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Ultrasound Simulation with Animated Anatomical
Models and On-the-Fly Fusion with Real Images

via Path-Tracing
Rastislav Starkov, Christine Tanner, Michael Bajka, Orcun Goksel

Abstract—Ultrasound is an essential imaging modality in
clinical screening and diagnosis, for reducing morbidity and
improving quality of life. Successfully performing ultrasound
imaging, however, requires extensive training and expertise in
navigating a hand-held probe to a correct anatomical location as
well as subsequently interpreting the acquired image. Computer-
generated simulations can offer a safe, flexible, and standardized
environment to train such skills. Data-based simulations dis-
play interpolated slices from a-priori-acquired real ultrasound
volumes, whereas generative simulations aim to reproduce the
complex ultrasound interactions with comprehensive, geometric
anatomical models, such as using ray-tracing to mimic acoustic
propagation. Although sonographers typically focus on relatively
smaller structures of interest in ultrasound images, the fidelity
of the background anatomy may still play a role in contributing
to the realism of a generated US image; e.g. when imaging
a relatively smaller fetus within large abdominal background.
It was proposed earlier to compose ray-traced images with
acquired volumes in a preprocessing step. Despite its simplicity,
this prevents any view-dependent artifacts and interactive model
changes, such as those induced by animations, which can, for
instance, model fetal motion. To fully leverage the flexibility of
the model-based generative approach, we propose herein an on-
the-fly image fusion, based on the two techniques, by moving
the interpolation stage within the ray-tracer, such that the pre-
acquired image data can be referred to in the background,
while the acoustic interactions with the model can be resolved
in the foreground. This allows for animated anatomical models,
which we realize during simulation runtime via scene-hierarchy
subtree switching between precomputed acceleration structure
graphs. We demonstrate our proposed techniques on ultrasound
sequences of fetal and heart motion, where only animated models
can afford to meet realism requirements entailed by the temporal
domain.

I. INTRODUCTION

Ultrasound (US) is an imaging modality that offers safe,
low-cost and real-time means of clinical examinations. How-
ever, its low signal-to-noise ratio and direction-dependent
imaging artifacts complicate image interpretation for diag-
nosis. Furthermore, navigating the imaging probe requires
certain skills such as excellent hand-eye coordination with
respect to anatomical knowledge. Such skills can make a
difference between identifying a cancerous tumor or missing
one during screening, which may have critical consequences
for the patient. Thus, both acquisition and interpretation of
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ultrasound image information heavily relies on the experience
and skill of a sonographer. This accordingly necessitates an
extensive training to ensure the success of clinical outcomes.

Training is possible with tissue-mimicking phantoms, ca-
davers, and volunteers, which all have associated ethical and
realism issues. Furthermore, with these aforementioned meth-
ods, it is also not possible to cover a sufficiently wide range
of training scenarios for a comprehensive learning experi-
ence. That motivates the need for computer-based simulations,
where arbitrary content can be created and incorporated in a
safe, repeatable training environment. Such simulations can
also allow for experiencing rare cases, which are unlikely to
be encountered in regular clinical routine for live training [1].

Data-based US simulations can provide relatively high
image realism [2, 3, 4, 5, 6], where image slices are in-
terpolated during simulation time from a-priori-acquired US
volumes, and can even be altered by means of interactive tissue
deformations [7]. However, acquisition of rare cases with
representative diversity, crucial for comprehensive training, is
a major challenge. For instance, in obstetrics it is infeasible to
collect US volumes of fetuses at all gestational ages, at differ-
ent position/orientations, with different anatomical variations,
and all combinations thereof with standardized image quality.
Moreover, a substantial variety of pathological appearance
introduces another degree of freedom, which altogether pose
a major limitation for image-based methods for the purposes
of extensive training. Lastly, prepossessing and storage of
acquired US volumes further complicates the implementation
of data-based approaches.

Alternatively, model-based techniques [8, 9, 10] aim to
generate US images by means of simulating US interac-
tion with an anatomical representation; for instance, by us-
ing ray-tracing techniques on triangulated surface models of
anatomy [11, 12, 13]. Firstly, such approaches require that
the acoustic propagation and tissue interaction are simulated
realistically for rendering believable images; secondly, the
scene geometry needs to be modeled true to the human
anatomy. Given accurate anatomical models, state-of-the-art
methods using Monte-Carlo path-tracing techniques are shown
to produce highly realistic ultrasound images at interactive
frame rates [13]. Therefore, model-based methods are limited
not by prior image acquisition, but rather by the anatomical
modeling effort; i.e., any anatomical variation that can be
modeled, can potentially be simulated. Unfortunately, precise
modeling at high, discernible detail is a time-consuming effort
and can only be afforded in small regions of actual clinical
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(a) Original volume (b) Ray-traced (c) Fused volume

Fig. 1: Example of the approach in [14]: original volume (a)
and ray-traced fetus/volume (b) are fused via image stitching
(c).

interest. For instance, common obstetric examinations during
pregnancy focus on the fetus itself. For their training, a fetus
as well as any physiological and pathological variation thereof
can be modeled in detail based on anatomical literature and
expertise. Although the surrounding anatomy of the mother,
e.g. abdominal structures such as the intestines, is also visible
in large parts (background) of the exam images, it is often
not the focus of interest for the examination and it would be
counter-productive to spend modeling effort and time for its
realistic simulation. Nevertheless, omitting such background
image appearance in a simulation would still affect the realism
of the entire image and could hinder the authentic experience
of performing an US examination.

In earlier work [14] we introduced a combination of data-
and model-based approaches as a compromise between the
two, where the region of clinical interest is modeled in detail
and simulated by means of Monte-Carlo ray-tracing, and then
fused in a preprocessing step with lower-interest background
images collected in-vivo, as presented in Fig. 1. This reduces
modeling efforts, but requires fusing rendered and acquired
volumes offline, to be later used in real-time in an image-
based simulation where planar slices can be interpolated, e.g.
using [7]. However, such offline fusion relies on a lengthy and
tedious preprocessing pipeline, before the volumes can actu-
ally be used for ultrasound simulation. Furthermore, the fused
volumes are eventually used in an image-based simulation
fashion, which imposes limitations on faithfully reproducing
imaging-direction and model-state dependent artifacts, as illus-
trated in Fig. 2; e.g. the ultrasonic shadows would still cast as
in the preprocessed imaging direction, but not in the interactive
imaging direction, and any changes in the model such as its
movement or animation cannot be represented in the images.
In this work we propose an on-the-fly fusion of prerecorded
background anatomy and simulated content incorporated into
US ray-tracing, as shown in Fig. 3. This eliminates the need
for the aforementioned offline prepossessing as well as permits
to faithfully represent direction-dependent ultrasound artifacts
and create simulations with moving and animated models. For
realizing animations with (sub)structures of complex models
at interactive frame-rates, we employ a simple scene subgraph
switching scheme with precomputed acceleration structures for
Monte-Carlo path-tracing.

(a) 0◦, ray-traced (b) 90◦, ray-traced (c) 90◦, image-based

Fig. 2: Comparison of view-dependent imaging characteristics
between different simulation approaches. It can be seen that
if the simulated image (a) is simply rotated, e.g. by 90◦, to
achieve the orientation in (b), using image-based techniques
such as in [7, 14], then the acoustic shadowing artifact would
be pointing in a completely wrong and unrealistic direction
(c). Furthermore, orientations of speckles would similarly be
incorrect. Therefore, interactive ray-tracing and rendering as
proposed in this work are necessary for realistic images.

II. METHODS

Below we first summarize Monte-Carlo ray-tracing for
simulating ultrasound for the sake of completeness. We then
propose the incorporation of dynamic, animated models. In
particular, we discuss computational and storage limitations
posed by naive approaches and how we propose to overcome
these using node-switching via selectors between prebuilt
acceleration structures at animation keyframes. Next, we in-
troduce runtime compounding of the ray-traced output with
pre-acquired volumes from clinical examinations, within our
path-tracing framework.

A. Path-tracing for Ultrasound Simulation

For ultrasound imaging, a transducer first emits an acoustic
wave as a short modulated pulse of a few wavelengths. As this
acoustic wavefront travels within the tissue at certain speed of
sound c, it may reflect and refract at anatomical boundaries
based on the acoustic impedance (Z) difference between
respective tissues. The wavefront is meanwhile also omni-
directionally scattered by (uncountably) many subwavelength
structures in the tissues, such as micro vasculature, cell nuclei,
organelles, and large proteins. Scattering and reflections send
a portion of the acoustic energy back to the transducer,
which listens, samples and records these echo signals digitally.
After an image-formation process called beamforming, such a
radio-frequency (RF) signal goes through a post-processing
pipeline with time-gain compensation (to account for depth-
based acoustic attenuation), signal demodulation (to determine
the echo amplitude to display), and log-compression (to com-
press the large dynamic range of a signal to grayscale image
values). This yields a single column (scanline) of an image
as in Fig. 4. The procedure is repeated multiple times for a
moving window of transducer elements, and all the scanlines
are subsequently transformed into screen Cartesian coordinates
(scan-conversion), to create an ultrasound image frame known
as (brightness) B-mode image.

Monte-Carlo integration. Ray-based methods model wave
propagation with a collection of rays that are cast from the
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Fig. 3: Overview of the on-the-fly fusion workflow. Segmented surfaces S, e.g. a gestational sac, provide location information
that can be used to position triangulated surface models (static or animated) in a desired location in the volume. Such
segmented surfaces can also act as masking geometry and/or outermost anatomy for the simulated foreground model. Transducer
transformation T is provided on-the-fly either by the user in a GUI or by a position tracking sensor attached to an interactively
manipulated mock transducer. The complete set of tunable (ray-tracing) parameters R can be found in our earlier work [13].

US wavefront

(a) Transducer plane

0

I

(b) RF signal (c) Scanline

Fig. 4: Convex transducer (a) sends an US wave-front.
Recorded signal (b) for an individual scanline is postprocessed
to produce a corresponding image (c).

surface of a transducer [11, 12], producing echo signal along
scanlines, as they travel through anatomy. The amplitude
values I(t) of an RF signal are then found by integrating over
all contributions [12] recorded by the transducer at time t.
Similarly to US, ray-surface intersections (tissue interfaces)
may result in a reflection or a refraction. Note that in the
context of ray-tracing an intersection point is parameterized
by a differential area that defines a distribution of all possible
outgoing rays. Then to account for the exitant energy, it is re-
quired to cast secondary rays across the entire set of directions
defined by the distribution function. Stochastic Monte-Carlo
ray-tracing is well equipped to process such multidimensional
integrals [15]. Furthermore, even if each surface acted as a
perfect mirror (the normals in the differential area face the
same direction) [11], necessitating only one reflected and one
refracted ray at every surface intersection, as shown in Fig. 5,
a deterministic ray-tracer would suffer from an exponential
growth of secondary rays. In contrast, a stochastic Monte-
Carlo ray-tracer can reduce computation time while providing
similarly converged values by probabilistically sampling each
time either a reflected or a refracted ray. Alternatively, at
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Fig. 5: Rays generated by a deterministic ray-tracer always
split into reflected and refracted rays, gradually producing
deeper recursion levels labeled by progressively larger num-
bers in (a), whereas rays cast by a stochastic Monte-Carlo
ray-tracer take arbitrary (both in terms of the number and
the orientation of constituent ray segments) paths (marked by
numbers in (b)) while travelling through tissue.

every intersection point a surface normal is sampled, according
to the provided distribution function, which is then used in
conjunction with Snell’s law and Fresnel equations to compute
the direction and the energy of an outgoing ray (reflected
or refracted). Moreover, Monte-Carlo integration enables a
number of importance sampling strategies [16], which can
reduce the variance of numerical integration. These techniques,
which are described in greater detail in [13], account for a
part of what constitutes the visual appearance of ultrasound
imaging, namely anatomical boundaries.

Speckle texture. The characteristic ultrasound texture is
composed of a speckle pattern, which is a major factor in the
perception of US images, as well as in clinical imaging and



4

Ray segment

Tissueb

Interfacea-b
…

Sampled point

Tissuea

Tissuec

Interfaceb-c

(a) Ray-sampling

(b) Typical PSF

Fig. 6: Simulating speckle texture. (a) Each ray segment
between anatomical boundaries (enclosed within tissue) is
sampled according to the given temporal sampling rate of
a simulated ultrasound system and the speed-of-sound in a
particular tissue, which together define the axial resolution of
a transducer. (b) Scatterers around sampled locations are then
convolved with a kernel – point-spread function (PSF).

diagnostics. Speckles are the result of wave interferences pro-
duced by ultrasound interacting with innumerable “scatterers”
in the body. Likewise, to generate a physically-based speckle
pattern when simulating US, rays should similarly interact
with scatterers as they propagate through tissues. We use well-
established convolution-based methods for generating speckle
patterns [17]. Assuming axially-separable Point-Spread Func-
tion (PSF), fast convolutions can be computed [9]. This
method was tailored for use in ray-tracing-based simulations
in [11, 12, 13], where a tissue-specific spatial distribution of
scatterers is represented by a voxel grid. The grid elements
are defined by the density ρ of the scatterers inside the
tissue as well as their amplitudes, which are obtained by
sampling from a Gaussian distribution (µs, σs). Then given
stationary anatomy, the speckle pattern is produced by first
generating equally spaced samples on ray segments, as illus-
trated in Fig. 6, where for each successive sample, the ray
intensity is attenuated according to Beer-Lambert law. Then a
static, anatomy-specific distribution of scatterers around these
sampled points is convolved with the PSF of the simulated
transducer.

Image formation. To combine the convolution-based
speckle pattern generation method with the ray-tracing rou-
tine, echo amplitudes from processing both the anatomical
boundaries and the scatterers (from the bulk tissue between
the boundaries) are summed up. Thereafter, convolution is
performed on the combined intensities to obtain an RF signal.
Subsequently, the RF signals are postprocessed to produce the
final ultrasound image.

B. Animation Pipeline

In addition to probe manipulation by an examiner, in-vivo
US examination often involves a wide range of anatomical
motions and displacement, for instance due to haphazard fetal
muscle activity or periodic movements, such as the beating
heart or breathing. Omitting these dynamic effects (e.g., as
in [2, 5] and even when they are user-interactive as in [7, 14])
results in lifeless static anatomy, impairing the realism of the

Transducer

Ray 1

Bounding box 1

Geometry

Bounding box 2

Coarse acceleration structure

Ray 2

Fig. 7: Once Ray 1 encounters the initial intersection with the
coarse acceleration structure, it examines the two underlying
bounding boxes to find the next intersection and then proceeds
to traverse the fine acceleration structure referenced by Bound-
ing Box 2. Meanwhile, Ray 2 fails the intersection check with
the union bounding box and is immediately terminated.

produced simulations. Incorporating animated models into ray-
tracing-based methods, however, is not a straightforward task.

Ray-based methods rely heavily on acceleration struc-
tures [18] in one form or another, so that ray-geometry
intersections can be calculated in an efficient fashion and also
a large number of rays can be terminated early, as illustrated in
Fig. 7. Accordingly, it significantly reduces computation time
spent on processing redundant ray-surface intersections, and
makes such ray-tracing possible in the first place. Every level
of a generated acceleration structure graph contains bounding
boxes (the leaves of which are geometric primitives, e.g.
triangles), that enable efficient graph traversal in the scene
hierarchy. Typically, these graphs are precomputed once and
reused throughout the simulation. However, when non-static
geometry is introduced into the scene, existing acceleration
structures are invalidated. Consequently, they need to be rebuilt
or refit [19] for every animation frame, which can be a
significant computational burden for rendering at interactive
frame rates.

We herein use two methods to circumvent the above scene-
graph update problem. One way is to keep the entire animated
sequence, along with its prebuilt acceleration structures, on
the GPU. Then, specific geometries can be extracted from
the device memory depending on which animation key frame
needs to be visualized. Alternatively, for certain types of
simplistic motion that can be represented by affine transfor-
mations, such as displacement and rotation of the fetus within
the gestational sac or palpation of arteries, we use a method
similar to instancing [20]. Without loss of generality, below
we describe these approaches to enable animated models
using the nomenclature of the ray-tracing framework NVIDIA
OptiX [21], which is the framework that we employ for our
GPU-based ultrasound simulator. The methods, nevertheless,
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are generic and can be adopted to similar constructs available
in other ray-tracing frameworks.

Rebuilding acceleration structures. Consider a high-level
node (i.e., the so-called group in NVIDIA OptiX) of the
scene hierarchy, which has a number of children nodes (ge-
ometry groups) that contain actual geometric data (geometry
instances) and respective acceleration structures. By swapping
one of the children nodes with another geometry group (or
simply alternating geometry instances of a particular group)
that is currently not part of the hierarchy, we can ray-trace
different scenes (i.e. node exchange) at different frames, thus
producing animated sequences. However, a naive implemen-
tation of such an approach requires, at each animation step,
re-uploading the geometry to GPU and rebuilding its com-
plete acceleration structure. Interactive ray-tracing can greatly
benefit from using object hierarchy subdivision, instead of
spatial subdivision [19], for which specialized fast builders
[22] can be employed, albeit at the cost of reduced scene
traversal efficiency. Consequently, performance of ray-tracing
in animated scenes can be noticeably improved by caching
keyframe models on the GPU, such that when they are
swapped, only the coarse acceleration structures of the higher
scene-graph level nodes need to be updated. Nevertheless, the
particular implementation of this in OptiX is not clear to us,
e.g. whether or not a geometry node is kept in the device
memory when it is explicitly removed from the scene tree
when exchanging with another keyframe model. Therefore,
instead of a fallback to completely rebuilding acceleration
structures, we resort to a guaranteed strategy that keeps the
loaded geometry on the GPU, as described below.

Selector nodes. Instead of re-uploading the geometry for
every subsequent animation frame, it is possible to store the
complete set of surface models that comprise the animation,
along with their respective acceleration structures, on the GPU,
and then simply swap between them when required by means
of selector nodes [21]. Such an approach permits the use of
a particular class of acceleration structure builders, termed as
Split Bounding Volume Hierarchy (SBVH), tailored for a fast
scene traversal at the expense of longer build times [22, 23].
To be able to traverse an acceleration structure of a scene
that contains a selector node, the bounding box of the latter
is chosen to be the union of all the bounding boxes of its
children, such that it encompasses the span of any possible
geometry which can be picked during ray-tracing. Hence, the
acceleration structures of the higher scene-graph nodes are
not updated when a selector swaps keyframe models. The
downside is that such an approach results in a higher number
of false intersections, as shown in the scene configuration
presented in Fig. 8, as compared to rebuilding acceleration
structures. Note that in the latter case an acceleration structure
update happens only once per frame. In contrast, the number
of false intersections encountered during a single execution
of a ray-tracing kernel is unbounded and grows based on the
number of samples generated per scanline/elevation layer [13],
as well as the depth of path-tracing recursion. Thus, the choice
between using selectors and exchanging children nodes comes
down to a trade-off between the time it takes to rebuild
acceleration structures vs. computations spent on processing

bbox1

Transducer

bbox2

Union bounding box

False intersections

Possible valid 
intersection

Rays

Fig. 8: Two objects contained within bounding boxes 1 and
2 correspond to two different key frames of an animated
sequence. Substantial difference in the positions of the two
objects results in a large union bounding box. Consequently,
regardless of which geometry is currently picked by the selec-
tor, a significant portion of the rays will report intersections
with the union bounding box, even though further processing
will show that no actual ray-surface intersection takes place.

Nominal stateIntended 
transformed state

Transform

Nominal ray Inversely 
transformed ray

New ray originTransducer

Fig. 9: Consider an affine transformation which results in a
translation of an object from its nominal state to an intended
translated state. Once the translation is performed, the nominal
ray will be able to report an intersection with the surface
of the transformed object. However, if the inverse translation
is instead applied to the nominal ray, leaving the geometry
unaltered, the ray will intersect the geometry in the nominal
state at the same point.

false intersections.
Transform nodes. The simplest way of introducing anima-

tion relies on applying affine transformations to the geometry
that is to be animated. For instance, palpating an artery
produces a deformation that can be represented as a non-
uniform scaling. Another example is displacement of the fetus
(or a part thereof, for instance an arm or a leg motion)
within the gestational sac, which can be achieved by translat-
ing/rotating these structures. The benefit of using this approach
is that instead of actually applying a transformation to the
geometry, which would be computationally very inefficient, an
inverse transformation [20] is applied to the rays via transform
nodes [21], leaving the original geometry unchanged, cf.
Fig. 9. Hence, only the coarse high-level acceleration structure
needs to be updated [24].

C. On-the-Fly Fusion

Having proposed an efficient ray-tracing approach above
for certain types of animated anatomies, the question remains
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(a) Masking geometry
(b) Background mask (c) Blurred mask

Fig. 10: (a) Gestational sac is used as masking geometry,
which is also the outer most anatomy simulated during ray-
tracing. (b) White pixels within the image plane of a transducer
in the scanconverted mask are taken from the acquired image
data, whereas pixels within the mask are sampled from the
ray-tracing simulation. The border between these two regions
is blurred (c) to have a smooth transition between the different
contents.

how to fuse ray-traced synthetic images with the data-based
anatomical background during the execution of the simulation.
For this purpose, we propose to move the image fusion step
into the US ray-tracer as described below.

Firstly, if desired, in an offline step [14] the original image
volume may be deformed to allow for inserting synthetic
anatomy of a different size. Subsequently, the region of the
prerecorded background data that is redundant and to be
replaced by the simulated content is marked by a mask as
shown in Fig. 10. We then use this mask during the on-
the-fly fusion step where the values within the foreground
are taken from the simulated ray-tracing output, whereas the
remaining values are extracted from the US volume. This is
akin to removing this masked content from the volume (as
in [14]), however the fusion is achieved during simulation
runtime, therefore obviating the need for an actual image-
content deletion.

The masking geometry is processed by a specific ray-tracing
kernel, which simply casts rays along scanlines, ignoring any
reflection/refraction effects, hence simply transmitting sec-
ondary rays in the same traversal direction at every intersection
point. For every ray-surface intersection, ray segments are then
examined to determine whether they are located outside or
inside the masking geometry. Furthermore, to save computa-
tions the same ray-tracing kernel is also used to look-up for
the voxel values of the strode US image data. Produced ray
segments are discretized identically to the ray-marching step
for scatterer convolution in the ultrasound ray-tracing kernel,
i.e. based on the temporal sampling rate of the simulated
machine and the speed-of-sound of enclosing anatomy. Then,
for every generated sample both registered mask values and
US volume values are placed in prescan buffers.

Next, the ultrasound ray-tracing kernel is executed in such
a way that no volume processing is performed for ray seg-
ments outside of the outermost anatomical structure of the
region of interest, as shown in Fig. 11. The output of the
ultrasound simulation is similarly written in a prescan buffer.
Subsequently, the scanconversion step produces 3 different
B-mode sized images, namely the sampled US volume, the
ray-traced simulation and the mask, which are used jointly
to merge the background anatomy with the simulated output

Transducer

Gestational sac

1

2

0

Surrounding anatomy

(a) Simulated anatomy

(b) No surroundings (c) With surroundings

Fig. 11: Processing of ray segment 0-1 (a) involves minimal
amount of computations, such as updating the current depth
value (number of axial samples) and the absorbed energy,
according to how far the ray travelled before intersecting
anatomy. Conversely, a complete US simulation is performed
for ray segment 1-2, including ray-marching and sampling of
the scatterer texture. The resulting B-mode image (b) lacks
the texture surrounding the simulated anatomy, as opposed to
performing a complete US simulation for both the foreground
and the background (c). Notice that in the latter case ultra-
sound waves also interact with the surrounding anatomy, which
may result in an altered appearance of the content within the
gestational sac.

via the mask. Without any blending, there would be a sharp
transition between the sampled image values outside the
masking geometry, and the simulated values inside. Similarly
to [14], we blur the scanconverted mask with a box filter as
shown in Fig. 10c, such that the transitional values at the
border of the masking geometry range between 0 and 1. We
can then produce a weighted combination of the background
and the foreground with weights provided by the blurred mask,
e.g. for linear blending:

I(x) =M(x)Ib(x) + (1−M(x))If (x)

where M is the blurred mask, x an image location, and Ib
and If are the scanconverted sampled volume (background)
and the simulated output (foreground) respectively.

III. RESULTS

The core code functionality is written in C++, whereas
the NVIDIA OptiX 5.0.1 ray-tracing framework is used to
produce prescan outputs via executing a number of ray-tracing
kernels, namely for ultrasound wavefront propagation, volume
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(a) Original volume (b) Simulated only

(c) No blending (d) With blending

Fig. 12: Progressive sequence of steps (a, b, d) demonstrating
the on-the-fly fusion between an US scan extracted from a
preacquired volume and a simulated US image. Notice that
simple composition of the two images (a) and (b) exhibits
sharp, unrealistic borders (c).

sampling, and mask creation. We used NVIDIA CUDA v8.0
to implement the ultrasound postprocessing pipeline and the
on-the-fly fusion. All simulations in this paper, including the
baseline ray-tracing comparisons, were run on a Windows PC
with Intel R© CoreTM i7-6800K @ 3.4 GHz CPU, 32 GB RAM
and NVIDIA GTX 970 GPU with 4 GB VRAM.

A. On-the-Fly Fusion

We use one of the original volumes presented in [14] and
extract a 3D region which serves as the background. It is then
fused with the simulated anatomy of an 11 week old fetus [25],
along with its gestational sac. Example results for the entire
sequence of steps are presented in Fig. 12. The baseline ray-
tracing is performed using the adaptive sampling scheme [13],
which proved to be the most computationally efficient ray-
tracing strategy. We herein used a linear blur box kernel of 32
pixels in size, determined empirically.

The results presented in Tab. I show that the on-the-
fly fusion method is more efficient than performing an US
simulation on the entire scene, despite having to run two
extra ray-tracing kernels, as well as additional image formation
operations, namely two more scanconversions for the sampled
volume and the mask followed by blurring and fusion stages.
Note that a large part of computational resources is taken
up by volume processing operations, such as convolutions in
the sampling of high- and low-frequency scatterer textures,
accounting for ray energy due to attenuation and other oper-
ations performed at each sample during marching along ray
segments. During the on-the-fly fusion, a much-simplified US

Imaging Parameters
Image depth (mm) 100
Transducer freq. (MHz) 7
Transducer FOV (◦) 90
Scanlines 192
Axial samples 2048
Elev. layers 7
Axial res. (mm) 0.05

Method Simulated Fusion
Triangles (thousand) 926 929
Performance (ms) 95.3 85.4
Performance (FPS) 10.5 11.6

TABLE I: Ray-tracer input and performance comparison for
producing a final simulated image output, between simulating
the entire scene by the ultrasound ray-tracing pipeline vs. our
proposed on-the-fly fusion. Fusion is seen to save runtime
by avoiding unnecessary computations outside the anatomical
region of interest.

ray-tracing kernel is needed with no ray-marching required
for ray segments outside of the simulated anatomy, i.e. in
areas where the background image is simply sampled via
interpolation.

B. Evaluation

Note that our simulated images may not always be con-
sistent with pre-acquired in-vivo (background) images with
which they are fused, therefore potentially hindering a realistic
simulation outcome. In order to study the hypothesis that
background image fusion boosts realism, we have conducted
a user study in the form of a questionnaire for an expert
sonographer and practicing gynecologist.

For 3 different scenarios from [14], two US exams of
normal pregnancy (Fig. 12 and 13) and a case of ectopic
pregnancy (Fig. 14), 3 slices with different transducer posi-
tions were simulated, using 3 background methods: (i) a pre-
acquired in-vivo volume (i.e. the proposed on-the-fly fusion),
(ii) a homogeneous background with Gaussian scatterers as
in [13], and (iii) no background. In order to make results
robust to any potential suboptimal simulation parametrization,
we devised a study setting by providing the assessor many
images with different parameters for each of the (3 scenarios ×
3 slices × 3 methods=) 27 cases. The assessor then selected the
best image for each scene, to follow on to compare them for
the three different methods given above. For each simulation
scenario (cf. Figs. 12-14), we first optimized visually the
11 major simulation parameters in a graphical interface for
known imaging parameters of an ideal resemblance to the pre-
acquired in-vivo background image. Later each simulation pa-
rameter was perturbed around its subjective optimal value that
produced noticeable differences in the visual appearance of the
simulated US images, cf. Fig. 13. This resulted in (1+2×11=)
23 simulated US images, which are presented to the assessor
on a single page as randomly shuffled. The assessor was not
explicitly told the differences between the US images and
was asked to first select out of the 23 parametrizations the
image that in his opinion ”is the most realistic for educational
purposes in gynecology training”. Next, the assessor rated in
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Fig. 13: US images produced using different simulation pa-
rameters (imaging frequency of 5, 7, and 9 MHz from left to
right) fused on the same in-vivo background image.

(a) Preacquired data (b) No background (c) Scatterer texture

Fig. 14: US images with different backgrounds showings
results of the on-the-fly method (a) and the original ray-
tracing framework (b, c). Images are obtained with identical
foreground anatomy.

a 5-point Likert scale the agreement (i.e. ”strongly agree”,
”agree”, ”neither agree nor disagree”, ”disagree”, ”strongly
disagree”) to the statement that ”this above chosen image is
sufficiently realistic for educational purposes in gynecology
training”. Finally, for the same evaluation criterion the assessor
ranked the images from three compared methods above (i-iii).

The results of the evaluation revealed that the clinician
consistently gave a rank of 1 to US images generated via
the on-the-fly fusion approach, i.e. with preacquired back-
ground anatomy; while at the same time expressing strong
confidence that the selected images are sufficiently realistic
for educational purposes in gynecology training. Note that
the incongruity of the speckle patterns of the fused regions
after only a single round of parameter adjustment is virtually
unavoidable. Regardless, US scans obtained by ray-tracing
the entirety of the simulation scene in the scatterer space
only received consistently a rank of 2, despite that they
demonstrate seamless blending between the foreground and
the background.

C. Animated Sequences

As mentioned in Sec. II-B, certain types of affine trans-
formations, such as movement of a fetus as in Fig. 15, can
be represented by transform nodes. For instance, using a
rigid transformation for the node of the fetus, it can be ray-
traced in different positions and orientations, hence providing
an impression of motion with minimal impact on the ray-
tracing runtime, as demonstrated in Tab. II. Transformations
can be either produced algorithmically or read from a file that
contains trajectories and orientations. Regulating the frequency

(a) Nominal (b) Transformed

Fig. 15: Fetus in the nominal state (a) is translated and rotated
such that in a different frame it is ray-traced in the transformed
state (b).

Method (a) Fusion (b) Fusion
(static) (animated)

Triangles (thousand) 934 934
Performance (ms) 85.6 87.7
Performance (FPS) 11.6 11.4

TABLE II: Performance comparison for producing a final
simulated image between a static scene (a) and animated with a
transform node (b), to demonstrate the minimal runtime impact
of affine transforms for simple animations. In both cases the
on-the-fly fusion is used for ultrasound simulation, and all
imaging parameters are kept the same as in Table I.

of the updates supplied to the transform nodes or providing
animation key frames at certain time intervals allows for
fine control over the produced sequences, with minimal GPU
storage space for caching prebuilt acceleration structures.

Alternatively, using selector nodes, arbitrarily complex ani-
mations can be produced, e.g., the complex beating of the heart
as demonstrated in Fig. 16. The animated cardiac sequence
used in this example involves 8 keyframes with corresponding
anatomically deformed versions of a triangulated model. Note
that since the simulation runtime depends on the number
and the complexity of surfaces traversed during ray-tracing,
for a fair comparison the simulation performance for the
static geometry was measured separately for every keyframe
across the entire sequence, and then averaged to present in
the evaluation result. The measurements presented in Tab. III
demonstrate that introducing the animated cardiac sequence
has only minor impact on the runtime performance. This is
due to the fact that the range of bounding boxes spanned
by the constituent key frame models for the heart animation
is relatively minor. Notice that simulating animated anatomy
with selectors turned out to be slightly less computationally
demanding. This is because animation runs through every
keyframe model, some of them requiring less processing time
than others; whereas static geometry is represented by one
of the keyframes during the entire simulation runtime, which
may happen to produce the largest number of ray-surface
intersections.

Animated sequences from the fetal and heart models can be
seen with interactive probe motion in the supplementary video
clip.
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(a) Outermost surface (b) Inner anatomy

(c) Keyframe i (d) Keyframe j (e) 4-chamber view

Fig. 16: Outermost anatomical surface (a) contains two surface
models (b), which represent 4 chambers of the heart. B-mode
images (c) and (d) correspond to different keyframes of a
cardiac sequence. (e) A different view of the heart anatomy
illustrating the four heart chambers.

Method (a) Simulated (b) Simulated
(avg. static) (animated)

Triangles (thousand) 7.3 7.3
Performance (ms) 65.0 ± 0.63 64.1
Performance (FPS) 15.4 ± 0.15 15.6

TABLE III: Performance comparison for producing a final
image output, between a static ray-traced heart and animated
with a selector node, to demonstrate the minimal impact
of cached acceleration structure switches on the simulation
runtime. Baseline ultrasound simulation uses the original ray-
tracer, with our on-the-fly fusion stage disabled. All imaging
parameters are the same as in Table I.

IV. DISCUSSION

Using the method we present herein, versatile and plausible
ultrasound images can be simulated, by virtue of combin-
ing real-life image data as background with a model-based
ultrasound simulation pipeline. This also enables animated
models, which can be efficiently ray-traced using the methods
demonstrated in this work. In contrast to [14], this method
produces a merged output on the fly. This increased degree of
interactivity, however, comes with some limitations, some of
which were addressed by the offline hybrid method [14].

To prevent visual mismatch between simulated and back-
ground speckle patterns, the imaging field-of-view must be
simulated from a similar direction as the original (background)
image such that the speckle patterns are directed and smear
in the same way. For this, one can place the simulated probe
origin near the acquired image location. For a visual similarity,
the simulation parameters must also be tuned carefully, which
we performed empirically by manually setting the parameters
in a GUI with real-time visual feedback. Our evaluation study
results in Sec 3.2 indicate that our parametrization herein

was relatively successful, without any disturbing artifacts.
Nevertheless, such manual tissue and imaging parametrization
is still quite tedious, and in the future it may be possible to
use scatterer estimation techniques [26, 27, 28] to approximate
background textures, for a natural speckle blending with
consistent imaging settings entirely in the scatterer space. Con-
sequently, on-the-fly fusion herein requires careful adjustment
of the speckle pattern within the simulated content, whereas
the method of Tanner et al. [14] is capable of filling [29] the
newly created anatomy with a texture that is consistent with
the background. This merged output is further perfected by
refining mask borders via a complex seamless image stitching
procedure [30, 31] using local image intensity and gradients in
a graphcut technique, while the on-the-fly fusion herein can
only handle simple blending strategies along mask borders.
The aforementioned methods used in [14] would be infeasible
in an interactive implementation, and are not straightforward
or possible in a directional ray-tracing scheme.

View-dependent characteristics are taken into account for
model-based ray-traced regions. However, similarly to [14],
the background is not affected by ultrasound physics, as it is
simply extracted from an existing ultrasound image volume.
For instance, the full volume simulation shown in Fig. 11
produces acoustic shadows below the fetus, which is not
possible when using image based interpolation, given that
volumes only store the recorded intensities at each voxel.
These intensities could be artificially modified based on traced
ray energies in the fusion step, but achieving an artifact-
free ad-hoc method would be quite challenging using such
heuristics.

We examined different approaches to animation, in particu-
lar in the context of NVIDIA OptiX. Selector nodes have been
demonstrated to present good performance for types of anima-
tions, where the union bounding box of the underlying surface
models is strongly similar to each of their individual bounding
boxes, such as in the case of cardiac sequences. Although this
seems advantageous for several practical animation scenarios
one can imagine, it is also conceivable to craft counter-
example scenarios for which animated sequences consist of
largely dissimilar individual keyframes, as in the case of erratic
limb movements: given such motion, selector nodes may result
in unnecessary computation time spent on processing false
intersections, whereas rebuilding acceleration structures may,
however costly they are, speed up ray-surface intersection
routines to a greater extent. Therefore, the methods herein
are not a one-size-fits-all solution, but should be considered
given the type of anatomical motion to be simulated and the
complexity of the triangulated surfaces. Conversely, the motion
and the anatomy to be simulated could be approximated or
simplified to enable the use of the presented methods.

Given static scatterer textures, the transformation of dy-
namic anatomy will visually manifest in its moving parts
simply sliding through the speckle pattern, as seen in the
example of the beating heart. A possible solution could revolve
around introducing a finite element method (FEM) [7] mesh,
representing current (possibly deformed) state of anatomy,
such that the FEM mesh can account for differences between
keyframe models and refer back to correct scatterer amplitude
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values in the nominal state using shape element functions; to
be investigated in future work.

Animations could alternatively be achieved by generating
multiple simulated volumes and prefusing them into a single
4D volume, such that it can be subsequently sampled with
respect to spatial and temporal coordinates. It is a computa-
tionally lightweight method, however as a result of its data-
based nature, image anisotropy would be lost. Furthermore,
additional 3D texture memory, even in the smaller part of
animated regions, e.g. the heart, would be prohibitive for the
GPU storage capacity.

Motion blur introduced in OptiX 5.0 can be a potential tech-
nique in the future, to provide interpolated meshes between
keyframes if no changes in topology take place. It should be
noted that methods shown herein are not necessarily specific
to OptiX, and can be tailored for the use in any reasonably
well-developed ray-tracer that incorporates conventional com-
puter graphics concepts, such as acceleration structures and
instancing.

V. CONCLUSION

We have presented an on-the-fly fusion method, capable
of merging data-based and model-based simulation outputs
during simulation runtime. This enables all the advantages
of the model-based ray-tracing approach, allowing to keep
interactive view-dependent ultrasound imaging characteristics
while introducing animated models. Efficient animation tech-
niques by simple transformations as well as using scene-graph
acceleration structure node switching have been described in
this work and exemplified using fetal and heart motion models.
The methods that we have demonstrated enable interactive
simulation of ultrasound images with dynamic scenes, as a
major step towards realistic image simulation for medical
training. The realism of the resulting US images was confirmed
qualitatively in a study by a gynecologist.
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