
ETH Library

Automatic Inference of Quantified
Permissions by Abstract
Interpretation

Master Thesis

Author(s):
Walter, Seraiah

Publication date:
2016-08

Permanent link:
https://doi.org/10.3929/ethz-b-000343503

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000343503
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Automatic Inference of Quantified
Permissions by Abstract Interpretation

Master Thesis

By

SERAIAH WALTER

Departement of Computer Science
CHAIR OF PROGRAMMING METHODOLOGY

Supervisors:
Prof. Dr. Peter Müller
Dr. Alexander J. Summers, Dr. Caterina Urban

AUGUST 2016

ABSTRACT

V iper, a software verification infrastructure, employs permission logics to efficiently reason
about a program. Permission logics, such as separation logic, require the programmer
to specify access permissions to individual memory locations. In this thesis we present

two different algorithms to automatically infer access permission to each memory location the
program accesses. The first targets arrays by tracking indices and through a set of weakest
precondition rules infers a sound and precise method specification. The second targets other data
structures, such as linked lists, trees and graphs. This algorithm collects accesses in different sets
and uses Viper’s quantified permission construct to define all permissions needed. In this thesis
we present the rules which our algorithms implement to infer all the permissions needed. Our
evaluation shows that inferring precise contracts can be very tricky to do by hand. For example
indices that are accessed might depend on multiple input parameters. For the programmer it is
usually hard to quickly see the relations between all variables. On the other hand the proposed
algorithm is able to quickly infer sound and also quite precise contracts.

i

ACKNOWLEDGEMENTS

I would like to express my gratitude to both my supervisors Dr. Alexander J. Summers and
Dr. Caterina Urban for their great support and very interesting discussions throughout the
project. Furthermore, I want to thank Jérôme Dohrau for participating in our meetings and

sharing the experiences he had with his own project.
Many thanks also to Prof. Dr. Peter Müller for giving me the opportunity to work on this project
in his group. Finally, a special thanks to my family and friends for their continued support
throughout this period.

ii

TABLE OF CONTENTS

Page

List of Figures v

1 Introduction 1
1.1 Goal of this Thesis . 2

2 Viper and Sample 5
2.1 Viper Infrastructure . 5

2.2 Permissions . 6

2.2.1 Exhale and Inhale . 7

2.2.2 Quantified Permissions . 8

2.3 Arrays . 8

2.4 Sample . 9

2.4.1 Abstract Interpretation . 10

3 Inferring Quantified Permissions for Arrays 13
3.1 Tracking Accesses . 13

3.1.1 Heap Dependent Receivers . 15

3.2 Tracking Distinct Accesses . 15

3.2.1 Keeping the Order . 16

3.2.2 Reads and Writes . 17

3.3 Conditionals . 19

3.4 Loops . 20

3.4.1 Forget Operator . 20

3.4.2 Forget if Conditions . 23

3.4.3 Invariants . 23

3.5 Derivation Rules . 25

3.5.1 Extract Accesses . 25

3.5.2 Variable Assignment (var := right) . 26

3.5.3 Field Assignment (fieldAssign := right) 26

3.5.4 Exhale (exhale arrayExp) . 26

iii

TABLE OF CONTENTS

3.5.5 Inhale (inhale arrayExp) . 26

3.5.6 Conditional (if(b) {S1} else {S2}) . 26

3.5.7 Loop (while(b) {S}) . 26

4 Inferring Quantified Permissions for Graph Data Structures 28
4.1 Inference . 28

4.2 Heap Dependent Receivers . 29

4.3 Multiple Fields . 31

4.4 Conditionals . 32

4.5 Loops . 33

4.5.1 Forget Operator . 33

4.5.2 Invariants . 34

4.6 Consequences of Introducing Sets . 35

4.6.1 Advantages and Disadvantages . 36

4.6.2 Extending the Program . 36

5 Evaluation 38
5.1 Inferred Array Specification . 38

5.1.1 Max Array . 38

5.1.2 Longest Common Prefix . 40

5.1.3 Parallel Array Replace . 41

5.1.4 Stress Test . 43

5.1.5 Extend Array . 43

5.2 Inferred Graph Specification . 47

5.2.1 Linked List Traversal . 47

5.2.2 Node Before Five . 47

5.2.3 Get Third Element . 50

5.2.4 Tree Traversals . 50

5.2.5 Find Local Mimimum . 50

5.2.6 Instantiating the Sets . 52

6 Conclusion and Future Work 54
6.1 Future Work . 55

6.1.1 Simplify Contracts . 55

6.1.2 Improve Forget Operator . 56

6.1.3 Postconditions & Invariants . 57

6.1.4 Heap Analysis . 57

6.1.5 Nested Quantifiers . 58

6.2 Final Remarks . 58

iv

TABLE OF CONTENTS

Bibliography 59

v

LIST OF FIGURES

FIGURE Page

2.1 Viper Infrastructure . 6

2.2 Simulation of Arrays . 9

2.3 Structure of Sample . 10

3.1 Motivating array example . 13

3.2 Tracking . 14

3.3 Aliasing . 15

3.4 Distinct Tracking . 16

3.5 Ordering . 17

3.6 Alternative Write Function . 19

3.7 Conditional Example . 20

3.8 Wrong Loop Specification . 21

3.9 Forget operator demonstrated with sets . 22

4.1 Motivating List Example . 29

4.2 Field Accesses in a Row . 30

4.3 Multiple Fields . 31

4.4 Conditionals . 32

4.5 Change of Variables . 33

4.6 Invariant . 35

4.7 Ghost Functions . 37

5.1 Max Array . 39

5.2 Longest Common Prefix . 41

5.3 Parallel Array Replace . 42

5.4 Stress Test . 44

5.5 Extend Array . 46

5.6 Traverse List . 48

5.7 Node Before Five . 49

5.8 Get Third ELement . 50

vi

LIST OF FIGURES

5.9 Tree Traversals . 51

5.10 Find Local Minimum . 53

6.1 Remove Negative Permission . 56

6.2 Inhale inside Loop . 57

vii

C
H

A
P

T
E

R

1
INTRODUCTION

In today’s world software is ubiquitous. This makes errors in programs an even more serious

problem. A famous example is NASA’s Mars Climate Orbiter: on its mission to Mars in

1998 it was sent too low into Mars’ atmosphere, hence the associated stresses crippled its

communications and the spacecraft has been lost somewhere in space without control. This was

due to a software bug which failed to make a simple conversion from Imperial to metric units.

An embarrassing lapse that cost $125 million. Sadly, humans make mistakes. In order to ensure

good software quality most software companies focus on testing, which is able to dramatically

reduce the number of bugs in a program, but it is not able to guarantee the absence of errors.

Hence researchers in the field of software verification are working on automated mathematical

proofs to ensure the correctness of a program. This gives us stronger guarantees that the program

is doing what it is supposed to do. In order to understand what a program is supposed to do,

software verification relies on precise mathematical specification and assertions. Therefore,

proving correctness of a program demands a lot more effort from programmers or the people

in charge of writing the specification. This is probably the biggest obstacle and the reason why

many software developers still solely rely on testing rather than also use verification.

Nevertheless, in the last couple of decades researchers have made astonishing progress in the

field of software verification. One great achievement was the introduction of separation logic (SL)

[14] and other permission-based logics, e.g. implicit dynamic frames [15]. SL is an extension of

Hoare logic [10]. Through the use of explicit access permissions it is able to introduce the ability

of local reasoning, i.e. framing, by isolating the part of the memory on which a program operates,

so that the rest of the memory becomes irrelevant for the proof of the program. In addition it is

also able to prove whether an assertion is affected by a heap modification or not. This makes the

formal verification of programs modular and achieves better scalability.

1

CHAPTER 1. INTRODUCTION

Today’s programming languages such as C or Java introduce many sources of potential bugs

which cannot be handled very well by formal verification without framing. Permission-based

verification tools are very strong in handling data structures such as lists, doubly-linked lists,

trees, etc., since it can focus on the part of the heap that is affected by the data structure

and ignore the rest of the heap. Secondly they also handle pointer bugs such as null pointer

dereferences or undesired aliasing very well. On the down side, permission logics such as SL also

introduce the new overhead of specifying which memory location are used in the program. Those

logics only allow to read or write to a memory location if the program has enough permissions to

the accessed memory location at the corresponding program point. Hence the programmer needs

to annotate the program with the required access permissions. (cf. Section 2.2).

Another great achievement in the research of software verification was the introduction

of verification infrastructures such as Boogie [2] and Why [8]. The development of common

architectures for program verification tools simplified the development of new verifiers by allowing

researchers and developers to focus their work on a single level of abstraction, without having to

consider the whole pipeline from high-level source code, over intermediate representations, to

eventually solving decision problems for logical formulas using SMT-solvers.

Viper [13], developed at ETH Zurich, is a verification infrastructure, which was designed with

permissions in mind. Consequently it allows for the development of permission based verifiers.

All our work in this thesis is part of the Viper project. Viper is further discussed in Chapter 2.

1.1 Goal of this Thesis

As previously mentioned, the introduction of permissions significantly increases the annotation

overhead. The goal of this thesis is to reduce such overhead in order to make program verification

more practical. In Viper, a program is only allowed to read or write to a memory location if at that

program point it has sufficient permissions for that location. Hence, in the method’s precondition,

the programmer has to declare enough permissions for every memory access occurring in the

method. While working through the program Viper keeps track of the state of all permissions.

If Viper encounters a memory read or write to which the current state does not have enough

permission it will report an error. We aim to automatically infer the needed permissions in order

to let the programmer focus on more interesting specifications such as functional properties.

Inferring permissions can get complicated, especially if we consider complex data structures,

in which case we have to handle not only single memory locations but also sets of memory loca-

tions, which may be unbounded. For such cases Viper has the quantified permissions feature (cf.

Section 2.2.2). For example a linked list would be defined in terms of a set. The set contains all the

nodes that are part of the list. One would normally annotate the program with the permissions

needed to access the list by quantifying over this set. In some methods not all locations of the

data structure are accessed. To precisely extract the memory locations that do get accessed

2

CHAPTER 1. INTRODUCTION

we take advantage of Sample [1] (cf.Section 2.4), which is a static analyzer based on Abstract

Interpretation [5]. Hence the main goal is to develop an analysis which automatically infers

quantified permissions with the help of abstract interpretation. In Viper those permissions need

to be defined in the method’s precondition, invariants and postcondition. Hence we transform the

inferred permissions into a shape suitable for the method’s contracts. The effect of permissions in

the context of contracts is further explained in Section 2.2.2

• Arrays. We aim to infer contracts, preconditions and invariants, for methods that manipu-

late arrays. A property of arrays is that the memory location corresponding to each slot

is uniquely defined by the array index. This facilitates our analysis, since to identify all

accesses in a program it is enough to keep track of the accessed indices.

• Graphs. A second goal is to infer permissions for more complex data structures such as

lists, trees and graphs. The main difference to arrays is that those data structures usually

are accessed recursively, which introduces more complexity.

• Soundness and Precision. Many static analysis tools are sound, meaning that if they

prove a property it is guaranteed to hold; on the other hand if they cannot prove a property

it might still hold, since analyzers are typically incomplete. In our analysis we strive to stay

sound and infer contracts that provide enough permissions for each memory location that

the program needs to read or write to during its execution. Soundness is explained in more

detail in Section 2.4.1. On the other hand, we try to be as precise as possible. Therefore we

want to minimize the number of false positives: permissions to locations that in reality are

not accessed by the program. We aim to infer the weakest precondition possible.

• Fractional Permissions. Since Viper supports fractional permissions we also consider

fractions of permissions in our analysis. Different permission amounts are used for read

and write actions (cf. Section 2.2). Therefore we have to distinguish between read and write

permissions. Requiring only fractional permissions whenever possible makes the inferred

contracts more precise.

• Nested Quantifiers. Currently there is work in progress to support nested quantifiers.

We introduce quantifiers in Section 2.2.2. Even though nested quantifiers are not fully

supported yet in Viper we theoretically discuss how this would impact our analysis and

how we could take advantage of it.

In the next Chapter we further explain Viper and Sample. Then we introduce an algorithm to

infer permissions for methods that mainly deal with arrays (Chapter 3) and an algorithm that

works with graph data structures (Chapter 4). In Chapter 5 we discuss some implementation

details and then present and evaluate the inferred specifications. We consider the advantages

3

CHAPTER 1. INTRODUCTION

and disadvantages of the proposed algorithms and draw some conclusions in the beginning of

Chapter 6 and we look into how one could further improve the analysis by discussing some ideas

for future work at the end of that chapter.

4

C
H

A
P

T
E

R

2
VIPER AND SAMPLE

V iper is a new verification infrastructure. In this chapter we explain how Viper is designed

and how its modules interact with each other. Furthermore, we discuss some of the

technical details that are important to understand our work.

Most of our work is done in Sample, which is a part of Viper. We explain the basic principles and

again discuss some technical details.

2.1 Viper Infrastructure

The structure of Viper is depicted in Figure 2.1. As we can see Viper consists of different modules:

at the core it has its own intermediate language called Silver: a sequential, imperative and

object-based language. It consists of fields, methods, functions, predicates, and custom domains.

In a program they are all defined globally. There is no notion of classes; every object has every field

declared in the program, and methods and functions have no implicit receiver. This intermediate

language has the goal to be expressive enough to easily handle a wide variety of front-end

languages. On the other hand it has to be simple enough for the verifiers to efficiently analyse

the code.

The advantage of having this intermediate language is that, in order to use Viper to prove a

property of a program written in an existing programming language, researchers or developers

simply have to write a compiler which translates native code to Silver. Some such front-end tools

already exist: at the moment, Viper has compilers for Chalice [11], Scala, Java [3] and OpenCL

[3]. A translation for a subset of the Python language is being developed. This is the front-end. At

the back-end the Viper infrastructure allows for the development of verifiers. Currently, there

are two verifiers: Carbon, which is based on Boogie, and Silicon, which uses symbolic execution.

Both rely on Microsoft’s SMT solver Z3 [7].

5

CHAPTER 2. VIPER AND SAMPLE

FIGURE 2.1. Viper Infrastructure

An important feature of Viper is that, in contrast to Boogie and Why, it natively supports con-

structs for permissions (cf. Section 2.2), including fractional permissions and counting permissions.

Hence, it can support more powerful front-end verifiers that take advantage of permission based

logics, such as separation logic. This greatly facilitates reasoning for modern day concurrent

programs.

Another very important part of Viper is the static analyzer Sample; its goal is to infer speci-

fications in order the help back-ends verify the program. We further explain Sample in Section 2.4.

2.2 Permissions

In Viper there is a special type Perm for permission amounts. Full permission is denoted as

write and zero permission is expressed through none. Whenever the context makes it clear

that we are talking about permissions we write 1 or 0 for full or no permission respectively, to

save space.

Since the reasoning in Viper is based on permissions, the language has a number of differ-

6

CHAPTER 2. VIPER AND SAMPLE

ent constructs to describe them. The most fundamental contract is the accessibility predicate

acc(e.f, p), which represents permission to a single field location: the field f of the reference

e. The optional second parameter p defines the permission amount. The default value for the

second argument is write, i.e. full permission. Full permission is required for writing to a

location and partial permission, i.e. any amount greater than none, is required for reading

it. With zero permission one is neither allowed to read nor write to the associated field. The

permission amount should always be between zero and full permission. Having a permission

amount greater than full permission or smaller than zero permission, i.e. negative permission,

makes the accessibility predicate equivalent to false.

In order to check whether there is enough permission to read or write to a location, Viper

keeps track of the state of the permission at each program point. It starts with adding all

permission mentioned in the method’s precondition to the state. Then Viper propagates the state

through each path of the method. This way, at each program point Viper can check if the state

holds enough permissions to either read or write to a field location.

In practice an accessibility predicate always appears in a certain context, e.g. precondition,

postcondition, invariants, exhale or inhale (cf. Section 2.2.1). Depending on the context it is used

in the effect on the permission state is different. For example in a precondition the accessibility

predicate means that the method requires the caller of the method to actually have the denoted

permissions to the field location and passing it to the callee. Hence from the callers perspective the

mentioned permissions are removed from the permissions state and from the callee perspective

they are added to the permission state. The reverse holds for the postcondition: the method

passes permissions back to the caller.

2.2.1 Exhale and Inhale

In the context of permissions exhale and inhale statements also play a central role. They

essentially are the permission-aware analogous of assert and assume. Indeed, if we exhale a

pure assertion P — a predicate which does not contain any permission related information —

the exhale statement acts the same as an assert P and inhaling a pure predicate P would be

equivalent to assuming P. On the other hand if the predicate P contains an accessibility predicate

then exhale P means assert P and in addition also give away the mentioned permissions. Similar

for inhale: here we assume P and get all permissions specified in P.

With these constructs we can simulate concurrent programs. For example if a method wants

to fork off a thread executing a method, then it would simply need to exhale the method’s

precondition. Consequently it will pass all the permissions mentioned in the precondition to the

new thread. A join can be simulated through an inhale of the postcondition. For more information

see [11].

Exhaling and inhaling permissions actually has some strong implications: for example if we

are left with no permission to a location then we also have to forget the value of that location.

7

CHAPTER 2. VIPER AND SAMPLE

The reason for this behavior becomes clear in a multithreading example: if one thread exhales all

permissions to a location another thread could inhale them and might potentially end up having

write permission to the location. Hence it would be allowed to change its value.

2.2.2 Quantified Permissions

With quantifiers one can express that a certain predicate holds not only for a concrete instance but

also for a group of elements. This is especially important to have when dealing with unbounded

sets of elements.

One of Viper’s advantages compared to other verification infrastructures comes with the

support for quantified permissions. Hence in Viper it is possible to define permission requirements

for multiple elements, potentially even an unbounded number of elements at once. At the time

of writing Viper restricts quantified permissions to the following structure, but there is work in

progress to relaxing it:

forall q : T :: c(q)==> acc(e(q). f , p(q))

In this formula c(q) is a boolean expression, e(q) a reference-typed expression and p(q) an

expression denoting a permission amount where each expression might depend on the quantified

variable q. In a precondition this means we can quantify over any type T, where under some

condition c(q) we require p(q) permission amount to the field f of any reference e(q), where the

expression e has to be injective. This injectivity rule has the consequence that e has to depend on

the quantified variable.

2.3 Arrays

In order to make the implementation of back-ends more practical Viper tries to keep a small

syntax. Therefore Viper natively only supports the types Int, Bool, Ref, Perm, Set[T]

and Seq[T]. Arrays are not natively supported. There is, however, an easy way to simulate

arrays with a custom domain. Custom domains is a feature of Viper’s language which enables

the programmer to specify its own type. A custom domain consists of functions and axioms, i.e.

properties of the domain. The default implementation of integer arrays is depicted in Figure

2.2. With the statement loc(a,i).val we access the i-th slot of the array a. The field val

contains the actual data of the array. The type of the field corresponds to the type of the array.

As one might expect, the len function refers to the length of the array. The two axioms help

define the behavior of this new type in order to help Viper verify certain properties of the array. If

we want to express a property of the array by quantify over each slot of the array loc would have

to be injective, as explained in Section 2.2.2. The all_diff axiom guarantees the injectivity

property for this function. It guarantees that there are no collisions, meaning for every index i

and array a we get a different reference back. This is expressed in terms of these helper functions

8

CHAPTER 2. VIPER AND SAMPLE

FIGURE 2.2. Simulation of Arrays

1 field val: Int
2 domain Array {
3 function loc(a: Array, i: Int): Ref
4 function len(a: Array): Int
5 function first(r: Ref): Array
6 function second(r: Ref): Int
7
8 axiom all_diff {
9 forall a: Array, i: Int :: {loc(a, i)}

10 first(loc(a, i)) == a && second(loc(a, i)) == i
11 }
12
13 axiom length_nonneg {
14 forall a: Array :: len(a) >= 0
15 }
16 }

first and second. They map the resulting reference from the function loc back to its input

parameter a or i respectively. And since functions by their nature can only map to one single

element, injectivity is guaranteed.

2.4 Sample

In Viper we are able to take advantage of Sample which stands for “Static Analyzer of Multiple

Programming LanguagEs” [1]. It is is a generic static analyzer based on abstract interpretation.

We explain abstract interpretation in more detail in Section 2.4.1. Sample can be used for

strengthening existing specifications or inferring new ones. Figure 2.3 depicts the structure of

Sample. The code (green) gets compiled into the internal language Simple, which is basically

a control flow graph representation of the method. Then, through a fix-point computation and

the help of other analysis modules (blue) certain properties can be inferred. There are different

semantic domains such as numerical domains, strings, types, etc. For some, Sample already

provides implementations: examples for numerical domains are the interval domain [4], octagon

domain [12] and polyhedra domain [6]. We can see that there is also a contract inference module.

This is where our work will take place. We extend the contract inference to be able to infer

quantified permissions. In order to understand how Sample works we first need to briefly

introduce Abstract Interpretation.

9

CHAPTER 2. VIPER AND SAMPLE

FIGURE 2.3. Structure of Sample

2.4.1 Abstract Interpretation

Abstract Interpretation (AI), formalized by the computer scientists Patrick Cousot and Radhia

Cousot [5], is a theory for the sound approximation of the behavior of programs. We will briefly

discuss the most important parts of AI.

Semantics. The semantics of a program is a mathematical characterization of all possible

behaviors of the program when executed for all possible input data. The most precise semantics

is called concrete semantics. It precisely describes the executions of a program in a concrete

domain. The abstract interpretation of a program describes its executions in an abstract domain:

a representation of a concrete domain that abstracts irrelevant properties for a given problem

10

CHAPTER 2. VIPER AND SAMPLE

away. Abstract semantics are needed because the concrete semantics is usually not computable.

The abstract semantics approximates the concrete semantics.

There are many different abstract semantics depending on the property of interest. For example

to guarantee that a certain program statement is never executed one has to track all possible

execution paths. Or if possible return values of the method are of interest then it might be enough

to solely track possible values of variables.

Fixed Point Computations. AI computes the abstract semantics through fixed point com-

putations. The abstract domain is a lattice, where each node in the lattice describes one or more

program executions. At the top of the lattice, the top state, is the set of all program executions,

including executions that could never happen in practice, e.g. dead paths etc. At the bottom there

is the empty set, which corresponds to no executions. Sample starts its computation with the

bottom state and propagates it through the control flow graph of the program. With each iteration

it will add more possible executions, behaviors that through a real execution can actually happen.

Sample supports both forward and backwards iteration strategies. In addition it also allows for a

refining iteration which is a special mix of both forward and backward iteration.

To reach a fixed point one might need to iterate for a very long time or it might not be possible at

all. Hence AI computes an approximated post-fixpoint through the use of widening operators.

Widening. Widening is a mechanism that facilitates computation while potentially losing

information. For example iterating through a loop might take very long or might not terminate

at all. This is the case if the number of iterations depends on an input parameter. The values

of input parameters are usually not statically known and hence the number of iterations are

potentially unbounded. The widening operator overapproximates the behavior and might consider

states of the program that would never be reached. Let us consider a concrete example:

1 method widening(){

2 var i:Int :=0

3 while(i<1000){

4 i := i+1

5 }}

Assume that we are interested in the values of i. As an abstract domain we might want to

approximate the sets of possible values for a variable using intervals. The interval domain

expresses the values of a variable in terms of an interval [x,y] where x is the lower bound and

y the upper bound of all possible values the corresponding variable can assume. In the first

iteration Sample reaches the state [0,1] after another iteration [0,2]. The widening operator will

then try to extrapolate the change in future iterations. Hence it overapproximates the state to be

[0,∞]. This has the consequence that we now also included numbers that i will never contain in a

real execution. Very often the loss of information is necessary to make the semantics computable.

In general there is a trade off between precision and computability.

11

CHAPTER 2. VIPER AND SAMPLE

Soundness. In the context of abstract interpretation soundness means that we only over-

approximate the semantics of the program and never underapproximate it. In particular, we

always include all possible behaviors and maybe more, but never fewer. Concretely, if we work

with a numerical domain the resulting semantics will never miss a possible value of a variable

but might contain more than in a real execution.

In the context of our permission inference soundness means that we will always require at

least permissions to all fields that actually get read or written to. Consequently if our analysis is

sound we infer contracts that provide at least as many permissions that Viper requires to reason

about the program.

12

C
H

A
P

T
E

R

3
INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

In this chapter we explain the methods and rules we use to infer quantified permissions

for accesses to an array. Each array slot that is accessed is uniquely defined by its index.

We collect the indices and propagate the information upwards through the help of weakest

precondition rules in order to lose as little information as possible. This is then used to generate

method preconditions and loop invariants.

3.1 Tracking Accesses

To be able to explain how we infer the permissions for array accesses in a program we should look

at the example in Figure 3.1. This method initializes an array by setting all its slots to 0. Here a

human will quickly see that this method needs write access to the array arr from location 0 to 10.

To begin with, we simplify the inference problem by assuming that there are only accesses to the

FIGURE 3.1. Motivating Array Example

1 method initArray(arr: Array)
2 requires forall p:Int :: 0<=p && p<=10 ==> acc(loc(arr,p).val)
3 {
4 var i:Int := 0
5 while(i<=10)
6 {
7 loc(arr,i).val := 0
8 }
9 }

13

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

FIGURE 3.2. Tracking

1 method tracking1(arr: Array, a: Int, b:Int, c:Int)
2 requires forall p:Int:: p==c+1||p==c+1||p==a||p==b ==> acc(loc(arr,p

).val)
3 {
4 loc(arr,a).val := loc(arr,b).val //[p==c+1||p==c+1||p==a||p==b]
5 b:= c //[p==c+1||p==c+1]
6 a:= c+1 //[p==c+1||p==b+1]
7 loc(arr,b+1).val := 0 //[p==a||p==b+1]
8 loc(arr,a).val := 0 //[p==a]
9 }

array and we do not consider other accesses that either access a field different from val or have

a receiver node that is not part of the array, e.g. a reference passed as a method argument. We

assume that there is only one array and that the implementation of the array corresponds to the

standard implementation explained in Section 2.3. From this point on one can then generalize

the approach for multiple fields and arrays. The general structure of a precondition that grants

access permissions to an array looks like this:

forall p : Int :: c(p)==> acc(loc(arr , p).val)

The expression c(p) might depend on p and describes all the indices of the array to which we

grant access. It acts as a filter since we only require access permissions if the left hand side is

true. For all ps that do not satisfy c(p) the right hand side is ignored.

Our main goal now is to analyse the method and “collect” all the array locations which get

accessed — either through a read or a write — and then transform it into a logical formula for our

c-expression. We do this by stepping backwards through the control flow graph of the program,

which is done in Sample, and whenever we hit an array access we store the index in our collection.

This approach is illustrated in Figure 3.2.

The comment on each line indicate how the collection of indices would be transformed into

the logical formula c(p) after we evaluated the statement on that line. On line 8 the collection

consists simply of the element a. Hence we only want to grant access to the location a. This is

done by considering only ps that satisfy p==a. Quite interesting and at first a little unintuitive is

that even though at line 7 of the program we require access to both locations a and b+1 they are

connected through an or (||). The reason is that this expression does not describe our collection

directly but rather filters out all relevant ps. At the end the collection of ps that satisfy the

expression should be equivalent to the collection of indices from our analysis. Hence it is correct

to require access permission to the index p if p only satisfies either the first part p==a or the

second part p==b+1.

14

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

FIGURE 3.3. Aliasing

1 method alias(a:Ref, b:Ref, arr:Array)
2 {
3 b.val := 5 //[p==a.val] or [p==5]
4 var i:Int := a.val //[p==a.val]
5 loc(arr,i).val := 0 //[p==i]
6 }

As we can see in Figure 3.2 we start by putting the variable a into our collection. We then

propagate our collection upwards and modify it depending on the statement that we hit. For

example, on line 6 there is an assignment to variable a. Hence, if we want to propagate the

information “we need access to location a” above this variable assignment while preserving its

meaning, we need to replace a with the expression on the right. Here we introduce the extra

restriction that the right expression cannot be heap dependent. Else we might end up with a

heap dependent receiver. The problem with heap dependent receivers is explained in the next

section.

3.1.1 Heap Dependent Receivers

In our rule for handling variable assignments we have the extra restriction that, if the variable

is in our collection set, the right hand side cannot depend on the heap. At the moment we rely on

the syntax to determine whether an expression in our collection changes or not: if an assignment

to an expression in our collection happens we know that the value changes and we need to

replace it with the new expression. Hence we can rely on the syntax. The problem with heap

dependent expressions is that the value of the expression could also change if an assignment to a

different expression happens. The reason for this problem is aliasing. As we can easily see in the

example in Figure 3.3, if we collect the element i and later replace it with a.val, we cannot

guarantee that the value of a.val stays the same as long as there is no assignment to a.val. If

a and b actually do alias each other then the first assignment on line 3 would also change the

value of a.val. To take this into consideration we would either need alias information from a

heap analysis, which we do not have at the moment, or write a logical expression which takes

both variants into account, which leads to very complex expressions. Hence we do not allow the

expression on the right to be heap dependent.

3.2 Tracking Distinct Accesses

With the use of inhale and exhale a new level of complexity is introduced. Now, to infer a precise

precondition it is not enough to guarantee permission to each occurring access in the program

but we also have to consider permissions that are added to the permission state through inhale

15

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

FIGURE 3.4. Distinct Tracking

1 method tracking2(arr: Array, a: Int)
2 requires forall p:Int:: true ==>
3 acc(loc(arr,p).val, p==a?-1:0 + p==a?1:0 + p==1?1:0)
4 {
5 inhale acc(loc(arr,a).val,1) //[(p==a,-1),(p==a, 1),(p==1, 1)]
6 exhale acc(loc(arr,a).val,1) //[(p==a, 1),(p==1, 1)]
7 exhale acc(loc(arr,1).val,1) //[(p==1, 1)]
8 }

and others that are removed through exhale.

If we inhale permissions to slot 0 and later read this slot, we will not need to require access

permission to it in our precondition since we got it for free. On the other hand, if we exhale

permissions to the same location twice we need to require twice the amount. In general we have to

track the distinct accesses and “count” how much permission we need to each. This is illustrated

in the example in Figure 3.4.

As before we extract the array location, but now in addition also the permission amount.

Permission amounts in exhales we leave positive since we need to require them and permission

amounts in inhales we negate since inhale adds permission to the permission state for free.

To take advantage of this “counting” mechanism we will have to push our inferred expressions

into the permission amount, i.e. the second input parameter of the acc-predicate.

Viper supports ternary conditional operator: c?a:b. We use this form to write our precondition

which says that for certain ps we will need +1 or -1 permission and then sum everything up. This

way we let the verifier determine how much permission is required in total for each array location

p. Our algorithm stays agnostic to the actual amount. In the example Viper now automatically

determines that it does not require permissions to the position a since the permission amounts

corresponding to the inhale and exhale cancel out. Staying agnostic to the permission amount

also has the advantage that we can let Viper take care of aliases: if we modify the example by

removing the first inhale then Viper would automatically determine if a is equal to 1 that we

require the permission amount of 2, which of course is not possible, hence the precondition would

result to false and if they do not alias it requires full permission to each location.

3.2.1 Keeping the Order

The analysis so far does not consider the order of inhales and exhales. If we use the same approach

for the method tracking3 in Figure 3.5 we can easily see that all the permission amounts

would cancel out. This would leave us with a precondition equivalent to true, since we do not

require permission to any location. This would be wrong, since we should still require access

to location a. The problem is that we allow the inhale on line 8 to cancel out the earlier exhale.

16

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

FIGURE 3.5. Ordering

1 method tracking3(arr: Array, a: Int, b:Int)
2 requires forall p:Int:: true ==> acc(loc(arr,p).val,
3 f(p==a?-1:0 + p==a?1:0 + p==a?1:0 + f(p==a?-1:0)))
4 {
5 inhale acc(loc(arr,a).val) //(p==a,-1),(p==a,1),(p==a,1),(p==a,-1)
6 exhale acc(loc(arr,a).val) //(p==a, 1),(p==a, 1),(p==a,-1)
7 exhale acc(loc(arr,a).val) //(p==a, 1),(p==a,-1)
8 inhale acc(loc(arr,a).val) //(p==a,-1)
9 }

10 define f(x) x>0? x:0

This of course is not allowed: Viper cannot remove access permission from the permission state

that it will get at a later point. In order to prevent this we introduce a “boundary”-function:

f(x) = x>0?x:0. We can see that this function will round any negative amount to zero. In our

bottom up analysis f will be introduced every time we deal with negative permission amounts,

i.e. inhales, and it encloses all expressions that we already inferred, i.e. accesses occurring after

the inhale. This is illustrated in the precondition of the method in Figure 3.5. In this way only

positive amounts will be propagated further up the program state and negative amounts will

contribute to anything further down the program. As an optimization we do not introduce the

function f in between two inhales.

Expressions inside an inhale or exhale can be arbitrary complex. Our analysis handles simple

expressions related to arrays either in the form without quantifiers (1) or with quantifiers (2).

exp describes an arbitrary expression that returns an integer and permAmount can be an

arbitrary expression which returns a permission.

(1) acc(loc(arr,exp).val, permAmount)

(2) forall p:Int:: c(p) ==> acc(loc(arr,p).val, permAmount)

3.2.2 Reads and Writes

The attentive reader might now wonder how we treat simple reads and writes. Indeed, since

read and write statements do not actually modify the state of the permissions in the program

neither the permission amount +1 nor -1, would be appropriate. When we evaluate a read

or a write statement we actually want to check whether the necessary permission amount is

already provided by the expression we collected so far, i.e. whether we accessed the location or

exhaled permission to that location further down the program flow. If we already required enough

permissions to the corresponding location we do not want to require more. On the other hand if it

is not provided yet we want to at least require the permission amount used to perform the action,

i.e. read or write. In order to express that in our logical formula we introduce a helper function

17

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

(1)rwMax(cond, permAmnt, oldExp) = max((cond ? permAmnt : 0),oldExp)

The condition cond refers to the array location we read or write to, oldExp refers to the

permission amount we already collected so far and permAmnt refers to the permission amount

that we require to perform the action. Through the use of this function we can now express that if

cond is true, e.g. p==1, where 1 is the location we read or write to, we require at least permAmnt

permission. But if oldExp already required more permission then we consider oldExp

In the case of a write the permission amount permAmnt has to be 1 since Viper requires full

permission to write to a location. In the case of reads Viper only requires the permission amount

to be greater than 0. There are different possibilities for actually picking a read permission

amount. Here we will briefly discuss two: a fixed amount and a ghost parameter.

Fixed Amount. If we take a fixed amount it is clear that in order to read a location the amount

has to be bigger than 0 and since we only want read permission and not write permission the

amount also has to be smaller than 1. If we take any fixed amount, e.g. 1/10, then our specification

does not correspond to the weakest precondition anymore. A caller now has to pass at least 1/10

permissions even though less would have been enough for reading this location.

Ghost Parameter. This is an artificially introduced parameter exactly for this purpose. The

precondition of the method requires that this parameter, e.g. rdAmount, is greater than 0. The

advantage is that the caller is free to pass any positive permission amount. In the case where

the method itself has to pass permission to this location to another thread he can easily split the

amount up by taking any fraction, e.g. rdAmount/2.

In our analysis we decided to use a ghost parameter to guarantee read permissions.

We briefly present two alternative ways to the handle read and write statements and explain

the reasons why we abandoned them: the first alternative would be to interpret them as an

exhale followed by an inhale. This approach requires the permission to a location only once even

with multiple reads and writes. The reason is that the inhale always eliminates the exhale of the

following read or write statement. The draw back is, as we will explain later in Chapter 3.4.1,

introducing an extra inhale can lead to more imprecision.

The second alternative is to actually use a different function instead of the proposed rwMax

function for write statements:

write(cond, oldExp) = cond ? write : oldExp

Since in Viper permission amount should always be between zero permission and full permission

it seems unnecessary to take the max(write,oldExp) as we did in the previous version.

However, in the example in Figure 3.6 we see that there actually is a problem with this alternative

implementation. The problem arises if we write to a location, then exhale permission to the

location and later read this location inside a loop, as depicted in Figure 3.6. Line 4 corresponds to

the write permission needed for the write on line 8 and the specification on line 5 corresponds to

18

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

FIGURE 3.6. Alternative Write Function

1 method testWriteFunction(arr: Array, rdAmount: Perm)
2 requires rdAmount > none
3 requires forall p:Int :: true ==> acc(loc(arr,p).val,
4 p==0 ? write :
5 ((p==0? 1/2 : 0) + (p==0?rdAmount:0)))
6 {
7 var a: Int
8 loc(arr,0).val := 0
9 exhale acc(loc(arr,0).val,1/2)

10 while(a<5)
11 invariant forall p:Int::true==>acc(loc(arr,p).val,p==0?rdAmount:0)
12 {
13 var a:= loc(arr,0).val
14 }
15 }

the oldExp that we collected previously. Viper is not able to verify this program because after

the exhale on line 9 we are left with only 1/2 permission to location 0. Then it tries to verify the

invariant which is not possible because rdAmount could be greater than 1/2. One way to deal

with this is to add the extra restriction rdAmount < 1/2 to the specification. Consequently we

would need a way to identify this upper bound on rdAmount. On the other hand if we stick to

our first implementation of the function and simply take the max(write,oldExp) Viper is

able to verify the program. The reason is that in case that rdAmount happens to be greater than

1/2 then our precondition would require more than full permission which is equivalent to false

(cf. Section 2.2). Hence instead of having the extra restriction rdAmount < 1/2 explicitly, it is

implicitly in our permission amount formula.

3.3 Conditionals

Having introduced the basics of how we track accesses in a program we next focus on how we

propagate this information further up the control flow graph. In particular we explain what

happens if we hit an if-statement with the example in Figure 3.7.

Before hitting the if-else statement our state consists of the access to location v. We propagate

this information into both the true and the false branch. This happens naturally in the way

Sample propagates states inside the control flow graph. Propagating the collected accesses into

both branches is necessary since some of the access expression that happen after the if-else

statement might depend on a variable that gets changed only in one branch. This is the case in

our example. Only in the false branch does the variable v get changed. Hence the meaning of

19

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

FIGURE 3.7. Conditional Example

1 method conditional(arr:Array, b:Bool)
2 requires forall p:Int:: true ==> acc(loc(arr,p).val,
3 b? (p==0?1:0) : (p==1?1:0))
4 {
5 var v:Int := 0 //[b?(0,1):(1,1)]
6 if(b){ //[b?(v,1):(1,1)]
7 //do nothing //[(v,1)]
8 }else{
9 v := 1 //[(1,1)]

10 }
11 loc(arr,v).val := 0 //[(v,1)]
12 }

the access after the conditional statement is totally different depending on the path the program

takes. In the precondition we have to consider both cases. Therefore we join the states again

at the top of the if-statement through the ternary conditional operator where we reuse the

if-condition. The result can be seen in the precondition of the method conditional in Figure

3.7. We only require permission to location 0 if b is true and otherwise we require permission to

location 1.

In general if the condition contains reads then we also have to add those to our collection.

3.4 Loops

A while loop can be seen as a special conditional where the loop body is the true branch and

everything after the loop is the false branch. The difference to a normal if-statement is that the

true branch, i.e. the loop body, will be executed multiple times. In addition, a while loop in Viper

needs an invariant. In our analysis it is enough if we collect accesses occurring inside the loop

body only once. Hence no iteration is needed. In Figure 3.8 we show the result of what happens

if we naively propagate the values upwards: we end up only requiring access to location 0 even

though we iterate through the array and actually access all locations from 0 to 9. The problem is

that x is modified within the loop. So we will not allow simply propagating variables that change

inside the loop outwards. What we want is an expression which does describe the values of x but

does not mention x itself.

3.4.1 Forget Operator

We need to transforms the expression p==x into an equivalent expression that does not mention

x anymore but still talks about the same values x assumes during the loop execution. In the

previous example this would be p>=0&&p<10. In order to do so we need information about the

20

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

FIGURE 3.8. Wrong Loop Specification

1 method loop(a:Array)
2 requires forall p:Int:: true ==> acc(loc(a,p).val, p==0?1:0)
3 {
4 var x:Int := 0 //[p==0]
5 while(x<10)
6 invariant forall p:Int:: true ==> acc(loc(a,p).val, p==x?1:0)
7 {
8 loc(a,x).val:=0 //[p==x]
9 x:=x+1

10 }
11 }

values of x, which we get from a separate numerical analysis. We call this operator forget:

forget(A , Vars , numInf)= A′

The forget operator takes a formula A and a set of changing variables Vars and with the help

of information from the numerical analysis numInf tries to find the strongest formula A’ such

that A implies A’ and such that A’ does not contain any variables from Vars. In the context of

array indices this means that the indices expressed by A are also expressed by A’. But due to

imprecision in the numerical analysis A’ might also express indices that are not expressed by A

For the numerical analysis we need a numerical domain. Sample already supports a number of

numerical domains; in our case we wanted the most precise domain available, hence we decided to

use the polyhedra domain. The numerical analysis provides us with an invariant that expresses

all values changing variables can assume. The numerical domain itself already incorporates a

forget operator. What we do is taking the invariant from the numerical domain and enriching it

with the loop condition. To do so we first need to transform the loop condition into a suitable shape

for the polyhedra domain and then add it to the state, through the use of its assume operation.

Similarly we add the information from the assertion A. Then we use the forget operator from the

numerical domain to eliminate all variables occurring in Vars. We then transform the resulting

information back into a shape suitable for our indices collection.

In our example the numerical analysis will give us as very precise information about the variable

x, i.e. x>=0&&x<10. We can put the pieces together:

numInf : x>=0 && x<10

A: p==x

Vars: {x}

A’: p>=0 && p<10

Here the resulting formula is precise but we have to keep in mind that the numerical analysis

will in general overapproximate the values of x (cf. Section 2.4.1). This can lead to weaker

21

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

FIGURE 3.9. Forget operator demonstrated with sets: to the left we have set of locations
A and the negation of it ¬A. In the middle is the state of the sets after the forget
operator. To the right we have the overapproximation of ¬A.

formulas: in our example we know the value of x at the beginning of the loop is between 0 and 9.

Due to imprecision in the numerical analysis this might be overapproximated to the range 0 to 10.

For our analysis this actually means that sometimes we might requires access permissions to too

many locations. This is ok since our goal is to collect at least those locations that do get accessed.

On the other hand if we overapproximate an inhale we would then assume to already have

accesses that in reality we do not have. In order to prevent this from happening we propose to

use the forget operator in the following way:

¬forget(¬A , Vars , numInf)= A′

Let us look at it in terms of sets (see Figure 3.9): the assertion A talks about certain array

locations that we access. The corresponding set (A) now contains exactly those array locations.

Through the use of the forget operator the set described by the assertion A was overapproximated,

meaning the set (A+) now contains more array locations than those that were actually accessed.

This is ok for exhales, reads and writes, but not for inhales. To handle inhales we use negations.

Taking the negation of that set (A) will lead to a set (¬A) that contains all possible locations

except those that we just had previously. Through the use of forget we enlarge this set ((¬A)+),

hence the set now includes all possible locations except a few from our original set. At the end we

take the negation again. This will lead to an underapproximation, meaning the set (¬((¬A)+))

now contains less or equal locations than A. In practice this underapproximation is often quite

significant meaning we end up with the empty set. The reason for this is that we rely on the

forget operator from the numerical domain and our numerical domain does not handle negations

very well. The formula p!=x will be transformed into p>x || p<x and because the polyhedra

domain cannot handle disjunctions we forget each part separately. This is illustrated here:

22

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

numInf : x>=0 && x<10

A: p==x

¬A: p>x || p<x

Vars: {x}

forget: p>0 || p<9

A’: p<=0 && p>=9 (false)

On the other hand if we inhale a range of indices, e.g. p>=x && p<=20, assuming the same

numerical information, this would result in the formula p>=9 && p<=20:

numInf : x>=0 && x<10

A: p>=x && p<=20

¬A: p<x || p>20

Vars: {x}

forget: p<9 || p>20

A’: p>=9 && p<=20

The problem of imprecision when forgetting a formula from an inhale is the reason why we do

not treat simple reads and write as an exhale followed by an inhale.

3.4.2 Forget if Conditions

We also include branch conditions in our collection as explained in Section 3.3 and since we

are not allowed to propagate changing variable outside the loop we also have to take care of

changing variables occurring in if conditions. If the condition of an if statement occurring inside

a loop contains a changing variable then we have to assume that both branches are executed.

For example if we have the if condition x<5 and x iterates from 0 to 10 we have to consider both

branches of the if statement. Hence we introduce the artificial condition “forgotten”. It indicates

that the condition contained a changing variable and that we have to consider both branches since

both will be executed. Later when transforming the collection into an expression we transform

conditions that are not forgotten to cond?accTrue:accFalse where cond corresponds to the

if condition and accTrue corresponds to the expression that we get from the true branch and

accFalse corresponds to the expression from the false branch. In case of a forgotten branch

condition we take the maximum of both branches: max(accTrue, accFalse).

3.4.3 Invariants

Now that we know how to track accesses and how to transform them in order to propagate

them outside the loop body we will continue by discussing how we generate the invariants.

23

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

Invariants are a little bit more delicate than preconditions. At first the invariant has to hold on

entry, meaning we have to also infer a precondition which enables the verifier to prove that the

invariant holds on entry. Plus the invariant then also needs to be preserved by the loop body.

Viper will try to prove this as usual: assuming the invariant was true in the last iteration, is it

true that it still holds after an extra iteration? This is one reason why we have to forget about

changing variables. If we were to only assume that we had access to exactly one location x then

it would not be possible to prove, if x is incremented by 1, that we now have access to this new x.

Another issue that we have to take care of is the need for non-permission invariants. Let us go

back to our loop example in Figure 3.8 and assume we have the correct invariant:

forall p:Int:: true ==> acc(loc(a,p).val, p>=0&&p<10?1:0)

This would not be enough for Viper to guarantee that we are allowed to access the array at

position x on line 8. The problem is that Viper does not know anything about the values of

x. Thanks to our numerical domain we already know a good invariant about the values of x

and hence we just reuse it in our specification. The previously mentioned invariant plus the

invariant from the numerical domain, x>=0&&x<=10, are enough for Viper to prove that we

have permissions to all array locations that the program accesses.

Invariants also have a second special property: they serve not only as a precondition for the

loop body, but also as a postcondition for everything after the loop. This is how Viper treats

a while-loop with loop condition b and invariant inv after it verified the loop body and the

invariant:

1 //before loop

2 exhale inv

3 //havoc written vars

4 inhale inv && !b

5 //after loop

As we see Viper inhales the invariant in the state after the loop. This behavior is especially

important in cases where the loop changes the state of the permissions, either by adding new

permission when, for example, we create new objects, or by removing permissions. Since adding

new permissions happens by inhaling them and as we explained in Section 3.4.1 we cannot

always handle inhale inside a loop precisely, it is hard to get new permissions from inside the

loop outwards. This is a limitation of our current analysis and we will discuss how future work

can address this issue in Section 6.1.3

24

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

3.5 Derivation Rules

In this section we will summarize the weakest precondition rules used to implement the analysis

explained above. Applying the rules to a method body will result in a logical formula A. In our

specification we will then have to plug this formula into the permission amount parameter of the

accessibility predicate like this:

forall p:Int:: true==>acc(loc(arr,p).val, A)

3.5.1 Extract Accesses

First we need a way to extract the accessed array locations. At the moment we can extract array

locations from normal reads and writes, from simple inhales and exhales and finally from inhales

and exhales that use quantifiers, if it is in the supported form (cf. Section 3.2.1).

getRWAccess(stmt , oldForm)=
rwMax(p == i,write,oldForm), if stmt matches loc(arr,i).val := n

rwMax(p == i,rdAmount,oldForm), if stmt contains read to loc(arr,i).val

0, else

getExhaleAccess(exp)=
p == i?permAmnt : 0, if exp matches acc(loc(arr,i).val, permAmnt)

c(p)?permAmnt : 0, if exp matches forall p:Int:: c(p) ==> acc(loc(arr,p).val, permAmnt)

0, else

getInhaleAccess(exp)=
p == i?−1∗permAmnt : 0, if exp matches acc(loc(arr,i).val, permAmnt)

c(p)?−1∗permAmnt : 0, if exp matches forall p:Int:: c(p) ==> acc(loc(arr,p).val, permAmnt)

0, else

In our bottom up analysis we walk backwards through the control flow graph. In the next

sections we will explain how we apply the introduced functions depending on what statement

we hit. We start out with a formula that corresponds to zero permission, i.e. none and with each

statement enrich it with new permission amounts. The formula that we inferred so far is denoted

as A and the resulting formula as A’

25

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

3.5.2 Variable Assignment (var := right)

In the case of a variable assignment we first have to extract all accesses in the expression right

and add them to the formula A. Then in the resulting formula we have to replace all occurrences

of var with right:

A′ = getRWAccess(right,A),replace all occurrences of var with right

3.5.3 Field Assignment (fieldAssign := right)

In our analysis we assume that the field assignment is a write to the val field of the array. If

this is the case we simply have to add the write as defined in the getRWAccess function. stmt

refers to the field assignment.

A′ = getRWAccess(stmt, A)

3.5.4 Exhale (exhale arrayExp)

If we exhale permission to array locations and the expression is in a supported form then we

simply have to extract the array locations.

A′ = getExhaleAccess(arrayExp) + A

3.5.5 Inhale (inhale arrayExp)

Again if arrayExp is in one of the supported forms we can simply extract the location with

the defined function getInhaleAccess(). Additionally we add the boundary function f. Note that

this rule does not show the optimization of omitting the boundary function when dealing with

consecutive inhales.

A′ = f (getInhaleAccess(arrayExp) + A)

3.5.6 Conditional (if(b) {S1} else {S2})

In the case of a conditional we apply the weakest precondition rules (wp) on each branch

separately and we connect the results through Viper’s ternary conditional operator. Additionally

we also add all accesses from the branch condition b

A′ = getRWAccess(b,b?wp(S1, A) : wp(S2, A))

3.5.7 Loop (while(b) {S})

First we infer the loop invariant. We have to apply the wp rules for all statements inside the loop

body. To infer the invariant we do not consider statements after the loop. Hence we start again

26

CHAPTER 3. INFERRING QUANTIFIED PERMISSIONS FOR ARRAYS

with zero permission. The function forget corresponds to the forget operator explained in Section

3.4.1.

inv= forget(getRWAccess(b,wp(S,0)))

For the precondition we rely on the invariant inv from the previous rule. First we simulate

the exhale by taking the positive permission amounts in inv and then do an inhale by taking the

negation of inv.

A′ = inv+ f (−1∗ (inv)+ A)

27

C
H

A
P

T
E

R

4
INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA

STRUCTURES

So far we explained how to infer permissions for arrays. The goal is now to also create

an analysis which handles other data structures such as linked lists, trees and graphs

in general. Since our algorithm handles general graphs we will call the analysis graph

analysis. In this chapter we are going to motivate our approach by looking at different examples

and discussing which parts of the array analysis we can reuse and which ones we cannot. We will

again explain how we handle each programming construct, i.e. assignments, if-statement, loops

etc.

4.1 Inference

We start the discussion by looking at an example program and its specification. Figure 4.1 shows

a method which traverses a linked list by following the next field. The provided specification is

written by a human. The contract can be split into three different parts: the first part requires

field accesses for every reference in the set nodes. The second part defines the set nodes by

recursively adding the next node to the set. The third part, which can be seen on line 9, is the

“anchor” of the set, which defines a concrete element, here nd. Usually the anchor is the starting

node of the data structure, i.e. the head of the list or the root of the tree.

As before, the analysis will collect all the receivers of a field access. In the array analysis the

receiver was uniquely defined by the index. Now we will track the whole receiver expression:

in our example on line 17 it is simply node. Again, if we hit a variable assignment, we need to

replace all occurrences of this variable with the right-hand side. When dealing with graph-like

28

CHAPTER 4. INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA STRUCTURES

FIGURE 4.1. Motivating List Example

1 field next: Ref
2 define INV(nodes)
3 !(null in nodes)
4 && (forall n: Ref :: n in nodes ==> acc(n.next))
5 && (forall n: Ref :: n in nodes && n.next != null
6 ==> n.next in nodes)
7
8 method traverse(nodes: Set[Ref], nd: Ref)
9 requires nd in nodes

10 requires INV(nodes)
11 {
12 var node :Ref := nd
13 while(node != null)
14 invariant INV(nodes)
15 invariant node != null ==> node in nodes
16 {
17 node := node.next
18 }
19 }

data structures the restriction that the right-hand side cannot be heap dependent is too strong,

since every graph-algorithm has to de-reference a field, e.g. next, to get to another node. Hence

we end up having a field read where the receiver node itself depends on a field read. To ensure the

aliasing problem will not arise we assume that the algorithm does not modify the data structure,

except for some modifications, i.e. writes to locations that do not affect our state that we collected.

Concretely, if the algorithm traverses the data structure through a field, e.g. next, we do not

allow a write to this field. On the other hand writes, e.g. to an integer field data, which are

independent and do not affect other accesses are allowed.

4.2 Heap Dependent Receivers

Another problem that arises when we allow heap dependent receivers is how to handle chained

field reads, e.g. nd.next.next. If we apply the same algorithm from the array approach to the

method getThird in Figure 4.2 we end up with the specification on line 2. As we can see in

the comment of line 5 one of the receiver nodes is nd.next, this means we effectively access

nd.next.next. The derived specification would actually give us the permissions to this field.

But the problem is that the formula is not self-framing: to be able to talk about the second part of

the specification, which contains nd.next, we first need permissions to field next of node nd.

But we only get permission to it in the same precondition.

29

CHAPTER 4. INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA STRUCTURES

FIGURE 4.2. Field Accesses in a Row

1 method getThird(nodes: Set[Ref], nd:Ref) returns (third:Ref)
2 requires forall p:Ref:: true ==>
3 acc(p.next, (p==nd?1:0) + (p==nd.next?1:0))
4 {
5 var first: Ref := nd //[nd, nd.next]
6 var second:Ref := first.next //[first, first.next]
7 third := second.next //[second]
8 }

There are multiple ways to handle heap dependent receivers. We will discuss two: splitting

the accesses into multiple contracts and introducing sets.

With the first approach we have to split the specification into multiple separate preconditions,

where every field access with paths of length 1 will get into the first and everything with path

of length 2 into the second and so on. The first precondition does not rely on any other access

permissions, since they are all of length 1. The second precondition only needs permissions from

the first precondition, and so on. Unfortunately this has some negative consequences. First, we

do not take care of aliases anymore, hence a node occurring in the first precondition might also

be part of the second precondition and we would effectively require permission to the same field

twice. The second problem arising with this approach is that we lose the order of accesses of

different path length, since they are now in different predicates. In the array analysis we use the

order to guarantee that inhales do not affect earlier exhales. This cannot be guaranteed with this

approach.

The second approach and probably a more natural way to write the specification is to introduce

a set that contains all the receiver nodes. The analysis has to collect all the receiver nodes of

accesses and the specification then requires that they are a part of that set. By quantifying over

this set we require all the needed access permissions. The advantage is that the set automatically

takes care of duplicates and aliases. The disadvantage is that here we also lose the order of

accesses and hence cannot handle exhales and inhales.

This approach is what we use in our analysis. As we saw also in Figure 4.1 data structures like

lists, trees and graphs are usually defined in terms of sets. The specification would then look like

the following:

1 requires forall p:Ref:: p in nodes ==> acc(p.next)

2 requires nd in nodes && nd.next in nodes

We put all the receiver nodes into our set nodes and require access to the next field for each

element in that set. In order to specify the set nodes on line 2 it is very important that we

30

CHAPTER 4. INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA STRUCTURES

FIGURE 4.3. Multiple Fields

1 method
2 travRightAndLeft(left_nodes:Set[Ref], right_nodes:Set[Ref], nd:Ref)
3 requires forall r:Ref:: r in left_nodes ==> acc(r.left)
4 requires forall r:Ref:: r in right_nodes ==> acc(r.right)
5 requires nd in right_nodes && nd.right in right_nodes
6 requires nd in left_nodes && nd.left in left_nodes
7 {
8 var nL :Ref := nd.left//L[nd, nd.left] R[.]
9 nL := nL.left //L[nL] R[.]

10
11 var nR:Ref := nd.right//R[nd, nd.right]
12 nR:= nR.right //R[nR]
13 }

require the permissions on line 1 first. This enables us to talk about nd.next. Also the order in

which we mention the receiver nodes is important: to be able to talk about nd.next Viper first

needs access to the field, consequently it first needs to know that nd is in nodes.

4.3 Multiple Fields

When dealing with graph data structures it is often the case that multiple fields are needed. For

example if we implement a graph where each node has three outgoing edges we would require

three fields e1, e2 and e3. Each of those fields point to another node in the graph. Since graphs

could have aribtrary many outgoing edges we generalize our algorithm to handle any number of

fields.

Analogously to what we did in the previous example we introduce a new set for each field: each set

contains all the receiver nodes from which we access the corresponding field. As before, to require

permission we quantify over each set individually. The method traverseRightAndLeft in

Figure 4.3 shows such an example. The method traverses the tree by following the left field two

levels down the tree and then the right field for two levels. We again apply a bottom up approach

where we collect all accesses. The R in the comment on each line denotes the set containing all

receiver nodes which access the right field and the L collects all receiver nodes that access the

left field. In the example we can see that we do not access the left and right field of all nodes.

Many graphs actually have the property that each node potentially has accesses to all fields.

For example in a simple tree traversal each node accesses both its left and right field. In those

cases it would make sense to merge the different sets into a single one. But this is not the case in

general. Imagine a list where each node in the list points to a value node, which stores some data.

In this case only the value nodes need access to the data fields, whereas only the list nodes need

31

CHAPTER 4. INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA STRUCTURES

FIGURE 4.4. Conditionals

1 method getThird(nodes: Set[Ref], nd:Ref) returns (third:Ref)
2 requires forall p:Ref:: p in nodes ==> acc(p.next)
3 requires nd in nodes && ((nd.next!=null)?
4 (nd in nodes && nd.next in nodes) : true) {
5
6 //N[nd,(nd.next!=null)?
7 var first: Ref := nd // {nd, nd.next}:{}]
8
9 //N[first,(first.next!=null)?

10 if(first.next!=null){ // {first, first.next}:{}]
11
12 var second:Ref := first.next //N[first, first.next]
13 third := second.next //N[second]
14 }
15 }

access to the next field. Therefore we need two separate sets, one describing all the nodes of the

list and the other describing all the value nodes.

4.4 Conditionals

Similarly to our array analysis we take branch conditions into account in our analysis in order

to get a more precise formula. Figure 4.4 shows an alternative implementation of the method

getThird which adds an extra if statement to check whether the second node actually exists

or not. The comments on each line illustrate the way we collect accesses. The N set contains all

receiver nodes of accesses to the field next. On line 10 we add the if condition into our collection.

In the comments on line 9 we see the element first. This element was added due to the access

in the if condition. The second element is the ternary conditional operator where the true part

contains all accesses that occur inside the true branch and the opposite for the false part. When

propagating this information further up we will end up with the set described on line 7 which

will be transformed to the specification on line 3 and 4.

The difference to the previous specification is that in the case where nd.next, is null we do not

require permission to its next field, i.e nd.next.next. In the specification of Figure 4.2 we

always require permission to that field, which implied the existence of the second node, since

requiring permission to a field location in Viper implicitly requires that the receiver is nonnull.

The implementation of getThird in Figure 4.4 is actually weaker than the previous im-

plementation in Figure 4.2 due to the extra if statement, which makes an extra null check:

first.next!=null. The first implementation simply accessed the next field of the second

32

CHAPTER 4. INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA STRUCTURES

FIGURE 4.5. Change of Variables

1 while(bw){
2 z.next := n //not allowed
3 if(b) //{Z->b?z.next:x.next,N->b?z.next.next:x.next.next}
4 {y:=z} //{Z->z.next, N->z.next.next}
5 else {y:=x} //{Z->x.next, N->x.next.next}
6 n := y //{Z->y.next, N->y.next.next}
7 n := n.next //{Z->n.next, N->n.next.next}
8 z := n //{Z->n, N->n.next}
9 n := z.next //{Z->z, N->z.next}

10 } //{Z->z, N->n}

node without checking whether it is null, hence it assumed the second node to exists. The second

implementation takes the special case of a list with only one node into consideration and does

not access the second node if it is null. Hence in contrast to the first implementation we are

able to call the method with a linked list containing only one node. To reflect this change in our

specification we also need to including the if condition, i.e. the null check, into our specification.

Consequently also our precondition will be weaker, meaning easier to satisfy.

4.5 Loops

The way loops are handled is very similar to the way we handle them in the array analysis. We

treat a loop as a special if condition. Consequently, as before, we have to deal with the problem of

changing variables. Hence we introduce a forget operator.

4.5.1 Forget Operator

Unfortunately we cannot simply reuse the forget operator from the array analysis. The reason

is that before we dealt with integers and now with references. Before we could rely on the

pre-analysis based on a numerical domain and now we would need a heap analysis to give us

enough information about the changing variables.

To still get enough information about the changing variables in our bottom up analysis we also

keep track of how a variable changes. The idea is to get an expression that precisely describes

the value of the variable at the end of one loop iteration. Therefore we track how each statement

changes the variable. This is depicted in Figure 4.5.

The expression N->exp denotes that the variable n at the end of the current loop iteration will

be equivalent to the expression exp at the beginning of the loop iteration. At the bottom of the

loop n did not change yet. Hence we initialize the information we know about the variable n with

N->n. Then, while propagating this information upwards we keep updating the expression on

33

CHAPTER 4. INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA STRUCTURES

the right hand side of the arrow exactly the same way we update information about field accesses:

for every variable assignment we replace all occurrences of the left hand side with the right hand

side and we introduce conditionals for if statements. Assignments to a field, as it is the case on

line 2, are not allowed. This statement actually modifies the data structure and we would again

run into the problems of aliasing discussed before.

At the top, on line 3, we have a precise description of how the variable n changes. We now want

to use this information to transform expressions in our collection into a new expression that

does not mention changing variables anymore. In order to do so we introduce for every changing

variable a new set, e.g. n_nodes, which describes all values that the variable n contains after a

loop iteration and hence also at the beginning of the next loop iteration. We define the set like

this:

forall _n:Ref:: (_n in n_nodes) ==> transition(_n) in n_nodes

The term transition(_n) corresponds to the change of the variable that we track. In our

example in Figure 4.5 this is how the changing variable sets would be defined for the variables n

and z:

forall _n:Ref, _z:Ref:: (_n in n_nodes) && (_z in z_nodes) ==>

(b ? _z.next : x.next) in z_nodes

&& (b ? _z.next.next : x.next.next) in n_nodes

As we see here we can now quantify over multiple variables. This is possible since we do

not talk directly about permissions in this quantifier. The changing variable sets are defined

recursively, hence we again have to define an “anchor”. The anchor at the beginning of a loop

iteration, which we need for our invariant, is simply the variable itself: z in z_nodes && n

in n_nodes. After we have our invariant we still have to propagate this information upwards

to the precondition. While doing so the expression of the anchor also might change because of

other variable assignments.

4.5.2 Invariants

The set describing all possible values of a changing variable can now be used to transform an

expression in our collection into a new one that does not contain any changing variables. We do

this by quantifying over the set and replacing the changing variable with the quantified variable.

Let us again have a look at our initial traversal example in Figure 4.1. Before we apply the forget

operator we will have collected the following expression at the top of the while loop:

node!=null ? node in next_nodes : true

Since node is a changing variable we take advantage of its corresponding changing variable set,

i.e. node_nodes. We transform the derived expression by quantifying over the elements of the

node_nodes set and replacing all occurrences of node with the quantified variable _node:

34

CHAPTER 4. INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA STRUCTURES

FIGURE 4.6. Invariant

1 //require access
2 invariant forall q:Ref:: (q in next_nodes) ==> acc(q.next)
3 //define receiver nodes of next field
4 invariant forall _node:Ref:: (_node in node_nodes) ==>
5 _node!=null ? _node in next_nodes : true
6 //define changing variable set
7 invariant node in node_nodes //anchor
8 invariant forall _node:Ref:: (_node in node_nodes) ==>
9 _node!=null ? _node.next in node_nodes : true

forall _node:Ref:: (_node in node_nodes) ==> _node!=null ? _node in

next_nodes : true

The whole invariant is shown in Figure 4.6. The first part, line 2, requires access permission

to all field accesses that we collected. In this example we only have accesses to the field next,

hence we only have the set next_nodes. As a reminder, next_nodes contains all receiver

nodes of field accesses to field next. The second part, line 4, defines this set next_nodes. As

we can see it relies on a changing variable, hence it had to be replaced with a quantified variable.

The condition on line 5 corresponds to the loop condition. The last part, lines 7 and 8, defines

the set describing the change of the variable node. Line 7 defines the anchor. Then on line 8 we

recursively add the next pointers to the set.

From the definition of both sets we can conclude that both describe the same nodes, except

node_nodes might also contain null. Therefore it would be possible to merge those sets and

only introduce one new set either node_nodes or next_nodes. But as we explained in Section

4.3 this is not the case in general. We will further discuss this optimization in in Section 6.1.1

One optimization that one can do though is to merge both definitions of the sets into one

invariant, while still keeping two separate sets. In the above example we can see that both

definitions quantify over the same set. Hence we can include both formulas in the same quantifier.

While analysing the inferred definitions of sets also from other examples we realized that they all

have a similar structure. Especially the branch conditions are everywhere the same. Hence the

logical consequence was to merge those definitions into one formula. This significantly shrinks

the size of the contracts.

4.6 Consequences of Introducing Sets

This section summarizes advantages and disadvantages of the analysis with respect to sets. We

will also examine different ways of extending the analysed program with the introduced sets.

35

CHAPTER 4. INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA STRUCTURES

4.6.1 Advantages and Disadvantages

Introducing sets has some advantages: they come in handy especially for separating access

predicates from the predicates which define the receiver nodes. This was necessary to handle

heap dependent receivers. Then we also introduced new sets for our forget operator. A third

advantage is that they take care of duplicates and aliases.

On the other hand sets also have disadvantages. The main disadvantage is that we lose track

of the order of the accesses, since sets are naturally unordered. In the array analysis we used

the order in combination with the boundary function to handle inhales and exhales correctly

by pushing the collected permission amounts into the permission amount parameter of the

accessibility predicate. Due to the separation of requiring access an collecting the receiver nodes

the array approach is not possible anymore. The consequence is that our analysis does not handle

exhale and inhale statements. Luckily there are still many programs dealing with graph data

structures and that do not use inhale and exhale. A consequence of not supporting inhales and

exhales is that it is now very easy to infer postconditions. Since the permission do not change

inside the method one can simply ensure the same permissions that were required.

4.6.2 Extending the Program

As one can see our algorithm introduces many different sets: one for each field and for each chang-

ing variable. Those sets have to be defined somewhere. We will discuss two ways to introduce

these sets: the first through ghost functions and the second through ghost parameters.

Ghost Functions. Figure 4.7 shows again our starting example but this time instead of

using ghost parameters it uses a ghost function. Instead of having the definitions of the set in the

precondition and the invariant they are now part of the functions specification.

There are multiple issues with this approach. Firstly, the precondition of the function fNodes

is not well-formed. In order to talk about n.next we need access to this field. We could then

require the access to it in the precondition of the function. But when we use it in the precondition

of the method traverse we cannot guarantee these permissions at line 6, since we only require

the permission there. Effectively we need permission to talk about the set and we need the set to

talk about the permissions. Hence we end up with a chicken and egg problem. Another problem

with this approach is that this set is defined globally. If the data structure were modified we

would need some way to change this set. Finally, this set defined by the function is underspecified,

meaning we define what has to be part of that set but not which nodes are excluded. Hence it is

hard to live up to the precondition on line 6, if one needs to guarantee access permissions to an

unknown number of field accesses.

On the other hand the big advantage with ghost functions would be that the data structure is

defined globally and the caller of the method does not need to explicitly define the set himself. He

just has to guarantee enough permissions.

36

CHAPTER 4. INFERRING QUANTIFIED PERMISSIONS FOR GRAPH DATA STRUCTURES

FIGURE 4.7. Ghost Functions

1 function fNodes(anchor: Ref): Set[Ref]
2 ensures anchor in result
3 ensures forall n: Ref :: n in result ==>
4 (n.next!=null) ? n.next in result : true
5 method traverse(nd: Ref)
6 requires forall n: Ref :: n in fNodes(nd) ==> acc(n.next)
7 {
8 var node :Ref := nd
9 while(node != null)

10 invariant forall n: Ref :: n in fNodes(node) ==> acc(n.next)
11 {
12 node := node.next
13 }
14 }

Ghost Parameters. Ghost parameters on the other hand do not suffer from these problems.

Therefore in our analysis we define the sets in terms of ghost parameters. They still have some

disadvantages: they modify the method’s signature. This has the consequence that the algorithm

has to modify the program everywhere where the method is used.

Another disadvantage is that the caller actually has to pass an instance of each set to the method.

Depending on the form in which the caller already has the data structure it might be easy to pass

the correct sets or he would have to first split his data structure into different sets to be able to

instantiate the required ones. Let us consider an example where the method deals with a linked

list of person data, where the list nodes in addition to the next node also point to a person node

and this person node accesses fields containing information about the person. There the caller

would need to provide different sets for the list nodes and for the person nodes, since they access

different fields.

An intriguing question that might arise in the context of ghost parameters is whether

introducing multiple sets is not just pushing the problem of defining precise contracts to the

caller, since he now needs to instantiate those sets. This is only partially true. Considering our

changing variable set the caller now has to pass the possible values of the variable, which is

in contrast to the array analysis where we got the concrete values from our numerical domain.

On the other hand the precondition actually defines the minimal requirements of the set and

the caller just needs to pass any set that satisfies this condition. He does not need to pass the

smallest such set. In our previous example travRightAndLeft in Figure 4.3 we have sets

left_nodes and right_nodes. As a concrete instance the caller could now pass the set of all

tree nodes twice. Effectively granting access to the left and right field to all nodes, where the

specification would only require the access to a small subset.

37

C
H

A
P

T
E

R

5
EVALUATION

We will evaluate the two algorithms in this chapter. We first show some results of the

array analysis and then some results of the graph analysis. We discuss the inferred spec-

ifications, elaborate on some of the limitations and also explain some implementation

details.

5.1 Inferred Array Specification

In this section we are going to inspect the array algorithm. To evaluate the results of our analysis

we compared the specification inferred by our analysis with specifications written by humans. We

ran the analysis on example methods for which we already had specifications. We then compared

both specifications by verifying whether the human contract implies the computer contract or the

other way around. We did this by using a helper method humanImpliesComp. Its precondition

was the human contract and the postcondition was the automatically inferred one. The body of the

method was empty. If Viper can verify the method it is true that the human contract implies the

computer contract. We switched the pre- and postcondition for the method compImpliesHuman.

5.1.1 Max Array

Figure 5.1 shows the method max_array with the inferred contracts. The human contract is

written for reference at line 31. The verification of our helper methods showed that the human

contract implies the computer contract, but the computer contract does not imply the human

contract. This means that the computer specification is more precise, requiring less permission

than the human specification. Indeed, if we have a closer look at the specifications we see that

the computer precondition only requires access to the array if the length of the array is at least 2,

38

CHAPTER 5. EVALUATION

FIGURE 5.1. Max Array

1 method max_array(arr: Array, lenA: Int, eps: Perm) returns (x: Int)
2 requires (forall p: Int :: true ==> acc(loc(arr, p).val,
3 (lenA <= 0 ?
4 none
5 : ((lenA>=1+p) && (p>=1) || (lenA>=2+p) && (p>=0) ? eps:none)
6 + f(-1*((lenA>=1+p) && (p>=1) || (lenA>=2+p) && (p>=0) ? eps:none)))

))
7 requires (eps > none) && (eps < write)
8 {
9 var y: Int

10 if (lenA <= 0) {
11 x := -1
12 } else {
13 x := 0
14 y := lenA - 1
15 while (x != y)
16 invariant (forall p: Int :: true ==> acc(loc(arr, p).val,
17 ((lenA>=1+p) && (p>=1) || (lenA>=2+p) && (p>=0) ? eps:none)))
18 invariant (lenA >= 1 + y) && ((y >= x) && (x >= 0))
19 {
20 if (loc(arr, x).val <= loc(arr, y).val) {
21 x := x + 1
22 } else {
23 y := y - 1
24 }
25 }
26 //loc(arr, 10).val := 0 //max_array_plus
27 }
28 }
29
30 //Human contract:
31 requires forall j: Int :: 0 <= j && j < lenA ==> acc(loc(arr,j).val)

39

CHAPTER 5. EVALUATION

whereas the human contract always requires the accesses. From the code we can see that if the

length of the array is 0 we do not enter the else branch of the if statement on line 10 and if the

length of the array is 1 we do not enter the loop. Hence it is correct to require access to the array

only if the length is at least 2. In addition, the inferred contract is more precise because it only

requires read permission, while the human made contract makes no distinction between read

and writes.

On line 3 we can see the branch condition added due to the first if statement. Line 5 and 6

correspond to the invariant: first we simulate an exhale, positive permission amount, and then

an inhale, hence the -1 in front of the expression. Line 7 then shows the requirements for our

read permission eps.

The second example that we will analyse is almost equivalent to the previous example, except

that we have an additional array access after the loop. This is depicted on line 26 in Figure 5.1.

What the reader can try to do now is to come up with a precise specification. One will quickly

realize that it is actually quite tricky. Here is the specification that we wrote by hand:

1 requires (lenA>1 ==> (forall j: Int :: 0 <= j && j <= lenA && j!=10

2 ==> acc(loc(arr, j).val,eps)))

3 requires (lenA > 0 ==> acc(loc(arr,10).val))

The first part lenA>1 we got from the result of the algorithm run on the previous example. We

only need to require permissions if the array has at least length 2. Then the tricky part is to take

care of duplicates, else we would require access to the array at location 10 twice. Therefore we

added the condition j!=10. Of course this is a made up example and it might not make much

sense as is, but we can see that taking care of duplicates complicates the contract and usually is

quickly forgotten. In our analysis the inhale of the invariant removes the need to explicitly check

for duplicates: if the loop already requires permission to the array location 10 the simulated

inhale would cancel out the permission required after the loop.

5.1.2 Longest Common Prefix

The method in Figure 5.2 starts iterating through the array from two arbitrary positions x and

y. It keeps iterating until the value of the array at pointer x differs from pointer y. Hence it

effectively determines the size of the longest common prefix of sub sequences of the array starting

at positions x and y. Interestingly our test showed again that the computer specification is more

precise than the human specification. The reason is that the inferred contract also considers the

input parameter x and y, whereas the human contract simply requires access to the whole array.

In most cases x and y are bigger than 0, hence we do not need to require access to the locations

smaller than x or y.

The assertions on line 16 in the invariant restrict p to be between x or y and lenA. On line 4

40

CHAPTER 5. EVALUATION

FIGURE 5.2. Longest Common Prefix

1 method lcp(arr: Array, x: Int, y: Int, lenA: Int, eps: Perm)
2 returns (n: Int)
3 requires (forall p: Int :: true ==> acc(loc(arr, p).val,
4 ((lenA+y>=1+p+x) && ((lenA>=1+p) && (p>=y)) ||
5 (lenA>=1+p) && ((lenA+x>=1+p+y) && (p>=x)) ? eps:none)
6 +f(-1* ((lenA+y>=1+p+x) && ((lenA>=1+p) && (p>=y)) ||
7 (lenA>=1+p) && ((lenA+x>=1+p+y) && (p>=x)) ? eps:none)
8)))
9 requires (eps > none) && (eps < write)

10 requires (0 <= x) && ((0 <= y) && ((x < lenA) && (y < lenA)))
11 {
12 n := 0
13 while ((x+n < lenA) && (y+n < lenA) &&
14 loc(arr,x+n).val == loc(arr,y+n).val)
15 invariant (forall p: Int :: true ==> acc(loc(arr, p).val,
16 ((lenA+y>=1+p+x) && ((lenA>=1+p) && (p>=y)) ||
17 (lenA>=1+p) && ((lenA+x>=1+p+y) && (p>=x)) ? eps:none)))
18 invariant (lenA >= n+y) && ((lenA >= 1+y)
19 && ((lenA >= n+x) && ((lenA >= 1+x)
20 && ((n >= 0) && ((y >= 0) && (x >= 0))))))
21 {
22 n := n + 1
23 }
24
25 //human specification
26 requires (forall k: Int :: 0<=k && k<lenA ==> acc(loc(arr,k).val))
27 requires (0 <= x && 0 <= y && x < lenA && y < lenA)
28 }

and 6 we reuse this invariant to simulate an exhale and inhale operation. The reason why the

inferred contract is so big is that our forget operator replaces the changing variable n in the

formula p==x+n with another formula. This new formula tries to keep all relations between p,

lenA, x and y. The same happens for the formula p==y+n. Finally, on line 18 we can see the

invariant that we got from the numerical analysis, which Viper needs to have enough information

about n in order to verify that the access happens in the range we provide access permission to.

5.1.3 Parallel Array Replace

The example in Figure 5.3 shows a method which forks off two threads by exhaling the pre-

condition of another method and later inhaling the postcondition. This example shows how our

algorithm handles multiple exhales and inhales. The test with our helper methods indicated

41

CHAPTER 5. EVALUATION

FIGURE 5.3. Parallel Array Replace

1 method Replace(arr: Array, left: Int, right: Int, from: Int, to: Int
, lenA: Int, eps: Perm)

2 requires (forall p: Int :: true ==> acc(loc(arr, p).val,
3 (right - left <= 1 ?
4 rwMax(p == left, eps, (p == left ? write : none))
5 : ((left <= p) && (p < left + (right-left)\2) ? 1/1 :none)
6 + (((left + (right-left)\2 <= p) && (p < right) ? 1/1 :none)
7 + f(((left <= p) && (p < left + (right-left)\2) ?-1*(1/1):none)
8 + ((left + (right-left)\2 <= p) && (p < right) ?-1*(1/1):none)))

)))
9 requires (eps > none) && (eps < write)

10 requires (0 <= left) && ((left < right) && (right <= lenA))
11 {
12 var mid: Int
13 if (right - left <= 1) {
14 if (loc(arr, left).val == from) {
15 loc(arr, left).val := to
16 }
17 } else {
18 mid := left + (right - left) \ 2
19 inhale mid * 2 == 2 * left + (right - left)
20
21 //fork-left
22 exhale 0 <= left && left < mid && mid <= lenA
23 exhale forall i: Int :: left<=i && i<mid ==> acc(loc(arr,i).val)
24 //fork-right
25 exhale 0 <= mid && mid < right && right <= lenA
26 exhale forall i: Int :: mid<=i && i<right==> acc(loc(arr,i).val)
27
28 //join-left
29 inhale forall i: Int :: left<=i && i<mid ==> acc(loc(arr,i).val)
30 //join-right
31 inhale forall i: Int :: mid<=i && i<right==> acc(loc(arr,i).val)
32 }
33 }
34 //human contract
35 requires (0 <= left && left < right && right <= lenA
36 requires forall i:Int:: left<=i && i<right ==> acc(loc(arr,i).val))

42

CHAPTER 5. EVALUATION

that both the human written and the inferred specifications imply each other, hence they are

equivalent. In the specification each expression that we got from an exhale and inhale has its

own line. We can see that all expressions we introduced due to inhales have negative and all

expressions introduced due to exhales have positive permission amounts. Summing the permis-

sion amounts up results in the final permission amount we require. We can also see that at the

boundary between an exhale and an inhale, i.e. between line 6 and 7, we introduce the boundary

function f.

One small implementation detail can be seen on line 4: the rwMax function corresponds to the

read function explained in Section 3.2.1. This function is defined globally; we introduced it in

order to keep our specifications short.

5.1.4 Stress Test

The method example_array in Figure 5.4 is supposed to test all features of our algorithm

together. Therefore it contains among other things an if statement, a while-loop, exhales and

inhales, real array accesses, where we access the val field, and “fake” array accesses, e.g. on

line 35. For the first time the results of our implication test showed that the inferred contract

implies the human contract but not the other way around. This means that the human contract

is more precise. We have to notice though that writing down the precise precondition was very

tricky. While analysing the example we found out that the reason for this behaviour is due to our

choice of handling read accesses. If we have a look at line 20 we see that we inhale permissions to

location 3. Inside the while loop we will then read the array from location 3 to 10. Someone smart

writing the specification can now conclude that we already have read permission to position 3,

since any amount greater than 0 is enough to read the location, hence we do not need to require

more.

The algorithm on the other hand just knows that it needs eps permission amount. When inhaling

1/10 of permissions he concludes that he still needs eps - 1/10 permissions. If we add the

extra assumption eps<1/10 then our test succeeds in verifying that both contracts are equal.

To understand the contract one can map every occurrence of rwMax to a read or a write

in the program. Each rwMax ensures enough permission to perform the corresponding action.

Line 5 corresponds to the exhale and line 6 to the inhale of the invariant. Line 7 and following

correspond to all accesses after the loop. At the end our precondition requires access permission

to the array locations from 3 to 10, 20 and 100. This corresponds exactly to the array locations we

access.

5.1.5 Extend Array

The method extendArray in Figure 5.5 takes as an input parameter an array; it assumes that

the array has size 10. Then the program will extend it to size 19. This example demonstrates

multiple features: if we have a look at the if condition inside the loop we see that it contains

43

CHAPTER 5. EVALUATION

FIGURE 5.4. Stress Test

1 method example_array(arr: Array, a: Int, eps: Perm)
2 requires (forall p: Int :: true ==> acc(loc(arr, p).val,
3 f((p==3?(-1)*(1/10):none) +
4 rwMax(p==3, eps, rwMax(p == 2 * 3, write,
5 rwMax(p==100, eps,((p<=9) && (p>=3) || (a==p)?eps:none))
6 + f(-1 * rwMax(p==100, eps,((p<=9) && (p>=3) || (a==p)?eps:none))
7 + rwMax(p == 10, eps,
8 f(((p > 10) && (p < 15) ? (-1) * (1 / 1) : none)
9 + ((p == 20) || (p == 8) ? eps : none)))))))))

10 requires (eps > none) && (eps < write)
11 {
12 var re : Ref; var t: Int
13 var end: Int; var r: Int
14 t := a
15 if (t < 0) {
16 t := 9
17 } else {
18 t := 0
19 }
20 inhale acc(loc(arr, 3).val, 1 / 10)
21 t := 3
22 loc(arr, 2 * t).val := 0
23 r := loc(arr, t).val
24 r := t
25 while ((t < 10) && (loc(arr, 100).val == 0))
26 invariant (forall p: Int :: true ==> acc(loc(arr, p).val,
27 rwMax(p==100, eps, ((p<=9) && (p>=3) || (a==p)? eps:none))))
28 invariant (t <= 10) && (t >= 3)
29 {
30 r := r + 1
31 r := loc(arr, t).val
32 r := loc(arr, a).val
33 t := t + 1
34 }
35 re := loc(arr, 1)
36 end := 99
37 end := loc(arr, t).val
38 inhale (forall q: Int :: (q>10) && (q<15) ==> acc(loc(arr,q).val))
39 r := loc(arr, 20).val
40 r := loc(arr, 8).val
41 }
42 // human contract
43 requires forall i:Int :: (((i>3 && i<=10) || i==a) && i!=6) || i==20

|| i==100==> acc(loc(arr,i).val,eps)
44 requires acc(loc(arr,6).val)

44

CHAPTER 5. EVALUATION

a changing variable, hence we cannot use it in our specification: instead the max operator is

introduced (cf. line 16). Lines 16 and 17 correspond to the true branch and line 18 corresponds to

the false branch. Another feature that shows up is the way we handle inhales inside a loop: as we

can see, the true branch accesses the array from position 11 to 19, hence the specification on line

17, but before the method writes to those locations it inhales the corresponding permission. In the

invariant we can see this on line 16. Here, the result of the forget operator, i.e. (p < 12) &&

(p > 18), is equivalent to false. Consequently the permissions inhaled will not be considered

and the precondition requires access permission to the array from 0 to 19. The human contract

on the other hand takes the inhale into consideration and requires access permission only to the

array locations from 0 to 10. With a more precise forget operator we could improve the inferred

contract.

45

CHAPTER 5. EVALUATION

FIGURE 5.5. Extend Array

1 method extendArray(arr: Array)
2 requires (forall p: Int :: true ==> acc(loc(arr, p).val,
3 max(f(((p < 12) && (p > 18) ? -1 * (1 / 1) : none)
4 + ((p <=19) && (p >=11) ? write : none)),
5 ((p <=10) && (p >= 0) ? write : none))
6 +f(-1 *
7 max(f(((p < 12) && (p > 18) ? -1 * (1 / 1) : none)
8 + ((p <=19) && (p >=11) ? write : none)),
9 ((p <=10) && (p >= 0) ? write : none))

10 + (p == 15 ? write : none))))
11 {
12 var i: Int
13 i := 0
14 while (i < 20)
15 invariant (forall p: Int :: true ==> acc(loc(arr, p).val,
16 max(f(((p < 12) && (p > 18) ? -1 * (1 / 1) : none)
17 + ((p <= 19) && (p >= 11) ? write : none)),
18 ((p <= 10) && (p >= 0) ? write : none))))
19 invariant i >= 0
20 {
21 if (i > 10) {
22 inhale acc(loc(arr, i).val, write)
23 loc(arr, i).val := 0
24 } else {
25 loc(arr, i).val := 0
26 }
27 i := i + 1
28 }
29 loc(arr, 15).val := 0
30 }
31
32 //human contract
33 requires forall i:Int:: 0<=i && i<=10 ==> acc(loc(arr,i).val))

46

CHAPTER 5. EVALUATION

5.2 Inferred Graph Specification

In this section we evaluate the specifications inferred for graph examples. Since the inferred

specifications rely on multiple sets and the human specifications sometimes only depend on one

set we cannot use the helper methods from before to check which one is more precise. This time

we do the comparison by hand. Additionally we discuss the different parts of the specification.

First we have a look at some linked list examples and then we move on with tree examples and

finish with a general graph example.

5.2.1 Linked List Traversal

The method traverse in Figure 5.6 is a basic implementation of a list traversal, where each

visited node will be marked. As already explained in Chapter 4 the first part of the specification

requires the access permissions to the field: lines 2 and 3. The second part is the definition of

the sets: from line 4 onwards. One can easily map parts of the set specification to the program.

For example line 6 belongs to the field accesses in the while condition on line 13. Then line 7 is

introduced due to the loop condition. The part on line 8 belongs to the field accesses inside the

loop and the last part on line 9 describes the changes of the variable node.

Comparing the human specification with the computer specification, we see that the latter

requires permission to the next and is_marked field for the whole list. The computer specifica-

tion on the other also takes the loop condition into account, which makes the specification more

precise: it effectively requires access to the fields only for nodes in the list until the is_marked

field is false. We can conclude this, since we only require the _node.next element to be in the

node_nodes set (line 9) if it is not marked yet (line7). And only from this set node_nodes we

actually require elements to be in next_nodes set. Concretely: if we have a list whose third

element is for some reason already marked our specification only requires access permission for

the first three nodes, whereas the human specification requires access permissions for all nodes

in the list.

Even though this is the minimal requirement to satisfy the precondition, the caller can still

instantiate the set with all nodes of the list. Then of course he also has to provide permission to

the fields for all nodes.

5.2.2 Node Before Five

The example shown in Figure 5.7 shows another list traversal. This time we deal with a doubly

linked list. The method tries to find the value 5 and then returns the previous node.

Again the specification is more precise than just requiring access to the whole list. Firstly because

the next_nodes set only needs to contain all nodes from the list until one node has the value 5,

and secondly because we only require access to the prev field for the nodes that have value 5.

47

CHAPTER 5. EVALUATION

FIGURE 5.6. Traverse List

1 method traverse(nd: Ref, node_nodes: Set[Ref],
is_marked_nodes:Set[Ref], next_nodes: Set[Ref])

2 requires (forall r:Ref::(r in next_nodes) ==>acc(r.next))
3 requires (forall r:Ref::(r in is_marked_nodes)==>acc(r.is_marked))
4 requires (nd in node_nodes) &&
5 (forall _node: Ref :: (_node in node_nodes) ==>
6 (_node in next_nodes) && (_node.next in is_marked_nodes) &&
7 ((_node != null) && !_node.next.is_marked ?
8 (_node in is_marked_nodes) && (_node in next_nodes) &&
9 (_node.next in node_nodes) : true))

10 {
11 var node: Ref
12 node := nd
13 while ((node != null) && !node.next.is_marked)
14 invariant forall r:Ref::(r in next_nodes) ==>acc(r.next)
15 invariant forall r:Ref::(r in is_marked_nodes)==>acc(r.is_marked)
16 invariant (node in node_nodes) &&
17 (forall _node: Ref :: (_node in node_nodes) ==>
18 (_node.next in is_marked_nodes) && (_node in next_nodes) &&
19 ((_node != null) && !_node.next.is_marked ?
20 (_node in is_marked_nodes) && (_node in next_nodes) &&
21 (_node.next in node_nodes) : true))
22 {
23 node.is_marked := true
24 node := node.next
25 }
26 }
27 //human specification
28 define INV(nodes)
29 !(null in nodes)
30 && (forall n: Ref :: n in nodes ==> acc(n.next))
31 && (forall n: Ref :: n in nodes ==> acc(n.is_marked))
32 && (forall n: Ref :: n in nodes && n.next != null ==> n.next in

nodes)
33
34 method trav_rec(nodes: Set[Ref], nd: Ref)
35 requires nd in nodes
36 requires INV(nodes)

48

CHAPTER 5. EVALUATION

FIGURE 5.7. Node Before Five

1 method findNodeBeforeFive(nodesN: Set[Ref], nd: Ref,
2 node_nodes: Set[Ref], data_nodes: Set[Ref],
3 prev_nodes: Set[Ref], next_nodes: Set[Ref]) returns (res: Ref)
4 requires (forall r: Ref :: (r in next_nodes) ==> acc(r.next))
5 requires (forall r: Ref :: (r in prev_nodes) ==> acc(r.prev))
6 requires (forall r: Ref :: (r in data_nodes) ==> acc(r.data))
7 requires (nd in node_nodes) &&
8 (forall _node: Ref :: (_node in node_nodes) ==>
9 (_node in data_nodes) &&

10 ((_node != null) && (_node.data != 5) ?
11 (_node in next_nodes) && (_node.next in node_nodes)
12 : (_node in data_nodes) &&
13 ((_node != null) && (_node.data == 5) ?
14 (_node in prev_nodes) : true)))
15 {
16 var node: Ref
17 node := nd
18 while ((node != null) && (node.data != 5))
19 invariant (forall r: Ref :: (r in next_nodes) ==> acc(r.next))
20 invariant (forall r: Ref :: (r in prev_nodes) ==> acc(r.prev))
21 invariant (forall r: Ref :: (r in data_nodes) ==> acc(r.data))
22 invariant (node in node_nodes) &&
23 (forall _node: Ref :: (_node in node_nodes) ==>
24 (_node in data_nodes) &&
25 ((_node != null) && (_node.data != 5) ?
26 (_node in next_nodes) && (_node.next in node_nodes)
27 : (_node in data_nodes) &&
28 ((_node != null) && (_node.data == 5) ?
29 (_node in prev_nodes) : true)))
30 {
31 node := node.next
32 }
33
34 if ((node != null) && (node.data == 5)) {
35 res := node.prev
36 }
37 }

49

CHAPTER 5. EVALUATION

FIGURE 5.8. Get Third Element

1 method getThird(nd: Ref, next_nodes: Set[Ref]) returns (third: Ref)
2 requires (forall r: Ref :: (r in next_nodes)==>acc(r.next, write))
3 requires (nd in next_nodes) && (nd.next in next_nodes)
4 {
5 var second: Ref
6 second := nd.next
7 third := second.next
8 }

5.2.3 Get Third Element

The method getThird depicted in Figure 5.8 traverses a list until it reaches its third element

and returns it. The first thing to notice is that the contract grows in proportion with the methods

body. Here we do not have a while loop and only access one field, hence we also introduce only one

set. The contract is very easy to understand, it just adds the node nd and nd.next to the set.

5.2.4 Tree Traversals

Let us now have a look at a tree example. Method traverseRandom in Figure 5.9 traverses

the tree by sometimes following the left node and sometimes the right node. What makes this

example interesting is that we have an if statement, on line 29, with a changing integer variable.

Hence, we cannot just copy the condition into our specification but rather we have to forget about

it. The way we do this is by merging both branches. This can be seen in the specification on lines

8 and 9. Line 8 corresponds to the true branch and line 9 corresponds to the false branch. They

are not connected by a ternary conditional operator but simply by an &&.

Secondly we show this example because it nicely demonstrates the difference between the receiver

node sets and the changing variable sets. Here the algorithm actually traverses two levels of the

tree in one loop iteration. This means node_nodes contains only every other level of the tree

and therefore we only require access to the right field for nodes on every other level instead of

all nodes. This might be useful if an algorithm somehow wants to partition the tree and forks off

two threads where each works on its own part of the tree.

5.2.5 Find Local Mimimum

Even though the methods from the previous examples were working on lists or trees the algorithm

did not assume so. The algorithm does not assume any properties of the graph. We make this

explicit in the example shown in Figure 5.10. The goal of this method is to traverse the graph

and find a local minimum. We define a local minimum to be a node whose value is smaller than

the values of its neighbors, i.e. the nodes he can reach in one step. Each node in the graph can

50

CHAPTER 5. EVALUATION

FIGURE 5.9. Tree Traversals

1 method traverseRandom(nd: Ref, node_nodes: Set[Ref], right_nodes:
Set[Ref], left_nodes: Set[Ref])

2 requires (forall r: Ref :: (r in left_nodes) ==> acc(r.left))
3 requires (forall r: Ref :: (r in right_nodes) ==> acc(r.right))
4 requires (nd in node_nodes) &&
5 (forall _node: Ref :: (_node in node_nodes) ==>
6 (_node != null ?
7 (_node in left_nodes) &&
8 ((_node.left in left_nodes) &&(_node.left.left in node_nodes)&&
9 ((_node.left in right_nodes)&&(_node.left.right in node_nodes)))

10 : true))
11 {
12 var i: Int
13 var node: Ref
14 i := 0
15 node := nd
16 while (node != null)
17 invariant (forall r: Ref :: (r in left_nodes) ==> acc(r.left))
18 invariant (forall r: Ref :: (r in right_nodes) ==> acc(r.right))
19 invariant (node in node_nodes) &&
20 (forall _node: Ref :: (_node in node_nodes) ==>
21 (_node != null ?
22 (_node in left_nodes) &&
23 ((_node.left in left_nodes)&&(_node.left.left in node_nodes) &&
24 ((_node.left in right_nodes)&&(_node.left.right in node_nodes))
25 : true))
26 invariant i >= 0
27 {
28 node := node.left
29 if ((i < 5) || (i > 10)) {
30 node := node.left
31 } else {
32 node := node.right
33 }
34 i := i + 1
35 }
36 }

51

CHAPTER 5. EVALUATION

reach other nodes through the fields e1 and e2. The value of each node is stored in the field

data. Viper is able to verify this program, meaning we inferred enough permission for each field

access. In our contract, we have a set for each field, plus also a set for the changing variable

nd. The specification is similar to the specification from the tree traversal example. Line 11 and

line 14 correspond to the if conditions inside the loop. All accesses happening in the true branch

correspond to an assignment of the receiver node to the corresponding set in the true branch of

the ternary conditional operator. For example the first part of line 15, i.e. node in e2_nodes,

corresponds to the field read on line 40.

5.2.6 Instantiating the Sets

In the discussed example we have seen that the introduction of multiple sets introduces more

precision. Depending on which factor is more important, precision or the number of sets, one

might easily also merge those sets. For us the goal clearly was precision. Having multiple sets

might at first seem to unnecessary complicate the specification. But in general these sets are

quite intuitive. For example if the caller knows what kind of data structure he is working with,

then it is also very easy and quite natural to him to see which nodes access which fields, hence he

can quickly instantiate the correct receiver node set. Also if he knows what the algorithm does

and in particular in which way the data structure is traversed, he can precisely instantiate the

changing variable sets.

52

CHAPTER 5. EVALUATION

FIGURE 5.10. Find Local Minimum

1 field e1: Ref; field e2: Ref; field data: Int
2
3 method findMin(e2_nodes: Set[Ref], node: Ref, data_nodes: Set[Ref],

e1_nodes: Set[Ref], nd_nodes: Set[Ref]) returns (nd: Ref)
4 requires (forall r: Ref :: (r in e1_nodes) ==> acc(r.e1, write))
5 requires (forall r: Ref :: (r in e2_nodes) ==> acc(r.e2, write))
6 requires (forall r: Ref :: (r in data_nodes) ==> acc(r.data, write))
7 requires (node in nd_nodes) &&
8 (forall _nd: Ref :: (_nd in nd_nodes) ==>
9 (_nd in data_nodes) && (node in e1_nodes) &&

10 (node.e1 in data_nodes) &&
11 ((node.e1 != null) && (node.e1.data < _nd.data) ?
12 (node in e1_nodes) && (node.e1 in nd_nodes)
13 : (node in e2_nodes) && (node.e2 in data_nodes) &&
14 ((node.e2 != null) && (node.e2.data < _nd.data) ?
15 (node in e2_nodes) && (node.e2 in nd_nodes) : true)))
16 {
17 var moved: Bool; var value: Int
18 nd := node
19 moved := true
20 while (moved)
21 invariant (forall r:Ref:: (r in e1_nodes) ==>acc(r.e1, write))
22 invariant (forall r:Ref:: (r in e2_nodes) ==>acc(r.e2, write))
23 invariant (forall r:Ref:: (r in data_nodes)==>acc(r.data,write))
24 invariant (nd in nd_nodes) &&
25 (forall _nd: Ref :: (_nd in nd_nodes) ==>
26 (_nd in data_nodes) && (node in e1_nodes) &&
27 (node.e1 in data_nodes) &&
28 ((node.e1 != null) && (node.e1.data < _nd.data) ?
29 (node in e1_nodes) && (node.e1 in nd_nodes)
30 : (node in e2_nodes) && (node.e2 in data_nodes) &&
31 ((node.e2 != null) && (node.e2.data < _nd.data) ?
32 (node in e2_nodes) && (node.e2 in nd_nodes) : true)))
33 {
34 moved := false
35 value := nd.data
36 if ((node.e1 != null) && (node.e1.data < value)) {
37 nd := node.e1
38 moved := true
39 } elseif ((node.e2 != null) && (node.e2.data < value)) {
40 nd := node.e2
41 moved := true
42 }
43 }
44 }

53

C
H

A
P

T
E

R

6
CONCLUSION AND FUTURE WORK

The previous chapters introduced, explained and analysed our two permission inference

algorithms: the first for arrays and the second for graphs.

The array algorithm was able to infer invariants and preconditions, which included quantified

permissions, that granted enough permission to all fields that were accessed by the method. The

algorithm handles a wide variety of methods with only a few restrictions: it cannot handle heap

dependent receivers. This means that we cannot handle data structures such as arrays of arrays

(2D arrays). Additionally, it solely handles arrays, so for other data structures one has to use the

graph analysis. The proposed analysis deals with loops by overapproximating the possible values

of changing variables. In order to do so we developed a forget operator which takes advantage of

the numerical domain’s forget operator. The developed forget operator transforms one expression

mentioning changing variables by approximating it with a new expression that does not contain

changing variables. The algorithm handles any number of exhales and inhales, as long as they

are in the supported form, by summing up the permission amounts. It further handles fractional

permissions. In the case of read permissions we decided to use ghost parameters to define a

concrete permission amount that we require in order to read an array location (cf. Section

3.2.2). Some shortcomings are that the forget operator introduces imprecision which can lead to

imprecise contracts. Furthermore the inferred contracts rely on ghost parameters and functions,

so the original program has to be extended.

The graph analysis is quite different from the array analysis. First we got rid of some re-

strictions. Since recursive data structures usually rely on a field read where the receiver itself is

affected by a field read we allow heap dependent receivers. Second we generalized the algorithm

to handle different fields. On the other hand we added the restriction that we do not allow writes

54

CHAPTER 6. CONCLUSION AND FUTURE WORK

to locations that are part of our state (cf. Section 4.1). Another limitation, due to the extensive use

of sets, is that the algorithm does not handle exhales and inhales. Even with these restrictions

there are several examples which the algorithm can handle.

Differences to the array algorithm are of course the introduction of sets and the separation of

requiring access permission and defining the sets. A major difference is the way we forget about

changing variables. In methods with recursive data structures changing variables are usually

references rather than integers so we proposed a new forget operator which collects possible

values of a changing variable in a set.

Some disadvantages of the inferred contracts are that they are again quite long. Moreover the

introduction of sets introduces the need for the caller to instantiate those sets. But as explained

in Section 5.2.6 the instantiation should be intuitive.

Based on the evaluation in Chapter 5 we can conclude that both algorithms infer specifications

that are sound and actually very precise. In many cases they are even more precise than what

humans generally infer, since keeping all special cases, e.g. aliases or branches, in mind can be

very cumbersome.

6.1 Future Work

There are a number of ways one can address the discussed short comings. In this section we will

elaborate on our ideas to further improve the proposed analysis.

6.1.1 Simplify Contracts

Since the inferred contracts are sometimes not very easy to read, simplifying them would

automatically be beneficial. In this section we propose multiple ways to make them more concise

and make them look more similar to the ones human would write, which supports readability.

• Arrays. It sometimes happens that contracts for arrays contain negative permission

amounts that do not affect any positive permission amounts, for example due to an inhale

at the bottom of the method. Those permissions usually will get cut off by the boundary

function. Hence an optimization would be to just omit this negative part at the end. Figure

6.1 shows such an example where one could omit line 3.

If there are no inhales or exhales and we do not need to distinguish between read and

write permission amounts then there is no need to push the inferred expression into the

permission amount parameter of the accessibility predicate, but it can rather be used on

the left hand side of the implication, i.e. c(p), of the quantified permission expression:

forall p:Int:: c(p) ==> acc(loc(arr,p).val)

55

CHAPTER 6. CONCLUSION AND FUTURE WORK

FIGURE 6.1. Remove Negative Permission

1 method negPerm(arr: Array)
2 requires forall p:Int:: true ==> acc(loc(arr,p).val, p==1? 1:0
3 + f(p==1?-1:0))
4 {
5 exhale acc(loc(arr,1).val,1)
6 inhale acc(loc(arr,1).val,1)
7 }

We can take this one step further: if in our c(p) expression we only have equalities, e.g.

p==1, then we do not necessarily need quantifiers at all. For each equality p==exp we

would simply add a separate acc(loc(arr,exp).val) to the precondition. But one has

to take care to not require access permission to the same location multiple times, since with

this approach we would require the access permissions separately.

• Graphs. Having a close look at the inferred contract one might sometimes see that in the

set definition part we have the same element assignment more than once (see lines 24 and

27 of the example in Figure 5.7). This can happen when the assignments occur in different

branches or subbranches. As a reminder the branches in the contracts were introduced

due to an if condition. If an access to the same field happens in the true and the false

branch of an if condition, then also in our contract we will end up having two assignments

corresponding to the accesses. One could push those assignments in the expression one

level up, and consequently merging those duplicates. Similarly if we have an assignment

higher up the condition-tree and the same further down,as is the case in Figure 5.7, one

could remove the latter one.

Next one should investigate the effects of choosing fewer sets. This would probably lead

to less precision, but it would be interesting to see how much. The advantage is that the

contract is a lot shorter and easier to understand and in addition the caller has to initialize

fewer sets. Furthermore, the contracts would be more uniform across methods that work

on the same data structure.

6.1.2 Improve Forget Operator

Especially in the array algorithm we could gain more precision if we had a more precise forget

operator. Since our forget operator heavily relies on a numerical domain, one way to improve the

precision of the contracts would be to use a domain or develop a new domain that is more precise

than our current one, which is polyhedra.

Another probably more precise way is to apply the algorithm explained in [9]: the algorithm

computes the cover of an expression. The paper defines cover as the most precise quantifier-free

56

CHAPTER 6. CONCLUSION AND FUTURE WORK

FIGURE 6.2. Inhale inside Loop

1 method toOutside(arr: Array, ab: Ref, lenA: Int) returns (x: Int)
2 {
3 var t: Int := 0
4 while (t<10)
5 invariant t>=0 && t<=10
6 invariant forall p:Int :: (p>=0 && p<t) ==> acc(loc(arr,p).val)
7 {
8 inhale acc(loc(arr,t).val)
9 loc(arr,t).val := 0

10 t := t+1
11 }
12 }

overapproximation to existential quantifier elimination, and describes algorithms to compute the

cover of formulas. We believe that cover could improve our forget operator.

For the graph algorithm one could investigate whether it is possible to reuse our forget

operator from the array analysis and instead of relying on the forget operator of the numerical

domain use a forget operator of an abstract domain for references.

6.1.3 Postconditions & Invariants

In our backward propagation we infer, through a weakest precondition analysis, a precise precon-

dition. Now to also infer postconditions we would need another forward propagation: starting

from the permissions we collected we would propagate this information forward by a strongest

postcondition analysis and therefore derive a postcondition which includes all permissions that

are left at the end of the method.

Since invariants are both pre- and postconditions for loops at the same time we can analogously

strengthen the invariants through a forward propagation. As already discussed in Section 4.5.2

inhales inside the loop have some challenges. Figure 6.2 shows a method which initializes an

array and passes the new permissions outwards. What is interesting to see is that in this case

the changing variable t is an important part of the specification. Hence we cannot simply forget

about it. Finding a way to deal with this is an interesting task left for future work.

6.1.4 Heap Analysis

Having a heap analysis in order to get information about aliases and certain field values would

help with removing some of the current limitations. It would be possible to handle heap dependent

receivers in an array. Additionally one might also be able to handle more modifications of the

57

CHAPTER 6. CONCLUSION AND FUTURE WORK

data structure in the graph analysis. For example switching the left and right branch inside a

tree.

With the help of a heap analysis one can also work on combining both algorithms. They both

have their own advantages and disadvantages, hence combining them and creating an algorithm

with the advantages of both algorithm is the logical next step.

6.1.5 Nested Quantifiers

Right now there is work in progress to relax some restrictions on the form of quantified permis-

sions in Viper. In the future it will also support nested quantifiers and quantifiers with multiple

variables. In this section we want to discuss how this could benefit our analysis.

If we were allowed to use multiple quantified variables we could extend our array analysis to

handle methods that deal with multiple arrays. In addition to quantify over the array index we

would also quantify over the array itself. The shape of our contract would then look like this:

forall a:Array, i:Int :: true ==> acc(loc(a,i).val, p(a,i))

In fact we can generalize the analysis to handle not only loc but any function that returns a ref-

erence. As long as the function is injective we would simply need to quantify over each parameter

separately. Assuming we have a function foo(x:X ,y:Y, z:Z):Ref we can quantify over

each variable like this:

forall x:X, y:Y, z:Z :: true ==> acc(foo(x,y,z).val, p(x,y,z))

The expression p defines the permission needed depending on x, y and z

6.2 Final Remarks

With this work we wanted to give a better understanding on the challenges that arise when infer-

ring permissions and how one could address them. We did this by developing and implementing

an inference algorithm that focuses on different data structures. When further improving the

analysis, for example by inferring cleaner specifications, introducing heap analyses or taking

advantage of nested quantifier, we believe that in the future we can see better tool support that

help the programmer specify the permissions needed.

58

BIBLIOGRAPHY

[1] Sample project page.

http://www.pm.inf.ethz.ch/research/sample.html.

[2] M. BARNETT, B.-Y. E. CHANG, R. DELINE, B. JACOBS, AND K. R. M. LEINO, Boogie: A

modular reusable verifier for object-oriented programs, in International Symposium on

Formal Methods for Components and Objects, Springer, 2005, pp. 364–387.

[3] S. BLOM AND M. HUISMAN, The vercors tool for verification of concurrent programs, in FM

2014: Formal Methods, C. Jones, P. Pihlajasaari, and J. Sun, eds., vol. 8442 of Lecture

notes in computer science, Berlin, Germany, May 2014, Springer, pp. 127–131.

[4] P. COUSOT AND R. COUSOT, Static determination of dynamic properties of programs, in

Dunod, 1976.

[5] P. COUSOT AND R. COUSOT, Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints, in Proceedings of

the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,

POPL ’77, New York, NY, USA, 1977, ACM, pp. 238–252.

[6] P. COUSOT AND N. HALBWACHS, Automatic discovery of linear restraints among variables of

a program, in Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, ACM, 1978, pp. 84–96.

[7] L. DE MOURA AND N. BJØRNER, Z3: An efficient SMT solver, in International conference

on Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2008,

pp. 337–340.

[8] J.-C. FILLIÂTRE AND A. PASKEVICH, Why3—where programs meet provers, in European

Symposium on Programming, Springer, 2013, pp. 125–128.

[9] S. GULWANI AND M. MUSUVATHI, Cover algorithms and their combination, in European

Symposium on Programming, Springer, 2008, pp. 193–207.

[10] C. A. R. HOARE, An axiomatic basis for computer programming, Communications of the

ACM, 12 (1969), pp. 576–580.

59

http://www.pm.inf.ethz.ch/research/sample.html

BIBLIOGRAPHY

[11] K. R. M. LEINO, P. MÜLLER, AND J. SMANS, Verification of concurrent programs with

chalice, in Foundations of Security Analysis and Design V, Springer, 2009, pp. 195–222.

[12] A. MINÉ, The octagon abstract domain, Higher-order and symbolic computation, 19 (2006),

pp. 31–100.

[13] P. MÜLLER, M. SCHWERHOFF, AND A. J. SUMMERS, Viper: A verification infrastructure for

permission-based reasoning, in International Conference on Verification, Model Checking,

and Abstract Interpretation, Springer, 2016, pp. 41–62.

[14] J. C. REYNOLDS, Separation logic: A logic for shared mutable data structures, in Logic in

Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on, IEEE, 2002,

pp. 55–74.

[15] J. SMANS, B. JACOBS, AND F. PIESSENS, Implicit dynamic frames: Combining dynamic

frames and separation logic, in European Conference on Object-Oriented Programming,

Springer, 2009, pp. 148–172.

60

