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ONLINE DIELECTRIC RESPONSE ANALYSIS  
UNDER MIXED-FREQUENCY MEDIUM-VOLTAGE STRESS 

R. Färber*, A. Nasef and C.M. Franck 
High Voltage Laboratory, ETH Zürich, Physikstrasse 3, Switzerland 

*Email: faerberr@ethz.ch 
 
Abstract: A custom-made dielectric spectrometer using the broadband excitation of pulse-
width-modulated medium-voltages is presented and its performance assessed. A simple 
technique is suggested and validated for eliminating the problem associated with the 
digitization of capacitive currents with large crest factors, which arise with rectangular 
excitation voltages. The developed system allows a quasi-continuous monitoring of the 
dielectric spectrum (time resolution ~1 s, frequency range ~1 kHz to 100 kHz) of insulation 
specimens exposed to mixed-frequency voltages, and thus represents a promising tool for 
insulation aging studies under these non-conventional high-voltage stress profiles. 
 

 
1 INTRODUCTION 

The dielectric spectrum of an insulating material 
provides a rich source of information about the 
dynamics of its constituent (bound and mobile) 
electrical charge carriers. Thus, it is potentially 
susceptible to stress-induced changes of a 
specimen’s molecular structure. Consequently, 
dielectric spectroscopy has found widespread 
application in insulation aging studies [1, 2]. Under 
high-voltage stress (>1 kV), however, the excitation 
voltage is typically limited to a sinusoidal waveform 
[3, 4]. While non-sinusoidal excitations are widely 
used in impedance spectroscopy, these systems do 
not operate in the high-voltage regime, or suffer 
from other constraints such as limited excitation 
voltage bandwidth, the inability to survive test object 
breakdown or the need for elaborate measurement 
circuit modelling [5]. 

In this paper, an online dielectric spectrometer 
setup for mixed-frequency voltages up to 30 kV is 
presented. It is immune against test object 
breakdown, employs analog signal processing to 
remove the limitation on the rate of rise of voltage, 
and uses a referencing technique to avoid the need 
for modelling. It is therefore suitable to complement 
time-to-failure testing of insulation materials under 
medium-voltage inverter waveforms, providing in-
situ measurements of the pre-breakdown dynamics 
of the dielectric spectrum. As such, it constitutes a 
promising tool for further illumination of the active 
degradation mechanisms in insulation systems 
exposed to mixed-frequency medium-voltages (e.g. 
DC-biased rectangular voltages), both above and – 
in particular – below partial discharge inception [6]. 

The paper is organized as follows. First, detailed 
information about the excitation voltage used in this 
study, as well as the analog and digital signal 
processing employed for determining the dielectric 
permittivity is provided. Then, the dielectric 
spectrometer is characterized based on its 
precision, accuracy and stability. Finally, a proof of 
concept measurement is shown and discussed. 

2 METHODS 

The measurement setup as well as parameter 
definitions and theoretical concepts used in the 
result section are detailed in Subsections 2.1 to 2.4. 

2.1 Voltage source 
The online dielectric spectrometer was designed to 
operate on a mixed-frequency test bench, whose 
schematic is shown in Figure 1a. The sample inside 
the test cell can be stressed by a DC voltage UDC (0 
to 30 kV) and a superimposed medium-frequency 
rectangular pulse voltage Up (0 to 1.5 kV peak-peak, 
with a fundamental frequency between 500 Hz and 
10 kHz). A more detailed description of the test 
bench as well as results on time-to-failure testing 
under this stress profile can be found in [6]. 

 
Figure 1: a) Simplified schematic of the test bench 
used to apply DC-biased medium-frequency 
rectangular pulse voltages to the test object, 
characterized by a vacuum capacitance C0 and its 
dielectric permittivity ε∗. b) Spectrum of the applied 
trapezoidal pulse train and the corresponding 
response current through the test object. 



 

2.2 Spectrum of a trapezoidal pulse train 
The Fourier components of a trapezoidal pulse of 
fundamental period T, pulse length τ (full width at 
half maximum), rise time τr  and peak-to-peak 
amplitude Up can be calculated to be 

Un = 2 Up  τ
T

 sinc(πfnτr) sinc(πfnτ),         (1) 

with fn = n/T and n = 1,2,3, … (DC component not 
considered). The associated time-domain waveform 
reads 

U(t) = Re�∑ Une2πjfnt∞
n=1 �                   (2) 

The summation becomes finite for bandwidth-
limited signals, e.g. digitized voltages Um = U(tm) 
with tm = m/fs (m = 0,1,2, …), for which the highest 
frequency is half the sampling frequency fs 
( = Nyquist frequency). The envelope of the 
trapezoidal pulse spectrum is obtained by observing 
that the envelope of the sinc(x)  function is 
approximately 1 for x ≲ 1 and 𝑥𝑥−1  for x ≳ 1. Thus 
the pulse envelope is constant (= 2Upτ/T) for fn ≲
1/πτ , decreasing as fn−1  (−20 dB/dec) for 1/𝜋𝜋τ ≲
fn ≲ 1/πτr ≡ fc  and dropping off as fn−2 
(−40 dB/dec) for fn ≳ fc. The spectral components 
of a pulse train with duty cycle D = τ/T = 0.5 and 
τr = 10−3T  is shown in Figure 1b (note that a 
significant constant regime is only present if D ≪ 1). 
The frequency range [f0, fc] contains 99.97% of the 
spectral power, and hence the spectral contribution 
above fc  can usually be neglected for, e.g., 
dielectric loss calculations. 

The current flowing through a capacitor with a linear 
and isotropic dielectric characterized by the 
complex dielectric permittivity εn∗ = ε∗(fn) is given by 

I(t) = C0 Re�∑ 2πjfnεn∗  Une2πjfnt∞
n=1 �           (3) 

The corresponding Fourier amplitudes are also 
shown in Figure 1b. The complex permittivity in the 
given example is modelled by a Debye relaxation 

ε∗(f) = 𝜀𝜀∞ + Δε
1+2πjf/frel

= 3 + 1
1+2πjf/(20∙f0)

.        (4) 

It causes the current components to decrease by a 
factor 1 + Δε/ε∞ ≈ 1.3 when the frequency changes 
from f ≪ frel  to frel ≪ f ≲ fc . For a given excitation 
voltage, the current response contains – in principle 
– all the information about the dielectric permittivity 
as defined above. If the vacuum capacitance C0 is 
known, ε∗  can be evaluated at all “measureable” 
harmonics of the excitation voltage by using 

εn∗ = �2πjfnC0Un/In�
−1.                  (5) 

The crux of the matter lies in the limited ability to 
experimentally determine the Fourier coefficients 
with sufficient precision and accuracy. 

2.3 Signal conditioning and digitization 
Dielectric spectroscopy relies on a precise 
measurement of the applied excitation voltage and 

the associated sample current. A signal processing 
procedure optimized for rectangular voltage 
excitation is presented in the following subsections. 

2.3.1  Voltage measurement 
In order to increase the signal to noise ratio, a 
custom-made voltage divider with a band-pass 
characteristic as shown in Figure 2 is employed to 
measure the AC voltage applied to the specimen. 
The pass band corner frequencies are set to 500 Hz 
and 100 kHz, which is deemed a suitable 
compromise between system bandwidth and noise 
performance for the available pulse excitation 
frequencies. This range can be adjusted to match 
other excitation spectra by modifying the filter 
component values. The full transfer from the applied 
high voltage UHV  to the digitized low voltage Uout

(1)  
can – under the assumption of system linearity – be 
written as  

Uout
(1) = CHV

CLV
T(1)UHV ≡ UHV/α(1).                (6) 

The divider ratio in the pass band is given by 

r = �α(1)� = 100nF
100pF

∙ 1
4V/V

= 250.               (7) 

 
Figure 2: Simplified schematic of the voltage divider 
signal conditioner and the corresponding transfer 
function (simulated − vs. measured ∙∙∙). 

2.3.2  Current measurement 
The crest factor (CF) of a periodic signal is defined 
as the ratio of its peak value to its RMS value. While 
for the trapezoidal voltage CFU ≈ 1 (assuming τ ≈
T/2 and τr ≪ T), the associated capacitive current 
features CFI ≈ �T/2τr ≫ 1 . For a given spectral 
content of a signal (i.e. given Fourier magnitudes), 
a higher crest factor leads to a higher quantization 
noise during analog-to-digital conversion (ADC) and 
hence a smaller S/N ratio for the spectral 
components. Indeed, for a given set of magnitudes 
{A�n ≥ 0, n ∈ ℕ} with ∑ √2A�n2∞

n = ARMS = 1, consider 
the set of signals {An

(i) = A�nejϕn
(i)

,  ϕn ∈ [0,2π)} . 
While the RMS value of all these signals is the 
same, the peak values Apeak

(i)  are functions of the 
phases ϕn

(i). Let Apeak
min = CFAmin be the infimum of all 



 

peak values, and Apeak
max = ∑A�n = CFAmax  their 

maximum. Hence, when digitizing with Nb bits, the 
largest and smallest digitization quanta are given by 

∆Amax/min ≥ CFA
max/min/2Nb                 (8) 

(equality applies when the reference value for the 
quantization is optimal, i.e. equal to the peak value 
of the signal). It is thus clear that in order to utilize 
best the available vertical resolution of the ADC, one 
should avoid large crest factors of the analog input 
signals. 

In order to reduce the current signal’s large crest 
factor CFI ≈ �T/2τr  (e.g. equal to 71 for T=1 ms 
and τr=100 ns), an analog integration of the signal 
is performed before digitization. The resulting crest 
factors are much smaller (≲2) and thus the signal 
can be digitized without sacrificing more than one 
bit of the ADC’s dynamic range (instead of 
sacrificing more than six bits with a crest factor of 
71). Numerical simulation shows the instrument 
precision for both magnitude and phase to scale 
strongly with the number of digitization bits: A ∼
e−a∙Nb with a ≈ 0.6 (this of course only applies if the 
noise level at the ADC inputs is lower than the 
quantization noise associated with Nb) . Saving 5 
bits of resolution thus amounts to an order of 
magnitude improvement on precision. 

Figure 3 shows the schematic of the designed 
integrator and its transfer function T(2) , which 
features the integrating behaviour ~[jf]−1 within the 
target frequency range between about 500 Hz and 
100 kHz. The full transfer from the sample current Is 
to the digitized voltage reads 

Uout
(2) = T(CT)T(2)IS ≡ IS/α(2),                  (9) 

where T(CT)  is the transfer function of the current 
transformer. The one used in this application 
features a lower −3 dB cutoff at about 300 Hz and a 
flat response (1 V/A) in the target frequency range. 

In addition to ensuring good utilization of the ADC’s 
dynamic range, using an integrator also matches 
the S/N ratio of the current harmonics to those of the 
voltage signal. Specifically, prior to implementing 
integration, the S/N ratios of the current harmonics 
are approximately constant (assuming a constant 
noise floor), while after integration they decrease 
with the inverse of the frequency (as they do for the 
voltage harmonics). 

2.3.3  Digitization and Fourier transform 

The voltages Uout
(1,2)(t) are digitized by using a 16-bit 

ADC with a maximum sampling frequency fs of 
6.25 MHz. Frequencies that could be aliased onto a 
frequency in the target range are suppressed by the 
transfer functions with −60 dB or more with respect 
to the target frequency. A Fast Fourier Transform is 
performed on a pulse train containing 100 
fundamental cycles in order to determine the 

spectral components Uout
(1,2) . Spectral leakage is 

reduced by applying a Hanning window. 

 
Figure 3: Simplified schematic of the voltage 
integrator and its transfer function (simulated − vs. 
measured ∙∙∙). The voltage integrator is fed by a 
current transformer (1 V/A) measuring the 
alternating current IS flowing through the sample 
capacitance CS. 

2.4 Definition of instrument precision 
Let {xi, i = 1, … , N} be N > 1 measured values (e.g. 
the magnitude or phase of the permittivity at a 
certain frequency). Assume that it is a sample of a 
random variable X  distributed according to a 
probability distribution f , whose mean value and 
standard deviation are denoted by μ  and σ , 
respectively. For a given confidence level α, let the 
quantity A be the smallest real number satisfying 

P(|X − μ| ≥ A/2) ≤ 1 − α.                  (10) 

For example, for α = 95%  Equation (10) asserts 
that the probability of a measured value lying 
outside μ ± A/2  is ≤ 1 − α = 5% . In the present 
context, for given instrument settings, we thus call A 
the α-precision of the instrument with respect to the 
measured parameter. Unless stated otherwise,   
α = 95% is assumed in the following. 

A  is conveniently expressed in units of standard 
deviations: Ak = k ⋅ σ. Chebyshev’s inequality then 
provides the distribution-independent precision k =
2/√1 − α  ≈ 9 . Making the assumption that the 
distribution of X  is symmetrical and unimodal [7] 
leads to a precision k = 4/3√α ≈ 6 . The familiar 
stronger bound k ≈ 4 (“95% of the measurements 
lie within two standard deviations of the mean”) 
requires X to be normally distributed. 

Since the standard deviation σ is unknown, it must 
be estimated from the measured sample: 

σN = �Σn=1N (xi − μN)2/(N − 1)              (11) 

Its upper α -confidence bound in units of the 
estimator σN is given by [8] 



 

uN = �
N−1

χ(α/2,N−1) 
                        (12) 

where χ(α/2,N−1) is the percentile of the Chi-Squared 
distribution. The instrument precision, based on the 
sample {xi}, is thus given by A = k ⋅ uN ⋅ σN. 

The instrument precision (providing probabilistic 
bounds on the outcome of a single measurement) is 
different from the confidence interval on the mean 
value μN  of N  measurements ( μN = N−1 ∑ xiN

i=1 ). 
The latter is given by μN ± t(α/2,N−1)σN/√N, where 
t(α/2,N−1) is the percentile of Student’s t distribution. 
The implicit central limit theorem requires N ≫ 1 (in 
practice the approximation is good for N ≥ 10). 

2.5 Calculating the dielectric permittivity 
For an electrode configuration of vacuum 
capacitance C0  the (effective) complex dielectric 
permittivity of the sample is – by definition – related 
to the measured impedance by 

ε∗ = ε′ − jε′′ = |ε∗|e−jδ = �2πjfC0ZS�
−1 .   (13) 

Equations (6) and (9) yield 

ZS = UHV,S
IS

=
α S

(1)Uout,S
(1)

α S
(2)Uout,S

(2)  ,                    (14) 

where α S
(1,2) are the transfer functions (described in 

sections 2.3.1 and 2.3.2) applying at the instant of 
the measurement. Performing a “reference 
measurement” is a practical way for eliminating the 
unknown transfer functions [2]. Let ZR  be the 
impedance of a “reference sample”: 

ZR = UHV,R
IR

=
α R

(1)Uout,R
(1)

α R
(2)Uout,R

(2)  .                 (15) 

Under the assumption of equal transfer at the 
moment of the sample (S) and reference (R) 
measurements (the validity of this assumption will 
be discussed in section 4),  

α S
(i) = α R

(i)      (i = 1,2),                 (16) 

one obtains 

εS
∗

εR
∗ = C0,R

C0,S
⋅ ZR
ZS

= C0,R
C0,S

∙
Uout,S

(2)  Uout,R
(1)

Uout,S
(1)  Uout,R

(2)  .          (17) 

The reference sample may be an air capacitor, in 
which case εR∗ = 1 and thus Equation (17) provides 
the complex permittivity of the sample in terms of 
measured voltages and vacuum capacitances. 

Alternatively, using the sample itself as a reference 
is an interesting choice for aging experiments. 
Equation (17) then reads 

ε∗(t)
ε∗(t0)

= Uout
(2) (t) Uout

(1) (t0)

Uout
(1) (t) Uout

(2) (t0)
                      (18) 

and provides the time evolution of the complex 
permittivity as compared to its value at some time t0 
(e.g. the permittivity of the unaged material). 

3 RESULTS 

The results section presents data characterizing the 
measurement setup (accuracy / precision / stability) 
as well as a proof-of-concept measurement 
assessing its applicability on actual dielectric 
samples subject to electrical field stressing. 

3.1 Instrument accuracy – Debye sample 
In order to validate the basic operating principle of 
the setup and to assess its accuracy, the frequency-
dependent permittivity of a Debye network, 

εDebye∗ =
ZDebye(C1=0)

ZDebye
= 1 + C1/C0

1+2πjfR1C1
,           (19) 

is measured by using the reference principle (see 
Equation 17). The nominal component values are 
C0=700 pF, C1=220 pF and R1=60 kΩ. A relatively 
low excitation voltage of 150 V (peak) is chosen for 
this sample in order to match the current amplitude 
to those expected for “real” material samples (for 
which the capacitance is in the range of 5 to 
100 pF). A rectangular pulse train voltage excitation 
with a fundamental frequency of 1 kHz and a rise 
time of 100 ns is used. The magnitude and phase of 
the permittivity are determined from 1 kHz to 
100 kHz and compared to the expected frequency 
response given by Equation (19). A linear frequency 
axis is chosen because the square wave harmonics 
(2n + 1)f0 are equidistant on this scale. 

The lumped circuit components are treated as ideal, 
which is a valid approximation in the considered 
frequency range. For example, the loss factor of the 
used capacitors is ≤ 10-4, which is much smaller 
than the maximum value (0.14) of the constructed 
Debye sample. 
 

 
Figure 4: Validation of the measurement principle 
on a Debye network of known frequency response. 
Continuous lines are theoretical predictions based 
on Equation (19). Measured values (circles) are 
extracted from the harmonics of the square wave 
excitation and the corresponding current response. 



 

3.2 Instrument precision and stability 
The instrument precision A is calculated as defined 
in Section 2.4, using 𝛼𝛼 = 0.95, N = 100, k = 6 and 
u100 = 1.16, which yields A ≈ 7 ⋅ σ100. As illustrated 
in Figure 5, averaging the outcome of N consecutive 
measurements reduces the scatter of the average 
value (at the expense of temporal resolution). 

 
Figure 5: 95% confidence intervals on single 
measurements (instrument precision) and the mean 
of 25 measurements. Filled markers: permittivity 
magnitude, unfilled markers: phase angle (in rad). 

The long-term stability of the output readings was 
evaluated by measurements on a commercial 50 kV 
ceramic capacitor for which no significant changes 
of the dielectric are expected. The DC voltage was 
increased step-wise up to 10 kV (1 kV every 2 
minutes) with a superimposed Up= 0.75 kV (peak-
peak) / f0  = 1 kHz / τr= 100 ns rectangular pulse 
train. Over a period of one hour (the maximal 
measurement time for the tests presented in this 
paper) the measured values of the magnitude and 
the phase of the permittivity are observed to 
fluctuate within a band of ≤ 10-3 and ≤ 2∙10-4 rad, 
respectively. These values are thus taken as 
thresholds below which measured changes are not 
attributed to the test object. 

3.3 Pre-breakdown evolution of permittivity 
A sample made of biaxially oriented PET foil 
(Melinex® S, 23 µm) is subject to a DC-biased 
rectangular pulse voltage. The electrodes 
(D=10 mm) consist of silver paint. The sample is 
conditioned and tested at T = 25±1 °C and 
RH = 33±2 %. 

Figure 6 represents the time evolution of the 
normalized permittivity (Equation 18) when the 
sample is stressed with a step-wise increasing DC 
voltage UDC, superimposed by a 0.75 kV / 1 kHz / 
100 ns rectangular pulse train. A full spectrum is 
acquired every 6 seconds. For t>22 minutes the DC 
voltage is kept at 10 kV until breakdown occurs. 
While both the measured magnitude and phase 
change as a function of UDC, sample breakdown is 
not preceded by any detectable abnormality. While 
the magnitude shows no significant change at all 
(<10-3) prior to breakdown, the phase decreases 
slightly from its maximal value by about 10-3 rad 
across all frequencies. 

 
Figure 6: Time evolution of the absolute value (top) 
and the phase angle (bottom) of the normalized 
dielectric permittivity when the DC-bias voltage is 
increased in 1 kV steps from 0 to 10 kV (within 22 
minutes) until breakdown occurs at t = 47 minutes. 

4 DISCUSSION 

The observation that the dielectric spectrum of the 
tested PET foil does not show any peculiarities prior 
to breakdown was surprising at first. However, on 
the one-hour time scale used here, electric field-
induced changes are not expected to occur in a 
significant fraction of the sample’s volume, i.e. 
properly speaking there is no electrical aging of the 
bulk material. The measurement suggests that 
during the time prior to breakdown, the processes 
occurring at a potential breakdown site are so 
localized that they do not alter the dielectric 
response of the sample. It is however important to 
note that some internal change (albeit local) must 
occur, since the sample suddenly breaks down after 
having been exposed to a constant external stress 
level for 25 minutes. 

At this point, a full explanation of the permittivity’s 
variation with DC bias voltage has not been 
realized. However, a significant fraction of the 
apparent magnitude increase can be explained by 
an actual increase in the vacuum capacitance of the 
foil electrodes, caused by the increased mechanical 
stress (and associated strain) on the dielectric foil, 

|∆C0|
|C0|

≈ ∆d
d0
≈ ε0

E
�ε∞UDC

d0
�
2
≈ 0.7%  ,        (19) 

where E is the elastic modulus of the foil. While the 
numerical value obtained is already in the right 
ballpark for explaining the observed increase in 
magnitude (~2.4%), there seems to be (at least) one 



 

additional mechanism at work, as the increase of C0 
does not explain the change in the loss angle, as 
well as the frequency-dependence of the observed 
magnitude changes. 

On the methodological side, the presented setup 
demonstrates the possibility of broadband high-
voltage dielectric online monitoring down to a 
precision that is ultimately limited by the drift of the 
transfer functions over time (rather than the 
achievable instrument precision). This drift could 
however be taken into account by trading some of 
the current setup’s simplicity. Indeed, by using a 
second, identically constructed current transformer 
that measures the current flowing through the 
capacitive divider (with the same settings of the prior 
sample measurement) one could limit the overall 
drift of the system to the drift of the divider capacitor 
and the differential drift of the two current 
transformers. The capacitance of the voltage divider 
is mainly determined by the high-voltage capacitor, 
for which a vacuum or gas type construction would 
be the preferred choice for lowest drift. Moreover, 
the measurement of absolute values of permittivity 
would then be possible (Equation 17). 

The applied signal processing (analog integration of 
the current signal) is shown to be a simple solution 
for dealing with the challenge associated with the 
precise digitization of signals with large crest 
factors. We tested another, arguably even simpler 
approach, which consists of using a commercial 
low-noise linear amplifier in conjunction with a high-
order low-pass filter with a cutoff frequency fLP 
above the target frequency range. Then, only the 
harmonics in the target range contribute to the 
current peak and the crest factor is reduced by a 
factor of about fc/fLP, that is, to CFI,LP ≈ 2fLP�T ∙ τr . 
For example, using fLP= 200 kHz reduces the crest 
factor of the current (for τr = 100 ns and T = 1ms) 
from 71 to about 4, which is close to the crest factor 
obtained with the integrator (≲2). Either case is a 
variation on the theme of low-pass filtering, thus 
yielding comparable performance. 

While in this study only rectangular waveforms with 
a fixed frequency (1 kHz) and duty cycle (50%) have 
been used, it is possible to synthesize and apply 
pulse-width-modulated binary signals with tailored 
frequency spectra [9]. The voltage excitation would 
then be switched (e.g. for a second every minute) 
from the stressing waveform to the scanning 
waveform, which covers the frequency range 
desired for the dielectric response analysis.  

 

 

 

 

 

5 SUMMARY 

This work merges and improves existing 
technologies to design a dielectric spectrometer that 
allows the quasi-continuous online monitoring of a 
specimen’s dielectric spectrum under repetitive 
medium-voltage pulse stress. Limitations on 
switching speeds are removed by using analog 
integration of the current signal. Furthermore, a 
reference technique that eliminates the need for 
modelling transfer functions is proposed. It allows 
monitoring the time evolution of relative changes in 
the specimen’s dielectric spectrum. This is useful 
information for dielectric aging studies, because the 
dielectric spectrum mirrors changes in the 
molecular structure, as well as the build-up of 
macroscopic dipoles from space charges. 
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