and output when needed, and
(ii) posterior state variables replace prior ones before the plasticity
calculation and Navier–Stokes solve (at the start of step 2 in fig.
2 in Gerya & Yuen 2007). The new state temporarily violates the
mechanical conservation of mass and momentum, but this does not
lead to computational issues and conservation is restored in the next

time step. Communication between the assimilation and forward
codes, and coordination for nearly embarrassingly parallel ensemble
runs, was facilitated by wrappers written using MPI (freely available
as well).

The model setup resembles an analogue or scaled laboratory
experiment (Corbi et al. 2013; Fig. 2a) to ensure a simple and
computationally fast setup in which many events occur within a
feasible observational time span. The numerical setup adopts the
laboratory settings, parameters and dimensions and captures all ob-
served statistics of this analogue seismic cycle (van Dinther et al.
2013b). This rotated setup mimicks a subduction zone in which a
rigid oceanic slab subducts landward beneath a viscoelastic upper
plate forearc. Within the frictional interface a velocity-weakening
frictional patch designates the seismogenic zone in which earth-
quakes occur. This zone experiences cycles of long interseismic
coupling punctuated by rapid coseismic slip and post-seismic re-
covery (see fig. 7 in van Dinther et al. 2013b for the evolution
of variables throughout the seismic cycle). This slip simulates an
analogue earthquake, which elastically rebounds the landward dis-
placements build up during the interseismic period of locking in
between two events (arrows in Fig. 2b). During this interseismic pe-
riod, the stress state builds up along the interface, and particularly
near the downdip limit of the seismogenic zone (colour and contour
line, resp., in Fig. 2b). There differential displacement is the largest
and stresses thus typically exceed the yield strength first. When that
happens over a large enough area, an event nucleates, propagates
and consequently releases a distinct part of these stresses during this
coseismic event. As in nature, fault stress and strength thus deter-
mine the state throughout the entire forearc. Hence, the challenge
is to forecast these correctly.

In order to (i) estimate fault and forearc state, (ii) forecast events
and (iii) propagate a complete and balanced forward model, we
need to estimate all nodal values for five physical variables (i.e.
vχ , vψ , σ ′

χχ , σ ′
χψ and P). In addition to the three solution variables,

stresses are included to incorporate the history component. They
can namely not be deduced from current velocities, but are nec-
essary to calculate the next time step. These (701 × 136) × 5 =
476 680 state variables are first scaled with a characteristic value
to have more similar variability within error covariance matrices
that need to be inverted (Table 1). This ensures that the eigen-
values corresponding to each measurement type do not differ by
many orders of magnitude (Evensen 2003). These state variables
are added consecutively into the rows of forecast state vector xf,
which in the ensemble formulation is extended to a forecast ma-
trix X f with the entries for the N ensemble members in each
column. Larger ensembles typically allow for improved forecasts,
so we show results for the largest number tested: 150 ensemble
members. However, as little as 20 ensemble members are found
to already capture most of the diversity within the models (Ap-
pendix B). Subsequently, data obtained from a single point in space
are assimilated into these forward models at intervals of 30 time
steps, which are fixed for simplicity (or ∼2 s in this 800 s labo-
ratory run). This point can be interpreted to represent a roughly
5 km deep borehole (the yellow circle in Fig. 2a). To obtain error
estimates for each measurement type, we use current state-of-the-
art values from the literature (Valley & Evans 2007; El-Mowafy
& Bilbas 2016). These errors are then downscaled to our labo-
ratory model setup using the analogue scaling relation developed
in Corbi et al. (2013; Table 2). These values show that veloci-
ties can be obtained fairly accurately using GPS measurements.
Stress and pressure estimates within boreholes, however, are very
challenging and thus have large and not well known errors (e.g.
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Figure 2. (a) Numerical model setup of an analogue subduction zone adopted from van Dinther et al. (2013b). Colours represent different compositional
units and dots represent relevant locations. The green arrow is a gravity body force tilted with a 10 degree slab dip, while the black arrow represents a driving
boundary condition for subduction velocity. (b) Spatial overview of all state variables (arrows for velocity, colour for second invariant of deviatoric stress and
pressure contours) at the first assimilation step in the synthetic data model. Note that velocities are present in the air due to a sticky-air approximation, which
typically ensures a free surface in geodynamic models (Crameri et al. 2011).

Table 1. Scaling values. Columns 2 and 3 provide characteristic (char.) values used during assimilation for scaling to similar eigenvalues for each data type
r. Columns 4–6 give scaled error variances of resp. the model (at assimilation step AS), the data and their combined standard deviation used to evaluate and
visualize output.

Data type r
Reasoning for characteristic

value
Characteristic

value (C f,e
xx )rr,AS=1 (C f,e

yy )rr

√
(C f,e

xx )rr,AS=1 + (C f,e
yy )rr

vχ Subduction velocity 39.0 × 10−6 m s−1 1.23 3.26e−4 1.11
vψ Average in wedge 2.25 × 10−6 m s−1 219 1.31 14.8
σ ′

χχ Average σ ′
χψ build in SeZ 33.2 Pa 38.1e−3 7.20e−3 0.213

σ ′
χψ Average σ ′

χψ build in SeZ 33.2 Pa 7.70e−3 7.20e−3 0.122
P Lithostatic P at downdip

SeZ
547 Pa 1.61e−4 6.70e−6 0.0129

Table 2. Data error εy values and sources based on current state-of-the-art measurements. Downscaling to laboratory setup values follows scaling relations
developed by Corbi et al. (2013). Stress terms refer to our numerical grid and the error in each component—and pressure or mean stress—is kept the same for
simplicity (i.e. is assumed to be independent of orientation).

Data type Error (nature) Error (lab) Equipment Location Reference

vχ 1.5 mm yr−1 0.67 × 10−6

m s−1
GNSS (GPS) Western Australia El-Mowafy & Bilbas (2016)

vψ 5.5 mm yr−1 2.5 × 10−6

m s−1
GNSS (GPS) Western Australia El-Mowafy & Bilbas (2016)

σ ′
χχ 5 MPa 2.7 Pa Wellbore failure and hydraulics Soultz-sous-Forêts Valley & Evans (2007)

σ ′
χψ 5 MPa 2.7 Pa Wellbore failure and hydraulics Soultz-sous-Forêts Valley & Evans (2007)

P 5/2 MPa 2.7/2 Pa Wellbore failure and hydraulics Soultz-sous-Forêts Valley & Evans (2007)

Huffman & Saffer 2016). In Appendix B, we analyse the im-
pact of this choice to use these state-of-the-art errors, as they
are. We observe that distinctly smaller errors no longer reduce
least absolute errors. Finally, the synthetic data are noised using
this Gaussian error before providing it to the assimilation algo-
rithm to ensure compatibility with the same challenge of noisy
observations in nature. Introducing this additional error into the
synthetic data distinctly increases the difficulty of recovering the
truth.

We introduce a stochastic component into both the synthetic data
simulation and all ensemble member simulations through varying
initial distributions of the Lagrangian markers. Over time this leads

to a different timing of events due to the inherently sensitive na-
ture of plasticity (see appendix A1 in van Dinther et al. 2013b).
Such variable event timing permanently changes stress states and
thus makes them diverge slowly. Propagating all divergent stresses
for a few characteristic cycles ensures that (i) the true stress state
is unknown, and (ii) the prior is as uninformed as possible. This
means that, at the start of data assimilation at t ≈ 134 s, the truth
is considerably distinct from the mean of each prior (compare e.g.
Fig. 3a and c; and the green, prior PDF and black, true line in the
right column of Fig. 4d). The true solution is namely located around
the 79th, 47th, 81st, 67th and 95th percentile for vχ , vψ , σ ′

χψ , σ ′
χχ ,

and P resp.
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Figure 3. Spatial shear stress recovery visualized for an ensemble member in a postseismic period (a) before and (b) after assimilation of interseismic data
from (c) the true target model. This example ensemble member had a distinct velocity misfit at the analogue borehole (yellow circle) at the first assimilation
step (red ensemble member in Fig. 4). The magenta circle marks the location where subsequent fault states will be evaluated.

3 R E S U LT S A N D A NA LY S I S

Whether EDA can enhance our physical understanding
of earthquakes—and ultimately improve their probabilistic
forecasting—relies on the possibility to estimate, and forecast, the
state of stress and strength at dominant faults.

3.1 Can a fault’s state be recovered?

To appreciate what is possible—and why—in a simplified labo-
ratory setup, we start by analysing whether we can capture the
unknown stress state from data obtained at a single point in space
and time. At the first assimilation step, velocity and stress data
from the true synthetic data model are noised and assimilated
(see the yellow point in Figs 2a and 3, error values in Table 2
and explanation in Section 2.5). These data are taken from an in-
terseismic period, which intuitively contains little information to
constrain the spatial distribution of shear stresses. Velocities in-
dicate slow landward movements, as they do most of the time,
and stresses and pressures are increased (Fig. 3c). However, when
sampled at the surface, they provide a somewhat distorted picture
due to a large measurement error and the large distance to the
fault.

To see how much information can be extracted when both mod-
elling and observations are combined through data assimilation,
we analyse the shear stress update of one of the ensemble mem-
bers that is far from the true solution (Fig. 3c). The forecast of
that ensemble member shows low stresses throughout most of the

seismogenic zone and forearc (Fig. 3a), which is characteristic for
a post-seismic period as a coseismic event just released stresses.
After assimilating data obtained at the yellow circle, the analysed
shear stress pattern (Fig. 3b) largely resembles that of the targeted
true model from which the synthetic data were taken. The EnKF can
thus reconstruct the spatial distribution of shear stresses remarkably
well.

3.1.1 How to update shear stress in the centre of the seismogenic
zone?

To understand why this shear stress pattern can be recovered so
well, we consider how shear stress is updated at a node in the centre
of the seismogenic zone (magenta point in Figs 2a and 3). To do
so, the hidden or unobserved shear stress is plotted on the y-axis,
while the observable horizontal velocity is outlined on the x-axis in
each subfigure in Fig. 4. Every open circle represents a forecasted
ensemble member, which together make up the prior density plotted
in green in the top and right frames. The large majority of ensemble
members is within the interseismic period and show small positive
landward velocities. However, several outliers either indicate post-
seismic velocities, whose reversal towards landward velocities is
delayed (e.g. the red open circle in Fig. 4), or the nucleation stage
of a coseismic event (e.g. green open circle). Fault shear stresses
complete a corresponding circular-like pattern with interseismic
stresses first increasing slowly with velocity, then reducing rapidly
with increasing negative (seaward) coseismic velocities towards a
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Figure 4. Ensemble results explaining how to update each ensemble member when data is assimilated. Each subfigure shows nodal values of observed
horizontal velocity (x) versus unobserved fault shear stress in the centre of the seismogenic zone (y). The main frame contains open (prior) and filled (posterior)
circles for each ensemble member (with some examples coloured for identification), a black star for the true target solution and a solid regression line from the
linear least-square fit to the prior ensemble members. Subfigures show successively increasing data complexity from (a) one observation of the true horizontal
velocity without data error, (b) one noised observation of the horizontal velocity, including corresponding data error, (c) five single location observations of
true velocities, stresses and pressure without data error, to (d) five noised observations with data error (reference setting used throughout this paper). The side
frames show the corresponding prior (green) and posterior (blue) densities with a dashed line for each mean and the true target line in black.

minimum, and finally a post- and early interseismic rapid recovery.
This leads to a wide potential distribution of shear stresses with a
maximum near common interseismic values.

An understanding of how the shear stress of each ensemble mem-
ber should be updated is best provided successively through increas-
ing the complexity of the data assimilated into the model. First, we
analyse the assimilation of a single observation of the most read-
ily available horizontal surface velocity without accounting for a
data error (Fig. 4a). Since the data is assumed to represent the
truth correctly, the observed horizontal velocities of all ensemble
members are updated to the observation exactly. The shift along
the x-axis from x f

n,1 to xa
n,1 is thus equal to the data misfit or in-

novation y1 + 0 − Mx f
n,1. The corresponding update of the shear

stress of each ensemble members from x f
n,2 to xa

n,2 occurs paral-
lel to the slope of the least-square regression (C21/C11) shown for
the forecasted prior (follow coloured examples). This can be seen
from the fact that the slope of the corresponding update for a single
observation (eq. 9) is equal to

xa
n,2 − x f

n,2

xa
n,1 − x f

n,1

= K2

K1
= (C f,e

xx )21

(C f,e
xx )11

. (21)

This is because the data misfit with horizontal velocity is the same
for all state variables and thus cancels out in the first rewrite. The
scalar Kalman weights are also equivalent for all state variables
and thus cancel out in the second rewrite. This update direction
emphasizes the least-squares character of the Kalman solution and
represents the prior physical knowledge on how the hidden state
variable covaries with the observed state variable.

The slope of the update when data errors are included is still
parallel to the least-square fit to the prior, because both update
terms cancel as well (Fig. 4b). However, the update along the surface
horizontal velocity does not reach the noised observation due to (i)
assimilation of an ensemble of peturbed observations Y (eq. 7), and
(ii) the data error accounted for in the data error covariance matrix
Ce

yy (eq. 9). Assimilation of one interseismic horizontal velocity
moved the mean marginally closer to the truth (black star) through
increasing the low velocity outliers.

Additionally, also assimilating data on vertical velocity, stresses
and pressure significantly improves the mean and maximum likeli-
hood estimate. At the same time the uncertainty is reduced distinctly,
thus constraining fault shear stress remarkably well (Fig. 4c). With-
out a data error (and with uncorrelated data errors) this is achieved
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Figure 5. Ensemble panels of the reference models update of fault shear stress shown as a function of each additional surface observation of (a) vertical
velocity, (b) normal stress, (c) shear stress and (d) pressure (see the caption of Fig. 4(d) for more explanation).

through updating each ensemble member similarly as described for
horizontal velocity, but then sequentially assimilating one obser-
vation after the other. So four least-square fits through each prior
combination (Fig. 5) are consecutively projected onto the visualized
plane to arrive at the posterior locations in Fig. 4(c).

Accounting for a measurement error leads to changes in the up-
date of the observed (as for Figs 4a and b) and unobserved compo-
nents. The unobserved update also accounts for the relative weights
of various data errors, which are present on the respective off-
diagonal elements of the inverted data error covariance (which is
diagonal but for random noise). These combined changes introduce
uncertainties that increase the spread of the posterior. However, de-
spite including large errors on stresses and pressure, the posterior
still peaks clearly around the true fault shear stress.

To understand the contribution of the four other observation
types, Fig. 5 shows the updates of fault shear stress in their re-
spective observation planes. Stresses and pressure are observed to
covary constructively with the estimated fault shear stress. Ensem-
ble members that experience more compression at the surface (i.e.
more positive shear stress and pressure and less negative normal
stress), also experience more compression at the fault. This prior
physical knowledge builds the model covariances that indicate how
to update the solution in response to each observed data type. How
much each ensemble member is updated is mainly determined by

its data misfit with respect to each observation. If the horizontal
velocity misfit is large, then the update will be largely parallel to the
regression through horizontal velocity (e.g. for magenta member in
Figs 4d and 5a). In case of a large stress or pressure misfit, their
respective least-square fit is followed instead (e.g. for red or blue
member in Figs 5b–d).

These step-wise explanations of how to update the shear stress
hold for all nodal points within the model, although covariances
between the data point and other nodal points vary. This can be seen
when analysing an additional point near the downdip limit of the
seismogenic zone, where stresses reach the strength first and most
events thus nucleate (Appendix E). Updating the fault’s shear stress
there shows that only assimilating horizontal velocity data performs
better, such that the addition of stress data is less crucial (compare
Figs E1a and b).

In summary, these updates for a single state variable highlight the
necessity of a physical link between this unobservable variable and
the observable state variables, as stored within the sampled error
covariance matrix of the model C f,e

xx .

3.1.2 How to update shear stress throughout space?

The constructive covariance for one point in Section 3.1.1 needs
to be extended to all nodes to evaluate whether all shear stresses
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Figure 6. Spatial information available from physical model on how to update shear stresses at every nodal point. The left-hand column shows transposed
influence functions (C f,e

xx MT ) illustrating how shear stress covaries with observations of (a) vχ , (b) vψ , (c) σχχ , (d) σχψ and (e) P at the open dot. No scaling
is applied with respect to the assimilation (Table 1). The right-hand column shows the part of the Kalman gain K that illustrates how to update shear stresses
throughout the model as a function of a one standard deviation data misfit on innovation or data misfit for observations of (f) vχ , (g) vψ , (h) σχχ , (i) σχψ and
(j) P at the open dot. Note that the minor change in patterns between left-hand and right-hand columns is due to the influence of the cross terms involving the
off-diagonal components of the model (and data) error covariances. To evaluate the relative contributions of these data types to the shear stress at each node,

the update is normalized through scaling (multiplying) K with the standard deviation of the data misfit
√

(c f,e
xx )rr,t=1 + (c f,e

yy )rr (Table 1). This only reduced
the visual magnitude of pressure slightly.

can be updated to conform observations. By visualizing the trans-
posed influence functions MC f,e

xx for each observation, it can be seen
that reasonable covariances with shear stresses are also present for
other unobserved points throughout the model (Figs 6a–e). These
influence functions show that shear stresses near the seismogenic
zone should increase, when measured velocities are faster than fore-
casted velocities (Figs 6a–b). So shear stresses should increase for
slower co-, post- and earlier interseismic models, as their stresses
have already dropped too much during the previous event from
which velocities are still recovering. Similarly, when shear stresses
and pressures in proximity of the seismogenic zone are too low
with respect to their positively correlated values at the surface,
they need to be increased (Figs 6d–e). The same increase to more
compression holds for the normal stress components, which are
negative in compression (Fig. 6c). Overall, the spatial pattern of
how shear stress covaries with each data type is rather smooth.
This likely allows for a reasonable shear stress estimate for all
points.

To complete the information on how to update shear stress (or
any other state variable type), these transposed influence functions
need to be weighted by the inverted model plus data error covari-
ance matrices (each 5×5) to form the Kalman gain K (eq. 9). K
subsequently needs to be multiplied by the misfit for each data en-
try to get the update. This update is normalized through scaling K

with the standard deviation of the innovation
√

(c f,e
xx )rr,t=1 + (c f,e

yy )rr

to be able to compare colours between data types r. Figs 6(f)–(j)
thus show how the shear stress on each node should be updated
due to a one standard deviation data misfit of each plotted data
type r. The changes in colour intensity between the left-hand and
right-hand columns result from the weighting with model and data
error, which is fixed for all state variable and ensemble member
updates (for this assimilation step). This shows that a one stan-
dard deviation misfit in vertical velocity hardly induces a change
in shear stress (Fig. 6g) due to its large model error MC f,e

xx MT

(Table 1). Since there is hardly any prior physical knowledge on
how to update shear stress according to vertical velocity (Fig. 5a),
this data misfit is largely ignored. The largest contribution from
the data error comes from distinctly decreasing the relative con-
tribution of observed stresses and pressure to a level where their
influence—accidentally—becomes similar to that of the horizontal
velocity. All together, though, the contribution of a data misfit with
observed shear stresses remains largest. Finally, the results of each
subplot in the right-hand column needs to be multiplied with the
scaled innovation to arrive at the full update for shear stress.

In summary, these results demonstrate that shear stresses can be
estimated reasonably well even from observations from a single
point in time and space.
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Figure 7. Examples of probability density functions (PDF) of fault stress (a–c), strength (d–f) and slip rate (g–i) at three snapshots in time (columns) chosen
at each first occurrence of a specific phase of the seismic cycle within the synthetic data: interseismic (left at first Assimilation Step, AS), coseismic (centre at
third AS) and post-seismic (right at 46th AS). PDF’s (all with area 1) that are green indicate the prior based on a forecast of the physical model (and previous
data assimilated for centre and right), while the blue ones indicate the posterior after data are assimilated. The blue dashed PDF indicates the distribution after
a forward modelling time step to illustrate the impact and relevance of the results. The black lines indicate the corresponding truth. Analysed at the same node
in the centre of the seismogenic zone.

3.1.3 Can stress and strength be recovered to revert or initiate
events?

The successful estimates of shear stresses do not yet provide enough
information to assess whether a synthetic event can occur or not. The
other four state variable types play a role as well. Stresses normal
to our grid contribute to the second invariant of the deviatoric stress
tensor (eq. 15, for simplicity referred to as stress), which is used
for evaluation of the Drucker–Prager yielding criterion (eq. 20).
Pressure and horizontal and vertical velocity contribute to the slip-
rate-dependent yield strength (eq. 18, for simplicity referred to as
strength). We evaluate whether stress and strength can be estimated
in every phase of the seismic cycle through analysing the first oc-
casion at which data representative for each phase is assimilated
(Fig. 7).

The first column features the assimilation of interseismic data
and corresponding probabilistic estimates of stress, strength and
slip rate (Figs 7a, d and g, resp.). The blue posterior density or

PDF of stress captures the black true line well and distinctly bet-
ter than the green prior PDF. However, the estimation of the cur-
rent static strength did not improve. The slip rate estimate did im-
prove, since several ensemble members featuring co- or post-seismic
characteristics were updated to interseismic velocities towards the
land instead. These results thus confirm suggestions from Figs 3
and 4 that the occurrence of events can indeed be inhibited or
reverted.

In turn when coseismic data are assimilated, it is necessary—and
not straightforward—that events can also be initiated in a significant
number of ensemble members. Figs 7(b), (e) and (h) deals with the
assimilation of data featuring a coseismic event, since the high slip
rate of the true model leads to a low strength and a corresponding
drop in stress. Assimilation of this data ultimately leads to very low
stresses and strengths throughout the ensemble. This indicates that
events are initiated in all ensemble members simultaneously, such
that the stress state can be efficiently adapted towards the true state.
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This distinct correction makes coseismic data more efficient and
informative for data assimilation than inter- or post-seismic data.

Finally, information on the state of the fault could also come
from data obtained during the post-seismic phase (Figs 7c, f and
i). That the targeted synthetic data model is within the (early) post-
seismic phase is evident from its very low stress and regular strength
level. Interestingly, the low stresses are already forecasted by the
mode of the prior. This forecasting value can be credited to the
successful assimilation of data at 45 previous points in time and
the following physical forward propagation there upon. However, it
is only after assimilating these postseismic data that stresses at the
fault are indeed estimated to be very low in the large majority of
the ensemble. The strength estimate is reasonable, although it is not
improved with respect to the prior estimate. Meanwhile, the slip rate
estimates are improved, particularly in the forward model time steps
following the assimilation (compare dotted blue PDF with dotted
black line).

In summary, stress and strength state can thus be updated directly
in each ensemble member to better capture the true stress state of the
synthetic data model. This is facilitated by the prior knowledge of
the evolution of physical variables within each phase of the seismic
cycle and the explicit state updating included within the EnKF
scheme. In a Particle Filter the absence of explicit state updating
would need to be compensated by a very large numbers of ensemble
members and effective resampling.

3.2 How well is analogue seismicity captured?

3.2.1 How well are states captured through time?

This section extends the spatial state estimation from a single assim-
ilation round to a complete analogue experiment with 30 cycles of
analogue earthquakes (Corbi et al. 2013). First, we analyse the tem-
poral evolution of all state variable types, and strength excess, for
the same marker in the centre of the seismogenic zone (Fig. 8). This
figure depicts the ensemble through different statistical measures in
red, the true evolution in black and shows grey bars when data are
assimilated. Prior to the start of data assimilation at t ≈ 134 s, the
range of the ensembles for velocities and stresses mostly encompass
the minimum and maximum values of the true evolution. This is
because the parameters are known in a perfect model test. However,
there is no notion about the timing of analogue events.

After data assimilation starts, both velocity estimates demonstrate
a remarkable sense of timing of events (Figs 8a and b). Horizontal
velocity, which is equivalent to slip rate of the fault, shows that
even the occurrence of the first event is somewhat suggested by the
seaward reversal of the mean (Fig. 8a, as shown in Figs 7d–f). Subse-
quently, more than 97.5 per cent of the ensemble members forecast
that no velocity change will occur for a while. Just prior to the
second event about 10 per cent of the ensemble members indicate
an event is happening. However, it is only captured by all ensemble

Figure 8. Temporal evolution of (a–e) all state types and (f) strength excess (S.E.) at a random fault marker in the centre of the seismogenic zone (Fig. 2,
magenta circle). Strength excess is pressure- and slip-rate-dependent yield strength (eq. 18) minus second invariant of the deviatoric stress tensor. It gives an
indication of the proximity of the next event, being high when the next event is far away. The black lines indicate the unknown targeted truth, while the red
lines represent the probabilistic estimate of the resulting ensemble (see the legend). The thick line is the mean, while different Percentiles P are chosen to
approximate plus and minus, one and two standard deviations of this ensemble distribution. Data assimilation starts at the magenta line, which thus indicates
the described first assimilation step (Section 3.1). Subsequent constant assimilation times are denoted in grey at the bottom (or top) of each panel. Snap shots
shown in Fig. 7 are shown in magenta. For visualization purposes a zoom of 0–500 s instead of 0–800 s in shown.
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Figure 9. Information present solely within (a,b) the data and (c,d) the physical model, which together lead to (e,f) the data assimilation result. A zoom of the
initial time period is shown for horizontal velocity and shear stress to better visualize the quality of the fit.

members once coseismic data are assimilated. Subsequently, the
third interseismic period is forecasted to be interseismic. Seconds
before the third event, a minor portion of ensemble members experi-
ences events. One to two seconds before the event the large majority
of ensemble members experiences events, indicating that the onset
of an event is highly likely right before it happens. Subsequent in-
terseismic period as forecasted as such, while events are typically
preceded by a smaller or larger portion of ensemble members. How-
ever, towards the end, larger portions of members and larger times
before the actual event, an event is already indicated as more likely.

These indications for the likelihood of events are also observed
in the pattern and uncertainties of fault stresses, in particular for the
most relevant shear stresses (Figs 8c–f). As soon as data assimila-
tion starts, both the timing and magnitude of static stress drop are
captured particularly well (Fig. 8c). However, the dynamic stress
increase due to the approaching rupture front cannot be captured
by the mean of an ensemble. The subsequent rate of interseismic
stress build up is again captured well in most interseismic periods,
occasionally even with large certainty. Normal stresses are captured
somewhat, albeit for two extended periods of exceptional extension
(Fig. 8d). Pressure estimates in the first half approximate the truth
somewhat better than before data assimilation, although with large
uncertainty (Fig. 8e). In the second half of the experiment pressure
estimates deviate from the truth during two exceptional periods
of extension. Since these pressure variations are not relevant and
hardly impact static strength (Fig. 8f), we suggest to exclude pres-
sure estimates in future applications.

The most crucial variable to capture is the strength excess
(strength minus stress), since this directly determines the occur-
rence of plastic yielding and runaway events. This thus provides
most information for those interested in forecasting events. Fig. 8(f)
shows the evolution of strength excess is captured remarkably well,

and with uncertainty levels that are mostly within one standard de-
viation from the mean. Its evolution shows that after events, stresses
have dropped and strength excess is thus large, thereby making the
occurrence of an event very unlikely. As the strength excess de-
creases towards zero events become more likely. A distinct number
of events seem to occur around the time when the strength excess
reaches zero for a distinct portion of the ensemble members. How-
ever, fitting strength excess is more difficult near the downdip limit
of the seismogenic zone, where events nucleate (Fig. E2).

3.2.2 How much information within model and data?

The degree to which fault stresses and dynamic strength are cap-
tured is remarkably high. To appreciate how surprising this is, and
how much value is added through data assimilation, we analyse the
information already present within the physical model and synthetic
data separately (Fig. 9).

From periodic observations near the surface, it is difficult to know
how many events occurred (Figs 9a–b). Horizontal velocity gives
a reasonable idea, but events can be missed due to the constant
sampling interval. The additional information from the assimilated
shear stress (blue dot), which is noised to mimick reality, introduces
uncertainty when identifying how many, and when, events occur.
Several jumps in stress instead result from a randomly drawn error,
which is roughly on the order of the stress drop measurable at the
surface.

The ensemble of physical models provides a very good estimate
of the average level of velocity and stress (Figs 9c–d), since the
parameters are known in this perfect model test. However, a sense
of event timing is not present at all. Velocities seem to rebound
seaward regularly which could be interpreted as the occurrence of
up to about 20 events.
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Figure 10. Error or goodness of fit through (a and b) time and (c–g) space.
(a) Zoom of L1 norm evolution for each state variable type (colour, legend
in b), where filled dots give the final value at each fifth forward time step
and the open dot shows the forecast before assimilation. Spatial averaging
was applied over the region of interest shown in (c–g) in which boundary
conditions, such as the sticky air, were assigned zero. (b) Additional time
averaging at each assimilation time step shows the L1-norm converges within
the duration of the analogue experiment, such that errors can be compared
between different experiments. (c–g) Spatial distribution of the local error

( Xa−x
xchar,r

) averaged over every assimilation step after assimilation. The open

circles indicate the locations of observation (black), central seismogenic
zone shown throughout paper (magenta) and point near downdip limit shown
in Appendix E (green). The vertical blue lines indicate seismogenic zone
limits, where horizontal ones show fault limits.

The combined data assimilation clearly indicate the occurrence
of three events (Figs 9e–f). Moreover, they also estimate a reason-
able static stress drop subsequent interseismic build up rate. Data
assimilation thus added pronounced value with respect to using
physical models or observations independently.

3.2.3 What is the error?

Since the true solution is known in this perfect model test, the good-
ness of fit between the best estimate of the ensemble, its analysed
mean and the true solution is quantified in detail (please see Ap-
pendix A). In summary, we use a normalized L1 norm (eqs A1
and A2) to avoid large sensitivity to outliers. Through time this er-
ror typically increases during the forecasting period and decreases
again when data are assimilated (Fig. 10a). In space we observe
that the error typically increases away from the observation point
and with depth (Figs 10c–g). This means that the deviations from
the truth shown throughout the main text are relatively large (e.g.
Fig. 8) and maximum near the nucleation region (Fig. E2).

The L1 norm averaged over space and time is used to compare
different experiments and select optimal parameters for the data as-
similation scheme (for details please see Appendix B and Fig. B1).
In summary, this assimilation parameter sensitivity study reveals
that EDA is feasible within a reasonable range of parameters, al-
though care should be taken to set them carefully in order to optimize
performance. Interestingly, this sensitivity study shows that state-
of-the-art measurements of stress are suitable for improving EDA,
despite their large error (Appendix B; Fig. B1c). In fact, reducing
this error by more than a half seems to remove the variability needed
to make the assimilation work well.

3.3 Can we forecast analogue seismicity?

Purely quantifying the fit of the ensemble to the truth (Sec-
tions 3.2.3, A and B; Figs 10 and B1) is rather arbitrary for this
system with very nonlinear dynamics. Neither is an excellent fit
with a delay in time as meaningful. Another way of quantifying
the performance of EDA for the purpose of seismicity is to analyse
its forecasting ability. We analyse forecasting ability with respect
to a periodic recurrence model, whose mean recurrence interval
is updated as time progresses. This is done to provide an honest
benchmark for this simplified setup, which exhibits a quasi-periodic
recurrence of quasi-characteristic events (coefficient of variation of
the recurrence interval is about 0.5; Corbi et al. 2013; van Dinther
et al. 2013b). Note that this time-series is neither time- nor slip-
predictable, since corresponding regression coefficients are about
0.1.

Forecast-ability from a decision-making standpoint is often ad-
dressed using an error diagram (Helmstetter & Sornette 2003), as
shown Fig. 11. An optimal forecast would forecast 100 per cent of
the events correctly through sounding an alarm for very limited
time, thereby passing near the diagrams origin at (0,0). If one in-
cludes no information and forecasts randomly, results fall along the
black thin line connecting (0,1) and (1,0). To identify events we
trigger an alarm when one of six different velocity thresholds is
passed. For EDA results alarms are sound when 10 per cent of the
ensemble members pass these thresholds.

For the highest velocity threshold, which is interpreted to repre-
sent the largest events (i.e. reddest line), data assimilation results
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Figure 11. Earthquake forecasting potential quantified through an error diagram used for decision making. A perfect prediction would run from (0,1) to
(1,0) via the origin (0,0), while a random estimate would run straight (thin black line). Colours indicate different velocity thresholds characterizing minimum
magnitudes, where black is small (vχ Pleas> = 0 cm s−1) and red is large (vχ > = −0.07 cm s−1) and colours are interpolated linearly using RGB values.
The dotted lines represent results from a periodic recurrence model, whereas solid lines represent ensemble data assimilation results obtained when sounding
an alarm when 10 per cent of the ensemble members passes each velocity threshold. Results are obtained at a random marker in the centre of the seismogenic
zone, where resp. 36, 29, 21, 9, 6 and 4 events occur for the increasing velocity thresholds used.

approach the optimal path through the origin surprisingly well.
When sounding an alarm 2 per cent of the time, already half of them
(2/4) is forecasted correctly. For slightly lower thresholds 9 out of
9 events are forecasted within 18 per cent of the time. However, a
periodic recurrence model needs, respectively, 53 and 100 per cent
of the time to forecast these black swans. That performance is thus
similar to a random forecast. Data assimilation also significantly
outperforms the periodic recurrence model for 21 moderately large
events (dark red line). To predict 70 per cent of them correctly a
periodic recurrence model needs to sound an alarm for 68 per cent
of the time, while the data assimilation results only need to sound
an alarm for 17 per cent of the time. It is only when we also try to
forecast the smaller events (vχ > 0 cm s−1 for black line) that the per-
formance of the periodic recurrence model starts to approach that
of the data assimilation. The periodic recurrence model predicts
70 per cent of these 36 events correctly in 41 per cent of the time,
while the EnKF outperforms that as it needs only 35 per cent of the
time.

This single point quantification substantiates the general impres-
sion from Fig. 11 that data assimilation results go a long way towards
the optimal point of (0,0), whereas the periodic model remains close
to the random line for the large events. To appreciate this impact it
is good to realize that good earthquake forecasts for natural systems
typically only perform slightly better than random (e.g. Helmstet-
ter & Sornette 2003). However, we acknowledge that this evalua-
tion remains partially arbitrary and sensitive to threshold choices.
Nonetheless, it does show that this simplified system for which the
physical model is known is forecastable and even really well for its
large events.

4 D I S C U S S I O N

Our perfect model test shows that remarkable probabilistic esti-
mates of the evolving state of stress and dynamic strength can
be obtained by sequentially assimilating data. Synthetic, noised
data from a single borehole effectively correct the evolution and
forecast of a physical forward model represented by 150 ensemble
members. Previous, pioneering data assimilation studies for earth-
quake sequences already indicated that there might be potential of
data assimilation from a statistic point-source (Werner et al. 2011),
scenario-based (e.g. Hori et al. 2014c) and data scoring, physical
model perspective (van Aalsburg et al. 2007). Here we prove the
concept that EDA methods can indeed be used—as they are—for
forecasting of synthetic, analogue earthquakes. This demonstrates
a clear potential for usage in probabilistic seismic hazard assess-
ment (Section 4.2) and potentially for other solid earth directions
(Section 4.3). This remarkable performance, however, only holds
for this simplified, synthetic perfect model test, which has distinct
limitations for the data assimilation test, setup and forward model
(Section 4.1).

4.1 Limitations

The strongest assumption of any perfect model test is that the physics
is known perfectly. However, the physics governing earthquakes is
not known well and involves highly nonlinear processes (e.g. Run-
dle et al. 2000). We approach this by assuming basic descriptions
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based on (i) first physical principles in terms of Navier–Stokes equa-
tions, which are the relevant processes in all of geophysics, and (ii)
plasticity with strongly slip-rate-dependent friction, which are well
observed in laboratory experiments. Furthermore, we emphasize
that ignoring a representativeness error is a necessary first step in
any test of concept of any data assimilation application and adds
indispensable value for exploratory studies. When pursued further,
data assimilation can also guide the improvement of our physical un-
derstanding, as happened in applications for paleoclimatology. An-
other strong assumption in a perfect model test for state estimation
is that the parameters are known. In-situ parameters are, however,
not known, although we have small-scale approximations based on
abundant laboratory experiments (e.g. Di Toro et al. 2011). This
information along with an expert interpretation of natural settings
(e.g. Barbot et al. 2012) and their uncertainties can be included in
the prior of this Bayesian framework. EDA thus allows us to include
the best information available from all three sources (observations,
physical models and laboratory experiments) to provide a better,
probabilistic answer. However, the unavoidable presence of errors
in the forecast model, initial ensemble statistics and parameters are
expected to decrease the strong performance of the EnKF used in
this study. This decrease could be significant, as shown in certain
cases for forecasting of extreme atmospheric events (Zhang et al.
2006).

Another important simplification of this study is the simulation
of an analogue setup, which can be scaled up to a forearc in a
subduction zone. The viscoelastic properties of gelatin lead to a
relatively long coseismic period with respect to a short interseismic
period (Corbi et al. 2013; van Dinther et al. 2013b). This means
that coseismic outliers occur more frequently than in nature (Fig. 4),
which could improve the update through increased covariances be-
tween observed and unobserved variables. However, even without
these additional outliers, a physical relation exists between surface
horizontal velocity and fault shear stress (R2 ≈ 0.25). This results
from a gradual change of interseismic locking, which is also ob-
served in large-scale seismo-thermo-mechanical models (fig. 4a in
van Dinther et al. 2013a) and GPS observations (e.g. Mavrommatis
et al. 2014).

The forward modelling approach is appropriate for the analogue
setup simulated (van Dinther et al. 2013b). For applications to
natural seismicity, improved versions of this 2-D, low temporal
resolution approach should be used. There the limited temporal
resolution is tackled with adaptive time stepping and rate-and-state-
dependent friction (Herrendoerfer et al. 2018) and the 2-D setup is
extended to 3-D (Pranger et al. 2017). These future setups include
the most accepted physical description of earthquake sequences,
although these physical descriptions might need to be improved
upon as well. EDA could help with that through identifying and
evaluating physical descriptions, while in the mean time including
a stochastic error to introduce model variability. In terms of a rea-
sonable physical description, it is important that key observations
from earthquake sequences are reproduced. Applications of this
approach show agreement with observations in terms of on- and
off-megathrust seismicity characteristics (albeit rupture speeds van
Dinther et al. 2013a, 2014), Gutenberg-Richter statistics (Dal Zilio
et al. 2018), surface displacements (Dal Zilio et al. 2019; Preiswerk
et al. 2015) and long-term seismicity patterns (Herrendoerfer et al.
2015; Dal Zilio et al. 2019).

4.2 Future challenges and opportunities

These limitations show that these promising results are really only a
first step into the direction of fault stress estimation and earthquake
forecasting. An extension to natural faults and earthquakes remains
an open question and a challenging one for the future. The estima-
tion of state and parameters in a 3-D complex geometry requires
extensive computational power and observations. In addition, the
large number of states and parameters could become limited by
the curse of dimensionality (e.g. Bengtsson et al. 2008). The hope
would be that, with considerable efforts, the controlling variables
can be isolated and estimated in a meaningful manner, whereas the
null space primarily contains non-significant variables.

Fortunately, the rapidly evolving development of EDA in atmo-
spheric and ocean sciences provides opportunities for how to ap-
proach very high-dimensional and dynamic, nonlinear problems.
These applications typically deal with billions of variables, that is,
more than O(109) states (van Leeuwen et al. 2018) and O(102) pa-
rameters, without considering spatial and temporal variability (Ruiz
et al. 2013). Example improvements, include (i) covariance inflation
(to take errors of the forward model into account) and covariance
regularization and localization (to counteract spurious correlations
due to limited ensemble size) (e.g. Chapter 15 in Evensen 2009b),
(ii) nudging of various parts of the equations (Lakshmivarahan &
Lewis 2013) and (iii) optimization of model equations via proposal
densities (e.g. van Leeuwen 2009, 2016). Furthermore, parameter
estimation could be efficient via (i) appending them to the state vec-
tor (e.g. Jazwinski 1970; Evensen 2009a), (ii) using an Ensemble
Kalman Smoother to exploit all information available in time (e.g.
Evensen & Van Leeuwen 2000) or (iii) through using variational
data assimilation (cf. in Talagrand 1997) to in one batch account
for all temporal observations (e.g. Kano et al. 2015 for friction pa-
rameters). Finally, if either dynamics is too strongly nonlinear, the
brief disruption of dynamical balances is too severe, or assumptions
on Gaussianity of the data error/likelihood and model error/prior
are not valid enough, particle filters could be used for both state
(e.g. van Leeuwen 2009) and parameter estimation (e.g. Doucet &
Tadić 2003). To avoid their degeneracy for high-dimensional prob-
lems, various combinations between these two filter families have
recently been suggested (van Leeuwen 2009), such as the Merging
Particle Filter (Nakano et al. 2007), Equivalent-Weights Particle
filter (Van Leeuwen 2010) and the Ensemble Kalman Particle Filter
(Frei & Künsch 2013).

Additionally, significantly more spatial data than used in this
study is available. Here we used data from a single location to fa-
cilitate our understanding and demonstrate the information already
available from one point. This perfect model test indicates that rel-
atively little data are required to capture this solid system, which
varies much more smoothly and slowly through space and time
than chaotic meteorological and oceanographic fields that require
a lot of data. Besides the availability of more of the same or re-
lated data sources (Sections 1.2 and 2), additional constraints could
come from instrumental and historical earthquake catalogues (that
provide time, location, size and direction of displacement), various
paleoseismological records (e.g. Grant & Gould 2004), laboratory
experiments (e.g. Di Toro et al. 2011), high-rate GPS and interfero-
metric synthetic aperture radar (InSAR) (e.g. Ge et al. 2000; Simons
et al. 2002), creep-, strain- and tilt-meters (e.g. Wyatt et al. 1994),
gravity measurements (e.g. Mikhailov et al. 2004) and seafloor
displacements and pressure/temperature measurements from ocean
floor observatories (e.g. Kaneda et al. 2014). However, combining
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them in a meaningful manner—usually through separated assimi-
lation phases and by applying localization—is a challenge in itself.
In doing so it is important to know that our study shows that the
large data error is not necessarily limiting their use, as long as it
is accounted for properly. Moreover, our study indicated the value
of stress (or stress changes) being measured through time. While
stress monitoring is common in mining and other underground en-
gineering applications (Amadei & Stephansson 1997), applications
related to understanding and monitoring seismicity do typically not
monitor stresses through time. This is more expensive and chal-
lenging, but our results show that stresses near the surface—even
with their large error—can provide very useful indications about
the evolving fault stress state.

These opportunities for improvements should be explored in a
brick-by-brick approach, such that the application of EDA for rig-
orous physics-based earthquake forecasting can be tuned and eval-
uated rigorously. The choice of appropriate case studies will be
important and should focus on (i) simplified, controlled laboratory
or analogue setups (e.g. to evaluate the role of representativeness
errors), and (ii) controlled, natural scale setups, such as for in-
duced seismicity and (iii) natural settings with large amounts of
spatial and temporal data with respect to the characteristic event
recurrence time. In each of these directions perfect model tests
are needed to evaluate with what methodologies and observations
the truth can be best captured. Such synthetic studies also provide
an economically feasible test case to evaluate how much and what
types of data are needed and with what accuracy where and when are
needed.

4.3 Implications for solid Earth sciences

This simplified, proof of concept indicates the potential for a range
of dynamic applications within the solid Earth sciences, since ob-
servations and physical models are improving in these directions as
well. Examples where our physical knowledge can extend the data in
space and time, include crustal and lithosphere dynamics, geochem-
istry, petrology, geological reconstructions and engineering geology.
In the latter direction, data assimilation has recently been success-
fully applied to tunnel excavation (Nguyen & Nestorović 2016) and
parameter estimation for debris flow run-out (Brezzi et al. 2016).
These two studies—in combination with our test of concept for
estimating faulting—indicate the potential for both forecasting of
instabilities in mines, mountain glaciers and monitoring of nuclear
waste repositories. New applications can make a quick estimate
of whether data assimilation could bring merit by running a suite
of different models to check whether a meaningful correlation ex-
ists between observed state variables versus controlling unobserved
ones (as in Fig. 4). We hope that the understanding provided within
this paper guides solid earth scientists and sparks their interests into
data assimilation methods for estimation of fault state evolution and
beyond.

5 C O N C LU S I O N S

We demonstrated the remarkable probabilistic estimation and fore-
casting of the state of stress on an earthquake-prone fault in a perfect
model test. Synthetic, noised velocity and stress observations from
a single location were assimilated into 150 ensemble members of
a seismic cycle model using an EnKF. Within the specified limita-
tions of this perfect model test (i.e. physics is known perfectly) in
an analogue subduction setup, we showed that distinct value was

added by EDA with respect to using information from either the
physical model or data alone. To familiarize solid earth scientists
with the potential of data assimilation, well-developed in weather
forecasting, we provided extensive explanations on EDA and
EnKFs.

Shear stresses at a fault, and throughout the medium, were esti-
mated remarkably well based on observations at one point in space
and one interseismic time. The prior physical model knowledge
provides how the observation at the surface covaries with state vari-
ables throughout the model. The corresponding least-square fit is
stored in the sampled model error covariance matrix. This, along
with its spread and the measurement error, indicates how—and how
much—to update each unobserved state variable as a function of
each data misfit. Typically, when stress data indicated more com-
pression, compression was enlarged throughout most of the seismo-
genic zone. This update was complicated by a large measurement
error on stresses, which was on the order of the near-surface stress
drop. To account for this, a lower weight was attributed to these mea-
surements and uncertainty in the posterior estimate was increased.
When horizontal velocity data indicated larger landward veloci-
ties, this indicated that the true model is slightly more advanced in
the interseismic period and fault velocities and stresses should be
increased accordingly. Updates according to vertical velocity data
were negligible due to a large model spread and consequently large
model error.

Analysing the update of fault stress and strength shows that data
from each seismic cycle phase was able to add meaningful informa-
tion to directly update the state of stress. Interseismic data reverted
already reduced stress states to a state more compatible to latter
stages of the seismic cycle. Coseismic data initiated analogue earth-
quakes throughout the ensemble, such that stresses were reduced in
most ensemble members. Post-seismic data typically lowered fault
stresses to better synchronize stress levels.

Relevant updates during each phase of the seismic cycle en-
sured that the evolution of the true fault shear stress (largest stress
component) and horizontal velocity (largest strength component)
were captured remarkably well. Interseismic periods were typically
forecasted to be interseismic by the whole ensemble, while prior to
events different portions of the ensemble started to indicate an event
is about to come. At the same time, both interseismic build up rate
and static drop of shear stress—an indication for event magnitude—
are traced adequately, occasionally even with small uncertainty. Less
important variables, such as vertical fault velocity and normal stress
and pressure, are only estimated to a moderate degree. Ultimately,
the controlling strength excess was still estimated surprisingly well.

Quantification of the goodness of (interseismic) fit using the
L1 norm typically shows the expected increase of misfit during
the forecasting period and a decrease due to data assimilation. An
assimilation parameter sensitivity study showed that the current
large stress errors did not inhibit the use of stress observations.
Opposite to intuition, at least half of their current size was required
to introduce enough variability into the filtering results for them to
work well.

Since a fault’s stress and strength determine whether it slips, be-
ing able to estimate and forecast them, allows us to continuously
provide and update the probability of the occurrence of a synthetic
analogue earthquake. The EnKF was shown to significantly outper-
form a periodic recurrence model for this quasi-periodic time series.
For small events (i.e. low velocity threshold) an alarm needed to be
sounded for 35 per cent instead of 41 per cent of the time to pre-
dict 70 per cent of them correctly. However, for the forecasting of
70 per cent of the 21 larger events, it significantly outperformed
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the periodic benchmark by sounding an alarm only 17 per cent in-
stead of 68 per cent of the time. Or, even only 7 per cent instead of
72 per cent of the time for the largest, four events.

This educational test suggests that combining observations and
physics-based modelling through the statistical framework of EDA
has clear potential for earthquake forecasting. This potential, how-
ever, needs to be explored step-by-step, since several challenges for
the application to natural settings remain.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. Schematic diagram explaining the concept of EnKFs.
(a) Temporal evolution of a true (black), forecasted (green), anal-
ysed (blue) and observed (red) state variable with sequential data
assimilation at each Assimilation Step (AS). The goal is to bring
the forecast, propagated based on a physical model, in line with
the truth. The concept of the (b) propagation and (d) update steps
is illustrated for many ensemble members forming a PDF of the
(b) prior pf(x), (c) data likelihood p(y|x) and (d) analysis pa(x|y)
for an observed velocity vχ at the surface (at grey grid node 2)
and a hidden stress σχ , ψ at the fault (at grid node 21). In (d) note
that each ensemble member is moved by the coloured arrows to
form a posterior, which is the multiplication of the transparent prior
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and data likelihood. This possibly non-Gaussian posterior ideally
approximates the truth (black bar).

Please note: Oxford University Press are not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the paper.

A P P E N D I X A : W H AT I S T H E E R RO R ?

Since the true solution is known in this perfect model test, the good-
ness of fit between the best estimate of the ensemble, its analysed
mean Xa and the true solution x can be quantified. The resulting
local error φr , at each state variable p at a single assimilation time
step can thus be written as

φr = xa
r − xr

xchar,r
. (A1)

The error is normalized with the characteristic value xchar,r of each
data type (Table 1) to ensure that the most relevant values near the
characteristic one are weighted most, while allowing for compara-
bility from one nodal location to the next (although not between
state variable types). This error estimate mainly serves to provide
a quantitative means to compare different experiments and select
optimal parameters for the data assimilation scheme (Appendix B).
The related choice of a misfit function for the state vector through
time is a tricky one, which again depends on a choice on what to pe-
nalize. We chose to use the robust L1 norm (or least absolute error)
to avoid a large sensitivity to outliers. We divide it by the number
of occurrence in space or time to have a better understanding of its
magnitude. These measures thus purely quantify the goodness of fit
and focus on an interseismic fit, whereas they do not penalize event
timing or forecast-ability.

We calculate the L1 norm for the relevant parts of the state vector
s (excluding boundary conditions and their influence regions, as
shown in Figs 10 c–g) at each time as

‖φs‖1 =
S∑

s=1

|φs |/S. (A2)

The evolution of this error for each state variable type shows that it
typically increases during the forecasting period (Fig. 10a), where
these forecasts rely purely on the physical forward modelling. This
divergence of stress and pressure estimates due to variable event
timing provides the variability needed to make data assimilation
work. The temporal estimates for interseismic velocities behave
more erratically, since their error is influenced by the timing of
assimilation with respect to the stage in the seismic cycle. During
the analysis step, in which data is assimilated, errors are reduced.

Averaged over all assimilation time steps, we find that the time-
averaged L1 norm for velocities decreases and stabilizes quickly,
as the interseismic signal starts to dominate (Fig. 10b). The time-
averaged L1 norm of stresses nearly converges with time, although
the amount of divergence cannot be fully counteracted by assim-
ilating noised data. Interestingly, using this averaging scheme for
evaluating data errors in stresses shows that current stress mea-
surements with their large error are suitable for improving EDA
(Appendix B; Fig. B1c). In fact, reducing this error by more than a
half seems to remove the variability needed to make the assimilation
work well.

The spatial distribution of the local error after 800 s of simulation
shows that the error typically increases away from the observational

location and mainly with depth (Figs 10c–g). It is thus typically
largest near the fault, throughout whose seismogenic zone it also
increases with depth. The largest error is thus typically found near
the downdip limit. In that nucleation region, the occurrence of mi-
nor events not affecting the surface, introduces ambiguities, which
cannot be captured as well as other locations in the model can. This
distribution thus indicates a degree of sensitivity for the temporal
results shown throughout the paper. The central seismogenic zone
marker thus showed the evolution for intermediate errors (from
a fault perspective), whereas the figures in Appendix E illustrate a
good enough fit even for the most difficult, albeit most important re-
gion. That downdip fit is essential, since the nucleation of the large
events rupturing the whole seismogenic zone determine whether
stresses can be captured more updip and whether data assimilation
works for event timing.

A P P E N D I X B : H OW S E N S I T I V E A R E
T H E S E R E S U LT S T O DATA
A S S I M I L AT I O N PA R A M E T E R S ?

The near convergence of the error estimates with time observed
above ensures that we can compare error estimates from one ex-
periment to another to select the optimal parameters for the data
assimilation procedure (Fig. B1). Over the wide test range, the L1
norm can vary up to a few times or factor 5 (or 10 in case of
zero data error), which makes the difference between a scheme that
works well or does not quite work. In summary, increasing the num-
ber of ensemble members N, decreases the L1 norm as 1/

√
N for the

normal stress, as expected from Monte Carlo sampling (Fig. B1a).
However, this convergence rate is only half of that for the other state
variable types.

The duration of the forecasted interval without assimilation is
most sensitive to the error measure used (Figs B1b, e and f). The
error decreases distinctly with increasing number of forward time
steps per assimilation interval. However, this partially results from
a lower chance of measuring the error at a coseismic time, which
typically leads to larger errors. This increased weight for an inter-
seismic fit, and underweighting for event occurrence and timing,
inhibits one from capturing the stress evolution (Fig. B1f). Through
weighting in event forecasting, both visually and using Fig. 11, we
selected an intermediate interval before stress errors start to fluctu-
ate of 30 forward time steps (or about 15 data points per recurrence
interval). This efficiently prevents too much divergence of stresses,
but does not oversample to introduce unconstrained, partially ran-
dom updates.

Additionally, we analysed the role of the data error to understand
what would be possible if the error on data measurements reduced
in the future. Interestingly, data errors that are less than half of
what is currently feasible only increase the stress and pressure error
(Fig. B1c). Second, opposite to intuition, results for zero data error
are truly bad. This extreme divergence for very precise, sparse ob-
servations is also observed in other seismological (Hori et al. 2014c)
and meteorological studies (e.g. Houtekamer & Mitchell 1998; Ng
et al. 2011). The mechanisms leading to this filter divergence are
discussed, also for the case of small or even zero measurement er-
rors, if observations are sparse (e.g. Gottwald & Majda 2013). It is
related to errors in the estimation of the background covariance and
to dynamic properties of the forward model. To get some physical
intuition, one can also see it as there not being enough variability
in the system, as random noise can not be added to observations
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Figure B1. Sensitivity of data assimilation parameters through L1 norm in space and time (i.e., eq. (A2) averaged over time) shown for each state variable
type (colour). Role of (a) number of ensemble members, including a power-law fit, (b) size of constant interval at which to assimilate data (error calculated for
Xf at each five forward time steps for comparability) and (c) data error normalized with respect to current state-of-the-art error. Grey line shows parameters
for reference model from paper, while this sensitivity study was instead run with 20 ensemble members, whose temporal horizontal velocity and shear stress
results are shown in (d). Additional examples in (e–g) are intended to illustrate the meaning of our error formulation and relate to the coloured squares in (a–c).
For legend and explanation plots see Figs 8 and 9. Examples are shown for the random marker in the centre of the seismogenic zone only. Comparability of
results is ensured through using a fixed seed for the random number generator.

(Burgers et al. 1998). This small spread can be seen by the very nar-
row range of the ensemble estimates in the first part in Fig. B1(g).
In our case this impact is likely severe, since stress errors are rela-
tively large with respect to the background errors or system noise
(Whitaker & Hamill 2002). Overall, the large stress and pressure
errors are thus not limiting our data assimilation performance. In-
stead, when accounting for the large errors properly, they introduce
a required amount of variability. One thus does not need to wait
with using them, until the boreholes measures improve.

In summary, data assimilation parameter selection is relevant to
optimize performance, although feasible results can be obtained
over a broad enough range of parameters. These results over the
full durations of experiments show that most optimal results would
be obtained by assimilating data with half of their current state-
of-the-art error into 120 ensemble members every 35 forward time
steps.

A P P E N D I X C : K A L M A N F I LT E R

To derive the regular Kalman Filter equations (Kalman 1960), we
start from a discretized state and linear observation system in eqs
(1) (first half) and (3), where the errors are unknown. We treat these
errors as random variables and formulate the statistical hypothesis
that they are unbiased (i.e. εx = 0 and εy = 0) and unrelated (i.e.
εxεy = 0). Additionally, we assume that we know (i) the model
error covariance matrix C f

xx , which contains how each component
of the state vector covaries with each other component (C f

xx =
εxεT

x ), and (ii) the measurement error covariance matrix Cyy (=
εyεT

y ). Finally, for the regular KF equations, we assume a normal
Gaussian distribution for both the model and data errors. Therefore,

the unknown true state x has a prior density pf of εx around the
known forecast x f

p f (x) ∝ exp(−1

2
(x f − x)T (C f

xx )−1(x f − x)). (C1)

The term ‘prior density’ emphasizes that this density describes the
uncertainty about the state before the new measurements y become
available. The density of the new measurements y depends on the
unknown true state at each measurement location Mx as

p(y|x) ∝ exp(−1

2
(y − Mx)T (Cyy)−1(y − Mx)). (C2)

Inserting these two Gaussian distributions into Bayes’ theorem
(eq. 2) by multiplying them leads to a Gaussian analysis or posterior
density pa of the true state (Fig. 1d)

pa(x) = p(x|y) ∝ p(y|x)p f (x) = exp(−1

2
J [x]), (C3)

where

J [x] = (x f − x)T (C f
xx )−1(x f − x)

+ (y − Mx)T (Cyy)−1(y − Mx). (C4)

This misfit functional J weights both the distance to the forecast
x f and the distance to the observations y. To approximate the true
state x, we find the maximum likelihood estimate xa , located at the
mean of the Gaussian posterior density, by fitting it into an identity
formulation

J [x] = (x − xa)T (Ca
xx )−1(x − xa) + non-x terms. (C5)

Through calculating the gradient of eq. (C4), setting it equal to
zero and reordering of terms (Appendix D) one can prove that the
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maximum likelihood model is

xa = x f + C f
xx MT (MC f

xx MT + Cyy)−1(y − Mx f ) (C6)

with the analysed error covariance matrix

Ca
xx = C f

xx − KMC f
xx . (C7)

A P P E N D I X D : P RO O F F O R D E R I VAT I O N
O F K A L M A N F I LT E R E Q UAT I O N S

This appendix shows how to derive the Kalman Filter equations
(eqs C6–5) from the variational function in eq. (C4).

First we multiply out the terms in eq. (C4), and group them
into terms quadratic in x and linear in x, respectively, to (through
realizing covariance matrices are symmetric) obtain

J [x] = xT
(
(C f

xx )−1 + MT (Cyy)−1M)
)

x − 2xT
(

(C f
xx )−1x f + MT (Cyy)−1y

)
+ terms that do not contain x.

The gradient of J [x], with respect to the true state x, is

dJ
dx

= 2
(
(C f

xx )−1 + MT (Cyy)−1M)
)

x

−2
(

(C f
xx )−1x f + MT (Cyy)−1y

)
. (D1)

Through setting this gradient equal to zero, J is minimized at
the maximum likelihood estimate

xa = (
(C f

xx )−1 + MT (Cyy)−1M)
)−1

×
(

(C f
xx )−1x f + MT (Cyy)−1y

)
. (D2)

To rewrite this into the expression for the best estimate of the
mean state xa in eq. (C6) first add and subtract MT (Cyy)−1Mx f in
the second factor of eq. (D2)

xa = (
(C f

xx )−1 + MT (Cyy)−1M)
)−1

×
(

(C f
xx )−1x f + MT (Cyy)−1Mx f + MT (Cyy)−1y

− MT (Cyy)−1Mx f
)

and regroup terms to isolate the first factor of eq. (D2) in front of
x f to obtain

xa = (
(C f

xx )−1 + MT (Cyy)−1M)
)−1

×
((

(C f
xx )−1 + MT (Cyy)−1M

)
x f + MT (Cyy)−1(y − Mx f )

)
,

which is equal to

xa = x f + (
(C f

xx )−1 + MT (Cyy)−1M)
)−1

MT (Cyy)−1(y − Mx f ).

To arrive at the Kalman equation for the mean (eq. C6) the factor in
front of the innovation has to be shown to be equal to the Kalman
gain in eq. (5), that is,(

(C f
xx )−1 + MT (Cyy)−1M)

)−1
MT (Cyy)−1

= C f
xx MT (MC f

xx MT + Cyy)−1. (D3)

By multiplying both sides from the right by MC f
xx MT + Cyy and

realizing that the left-hand side can be rewritten through

MT (Cyy)−1(MC f
xx MT + Cyy) = (

MT (Cyy)−1M + (C f
xx )−1

)
C f

xx MT ,

both sides come down to C f
xx MT . This proves that equation (D3)

holds. While deriving the maximum likelihood estimate in equa-
tion (D2), we also obtained an estimate for the error covariance
matrix Ca

xx within the Gaussian posterior of eq. (C5)

J [x] = J [xa] + (x − xa)T
(
(C f

xx )−1 + MT (Cyy)−1M
)

×(x − xa). (D4)

The covariance matrix here thus has to be shown to be the same as
Ca

xx in the Kalman filter equation (eq. C7), that is,

C f
xx − KMC f

xx = (
(C f

xx )−1 + MT (Cyy)−1M
)−1

.

This is proven to hold by inserting the Kalman gain K in the form
of the left-hand side of eq. (D3) into the second part of the left-hand
side and rewriting it as

KMC f
xx = (

(C f
xx )−1 + MT (Cyy)−1M

)−1
MT (Cyy)−1MC f

xx

= (
(C f

xx )−1 + MT (Cyy)−1M
)−1

× (
MT (Cyy)−1M + (C f

xx )−1 − (C f
xx )−1

)
C f

xx

= (
(C f

xx )−1 + MT (Cyy)−1M
)−1

×[
(
MT (Cyy)−1M + (C f

xx )−1
)

C f
xx − I]

= C f
xx − (

(C f
xx )−1 + MT (Cyy)−1M

)−1
.

A P P E N D I X E : TA RG E T N E A R D OW N D I P
L I M I T

Assimilation results for a single targeted point at the fault were
shown for a random point located in the centre of the seismo-
genic zone (Figs 4, 5, 8 and 9). Varying the location of this point
along the seismogenic zone influences the visual goodness of fit
and interpretation of the results somewhat. Although Figs 3 and 6
show shear stress updates and covariances for all nodal points,
for completeness we also show results for a random point located
near the downdip limit of the seismogenic zone. Near to that point
most events nucleate, which makes this an important albeit sen-
sitive location. Minor events, which do not affect near-surface
data or stresses far from its location, occur relatively frequently,
thereby making it difficult to capture all events exactly. The true
solution illustrates this as the strength excess is often near zero
within the interseismic period ( Fig. E2f) indicating a near critically
stressed fault region. Fig. E2 shows that stresses and strengths are
still be captured fairly well. Surprisingly enough, they even seem
to capture some small events occasionally (Fig. E2). In terms of
contributions to the update, Fig. E1 shows that (at least for this
first assimilation step) horizontal velocity data is followed more,
as a larger correlation with that exists at this downdip position
(i.e. lower model error).
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Figure E1. Data assimilation updates of shear stress at a single point at the fault near the downdip limit of the seismogenic zone. Data complexity is step
by step increased from (a) one observation of the true horizontal velocity without data error, (a) one noised observation of the horizontal velocity, including
corresponding data error, (c) five observations of true velocities, stresses and pressure without data error, to (d) five noised observations with data error
(reference setting used throughout this paper). For further explanation see Fig. 4.

Figure E2. Temporal evolution of (a–e) all state types and (f) strength excess (S.E.) at a random fault marker near the downdip limit of the seismogenic
zone. The black lines indicate the truth, while the red lines represent the probabilistic estimate of the resulting ensemble through percentiles P. For further
explanations see Fig. 8.
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