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Abstract 

Spatial regression on structure and network variables is used as an alternative to time series as-
signment for predicting link speeds on a road network. GPS floating car measurements in the 
Canton Zurich are matched to a network model and explained by link type, time of day and spa-
tial structure (population and employment density) using weighted least squares with and with-
out spatial autocorrelation and spatial error terms. The weighted least squares corrects for het-
eroscedastic variance of the speeds by road type. Two different types of spatial neighborhoods 
were investigated for their suitability in correcting for the spatial correlation between links: one 
based on a nearest neighbor criterion using Euclidean distance, and a second based on network 
distance, defined by the number of intersections between links. The significant spatial correla-
tion coefficients estimated using either type of neighborhoods indicate the presence of both cor-
related spatial error and autocorrelation of speeds. The best-fit models for the two types of 
neighborhoods have different coefficient estimates, and the neighborhood based on network dis-
tance provides higher log-likelihood and adjusted R-square. Speed predictions are made against 
a holdout sample for validation. The performance and sensivitiy indicate that this is a promising 
approach for monitoring the road system. 
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1 Short and long term monitoring of speeds 

Many parties are interested in spatially detailed estimates of link speeds by time of day: the 
travellers relying on their navigation systems, the system manager optimizing the control of 
the system, and over the longer term, the system owners and planners, who monitor system 
performance, adjustment and expansion in the context of land use and regional development.  

At this point, those interested have three possibilities: they can rely on spatially sparse detec-
tors measuring speeds for individual links or lanes; they can employ static or dynamic as-
signment models to predict speeds on all links of the modelled network, and third, they can 
use floating car information. The first approach is too limited in its coverage to be useful for 
navigation or system-wide monitoring. The second is cumbersome, requires continuous up-
dating of the model and has well-known problems with modelling the spatial and temporal 
dynamics of congestion. The problems are attenuated with dynamic assignment, which how-
ever is more difficult to implement. The third is very expensive, if continuous real-time data is 
required on all links, due to equipment and telecommunication costs. In addition, such a 
purely descriptive approach does not give any insight into the structural reasons for the speed 
patterns across time and space.  

An alternative method presented here is to estimate link speeds directly using the underlying 
population structure variables and easily obtainable samples of floating car measurements on 
a sample of the road system. Traffic speed depends on the local speed limit, but also on spa-
tially localized features of the road infrastructure and land use which directly (road curvature, 
stoplights, pavement quality) or indirectly (network density, motorway access points, schools, 
office parks or large shopping centers) influence speed via the driver behavior or traffic vol-
umes. A model which combines these variables in its explanation of links speeds is attractive 
because it offers a structural explanation of the speed in a more direct way than assignment 
models, even if it is not able to capture all the details in competition for road space which are 
modelled by an assignment model. In a longer-term monitoring context, for example, it would 
be possible to correct for the effects of land use changes when evaluating observed speed 
changes.  

The approach presented assumes the availability of high-resolution data on land use and a 
road network topology, both of which are easily obtainable today. It also assumes the pres-
ence of a corresponding dataset of link speed measurements. Such datasets are proliferating 
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due to private investment in dynamic navigation systems. If missing, such data can be col-
lected quickly at reasonable cost, as reliable and affordable GPS-based measurement units and 
the required map matching software is readily available today (Marchal et al, 2006).  

This paper presents the estimation and validation of spatial regression models of road speed 
on population structure and road network variables, with an assessment of predictive power. 
The discussion centers on the treatment of the spatial error structures through appropriate spa-
tial regression models. A brief discussion of spatial analysis approach follows. The data is 
then described and the choice of the weighting approach explained. A weighted least square 
model is estimated first. A set of spatial autocorrelation models using different contiguity ma-
trices are estimated so that several treatments for spatial autocorrelation can be compared in a 
depth not known in the rest of the literature. The best spatial models are described and com-
pared to the WLS. The paper concludes with recommendations for further research and advice 
for the practical application of the approach. 

The family of spatial regression models was popularized by Anselin (1988). Applications of 
spatial autoregressive models or spatial lag models are common in fields of geography where 
spillover effects are expected, like real estate and agricultural economics (for a review see 
Anselin, 2002 and LeSage and Pace, 2004). 

The application of spatial econometric regression models to traffic flow or speeds is rare. 
Bolduc et al. (1992), for example, correct for the spatial autocorrelation of flows between ori-
gin and destination zones. However spatial analysis may prove to be an insightful addition to 
other previous regressions in the field where it has not been applied, for example travel be-
havior and density (Cervero and Kockelman, 1997), congestion and density (Dunphy and 
Fisher, 1996), road accidents and traffic flows (Dickerson et al, 2000), or pedestrian behavior 
in large cities (Desyllas et al, 2003). 

2 Spatial analysis goal, method 

A priori, one would expect structural indicators and traffic volumes to be spatially correlated. 
Spatial dependence is explicit for many activities that generate traffic because they are located 
(strategically or otherwise) according to competing (or complimentary) activities and in such 
a way as to optimize access to roadways. Furthermore, traffic on a section of the network is 
influenced by the traffic or signallization ahead, when the speed limit is not the limiting con-
straint. One would therefore expect that explaining link speeds with structural variables would 
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yield spatially correlated residuals. If not treated, this will result in biased and inconsistent pa-
rameter estimates that cannot reliably be used for inference (LeSage, 2000).  

The ordinary or weighted least squares (OLS, WLS) model can be corrected for such spatial 
correlations by adding information about the neighborhood (see Anselin, 1988 or LeSage, 
1998, whose terminology is used here). The spatial correlation is derived either from the re-
gression residuals or the values of the independent variable in the contiguous (neighboring) 
observations in the dataset. A neighborhood weighting matrix W (n x n) is employed to intro-
duce the information into the equations predicting each of the n locations. Each row sum of 
the W-matrix is normalized to one. In contrast to other applications, the definition of the 
neighborhood and the calculation of the weights is not obvious in the case of network quanti-
ties like road speeds, and will be discussed in detail. 

The spatial lag, or spatial autoregressive model (SAR), is a linear regression of a dependent 
variable y on independent variables X that includes a term for the spatial dependence of the 
observations in X. The procedure is analogous to detrending  a correlated time series: 

 εβρ ++= XyWy a  
with 

 ),0(~ σε N . 

The spatial error model (SEM) corrects for the spatial correlation of the error terms and is 
analogous to stationary correlated errors in time series data: 

 uXy += β  

with  
ελ += uWu e   , ),0(~ σε N . 

The general spatial autoregressive model with a correlated error term (SAC) includes both the 
spatial lag term and the correlation of the error terms: 

 uXyWy a ++= βρ  

with 
 ελ += uWu e   , ),0(~ σε N  

The parameter ρ in the SAR and SAC models represents the additional influence of neighbor-
ing observed values on the dependent variable. In the SEM and SAC model, the parameter λ 
corrects for spatially correlated errors. 
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3 Dataset description 

The regressions use a dataset of three weeks’ continuous daytime floating car measurements 
in the Canton Zurich, matched topologically to a network model (Marchal et al, 2006). The 
network model features directed links which are categorized by link type, according to infra-
structure features and speed limit (Tiefbauamt Zurich, 2002). After matching, the link speed is 
the link length divided by the travel time over the link (exit time – entry time). The matching 
yields 52,000 speed observations on 3680 directed links. 50% of the links were measured at 
least eleven times, and the average number of measurements per link is thirteen.  

The observations are averaged by time period for consistency with the Canton’s planning of-
fice. The four periods are weekday peak (6:30-8:30am and 4:30-6:30pm), weekday shoulder 
(8:30am-4:30pm and 6:30-8:30pm), weekday off-peak (8:30pm-6:00am), and Saturday. The 
observations used in the regression represent the average speed on a directed link during one 
time period, and n = 10,506 observations because not all links were measured in all time peri-
ods.  

The road (link) types to which the floating car data is matched are defined by a local traffic 
planning consultant (Tiefbauamt Zurich, 2002): Motorways, Trunk Roads, Collector Roads, 
Distributor Roads, and Other Roads. The category Other Roads are represented by zone cen-
troid connectors in the network models. This road type is problematic because it represents 
many kinds of road infrastructure from neighborhood roads with speed limit 50 km/h to cul-
de-sacs and gravel paths in the forest. These stretches are located at the beginning and end of 
the floating car measurement legs and their signage and lighting conditions are varied. These 
conditions made it difficult for test drivers to navigate consistently and to drive normally on 
these roads. The data has not been cleaned of these effects, and large variances are the result. 
The data are cleaned of gross driver errors and personal stops (Marchal et al, 2006). 

The dataset is partitioned into an estimation sample and a validation sample that is used to de-
termine goodness-of-fit for forecasting and to quantify the predictive quality of the model. 
The choice of the validation sample is constrained by the requirement in spatial analysis that 
the neighborhood of links be contiguous. The two samples were chosen to represent the two 
urban centers in the region in order to include similar land uses, densities, and network char-
acteristics. The estimation sample is the Zurich metropolitan region of 9297 observations. The 
validation sample is the Winterthur metropolitan region consisting of 1209 observations. 
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Figure 1 Map of average measured road speeds in Canton Zurich with holdout sample 
Winterthur in the box (upper right). 

 

Discontinuities in GPS data  are caused by tunnels and by urban and natural canyons. 

3.1 Dependent variable: Speed data by time and link type 

Higher speed links exhibit higher variance (Hackney et al., 2004), indicating a heteroscedastic 
dependent variable. Indeed the OLS residuals are also heteroscedastic and treatment by 
weighted least squares (WLS) is indicated. The procedure groups appropriate observations of 
the heteroscedastic variable and divides the OLS equation by the group-specific residual vari-
ances (Maddala, 2001). Here, the framework of the problem provides convenient groups 
based on road type. Heteroscedasticity is no longer detected after dividing the OLS equation 
by the residual variance according to road type. The WLS parameters have the same units as 
in the OLS and can be used in the same way to calculate link speed predictions. 
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3.2 Spatial explanatory variables 

The analysis attempts to explain the spatial speed variation with variables detailing the spatial 
structure and the structure of road network that might indicate the heterogeneous intensity of 
traffic in space. All GIS work was performed using ArcGIS Spatial Analyst 8.3. 

The variables available at hectare resolution are the population, employment opportunities, 
and employed persons. This data is produced by the Swiss Federal Office of Statistics with 
census data (Swiss Federal Office of Statistics, 2000). Employed persons and population are 
nearly perfectly correlated. Population, instead of the number of employed people, is included 
in the models because it is more likely to be a variable available to planners elsewhere. These 
densities were weighted with a kernel density function over radii R of 1km, 3km, and 5km to 
capture the effect of increasing distances from a link (Figure 2). The kernel density estimators 
take the form: 

λ(s) = n-1b-2Σκ{(s – si) / b} 

where s1, s2, ….., sn are the variable values in the n hectares within the region R, b is the band-
width of 70.72 meters and κ( ) is the Gaussian spatial probability density function. The hec-
tare value closest to the endpoint of a link is used in the regression. This endpoint values were 
used because the average link length is 456m, spanning several hectares. 

The length of road by type per hectare (road density) and the number of motorway access 
points (on/off ramps) per hectare were calculated with a high-resolution network model of the 
Canton that was matched to the hectare (Navteq, 2004). The road density, in units of meters 
per hectare, and the number of motorway access points per hectare, are indicators of the local 
routing alternatives and the number of intersections near a link which could influence speed 
on the link by way of flow volume, signalization, or flow continuity. They are also indicators 
of land use, but the correlation with the structural variables is sufficiently low as to not cause 
concern for the regression. The road densities are not kernel-weighted, corresponding to the 
assumption that their effect on speed is localized. The motorway access points are kernel 
weighted in the same manner as the structural variables. 
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Figure 2 Spatial patterns of population density in Canton Zurich with kernel radii 1km, 
3km, 5km. 

 

 

Source: Bindra (2005) 

4 WLS results 

The OLS regression is estimated in SPSS with a stepwise estimation/validation procedure that 
adds and eliminates variables by seeking marginal improvements in the F statistic, retaining 
only coefficients significant at the 5% level. The method is robust against overfitting but is in-
sensitive to correlated independent variables which would invalidate the standard errors of the 
estimates. Specific combinations of network and structure variables were chosen for the step-
wise regression based on their qualitative meaning in explaining speeds, their correlation with 
speed, and a low correlation with each other. The logarithm of the structural variables fits the 
relationship better and correlates stronger with speeds. Finally, only the combinations of vari-
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ables with the lowest Variance Inflation Factor (Maddala, 2001) were used, to minimize cor-
relation of the variables with the regression residuals. 

Often there is little difference in fit quality or parameter statistics across different combina-
tions of structural variables. Among those with the best statistics, the model with the most 
plausible qualitative explanation was retained for the final form of the WLS. 

The WLS is estimated, like the spatial models, using the econometrics library in Matlab 
(LeSage 2005). It uses dummy flags for road type and time of day to capture assumed inde-
pendent effects on average speeds. The variables used and the estimated parameters are in 
Table 2. Variables were kept if they were significant at α = 5% or if they served illustrative 
purposes for the effects of the spatial correlation treatments. The adjusted R2 for 9297 obser-
vations and 34 variables is 0.4960. 

The average speeds correspond to the relative hierarchy in the Canton’s road system, travel 
period, and the speed limits on the different road types. Speeds are highest on Saturdays and 
during morning and evening shoulder periods for all road types, while off-peak speeds on 
Collector Roads and Other Roads are also nearly as high. During peak periods, speeds on the 
Motorways and major Trunk Roads are strongly reduced, and slightly reduced on Other 
Roads. 

The parameters of kernel density-smoothed spatial variables employment opportunities, popu-
lation, and number of motorway access points are consistent with expectations: speeds go 
down with increasing activity densities. The radii of maximum effect are slightly different for 
the different road types. Motorway speeds are more strongly associated with job density at a 
wide radius of 5 km, and with motorway access density locally at a radius of 1 km (this is 
nearly the average distance between motorway on- and off-ramps). Speed on lower ranked 
roads is associated more with the local employment density (1km) and the population density 
in a 5 km radius. 

The parameters for the road density have mixed signs. The presence of urban collector and 
urban distributor roads within the same hectare as a link are associated with lower speed, 
while trunk roads, motorways, and distributor roads are associated with increased speed. The 
effect of the latter two road types is 2-3 times higher in absolute value than the effects of the 
other road types. The interpretation is that the presence of higher-speed roads near a link, in 
absence of lower-speed roads, is an indicator of land use dedicated to traffic throughput to 
destinations not directly involved with the immediate hectare. Higher speeds result. The pres-
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ence of lower-speed roads, as an indicator of land use requiring high accessibility to a local 
origin or destination, would be expected to be associated with lower speeds on the link.  

5 Spatial and network-topological basis of the W matrices 

The clear correlation of speed observations demonstrated by Bernard et al. (2006) supports 
the a priori discussion above that spatial correlations should be expected in the WLS residu-
als. This section focuses on finding the most relevant set of contiguous neighbors comparing 
two alternative approaches to defining distance and neighborhood. One can measure distance 
between a pair of links either along the shortest network path between them, or as Euclidean 
distance by the midpoints of the links. The first measure is spatially inhomogeneous and not 
symmetric, due to, for example, one-way streets or limited access roads. The explanatory hy-
pothesis is that the flows along the path create the correlations. The second measure is sym-
metric. Here, the explanatory hypothesis is that the abutting land uses and their travel generate 
the correlations.  

While it is quite useful to assume spatially symmetric error correlations for regressions of 
geographically fixed variables like land rents, there are good reasons to expect the residual 
correlations of a traffic speed regression to be stronger on networks than symmetrically dis-
tributed in space. First, spatially proximate road links might only connect with each other at a 
distant part of the network, so traffic loads on proximate links might not be related except by 
the type and intensity of local land use. This would weaken a spatial model’s ability to discern 
between spatial error and autocorrelation terms. One example is the oncoming traffic lane: 
Travel demand is strongly directional at peak periods, so opposite lanes may carry much dif-
ferent flows, in which case the correlation of the speed variances in opposing directions will 
not be strong. A second reason that the error correlation structure for traffic is not likely to be 
spatially symmetric is the temporal dependence of a traffic state: Events that occur upstream 
in the traffic flow happen in the future and cannot have relevance to events in the present. 
While upstream events may indeed be correlated to the speed on the link, it only makes causal 
sense to model correlation from links downstream in the flow. 

The Euclidean (spatially symmetric) set of nearest neighbors is constructed for link i by 
searching outward in all directions from the midpoint of i for the midpoints of the N nearest 
links, where their Euclidean distance is the measure of nearness. The method nnw in the Mat-
lab spatial econometrics toolbox is used (LeSage, 2005).  
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The network neighborhood of link i is the set of downstream links within a given network dis-
tance D, in this case defined as the number of road intersections (nodes with 3 or more edges, 
Balmer et. al, 2005). The network is searched from i in the direction of link flow, including 
all branches of links encountered, up to D downstream intersections (Figure 3). The number 
of nearest neighbor links will vary according to how many links join at each intersection. The 
oncoming lane is only reachable by a U-turn and has a distance of at least one intersection.  

The temporal dependence of the traffic state is accounted for by assuming that speeds and re-
siduals are independent across the four time periods used. Thus, if links i and j are within dis-
tance D on the network or within N nearest neighbors in space, they are only considered 
neighbors if there is a speed observation for both i and j during the same time period. Finally, 
the matrix elements are equally weighted and standardized to a row sum of one.  
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Figure 3 Link neighborhood. Five spatially symmetric nearest neighbors by Euclidean 
distance vs. neighbors within a network distance of up to two intersections (link i 
grey, neighbors black) 

6 Spatial analysis results 

6.1 Procedure for choosing the type of spatial model 

Spatial regressions are indicated if analysis shows that the least squares residuals are corre-
lated across the contiguity matrix. Fit statistics (e.g. Moran’s I or Lagrange Multiplier Statistic 
for SAR models) are desirable indicators of residual spatial errors. But their calculation re-
quires inversion of the n * n contiguity matrix. Four GB of computer memory were not suffi-
cient to calculate fit statistics for this dataset. In this case, in order to identify spatially corre-
lated residuals, it is necessary to estimate the full regressions and to compare the significance 
of the estimated correlation parameter and the log likelihoods. The regressions can be calcu-
lated using sparse W matrices which save computer memory (LeSage, 2005). 

The SAR and SEM models explain the correlated spatial model variance differently. The 
SEM model assumes a common but unidentified spatial process which affects all of the vari-
ables associated by the W matrix. A significant parameter indicates missing spatial variables 
(Bivand 1998). Examples are areas where older architecture or topography forces roads to be 
narrower and more curvy, areas where fog is or ice was present (endemic to the study area in 
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November), or the specific composition and distribution of structural variables within a hec-
tare that impact on travel speed differently, such as whether the employment opportunities are 
associated with a large shopping mall versus offices. 

The SAR model should be investigated if a process can be assumed which would lead to 
autocorrelated dependent variables. In this case it is an attempt to explain directly the speed 
on a link as a function of the speed of downstream traffic or signalization, as effects spill over 
from one road segment to the next along the path of influence in the W matrix. The SAR 
model must still be tested for spatially correlated residuals and corrected if necessary (SAC). 
The determination of the best spatial model using both an autoregressive and a spatial error 
term is described in section 6.5. 

6.2 Quality of fit of the spatial autocorrelation models 

Fit and maximum likelihood estimation statistics of the WLS and of spatial regressions using 
the first 8 network and 16 Euclidean orders of contiguity matrices are shown in Table 1. 

The speed (v) and WSL residual (r) correlation (ρv and ρr) are calculated using neighboring 
pairs of the speeds or WLS residuals as follows, for all non-zero elements of the W matrix:  
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Table 1 Measures of quality of fit for spatial regressions for different W matrices 

Number of neighbors 
in W 

Speed 
Correlation 

WLS 
residual 

correlation 
R 

SAR Adj. 
R2 

SAR 
Log Lik.

SEM Adj. 
R2 

SEM 
Log Lik.

0, WLS (0) na na 0.4960 na 0.4960 na

Euclidean nearest neighbor  matrix    

1 0.59 0.21 0.5019 -32492 0.5141 -32554

2 0.52 0.20 0.5015 -32408 0.5261 -32475

3 0.48 0.18 0.5002 -32389 0.5304 -32441

4 0.46 0.17 0.5004 -32364 0.5341 -32412

5 0.44 0.16 0.5013 -32350 0.5354 -32401
6 0.42 0.15 0.5018 -32362 0.5335 -32409

7 0.41 0.14 0.5010 -32368 0.5348 -32403

8 0.39 0.13 0.5022 -32379 0.5320 -32418

9 0.38 0.13 0.5023 -32379 0.5322 -32417

10 0.37 0.12 0.5021 -32383 0.5322 -32419

11 0.36 0.11 0.5017 -32389 0.5308 -32426

12 0.35 0.11 0.5021 -32398 0.5303 -32433

13 0.35 0.10 0.5021 -32411 0.5281 -32448

14 0.34 0.10 0.5024 -32418 0.5264 -32456

15 0.33 0.09 0.5024 -32430 0.5246 -32470

16 0.32 0.09 0.5022 -32441 0.5234 -32477

Average number of neighbors within the (n) nearest intersections  W - matrix 

2 (1) 0.56 0.20 0.5040 -32394 0.5279 -32470

6 (2) 0.46 0.14 0.5065 -32347 0.5329 -32424

12 (3) 0.40 0.10 0.5043 -32369 0.5370 -32399

21 (4) 0.35 0.08 0.5050 -32394 0.5370 -32396
31 (5) 0.32 0.06 0.5051 -32427 0.5339 -32413

45 (6) 0.28 0.05 0.5046 -32458 0.5306 -32432

60 (7) 0.25 0.04 0.5040 -32496 0.5247 -32469

78 (8) 0.23 0.03 0.5030 -32531 0.5193 -32509
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The adjusted R2 as well as log likelihoods of all the spatial models are higher than for the 
WLS, indicating that the SEM and the SAR fit the data slightly better than WLS, but only in 
the third significant decimal. However the spatial coefficients, ρ or λ, of all the spatial models 
are highly significant, meaning that the WLS results are biased and inconsistent due to the un-
corrected spatial correlations.  

Best models chosen for illustration purposes are based on the statistics in Table 1. Because the 
iterative solution to the spatial regression maximizes the log likelihood, the models with the 
highest log likelihood are chosen as best fits. Though the highest residual correlation occurs 
as expected between nearest neighbors (e.g. Tobler 1970), the best fits are usually achieved 
with more neighbors. Also, the network distance W matrices fit the data better than the 
Euclidean nearest neighborhoods.  

6.3 Best fit spatial error model (SEM) 

The coefficient λ shifts explanatory power from structure variables to the neighborhood con-
text of the link. The best-fit spatial error models results with either the five nearest Euclidean 
neighbors, or with on average 21 neighbors within a network distance of four intersections. 
This large number indicates that persistence in speed variations is stronger along the network 
paths than across space. λ is 0.59 in the network neighborhood model and 0.33 in the Euclid-
ean-distance based neighborhood model (Table 2), meaning that network neighbor correla-
tions contribute nearly twice as much to speeds as spatial neighbor correlations. 

As in the WLS results, the relative road hierarchy is clear in the values of the dummy parame-
ters by time period. In the SEM model however, one would choose to exclude the density of 
Urban Distributor roads and Urban Collector roads from the regression on the basis of their t-
statistics. The effect of employment opportunities on the speeds of Other Roads is also not 
significant in the SEM model. The dummies for motorway for all time periods are roughly 3-7 
km/h higher than in the WLS. The trunk, distributor, and collector road types have lower con-
stants, while the constants for Other Roads are on average the same as in the WLS. The pa-
rameters estimated for the effect of road densities on speeds, when significant, are smaller in 
the SEM than in the WLS. Speeds on motorways and distributor roads are reduced more 
strongly by high job density in the SEM than in the WLS, and the effect is much stronger in 
the models based on network neighborhoods. The effect of population density on the speed on 
Distributor Roads remains insignificant.  
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6.4 Best fit spatial autocorrelation model (SAR) 

The SAR corrects for the spatial autocorrelation of the speeds. Though the autocorrelation pa-
rameters were significant for all contiguity matrices tested in Table 1, like the WLS, the re-
siduals remain correlated (see 6.5). The parameter estimates may thus be incorrect and are not 
shown in Table 2 for this reason. The best fit is obtained by using the five nearest Euclidean 
neighbors or the on average six neighbors within a network distance of two intersections. The 
autoregressive parameters, ρ, are very similar whether the Euclidean or network W is used, 
though statistically distinct (0.27 and 0.29). Both SAR models result in qualitatively similar 
differences in the fitted parameters relative to the WLS, which are also reflected in the SAC 
results. 

6.5 Best fit general spatial regression model (SAC) 

There is reason to suspect significant unobserved spatial influences and therefore spatial cor-
relation of errors even after correction for autocorrelated speeds. The general spatial regres-
sion requires the use of two contiguity matrices: one for spatial autoregression and one for 
correlated spatial errors. It is not certain that the best SAR model will result in the best SAC 
model with the addition of a spatial error correction term. Therefore, the log likelihoods were 
calculated for combinations of W matrices for between zero and fifty nearest Euclidean 
neighbors and for zero to eight intersections, resulting in between zero and 78 neighbors. This 
range of localized and diffuse effects is shown in Figure 4.  
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Figure 4 Contours of the log-likelihood surface of the SAC model for different W matrices: 
axes are the number of neighbors in the autoregressive versus spatial error matrix  
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(a) Intersection-distance defined neighborhoods 
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(b) Nearest neighbors by Euclidean distance  

The two approaches (SEM, SAR) compete to a certain extent in the explanation of the under-
lying processes. The highest values are found on ridges parallel to the main axes. The solu-
tions on the diagonal where identical W matrices are used for the autocorrelation and spatial 
error correlation are numerical artifacts (LeSage 2000, Dubin 2004). 
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Using either network or Euclidean matrices improves the fit in the SAC model beyond the 
underlying SEM or SAR models. The best fit is obtained with either the 11 and 4 nearest 
Euclidean neighbors, or with nearest network neighbors within four and one intersections (21 
and 2 neighbors, on average). The difference between the log likelihoods in the best models is 
small. The coefficients of both models are similar and highly significant.  

Both formulations the SAC use more neighbors for autocorrelations and fewer for the spatial 
error correlation. The influence of autocorrelation is approximately double that of the spatial 
residual correlation. These models therefore emphasize the causality arising from linked traf-
fic flows more than the explanations due to unobserved spatial influences. 

The SAC parameter estimates are rather similar to the SAR estimates (Table 2). The link type 
and time dummies for WLS and SEM are very similar, but are much lower for SAC. The dif-
ference is made up by the contribution of the speed on neighboring links. All dummies are in-
significant for Other Roads, indicating that speed on this road type is completely accounted 
for by the autocorrelations of speeds and the residuals. Both the magnitude and the signifi-
cance of road densities tend to play a stronger role in the WLS than if autocorrelation or spa-
tial correlation is corrected. The link-type-specific effects of population structure variables 
also tend to have higher magnitude in the WLS, though this is not a general rule. 

While the SEM has the highest R2, the SAC has higher log likelihood. Either model is a clear 
improvement on the WLS due to the significant estimate of the correlation parameters. Infer-
ences made without accounting for spatial correlation would overemphasize the importance of 
structure variables and even ascribe significance to variables that have no explanatory power 
when uncorrelated from neighborhood effects. 
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Table 2 Estimated model parameters for the subset of link speeds in Zurich (N = 9297) 

          Model: WLS SEM, Eucl. SAC, Eucl. SEM, Net. SAC, Net. 
Variable Coeff Coeff Coeff Coeff Coeff 
Highways *   Saturday 149.86 151.43 114.22 157.20 120.90 

Highways *   Peak Period 139.14 141.20 106.13 145.63 112.94 

Highways *   Shoulder 148.05 149.57 113.39 153.92 119.76 

Highways *   Off Peak Period 150.23 151.26 113.59 155.04 120.73 

Trunk roads *   Saturday 119.92 123.84 97.95 115.94 96.19 

Trunk roads *   Peak Period 113.73 117.83 93.23 110.18 91.62 

Trunk roads *   Shoulder 115.75 119.87 94.89 111.96 93.29 

Trunk roads *   Off Peak Period 119.12 123.09 97.18 115.56 95.05 

Collector roads *   Saturday 110.80 110.99 82.18 107.65 80.05 

Collector roads *   Peak Period 104.54 104.85 78.60 102.21 76.76 

Collector roads *   Shoulder 107.48 107.31 80.05 103.57 77.96 

Collector roads *   Off Peak Period 105.70 108.48 79.19 105.24 76.05 

Distributor roads *   Saturday 119.05 116.10 73.99 102.08 76.32 

Distributor roads *   Peak Period 114.16 111.45 71.77 98.19 75.24 

Distributor roads *   Shoulder 115.48 113.79 73.74 99.67 75.96 

Distributor roads *   Off Peak Period 119.74 116.42 74.23 101.72 77.00 

Other roads *   Saturday 75.66 72.16 20.85*** 71.41 25.94** 

Other roads *   Peak Period 72.20 67.52 20.16*** 69.17 26.97** 

Other roads *   Shoulder 74.19 69.31 21.00*** 68.39 27.26** 

Other roads *   Off Peak Period 77.68 74.94 24.93*** 78.00 29.59** 

Highways *   Highway access points, r=1km -2.23 -1.63 -2.14 -1.62 -1.56 

Highways *   LN(Employment Opport., r=5km) -9.88 -11.11 -7.20 -13.60 -10.16 

Trunk roads *   LN(Employment Opport., r=1km) -7.14 -6.21 -5.47 -6.76 -5.46 

Trunk roads *   LN(Population, r=5km) -4.83 -6.03 -4.55 -4.50 -4.51 

Collector roads *   LN(Employment Opport., r=1km) -2.55 -2.49 -1.96* -3.64 -3.18 

Collector roads *   LN(Population, r=3km) -6.33 -6.35 -5.45 -5.01 -4.40 

Distributor roads *   LN(Employment Opport., r=1km) -4.67 -4.58 -2.96 -6.35 -3.51 

Distributor roads *   LN(Population, r=5km) -7.26 -6.85 -4.69 -3.31*** -4.87 

Other roads *   LN(Employment Opport., r=1km) -7.04 -5.55* -1.67*** -5.26** -3.76*** 

Density highways [m/m²] 417.03 318.80 277.68 218.68 287.37 

Density trunk roads [m/m²] 77.60 72.39 45.17* 85.28 58.33 

Density distributor roads [m/m²] 261.26 237.57 180.06 155.11 180.65 

Density urban collector roads [m/m²] -60.09 -26.12*** -8.45*** 11.16*** -0.22*** 

Density urban distributor roads [m/m²] -50.01 -24.63*** -17.98*** -12.09*** -26.28** 

ρ - - 0.261 - 0.302 

λ - 0.326 0.182 0.591 0.146 

adjusted R² 0.496 0.535 0.540 0.537 0.545 
Log-Likelihood (x 104) - -3.2401 -2.6996 -3.2397 -2.6960 

Probability of rejecting H0  =   * 5% ≤ p < 10%; ** 10% ≤ p < 15%; *** p ≥ 15%; others: p < 5% 
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7 Validation 

The model’s suitability for prediction uses tests of reasonableness in comparing its output 
with data not used for calibration or estimation (FHWA 1997). The model results are vali-
dated by predicting speeds for the roads in Winterthur using the Zurich parameter estimates 
for the network-based neighborhood models from Table 2 and comparing them to the with-
held measurements. 

The aggregate statistics for the predictions from the best WLS, SEM and SAC in Table 3 
show above all high consistency with one another. In transferring the Zurich model to the 
Winterthur area, all three model formulations tend to predict speeds for the holdout sample 

that are too high ( v̂∆  = mean residual), though none of the differences are statistically sig-
nificant. The variance of the predicted speeds is also higher for the Winterthur sample. The 
SEM formulation has the lowest mean residual, while the SAC model seems to reproduce the 
extreme values the best. This is supported by a speed histogram (not shown). The standard er-
ror of prediction is the proper gauge of the model’s ability to predict speed on a given link 

(NIST, 2006). 22
ˆ SDRSEP v += σ . 

Table 3 Characterization of model results based on the best network neighborhood contiguity 
matrices (all units km/h) 

Dataset Model v̂  v̂∆  v̂σ  SEP SDR minv̂  maxv̂  

Fitted dataset: WLS 53.9 0.0 22.3 30.3 20.6 23.2 124.0 

 N = 9297 SEM 54.1 0.2 17.8 27.7 21.2 28.9 114.4 

 Zurich SAC 54.0 0.0 22.7 29.9 19.5 8.4 150.0 

Holdout dataset: WLS 66.1 3.1 28.0 34.7 20.5 23.4 125.6 

 N = 1209 SEM 64.4 1.4 23.0 31.2 21.0 30.3 117.8 

 Winterthur SAC 68.6 5.6 27.7 34.8 21.0 24.5 128.4 

SEP: standard error of prediction; SDR: standard deviation of the residuals 

The residuals of the WLS, SEM, and SAR predictions of speeds in Zurich and in Winterthur 
were analyzed for systematic bias with respect to categories of travel period, road type, com-
bined travel period and road type, road densities (by type of road), and categorized values of 
the regional structure variables. The categories of time and road type are defined above; the 
other categories were chosen to have equal widths. While the absolute value of the mean of 
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the residuals in certain cases exceeds 10 km/h, the mean residuals are insignificantly different 
from zero in nearly all categories. Where bias is significant, it is due to very small samples in 
the category. Thus there is no systematic indication of circumstances in which certain models 
perform better or worse. 

Figure 5 depicts the prediction results minus observations for the Winterthur area during the 
peak travel period to enable spatial comparison of the models. The mean speeds for these 
roads were shown in Figure 1. The majority of the links in the WLS and SEM model are 
within ± 10 km/h of the observations, with larger differences occuring with the same sign in 
the same places. The SAC model departs from the other two to overestimate speeds on most 
links. There is no apparent directional dependence, nor indication that the overestimates cor-
relate with the underlying built areas. 

Finally, a comparison with an assignment model of the Canton shows that the agreement with 
measurement is much better in the regression models, with the added benefit of more realistic 
spatial and temporal variation. 
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Figure 5 Speed estimates minus observations for the Winterthur area  

 
a) WLS - OBS 

 
b) SEM - OBS 

 
c) SAC – OBS 

8 Conclusions and outlook 

This paper is the first to report an approach to estimate link speeds employing both structural 
variables and the network context, with correction for the spatial error and autocorrelation 
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terms. The validation with a large hold-out sample showed that the carefully implemented ap-
proach produces an acceptable fit, as measured by the standard error of prediction and com-
parison with assignment results. Low transfer error means that application of the model across 
the whole cantonal network is plausible. The W matrices are unique to the dataset however, 
including missing links that were not measurable with GPS, and would have to be re-made for 
a network-wide prediction. 

Estimating the range of spatial models reveals that there are substantial spatial correlations 
which need to be accounted for. A simple linear regression is not enough and is likely to bias 
the conclusions. Spatial autocorrelation and spatial error correlation models are to some extent 
substitutes in terms of improving model fit, but they assume different understanding of the 
underlying processes, which is reflected in the parameters. The joint SAC model shows that 
the SAR has residual spatial correlations which are corrected with rather smaller neighbor-
hoods to obtain a better fit of the data. A network neighborhood explains speeds better than a 
spatially symmetric neighborhood. 

While the time period and road type interactions did not reveal any surprises, the different 
values estimated for the different model formulations highlight the need to be careful in the 
interpretation of spatial regressions for policy making. The new results on the impacts of the 
structural variables show that one has to account for them to understand variation in local 
speeds. 

9 Acknowledgments 

The data was collected as part of the Canton Zurich’s program to monitor the quality of ser-
vice offered by its road network. The support of the Canton’s Amt für Verkehr and of Thomas 
Niederöst is gratefully acknowledged. The assistance of James LeSage in the application of 
the Econometrics Toolbox for Matlab to this special case is also appreciated. 

10 References 

Anselin, L. (2002). Agricultural Economics 27 (3), 247–267 

Anselin, L. (1988). Spatial Econometrics: Methods and Models Kluwer Academic Publishers, 
Dordrecht. 

 24



 

Balmer, M., M. Bernard and K. W. Axhausen (2005) Matching geo-coded graphs, paper 
presented at the 5th Swiss Transport Research Conference, Ascona, March 2005.  

Bernard, M., J. Hackney and K. W. Axhausen (2006) Correlation of link travel speeds, paper 
presented at the 6th Swiss Transport Research Conference, Ascona, March 2006. 

Bindra, S. (2005) Modeling travel speeds: Case study for an urban city, Bachelor of 
Technology Qualifying Report, Indian Institute of Technology, Guwahati. 

Bivand, R. (1998) A review of spatial statistical techniques for location studies, Department 
of Geography, Norwegian School of Economics and Business Administration, 
Trondheim. Retrieved as  http://www.nhh.no/geo/gib/gib1998/gib98-3/lund.html, 
January, 2006. 

Cervero, Robert and Kara Kockelman (1997). Travel Demand and the 3Ds: Density, 
Diversity, and Design. Transportation Research D, Vol. 2, No. 3. 

Desyllas, J., E. Duxbury, J. Ward, A. Smith (2003). Pedestrian Demand Modelling of Large 
Cities: An Applied Example from London, Working paper 62, Centre for Advanced 
Spatial Analysis (CASA), University College London. 

Dickerson, A., J. Peirson, and R. Vickerson (2000). Road accidents and traffic flows: an 
econometric investigation, Economica 67,101 - 121. 

Dubin, R. (2004). Spatial Lags and Spatial Errors Revisited: Monte Carlo Evidence, in: 
Advances in Econometrics, Volume 18, Spatial and Spatiotemporal Econometrics, 
James P. LeSage and R. Kelley Pace (eds.), pp. 75-98. Elsevier Ltd, Oxford. 

Dunphy, R. T. and K. Fisher (1996). Transportation, congestion, and density : New insights, 
Transportation Research Record, 1552, 89-96. 

Hackney, J.K., Z. Oblozinska and K.W. Axhausen (2004) Qualität des Verkehrsangebots: 
mIV Endbericht, Bericht an das Amt für Verkehr des Kantons Zürich, Arbeitsberichte 
Verkehrs- und Raumplanung, 213, Institut für Verkehrsplanung und Transportsysteme 
(IVT), ETH Zürich, Zürich.  

LeSage, J. (2000). Spatial econometrics, University of Toledo, Toledo. 

LeSage, J. (2005). Applied econometrics using Matlab, University of Toledo, Toledo. 

LeSage, J. and K. Pace (2004). Introduction, in: Advances in Econometrics, Volume 18, 
Spatial and Spatiotemporal Econometrics, James P. LeSage and R. Kelley Pace (eds.), 
pp. 1-32. Elsevier Ltd, Oxford. 

Maddala, G.S. (2001) Introduction to Econometrics, Third Edition, Wiley, West Sussex. 

Marchal, F., J.K. Hackney and K.W. Axhausen (2006) Efficient map-matching of large GPS 
data sets - Tests on a speed monitoring experiment in Zurich, Transportation Research 
Record, 1935, 93-100 . 

 25

http://www.nhh.no/geo/gib/gib1998/gib98-3/lund.html


 

Navteq Corp (2004), High resolution digital road network of Canton Zurich, Frankfurt. 

NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/, January, 2006.  

Tobler, W. R. (1970). A computer model simulating urban growth in the Detroit region,  
Economic Geography, 46(2), 234-240. 

Tiefbauamt des Kantons Zürich, Planung + Steuerung (2002), Der Einsatz des Kantonalen 
Verkehrsmodells im Rahmen der Zweckmässigkeitsbeurteilungen, Synthesebericht, 
Baudirektion Kanton Zürich, Zürich. 

Swiss Federal Office for Spatial Development and Swiss Federal Statistical Office (2001) 
Travel behaviour results from the 2000 Microcensus travel, Mobility in Switzerland, 
SFSO and ARE, Bern. 

 

 26


