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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

Decreasing ICT-costs propel connectivity and storage solutions for data generated, harvested and analyzed in machine tools. To acquire the 
necessary reliable, comprehensive and structured data for analytical applications, data from multiple sources must be acquired and combined. 
Many approaches for data acquisition either fail to cover all relevant data or cannot be put into action due to limited access on numerical controls. 
The following paper demonstrates the use of a multi-channel measurement application of a machine tool including its auxiliaries. The given 
approach was applied and verified on prototype machines. As a result, the application in current and future use-cases is discussed.  
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1. Introduction 

The total archived capacity of data worldwide has grown at 
a constant rate over the past years [23]. Table 1 shows the total 
worldwide archived capacity and its growth from 2010 to 2015 
in Petabytes (PB). This development also applies to the 
manufacturing sector [1,24], where the term Industrie 4.0 
characterizes the advent of connectivity solutions [32]. 

Data acquisition and analysis is used to improve the 
availability, performance and output quality of machines [31]. 
By the aid of data monitoring or statistical analysis, quality 
losses and component degradation can be identified on the 
machine [2,6,19]. In order to avoid the installation of machine- 
or application-specific sensors and measurement equipment, 
current approaches make use of the data provided by the 
machine tool’s Programmable Logic Controller (PLC). 
However, data extraction from the PLC holds two major 
inconveniences: (1) Data acquired and made available for 
extraction only accounts for the components directly controlled 
by the PLC, which excludes the machine’s auxiliaries, and (2) 
the extent and quality of data provided by PLC suppliers and 

machine tool manufacturers vary significantly and are therefore 
ambiguous [18].   

Table 1. Total Archived Capacity Worldwide from 2010 – 2015 [23] 

Year Total Archived Capacity Increase 

2010 33,217 PB - 

2011 51,991 PB +56,5% 

2012 79,151 PB +52,2% 

2013 123,156 PB +55,5% 

2014 197,223 PB +60,1% 

2015 302,995 PB +53,6% 

 
Not all forms of data are suitable for statistical analyses, 

given their unstructured nature or the missing relation of input 
and output. To generate the necessary reliable, comprehensive 
and structured data for analytical applications, data from 
multiple sources needs to be acquired and combined. Many 
approaches for data acquisition and analysis are either limited 
by ambiguous and restrained data access on machine PLCs, or 
cannot be applied to different machine types due to machine-
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specific sensors. The following paper demonstrates the use of 
a multi-channel measurement of a machine tool including its 
auxiliaries. It is motivated by two considerations: (1) 
Downtimes of machine auxiliaries cause productivity losses in 
manufacturing systems similar to downtimes caused by 
integrated machine components, and (2) monitoring systems 
need to be deployable in heterogenic machine parks comprising 
different machine tool and PLC types, in order to acquire the 
necessary data for monitoring and analysis applications. The 
proposed approach was applied and verified on prototype 
machines.  

2. State of the Art 

2.1. Data-driven Modeling and Analysis in Machine Tools 

The exploitation of data in manufacturing enables many 
applications along the value stream [1,8,24]. For machine tools, 
particularly the aspects product quality and process 
performance can be impacted by data driven optimization [31]. 
Blaser et al. [2] propose a system which allows to model the 
deviations of the Tool Center Point (TCP) and the table of a 5-
axis machine tool. As a consequence, a compensation 
algorithm is applied online after a reference measurement. The 
necessary data is generated by two temperature sensors, a touch 
probe and a direct communication interface to the machine 
PLC. Lenz et al. [21] suggest the combination of machine tool 
control, tool management and Enterprise Resource Planning 
(ERP) or Manufacturing Execution System (MES) data to 
obtain improved tool wear models. Haas et al. [13] introduced 
an iterative learning control for machine axes in order to reduce 
tracking errors in contour shaping. Overall, these approaches 
share the common underlying principle of data fusion from 
numerous sources in order to improve operational efficiency.  

2.2. Combination and Integration of different Data Sources 

The increasing relevance of data for statistical modeling 
(“learning”) purposes in manufacturing systems is especially 
emphasized by Cochran et al. [3]. They introduce 
considerations for future data use already in the design phase 
of manufacturing systems. The subsequent increases in 
volume, variety and velocity of data pose raises issues: Aside 
from privacy and legal concerns, the extraction of meaningful 
information from different heterogeneous sources, the varying 
data quality according to its sources, and finally the 
encompassing scalability of solutions remain important 
challenges [31].  

The integrated use of data and its combination from multiple 
sources not only applies to manufacturing systems, but also to 
multiple machines spread across different localities. Collecting 
and combining their data for modeling purposes is also referred 
to as fleet learning [18]. To overcome previously stated 
challenges, high-quality high-quantity structured data needs to 
be available. In the context of machine tools, Wang and 
Alexander [31] only count spreadsheets, relational databases 
and ERP or MES data to the forms of structured data. Semi-
structured data are XML files, data from standard machine 
components and sensors, as well as machining log time-series. 

Their form does not comply with relational databases, but they 
are characterized by tagging or marking allowing to be decoded 
into a more structured form. Machine PLC data can be either 
category: Categorical and structured data usually sent to MES 
systems, as well as semi-structured data in machining logs.  

2.3. Data-Use for Prognostics and Health of Machine Tools 

Particularly the importance of industrial big data analysis for 
Prognostics and Health Management (PHM) in manufacturing 
systems is described in several publications  [3,8,17–19, 
22,27]. For PHM approaches in machine tools, data 
requirements go beyond structured and semi-structured PLC 
data: Differences in data structure and data quality provided by 
different PLC hinder the transfer of lab cases to industrial 
applications, and PLC data does not cover all relevant aspects 
for most published approaches [2,13,14,21]. This notion is 
confirmed by Lee et al. [18], who identify a low utilization of 
available information due to the lack of adaptability of specific 
solutions. The lab trained models in general exhibit poor 
performance due to neglected external influences of industrial 
applications, such as varying load patterns and temperatures. 
As a result, it appears reasonable to combine live data from 
different machines under various conditions instead, to create 
self-aware re-training models. This includes a vision of a fleet 
of machines contributing data to train and improve models 
which in return serve all connected entities. Lee et al. [18] also 
state that the reason for this application still awaiting its 
realization is the low adaptability of learning algorithms for 
PHM purposes. They equally criticize the inherent loss of large 
amounts machine fleet data without making any use of it.  

Table 2. Types of freely available PLC machine data 

Structured data Examples 

Machine State Ready, Run, Manual Setup, Interruption by M0 
or M1, Finished, Error, Emergency Off, Missing 
Material 

Specific Errors Coolant, Tool Break, Scrap, Hydraulics, 
Pneumatics, Drives 

Parts Counter Good Part, Rework Needed, Scrap, Individual by 
M2-M89 

Cycle Counter Actual Time, Allocated Time 

Override State 0% or 100% 

Fabrication ID Fabrication Order ID, Part ID, NC Program ID 

Components Running Main Spindle, Counter Spindle, Tool Change 

Infeed Infeed Rate per Channel 

NC Run Type Auto, JOG, INC / INC rate (10/100/1000/10000) 

Machine State* Manual, Preparation, Maintenance, Technical 
Default, Waiting for Material, Waiting for NC 
Program, Waiting for Measurement, Waiting for 
Operator, Waiting for Tool, Waiting for Fixture 

*machine tool manufacturer specific (not commonly available) 
 

Most data usable for PHM approaches is not available in a 
structured manner, but needs to be extracted from logs and 
time-series, under the condition of an appropriate resolution 
and sampling rate. Table 2 provides an overview over the 
different data categories made available by a commonly used 
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Sinumerik 840D via synchronous communication. Other data, 
such as machining or event logs, are available by asynchronous 
protocols. The availability, accessibility and specification of 
these logs depend on the machine tool manufacturer and are not 
standardized. Likewise, the informational content for PHM 
applications is low. To make use of this data, it needs to be put 
into context or enriched by additional data. Additionally, it can 
be used in order to exploit the informational content of other 
semi-structured data, such as machining logs. 

Additional information, such as component energy 
consumption, axe positions and spindle speeds, are provided by 
some NC manufacturers. These interfaces are mostly of 
proprietary nature, of which some can be mapped to 
standardized protocols such as MT Connect or OPC UA, 
requiring proprietary machine tool manufacturer knowledge. 
However, neither the resolution, sampling rate, transfer rate, 
data type nor reliability are standardized, and therefore have to 
be tailored to specific needs and verified by additional 
measurement equipment. For instance, Fanuc controls deliver 
energy consumption rates in percentage [%] units, whereas 
Siemens controls display absolute values. The use of energy 
consumption values is, similarly to machining logs, highly 
ambiguous and subject to control dependent or manufacturer 
dependent standards. However, for modeling and monitoring 
product and process quality, a combination of both structured 
PLC data and semi-structured machining logs, to combine part 
IDs, machining logs and subsequent quality analyses, is 
needed. 

For general monitoring and specifically PHM applications, 
the currently available data generated and made available is not 
sufficient, as it (1) depends on both, the machine and the 
control manufacturer, whether data is available in the necessary 
extent, and (2) applications cannot be designed for different 
machine types due to differences in the form and quality of data 
provided, even if standardized protocols are used.  

An additional requirement is the data type and quality 
sufficiency for the desired application, regardless of the 
protocol or control type. Many approaches either rely on other 
data sources, or alternatively combine standardized protocols 
with additional data sources. Both approaches are suggested in 
many recent research publications (e.g. [20,26,28,30]). This 
observation implies that data provided by controls is neither 
sufficient nor does it allow for scalable application of PHM and 
other analysis solutions.  

2.4. Monitoring Approaches of Machine Tools and 
Components 

Monitoring approaches can be organized in the following 
four categories: (1) Proprietary applications based on 
standardized protocols, (2) proprietary applications based on 
proprietary protocols, (3) interoperable applications based on 
standardized protocols, and (4) interoperable applications 
based on proprietary protocols.  

An example for a proprietary monitoring approach based on 
a standardized protocol is the Remote Machine Monitoring 
System (RMMS) by machine tool manufacturer DMG Mori 
Seiki [25]. It is an MT Connect based application used to 

determine the machine’s operating status, detect and report 
machine failures, and make it accessible [4].  

The FANUC MT-LINKi is a monitoring solution based on 
the FANUC FOCAS communication interface. It therefore 
corresponds to proprietary applications based on proprietary 
protocols. It gives access to more detailed machine 
information, such as feed rates, spindle and servo loads, as well 
as component temperatures and overrides. Even if originally 
developed for the FOCAS protocol, FANUC has also opened 
its monitoring approach to third party machines via OPC UA 
interfaces [7].  

   Interoperable protocols based on standardized protocols 
mostly originate from within research groups and are therefore 
diverse. Shin et al. [28] propose to combine Step-NC data as a 
cause data set with MT Connect machining logs as a result data 
set. It is used to train a neural network to predict energy 
consumption for specific parts based on the Step-NC input. The 
model was applied to a single machine tool type only. Lei et al. 
[20] suggest to extend the MT Connect model in order to 
accommodate sophisticated on-machine quality measurements. 
This allows for an inclusion of both machining and quality data 
within the machining system, facilitating monitoring and 
cause-effect relationship measurements. In 2010, 
Vijayaraghavan & Dornfeld [30] demonstrated a laboratory 
application of an MT Connect based energy monitoring system, 
which can be used to identify patterns in energy consumption 
time-series. The detected patterns are manually allocated to 
events that occurred on the machine’s spindle, such as idle 
states, expected and anomalous spikes.  

The examples cited all demonstrate the necessity to harvest 
data in addition to the information provided by the standard 
interfaces for monitoring or PHM tasks. Moreover, they focus 
exclusively on integrated machine components. However, the 
communication between auxiliary and machine is generally 
realized via release signals provided by the PLC, only in rare 
cases they are directly controlled by the machine’s NC. This 
makes the extension of monitoring and PHM tasks even more 
cumbersome, given that an inclusion into current standard 
protocols needs to be integrated in the proprietary auxiliary 
control. This issue cannot necessarily be fixed by a mere 
standard extension, given that auxiliary controls often are 
rather simple logic controllers, which are not intended for 
complex control and communication tasks. Unexpected 
downtimes of auxiliaries can incur the same productivity losses 
as defaults on main machine components.  

2.5. Energy Consumption based Machine Monitoring 
Approaches 

Recent research has demonstrated different approaches, 
which are either specific in their application, the machine or the 
control type that they apply to. Altogether, the current 
standardization efforts do not cover all relevant parameters for 
a complete data scheme of all monitoring aspects and PHM 
functionalities across an entire machine including auxiliaries. 
The energy consumption measurement is a common starting 
ground, which can be observed across multiple approaches:    

Johansson et al. [14] proposed the “Green Condition Based 
Maintenance” principle in 2014. It collects operating and so-
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called fingerprinting data, which is a pattern of energy 
consumption patterns for specific operations or operational 
modes. Via Motor Current Signature Analysis (MCSA), 
currents for components are registered and analyzed via e.g. a 
Fourier analysis. A subsequent publication even stresses the 
possibility of calculating a Remaining Useful Lifetime (RUL) 
estimation [15]. To achieve the necessary resolution and 
sampling rate, additional sensors were installed on the drives 
of the components. The model was only examined for a test 
bench with a drive on a linear ball screw guide.  

Mourtzis et al. proposed a framework for an on-machine 
sensory system in 2016 [26], which includes data acquisition 
of spindle and axis motor currents and spindle RPMs. This data 
is combined with manual operator input data via a 
supplementary Human Machine Interface (HMI). It is 
described as a Condition-Based Preventive Maintenance 
(CBPM) approach, which is yet to be validated. The model 
comprises only main machine components of a five-axis 
milling machine, without auxiliaries.   

Emec et al. addressed the advantages of minimal-
invasiveness and therefore enhanced retrofit capabilities for 
monitoring applications in 2016 [5]. Their proposed concept 
foresees energy consumption measurements at the main power 
supply to match it with other event-based data. For standard 
products, energy measurements can be used to detect outliers 
in consumption patterns.  

Gontarz et al. have proposed a multi-channel energy 
consumption measurement and monitoring system [9–11]. The 
main focus lies in the assessment of component energy 
consumption behavior, the data acquisition is carried out via a 
multichannel measurement system. The system is not limited 
to power measurement, but can be extended by other 
synchronized sensors. The experience of more than 150 
machine tool analyzed with SIGMAtools LLC suggests an 
applicability of the system also to other domains, especially 
general monitoring and PHM applications. 

3. Concept of a Data Acquisition System (DAQ) 

For the introduction of monitoring and measurement 
applications, it is required to define the level of application. 
Gontarz et al. [12] suggest to distinguish between three 
hierarchical levels, according to Fig. 1. L1 defines the 
Enterprise Level, such as Procurement (P), Logistics (L) and 
Manufacturing (M). On the intermediary layer (L2), the 
manufacturing activity for instance is subdivided into different 

processes or workshops, e.g. cutting or grinding. On the lowest 
level (L3), each machine is described independently per 
process. The following approach is defined as bottom up and 
focuses on L3 to acquire all related date on the component 
level. This enables full flexibility for related upscale use cases.   

3.1. Required Elements for a DAQ  

As machine tools are complex, individually configured 
mechatronic systems, a data acquisition by a Multi-Channel 
system including peripherals is required. The DAQ needs to 
deliver a complete, synchronized, accurate data set of all 
relevant machine tool components in all possible machine tool 
modes of a high sampling rate, allowing to apply different 
analytic approaches, such as energy efficiency, process 
efficiency, component health, maintenance requirements and 
reconfiguration potential. In terms of acquisition schemes, all 
relevant components and auxiliaries need to be covered. 
Additionally, all data provided by NC and PLC, alternatively 
trigger signals from the PLC, can be accommodated.  

 
The multichannel measurement and monitoring system 

according to Gontarz et al. [10,11] measures the power 
consumption of each relevant component. Together with the 
power measurement, the DAQ system must cover the 
component control dependency based on all possible machine 
tool modes including all active machine tool components. The 
relevance for the consideration of components and modes is 
defined by ISO 14955 [29]. Fig. 2 shows the performed 
machine tool measurement for a test work piece and based on 
the test machine tool in standard configuration. The different 
sectors represent the power consumption of different relevant 
machine tool components, including all electrical components, 
compressed air and media flow from external sensors. The 
required output sampling rate strongly depends on the 
respective use-case: To detect component behavior for energy 
and process efficiency analyses, an output sampling rate in the 
region of 100 Hz is considered sufficient [11]. For PHM 
applications, output sampling rates of 102-104 Hz are required 
[5,15]. In order to fulfill the Shannon-Nyquist-Theorem, 
acquisition sampling rates therefore need to be in the higher 104 
Hz regions.  

For the connection with the next highest enterprise level (L2 
in Fig. 1), data transmission via structured files (XML, CSV), 
open communication standards (OPC UA), and a direct access 
for visualization, analytics inputs and configurations, 
interoperable with all devices (HTML5), are required.  

Fig. 1. Levels of Application for Measurements and Monitoring [12] Fig. 2. Measurement of Power during machine state PROCESSING [29] 
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3.2. General Component Behavior  

The considered machine tool components represent main 
components, e.g. spindles – controlled by the NC, as well as 
auxiliaries mostly controlled individually or via the PLC. The 
energetic behavior of machine tools components and 
subcomponents, e.g. drives , pumps or cooling  devices, can be 
classified in three different power consumption behavior 
modes [9,10]. These modes are: 

 
• Constant: Components are either on or off with a fixed 

power level within the measurement accuracy of +/- 5%. 
The classification is made according to Gontarz [10]. 

• Controlled constant: The energetic behaviour of 
Controlled constant components during operation mode 
can be separated into three phases. Those phases imply the 
start-up and switch-off peak. 

• Variable: Variable components, e.g. spindle or axis, are 
represented by a process-dependent and heterogeneous 
energetic behaviour.  

 
Other energy flows, such as compressed air, are classified 

according to the component characterization as shown above. 
All relevant components must be considered either by 
measurement or simulation.  

3.3. Monitoring system architecture 

Based on the component behavior classification, the 
information sources are selected accordingly. In general, a five-
axis machine tool requires 15 to 20 measurement points, 
representing essential machine tool components for a detailed 
measurement. Therefore, data acquisition can lead to a certain 
implementation effort. For cost saving reasons and adaption of 
the DAQ strategy, different information sources on the 
machine tool level can be defined, without compromising data 
accuracy.  

An overview of all data sources considered by the DAQ is 
provided in Fig. 2. It distinguishes between external sensors 
proprietary to the DAQ, internal accessible sensors of the 
machine tool, and virtualized sensors (‘Simulation’) used for 

particular use-cases. The components are aggregated by type of 
function in order to allow for facilitated analysis.    

3.3.1. Internal Sensors 
According to the requirements related to cost saving, 

accuracy, and reliability, all available and accessible internal 
sensors within the machine tool control are used in the 
proposed approach. For instance, the required power 
information is available from the drive controller as part of the 
drive control loop and internal reference system variable. This 
allows accessing component information on control-dependent 
machine tool components, e.g. spindles, axis, or generators.  

3.3.2. External Sensors 
External sensors are required for variable machine tool 

components, and where internal sensors are either not 
accessible, or fail to reach the required accuracy. External 
sensors are also needed for internal calibration and verification 
in combination with the PLC controlled simulation and internal 
sensors.  

3.3.3. Virtualized Sensors 
For constant or controlled-constant components, a virtual 

measurement channel, based on a PLC controlled I/O model 
can be defined, sparing the expenses of an additional sensor 
integration. For the highest accuracy, either a detailed 
component measurement or a physical model can be applied. 
The simulation needs to consider relevant component states, 
e.g. start-up phase, constant phase, and switch off phase. The 
input for these models are given by the PLC state.  

3.4. Use-Cases and Application Fields of the DAQ 

The application of this measurement approach leads to use-
cases, related to the evaluation and optimization of production 
processes and machine components. Based on the acquired use-
case, the analysis or the raw and aggregated data to be analyzed 
are transmitted to the respective systems or key operators.  

An example for a relevant use-case based on a simpler 
version of the monitoring system is demonstrated in [16]. It 
describes the DAQ used to monitor resource consumption on 
the shop floor and its integration into the manufacturing control 
environment. This approach shows that a key element based on 
the acquired data is the accurate quantification of the 
component behavior on the shop floor, machine tool level 
[8,15,17] and its components. The approach shows further that, 
based on the component behavior knowledge, different DAQ 
architecture optimizations for cost saving and implementation 
effort can be applied. The DAQ can be considered a crosslink 
between the machine component and the manufacturing control 
instances, such as the MES. 

An additional application which has currently been verified, 
is the determination of degradation status of consumables in a 
machine auxiliary. Based on a test cycle performed by the 
component, critical deviations can be measured via the DAQ in 
order to determine the condition of the consumables. 

Fig. 3. Data Acquisition Scheme, composed of Internal, External and 
Virtualized (Simulation) Sensors, p.158 of [9] 
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4. Conclusion and Outlook 

It is clear that without data, optimization or related use-cases 
are either not applicable or inaccurate. The rise of available 
data and applications to perform analyses in manufacturing 
drives the need for comprehensive monitoring solutions. In 
order to harvest the necessary data from multiple sources and 
various component types, a data acquisition system to cover all 
relevant aspects and components is necessary. The given 
approach describes a system encompassing data acquisition 
and analysis, in order to improve the availability, performance 
and output quality of machines. It makes use of data monitoring 
allowing for statistical analysis to detect efficiency losses and 
component degradation. The description focuses on the 
structural and application-dependent aspects of the DAQ. The 
DAQ architecture is fully described and matches a set of 
industrial requirements. It can be applied to diverse use cases, 
given that the data requirements are fully defined a priori.  

The possibilities for analytical applications range from 
pattern recognition over training of neural networks to 
frequency analyses. However, a clear procedure and definition 
of a use case must be given to define the required data. The 
proposed DAQ can is a key element to fulfil a defined and 
envisaged analytical application and related I4.0 use case. The 
full configuration of structural and analytical parts of the DAQ 
is always related to the final use case. Preliminary research and 
the first applications of the DAQ reveal that it fulfills the 
requirements, and that it can be used for various applications 
on machine tool components and auxiliaries.  
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