Conference Paper

One-shot Learning for iEEG Seizure Detection Using End-to-end Binary Operations: Local Binary Patterns with Hyperdimensional Computing

Author(s):
Burrello, Alessio; Schindler, Kaspar; Benini, Luca; Rahimi, Abbas

Publication Date:
2018

Permanent Link:
https://doi.org/10.3929/ethz-b-000305686

Originally published in:
http://doi.org/10.1109/BIOCAS.2018.8584751

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.
One-shot Learning for iEEG Seizure Detection Using End-to-end Binary Operations: Local Binary Patterns with Hyperdimensional Computing

Alessio Burrello*, Kaspar Schindler†, Luca Benini‡, Abbas Rahimi∗
∗Integrated Systems Laboratory, ETH Zurich, Switzerland †Sleep-Wake-Epilepsy-Center, Inselspital Bern, Switzerland
Emails: bualell@student.ethz.ch, kaspar.schindler@insel.ch, lbenini@iis.ee.ethz.ch, abbas@iis.ee.ethz.ch

Abstract—This paper presents an efficient binarized algorithm for both learning and classification of human epileptic seizures from intracranial electroencephalography (iEEG). The algorithm combines local binary patterns with brain-inspired hyperdimensional computing to enable end-to-end learning and inference with binary operations. The algorithm first transforms iEEG time series from each electrode into local binary pattern codes. Then atomic high-dimensional binary vectors are used to construct composite representations of seizures across all electrodes. For the majority of our patients (10 out of 16), the algorithm quickly learns from one or two seizures (i.e., one-/few-shot learning) and perfectly generalizes on 27 further seizures. For other patients, the algorithm requires three to six seizures for learning. Overall, our algorithm surpasses the state-of-the-art methods [1] for detecting 65 novel seizures with higher specificity and sensitivity, and lower memory footprint.

I. INTRODUCTION

Epilepsy is a chronic neurological disorder affecting 0.6–0.8% of the world’s population [2]. One third of patients with epilepsy continue to suffer from seizures despite pharmacological therapy [3]. For these patients with drug-resistant epilepsy [4], efficient algorithms for seizure detection are needed in particular during pre-surgical long-term iEEG recordings. iEEG currently provides the best spatial resolution and highest signal-to-noise ratio to record electrical brain activity.

Most seizure detection studies assume that there are two distinct states of brain activity in patients with epilepsy (i.e., interictal and ictal), and that these states can be detected by iEEG. One major challenge then is to reliably detect seizures from a small number of ictal examples. The difficulties are due to the patient-specific nature of seizure dynamics, and to the asymmetry inherent in long-term iEEG, namely that the ratio of interictal to ictal segments is typically very large [5]. This requires a fast algorithm that learns from few ictal iEEG segments and generalizes well for novel seizure recordings.

Another challenge is to realize such algorithm with low complexity suitable for execution on implantable devices for long-term operation. One promising option is computing with simple linear binary codes to avoid otherwise expensive operations such as costly floating-point arithmetic. Combining methods from symbolic dynamics and information theory is a computationally efficient approach. At its core it consists of analyzing the occurrence of patterns and even bears similarity to classical visual EEG interpretation [6].

II. BACKGROUND

A. Local Binary Pattern (LBP)

A class of data-analysis methods is referred to as symbolization, which describes the process of transforming raw experimental measurements into a series of discrete symbols. Symbolization is particularly interesting for EEG analysis, because as recent experience has clearly demonstrated, it faithfully preserves dominant dynamical signal characteristics while significantly increasing the efficiency of detecting and quantifying information contained in real-world time series [13]. Symbolization may be efficiently achieved by mapping a sequence of iEEG samples into a bit string, i.e. a one-dimensional local binary pattern (LBP) [7]. A LBP code reflects relational aspects between consecutive values of the original iEEG signals only, but not the values themselves.

Computing a LBP code is simple: (1) The iEEG signal samples are converted into a bit string depending on the sign of the temporal difference of adjacent samples. If the difference is positive, we assign a 1 to the sampling point, otherwise a 0. (2) A LBP code of length l is associated with every sampling point

1Available for download at http://ieeg-swez.ethz.ch
by concatenating its bit with the successive $l-1$ bits. Fig. 1a, 1b show examples of LBP code with $l=5$. Fig. 1c illustrates how histograms of LBP codes differ between interictal and ictal states. During the interictal state the LBP codes are almost evenly distributed over all the possible codes. In contrast the ictal window has a predominant portion of a single LBP code and many LBP codes are missing due to the typically slow and asymmetric oscillations occurring during seizures.

B. Hyperdimensional (HD) Computing

The human brain consists of billions of neurons, glial cells and synapses, suggesting that large circuits are fundamental to its computational power. HD computing explores this idea by invoking vectors of very high dimensionality for computing, i.e., $d=10,000$ dimensions \footnote{6}. There exists a huge number of different, nearly orthogonal vectors with the dimensionality in the thousands \footnote{14}. This lets us combine two such vectors into a new vector using well-defined vector space operations, while keeping the information of the two vectors with high probability. HD computing has further unique features including fast learning, robustness, and efficiency of realization \footnote{10}.

HD computing has been used for classifying various biosignals including EEG \footnote{12} and electromyography (EMG) \footnote{11}. Its learning and classification are composed of three main steps: 1) mapping symbols to atomic high-dimensional vectors; 2) combining atomic vectors with well-defined arithmetic operations in an encoder to produce composite structural vectors; 3) storing/updating (i.e., learning) these vectors inside an associative memory and finally comparing with query vectors (i.e., inference). HD computing begins with selecting a set of random high-dimensional vectors (with i.d.d. components) to represent basic objects. They serve as atomic vectors and are used as building blocks to construct representations of more complex objects. To generate these atomic vectors, we use random d-dimensional vectors of equally probable 1s and 0s, i.e., dense binary elements of $\{0,1\}^d$. These vectors are stored to a so-called item memory (IM), i.e. a symbol table or dictionary of vectors defined in the system. In our seizure detection system, the names of electrodes and the LBP codes are the basic symbols. The IM assigns a random orthogonal vector to every symbol.

Here, we focus on two main operations of HD computing for encoding with the atomic vectors: bundling and binding. Bundling, or addition, of binary vectors $[A+B+\ldots]$ is defined as the componentwise majority with ties broken at random. Binding is defined as the componentwise XOR (\oplus). Both operations produce a d-bit vector with an important distinction: bundling produces a vector that is similar to the input vectors, whereas binding produces a dissimilar vector. Hence, bundling is well suited for representing sets, and can combine field/value bindings to produce a larger structure (e.g., record or tuple). Representations of such composite structures are constructed directly from representations of the atomic vectors by applying these operations without requiring any learning for the encoder.

The output vector of the encoder is then fed into an associative memory (AM) for training and inference. During training the output vector of the encoder is stored in the AM as a learned pattern. During inference the output of the encoder is compared with the learned patterns. Comparison is based on a distance metric over the vector space. The AM uses Hamming distance, defined as the number of different components of two binary vectors.

III. PROPOSED ALGORITHM: LBP FEATURES AND BINARY HD LEARNING AND CLASSIFICATION

The LBP feature extractor and HD computing can be combined to quickly learn from ictal iEEG to then detect further seizures. Our proposed algorithm uses LBP codes to directly symbolize the iEEG signal of an electrode. Then a composite d-dimensional binary representation is constructed to capture the statistics of the LBP codes across all electrodes and over time. The final classification is followed by simple postprocessing as shown in Fig. 2.

A. Preprocessing and LBP Feature Extraction

The iEEG signals are sampled by a 16-bit ADC, filtered by a fourth order Butterworth filter between 0.5 Hz and 150 Hz, and downsampled to 512 Hz. A LBP code with $l=6$ is computed for every sampling point. The LBP code considers six consecutive samples, and moves by one sample. Our LBP code generates 2^6 different symbols that are fed into the next stage for learning and classification. Using larger code sizes improves its applicability to non-stationary signals and latency of classification.

B. HD Learning and Classification

HD computing first projects the LBP codes to the high-dimensional space via the IM that assigns an orthogonal vector to every LBP code, i.e., $C_1 \perp C_2 \ldots \perp C_{64}$. To combine these vectors across all electrodes, HD computing generates a spatial record (S), in which an electrode name is treated as a field, and its LBP code is treated as the value of this field. The IM is also used to map the name of electrodes to orthogonal vectors: $E_1 \perp E_2 \ldots \perp E_n$ for a patient with n electrodes. This allows to bind the name of each electrode ($E_j \mid j \in [1, n]$) to its corresponding code ($C_i \mid i \in [1, 64]$). The spatial record (S) is then constructed by bundling these bound vectors using majority gates: $S = [E_1 \oplus C_i + E_2 \oplus C_i + \ldots + E_n \oplus C_i]$

Vector S is computed for every new sample, and represents the spatial information about the LBP codes of all electrodes. The next step is to compute the histogram of LBP codes for a moving window of 0.5 s. This window size should be large enough to theoretically permit at least a single occurrence of all possible LBP codes \footnote{6}, \footnote{15}. The window of 0.5 s contains 256 LBP codes constructed with maximal overlap. To have a high probability that every code occurs inside this window, we should...
hold $256 > 2^{l+1}$, hence $l < 7$. To estimate the histogram of LBP codes inside this window, a multiset of temporally generated S vectors is computed as $H = [S^1 + S^2 + ... + S^{256}]$. A majority gate is applied in the temporal domain through accumulation (i.e., componentwise addition) of S^i vectors $i \in \{1, ..., 256\}$, that are produced within the window, and then thresholding at half.

We observe that the interictal and ictal states show different distributions of LBP codes inside the window: during an interictal segment, we have a nearly random signal, with a well distributed count histogram; conversely, during a seizure we typically observe rhythmic signals, i.e., slow and often temporally asymmetric oscillations, which yield polarized histograms as demonstrated in Fig. 1c. This shows that the distribution of LBP codes, not necessarily their sequence, is an important indicator to distinguish ictal vs. interictal states. The high-dimensional space naturally encodes such histograms in H by accumulating and thresholding the spatial vectors. To reconstruct the histogram from H, we compare it with $C_1 \perp C_2 \perp \ldots \perp C_{64}$, inside the IM, and calculate the normalized Hamming distances that reflect relative frequency of the symbols. The reconstructed histograms achieve a Pearson correlation coefficient > 0.9 compared to the exact histograms. The output of HD encoding is vector H, which is updated every 0.5 s. To quickly train the classifier, we use this vector to build the AM containing two prototype vectors representing ictal and interictal labels. To train the interictal prototype, all H vectors computed over an interictal window of 40 s are accumulated (summed), and then thresholded (binarized) to be stored in the AM. Correspondingly, an ictal prototype vector is generated from a smaller window of 10–30 s depending on seizure duration. For classification, a newly computed H vector is compared to every prototype of the AM using Hamming distance to determine its label.

C. Postprocessing

The last part of the algorithm postprocesses the labels produced by the HD classifier every 0.5 s. It defines a window of 5 s where a final decision is made based on the last 10 labels collected from the HD classifier (shifting labels of 0.5 s at a time). The decision is made based on a patient-specific threshold (t_p): the algorithm detects the seizure onset when the number of ictal labels inside the 5 s window is equal or greater than t_p. During the training, t_p is initially set to 10 (out of 10, to reduce the false alarms) and is decreased such that the algorithm can detect the training ictal segment. After the training, we obtain t_p between 10 to 8 depending upon the patient.

Overall, our algorithm has five parameters: the size of LBP codes (l), the duration of the two windows (0.5 s and 5 s), d, and t_p. Only the last parameter is patient-dependent, whereas the others are fixed for all patients. Nevertheless, to reduce the memory load, d can be adjusted to the individual patient depending on the number of electrodes and seizure dynamics. We observe that the algorithm works with $d=10,000$ for all patients. For some patients it may even be reduced to 1000 without impairing its performance.

IV. DATASET AND EXPERIMENTAL RESULTS

We include the anonymized dataset of 16 patients of the epilepsy surgery program of the Inselspital Bern in this study for a total of 99 recordings. Each recording consists of 3 minutes of interictal segments (immediately preceding the seizure), and the ictal segment (ranging from 10 s to 1002 s), followed by 3 minutes of postictal time. Table I and II list the number of electrodes, the number of seizures, and the seizure duration for every patient. To evaluate the performance of our algorithm, we use specificity, sensitivity, the number of trained seizures, and delay of detection. The delay is measured as the total time that an algorithm takes to classify an unseen seizure after the seizure onset time point that is marked by the expert; note that it is not the implementation delay but the working delay of an algorithm. Based on these criteria, we observe that patients may be roughly partitioned into two groups. For the majority of the patients (10 out of 16 in Table I), our algorithm quickly learns from one or two seizures, and achieves perfect (100%) specificity and sensitivity with k-fold cross-validation, where k is the total number of seizures minus the number of trained seizures. Our algorithm shows 18.2 s average delay in detection, which is well suited for several important applications considering that iEEG seizure onset often precedes clinical onset by more than 20 s [16]. Furthermore, a 20 s delay from seizure onset detection may in many cases be fast enough to quench seizure activity or to prevent further spreading and secondary generalization, which is the hallmark of disabling or even life-threatening seizures.

For the remaining minority of 6 patients, listed in Table I, our algorithm requires more seizures (3–6) for training. We train with the first m accrued seizures listed in Table II and test with the remaining seizures. For these patients we use 22 seizures for training and test with the remaining 38 seizures. The algorithm
TABLE I: Learning from one/two seizure(s) with perfect (100%) generalization for patient majority using k-fold cross-validation.

<table>
<thead>
<tr>
<th>ID</th>
<th>Elect. [#]</th>
<th>Seiz. [#]</th>
<th>Seizure duration [s]</th>
<th>Trained seiz. [#]</th>
<th>k-fold</th>
<th>Mean delay [s]</th>
<th>Spe. [%]</th>
<th>Sen. [%]</th>
<th>Mean delay [s]</th>
<th>Spe. [%]</th>
<th>Sen. [%]</th>
<th>Mean delay [s]</th>
<th>Spe. [%]</th>
<th>Sen. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>5</td>
<td>14</td>
<td>10</td>
<td>22</td>
<td>2</td>
<td>4</td>
<td>6.3</td>
<td>100</td>
<td>100</td>
<td>6.9</td>
<td>100</td>
<td>100</td>
<td>6.9</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>4</td>
<td>146</td>
<td>89</td>
<td>179</td>
<td>1</td>
<td>75</td>
<td>15.1</td>
<td>100</td>
<td>100</td>
<td>15.1</td>
<td>100</td>
<td>100</td>
<td>15.1</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>4</td>
<td>223</td>
<td>96</td>
<td>301</td>
<td>1</td>
<td>4</td>
<td>34.5</td>
<td>100</td>
<td>100</td>
<td>29.3</td>
<td>100</td>
<td>100</td>
<td>35.2</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>6</td>
<td>88</td>
<td>67</td>
<td>117</td>
<td>1</td>
<td>7</td>
<td>20.9</td>
<td>100</td>
<td>100</td>
<td>14.7</td>
<td>100</td>
<td>100</td>
<td>14.6</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>2</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>2</td>
<td>6.3</td>
<td>100</td>
<td>100</td>
<td>9.0</td>
<td>100</td>
<td>100</td>
<td>7.5</td>
</tr>
<tr>
<td>8</td>
<td>61</td>
<td>3</td>
<td>121</td>
<td>52</td>
<td>184</td>
<td>1</td>
<td>3</td>
<td>13.2</td>
<td>100</td>
<td>100</td>
<td>11.9</td>
<td>100</td>
<td>100</td>
<td>10.3</td>
</tr>
<tr>
<td>11</td>
<td>59</td>
<td>3</td>
<td>57</td>
<td>52</td>
<td>61</td>
<td>1</td>
<td>2</td>
<td>7.0</td>
<td>100</td>
<td>100</td>
<td>6.5</td>
<td>100</td>
<td>100</td>
<td>7.0</td>
</tr>
<tr>
<td>13</td>
<td>98</td>
<td>2</td>
<td>99</td>
<td>73</td>
<td>125</td>
<td>1</td>
<td>2</td>
<td>0.0</td>
<td>100</td>
<td>100</td>
<td>16.3</td>
<td>100</td>
<td>100</td>
<td>9.8</td>
</tr>
<tr>
<td>15</td>
<td>56</td>
<td>9</td>
<td>144</td>
<td>104</td>
<td>198</td>
<td>2</td>
<td>8</td>
<td>36.4</td>
<td>100</td>
<td>100</td>
<td>31.3</td>
<td>99.86</td>
<td>100</td>
<td>30.8</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>2</td>
<td>109</td>
<td>83</td>
<td>135</td>
<td>1</td>
<td>2</td>
<td>32.3</td>
<td>100</td>
<td>100</td>
<td>29.3</td>
<td>100</td>
<td>100</td>
<td>29.5</td>
</tr>
</tbody>
</table>

TABLE II: Learning from three to six seizures, and testing with the remaining seizures for patient minority.

<table>
<thead>
<tr>
<th>ID</th>
<th>Elect. [#]</th>
<th>Seiz. [#]</th>
<th>Seizure duration [s]</th>
<th>Trained seiz. [#]</th>
<th>k-fold</th>
<th>Mean delay [s]</th>
<th>Spe. [%]</th>
<th>Sen. [%]</th>
<th>Mean delay [s]</th>
<th>Spe. [%]</th>
<th>Sen. [%]</th>
<th>Mean delay [s]</th>
<th>Spe. [%]</th>
<th>Sen. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>62</td>
<td>14</td>
<td>98</td>
<td>31</td>
<td>139</td>
<td>3</td>
<td>21.8</td>
<td>94.17</td>
<td>100</td>
<td>15.6</td>
<td>87.80</td>
<td>100</td>
<td>16.8</td>
<td>91.47</td>
</tr>
<tr>
<td>7</td>
<td>74</td>
<td>7</td>
<td>587</td>
<td>154</td>
<td>1002</td>
<td>3</td>
<td>5.0</td>
<td>44</td>
<td>100</td>
<td>5.0</td>
<td>45.24</td>
<td>100</td>
<td>7.6</td>
<td>69.37</td>
</tr>
<tr>
<td>9</td>
<td>92</td>
<td>6</td>
<td>79</td>
<td>19</td>
<td>100</td>
<td>3</td>
<td>16.2</td>
<td>99.47</td>
<td>90</td>
<td>9.2</td>
<td>99.10</td>
<td>100</td>
<td>21.0</td>
<td>98.18</td>
</tr>
<tr>
<td>10</td>
<td>47</td>
<td>13</td>
<td>71</td>
<td>10</td>
<td>252</td>
<td>3</td>
<td>9.3</td>
<td>99.10</td>
<td>90</td>
<td>13.3</td>
<td>99.66</td>
<td>70</td>
<td>13.3</td>
<td>99.66</td>
</tr>
<tr>
<td>12</td>
<td>54</td>
<td>10</td>
<td>99</td>
<td>80</td>
<td>154</td>
<td>6</td>
<td>12.6</td>
<td>93.10</td>
<td>100</td>
<td>14.6</td>
<td>81.61</td>
<td>100</td>
<td>12.6</td>
<td>77.58</td>
</tr>
<tr>
<td>14</td>
<td>49</td>
<td>10</td>
<td>45</td>
<td>23</td>
<td>93</td>
<td>4</td>
<td>21.7</td>
<td>90.81</td>
<td>100</td>
<td>9.3</td>
<td>91.08</td>
<td>100</td>
<td>12.6</td>
<td>72.80</td>
</tr>
</tbody>
</table>

We present a simple algorithm for one-shot learning and classification of seizures. Our algorithm exploits LBP codes and HD computing to enable completely binary operations during training and inference. It further provides a universal and scalable interface to analyse all iEEG recordings (36–100 electrodes) with a minimal set of parameters. Our algorithm learns from one seizure, two seizures, and three-to-six seizures, for eight, two, and six patients, respectively. It outperforms the LBP+SVM and LGP+MLP for detecting 65 novel seizures with higher specificity and sensitivity, and lower memory.

REFERENCES