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Abstract

Standard schedules of occupancy are one of the backbones of building
energy simulations. Some schedules that are in use today were published
40 years ago and have not been modified ever since. In this work, we aim
at reviewing the representativeness of such standard schedules by compar-
ison to a large data set. We extracted popular times data for commercial
buildings, which has the same data structure as occupancy profiles, from
the Google maps platform for 13 representative US cities in different climate
zones. We use the mean absolute error and the earth mover’s distance as
measures of difference in profile scale and shape, respectively. Additionally,
we define energy impact metrics, such as the peak value and the time of
the peak, to quantify differences that potentially have significant impacts on
simulation results. We compared data of restaurant and retail buildings to
the respective standard schedules. We found significant differences between
standards and data, especially in energy impact metrics. Observed mean
peak values were 10 - 40% (occupant capacity) different in the city with the
overall best agreement to standards. Moreover, our results indicate that the
categorization into weekdays, Saturday and Sunday day types should be re-
considered. In a second step, we compared data among the different cities
and found relatively smaller differences, which might be rooted in climatic
or socioeconomic influences on peoples’ behavior. This leads us to believe
that location-specific data should be considered to more precisely capture
occupant behavior.
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1. Introduction

1.1. Building energy modeling and occupant presence
Engineering-based (physical) bottom-up building energy models [1, 2] are

commonly used to forecast the performance of new buildings or to assess the
impacts of various retrofit measures for existing buildings. One main weak-
ness of such models are the many assumptions made regarding the behavioral
aspects of energy consumption, e.g., the hours of occupancy and building sys-
tems usage [1]. In fact, energy-related occupant behavior is one of the main
factors affecting building energy consumption and a major source of uncer-
tainty in simulations [3, 4]. Standardized schedules, also called profiles or
diversity factors, are 24-hour time series of fractions of nominal space occu-
pancy, lighting loads, appliance loads or building systems operation. Stan-
dardized schedules are used when the actual behavior is unknown. This can
lead to problems regarding the appropriateness of simulation results since
many users are not aware of the origins of these schedules and their intended
purpose.

1.2. The origins of standard schedules for the American context
The development of standard occupancy schedules was historically closely

linked to the emergence of computers and the first building energy simulation
programs. While the first of such tools (HCC in 1965) was used to calculate
peak loads for the summer and winter design days [5], soon after tools were
developed to calculate the annual energy demand in hourly time steps. They
were NBSLD, the predecessor of BLAST, and the Post office program, the
predecessor of DOE-2 [5, 6]. NBSLD required the input of an occupancy
schedule, which was defined as normalized 24-hour profile. The developers of
these tools were at the same time part of the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) Task Group on
Energy Requirements (TGER), which in 1969 published the special bulletin
"Procedure for Determining Heating and Cooling Loads for Computerized
Energy Calculations; Algorithms for Building Heat Transfer Sub-routines"
[5, 6, 7]. These publications would become the foundation of DOE-2 and
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BLAST, which later were combined into the state-of-the-art energy modeling
tool EnergyPlus [7].

In 1975 ASHRAE/IES published the first version of the influential Stan-
dard 90: Energy Standard for Buildings Except Low-Rise Residential Build-
ings, which introduced annual energy analysis as a means of comparison of
alternative building designs to standard designs. It mandated the calculation
procedure to explicitly cover the number of people during occupied and non-
occupied periods as part of the internal heat generation. Also, the calculation
procedure had to be consistent with the algorithms proposed by ASHRAE
[8]. However, typical values for occupancy and other schedules were not part
of the standard until its 1989 version.

1.2.1. Standard schedules prior to ASHRAE-90.1-1989
In 1979 the US Department of Energy (DOE) published Standard Build-

ing Operating Conditions (SBOC) to assist with rulemaking of energy per-
formance standards for new buildings [9]. The SOBC included set point
temperatures, occupant densities, and profiles for lighting, occupancy, HVAC
systems, domestic hot water usage, vertical transportation systems, and ex-
haust fans. The SBOC were intended to be used to estimate the design
energy requirements for new buildings. 14 building types were defined, and
look-up tables provided occupancy, lighting and system schedules on a zone
level, see table 1. For most building use types, except for the hospital, a
predominant profile for the whole building was defined.

The SBOC were based on studies by the American Institute of Architects
Research Corporation (AIA/RC), studying a sample of randomly selected
commercial buildings. In Phase 2 of the research, 168 building designs were
studied. Each original design team supplied detailed data describing the
energy-related physical and operational characteristics of their designs for
the purpose of energy requirement simulation [10]. The published schedules
were the averages of the data provided by the designers [9]. Some of those
schedules would later find their way into ASHRAE 90.1-1989.

1.2.2. Standard schedules of ASHRAE 90.1
ASHRAE first introduced standardized occupancy schedules for the Build-

ing Energy Cost Budget (ECB) Method of ASHRAE 90.1-1989. The ECB
describes the Prototype Building Procedure and lists standardized occupancy
schedules to be used for the 9 prototype buildings, see Tab. 1.
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Table 1: Standard schedules of occupancy for building performance simulation of different
building use type categories published from 1979 until present.

Use Type
Category

DOE
(1979)

ASHRAE
(1989)

ASHRAE
(2004)

DOE/NREL
(2011)

ASHRAE
(2013)

COMNET v3

Retail Shopping CenterZ,
StoreZ

Retail Retail Retail,
Strip Mall,
Supermarket

Schedule CC Retail

Restaurant - Restaurant Restaurant Quick Service
Restaurant,
Full Service
Restaurant

Schedule BB Restaurant

Health ClinicZ,
HospitalZ,
Nursing HomeZ

Health Health HospitalZ
Outpatient
Health Care

Schedule EE Health

Assembly Community
CenterZ,
GymnasiumZ,
Theater/AuditoriumZ

Assembly Assembly - Schedule HH Assembly

Office Office, LargeZ,
Office, SmallZ

Office Office Large Office,
Medium Office,
Small Office

Schedule AA Office

Warehouse Warehouse Warehouse Warehouse Warehouse Schedule LL Warehouse

Hotel Hotel/MotelZ Hotel/Motel Hotel/Motel Large HotelZ,
Small HotelZ,

Schedule FF Hotel/Motel

School School,
ElementaryZ

School, SecondaryZ

School School Primary
SchoolZ,
Secondary
SchoolZ,

Schedule GG School

Multi-family Multifamily High-
Rise ResidentialZ,
Multifamily Low-
Rise ResidentialZ

Midrise
ApartmentZ

Schedule DD Residential

Manufacturing - Light Manu-
facturing

Schedule JJ Manufacturing

Gymnasium Schedule II GymnasiumI

Parking Schedule KK ParkingK

Laboratory Laboratory

Data Center Data Center

Z Building model contains schedules for zone-level usages
A for Courthouse, Office, Post Office, Town Hall
B for Dining: Cafeteria/Fast Food, Dining: Family, Dining: Bar Lounge/Leisure
C for Library, Museum, Retail
D for Dormitory, Multi-family
E for Fire Station, Health Care Clinic, Hospital, Police Station, Transportation
F for Hotel, Motel, Penitentiary
G for School, University
H for Convention Centre, Exercise Centre, Motion Picture Theatre, Performing Arts Theatre, Religious Building,
Sports Arena
I for Gymnasium as part of a School
J for Automotive Facility, Manufacturing Facility, Workshop
K for Parking/Parking Garage
L for Warehouse
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The ECBMethod provides a simulation-based approach to demonstrating
code compliance. The simulated annual energy cost of the proposed building
design cannot exceed the benchmark simulation to be code compliant. For
both simulations, identical occupancy schedules have to be used [11].

In 2004 standard schedules re-appeared in the Standard 90.1 User’s Man-
ual. In the 2004 version of ASHRAE 90.1, the Performance Rating Method
(PRM) was introduced. It is a method to quantify a proposed building de-
sign’s improved performance relative to a baseline. An hourly simulation tool
must be used to calculate the annual energy operating costs. The occupancy
schedules have to be identical for both simulations and should represent typ-
ical conditions. Where actual schedules are not known, the user’s manual
to the standard gives schedules based on ASHRAE 90.1-1989 as examples of
typical input data [12, 11]. According to [13] these schedules published in the
original version of 90.1-1989 were modified by Addendum L in 1994 by a pub-
lic review process. However, by comparing occupancy schedules from 1989
to 2004, it becomes evident that only the schedules for Office and the Sun-
day of Assembly and Restaurant were adjusted. Additionally, in 2004 a new
use category Light Manufacturing was introduced with occupancy schedules
identical to the Office use.

In the meantime, the DOE published reference building energy models
containing occupancy schedules.

1.2.3. Schedules of DOE commercial reference buildings
In 2011 reference building energy models were developed by the DOE to

standardize energy efficiency research. These models were meant to repre-
sent reasonably realistic building characteristics and construction practices.
Fifteen commercial building types and one multifamily residential building
were determined by consensus between DOE, the National Renewable Energy
Laboratory (NREL), Pacific Northwest National Laboratory, and Lawrence
Berkeley National Laboratory, and represented approximately two-thirds of
the commercial building stock [13].

The occupancy schedules for these models were directly taken from the
ASHRAE User’s Manual for 90.1-2004 for Retail, Restaurant and Office
buildings. The Health, Hotel, School and Warehouse schedules were taken
from Advanced Energy Design Guide (AEDG) Technical support documents
[14, 15, 16, 17] developed by ASHRAE in collaboration with other institu-
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tions1. These occupancy schedules were in turn again based on ASHRAE
standards, modified by inputs of the respective project committee members
[14, 16, 18]. For the residential building, the source is another technical re-
port about building energy modeling [19]. However, that document does not
mention any occupancy schedules.

Different from the building-level schedules of ASHRAE, some schedules
were defined on the zone-level: The Hospital, School, and Apartment building
models specified schedules on the zone level. Additionally, sub-categories of
buildings for Retail, Restaurant, and Health were introduced, see Tab. 1.

1.2.4. Contemporary sources of standard occupancy schedules
For the 2013 edition of the ASHRAE 90.1 standard the calculation pro-

cedure of the Envelope Performance Factor in section 5.6 Building Envelope
Trade-Off Option was changed from previously empirical equations to hourly
simulation with a computer program [20, 21]. The envelope trade-off option
allows designers to improve certain building envelope components to make
up for other components that do not meet the standard’s requirements, thus
allowing for higher flexibility in envelope design [11]. The method consists
of rules for building energy simulations to compare baseline envelope per-
formance to the proposed envelope performance. For these simulations 14
standard schedules and loads according to Building Area Type are provided
in an online document on the ASHRAE website [22]. These schedules are
largely the same as in 2004. However, some important modifications can be
noted: E.g., Health was converted from day time operation to 24-h occu-
pancy, and Restaurant increased the occupancy in the AM hours, see Fig. 1
(right). Many schedules, however, remained exactly the same since 1979. For
instance the Retail, of which the historic non-evolution is depicted in Fig. 1
(left).

Nowadays, standard schedules are also available from other sources. COM-
NET is an initiative to standardize building energy modeling [23], on the
COMNET web portal2 a set of 14 default schedules of building operation is
available. Most schedules reference ASHRAE and are identical to the 2013
schedules for the Building Envelope Trade-Off. However, some additional

1The AEDG are developed by ASHRAE in collaboration with AIA (American Institute
of Architects), IESNA (Illuminating Engineering Society of North America), USGBC (U.S.
Green Building Council) and the DOE (Department of Energy).

2www.comnet.org
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schedules were created by COMNET (Laboratory and Data Center).

Figure 1: The historic evolution of the retail (left) and restaurant (right) standard oc-
cupancy schedule for weekdays from 1979 to present. The retail schedule is quantised in
steps of 10%. The restaurant schedule is quantised in steps of 5%. The data is slightly
shifted for visualization purposes.

1.3. Recent developments in advanced building occupancy modeling and sim-
ulation

Research efforts for improving energy-related occupant behavior model-
ing and simulations are consolidated in IEA EBC Annex 66: "Definition and
simulation of occupant behavior in buildings" [24] and the currently ongoing
follow-up Annex 79 "Occupant-centric building design and operation" [25].
Reviews in 2015 and 2016 [26, 27] confirmed that there were not many models
and tools available for advanced occupancy simulation. The tools that did ex-
ist were developed for office and residential use type buildings exclusively. As
part of [26], a software module was developed to include three representative
occupancy models. Namely, Chang’s model [28] to simulate the occupancy
state of a space, Page’s model [29] to simulate the number of occupants in a
space, and Wang’s model [30] to generate the spatial location of each occu-
pant and the space-level occupancy for the whole building. As part of IEA
EBC Annex 66 and Annex 79 data-based models and agent-based models
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for building occupancy have been developed [31, 32, 33, 34, 35, 36, 37]. E.g.,
In [32] data-mining methods were used to derive office occupancy schedules
from appliance power consumption measurements. In [33] data-mining meth-
ods were used to derive archetypal working profiles of individual occupants
from measured occupancy data of 16 private offices with single or dual oc-
cupancy. In [36] machine learning techniques were used for daily occupancy
patterns recognition for improving the energy efficiency of an office building.
An agent-based model for office buildings has been developed by [37]. It is
depending on expert user inputs, such as, e.g., the typical arrival times of
each occupant, the number of planned meetings per day, and the probabil-
ity distribution of meeting durations. The explicit goal of Annex 79 is the
development of the next generation of "dynamic, stochastic, agent-based,
and data-driven" [25] occupant models. The current common practice is,
however, still the use of standard assumptions [25].

1.4. The use of standard schedules for building and urban energy systems
simulation

Table 2 summarizes the purpose of standard schedules of occupancy pub-
lished over the years.

Table 2: Purposes of published standard schedules

Publisher Purpose

DOE
(1979)

Development of Building Energy Performance
Standards (BEPS) legislation

ASHRAE
(1989)

Building Energy Cost Budget (ECB)
Method: Code compliance via simulation

ASHRAE
(2004)

Building Performance Rating Method: Es-
timation of % energy savings of advanced
building designs

DOE/NREL
(2011)

DOE commercial building research: technol-
ogy assessment, design optimization, analyze
advanced controls, develop energy codes and
standards, and to conduct lighting, day-
lighting, ventilation, and indoor air quality
studies

ASHRAE
(2013)

Envelope trade-off: Envelope code compli-
ance via simulation

On the building scale standard schedules are widely used for code compli-
ance, systems design and research purposes as intended by their publishers
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[13, 38, 25].
However, in our review about occupant behavior in urban building energy

models [39] we found that standard schedules of occupant presence are widely
used beyond their original purpose. We found tools and studies that used
standard schedules, among others, to:

• Generate patterns of anthropogenic heat generation,

• Generate energy demand patterns for district energy infrastructure de-
sign, and

• Generate energy demand patterns for district energy systems operation
optimization.

Besides being potentially outdated and being used out of the scope of the
original purpose, those standard schedules might also be used beyond their
original context of North America. For instance, in Singapore ASHRAE
schedules are used in research as well as in industry practice. Research ex-
ample include a baseline energy model for institutional building in Singapore
that used OpenStudio default schedules [40], a DOE-2 commercial building
model to evaluate effects of green roofs [41], and DOE-2 office building mod-
els [42]. In industry practice, ASHRAE schedules are used to obtain Green
Mark3 certification of new buildings.
We believe that it is time to revisit these standards of commercial buildings
by exploring new data sources - especially in the context of emerging sensing
and data collection opportunities.

1.5. New data sources for occupancy
Nowadays, new data sources of building occupancy are becoming avail-

able. Cell phone positioning systems use different signals, such as radio sig-
nals of cell towers, GPS signals, and Wi-Fi signals to determine the accurate
location of the phone [44]. Indoor positioning algorithms, using additional
data of sensors embedded in smartphones, such as accelerometers and mag-
netometers, can determine the position of a cell phone inside a building [45].

Coupled with information about the exact location and floor plans of
buildings, data collectors, such as Google (see Fig. 2, left) or Facebook (see

3Green Mark is Singapore’s building energy efficiency and sustainability certification
scheme, introduced in 2005 [43].
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Fig. 2, right) are confident to determine the relative number of people visiting
a specific building or space within a building in real time. On their respective
online platforms, hourly aggregated and normalized data is published as so-
called popular times data (Google) or popular hours data (Facebook).

The resulting data has the same structure as the standard schedules pub-
lished by ASHRAE and others for building energy demand simulation. I.e.,
typical 24-h profiles for each day of the week. In [46] already directly ex-
tracted such data for simulation of a supermarket in the UK, due to lacking
standard schedule for a 24-h operating retail building [46]. In Japan, re-
searchers used Google popular times data to estimate quasi-real-time energy
demand in a commercial district in Tokyo. They used a geospatial statistical
interpolation, to infer the popularity/energy demand of commercial build-
ings without available data [47]. In China, researchers collaborated with a
large Chinese social media company to collect occupancy data for different
building use types from mobile positioning requests. They extracted typical
schedules and used them in EnergyPlus building simulations and calibrations
[48, 49].

Even though currently data about non-public buildings, such as offices
and residential buildings are not published anywhere, we speculate that this
data might be collected in the same way as for public buildings and possibly
will be available at some point in time.

Figure 2: Example of a google maps / google places page of a public place in Boston (left).
The popular times feature displays normalized hourly visitorship for each day of the week.
Example of a facebook page of a public place in Singapore (right). The popular hours
feature displays normalized hourly visitorship for each day of the week. Screenshots taken
on 26/11/2018.
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1.6. Research questions
Given that, on the one hand, standard occupancy schedules are based on

estimations from many decades ago, and, on the other hand, new data sources
that track peoples’ location are becoming increasingly available, we pose the
following research questions: (1) Are standard schedules of ASHRAE (still)
representative of real-world observations? And (2) should these schedules be
used in multiple climatic and socioeconomic contexts?

For this publication, we focus on retail and restaurant as commercial
building use-types with relatively high availability of data and at the same
time high HVAC and electricity consumption.

We are using popular times data published for places, i.e., commercial
buildings or zones of commercial buildings, available on the Google maps
platform [50].

Regarding the data collection, we are focusing on Downtown areas of
large cities. They typically contain a high density of commercial buildings,
and they presumably experience relatively similar characteristics of working,
shopping and leisure activities around the world.

In the following sections, we introduce the metrics selected to compare
occupancy schedules as well as the method of data collection and data pro-
cessing.

2. Methods

2.1. Data extraction and processing
This section describes the data extraction from the Google maps platform

and data processing prior to the analysis and comparison.
A two-step data scraping process was implemented to extract as much

data as possible while at the same time limiting the number of queries to
the Google places application programming interface (API). The parame-
ters are based on experience and trial and error experiments. The nearby
search query requires a geolocation, a search radius, and a type. The place
types that are supported by the search query are listed in [51]. During var-
ious experiments with different search radii and supported place types as
well as wildcard searches we realized that it is possible to extract up to
100% of all places of the restaurant category by searching for "restaurant",
"bar", "cafe" and "night_club". For the retail use category, the same can be
achieved by searching for: "store", "shopping_mall", "museum", "library"
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and "art_gallery" (see also Tab 4). For each of the 9 types, a search with 500
m radius was executed in the specified area. In locations where the number
of results might have exceeded the maximum number of results that the API
can return, a second search with a radius of 200 m was executed. We are
confident that this process resulted in the vast majority of places available in
every search area. The API nearby search and the web scraping extraction
of the popular times data is automated with an open source algorithm [52].

The data extracted of each place includes the place id, the name, the ad-
dress, the list of types, the location coordinates and, if available, the popular
times 24h time series for each day of the week.

NREL defined 16 representative cities of the US climate zones for the
commercial reference building models in [13]. The 13 largest ones are Miami,
Houston, Phoenix, Atlanta, Los Angeles, Las Vegas, San Francisco, Balti-
more, Albuquerque, Seattle, Chicago, Denver, and Minneapolis. The three
remaining cities in cold climates (Helena, Duluth, and Fairbanks) were not
considered due to their small size. We collected data from the Downtown
areas of the 13 large cities. We selected an area of 4 km x 4 km around a
central location extracted from a geographical feature representing the busi-
ness district/financial district/downtown area on Google maps. Table 3 lists
the edges of search areas of each city, as well as the name of the Google maps
data point, that the area is based on.

2.1.1. Aggregation of data sets
We used a simple categorization logic based on the frequency of types

belonging to a certain category (see Tab. 4) to assign places to the respective
ASHRAE categories. In case of equal frequencies, the order of types in the
list was used as a secondary decision variable of the assignment.

For consistency with the standard schedules, weekday values are grouped
together for analysis, while Saturdays and Sundays are considered separately.

Data of days where places are closed or no occupancy is reported due to
lack of data (e.g., "Not enough data yet for Tuesdays") are excluded from
the analysis.

2.1.2. Mean vs. Median
When comparing a data set of schedules, it is not entirely clear whether

the representative behavior of a standard schedule is supposed to represent
the mean of observations or rather the median. It seems that originally
estimated profiles were averaged to create schedules [9]. However, when
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Table 3: Area selection for the extraction of popular times data of places from Google
maps. All data were extracted on 12 March 2019. The cities are ordered according to
climate zone. The climate zones are depicted in [13]. They range from 1 (very hot), 2
(hot), 3 (warm), 4 (mixed), 5 (cool), to 6 (cold), with subdivisions into A (moist), B (dry)
and C (marine) zones. Zones 7 (very cold) and 8 (subarctic) are not considered here.

abbre-
viation

climate zone google place name for
center coordinates

southwest edge of
search area (lat,lng)

northeast edge of
search area (lat,lng)

MIA 1A Downtown Miami,
Miami, FL, USA

(25.753196845299694,-
80.21180781414786)

(25.789302978551977,-
80.17193175274947)

HOU 2A Central Business
District, Houston, TX,
USA

(29.734721581744154,-
95.38584147212512)

(29.7708069376959,-
95.34448692156576)

PHX 2B Downtown Phoenix,
Phoenix, AZ, USA

(33.43368327947898,-
112.09597121702917)

(33.46974773608694,-
112.05294847908701)

ATL 3A Downtown, Atlanta,
GA, USA

(33.737677745380665,-
84.40995416990314)

(33.77374042699837,-
84.36678019162068)

LA 3B-CA Financial District, Los
Angeles, CA, USA

(34.03249578872265,-
118.27870463612754)

(34.06855674149175,-
118.23538179301042)

LV 3B-other Downtown, Las Vegas,
NV, USA

(36.14903303808023,-
115.15777826853218)

(36.18508138081113,-
115.11332055263757)

SF 3C Financial District, San
Francisco, CA, USA

(37.77655276451901,-
122.42264641504573)

(37.81259120376751,-
122.37723155471627)

BAL 4A Downtown, Baltimore,
MD, USA

(39.273990064695866,-
76.63989850267983)

(39.31001926338947,-
76.59353201649512)

ABQ 4B Downtown, Albu-
querque, NM, USA

(35.073641593764485,-
106.67758580779306)

(35.109696385250906,-
106.63371953857586)

SEA 4C Downtown, Seattle,
WA, USA

(47.58703266879561,-
122.36095993903159)

(47.623009507421145,-
122.30776362329615)

CHI 5A Chicago Loop,
Chicago, IL, USA

(41.86062603316649,-
87.6491421998699)

(41.89663905537564,-
87.60095407272682)

DEN 5B Central Business
District, Denver, CO,
USA

(39.72677793461622,-
105.0177095785645)

(39.762804318876405,-
104.97104106946128)

MIN 6A Downtown West,
Minneapolis, MN,
USA

(44.95621052401934,-
93.29867483554544)

(44.99220399028241,-
93.247966304615)
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Table 4: Categorization of google places to ASHRAE use categories.

ASHRAE category google types

RETAIL
Used for:
Library
Museum
Retail

art_gallerys,
bakery,
bicycle_store,
book_store,
car_dealer,
clothing_store,
convenience_store,
department_store,

electronics_store,
florist,
furniture_store,
hardware_store,
home_goods_store,
jewelry_store,
librarys,
liquor_store,

museums,
pet_store,
pharmacy,
shoe_store,
shopping_mall,
stores,
supermarkets

RESTAURANT
Used for:
Dining: Cafeteria/Fast Food
Dining: Family
Dining: Bar Lounge/Leisure

bars,
cafes,
restaurants,
night_clubs,
meal_takeaway

s Types used in search for data collection.

ASHRAE tasked researchers in the 1093-RP project to compile diversity
factors and schedules of lighting and receptacle loads in office buildings for
energy and cooling load calculations, they advocated in favor of the median
of measurements. In their work, the median was used to create DOE-2,
BLAST, and EnergyPlus input files. The median was chosen over the mean
because its value is not affected by outliers [53].

In this work, we are using the mean and the median for comparison of
collected data to standard schedules. We run all analyses for the mean as
well as for the median. However, we only present selected results in detail.

2.2. Metrics for quantitative comparison of schedules
When comparing any two 24-hour schedules, we are particularly inter-

ested in two general features: The overall scale of occupancy and the overall
shape of the profile during the day. Therefore we select the mean absolute
error (MAE) as a metric to quantify the difference in scale and the earth
mover’s distance (EMD) as a metric to quantify the difference in shape of
schedules. Both metrics are introduced below.

2.2.1. Mean Absolute Error
We choose the mean absolute error (MAE) as the metric to quantify

the general agreement of scale of any two given schedules. Intuitively the
MAE can be understood as the average overestimation or underestimation
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of occupancy in any given hour in units of absolute % points, i.e., in % of full
capacity. In our application, the minimum possible MAE is 0%, representing
no difference between two schedules. The maximum possible MAE is 100%,
representing a 100% difference for every hour of the day, i.e., the difference
between a fully occupied building and a non-occupied building. We calculate
the MAE between two 24-hour schedule time series a = [a1, a2, . . . , a24] and
b = [b1, b2, . . . b24] as follows:

MAE(a, b) =

∑24
h=1 |ah − bh|

24
(1)

2.2.2. Earth Mover’s Distance
We use the concept of the Earth Mover’s Distance (EMD), developed for

comparing color histograms for image retrieval in computer science [54], to
quantify the similarity of shapes of schedules. The same concept applied
in mathematics to probability distributions is known as the 1st Wasserstein
distance or Mallows distance [55]. The EMD is formulated as a transporta-
tion problem and solved with linear optimization. See e.g., [54] for the formal
definition of the EMD and e.g., [55, 56] for the formal definition of the Wasser-
stein distance. For our simple case, we can make us of the definition in Eq.
2 that gives the 1st Wasserstein distance between the distributions u and v
as difference between the two respective cumulative distribution functions U
and V .

l1(u, v) =

∫ +∞

−∞
|U − V | (2)

To intuitively understand the EMD, one schedule is pictured as a mass
of earth spread in space, while the other is pictured as a collection of holes
in that same space. The EMD measures the least amount of work needed to
fill the holes with earth, where one unit of work is quantified by transporting
one unit of earth by one unit of distance. This definition is only valid if the
two schedules have the same integral [54], i.e., the two schedules have to be
normalized. For the normalized schedules â and b̂ we can calculate the EMD
from the difference between the two cumulative sum time series Ĉa and Ĉb,
see Eq. 3.
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EMD(â, b̂) =
∑
|Ĉa− Ĉb| where Ĉak =

k∑
i=1

âi, for k = 1, 2, . . . , 24 (3)

Because the value of EMD depends on the selection of start and end
time of schedules and the convention of 0h - 24h is somewhat arbitrary, we
use circular shifts, where elements that shift beyond the last position are re-
introduced at the first position, e.g., [a1, a2, a3, . . . , a24]→ [a24, a1, a2, . . . , a23],
to find the minimum EMD between two schedules, see Eq. 4.

EMD(a, b) = min
1≤s≤24

EMD(âs, b̂s),

with as, bs = cirular shift of a, b by s elements
(4)

In our application, the minimum possible EMD is 0, representing the
exact same normalized shape of two schedules. The maximum possible EMD
is 12, representing a single hour of occupancy of each schedule shifted by ± 12
hours, e.g., the difference between a schedule with a single hour of occupancy
at 4 pm vs. a single hour of occupancy at 4 am. For the exception of a zero
schedule, the EMD cannot be calculated as the shape does not contain any
mass.

2.2.3. Weighted average
For the selection of overall best fit of data from different locations to

standard schedules, we use a weighted average with weights according to
the frequency of day types, i.e., 5 for comparing weekday data and 1 for
comparing Saturday and Sunday data, respectively. See Eq. 5:

m̄ =
5 ∗mwk + 1 ∗msat + 1 ∗msun

7
(5)

2.3. Metrics for energy impact comparison of schedules
Because schedules of occupancy are intended for energy simulations, their

direct comparison might not adequately represent the potential differences
or errors in simulation results. Therefore we define the following metrics to
compare two schedules with respect to their potential impact on simulated
building energy demand.
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2.3.1. Number of occupied hours
The number of occupied hours directly impacts the energy consumption

of building systems that are binary presence controlled. E.g., lights that
are either on or off, or ventilation systems that are either on or off. The
occupied hours are a summation of boolean values, represented in this paper
with Iverson bracket notation [P ] = 1 if P is true; [P ] = 0 otherwise, that
are 1 when there is occupancy, see Eq. 6.

OH(a) =
24∑
h=1

[ah > 0] (6)

As a result of a comparison we report the absolute difference in occupied
time ∆OH(a, b) = |OH(a)−OH(b)|.

2.3.2. Number of full-load hours
The number of full-load hours directly impacts the energy consumption

of building systems that are presence-controlled. E.g., ventilation systems
that are controlled via the CO2 concentration. The number of full-load
hours also directly impacts the internal gains (sensible and latent) due to
occupancy. Set-point controlled HVAC systems react to those internal gains.
We calculate the full load hours of a schedule a with Eq. 7.

FL(a) =

∑24
h=1 ah

100%
(7)

2.3.3. The peak value of occupancy
The peak value of occupancy is related to the expected peak of energy

use for occupancy controlled building systems (e.g., ventilation) or set-point
controlled building systems (e.g., latent and sensible cooling demand). The
peak is the maximum values observed in the 24h time series, see Eq. (8).

P (a) = max
1≤h≤24

ah (8)

2.3.4. The timing of the afternoon peak
Typically in cooling dominated climates or seasons, the demand peak of

cooling energy is happening in the afternoon, following the diurnal outdoor
temperature curve. For forecasting of the daily peak of cooling energy de-
mand, it is of interest to consider the time of the peak value of occupancy in
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the PM hours. We calculate the maximum possible shift in peak timing in
the afternoon hours by comparing the time of peak values (sometimes is more
than one peak hour) and calculating the maximum absolute distance between
them. E.g., the standard occupancy for ASHRAE assembly on weekdays has
a peak value of 80% from 11 AM through 5 PM. If the observed data peak
happens at 7 PM the maximum peak shift is calculated as 7 PM - 1 PM = 6
hours. We extract all times of peaks with Eq. (9) and report the maximum
difference max ∆TP (a, b) between two schedules a and b.

TP (a) = {h}[ah = max
12≤h≤24

ah] for 12 ≤ h ≤ 24 (9)

2.3.5. The maximum ramp-up and ramp-down gradients
The maximum ramp gradients are defined here as the largest positive and

negative change in hourly occupancy. Large ramps in occupancy can be indi-
rectly related to stress in power grids via the sudden increase or decrease in
energy demand of occupancy controlled building systems, e.g., an occupancy
controlled ventilation system suddenly has to provide much more fresh air
to the building. We calculate the maximum ramps with Eq. (10) and (11)
and report the differences ∆RU(a, b) and ∆RD(a, b) between two schedules
a and b.

RUmax(a) = max
1≤h≤24

ah+1 − ah, with a25 = a1 (10)

RDmax(a) = min
1≤h≤24

ah+1 − ah, with a25 = a1 (11)

2.4. Statistical hypothesis tests
With statistical hour-by-hour hypothesis testing, we want to determine

whether the extracted samples of hourly occupancy values might be part of a
population with the mean or the median being the standard schedule value.
Or in other words: Is it possible that the standard schedule value of a certain
hour of the day is the mean or median of real-world observations?

Standard schedule values are often quantized (rounded) to steps of 5% or
10%, e.g., the "true" standard schedule value of 50% might actually be any
value between 45.0 < x ≤ 55. Rather than statistically testing the sample
observations against all possible continuous values that might result in the
quantized value, we perform one-tailed tests for the upper and the lower
limits of possible ’true’ mean or median values.
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Similarly, we can straightforward test if data samples collected from dif-
ferent locations might stem from the same underlying distribution. For this,
we select the Kolmogorov-Smirnov test.

The next paragraphs describe the methods selected for statistical hypoth-
esis testing.

2.4.1. One sample T-testing for sample means
For the hypothesis that the standard schedule is the mean of real world

observations we test our sample mean x̄ for every hour of the day against
the lower µlower and upper µupper limits of the quantized standard schedule
value with two one-tailed one sample T-tests. For the case of the lower limit
we formulate the null and alternative hypotheses as follows:

H0 : µlower = x̄

H1 : µlower < x̄

For the case of the upper limit we formulate the null and alternative
hypotheses as follows:

H0 : µupper = x̄

H1 : µupper > x̄

We calculate the p−value and reject the null hypothesis for the alternative
hypothesis if p − value < α/b for a selected significance level α = 0.05 and
Bonferroni correction for testing multiple hypotheses b = 2.

In general, we accept the standard schedule value µ to be representative
of the mean if both null hypotheses are rejected in favor of H1. I.e., the mean
value of the observed data is likely to be in the range of µlower > x̄ > µupper.

In the special case of testing an all-zero sample against a standard value
of zero, we accept the standard schedule value µ = 0 to be representative
of the mean without any calculation. As a result, we report the number of
cases/hours in the range of 0 - 24, where both H0 are rejected for H1, i.e.,
where the standard schedule is likely to represent the mean of observed data.
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2.4.2. Sign-test for sample median
For the hypothesis that the standard schedule values correspond to the

median of real-world observations we are performing a sign test for the lower
and upper limits of the quantized value. The median x̃ is defined as the
value separating the higher half from the lower half of a data sample. A
sign test for the median is a binomial test for the probability P of a sample
being smaller (or larger) than the median under the null hypothesis being
P = 0.5. For the case of the lower limit we formulate the null and alternative
hypotheses as follows:

H0 : P (X > mlower) ≤ 0.5

H0 : x̃ < mlower

H1 : P (X > mlower) > 0.5

H1 : x̃ ≥ mlower

wheremlower is the lower limit of the range of possible population medians.
For the case of the upper limit mupper we formulate the null and alternative
hypotheses as follows:

H0 : P (X > mupper) ≥ 0.5

H0 : x̃ > mupper

H1 : P (X > mupper) < 0.5

H1 : x̃ ≤ mupper

The p − value is calculated with the binomial function. We count the
occurrences k of X > m and calculate the probability of finding this number
of results in our sample of size n under the true probability of p0 = 0.5.

For a selected significance level α = 0.05 and Bonferroni correction b = 2
the null hypothesis is rejected for the alternative hypothesis if p − value <
α/b.

In general, we accept the standard schedule value m to be representative
of the median if both null hypotheses are rejected.

For the special case of testing m = 0 only a single left-tailed test is
performed. Since it is impossible to find values of X < 0 in our sample, we
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test for the null hypothesis of finding 50% of values X > 0:

H0 : P (X > m) ≥ 0.5 for m = 0

H0 : x̃ > m for m = 0

H1 : P (X > m) < 0.5 for m = 0

H1 : x̃ ≤ m for m = 0

As a result, we report the number of cases/hours where the tests are
rejected, i.e., the number of hours where the standard schedule is likely to
represent the median of observed data.

2.4.3. Kolmogorov-Smirnov test for two samples
We use the two-sample Kolmogorov-Smirnov (KS) test to determine whether

two data samples from two different locations might be part of a common,
overall population. The two-sample KS test is a general, nonparametric
method to test whether two samples are drawn from the same distribution.
The null hypothesis H0 and alternative hypothesis H1 of the test are:

H0 : the two samples come from the same distribution
H1 : the two samples come from different distributions

We calculate the test statistic of two samples from two locations at the
same hour of the day. We reject the null hypothesis at a level of α = 0.05.
In the exceptional case of all zero values in the samples, we do not reject
H0, without performing any test. As a result, we report the number of hours
per day where H0 was not rejected in favor of H1, i.e., the number of hours
0 . . . 24 where the distribution of popularity in the two locations is similar.

3. Results and Discussion

3.1. Data collection
Fig. 3 (left) shows the number of retail and restaurant places extracted

in each city after categorization. Fig. 3 (right) shows the share of retail and
restaurant places in each city with popular times data. The smallest sample
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(91 retail places) was collected in Albuquerque, the largest (1250 restaurant
places) in San Francisco. On average 54% of restaurant and 13% of retail
places in downtown areas contain popular times information on Google maps.

Figure 3: Number of retail and restaurant places with and without popular times data
extracted in a 4km by 4km area in the vicinity of downtown neighbourhoods in different
cities in the U.S. (left) and relative share of places with available popular times data
relative to the total number of places (right).

3.2. Part A: Comparing data to standard schedules
This section contains the results of the basic and energy impact com-

parison of mean and median data to the respective standard schedules of
ASHRAE in the most up-to-date version (2013). We compared quantized
means and medians of all cities and all day types to the corresponding
ASHRAE schedule. Because we can not present all comparison results in
this paper, we select one of the best fitting data sets for discussion in this
section. For this selection, we use the weighted averages of two quantitative
comparison metrics EMD and MAE, calculated with Eq. (5).

3.2.1. Restaurant
The ASHRAE schedule for Restaurant (2013) is defined in steps of 5%.

Therefore we quantize the mean and median schedule extracted from the
popular times data also in steps of 5% to ensure a fair comparison when cal-
culating EMD, MAE and the various energy impact metrics. When looking
at the overall weighted EMD and MAE of the mean and median for different
locations, the quantized mean is a better fit for both metrics in all locations
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(see Fig. 4). We are using a ranking system to select the location to be dis-
cussed in detail. The overall best fit is observed for the data of Los Angeles
(1st rank in EMD and 3rd rank in MAE), followed by Phoenix and Seattle.
For these reasons, we present the comparison results of the mean data for Los
Angeles vs. the ASHRAE 2013 Restaurant standard schedule in this section.

Figure 4: Weighted averages of EMD (left) and MAE (right) between quantized mean and
median restaurant popular times and ASHRAE standard schedules for different cities. The
cities are ordered in descending order according to their fit of the data mean.

Fig. 5 presents the results of the EMD and MAE calculation as well as
of the statistical hypothesis testing of the quantized sample data means vs.
the respective ASHRAE standard schedule in the form of a heatmap. Ad-
ditionally to the comparison between the corresponding day types weekday
(WK), Saturday (SAT) and Sunday (SUN) we present the comparison to
the non-corresponding day types as well. The EMD is in the range of 0.5
- 1.1. The best fit of shape between sample data and standard schedule is
observed for WK, the worst for SUN. The MAE is in the range of 13-19%
for corresponding day types. The best fit is observed for SUN, the worst
for WK. However, when comparing to other day types, the differences are
often smaller. Regarding the hypotheses testing results, the best agreement
is found to be between WK data and SUN standard. Overall there is no
consistency in the results.

Fig. 6 presents the results of the energy impact comparison between the
Los Angeles restaurant data sample and the standard schedules. We note
that differences in occupied hours are small or zero for all day types. The
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Figure 5: Heatmaps of EMD (left) and MAE (middle) between quantized mean popular
times data of Los Angeles and ASHRAE standard schedules for different day types and
results of hypothesis testing (right) of the data samples. The EMD is in the range of 0...12,
MAE is in the range of 0...100%. Representative hours according to hypotheses testing
range from 0...24 h. In all heatmaps darker shading means better agreement.

differences in full load hours are between 1.2 and 4.3 hours, with WK data
vs. WK standard having the alargest difference of all comparisons. Peak
values of standard schedules are misstated by 25 - 40 % of full capacity. The
time of the afternoon peak is misstated by up to 7-8 hours for WK and SUN.
Only on SAT, the standard schedule is representing the afternoon peak time
with some accuracy. The maximum ramp up and ramp down events for
each day type are misrepresented by up to 35 % of full capacity. Similar to
the quantitative metrics, the energy impact metrics often display a better
agreement to standard schedules of non-corresponding day types.

3.2.2. Retail
The ASHRAE schedule for Retail (2013) is defined in steps of 10%. There-

fore we quantize the mean and median schedule extracted from the retail data
also in steps of 10% to ensure a fair comparison when calculating EMD, MAE
and the various energy impact metrics. When counting the cases (cities)
where the mean or the median of data result in a better fit, the Retail use
category is not as decisive as Restaurant. See Fig. 7. However, there is
a slight preference of the mean (5 vs. 8 for EMD and 9 vs. 4 for MAE).
We rank the locations according to their overall fit of mean data for the se-
lection of the detailed discussion in this section. Minneapolis has the best
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Figure 6: Heatmaps of energy impact metrics between the quantized mean popular times
data of Los Angeles and ASHRAE standard schedules for different day types. The top row
displays the difference in occupied hours ∆OH (top left), the difference in full load hours
∆FL (top center) and the maximum shift in peak time max∆PT (top right). The bottom
row displays the difference in peak value ∆P (bottom left), the maximum difference in
ramp up max∆RU (bottom center), and the maximum difference in ramp down max∆RD
(bottom right). In all heatmaps darker shading means better agreement.

agreement (1st in MAE and 2nd in EMD), followed by Houston and Albu-
querque. Therefore we present the results of the comparison of the mean
data for Minneapolis vs. the ASHRAE 2013 Retail standard schedule in this
section.

Fig. 8 presents the results of the EMD and MAE calculation as well
as of the statistical hypothesis testing of the quantized sample data means
vs. the respective ASHRAE standard schedule in the form of a heatmap.
Additionally to the comparison between the corresponding day types weekday
(WK), Saturday (SAT) and Sunday (SUN) we present the comparison to the
non-corresponding day types as well. The results show that for the WK
the shape of the standard schedule matches relatively well to the sample
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Figure 7: Weighted averages of EMD (left) and MAE (right) between quantized mean and
median retail popular times and ASHRAE standard schedules for different cities. The
cities are ordered in descending order according to their fit of the data mean.

observations. The MAE is in the range of 8-10% for corresponding day
types. However, when comparing to other day types, the differences are
sometimes smaller. For instance, when considering EMD and MAE the WK
standard schedule is a better fit for the SAT data. Regarding the hypotheses
testing results, the best agreement is found to be between WK data and SAT
standard. Overall there is no consistency in the results.

Fig. 9 presents the results of the energy impact comparison between the
Minneapolis retail data sample and the standard schedules. We note that
differences in occupied hours are relatively small for WK and SAT conditions,
however for SUN the standard schedule is off by 4 hours. The differences in
full load hours are between 1.4 and 2.1. Peak values of standard schedules
are misstated by 10 - 30 % of full capacity. The time of the afternoon peak
is misstated by up to 3 hours for all day types. The maximum ramp up and
ramp down events for each day type are misrepresented by up to 20 % of
full capacity. Similar to the quantitative metrics, the energy impact metrics
often display a better agreement to standard schedules of non-corresponding
day types.

3.3. Part B: Comparing data in different contexts
This part contains the comparison results of Retail and Restaurant pop-

ular times profiles between different US cities. Fig. 10 shows the results
of the pairwise hourly Kolmogorov-Smirnov hypotheses testing between the
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Figure 8: Heatmaps of EMD (left) and MAE (middle) between quantized mean popular
times data of Minneapolis and ASHRAE standard schedules for different day types and
results of hypothesis testing (right) of the data samples. The EMD is in the range of 0...12,
MAE is in the range of 0...100%. Representative hours according to hypotheses testing
range from 0...24 h. In all heatmaps darker shading means better agreement.

different locations. There are no distinct patterns recognizable linking neigh-
boring climate zones. We present a more detailed analysis and discussion in
the following sections.

For consistency with Part A, we present only the comparisons of quantized
data means. In order to uncover the real differences between locations, we
quantize the mean to 1% values. We are considering only weekday (WK)
data in this part. Besides presenting the quantitative comparison of EMD
and MAE, we focus on the most interesting energy impact results, which are
the peak values and the timing of the afternoon peak for both commercial
building use types.

3.3.1. Restaurant
Fig. 11 shows heatmaps of EMD (left) and MAE (right) between mean

popular times of restaurants on WK for the selected cities in the U.S. Re-
garding the shape of the profiles we observe the smallest differences between
Denver and Minneapolis, Denver and Seattle, Minneapolis and Seattle, and
Minneapolis and San Francisco. The most substantial differences are ob-
served between Albuquerque and Las Vegas, and Albuquerque and Balti-
more. The MAE is in the relatively small range of 0 - 7% of full capac-
ity. The smallest differences are observed between Atlanta and Los Angeles,
Chicago and Seattle, Denver and Minneapolis, Denver and San Francisco,
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Figure 9: Heatmaps of energy impact metrics between the quantized mean popular times
data of Minneapolis and ASHRAE standard schedules for different day types. The top row
displays the difference in occupied hours ∆OH (top left), the difference in full load hours
∆FL (top center) and the maximum shift in peak time max∆PT (top right). The bottom
row displays the difference in peak value ∆P (bottom left), the maximum difference in
ramp up max∆RU (bottom center), and the maximum difference in ramp down max∆RD
(bottom right).

Denver and Seattle, Minneapolis and Seattle, and San Francisco and Seattle.
The largest differences in scale are observed between Albuquerque and Las
Vegas, Albuquerque and Miami, and Albuquerque and Baltimore.

One potential explanation for similarity could be the climate, cities in
cold climates (Denver (climate zone 5B), Minneapolis (6A), Seattle (4C),
Chicago (5A)) form pairs with small differences. Good agreement of MAE
can also be found for one pair in warm climate of Atlanta (3A) and Los
Angeles (3B-CA). On the other hand, the good agreement of EMD between
Minneapolis and San Francisco or MAE between Denver/Seattle vs. San
Francisco cannot be explained with the climate.

Possible explanations for dissimilarity could be connected to socioeco-
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Figure 10: Heatmap of pairwise Kolmogorov-Smirnov hypotheses testing results for pop-
ular times data of restaurants (right) and retail places (left) on WK for different cities.
The cities are ordered according to their climate zone.

nomic factors as well as climate. For instance, the overall largest differences
in EMD and MAE are observed between Albuquerque (4B) and Las Vegas
(3B-other). These cities are different in climate (cold semi-arid vs. subtropi-
cal hot desert climate) as well as in the structure of their economy (high-tech,
research vs. tourism, gaming, and conventions).

Fig. 12 shows the pairwise comparison of selected energy impact metrics.
Peak values (left) and the difference in PM peak timing (right) between dif-
ferent locations are displayed. Most of the locations experience a very similar
peak with differences in the range of 0-7% full capacity. Larger differences
of 7-10% are uncommon and only observed for Albuquerque vs. other lo-
cations, and Phoenix vs. other locations. Interestingly, Albuquerque and
Phoenix are in very good agreement. However, the observed differences in
PM peak timing are very significant. Two distinct groups can be identi-
fied: (1) ABQ, ATL, CHI, HOU, LA, PHX and (2) BAL, DEN, LV, MIN,
SF, SEA. And then there is Miami, which is different from every other city.
When looking at Fig. 13 we can explain these groups. We observed that the
restaurant occupancy typically experiences two peaks, one at lunchtime and
another one at dinner time. Group (1) has the higher of the two peaks at
lunchtime/midday, while in group (2) the higher peak is observed at dinner-
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Figure 11: Heatmap of pairwise EMD (left) and MAE (right) between quantized mean
popular times of restaurants on WK for different cities. The cities are ordered according
to their climate zone.

time/evening. Miami happens to have two peaks of exactly the same value.
It seems this behavior is rather unrelated to climatic differences. That is why
we speculate the reason could be found in socioeconomic factors.

3.3.2. Retail
For the retail category we note that the scale and shape of profiles are

very similar, see Fig. 14. The EMD takes values between 0.1 - 1.1, the MAE
between 1 - 6% of full capacity. The largest difference in shape and scale is
observed between Albuquerque and San Francisco. The smallest difference
in shape and scale is observed between Baltimore and Denver.

Peak values for retail are also very similar, see Fig. 15. Differences in peak
are between 0-9% of full capacity. Larger differences are observed between
Houston and San Francisco, and Houston and Seattle. The time of the peak
is approximately the same in all cities (maximum 1 h difference), except for
Chicago and San Francisco, which show a behavior different from the rest.
While most of the cities experience a peak at 1 PM or 2 PM, those two
remain at an almost constant occupancy until 5 PM or 6 PM where they
experience a second peak, see also Fig. 16.
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Figure 12: Heatmap of pairwise peak value (left) and timing of PM peak (right) between
quantized mean popular times of restaurants on WK for different cities. The cities are
ordered according to their climate zone.

4. Limitations

The main limitations of the work presented in this paper are related to the
non-transparency of the data source. We found no publicly available informa-
tion on the data collection, data processing, and data publishing processes.
Multiple issues could lead to skewed or biased results and should be addressed
if raw data, or similar data from other sources, becomes available in the fu-
ture. With regards to data collection, they are: (1) a bias towards places
with larger capacity due to the higher probability of data collection, (2) a
bias towards places visited by a particular population demographic due to a
higher probability of cell phone ownership or higher penetration of location
data collecting applications. With regards to data processing and publica-
tion the current limitations are: (3) potential seasonal effects that might be
or might not be reflected in the published data, (4) the estimation of the of
100% popularity or occupancy, i.e., the places’ capacity, based solely on the
historical record of data collection might be an over or underestimation.

With regards to our presented methodology, we are aware that simply
extracting the mean and median of the data aggregated into use type and
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Figure 13: Mean popular times data of restaurants on weekdays for Miami (MIA), Las
Vegas (LV) and Los Angeles (LA).

day type categories, does not account for the potential diversity of patterns
within these categories. We could form categories based on the observed pop-
ular times data by using classification and/or clustering techniques rather
than on the type attribute of the place and the type of day categories pro-
posed by ASHRAE.

We present the results of the quantized mean of data, because of our
selection of the most favorable and fair comparison to the standard schedules.
However, conceptually the median should represent a better choice as it can
be understood as the actual behavior of the place in the center of the sample.
The issue with selecting the mean is not only that outliers disproportionally
influence the values, but also that it is very unlikely in terms of occupancy
to observe hours with zero mean occupancy. This can be somewhat avoided
by the quantization to 5% or 10% steps as in the comparison to the standard
schedules. However, the representative schedules we analyze in the location
comparison almost always have an unrealistic occupancy duration of 23-24
hours per day with occupancy of <5% during the night.

5. Summary and Conclusion

Standard schedules of occupancy are a by-product of the development of
simulation-based building performance evaluation. Some schedules that are
being used until today can be traced back as far as 1979 when they were
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Figure 14: Heatmap of pairwise EMD (left) and MAE (right) between quantized mean
popular times of retail on WK for different cities. The cities are ordered alphabetically.

created using expert’s educated guesses of that time. Since then, schedules
of occupancy have partly been updated but never based on extensive data
gathering. With this work, we showed that place popularity profiles, which
are essentially the same as building occupancy schedules, can be gathered
from Google maps and compared to standard schedules of occupancy using
quantitative, energy impact and statistical metrics. We gathered data for
commercial building uses for 13 representative cities in different US climate
zones and compared the Retail and Restaurant use category to the respec-
tive ASHRAE standard schedules for weekdays, Saturday and Sunday. We
only presented the analysis for the locations with the smallest differences
in terms of profile shape (measured with EMD) and profile scale (measured
with MAE) and extracted features in favor of the standard schedule (quan-
tized mean) to ensure a fair comparison. Nonetheless, we found significant
differences in absolute scale, with MAE around 10-20% of full capacity, as
well as in profile shape, with EMD around 0.2-1.1. Regarding energy impact
metrics we found that peak values can be off by as much as 40% of full ca-
pacity. Furthermore, when cross-checking observed data of a certain type of
day with standard schedules of other day categories, often a better agreement
was found. Based on these results, we advise to use standard schedules with
great care and only for the purpose they are intended to, which is mainly
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Figure 15: Heatmap of pairwise peak value (left) and timing of PM peak (right) between
quantized mean popular times of retail on WK for different cities. The cities are ordered
alphabetically.

building design trade-off analysis. Especially for larger simulations on the
neighborhood-scale or district-scale, where a realistic average behavior is de-
sired, e.g., for the planning and design of district energy systems, we advise
against using the currently available standard schedules of occupancy.

In the second part of the analysis, we focused on differences between
locations and their possible correlation to climatic and socioeconomic fac-
tors. Overall, we observed that differences in shape and scale of schedules
between data of different locations are much smaller than between data and
standard schedules. However, we found some evidence that suggests that cli-
matic and socioeconomic factors might influence visitor behavior, especially
to restaurant buildings. This might make it necessary to use location-specific,
customized occupancy schedules for building simulation.

6. Outlook

Besides looking into the diversity of profiles and the extraction of typical
patterns of occupancy based on observation data, we think it is necessary to
explore the potential implications of our findings onto energy simulations.
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Figure 16: Mean popular times data of retail places on weekdays for Chicago (CHI), San
Francisco (SF) and Seattle (SEA).

The focus of further work will be the application of data-based occupancy
schedules for commercial buildings in a real case study. In order to research
the impacts of using data-based schedules compared to the benchmark of
standard occupancy schedules on the district scale, extensive simulations
with an urban energy modeling tool are planned. We propose to test different
models of occupancy in conjunction with different levels of impact analysis,
e.g., occupancy patterns on the district scale, energy demand on the district
scale, and energy systems design on the district scale.

We argue that only if ultimately the energy systems design is fundamen-
tally affected, it is necessary to model occupancy in detail for urban energy
modeling. However, this is yet to be shown.
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