
Diss. ETH No. 25906

Preventing privilege abuse using
policy analysis and policy mining

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich presented by

Carlos Mauricio Cotrini Jimenez

Master of Computer Science,
ETH Zurich

born on 19.05.1989
citizen of Colombia

accepted on the recommendation of
Prof. Dr. David Basin, examiner

Prof. Dr. Joachim Buhmann, co-examiner
Prof. Dr. Pierangela Samarati, co-examiner

2019

Abstract

Organizations define access control policies to prevent users abusing
their privileges. In large organizations, such policies are highly com-
plex as they administer thousands of permissions for thousands of
users. In addition, these policies are currently manually maintained,
which makes policies prone to mistakes. Such mistakes may deny users
the permissions they need to perform daily tasks or, even worse, they
may grant permissions that users should not have. The latter may have
dire consequences for the organization, even when the employees them-
selves do not abuse those additional permissions, as hackers may gain
internal access and then abuse them to perform nefarious acts.

Privilege abuse remains a major problem for organizations handling
sensitive data. Even for healthcare companies, where access to patient
data is critical, abuse by internal employees is a threat to patients’ pri-
vacy. Indeed, Verizon’s data breach report from 2018 shows that 54% of
data breaches in healthcare involved internal actors. Perhaps the most
famous case of internal abuse is Edward Snowden, which shows that
giving the right access to each employee is challenging even for the
strongest security agencies.

Two fields have proposed solutions to strengthen policy specification
and maintenance. The first one, policy analysis, offer queries that policy
administrators can execute to determine whether policies are granting
permissions as intended. Policy analysis has helped to discover incon-
sistencies in policies or unnecessary assignments of permissions. The
second one, policy mining, analyzes how permissions are being used in
the organization and computes a policy that grants to each employee
the permissions he needs. By observing what permissions are not ac-
tually used, policy miners can compute policies that prevent privilege
abuse and that are also tighter than manually specified policies.

This thesis makes three contributions to these fields. First, we pro-
pose FORBAC, an extension for RBAC (Role-Based Access Control)
that strikes a balance between expressiveness in policy specification
and efficiency in policy analysis. Through a case study with a major
European bank, we show that FORBAC is expressive enough for mo-
dern RBAC policies while simple enough to keep the complexity of po-
licy analysis in NP. Second, we propose Rhapsody, the first algorithm
for mining ABAC (Attribute-Based Access Control) policies from logs
that guarantees to mine precisely the set of all significant, reliable, and
succinct rules. We also show how all other ABAC mining algorithms
fail to provide these guarantees. Finally, we propose Unicorn, a uni-
versal method for building policy miners. Using Unicorn, we have
built competitive policy miners for a wide variety of policy languages.
In particular, the ABAC policy miner built with Unicorn outperforms
Rhapsody and, using Unicorn, we have been able to build the first po-
licy miners for XACML (eXtensible Access Control Markup Language)
and RBAC with spatio-temporal constraints, languages for which no
miner was known before.

i

Zusammenfassung

Organisationen erstellen Zugriffskontrolrichtlinien, auch “Policies” gen-
nant, um den Missbrauch von Zugriffsrechten zu verhindern. In gro-
ssen Organisationen werden diese Policies sehr komplex, da sie tau-
sende Zugriffsrechte für tausende Benutzer verwalten. Zudem werden
Policies zurzeit manuell gewartet, was sie anfällig für Fehler macht. Sol-
che Fehler können Benutzer daran hindern ihre gewöhnliche Aufgabe
zu erledigen. Im schlimmsten Fall können diese Fehler unberechtigte
Zugriffsrechte an Benutzer vergeben. Dies könnte ernste Konsequen-
zen für die Organisation haben. Selbst wenn die Benutzer selbst nicht
diese Rechte missbrauchen, so könnten Hacker internen Zugang erlan-
gen und dann diese Rechte auf Kosten der Organisation missbrauchen.

Der Missbrauch von Zugriffsrechten ist nach wie vor ein relevantes Pro-
blem für Organisationen, die mit privaten Daten arbeiten. Selbst für Ge-
sundheitsunternehmen, wo der Zugriff zu Patientendaten kritisch ist,
bedroht der Missbrauch von Zugriffsrechten durch interne Fachkräfte
die Privatsphäre der Patienten. Der Bericht von Verizon in 2018 zeigt,
dass interne Fachkräfte in 54% der Datenlecke in Gesundheitsunterneh-
men involviert waren. Das wichtigste Beispiel internen Missbrauchs ist
vielleicht Edward Snowden, der zeigt, dass eine richtige Zuteilung von
Zugriffsrechten eine grosse Herausforderung ist, sogar für die besten
Sicherheitsunternehmen.

Zwei Forschungsgebiete haben Lösungen hervorgebracht, um die Spe-
zifizierung und Wartung von Policies zu erleichtern. Die erste, policy
analysis, bietet Abfragen an, die Policyverwalter ausführen können, um
dafür zu sorgen, dass die Policies Zugriffsrechte richtig zuteilen. Policy
analysis hat dabei geholfen, Unstimmigkeiten in Policies und unnötige
Zuteilungen von Zugriffsrechten aufzudecken. Das zweite Gebiet, poli-
cy mining, beschäftigt sich mit der Entwicklung von Algorithmen, die
als Policy Miners bezeichnet werden. Diese Algorithmen analysieren
wie Zugriffsrechte in der Organisation angefragt werden und errech-
nen daraus eine Policy, die jedem Benutzer die Zugriffsrechte zuteilt,
die er braucht. Policy Miners streben danach, präzise Policies zu rech-
nen, die den Missbrauch von Zugriffsrechten vermeiden.

Diese Doktorarbeit liefert drei Beiträge zu diesen Gebieten. Erstens stel-
len wir FORBAC vor, eine Erweiterung von RBAC (Role-Based Access
Control), die eine Balance zwischen Ausdrucksfähigkeit in der Policy-
spezifizierung und Effizienz in der Policyanalyse erreicht. Mithilfe ei-
ner Studie in einer grossen europäischen Bank zeigen wir, dass FOR-
BAC expressiv genug ist, um moderne RBAC-Policies zu spezifizieren,
und gleichzeitig einfach genug, um die Komplexität des Policyanaly-
seproblems innerhalb der NP Komplexitätsklasse zu halten. Zweitens
stellen wir Rhapsody vor, der erste Policy Miner für ABAC (Attribute-
Based Access Control), der exakt die Menge aller signifikanten, zu-
verlässigen und bündigen Regel rechnet. Wir zeigen auch wie alle ande-
ren Policy Miners für ABAC darin scheitern, diese Menge von Regeln
zu rechnen. Zuletzt stellen wir Unicorn vor, eine universelle Metho-

iii

de um Policy Miners zu entwickeln. Mithilfe von Unicorn haben wir
fähige Policy Miners für eine breite Vielfalt von Policysprachen entwi-
ckelt. Insbesondere ist das Policy Miner für ABAC, das wir mit Uni-
corn entwickelten, Rhapsody überlegen. Mithilfe von Unicorn haben
wir auch die ersten Policy Miners für zwei komplexe Policysprachen
entwickelt. Die erste Sprache ist XACML (eXtensible Access Control
Markup Language) und die zweite ist eine Erweiterung von RBAC, mit
der man die Zeit und den Ort einschränken kann, an denen Benutzer
Zugriffsrechten erteilt werden. Bisher gab es keinen Policy Miner für
diese beide Sprachen.

iv

Acknowledgements

My time as a doctoral student has been the most rewarding and enriching
period of my life. I would like to thank my advisor, David Basin, for having
given me this opportunity. His support, mentorship, and diligence were an
inspiring example for me during these years.

I would also like to thank my co-examiners Joachim Buhmann and Pierangela
Samarati for taking the time to read this thesis, understand their ideas, and
critically evaluate them.

I would also like to express my gratitude to those who in one way or another
have mentored me throughout my time at ETH Zürich. I would like to
thank Manuel Clavel for fruitful discussions and guidance on my first years
of research at ETH, Felix Klaedtke and Eugen Zălinescu for advising me
during my first research project at ETH, and Luis Jaime Corredor and Jorge
Cuellar for advising and encouraging me to start my postgraduate studies
at ETH Zürich.

Throughout my research I met several colleagues from the institute of ma-
chine learning who helped me to grasp many important concepts upon
which this thesis was built. Many thanks to Luca Corinzia, Alex Gronskiy,
Nico Gorbach, and Mario Lučić for their insights and patience.

Many thanks to my colleague Thilo for the many interesting discussions.
His insights on work and life in general will be of value for me in the future.
Many thanks also to my family and friends, for all the support and love
throughout my career.

Finally, my deepest thanks to Klaus (.-*) for all the good moments we shared
together these years.

1

Contents

Contents 3

1 Introduction 5
1.1 Background . 6
1.2 Challenges . 11
1.3 Contributions . 11
1.4 Overview . 13

2 Preliminaries 15
2.1 Motivating example . 15
2.2 Many-sorted first-order logic 16
2.3 Access control . 25
2.4 Policy analysis . 29
2.5 Policy mining . 30
2.6 Conclusion . 34

3 FORBAC: First-order Role-based Access Control 37
3.1 Introduction . 37
3.2 Requirements for FORBAC . 38
3.3 Syntax and semantics of FORBAC 41
3.4 Policy analysis in FORBAC . 45
3.5 Experimental results . 49
3.6 Related work . 50
3.7 Conclusion and future work . 51

4 Rhapsody: Reliable Apriori Subgroup Discovery 53
4.1 Introduction . 53
4.2 The ABAC mining problem . 57
4.3 Quantifying over-permissiveness 62
4.4 Rhapsody . 66

3

Contents

4.5 Evaluating generalization . 71
4.6 Experiments . 76
4.7 Related work . 79
4.8 Conclusion . 82

5 Unicorn: Universal access-control policy mining 85
5.1 Introduction . 85
5.2 The problem of designing policy miners 88
5.3 A universal policy language . 89
5.4 A probability distribution on permission assignments and poli-

cies . 95
5.5 Approximating distributions with mean-field variational in-

ference . 99
5.6 Building the policy miner . 103
5.7 Mining policies . 105
5.8 Spatio-temporal RBAC policies 111
5.9 XACML policies . 112
5.10 Experiments . 120
5.11 Related work . 124
5.12 Conclusion . 125

6 Conclusion 127

A Appendix for FORBAC 129
A.1 Complexity results for F . 129
A.2 Complexity results for FORBAC 130

B Appendix for Rhapsody 137
B.1 ABAC instances used for experiments 137
B.2 Proofs . 139

C Appendix for Unicorn 141
C.1 Grid search for policy mining 141
C.2 Optimal parameters for the mean-field approximating distri-

bution . 141
C.3 Simplifying the computation of expectations 142
C.4 Modeling RBAC temporal constraints 143
C.5 Datasets and synthetic policies used for experiments 146

Bibliography 149

4

Chapter 1

Introduction

Any kind of human organization requires rules that restrict what their mem-
bers are allowed to do in order to protect the organization’s interests from
the abuse of others. In the case of nations, these rules are called laws. Per-
haps a marked feature of laws is that, being conceived by humans, they
sometimes fail to consider all possible cases and implications, which some
devious citizens exploit to get away with nefarious acts. The government
must then amend the law and adapt it to changing circumstances. Similarly,
the advent of new technologies and disruptive events in society require one
to rethink and reconsider what citizens are allowed to do in certain circum-
stances. This is one of the reasons why laws become complex and why
common citizens must recur to experts during litigations.

Organizations that use information technology must also protect their inter-
ests from abuse by their own members, so they define access control policies
that restrict what their members are allowed to do. As in the case of law,
organizations need to foresee the implications of an access control policy.
Moreover, they continually need to edit the policy, as they discover unin-
tended consequences of the currently implemented policy and as the orga-
nization experiences structural changes. As a result, policies become con-
voluted with time and it is then hard to ensure that the policy adequately
restricts the organization’s members’ actions.

In access control literature, members of an organization are called users.
Access control policies usually work by granting a set of permissions to
each user. An incorrect assignment of permissions may have serious conse-
quences for the organization. On one hand, users may lack the rights they
need to perform their daily job. This is usually promptly recognized by the
users themselves. On the other hand, users may be granted permissions that
they do not need. This is more problematic, as certain users may see this as
an opportunity for personal gain or for harming the organization. This is
illustrated by the case of Barings Bank, United Kingdom’s oldest merchant

5

1. Introduction

bank, which went bankrupt in 1995 after one of its employees engaged in a
series of fraudulent and unauthorized investments [1].

Privilege abuse is still a problem for many organizations. Perhaps the most
famous example of our time is Edward Snowden’s disclosure of government
surveillance, which shows that defining correct access control policies is chal-
lenging even for the most experienced security organizations. Verizon’s data
breach reports from the last 5 years show that privilege abuse is still a major
cause for data breaches in healthcare and public organizations [50, 51]. Inter-
nal users exploit their access to private information for financial gain, espi-
onage, or revenge. Verizon’s reports advocate policy administrators to con-
tinually review access control policies and ensure that users are granted only
those permissions that they need to perform their tasks and nothing else.

Given the impact that privilege abuse may have in current organizations, we
devote ourselves to the problem of maintaining access control policies. We
develop techniques, using results from policy analysis and policy mining,
that help to maintain access control policies simple and precise. We provide
next an overview of these fields and the techniques we developed.

1.1 Background

1.1.1 Access control

An organization is a collection of users and resources. Users perform actions
on those resources. In order to exercise an action on a resource, a user
requires a permission for that particular action and that particular resource.
In this thesis, we identify a permission with a pair consisting of an action
and a resource. To prevent abuse from their own users, organizations define
organizational security policies that define which permissions are assigned to
which users in the organization. These policies are usually described in a
high-level language. To be machine enforceable, policy administrators must
specify these policies as access control policies in a machine-readable format.
These policies can be understood as an assignment of permissions to users
and are formalized using policy languages.

Figure 1.1 illustrates a tiny organization with three users and three permis-
sions. There are two departments: trading and technology. Each user and
each permission is labeled with one of these departments. The organiza-
tional security policy dictates that users shall have exactly those permissions
whose department label matches the user’s department label. For example,
users from the trading department can only exercise those permissions for
the trading department. The access control policy implementing this secu-
rity policy is a matrix that marks with a tick those entries where the corre-
sponding user is assigned the corresponding permission. Observe that the

6

1.1. Background

Figure 1.1: A small organization with three users and permissions.

access control policy incorrectly implements the security policy. It assigns
the green permission to Bob, although their labels do not match. Also, it
does not assign the green permission to Charlie, although their labels do
match. We discuss later methods to detect and correct those misconfigura-
tions.

Whenever a user wants to perform a sensitive action, she must issue a request
(a pair consisting of a user and a permission), which identifies the user and
the permission she tries to exercise. The access control policy then decides if
the user is authorized to exercise the permission. Observe then that we can
also treat access control policies as functions mapping requests to Boolean
values. When an access control policy outputs true, we say that the policy au-
thorizes the request; otherwise, we say that it denies the request. We call a de-
cision the value output by an access control policy after evaluating a request.

We assume that the organization keeps a log that records all requests issued,
together with the respective decisions output by the access control policy.
Figure 1.2 gives an example of a log for the scenario in Figure 1.1. Each
entry in the log contains a request, a green tick if the request was authorized,
and a red cross if the request was denied. Observe that logs may contain
repeated occurrences of a same request, as users may try several times to
exercise a permission.

7

1. Introduction

Figure 1.2: A log for the scenario in Figure 1.1.

The solutions presented in this thesis do not take into account a request’s
frequency in the log. A request that occurs 1,000 times is treated in the same
way as a request that occurs only once. We admit that a request’s frequency
may provide valuable information, but the datasets we had access to did not
provide each request’s frequency. Hence, investigating solutions that use
the requests’ frequencies is left as future work.

1.1.2 Policy languages

We now introduce some of the most important policy languages for specify-
ing access control policies.

Role-based access control (RBAC) [52]. A policy in this language, called
RBAC policy, consists of three components:

• A set of roles describing a group of permissions that are often exercised
by a group of users in the organization.

• An assignment of permissions to roles.

• An assignment of roles to users.

A user is authorized to exercise a permission if he or she has assigned a role
that was assigned the permission.

Figure 1.3 illustrates an RBAC policy that (correctly) implements the organi-
zational security policy of the organization in Figure 1.1. Observe that there
are two roles corresponding to the organization’s departments. Each user

8

1.1. Background

is assigned the role corresponding to that user’s department label and each
permission is assigned to the role corresponding to its label.

Figure 1.3: An RBAC policy that implements the organizational security
policy of the organization in Figure 1.1.

Attribute-based access control (ABAC) [68]. ABAC requires that the or-
ganization defines attributes and that users and permissions have attribute
values. A policy in this language, called ABAC policy, is a set of rules. A rule
is a function that defines if a permission is assigned to a user. Rules can
only depend on the user’s and the permission’s attribute values.

We now (informally) specify the organizational security policy of the orga-
nization in Figure 1.1 with an ABAC policy. A rigorous definition of ABAC
policies is given in Chapter 2. First, we define one attribute, called Label,
and define two attribute values for it: Trade and Tech. Figure 1.4 shows the
assignment of attribute values to the users and permissions in Figure 1.1.
The desired ABAC policy contains only one rule specified by the following
sentence: A user is assigned a permission if their attribute values are the same.

Figure 1.4: An assignment of attribute values to users and permissions.

9

1. Introduction

RBAC with constraints [70, 78, 89]. RBAC is not expressive enough for
many organizations. For example, an organization may wish that a role is
assigned to a user only at certain times or when the user is in a particular
location. It may also want to assign roles depending on the user attribute
values. For this reason, extensions of RBAC have been proposed that allow
the specification of spatio-temporal constraints or constraints that depend
on the user’s attribute values.

1.1.3 Policy analysis and policy mining

Privilege abuse happens when a user is authorized by the access control po-
licy to exercise a permission, in contradiction to the organizational security
policy. For example, if Bob attempts to exercise the green permission in
Figure 1.1, he would commit privilege abuse, as the access control policy in
Figure 1.1 authorizes this, but the security policy forbids it. Perhaps Bob had
no malicious intention and just was not aware that he should not exercise the
green permission. Even in this case, we classify his action as privilege abuse.

This thesis presents techniques for preventing privilege abuse in organiza-
tions. These techniques belong to the following two research fields:

Policy analysis [107, 126, 54, 10]. Techniques developed in this field take
a currently implemented access control policy and a set of properties that
we want to make sure the access control policy satisfies. Policy analysis
uses logic-based frameworks to validate the properties against the policies.
The properties are specified by policy administrators in formal languages
and usually specify requirements described in the organizational security
policy. Policy analysis counteracts privilege abuse by inspecting if a policy
is granting permissions to users as intended by the security policy.

Policy mining [132, 133, 32, 30]. The main goal in this field is to design
policy miners, algorithms taking as input a log containing previously decided
requests. From these logs, policy miners compute (i.e., mine) policies that
evaluate requests in a way that is consistent with the observed decisions in
the log. Policy mining has various applications. It can be used for refac-
toring policies that have become convoluted after organizational changes
and migrating policies to new policy languages. We give an overview of
use cases for policy mining in Chapter 2. In particular, policy mining can
be used to prevent privilege abuse. We will see in Chapter 4 that a mined
policy can be compared with the currently implemented policy to identify
permissions that are currently assigned to but rarely exercised by users.

10

1.2. Challenges

1.2 Challenges

We identify the following three challenges in these two fields:

Tension between policy expressiveness and efficiency in policy analysis. In
the last years, different works have proposed extensions for RBAC that al-
low the specification of more expressive policies, e.g. [63, 70, 78, 79, 89, 94].
However, the higher expressive power comes at the cost of more complicated
policies. It becomes then harder to understand what the implications of a
given access control policy are and policy analysis becomes computation-
ally harder. The challenge here is to propose a language that is expressive
enough to specify current access control policies while at the same time
yielding an acceptable computational complexity for policy analysis.

Mining policies from sparse logs yields complicated or overly permissive
policies. In our case studies with companies, logs contain less than 10% of
all possible requests and 90% of them consist of authorized requests. Such
logs do not give sufficient information to decide how all requests should
be decided. As a result, we will show that, when applying standard policy
mining techniques, one obtains policies that are overly permissive, which
allows privilege abuse. Those techniques that guarantee not to mine overly
permissive policies yield, however, unnecessarily complicated policies. The
challenge here is to design mining algorithms that can mine simple and not
overly permissive policies.

Policy mining requires expert knowledge in machine learning. Although
competent policy miners exist for languages like RBAC and ABAC, it is
very difficult to use the ideas behind them to design policy miners for other
languages, even for relatively simple RBAC extensions. RBAC extensions
with spatio-temporal constraints illustrate this difficulty. They have been
researched for more than 15 years, but there is no known policy miner that
can mine these type of RBAC policies. Also, no policy miner is known for
XACML [64], which has been a popular and well-researched language in
the access control literature. This is problematic as organizations often tailor
policy languages to meet specific expressiveness requirements, meaning that
they cannot use standard policy miners. The challenge here is to facilitate
the design of policy miners for other languages.

1.3 Contributions

We address the challenges above with the following contributions:

FORBAC: a new extension for RBAC that strikes a balance between expres-
siveness and efficiency [40]. Other RBAC extensions are so expressive that

11

1. Introduction

their policy analysis problems are computationally harder than necessary,
while other RBAC extensions tailored for policy analysis are so simplistic
that they cannot fulfill expressiveness requirements of current organizations.

FORBAC was developed in collaboration with Thilo Weghorn. I proposed
the FORBAC language, proposed the set of existential FORBAC-formulas
as a language for specifying policy properties, and proved that deciding sat-
isfiability of existential FORBAC formulas is NP-complete. Thilo Weghorn
proposed relevant policy properties for policy analysis in FORBAC and for-
malized them as existential FORBAC-formulas. He also conducted the case
study in a major European bank where we evaluated FORBAC’s expressive-
ness and efficiency in policy analysis.

Rhapsody: an algorithm for mining ABAC policies from logs [39]. Since
the 70s, there have been techniques that can be used to mine policies from
logs. However, these techniques yield overly complicated or, even worse,
overly permissive policies. Rhapsody is the first policy mining algorithm
that guarantees never to mine overly permissive policies and to mine rules
of minimal size.

Unicorn: a universal method to build policy miners. Designing policy min-
ers is a challenging task as this requires expert knowledge of machine learn-
ing. Moreover, it is hard to use the ideas behind a policy miner to build
policy miners for another policy language, even when that language is just
an extension of the original. Unicorn presents a straightforward method to
building policy miners that does not require knowledge of machine learn-
ing. The designer of a policy miner only needs to specify the policy language
and an objective function describing the requirements for the policy miner.
Given these inputs, Unicorn defines a policy miner as an iterative procedure
that the designer can implement using a programming language. Using Uni-
corn, we have built competitive policy miners for a wide variety of policy
languages. In particular, we have built the first XACML policy miner and
the first policy miner for RBAC policies with spatio-temporal constraints.

1.3.1 Publications

This thesis’s contents is based on the following articles:

• Carlos Cotrini, Thilo Weghorn, Manuel Clavel, and David Basin, “Ana-
lyzing First-Order Role-Based Access Control”, in Proceedings of the 28th
IEEE Computer Security Foundations Symposium (CSF 2015)

• Carlos Cotrini, Thilo Weghorn, and David Basin, “Mining ABAC Rules
from Sparse Logs”, in Proceedings of the 3rd European Symposium on
Security and Privacy (EuroS&P 2018)

12

1.4. Overview

• Carlos Cotrini, Luca Corinzia, Thilo Weghorn, and David Basin, “The
Next 700 Policy Miners: A Universal Method for Building Policy Miners”,
unpublished manuscript, 2018.

1.4 Overview

This thesis is organized as follows. After this introduction (Chapter 1), we
give preliminaries on many-sorted first-order logic and access control (Chap-
ter 2). We then devote one chapter to each of our contributions: FORBAC
(Chapter 3), Rhapsody (Chapter 4), and Unicorn (Chapter 5). Finally, we
draw conclusions (Chapter 6). Appendices A, B, and C contain proofs and
technical details.

As this thesis makes contributions to both policy analysis and policy min-
ing, there are two ways to read it. The reader interested in policy analysis
may read Chapter 2 for an overview of many-sorted first-order logic and
then read about FORBAC in Chapter 3. The reader interested in policy min-
ing may read Chapter 2 and then read about Rhapsody and Unicorn in
Chapters 4 and 5.

13

Chapter 2

Preliminaries

In this chapter, we give an overview of access control, first-order logic, and
the fields of policy analysis and policy mining.

2.1 Motivating example

Example 1 Figure 2.1 presents an example of an organization with 27 users
and some policies that we will use throughout this section. For simplicity,
we assume that there is only one permission, not shown in the figure. Each
user has two attributes that define what he does in the organization. They
are function and level. Each of them can take one of three values and the
levels are assumed to be ordered. Observe that rows and columns in Fig-
ure 2.1 have a different meaning than in Figure 1.1 in Chapter 1. A row in
Figure 2.1 contains all users who have a particular attribute value for the
attribute “function”, whereas a row in Figure 1.1 describes what permis-
sions are assigned to a particular user. Similarly, a column in Figure 2.1
contains all users who have a particular attribute value for the attribute
“level”, whereas a column in Figure 1.1 describes to which users a particular
permission is assigned.

The shaded rectangles describe the organizational security policy, which as-
signs the permission to all users fulfilling at least one of the following:

• The user’s level is 2.

• The user’s function is staff and level is at most 2.

• The user’s function is teacher and level is at least 2.

The dotted rectangles describe the implemented access control policy. We
assume here that the implemented policy is an ABAC policy and that the
policy administrator inadvertently implemented a policy that, in compari-

15

2. Preliminaries

Figure 2.1: An example of an organization with 27 users and one permission
(not shown in the figure). Each user has two attribute values describing his
or her function and level in the organization, respectively. The shaded rect-
angles describe the organizational security policy and the dotted rectangles
describe the implemented access control policy.

son with the organizational security policy, fails to assign the permission to
students with level 2. �

There is a wide variety of policy languages that could have been used to de-
fine the access control policy from the example above. One of the most basic
are access control matrices [24]. These are binary matrices, where each row
represents a user and each column represents a permission. For an access
control matrix M, a user u, and a permission p, M[u, p] = 1 if p is assigned to
u and M[u, p] = 0 otherwise. More sophisticated policies use rules to define
what permissions each user has. An example of such a policy is: “A user
can access the main building on week days during working hours, provided
that he has a valid ID card”. In this thesis, we need a formalism that allows
us to model organizations and the wide variety of access control policies.

2.2 Many-sorted first-order logic

Previous work in the field of policy analysis has shown that many-sorted first-
order logic is a formalism powerful enough to describe organizations and
policies in a wide variety of policy languages. Therefore, we start with a
review of basic concepts of first-order logic and then use them to rigorously
define the concepts of “organization”, “user”, “permission”, and “access
control policy”.

We start by defining the concepts of “signature”, “formula”, and “structure”.
Signatures define the symbols used to build formulas, formulas are helpful
to specify certain types of policies, and structures model organizations and
other types of policies.

16

2.2. Many-sorted first-order logic

2.2.1 Syntax

Specifying formulas

Definition 2 A signature is a tuple (S, R, F, V) fulfilling the following.

• S is a finite non-empty set of sorts.

• R is a finite non-empty set of relation symbols.

• F is a finite non-empty set of function symbols.

• V is a countable set of variables.

Each relation and each function symbol has associated a type, which is a
sequence of sorts. Each variable has also an associated type, which is a sort.
Furthermore, we assume the existence of two sorts USERS, PERMS ∈ S,
denoting the users and the permissions in the organization, respectively.
We also assume the existence of the sorts BOOL, INT, STR, 2INT, 2STR,
which represent Boolean values, integers, strings, sets of integers, and sets
of strings, respectively. �

We denote sorts with CAPITAL BOLD letters, relation symbols with CAPITAL
ITALIC letters, and function symbols and variables with small italic letters. To
agree with standard notation, we write a relation symbol’s type (S1, . . . , Sk)
as S1 × . . . × Sk instead. We write a function’s symbol’s type (S1, . . . , Sk)
as S1 × . . .× Sk−1 → Sk instead. We allow k = 1 and, in that case, we call
function symbols constant symbols. We denote constant symbols with small
serif letters.

Example 3 We now define a signature Σ0 = (S, R, F, V) that we use to for-
malize the concepts from Example 1.

• S contains the default sorts.

• R consists of only one relation symbol ≤: INT× INT.

• F consists of two function symbols Function : USERS → STR and
Level : USERS → INT. It also contains six constant symbols: “staff ′′,
“student′′, “teacher′′ of type STR and 1, 2, and 3 of type INT. These sym-
bols are intended to represent the strings “staff ′′, “student′′, “teacher′′,
and the integers 1, 2, and 3, respectively.

�

Definition 4 Let Σ be a signature. We define (first-order) terms as those ex-
pressions obtained by finitely many applications of the following rules:

• Any variable is a term.

• Any constant symbol is a term.

17

2. Preliminaries

• If t1, t2, . . ., tn are terms of type S1, S2, . . ., Sk−1 and f is a function sym-
bol of type S1× . . .× Sk−1 → Sk, then f (t1, . . . , tn) is a term of type Sk.

�

Example 5 Let Σ0 be the signature from Example 3. If we let u be a variable
of type USERS, then some first-order terms from this signature are the vari-
able symbol u, the constant symbol “student′′ of type STR, and Function (u).

�

Observe that, using Definition 4, we cannot build ill-formed terms like

Function (Level (u)) . (2.1)

This is because Level (u) is of type INT but Function is a symbol of type
USERS→ STR.

Definition 6 Let Σ be a signature. We define (first-order) formulas as those
expressions obtained by finitely many applications of the following rules:

(F1) If t1 and t2 are terms of a same type, then t1 = t2 is a formula.

(F2) If t1, t2, . . ., tn are terms of type S1, S2, . . ., Sn and R is a relation symbol
of type S1 × S2 × . . .× Sn, then R (t1, . . . , tn) is a formula.

(F3) If ϕ1 and ϕ2 are formulas, then ϕ1 ∧ ϕ2 is also a formula.

(F4) If ϕ is a formula, then ¬ϕ is also a formula.

(F5) If ϕ is a formula and x is a variable of type W, then ∃x : W. ϕ is also a
formula.

�

Formulas may use the symbol = in their construction. This can lead to
awkward notation. For example, suppose that we define a formula ϕ and
two terms t1 and t2. Suppose also that we claim that the formulas ϕ and t1 =
t2 are the same. We could denote this as ϕ = (t1 = t2), but we sometimes
denote it instead as ϕ ≡ t1 = t2. That is, we use the symbol ≡ to indicate
that two formulas are the same, whereas we use the symbol = to denote the
equality symbol in a formula. We also use the symbol = outside first-order
logic to indicate that two objects are the same.

We use the following standard notation to abbreviate some formulas:

ϕ1 ∨ ϕ2 ≡ ¬ (¬ϕ1 ∧ ¬ϕ2) ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.∧
1≤i≤n

ϕi ≡ ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn
∨

1≤i≤n

ϕi ≡ ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn.

ϕ1 6= ϕ2 ≡ ¬ (ϕ1 = ϕ2) . ∀x : W.ϕ ≡ ¬∃x : W.¬ϕ.

18

2.2. Many-sorted first-order logic

Definition 7 An atomic formula is a formula that was obtained only by rules
(F1) and (F2). �

Definition 8 A quantifier-free formula is a formula that was obtained only by
rules (F1)–(F4). �

Example 9 Let u be a variable of type USERS and let Σ0 be the signature
from Example 3. Some examples of formulas are Function (u) = “student′′

and ∃x : INT. Level (u) ≤ x. The formula Function (u) = “student′′ is an
atomic and quantifier-free formula. �

Occurrences in a formula

Definition 10 below formally defines the following concept. A variable x or
a formula ϕ occurs in another formula ψ if x or ϕ is a substring of ψ, when
they are all written as strings. For example, let

ψ ≡ ∃u : USERS. Function(u) = “student′′ ∨ Function(u) = “teacher′′. (2.2)

The variable u occurs in ψ. Whereas the formula Function(u) = “student′′ ∧
Function(u) = “teacher′′ does not occur in ψ.

Definition 10 A term t occurs in a term t0 if

• t0 ≡ t or

• t0 ≡ f (t1, . . . , tn) and t occurs in ti, for some 1 ≤ i ≤ n.

A term t occurs in a formula ψ if any of the following holds:

• ψ ≡ t1 = t2 and t occurs in t1 or t2.

• ψ is an atomic formula of the form R (t1, . . . , tn) and t occurs in ti, for
some i ≤ n.

• ψ ≡ ¬ψ′ and t occurs in ψ′.

• ψ ≡ ψ1 ∧ ψ2 and t occurs in ψ1 or in ψ2.

• ψ ≡ ∃x : W.ψ′ and t occurs in ψ′.

A formula ϕ occurs in another formula ψ if any of the following holds:

• ϕ ≡ ψ.

• ψ ≡ ¬ψ′ and ϕ occurs in ψ.

• ψ ≡ ψ1 ∧ ψ2 and ϕ occurs in ψ1 or in ψ2.

• ψ ≡ ∃x : W.ψ′ and ϕ occurs in ψ′.

�

19

2. Preliminaries

Definition 11 For a term t, the multiset TerOcc (t) of term occurrences of t is
inductively defined as follows:

• If t is a variable x, then TerOcc (t) = {x}.

• If t = f (t1, . . . , tn), then TerOcc (t) = {t}∪TerOcc (t1)∪ . . .∪TerOcc (tn).

For a formula ψ, the multiset TerOcc (ψ) of term occurrences of ψ is inductively
defined as follows:

• If ψ ≡ t1 = t2, then TerOcc (ψ) = TerOcc (t1) ∪ TerOcc (t2).

• If ψ ≡ R (t1, . . . , tn), then TerOcc (ψ) =
⋃

i≤n TerOcc (ti).

• If ψ ≡ ¬ψ′, then TerOcc (ψ) = TerOcc (ψ′).

• If ψ ≡ ψ1 ∧ ψ2, then TerOcc (ψ) = TerOcc (ψ1) ∪ TerOcc (ψ2).

• If ψ ≡ ∃x : W.ψ′, then TerOcc (ψ) = TerOcc (ψ′).

The multiset VarOcc (ψ) of variable occurrences in ψ is obtained from TerOcc (ψ)
by removing all non-variable terms.

The multiset FlaOcc (ψ) of formula occurrences in ψ is inductively defined as
follows:

• If ψ is an atomic formula, then FlaOcc (ψ) = {ψ}.

• If ψ ≡ ¬ψ′, then FlaOcc (ψ) = {ψ} ∪ FlaOcc (ψ′).

• If ψ ≡ ψ1 ∧ ψ2, then FlaOcc (ψ) = {ψ} ∪ FlaOcc (ψ1) ∪ FlaOcc (ψ2).

• If ψ ≡ ∃x : W.ψ′, then FlaOcc (ψ) = {ψ} ∪ FlaOcc (ψ′).

�

We use squared brackets when defining multisets by enumeration of its el-
ements. For example, [a, a, b] is the multiset containing twice the element a
and once the element b.

Example 12 Let ψ ≡
(
Function (u) = “staff ′′ ∨ Level (u) ≤ 2

)
→ Function (u) 6=

“teacher′′. Then

• VarOcc (ψ) = [u, u, u].

• TerOcc (ψ) =
[

u, u, u, “staff ′′, 2, “teacher′′

Function (u) , Function (u) , Level (u)

]
.

• FlaOcc (ψ) =

 Function (u) = “staff ′′, Level (u) ≤ c2,
Function (u) 6= “teacher′′,

Function (u) = “staff ′′ ∨ Level (u) ≤ c2, ψ

.

�

20

2.2. Many-sorted first-order logic

Definition 13 For a formula ψ, an element of any of the multisets VarOcc (ψ),
TerOcc (ψ), FlaOcc (ψ) is called an occurrence in ψ. A formula ϕ occurs in an-
other formula ψ if ϕ ∈ FlaOcc (ψ). A formula ϕ is a subformula of another
formula ψ if ϕ occurs in ψ. �

Observe that a variable, a term, or a formula may have multiple occurrences
in a formula.

We now define the concept of a “free variable”. Intuitively, a variable x is a
free variable of a formula ψ if it occurs in ψ, but not within the range of a
quantifier of x.

Definition 14 The set of free variables of a formula ψ is denoted by FV (ψ) and
is inductively defined as follows:

• If ψ is an atomic formula, then FV (ψ) is the set of all variables occur-
ring in ψ.

• If ψ ≡ ¬ψ′, then FV (ψ) = FV (ψ′).

• If ψ ≡ ψ1 ∧ ψ2, then FV (ψ) = FV (ψ1) ∪ FV (ψ2).

• If ψ ≡ ∃x : W.ψ′, then FV (ψ) = FV (ψ′) \ {x}.

A variable x is a free variable of a formula ψ if x ∈ FV (ψ). �

Sometimes it is important to emphasize the free variables of a formula ψ. In
those cases, instead of ψ, we write ψ (x1, . . . xn), where {x1, . . . , xn} = FV (ψ).

We measure the complexity of our algorithms using a notion of “size” for
formulas. We will later see that formulas of “large” size increase the time
and space required by our algorithms. In this thesis, we define the size as
the total number of occurrences of all atomic formulas.

Definition 15 The size of a formula ϕ is denoted by |ϕ| and is defined in-
ductively as follows:

• If t1 and t2 are terms, then |t1 = t2| = 1.

• If t1, . . ., tn are terms and R is a relation symbol, then we define
|R (t1, . . . , tn)| = 1.

• If ϕ1 and ϕ2 are formulas, then |ϕ1 ∧ ϕ2| = |ϕ1|+ |ϕ2|.

• If ϕ is a formula, then |¬ϕ| = |ϕ|.

• If ϕ is a formula and x is a variable of type W, then |∃x : W.ϕ| = |ϕ|.

�

Observe that, for a formula ϕ, its size equals the size of the multiset of all
occurrences of atomic formulas in ϕ. Observe also that our notion of size

21

2. Preliminaries

does not take into account the presence of the Boolean operator ¬ nor the
presence of quantifiers. This is because the formulas we encounter in this
thesis rarely use quantifiers or negation, so they have a negligible impact on
our algorithm’s complexities.

Example 16

•
∣∣Function (u1) = “student′′

∣∣ = 1.

•
∣∣Function (u1) = “student′′ ∧ Level (u2) ≤ 3

∣∣ = 2.

•
∣∣Function (u1) = “student′′ ∧ Function (u1) = “student′′

∣∣ = 2. This is be-
cause ∣∣Function (u1) = “student′′ ∧ Function (u1) = “student′′

∣∣
=
∣∣[Function (u1) = “student′′, Function (u1) = “student′′

]∣∣
= 2.

�

2.2.2 Semantics

Consider the formula ϕ ≡ ∀u : USERS. Level (u) ≤ 3. The reader familiar
with logic knows that this formula means that every user’s level is at most
3. However, with our current definitions, this formula is just a sequence of
symbols constructed according to some rules. We recall here how to give
meaning to first-order formulas. Defining what a formula means helps us
to decide whether a formula holds or not for an organization. For instance,
in the organization from Example 1, the formula ϕ holds, as every user’s
level is not larger than 3. In this case, we say that the organization in Exam-
ple 1 satisfies ϕ. Observe that not every organization satisfies ϕ, as one can
conceive organizations where users may have higher levels.

In this section, we formalize the notion of an “organization” using the stan-
dard concept of a “structure”. Afterwards, we explain how to give meaning
to first-order formulas. Finally, we define the notion of “satisfaction”, which
plays a crucial role in this thesis. Indeed, the problems solved by FORBAC,
Rhapsody, and Unicorn can be cast as the problem of finding a structure
that satisfies a given formula or as the problem of finding a formula that is
satisfied by a given structure.

Giving meaning to a signature’s symbols

Definition 17 Let Σ be a signature. A Σ-structure is a pair K = (S, I) fulfill-
ing the following.

22

2.2. Many-sorted first-order logic

• S is a function mapping each sort S in Σ to a finite non-empty set SS,
called S’s carrier set. S must map BOOL, INT, STR, 2INT, 2STR to the
sets of Boolean values, integers, strings, finite subsets of integers, and
finite subsets of strings, respectively.

• I is a function mapping (i) each relation symbol R in Σ of type S1 ×
. . .× Sk to a relation RI ⊆ SS

1 × . . .× SS
k and (ii) each function symbol

f in Σ of type S1× . . .×Sk−1 → Sk to a function f I : SS
1 × . . .×SS

k−1 →
SS

k .

For any function or relation symbol W in Σ, we call WI, K’s interpretation of
W. The function I is called an interpretation function. �

When Σ is irrelevant or clear from the context, we simply say structure in-
stead of Σ-structure. We denote elements of carrier sets with small serif
letters: a, b, . . .

Example 18 Recall the signature Σ0 from Example 3. We now define the
organization from Example 1 as a Σ0-structure K0 = (S0, I0) defined as
follows.

• USERSS0 =
{

ui,j | 0 ≤ i ≤ 2, 0 ≤ j ≤ 8
}

.

• PERMSS0 = {p}.

• ≤S0 is the standard order relation on integers.

• For ui,j ∈ USERSS0 , FunctionI0
(
ui,j
)
=

“staff ′′ if i = 0,
“student′′ if i = 1, and
“teacher′′ if i = 2.

• For ui,j ∈ USERSS0 , LevelI0
(
ui,j
)
=

1 if 0 ≤ j < 3,
2 if 3 ≤ j < 6, and
3 if 6 ≤ j < 9.

• “staff ′′I0 = “staff ′′, “student′′I0 = “student′′, “teacher′′I0 = “teacher′′.

• 1I0 = 1, 2I0 = 2, 3I0 = 3.

�

We defined the structure K0 in a way that fit our purpose of modeling the
organization from Example 1. We assume that ui,j, for 0 ≤ i < 3 and 0 ≤ j <
9, denotes the user at the (i + 1)-th row and (j + 1)-th column, when seeing
the arrangement of users in Figure 2.1 as a 3× 9 matrix.

One could also have defined a structure that interprets the symbols in Σ0 in
a very different way. The next example illustrates this.

Example 19 We define a Σ0-structure K̃0 =
(
S̃0, Ĩ0

)
as follows.

23

2. Preliminaries

• USERSS̃0 = {u}.

• PERMSS̃0 = {p}.

• ≤S̃0 is the standard order relation on integers.

• FunctionĨ0 (u) = “staff ′′.

• LevelĨ0 (u) = 1.

• “staff ′′Ĩ0 = “staff ′′, “student′′Ĩ0 = “student′′, “teacher′′Ĩ0 = “teacher′′.

• 1Ĩ0 = 1, 2Ĩ0 = 2, 3Ĩ0 = 3.

�

Observe that in our examples, “staff ′′I0 = “staff ′′Ĩ0 = “staff ′′. However, it is
possible to define a strange structure

(
S̃, Ĩ

)
where “student′′Ĩ = “teacher′′.

Such structures never appear and are not relevant in this thesis.

Giving meaning to terms and formulas

Definition 17 explains how structures give meaning to a signature’s symbols.
We now explain in Definitions 20 and 24 how they also give meaning to
terms and formulas.

Definition 20 Let K = (S, I) be a structure. A substitution σ is a function
mapping each variable x of type W to an element in WS.

Let K = (S, I) be a structure, let σ be a substitution, and let t be a term. The
interpretation of t under (I, σ) is denoted by JtK(I,σ) and is inductively defined
as follows:

• If t is a variable x of type W, then JtK(I,σ) = σ (x).

• If t is a term of the form f (t1, . . . , tn), then

JtK(I,σ) = f I
(
Jt1K(I,σ), . . . , JtnK(I,σ)

)
.

�

Example 21 We use the notation from Example 18. Let σ be a substitu-
tion mapping the variable u to u0,0. Then JFunction (u)K(I0,σ) = staff and
JLevel (u)K(I0,σ) = 1 �

Definition 22 Let K = (S, I) be a structure and assume that x1, . . . , xn are
of types W1 × . . .×Wn, respectively. The satisfaction relation � is a ternary

24

2.3. Access control

relation on structures, substitutions, and formulas that is inductively defined
as follows:

K, σ � t1 = t2 if Jt1K(I,σ) = Jt2K(I,σ).

K, σ � R (t1, . . . , tn) if RI
(
Jt1K(I,σ), . . . , JtnK(I,σ)

)
.

K, σ � ¬ϕ if K, σ 2 ϕ.
K, σ � ϕ1 ∧ ϕ2 if K, σ � ϕ1 and K, σ � ϕ2.
K, σ � ∃x : W.ϕ if there is w ∈WS such that K, σ [x 7→ w] � ϕ.

Here, σ [x 7→ w] is the substitution that maps x to w and any other variable
y to σ (y). �

If ϕ has no free variables, then we usually write K � ϕ instead of K, σ � ϕ, as
the fact that K, σ � ϕ holds does not depend on σ in this case. Additionally,
we say that K satisfies ϕ whenever K � ϕ.

Example 23 Let K0 be the structure from Example 18 and let σ be a substi-
tution mapping the variables u and p to u0,0 and p0,0, respectively. Then

• K0, σ � Function (u) = “staff ′′.

• K0, σ � Level (u) ≤ 2.

• K0, σ � ¬∃` : INT. ∃`′ : INT. ` 6= `′ ∧ Level (u) = ` ∧ Level (u) = `′.

• K0 � ∀u : INT. 0 ≤ Level (u) ≤ 2.

�

Definition 24 Let K = (S, I) be a structure and let ϕ (x1, . . . , xn) be a for-
mula. Assume that ϕ’s free variables are of type W1, . . . , Wn, respectively.
The interpretation of ϕ under I is the relation ϕI ⊆ WS

1 × . . . ×WS
n such

that (w1, . . . , wn) ∈ ϕI iff K, σ � ϕ, where σ is any substitution such that
σ (xi) = wi, for i ≤ n. �

Example 25 Let K0 be the structure from Example 18. Let also ϕ1 ≡ Level (u) 6=
Level (u) and ϕ2 ≡ Function (u) = “student′′ ∧ Level (u) ≤ 2. Then ϕI0

1 = ∅
and ϕI0

2 = {u1,0, u1,1, . . . , u1,5} . �

2.3 Access control

We now provide background on access control. We focus here on two of the
most popular access control paradigms: RBAC (role-based access control)
and ABAC (attribute-based access control).

25

2. Preliminaries

2.3.1 RBAC: Role-based access control

One of the first mechanisms for specifying access control policies were access
control matrices [24]. These matrices can be understood as binary relations be-
tween the users and permissions in an organization. In large organizations,
however, access control matrices become impractical. Whenever a new user
joins the organization, the policy administrator must decide for each permis-
sion, whether it should be assigned to the user. Also, whenever there are
organizational changes, the administrator needs to review the matrix and
decide how to change the permissions that have been assigned to each user.

To facilitate the maintenance of policies during organizational changes, RBAC
(Role-Based Access Control) policies were proposed [52]. The key insight in
RBAC is that several users in an organization require very similar permis-
sions. For example, in a hospital, all nurses have essentially the same per-
missions and the same can be said of all administrative staff and all doctors.
Hence, an RBAC policy decouples the assignment of permissions to users
into two parts. It first assigns roles to users and then permissions to roles.
Users who do similar tasks in an organization are assigned a same role and
this role is assigned all permissions that those users need. The number of
roles is substantially smaller than the number of users or permissions, which
facilitates the maintenance of policies during organizational changes. For ex-
ample, whenever a new user joins the organization, the policy administrator
only needs to decide what roles shall be assigned to the new user.

Role-based access control has been one of the most popular ways to spec-
ify access control policies in large organizations. We now recall how RBAC
policies are defined.

Definition 26 An RBAC policy is a tuple π = (U, P, Ro, Ua, Pa). U and P
are two non-empty sets denoting, respectively, the sets of users and permis-
sions in an organization. Ro is a set denoting the roles in the organization.
Ua ⊆ U× Ro and Pa ⊆ Ro× P are binary relations. The policy π assigns a
permission p to a user u if there is a role r ∈ Ro such that (u, r) ∈ Ua and
(r, p) ∈ Pa. �

Example 27 Figure 2.2 shows an RBAC policy. It consists of 6 users, 2 roles,
and 3 permissions. �

Observe that our formalization of RBAC policies does not use first-order
logic at all. However, we will see later in Chapter 3, that many extensions
that have been proposed for RBAC are actually easier to formalize using
first-order logic.

26

2.3. Access control

Figure 2.2: An RBAC policy with 6 users, 2 roles, and 3 permissions.

2.3.2 ABAC: Attribute-based access control

RBAC suffers from an issue called the role explosion problem, which we illus-
trate with the following example.

Example 28 Assume we want to develop an RBAC policy for a university. In
this organization, each user denotes a student and each permission denotes
a course. We assume that there are 10,000 students and 100 courses. The
RBAC policy should authorize each student to view the contents of only
those courses in which the student is enrolled.

Two different students rarely enroll in exactly the same set of courses. In the
worst case, the RBAC policy would require one role for each student. Hence,
an RBAC policy can become as impractical as an access control matrix in this
scenario as the number of roles is substantially large. �

To solve this problem, ABAC (Attribute-Based Access Control) policies were
proposed. An ABAC policy is a set of rules, where each rule describes a set
of conditions based on the attribute values of users and permissions [77, 69].
An example of an ABAC policy can be seen in stores that sell alcoholic
beverages only to people who are at least 21 years old. The user (i.e., the
client) is granted permission to buy alcohol only if his age attribute has
a value greater than or equal to 21. Observe here that the policy grants
permissions according the user’s attribute values.

27

2. Preliminaries

We now give a definition of ABAC policies based on first-order logic and
then show how to formalize an ABAC policy for Example 28.

Definition 29 An ABAC policy is a first-order formula ϕ (u, p) built from the
following BNF grammar:

t ::= f (u) | f (p) | c /* Terms */
α ::= t = t | Q(t, t) /* Atoms */
r ::= α | α ∧ r /* Rules */

π ::= r ∨ . . . ∨ r. /* Policies */

Here, u and p range over variables of sorts USERS and PERMS, respectively,
whereas f , c, and Q range over unary function, constant, and binary relation
symbols of the appropriate sorts, respectively. We restrict atoms, rules, and
policies to have at most two free variables of sorts USERS and PERMS,
respectively.

We call attribute any unary function symbol with domain sort USERS or
PERMS.

Let K = (S, I) be a structure and ϕ (u, p) be an ABAC policy. For an at-
tribute f , a user u, and a permission p, we call f I (u) the attribute value of
u for f . Similarly, we call f I (p) the attribute value of p for f . We say that
ϕ assigns a permission p ∈ PERMSS to a user u ∈ USERSS if K, σu,p � ϕ,
where σu,p is the substitution that maps u and p to u and p, respectively. �

In the context of ABAC policies, we refer to atomic formulas as atoms. We
call rule any conjunction of atoms. Observe that ABAC policies are disjunc-
tions of rules.

Example 30 The RBAC policy from Example 28 can be specified with the
ABAC policy courseId (p) ∈ courses (u) , where courseId : PERMS → STR
represents a function that assigns an identifier to each course and courses :
USERS→ 2STR represents a function that assigns to each student the identi-
fiers of the courses in which the student is enrolled. Observe that this policy
requires less administration effort in comparison to an RBAC policy. �

Example 31 We give an ABAC policy that formalizes the access control po-
licy from Example 1.(

Function (u) = “staff ′′ ∧ Level (u) ≤ 2
)
∨(

Function (u) = “teacher′′ ∧ Level (u) ≥ 2
)

.

�

28

2.4. Policy analysis

2.4 Policy analysis

The specification and maintenance of access control policies is a manual task.
In large organizations, where there are thousands of users and thousands of
permissions, it is likely that organizational security policies are complex
and, hence, the implemented access control policy does not properly act as
dictated by the organizational security policy. As a result, when evaluating
a request (i.e., a user-permission pair), the access control policy may make
two types of mistakes: (i) denying a legitimate request or (ii) authorizing
a request that, according to the organizational security policy, should not
be authorized. We call these an incorrect denial and an incorrect authorization,
respectively. Incorrect denials prevent users from performing their tasks in
the organization. Incorrect authorizations are especially dangerous as they
violate the principle of least privilege and can be abused by users. Reports
from Verizon in 2017 [50] show that privilege abuse is still a major issue for
many companies, especially for banking and healthcare companies, where
data is often highly sensitive.

To mitigate the risk of incorrect authorizations and denials policy analyzers
have been proposed. We give an informal overview here and refer to Chap-
ter 3 for a more rigorous presentation. Policy analyzers are tools that receive
as input a policy and a security property that the policy should fulfill. A po-
licy analyzer transforms these inputs into a formula ψ that is satisfied only
by structures that encode a violation of the security property. Afterwards,
the policy analyzer searches for a structure K that satisfies ψ. If found, the
policy analyzer builds a counterexample from K that illustrates to the policy
administrator how the policy fails to fulfill the security property.

Example 32 Let us consider the organization and the policy presented in
Example 1, which were formalized in Examples 18 and 31. Recall that the or-
ganizational security policy dictates that every user with level 2 is assigned
the permission. We wish to verify if the implemented access control policy
(i.e., the ABAC policy ϕ from Example 31) fulfills that. We can achieve this
by specifying two formulas ψ1 and ψ2. The formula ψ1 is

∃u : USERS. Level (u) = 2∧ ¬ϕ (u) . (2.3)

Observe this formula is satisfied by a structure K iff there is a user with level
2 who is not assigned the permission. Finally, the formula ψ2 is a formula
that is only satisfied by K0, the structure representing the organization. We
do not give the details of ψ2, as they are quite technical, but computing such
a formula is a standard procedure in first-order logic [14].

Let now ψ ≡ ψ1 ∧ ψ2. Observe that ψ is satisfied only by K0 and only if
there is a user whose level is 2 and is not granted the permission by ϕ. One
can see that K0 indeed satisfies ψ. Therefore, the implemented policy does
not act as dictated by the organizational security policy. �

29

2. Preliminaries

Admittedly, we could have discovered the deficiencies of the implemented
policy with a manual inspection and without going through the hassle of
building the formulas ψ1 and ψ2. In practice, however, manual inspections
do not scale, as organizations have thousands of users and permissions, each
with thousands of different attribute values. In these scenarios, automated
tools like policy analyzers are more efficient when it comes to verify that poli-
cies fulfill security properties. Moreover, in our case with the organization
from Example 1, policy analyzers can point to a user u in K0 who has level 2
and is not assigned the permission by ϕ. We elaborate on this in Chapter 3.

The satisfiability problem for first-order logic.

In Example 18, the problem of verifying whether the implemented access
control policy fulfills organizational security policy reduced to check if there
exists a structure that satisfies the first-order formula ψ. We will see in
Chapter 3 that most problems in policy analysis reduce to verify if a first-
order formula is satisfiable; that is, if there is a structure that satisfies it. The
following important result illustrates one of the main problems of using
first-order logic as a language for specifying policies and properties.

Definition 33 A fragment of first-order logic is a set S of first-order formulas.
The decidability problem for a fragment S of first-order logic is the problem of
deciding if a given formula in S is satisfiable. �

Theorem 34 The decidability problem for first-order logic is undecidable.

As a consequence, there is no algorithm that can decide for every policy
and every property, whether the policy fulfills the property. Fortunately, we
seldom require the full expressive power of first-order logic to specify poli-
cies and properties. Previous work has shown that there exists fragments of
first-order logic that, on one hand, are powerful enough to express realistic
policies and properties and, on the other hand, are simple enough so that
the decidability problem is tractable [66].

Many works have proposed fragments that are rich enough to express rele-
vant concepts in first-order and also simple enough so that the decidability
problem has an acceptable computational complexity [28, 13, 44]. These
works also propose algorithms, called SMT solvers, that can decide for some
of the formulas in the fragment, whether they are satisfiable [43, 46].

2.5 Policy mining

Another field that assists with the specification and maintenance of policies
and mitigates the risk of incorrect authorizations and denials is policy mining.
Algorithms from this field receive as input the current permission assignment,

30

2.5. Policy mining

which is a relation between the set of users and the set of permissions that
reflects how the implemented access control policy has assigned permissions
to users. The permission assignment might be given as an access control
matrix or a log of access requests showing the access decisions made for
each request so far. The miner constructs a policy that is as consistent as
possible with the permission assignment and can be expressed using the
organization’s policy language.

2.5.1 Applications

We present some examples from previous works of how policy miners assist
the specification and maintenance of policies.

Handling incorrect denials

An incorrect denial is usually discovered when a user attempts to exercise a
legitimate permission, but is forbidden by the policy. The user reports the
issue to the administrator, who changes the policy in a way that the user
is now assigned the permission. One way to change the policy is to add
an exceptional assignment that grants the permission to the user in question.
For example, an exceptional assignment can be, in the case of RBAC, a new
role that solely assigns the permission to the user or, in the case of ABAC, a
new rule achieving the same purpose. This is usually the preferred solution
when neither the user nor the administrator can infer from this particular
situation what exactly is wrong with the implemented access control policy.
After several users experience the same problem, the administrator might
be able to deduce what is wrong from the accumulated exceptional assign-
ments and provide a general fix.

Example 35 Let us consider the case of user u1,3 in the organization pre-
sented in Example 1 and formalized as a structure in Example 18, which
we illustrate in Figure 2.3a. Recall that u1,3 denotes the user in the second
row and in the fourth column in the figure, when seeing the arrangement
of users as a 3× 9 matrix. According to the organizational security policy,
u1,3 should be authorized as his level is 2. However, the implemented access
control policy does not authorize him. If u1,3 requests the permission, then
the request will be denied by the policy, yielding an incorrect denial. The
user u1,3 contacts the policy administrator and after convincing her that his
request to exercise the permission should be authorized, the administrator
adds an exceptional assignment to the currently ABAC policy that autho-
rizes u1,3 to exercise the permission. More formally, the new ABAC policy

31

2. Preliminaries

(a) The user in the circle represents
an incorrect denial. From just this
incorrect denial, it is difficult to see
what the implemented policy is miss-
ing with respect to the organizational
security policy.

(b) The users in the circles are more
examples of incorrect denials. They
support the hypothesis that students
with level 2 should also be assigned
the permission.

Figure 2.3

is the following: (
Function (u) = “staff ′′ ∧ Level (u) ≤ 2

)
∨(

Function (u) = “teacher′′ ∧ Level (u) ≥ 2
)
∨

userID (u) = “u 1 3′′.

Here, we added new symbols to the signature. UserID is a function symbol
of type USERS → STR that assigns a unique identifier string to each user.
We also added a constant symbol “u 1 3′′ of type STR that denotes u1,3’s
identifier. We assume that UserIDI0 (u1,3) = “u 1 3′′.

It may not possible for the policy administrator, from just this exceptional
assignment, to deduce what the implemented access control policy is miss-
ing, as several explanations may be possible. Perhaps all users whose level
is 2 should also be granted the permission or perhaps all users who are
students should be granted the permission instead. Even the explanation
that all students with level 2 should be assigned the permission is preposter-
ous, as there are always cases where a user must be granted a permission
in exceptional circumstances that go against the organizational security po-
licy. For example, a nurse may not be allowed to access a patient’s data,
but if the patient is in a life-threatening situation, the nurse may be granted
exceptional but temporal access to his or her data.

Let us consider again Figure 2.3a. As time goes by, one can assume that
more users who should legitimately be authorized by the policy are denied.
This yields more incorrect denials that make the policy more complicated,
but these incorrect denials also give insights on what the implemented ac-
cess control policy is missing. Assume, for example that u1,3 and u1,5 also

32

2.5. Policy mining

unsuccessfully attempt to exercise the permission and the policy adminis-
trator manually adds exceptional assignments to the policy, as shown in
Figure 2.3b by the two new yellow circles. These exceptional assignments
support the conjecture that the policy should also assign the permission to
all users whose level is 2. This is indeed what makes the implemented policy
different from the organizational security policy. �

In practice, in large organizations, there may be thousands of users and
dozens of attributes, each with thousands of possible attribute values. In
such cases, a manual inspection of the exceptional assignments is impractical
and policy miners that automatically inspect these exceptions and suggest
policy improvements are needed.

From the above discussion, one can see that policy miners can simplify poli-
cies that have become convoluted by the addition of several exceptional as-
signments. Even more importantly, the miner can discover what the im-
plemented policy is missing and this can prevent future incorrect denials.
Indeed, for a mined policy to be useful, it must be able to compute policies
that minimize the risk of incorrect denials and authorizations. This ability
is called generalization and is formalized later in Chapters 4 and 5.

Other use cases

Another important use case for policy mining concerns organizational change.
For example, when an organization acquires a smaller organization, the
smaller organization’s access control policy must be translated into the larger
organization’s policy language and merged with the organization’s access
control policy. As another example, when an organization wants to reimple-
ment its access control policy in a different language, it must translate its
own access control policy. Policy miners offer a practical solution to these
kinds of problems, as they can mine a policy in the target language from the
current permission assignment. For the mined policy to be useful in these
cases, it must also have low complexity; that is, it must be as simple as pos-
sible so that a human can review it and validate it. We discuss complexity
metrics in Chapters 4 and 5.

Another use case for policy mining is to identify policies that are overly per-
missive [39]. That is, policies that assign to users more permissions than
what they actually need. Overly-permissive policies are prone to have incor-
rect authorizations. By mining from a log that has recorded the permissions
exercised by the users so far, one can compute a policy that better reflects
what each user needs. This policy can be compared using policy comparison
tools [55] with the currently implemented access control policy to discover
unnecessary assignments of permissions.

33

2. Preliminaries

2.5.2 Quality criteria for policy miners

Policy miners can be regarded as machine-learning algorithms. Therefore,
they are evaluated by the quality of the policies they mine, and here three
criteria are used:

Generalization [57, 39, 103] A mined policy should not only authorize
requests in a way that is consistent with the given permission assignment.
It must also correctly decide what other permissions should be granted to
users who perform similar functions in the organization. This is particularly
important when mining from logs. For example, if most of students in a uni-
versity have requested and been granted access to a computer room, then the
mined policy should grant all students access to the computer room rather
than just to those who have requested access to it. One popular machine-
learning method to evaluate generalization is cross-validation [60, 23], which
we recall in Chapter 4.

Complexity [30, 133] A mined policy should not be unnecessarily compli-
cated, as the policies are usually reviewed and audited by humans. This
is especially important when mining with the goal of refactoring an exist-
ing policy or migrating to a new policy language. One of the simplest
and most popular complexity metrics for ABAC policies is the size (Defi-
nition 15). Other works have defined its own metrics to quantify complex-
ity [39, 132, 133, 58], not only for ABAC but also for other policy languages.
We will illustrate some of these metrics in Chapter 5.

Precision [39] When mining from a log, we need to consider another qual-
ity criterion. We will later see in Chapter 4 that it is possible to mine a
policy that generalizes well and has low complexity, but authorizes significant
sets of requests for which the log provides no evidence. We call such a policy
an overly-permissive policy. To quantify over-permissiveness we use the stan-
dard precision metric [111]. Intuitively, the precision of a policy measures
the ratio of the number of requests authorized by the access control policy
to the number of requests that should be authorized according to the or-
ganizational security policy. We discuss this and other metrics to quantify
over-permissiveness in Chapter 4.

2.6 Conclusion

We now know how to formalize the most relevant access control concepts
using many-sorted first-order logic. We have also learned the essentials of
policy analysis and policy mining. The reader interested in policy analysis
can continue with Chapter 3. There we present FORBAC, an extension of

34

2.6. Conclusion

RBAC that is expressive enough to formalize a wide range of access control
policies, while at the same time being simple enough so that relevant po-
licy analysis queries are in the complexity class NP. The reader interested
in policy mining can continue with Chapters 4 and 5, where we present
Rhapsody and Unicorn. Rhapsody is the first algorithm for mining ABAC
policies that guarantees to mine from sparse logs the set of all significant,
reliable, and succinct rules. Unicorn is a universal method for building
policy miners. Using Unicorn, we have built competitive policy miners
for a wide variety of policy languages. In particular, the policy miner for
ABAC built with Unicorn outperforms Rhapsody. Moreover, using Uni-
corn, we have built the first policy miners for XACML and RBAC with
spatio-temporal constraints. In spite of active research in policy mining, no
miner was known for any of these languages for several years.

35

Chapter 3

FORBAC: First-order Role-based
Access Control

3.1 Introduction

RBAC [52] is one of the most popular access control paradigms. However,
different extensions for RBAC have been proposed in the last decades that
aim to make RBAC capable of expressing more complex policies, e.g. [63, 70,
78, 79, 89, 94]. The added expressive power has also motivated research on
policy analysis for these extensions, e.g. [8, 15, 53, 122].

Most of these RBAC extensions build upon first-order logic. However, de-
ciding whether a formula is valid in first-order logic is known to be un-
decidable [48]. This has serious consequences for policy analysis for these
extensions, as its computational complexity is directly influenced by the
computational complexity of deciding whether formulas in the RBAC exten-
sion’s syntax are valid. As a result, researchers have made efforts to discover
fragments (i.e., sets of first-order formulas) that are rich enough to express
relevant policy properties while, at the same time, simple enough so that the
complexity of deciding whether a formula is satisfiable is tractable [28, 66].

A closer look at the syntax of these RBAC extensions shows that only a
fragment of first-order logic is sufficient to capture the syntax of those ex-
tensions. For example, their syntax does not involve disjunction or arbitrary
quantifier alternation [66, 16]. By restricting the syntax to just a fragment of
first-order logic, we hope to propose a language that is expressive enough to
specify RBAC policies in these extensions and that is simple enough to keep
the complexity of policy analysis in NP. Although policy analysis should ide-
ally have a polynomial-time complexity, we argue later that policy analysis
for any sufficiently expressive policy language is NP-hard.

In this chapter, we propose FORBAC, an extension of RBAC that strikes
that desired balance between expressiveness in policy specification and effi-

37

3. FORBAC: First-order Role-based Access Control

ciency in policy analysis. FORBAC incorporates the main features of differ-
ent RBAC extensions from the literature, e.g. [7, 63, 70, 78]. Moreover, we
prove that, for a large class of properties, the complexity of policy analysis in
FORBAC NP-complete. To verify properties of FORBAC policies, we reduce
them to satisfiability modulo theories and use the SMT-solver Z3 [43].

To illustrate FORBAC’s expressive power and its ability to efficiently ana-
lyze policies, we conducted a case study on a major European bank, approx-
imately containing 50,000 users, 5,400 roles, and 57,000 permissions. We
were able to express 10 of the bank’s most complex access-control policies
in FORBAC and we verified a variety of relevant policy properties. Using
Z3, most of the properties were verified within seconds.

The remainder of this chapter is organized as follows. In Section 3.2 we es-
tablish FORBAC’s expressiveness requirements for FORBAC. In Section 3.3,
we define FORBAC’s syntax and semantics and in Section 3.4 we show how
to specify policy properties for FORBAC policies. In Section 3.5, we present
the results from our case study with the bank. In Section 3.6, we discuss
related work and in Section 3.7 we draw conclusions.

3.2 Requirements for FORBAC

FORBAC is an RBAC extension that strikes a balance among the following
three factors:

• An expressive language for specifying RBAC policies.

• An expressive language for specifying properties of RBAC policies.

• A low complexity for verifying policies against properties.

In the remainder of this section, we discuss language requirements and com-
plexity classes for policy analysis.

3.2.1 Requirements for policy specification

Numerous extensions for RBAC have been proposed and the syntax of many
of them (e.g. [70, 78, 94]) includes fragments of first-order logic that make
policy analysis undecidable, or at best highly intractable. In the following,
we review some of their features in order to elicit the central requirements
for an expressive RBAC extension. Based on these requirements, we present
in Section 3.3 a fragment of first-order logic that is simple, but expressive
enough to formalize realistic policies.

Attributes A common feature of RBAC extensions is the association of at-
tributes to users, roles, and permissions. This stems from the need to add
fine-grained access control to RBAC. For example, a user in a physician

38

3.2. Requirements for FORBAC

role should be authorized to access patient information, but only for those
patients he supervises. Instead of defining one role for every subset of pa-
tients, an attribute is added to the role that specifies the set of patients under
the physician’s supervision.

Role and permission assignments specified in first-order logic Another
common feature of RBAC extensions is the use of rules to assign roles to
users and permissions to roles. This feature is motivated by the difficulty of
manually administering these relations in large environments where users’
and permissions’ attribute values frequently change. Many RBAC exten-
sions, such as [76, 63, 70], use first-order logic to specify user-role and role-
permission assignment relations. However, they do not limit the fragment
of first-order logic used for these specifications.

We propose restrictions on the first-order fragment we use in FORBAC. For
instance, we do not allow the arbitrary nesting of quantifiers. In practice,
access control permissions simply require the presence or absence of val-
ues in the user’s, role’s, and permission’s attributes. This is reflected in the
syntax of logic-based policy languages that have been used in practice. For
example, Lithium [66] forbids quantifier alternation and yet it can still ex-
press various parts of U.S. legislation, including fragments of the Privacy
Rule, which governs access to electronic medical files, and Title 42, Chapter
7 of the U.S. Code, which determines who is eligible for Social Security. An-
other example is Cassandra [17], an earlier version of SecPAL, which does
not allow quantifier alternation, but can express the policies for the national
electronic health record system of the United Kingdom.

Numeric constraints We incorporate this kind of constraints as they often
occur in authorization policies. For example, Title 29 of the U.S. Code §1181,
which belongs to the HIPAA rule, says:

A period of creditable coverage shall not be counted, with
respect to enrollment of an individual under a group health plan,
if, after such period and before the enrollment date, there was a
63-day period during all of which the individual was not covered
under any creditable coverage.

In electronic health record systems, health organizations are authorized to
request a credential asserting patient/EHR-service bindings if they can pro-
vide an RA-approved NHS health organization credential [17]. Such creden-
tials are valid only for fixed time intervals. More generally, functions within
an organization may have a limited duration. For instance, vendors may
be authorized to access vendor contracts only in the second week of every
quarter of every year, and vendor contracts must be submitted within two

39

3. FORBAC: First-order Role-based Access Control

weeks of that time [22]. Such numerical constraints can usually be expressed
as inequalities between two integer values.

This concludes the requirements for our language for specifying RBAC poli-
cies. There are other access control features that have received attention in
the literature that we have not included as requirements for our language.
These include role hierarchies [115], delegation [12], and separation-of-duty
constraints [5]. We leave these as future work and focus on the core features
explained above.

3.2.2 A complexity class for policy analysis

Ideally, the time complexity of policy analysis should be polynomial. How-
ever, we argue that it is NP-hard for any sufficiently expressive policy lan-
guage. To support this, we present a simple policy language F that can be
embedded into languages have been successfully applied in industry like
Margrave [106] and Gem-RBAC-DSL [18] and show that checking even the
simple query of whether every access request is permitted in a given policy
in F is NP-hard.

Definition 36 (Syntax of F) Let Σ be a signature where all its relation sym-
bols are binary. Let F be the set of formulas of the form P1(u, p) ∧ . . . ∧
Pk(u, p) ∧ ¬Q1(u, p) ∧ . . . ∧ ¬Qn(u, p). Here, k, n ≥ 0 and u and p are
variables of types USERS and PERMS, respectively. Pi and Qj, for i ≤ k and
j ≤ n, are binary relation symbols. A policy in F consists of a disjunction of
the form ϕ1(u, p) ∨ . . . ∨ ϕ`(u, p), where ϕi, for i ≤ `, is a formula in F. �

Definition 37 (Semantics of F) Let T be a policy in F and K = (S, I) be a
Σ-structure. For a request (u, p) ∈ USERSS × PERMSS, we say that (u, p)
is authorized by T if K, σ(u,p) � T, where σ(u,p) is any substitution mapping u
and p to u and p, respectively. �

For a policy T ≡ ϕ1(u, p) ∨ . . . ∨ ϕ`(u, p) in F, suppose that we want
to verify if every access request is authorized. This can be done by check-
ing the validity of ∀u : USERS . ∀p : PERMS . (ϕ1(u, p) ∨ . . . ∨ ϕ`(u, p)) ;
that is, checking that every Σ-structure satisfies it. However, we prove in
Appendix A.1 that checking this for an arbitrary T is NP-hard.

F is extremely simple. It uses only binary relation symbols and it can be
embedded into state-of-the-art analysis frameworks used for analyzing re-
alistic policies like Margrave [106] (see Section A.1 in the Appendix for de-
tails). Nevertheless, despite its low expressiveness, even basic policy anal-
ysis queries are NP-hard. For this reason, we believe P is too restrictive
(unless P = NP) and we set our sights on performing policy analysis in NP.

40

3.3. Syntax and semantics of FORBAC

3.3 Syntax and semantics of FORBAC

Given the requirements for our framework, we start by defining the signa-
ture for writing FORBAC-policies.

Definition 38 A FORBAC-signature is a signature Σ = (S, R, F, V) where:

• S = SRBAC ∪ {INT, STR, 2INT, 2STR}, with

SRBAC = {USERS, Roles1, Roles2, . . . , RolesT, PERMS} . (3.1)

• R is the set containing only the following binary relation symbols:

≤ : INT× INT
∈STR : STR× 2STR ∈INT : INT× 2INT

⊆STR : 2STR × 2STR ⊆INT : 2INT × 2INT
(3.2)

• F = A ∪C. A is a set of unary function symbols. Every f ∈ A has a
type W f → V f , where W f ∈ SRBAC and V f ∈

{
INT, STR, 2INT, 2STR

}
.

C is a set of constant symbols, each of some sort in S.

�

We assume that C contains enough constant symbols to represent all inte-
gers, strings, sets of integers, and sets of strings. For simplicity, we use ∈
instead of ∈STR or ∈INT when it is clear from the context. We do the same
with the symbol ⊆. When writing formulas, we sometimes use standard
abbreviations like x /∈ F(y) and x 6= y to denote the formulas ¬ (x ∈ F(y))
and ¬ (x = y).

The symbols in A with domain in SRBAC and codomain in {INT, STR} de-
note single-valued attributes and those with domain in SRBAC and codomain
in
{

2INT, 2STR
}

denote set-valued attributes. We call attribute any single or
set-valued attribute. We define RT(Σ) as the set {Roles1, Roles2, . . . , RolesT}
and call it the set of role templates of Σ [2, 63, 27, 62].

Example 39 We present a simple FORBAC signature ΣB = (S, R, F, V) for
specifying the access control policies of a bank’s account administration tool.
Here, RT(ΣB) = {RStudent, REmployee} represents two different kinds of roles
a user can be assigned: student and employee.

We define in A the following single-valued attributes for the sort USERS:

• name : USERS→ STR.

• age : USERS→ INT.

• nationality : USERS→ STR.

41

3. FORBAC: First-order Role-based Access Control

• salary : USERS→ INT.

The role template REmployee has one single-valued attribute called limit:

• limit : REmployee → INT.

The attribute limit specifies the maximal amount that the role’s owner is
allowed to use in one transaction on her bank account.

We also have a set-valued attribute for the role template RStudent:

• country : RStudent → 2STR

It specifies in which countries a user with a student role can order trans-
actions. Having this attribute only for one role template shows why two
different sorts of role templates are needed, since this restriction will only
apply to student roles, but not for employee roles.

The sort PERMS is provided with three single-valued attributes:

• action : PERMS→ STR

• amount : PERMS→ INT

• location : PERMS→ STR

The attribute action denotes what kind of transaction can be executed (e.g.,
withdrawing or transferring money from a bank account), amount denotes
how much money is issued in a transaction and location denotes the country
in which the transaction is placed. �

Definition 40 Let Σ = (S, R, F, V) be a FORBAC-signature. A Σ-FORBAC-
structure is a Σ-structure K = (S, I) such that I interprets the binary relation
symbols in R in the standard way. That is, ≤I is the standard order relation
on the integers, ⊆I

STR is the standard subset relation on the sets of strings,
and so on. �

We call an element of USERSS a user of K. For a role template R ∈ RT(Σ),
we call an element of RS a role instance of R. We call an element of PERMSS

a permission of K.

Example 41 Let ΣB be the FORBAC-signature from Example 39. Figure 3.1
shows a ΣB-FORBAC-structure K = (S, I) with three users, two role in-
stances of RStudent, one role instance of REmployee, and three permissions.

�

Definition 42 An atomic FORBAC-formula is any atomic formula built from
a FORBAC-signature. A FORBAC-formula is a quantifier-free formula built
from a FORBAC-signature.

�

42

3.3. Syntax and semantics of FORBAC

Figure 3.1: An example of a ΣB-FORBAC-structure. ©2015, IEEE. Reprinted
with permission.

Definition 43 A FORBAC-policy is a triple (Σ,UA,PA), where Σ is a FOR-
BAC-signature. The user-assignment specification

UA = {UAR(u, r) : R ∈ RT(Σ)}

and the permission-assignment specification

PA = {PAR(r, p) : R ∈ RT(Σ)}

are sets of FORBAC-formulas over Σ. The user-assignment formulas UAR(u, r)
have (just) the two free variables u and r of sorts USERS and R, respectively,
and the permission-assignment formulas PAR(r, p) have (just) the two free vari-
ables r and p of sorts R and PERMS, respectively. �

Example 44 Consider the FORBAC-signature ΣB from Example 41 and sup-
pose that we have the following policy.

• Users no older than 25 are assigned an instance of RStudent, which
entitles them to withdraw up to $1, 000 in the user’s home country or
in the US.

• Users whose salary exceeds $1, 500 are assigned an instance of REmployee,
which entitles them to withdraw and transfer money in any country
provided that the sum does not exceed the user’s salary.

43

3. FORBAC: First-order Role-based Access Control

We present a FORBAC-policy (ΣB,UA,PA) that models this. ΣB was al-
ready specified in Example 39, so we just present UA and PA:

UARStudent
(u, r) ≡

(
age(u) ≤ 25 ∧
country(r) = {nationality(u), “US′′}

)

PARStudent
(r, p) ≡

 action(p) ∈ {“withdraw′′} ∧
amount(p) ≤ 1000 ∧
location(p) ∈ country(r)

UAREmployee

(u, r) ≡
(

salary(u) > 1500 ∧
limit(r) = salary(u)

)

PAREmployee
(r, p) ≡

(
action(p) ∈ {“withdraw′′, “transfer′′} ∧
amount(p) ≤ limit(r)

)
.

(3.3)

�

Let Σ be a FORBAC-signature and K be a Σ-FORBAC-structure. Let u, r,
and p be a user, a role instance of R, and a permission of K, respectively. We
say that u is assigned r if K, σu,r � UAR(u, r), where σu,r is the substitution
mapping u and r to u and r, respectively. We say that r is assigned p if
K, σr,p � PAR(r, p), where σr,p is the substitution mapping r and p to r and
p, respectively.

Example 45 Figure 3.2 illustrates, in the context of the ΣB-FORBAC-structure
of Example 41 and the FORBAC-policy of Example 44, which role instances
are assigned to which users and which permissions are assigned to which
role instances. �

Definition 46 For a FORBAC-policy (Σ,UA,PA) and a role template R ∈
RT(Σ), let AuthR(u, p) denote the formula

∃r : R . UAR(u, r) ∧ PAR(r, p). (3.4)

Let Auth(u, p) denote the formula
∨

R∈RT(Σ) AuthR(u, p) . For a Σ-FORBAC-
structure K, we say that a user u of K is authorized for a permission p of K if
K, σu,p � Auth(u, p). Here, σu,p is the substitution mapping u and p to u and
p, respectively. �

Example 47 Consider the FORBAC-signature presented in Example 39, the
ΣB-FORBAC-structure K presented in Example 41, and the FORBAC-policy
presented in Example 44. User u1 is authorized for permissions p1 and p2
and user u3 is authorized for permissions p1, p2, and p3. �

When quantifying over variables, we do not specify the sorts USERS and
PERMS, as these should be clear from the context. For example, instead of
writing

∀u : USERS ∃r1 : R1 .UAR1
(u, r1), (3.5)

44

3.4. Policy analysis in FORBAC

Figure 3.2: User and permission-assignments in the ΣB-FORBAC-structure
K. ©2015, IEEE. Reprinted with permission.

we write
∀u . ∃r1 : R1 .UAR1(u, r1). (3.6)

We conclude our presentation of FORBAC by observing that authorization
can be decided in polynomial time. The proof is given in Appendix A.2.

Theorem 48 Given a FORBAC-policy (Σ,UA,PA), a Σ-FORBAC-structure
K = (S, I), a user u ∈ USERSS and a permission p ∈ PERMSS, deciding
whether u is authorized for p takes time

O
(∣∣∣ROLESS

∣∣∣ · |K|2 · (|UA|+ |PA|)) , (3.7)

where ROLESS is the set of role instances in K, |K| is the length of K

encoded as a string1, |UA| = ∑R∈RT(Σ) |UAR|, and |PA| = ∑R∈RT(Σ) |PAR|.

3.4 Policy analysis in FORBAC

We now define a language for specifying properties of FORBAC-policies. Al-
though first-order logic is the natural choice for property specification, its
undecidability makes it unsuitable for efficiently verifying properties. To re-
duce the complexity of verifying properties, we must then use a fragment of

1For computational purposes, Σ-structures need to be encoded as strings in order to be
given as input to programs. See [73] for details.

45

3. FORBAC: First-order Role-based Access Control

first-order logic. Many works have made efforts to find fragments that are
decidable while still sufficiently powerful to express certain properties [28].
One of the most popular works is by Halpern and Weissman [66], where
they evaluated the complexity of policy analysis for several fragments. They
showed that even after severely limiting the fragment’s expressiveness by
reducing the number of quantifier alternations and removing function sym-
bols, the remaining fragment has an unacceptably high complexity for veri-
fying properties. They managed to propose a fragment that can be efficiently
decided and is powerful enough to express access-control policies from di-
verse university libraries and US government policies.

To strike a balance between expressiveness in property specification and ef-
ficiency in policy analysis for extensions of RBAC that use first-order logic,
we propose the set of existential FORBAC-formulas as the language for spec-
ifying policy properties.

Definition 49 An existential FORBAC-formula is a first-order formula of the
form ∃x1 : S1 ∃x2 : S2 . . . ∃xn : Sn . ϕ(x1, x2, . . . , xn), where ϕ(x1, x2, . . . , xn) is
a boolean combination of FORBAC-formulas over a FORBAC-signature. �

Theorem 50 Deciding the satisfiability of an existential FORBAC-formula is
NP-complete.

Proof. See Appendix A.2. �

The low complexity, NP, is not free. There are relevant policy properties like
“observational equivalence” and “conflict” [10] that cannot be expressed as
existential FORBAC-formulas. However, they can still be expressed in first-
order logic and can be passed as input to an SMT-solver. We simply cannot
provide guarantees on the complexity of verifying such types of properties.

To verify a property, we build an existential FORBAC-formula that describes
a counterexample; that is, a FORBAC-structure that violates the property.
The formula is given as input to the SMT solver Z3, which attempts to com-
pute a counterexample.

Having shown that deciding satisfiability of formulas in the language of
existential FORBAC-formulas has an acceptable complexity, we argue now
why this language is expressive enough to specify relevant policy proper-
ties. We showcase four types of policy properties that can be expressed as
existential FORBAC-formulas. Afterwards, we show the main findings of a
case study on a major European bank, where we evaluate these properties
on some of the bank’s applications. We provide here only a major overview,
as this work belongs to Thilo Weghorn’s doctoral thesis. A more detailed
account is found in the original FORBAC paper [40].

Authorization inspection: This type of properties help to verify that a FOR-
BAC-policy is granting the right permissions to the right users. A property

46

3.4. Policy analysis in FORBAC

of this type checks if there is a user u and a permission p with certain char-
acteristics such that the FORBAC-policy assigns p to u. Properties of this
type are formalized with FORBAC-formulas of the following form:

∃u . ∃p .
(
ψuser (u) ∧ ψperm (p) ∧ Auth (u, p)

)
. (3.8)

Here, ψuser (u) and ψperm (p) restrict the user and the permission we are inter-
ested in. The formula Auth (u, p) is the formula from Definition 46 for some
FORBAC-policy.

Observe that Formula 3.8 is not an existential FORBAC-formula, as the sub-
formula Auth (u, p) contains existential quantifiers. However, those quanti-
fiers can be moved to the front of Formula 3.8 without affecting its validity,
yielding an existential FORBAC-formula.

We illustrate an instance of authorization inspection in the context of the
FORBAC-policy from Example 44. Suppose that we fix

ψuser(u) ≡ age(u) ≤ 25

ψperm(p) ≡
(

action(p) = “withdraw′′ ∧
amount(p) > 1000

)
.

(3.9)

The resulting property holds if there is a way for a user who is at most 25
years old to get a permission to withdraw amounts larger than $1, 000.

Assignment simplification: This type of properties help to verify if parts
of a FORBAC-policy can be simplified. Let (Σ,UA,PA) be a FORBAC-
policy. A property of this type specifies, for a formula ψ in UA ∪ PA, if it
can be rewritten into another simpler formula ψ′. Such a property can be
formalized as the following existential FORBAC-formula:

∃x1 . . . ∃xk .¬
(
ψ (x1, . . . , xk)↔ ψ′ (x1, . . . , xk)

)
. (3.10)

Observe that the formula ψ can be rewritten as ψ′ iff an SMT-solver, when
given as input this formula, finds the formula to be unsatisfiable.

We illustrate an instance of assignment simplification. Consider a FORBAC-
policy with a role template R such that

UAR (u, p) ≡ ψ1 (u, r) ∨ ψ2 (u, r) , (3.11)

where

ψ1 (u, r) ≡ unit (r) = 45 ∧ level (u) = 23 and
ψ2 (u, r) ≡ unit (r) = 45 ∧ level (u) > 20.

Observe that whenever ψ1 (u, r) holds, then ψ2 (u, r) also holds. This means
that ψ2 (u, r) is redundant in UAR. To confirm this, one can observe that the
existential FORBAC-formula ∃u . ∃r : R .¬ ((ψ1 (u, r) ∨ ψ2 (u, r))↔ ψ1 (u, r))
is unsatisfiable.

47

3. FORBAC: First-order Role-based Access Control

Role equivalence: RBAC policies that are administered by different entities
may end up with equivalent roles. This type of properties help to detect such
roles, which leads to simpler policies. For example, consider a FORBAC-
policy with two role templates R1 and R2 such that:

mPAR1 (r, p) ≡ level (r) = level (p) ∨ level (r) > level (p)
mPAR2 (r, p) ≡ level (r) ≥ level (p) .

Let K = (S, I) be a Σ-FORBAC-structure and suppose that r1 and r2 are two
role instances of R1 and R2, respectively, such that levelI (r1) = levelI (r2).
Observe, that, any permission assigned to r1 is also assigned to r2. They
are essentially equivalent. Hence, we can remove role template R2 from the
FORBAC-policy.

To confirm this observation, it suffices to verify that the following existential
FORBAC-formula is unsatisfiable:

∃r1 : R1 . ∃r2 : R2 . ∃p .
(

level (r1) = level (r2) ∧
¬ (PAR1 (r1, p)↔ PAR2 (r2, p))

)
. (3.12)

Finally, equivalent roles are not always redundant. For example, in an IT
organization, the roles of programmer and tester may have the same set of
permissions, but they need to be distinguished for organizational purposes.

Redundant role templates: In large organizations, where RBAC policies
are administered by different entities, the entities in charge of the assign-
ment of roles to users may be different from those in charge of the assign-
ment of permissions to roles. This may lead to situations like the one de-
picted in Figure 3.3, where for two role instances r1 and r2, the set of users
who get assigned r2 is a subset of those who get assigned r1 and the set of
permissions assigned to r2 is a subset of those assigned to r1. In this case,
r2 is redundant. We illustrate next how we can detect these situations with
existential FORBAC-formulas.

Consider a FORBAC-policy with two role templates R1 and R2 such that

UAR1 (u, r) ≡ level (r) = age (u) , (3.13)
UAR2 (u, r) ≡ level (r) = age (u) ,
PAR1 (r, p) ≡ level (r) ≥ level (p) , and
PAR2 (r, p) ≡ level (r) = level (p) .

Let r1 and r2 be two roles instances of R1 and R2, respectively. Observe that
whenever a user is assigned r2, he is also assigned r1. Also, whenever a
permission is assigned to r2, that permission is also assigned to r1. As a
result, R2 is redundant and can be removed from the FORBAC-policy.

48

3.5. Experimental results

Figure 3.3: The role r2 is redundant: the permissions assigned to r2 are con-
tained in those assigned to r1 and the users assigned to r2 are also assigned
to r1. ©2015, IEEE. Reprinted with permission.

We can prove R2’s redundancy by verifying that the following two existential
FORBAC-formulas are unsatisfiable:

∃u . ∃r1 : R1 . ∃r2 : R2 .
(

level (r1) = level (r2) ∧
UAR2 (r2, p) ∧ ¬UAR1 (r1, p)

)
and

∃r1 : R1 . ∃r2 : R2 . ∃p .
(

level (r1) = level (r2) ∧
PAR2 (r2, p) ∧ ¬PAR1 (r1, p)

)
. (3.14)

3.5 Experimental results

We conducted a case study on a major European bank to evaluate whether (i)
the FORBAC language is powerful enough to express realistic access control
policies and (ii) whether realistic policy properties can be verified within a
reasonable amount of time. We provide here only a major overview as the
results here belong to Thilo Weghorn’s thesis.

For our study, we chose, from among the 350 applications we had access to,
the 10 applications with the most complex access-control policies. We trans-
lated their policies into FORBAC-policies. For each of the obtained FOR-
BAC policies and for each of the property types presented in Section 3.4, we
randomly generated 10 different existential FORBAC-formulas and checked
their satisfiability using Z3.

49

3. FORBAC: First-order Role-based Access Control

For role equivalence, we picked two role templates at random and then built
an existential FORBAC-formula that held iff the two role templates were not
equivalent. For authorization inspection, we proceeded as follows. First,
we selected uniformly at random a subset of user attribute values and a
subset of permission attribute values. Then we built an existential FOR-
BAC-formula that holds iff there is a user with the selected attribute values
who would be assigned a permission with the selected attribute values. For
the other property types, we built the existential FORBAC-formulas analo-
gously. Table 3.1 shows the time it took Z3 to decide satisfiability for the
formulas we built.

Two of the FORBAC-policies were not complex enough to make meaningful
experiments with existential FORBAC-formulas. In those cases, we marked
the corresponding entry in Table 3.1 with “NA”.

Type App1 App2 App3 App4 App5 App6 App7 App8 App9 App10

AI 0,11 4,97 1,56 0,15 0,13 0,12 0,40 0,45 0,31 0,12
AS 0,61 0,63 0,57 0,54 NA 0,75 0,87 0,5 0,49 NA
RE 0,53 0,55 0,43 0,43 0,45 0,47 0,46 0,47 0,47 0,44
RR 0,73 0,47 0,46 0,49 NA 0,58 0,53 0,59 0,49 NA

Table 3.1: Average time (in seconds) needed by Z3 to decide satisfiability
of an existential FORBAC-formula for each application and each property
type. AI: authorization inspection, AS: assignment simplification, RE: role
equivalence, RR: role redundancy.

The fact that we were able to express the main parts of these policies in
FORBAC demonstrates that this policy language can be applied to model
realistic access control policies. Also, the fact that we verified almost all
properties in average in less than 1 second shows that FORBAC can perform
policy analysis with reasonable overhead.

3.6 Related work

RBAC is an access control paradigm that was proposed to make access-
control maintenance more scalable. As organizations defined more complex
and fine-grained access control policies, different extensions of RBAC were
proposed that allowed to specify conditions for assigning roles to users and
permissions to roles.

3.6.1 Frameworks for policy specification and analysis

Some researchers noted that the increasing expressiveness was also making
harder to determine whether the policies were granting access as desired.

50

3.7. Conclusion and future work

Therefore, they proposed frameworks that not only allowed to specify poli-
cies, but also to analyze and verify properties of those policies [107, 10].
Their research focused on generic languages for policy specification. So
those frameworks can specify RBAC and ABAC policies and verify standard
properties against such policies.

The genericity of such frameworks makes them unable to specify complex
policies like FORBAC policies. For example, Margrave, one of such frame-
works, cannot specify arithmetic constraints and, therefore, cannot specify
policies like “Alice is granted permission p if her clearance level is greater
than p’s clearance level”. These frameworks are also unable to verify some
natural properties that arise when analyzing FORBAC policies. Also, for
some of these frameworks (e.g., [10]), the language for specifying policies
and properties is so rich that Diophantine equations can be expressed within
their policies, which yields an unnecessarily high computational complexity
for policy analysis.

In comparison of the frameworks above, FORBAC guarantees that deciding
satisfiability of existential FORBAC-formulas is in NP and we show that
many relevant policy properties can be expressed as existential FORBAC-
formulas. We remark, however, that there are still other relevant properties
that cannot be expressed as existential FORBAC-formulas and that can be
verified by the frameworks we presented above. Some of these properties are
observational equivalence, conflict detection, and change-impact analysis.
This does not mean that we cannot use FORBAC to verify these properties,
as they can still be expressed as first-order logic formulas and analyzed by
an SMT-solver. We can use FORBAC, but we cannot guarantee that the
complexity of verifying them is in NP.

3.7 Conclusion and future work

New extensions for RBAC have been proposed over the past decades in
order to fulfill new expressiveness requirements from different types of or-
ganizations. The added expressiveness to these extensions came at the cost
of higher complexity in policy analysis. To address this issue, we proposed
FORBAC, a framework that strikes a balance between expressiveness and
efficient policy analysis for extensions of RBAC. With a case study, we have
shown that FORBAC can express complex modern policies for extensions of
RBAC. Moreover, the set of existential FORBAC formulas is also powerful
enough to contain relevant policy properties. We also proved that deciding
the satisfiability of an existential FORBAC-formula is in NP and argued why
this is a desirable complexity class for policy analysis.

As future work, we consider extending FORBAC with some popular RBAC
idioms. For example, we intend to incorporate role hierarchies and separation-

51

3. FORBAC: First-order Role-based Access Control

of-duty constraints. Regarding role hierarchies, there is the challenge of
agreeing on when a role instance inherits from another role instance. Some
works have proposed ways to define role hierarchies when roles use at-
tributes [63, 18, 19] but other ways are still possible. In particular, there
is the challenge of how to proceed when the role instances come from role
templates that have different attributes. A first approach would be to let
the parent role instance inherit the attribute values of the child role instance.
Similarly, there is no agreement on how to define separation-of-duty con-
straints in the presence of role instances with attribute values.

We also consider defining an extension of the FORBAC language that al-
lows us to express other popular policy analysis properties like “conflict”
and “change-impact analysis” [54]. We conjecture that the problem of veri-
fying these properties in that extension would belong to a complexity class
in the lower echelons of the polynomial-time hierarchy, as these verification
problems can be cast as satisfiability problems for first-order formulas with
fixed quantified alternation. If this is true, then this would mean that in con-
trast to the rapid increase of expressive power of RBAC extensions during
the last decades, the complexity of policy verification of these extensions
has actually remained in a limited complexity class smaller than PSPACE
(unless NP = PSPACE).

52

Chapter 4

Rhapsody: Reliable Apriori Subgroup
Discovery

4.1 Introduction

Attribute-based access control (ABAC) is a popular access control paradigm.
ABAC policies are sets of rules that define which permissions are assigned
to which users. Rules in ABAC policies depend on the user’s and the per-
mission’s attribute values. The National Institute of Standards and Technol-
ogy (NIST) issued in 2014 a special publication recommending ABAC over
role-based access control (RBAC) and access control matrices [68]. Gartner
Inc. estimates that by 2020 roughly 70% of all businesses will use ABAC to
protect critical assets [105, 86].

4.1.1 Problem context

The specification and maintenance of ABAC policies brings new challenges.
Manually migrating to ABAC is more difficult than migrating to RBAC,
which is already time-consuming and cumbersome [68]. Moreover, even
after specification, an ABAC policy must be maintained and audited, as or-
ganizational changes like mergers and acquisitions can make the policies
convoluted or inaccurate.

An alternative to manually specifying and maintaining an ABAC policy is to
automatically mine ABAC policies from access logs [131, 132, 32, 100]. Since
logs reflect both the implemented access control policies and user behavior
within the organization, mining from logs can help to refactor and simplify
policies that become overly-complex due to organizational changes.

Mining from logs can also help to identify overly permissive rules; that is, rules
in the policy that assign permissions to users who, according to the log, are
not using them. Overly permissive rules violate the principle of least priv-
ilege and enable privilege abuse. Verizon’s 2018 data breach investigation

53

4. Rhapsody: Reliable Apriori Subgroup Discovery

report shows that privilege misuse is a major issue for many companies [51].
Even for healthcare companies, where access to data is critical, Verizon’s
2017 report recommends to ensure that employees in an organization have
access only to the information they need [50].

In this chapter, we examine one aspect of this problem that is essential to
using ABAC policy mining in practice: mining ABAC policies from sparse logs.
We call a log sparse when it contains less than 10% of all possible requests.
Users generally access only those resources they are authorized. As a conse-
quence, real world logs typically contain only a small subset of all possible
access requests. We illustrate this with three real-world logs from different
representative domains, where each of these logs contains less than 10% of
all possible requests and more than 95% of those requests were authorized
by the policy.

This problem setting subsumes other previously considered settings, like
mining from non-sparse logs and mining where permissions are given by
formalisms such as access control matrices.

4.1.2 Limitations of the state-of-the-art

Despite intensive research in this area [133, 103, 29, 112, 37, 71, 80, 84], pre-
vious work has serious limitations.

Sparse logs. When the logs are sparse, some competing approaches [131,
132] cannot mine useful ABAC policies. This is because these approaches
are intended only for mining from access control matrices or from logs con-
taining a large fraction of all possible access requests.

Over-permissiveness. Mining algorithms [84, 80] resort to quality measures
like confidence [4] and weighted relative accuracy [91] to guide the search
and selection of policies. We show in Section 4.5.2 that, for sparse logs, these
measures lead to the mining of overly permissive rules. These are rules in the
policy that authorize a significant number of requests without any evidence
of authorization in the log.

Rule size. Current algorithms mine policies containing unnecessarily large
rules. Succinct rules are desirable from the administrative perspective as
they are easier to audit and maintain.

Cross-validation. When evaluating models learned from logs, the standard
cross-validation method splits the log into a training log and a testing log.
We show that this approach validates policies containing overly permissive
rules, which is undesirable from the security perspective. This happens

54

4.1. Introduction

because the logs reflect expected access requests. Denied access requests are
therefore rare and mostly due to human error, rather than malice. A testing
log does not include a representative set of requests that would be issued by
malicious users. As a result, evaluating a mined policy on such a testing log
validates policies with overly permissive rules.

4.1.3 Our approach

Rhapsody. We introduce a new ABAC mining algorithm that addresses the
first three limitations of the state-of-the-art as follows.

Sparse logs. Rhapsody uses association rule mining [3, 4] to effectively
mine from sparse logs.

No overly permissive rules. Rhapsody avoids mining overly-permissing
rules by using reliability (see Definition 57), a new rule quality measure.
We demonstrate that reliability gives low scores to rules that are overly
permissive or have low confidence (see Observation 1 in Section 4.3.2).
We also show that standard rule quality measures cannot quantify over-
permissiveness.

Rule size. Rhapsody only mines rules that have no shorter equivalent
rule.

Rhapsody is guaranteed to mine all rules that have a reliability above a given
threshold, do not authorize any denied request, and have no shorter equiva-
lent rule (see Theorem 60 in Section 4.4.2). Table 4.1 shows how Rhapsody

improves upon state-of-the-art ABAC mining algorithms.

Algorithm Sparse
logs

No overly
perm. rules

Shortest
rules

Xu & Stoller’s miner [133] 7 3 7

APRIORI-C [80] 3 7 3

APRIORI-SD [84] 3 7 3

Classsification-tree [117] 3 3 7

CN2 [37] 3 3 7

Rhapsody 3 3 3

Table 4.1: State-of-the-art ABAC mining algorithms.

Universal cross-validation. We present an alternative to cross-validation
for evaluating ABAC mining algorithms. In contrast to standard cross-
validation, universal cross-validation evaluates mined policies with requests

55

4. Rhapsody: Reliable Apriori Subgroup Discovery

not occurring in the log. In this way, universal cross-validation improves the
quality of the policies mined by any ABAC mining algorithm, as it rejects
those containing overly permissive rules.

4.1.4 Case studies and evaluation

We experimentally compare Rhapsody with other methods for mining ABAC
policies from logs. Our experimental evaluation is the most comprehensive
to date in access control mining. We use logs from a large Swiss univer-
sity (ETH Zurich) and two logs provided by Amazon [82, 93], where the
last two are available for research purposes. Previous researchers used only
logs from one enterprise, which are not publicly available [103, 59] or just
synthetic data [132, 100].

Our experimental results, presented in Section 4.6.4 and summarized in Ta-
ble 4.1, compare the policies mined by competing approaches according
to standard performance metrics like the F1 score, true positive rate, false
positive rate, and size [111]. They illustrate the four limitations of the state-
of-the-art and demonstrate that Rhapsody and universal cross-validation
overcome them.

Sparse logs. Rhapsody mines policies of higher quality than Xu and Stoller’s
approach [131, 132, 133]. When mining from sparse logs, Xu and Stoller’s
mined policies have true positive rates close to 0%. In contrast, Rhapsody’s
policies attain true positive rates above 80% in most of the cases.

Over-permissiveness. Subgroup-discovery algorithms like APRIORI-SD and
APRIORI-C mine policies containing overly-permissive rules, which yield false
positive rates above 10%. By changing these algorithms’ input parameters,
one can decrease the false positive rate to values close to 0% but at the cost
of true positive rates below 40%. In contrast, Rhapsody’s mined policies
attain false positive rates close to 0% and true positive rates above 80% in
most of the cases.

Rule size. Classification-tree learners [29, 117] and CN2 [37, 108] mine poli-
cies with unnecessarily large rules. For Amazon’s logs, the policies we mined
are at least 40% shorter and in some cases they are even 90% shorter.

Cross-validation. In 80% of the cases, universal cross-validation validates
policies with F1 scores greater than or equal to those from policies validated
by standard cross-validation. In most of the cases, the F1 scores improve by
at least 30%. This holds for any mining algorithm.

56

4.2. The ABAC mining problem

4.1.5 Contributions

In summary, we make the following contributions.

Mining algorithm for sparse logs. We propose Rhapsody, a new ABAC
mining algorithm that, in comparison with previous work, mines policies
from sparse logs that are shorter and generalize better.

Quality measure for over-permissiveness. We introduce reliability, a new
measure that quantifies how overly permissive a policy is. We show that re-
liability only gives high values to policies that are not overly permissive and
show why other standard measures fail to measure over-permissiveness.

Succinctness and correctness. Rhapsody guarantees that if there is a succinct
rule satisfied by a significant number of requests and with a reliability above
a given threshold, then this rule will be mined (see Theorem 60).

Evaluation methodology. We propose universal cross-validation, a new vali-
dation method that, in comparison with cross-validation on logs, validates
policies with substantially higher F1 scores.

Organization. The remainder of this chapter is organized as follows. In Sec-
tion 4.2 we give background on the ABAC mining problem. In Section 4.3
we show how standard rule quality measures give high scores to overly per-
missive rules and we introduce a better measure, reliability. In Section 4.4
we present Rhapsody, a new ABAC mining algorithm. In Section 4.5 we
show how cross-validation on logs validates overly permissive rules and
present universal cross-validation. In Section 4.6 we experimentally com-
pare Rhapsody with other ABAC mining algorithms and compare univer-
sal cross-validation with cross-validation. Finally, in Sections 4.7 and 4.8 we
discuss related work and draw conclusions.

4.2 The ABAC mining problem

We begin by describing the setting for ABAC mining. Afterwards, we for-
malize ABAC’s syntax and semantics and the ABAC mining problem.

4.2.1 Setting

We describe a setting that motivates ABAC mining. Recall from Chapter 2
that organizations define (organizational) security policies expressing which

57

4. Rhapsody: Reliable Apriori Subgroup Discovery

requests should be authorized. For enforcement purposes, the policy ad-
ministrator must specify this as an ABAC policy in a machine-readable way
that can be processed by the organization’s IT systems. We call this the
implemented ABAC policy.

Due to organizational changes or human errors made during the policy’s im-
plementation, mistakes may be introduced in the implemented access con-
trol policy. These mistakes can be classified into two types: incorrect autho-
rizations (i.e., requests authorized by the implemented policy but not by the
organizational security policy) or incorrect denials (i.e., requests authorized
by the organizational security policy but not by the implemented policy).

Incorrect authorizations are the hardest to detect and the most problematic
because they may be used for nefarious purposes, e.g., to read confidential
data, escalate privileges, and in general to attack systems. In contrast, in-
correct denials are usually not so problematic from the security perspective;
when users discover that valid requests are not authorized, they report them
to the policy administrator, who must then manually add exceptions to the
implemented policy. However, such manual changes are time-consuming
and adding exceptions results in a convoluted policy.

4.2.2 Illustrative example

Figure 4.1 illustrates an example that helps to illustrate the concepts we
introduce in this chapter. Figure 4.1a describes an organization with 48 users,
one permission, and an access log. Each 3, 7, and denotes a request. Since
there is only one permission, we can identify each request with the user who
issues it. The ticks 3 and crosses 7 denote logged requests (corresponding to
users) that have been authorized and denied, respectively. The rectangular
marks denote users who have not requested the permission yet. Users
have two attributes: Country and Job. Country can take the values “US′′ and
“FR′′ whereas Job can take the values “E′′, “M′′, “S′′, and “T′′ (they stand for
Engineer, Manager, Secretary, and Technician, respectively).

Figure 4.1b describes the same organization and the same log from Fig-
ure 4.1a, but with the organizational security policy, described by the shaded
rectangles. This security policy encloses all requests that should be autho-
rized. According to this policy, all engineers, secretaries, and French man-
agers should be authorized.

Figure 4.1c describes the actual implemented ABAC policy, represented with
dotted rectangles, which authorizes all French users and four US-based engi-
neers. Observe that this policy incorrectly authorizes all French technicians
and incorrectly denies requests from US-based secretaries and some US-
based engineers. The four authorized US-based engineers represent users

58

4.2. The ABAC mining problem

(a) An organization with an
access log.

(b) Organizational security
policy.

(c) Implemented policy. (d) Mined policy.

Figure 4.1: An illustrative example for ABAC mining. All four figures show
the same organization and the same access log. Each 3, 7, and denotes
a request (i.e., user). The ticks 3 and crosses 7 denote logged requests that
have been authorized and denied, respectively. The tiny rectangles denote
users who have not requested the permission yet. ©2018, IEEE. Reprinted
with permission.

59

4. Rhapsody: Reliable Apriori Subgroup Discovery

who were initially denied authorization, reported these incorrect denials to
the administrator, and were later added as exceptions to the policy.

Our goal is to propose an ABAC mining algorithm that, given a log of requests,
mines ABAC rules that identify patterns among the authorized requests.
Our algorithm, Rhapsody, would mine the rules given by the ovals in Fig-
ure 4.1d. Observe that Rhapsody’s mined policy does not authorize US-
based secretaries. We argue why this is the preferred policy in Section 4.5.1.

4.2.3 Objectives of ABAC mining

We now recall the objectives of policy mining, from the perspective of ABAC.

Generalization. The mining algorithm can simply overfit the log and mine
a policy that authorizes precisely the authorized requests in the log and
nothing else. This policy is not useful as it does not help to explain what
is missing in the implemented policy. For this reason, a mining algorithm
should return policies that generalize well; that is, the policies also authorize
non-logged requests for which a significant number of similar requests have
been authorized. A standard method for evaluating how well a mined policy
generalizes is cross-validation [60], which we discuss in Section 4.5.

Precision. The algorithm should not mine policies authorizing sets of re-
quests for which the log offers no evidence, like the rule authorizing all
French technicians in Figure 4.1c. For the case of French technicians, the
algorithm should conservatively risk an incorrect denial rather than an in-
correct authorization, as the latter is harder to detect and more security
critical. The absence of these requests in the log shows that these requests
are infrequent, so the work required by the policy administrator would be
low in case some of these requests are incorrectly denied.

Succinctness. The mined rules are used by policy administrators to cor-
rect the implemented policy. Therefore, the mined rules should be succinct,
so that administrators can easily understand them. For example, if a rule
states that “all Italian programmers are authorized” and we know that all
programmers are Italian, then a better rule would be “all programmers are
authorized.”

4.2.4 ABAC syntax and semantics

ABAC policies are logical formulas expressing (binary) relationships be-
tween users and permissions. They were defined in Section 2.3.2 in a re-
stricted fragment of many-sorted first-order logic.

60

4.2. The ABAC mining problem

Definition 51 Any unary function symbol f with domain USERS or PERMS
is an attribute. If the domain is USERS, we call f a user attribute; otherwise,
we call f a permission attribute. �

For the rest of this chapter, we fix a structure K = (S, I) and let U =
USERSS and P = PERMSS. Whenever we say “policy” or “rule, we mean
an ABAC policy or an ABAC rule, respectively. Recall that, in the context of
ABAC policies, we refer to atomic formulas as atoms. Recall also that a rule
is any conjunction of atoms and that policies are disjunctions of rules.

Definition 52 Let K = (S, I) be a structure. We call a pair in U× P a request.
For a user attribute f and u ∈ U, the value f I(u) is called u’s attribute value
for f . For a permission attribute f and p ∈ P, the value f I(p) is called p’s
attribute value for f . Let π (u, p) = r1 (u, p) ∨ . . . ∨ rk (u, p) be a policy. A
rule r (u, p) = α1 (u, p) ∧ . . . ∧ α` (u, p) authorizes or covers a request (u, p) if
K, σ(u,p) � r (u, p), where σ(u,p) is the substitution mapping u and p to u and
p, respectively. A policy π authorizes a request (u, p) if K, σ(u,p) � π (u, p);
that is, if some rule in π authorizes it. For a rule r and a set S ⊆ U × P, we
let JrKS be the set of requests in S authorized by r. �

For convenience, we also sometimes treat a policy π = r1 ∨ . . . ∨ rk as
a set π = {r1, . . . , rk} of rules. Similarly, we sometimes treat a rule r =
α1 ∧ . . . ∧ α` as a set r = {α1, . . . , α`} of atoms.

4.2.5 ABAC mining

We now formally define the ABAC mining problem. We start by defining
an ABAC instance as a structure describing the set of users, the set of per-
missions, and the set of requests that have been logged so far in an access
control system.

Definition 53 (ABAC instance) An ABAC instance is a tuple (U, P, A, D)
where U and P are sets representing all users and permissions in an or-
ganization, A and D are disjoint subsets of U× P and they denote the set of
authorized and denied requests, respectively. The log of the instance is the
set A ∪ D. �

In the ABAC mining problem, we are given as input an ABAC instance (U, P, A, D)
and the objective is to find a precise ABAC policy of minimal size that general-
izes well. The policy’s size is measured as described in Definition 15. To mea-
sure the precision and how well the policy generalizes, we use universal cross-
validation, a new approach to cross-validation, introduced in Section 4.5. Al-
gorithms intended to solve this problem are called ABAC mining algorithms.

61

4. Rhapsody: Reliable Apriori Subgroup Discovery

4.3 Quantifying over-permissiveness

Most ABAC mining algorithms work by computing a set of candidate rules
and selecting those that have a high score according to some rule quality
measure. State-of-the-art quality measures depend only on the confidence of
the rule (the ratio of authorized requests covered by the rule to the total
requests covered by the rule). As we shall see, this is insufficient and these
measures may give high scores to rules that we denote as overly permissive:
rules that authorize significant sets of requests with insufficient evidence
from the log. Since these rules are undesirable, we propose a new quality
measure for rule selection called reliability. We prove that reliability gives
a high value to a rule iff it has a high confidence and, in addition, it is not
overly permissive (see Observation 1).

As a motivating example, consider the ABAC instance depicted in Figure 4.1a.
From our discussion in Section 4.2.3, an ABAC mining algorithm should
mine the rule Job(u) = “E′′, but not the rule Country(u) = “FR′′. The log
shows that at least half of the engineers have requested access and been au-
thorized. Since users with the same attribute values generally perform the
same functions in an organization, they should also have the same permis-
sions. Therefore, Job(u) = “E′′ should be mined. In contrast, regarding the
rule Country(u) = “FR′′, although most of the French users have been au-
thorized, none of the French technicians have been authorized. There is no
evidence in the log yet to conclude that all French technicians should be au-
thorized. Therefore, Country(u) = “FR′′, should not be mined at this point.

Surprisingly, as we show next, current measures give a higher value to
Country(u) = “FR′′ than to Job(u) = “E′′. Moreover, there are mining algo-
rithms like APRIORI-SD [84] and APRIORI-C [80] that, when given as input
the ABAC instance of Figure 4.1a, mine the rule Country(u) = “FR′′. They
mine this rule even when all French technicians are marked as denied in the log.

4.3.1 Over-permissiveness

We start with some definitions. Recall that, for an ABAC instance (U, P, A, D),
a subset S ⊆ U × P, and a rule r, the set JrKS consists of all requests in S
satisfying r.

Definition 54 (Confidence [4]) Let (U, P, A, D) be an ABAC instance. The
confidence of a rule r is

Conf (r) =
|JrKA|
|JrKU×P|

. (4.1)

In the case where |JrKU×P| = 0, we set Conf (r) = 0. �

Previous mining algorithms used confidence to measure a rule’s quality [3,
4, 84, 80]. If a rule’s confidence is high, then a large fraction of the requests

62

4.3. Quantifying over-permissiveness

covered by the rule has been authorized. According to these algorithms,
a high confidence indicates that all the other requests covered by the rule
should also be authorized.

In Figure 4.1a, the rules Country(u) = “FR′′ and Job(u) = “E′′ have confi-
dence 0.75 and 0.67, respectively.

Definition 55 For a rule r, we call a refinement of r any rule of the form r ∧ r′,
for some rule r′. �

A rule’s refinement identifies subsets covered by the rule. We call two refine-
ments r ∧ r′ and r ∧ r′′ semantically equivalent if Jr ∧ r′KU×P = Jr ∧ r′′KU×P;
otherwise, we call them semantically different. Since we assume only signa-
tures with finitely many symbols and U and P can be assumed to be finite,
a rule has only finitely many semantically different refinements.

Two refinements of the rule Country(u) = “FR′′ are Country(u) = “FR′′ ∧
Job(u) = “E′′ and Country(u) = “FR′′ ∧ Job(u) = “T′′. These refinements
have confidence 1 and 0, respectively.

Although Country(u) = “FR′′ has a high confidence, a good ABAC min-
ing algorithm should not mine this rule; it authorizes all French techni-
cians, but none of them has even requested the permission. More precisely,
Country(u) = “FR′′ has the refinement Country(u) = “FR′′ ∧ Job(u) = “T′′

covering a significant set of requests, but with confidence 0. To describe
these kind of rules, we introduce the following concept.

A rule is overly permissive if one of its refinements covers a significant set of
requests but has low confidence.

An overly permissive rule goes against the principle of least privilege and
should be replaced with rules that avoid the low-confidence refinement. In
the case of Figure 4.1a, a policy containing the rule Country(u) = “FR′′

should have instead the rules Country(u) = “FR′′ ∧ Job(u) = “E′′, Country(u) =
“FR′′ ∧ Job(u) = “M′′, and Country(u) = “FR′′ ∧ Job(u) = “S′′.

To formally define over-permissiveness, we must agree on when a set of
requests is significant and when a refinement has low confidence. These
notions are not absolute and they depend on the ABAC instance. Hence,
we let the policy administrator specify parameters T and K, which define
when a set of requests is significant enough and when a refinement has low
confidence.

Definition 56 Let T ≥ 1 and K ∈ [0, 1]. A rule is overly permissive with respect
to T and K if there is a refinement r ∧ r′ of r with |Jr ∧ r′KU×P| ≥ T and
Conf (r ∧ r′) < K. �

63

4. Rhapsody: Reliable Apriori Subgroup Discovery

The values for T and K must be given as input to Rhapsody, so that Rhap-
sody can decide when a rule is overly permissive. We omit them when they
are clear from the context.

In our experiments in Section 4.6 we found that, for an ABAC instance
(U, P, A, D), a good value for K is around |A| / |U × P|. Very high values are
too harsh and many promising rules would be regarded as overly permis-
sive. In a sparse log, there are many requests that have not been evaluated
yet, so a refinement rarely has very high confidence. Analogously, very low
values are too lenient and refinements with low confidence would not be
regarded as overly permissive.

Regarding good values for T, one could argue that, in general, the best is 1,
because this ensures that all refinements are considered. However, we are
interested only in refinements that cover a significant number of requests. In
ABAC instances with thousands of users and permissions and sparse logs,
one can easily find refinements that cover 1 or 2 requests with confidence
0. Setting T = 1 could, therefore, unfairly classify promising rules as overly
permissive. In general, the lower T is, the more likely it is for a rule to be
overly permissive as more refinements are considered.

We now discuss suitable values for T and K for Figure 4.1a. The smallest
refinement here has size 4, so we can let T = 4 to ensure that all significant
refinements are considered when evaluating if a rule is overly permissive.
For K, we can use |A|

|U×P| ≈ 0.3. If a refinement has a confidence below 0.3,
then we cannot be convinced that all requests in that refinement should be
authorized. We therefore fix T = 4 and K = 0.3 for this ABAC instance.

With the above choice of T and K, the rule Country(u) = “FR′′ is overly
permissive because one of its refinements, namely Country(u) = “FR′′ ∧
Job(u) = “T′′, covers 4 requests but has confidence 0. In contrast, the rule
Job(u) = “E′′ is not overly permissive, since its two refinements have confi-
dence above 0.3.

4.3.2 Reliability

Table 4.2 illustrates rule quality measures used by state-of-the-art mining al-
gorithms. We can see that all of them depend just on the confidence of the
rule, the total requests, and the total authorized requests. One can easily ver-
ify that the value of these measures is high whenever the confidence is high.

Despite extensive research on these measures, none of them is able to quantify
both confidence and over-permissiveness. For example, in Figure 4.1a, all mea-
sures give a value to Country(u) = “FR′′ that is higher than the value given
to Job(u) = “E′′. However, as we discussed above, Country(u) = “FR′′ is
overly permissive and Job(u) = “E′′ is not. More generally, for any measure

64

4.3. Quantifying over-permissiveness

Quality measure Formula

Confidence [4] Conf (r) = |JrKA|
|JrKU×P|

Likelihood
ratio
statistic

[37]
2Supp(r)Conf (r) log

(
Conf(r)(
|A|
|U×P|

)
)
+

2Supp(r) (1− Conf (r)) log

(
1−Conf(r)(
1− |A|
|U×P|

)
)

Entropy [119]
−Conf (r) log (Conf (r))−
(1− Conf (r)) log (1− Conf (r))

WRAcc [91] Supp(r)
|U×P|

(
Conf (r)− |A|

|U×P|

)
Gini index [29] −Conf (r) (1− Conf (r))

Table 4.2: Quality measures proposed for rule mining. Here, Supp(r) =
|JrKU×P|. All measures depend on Conf (r), Supp(r), |A|, and |U × P|.

and any choice of T and K, there are scenarios where the measure gives high
values to overly permissive rules.

To overcome these limitations, we propose reliability, a measure that quan-
tifies not only the confidence of a rule, but also the confidence of all its
significant refinements.

Definition 57 (Reliability) Let (U, P, A, D) be an ABAC instance. For T ≥ 1,
the T-reliability of a rule r is

RelT(r) = min
r′∈FT(r)

Conf
(
r ∧ r′

)
, (4.2)

where FT(r) = {r′ : |Jr ∧ r′KU×P| ≥ T}. In the degenerate case of FT(r) = ∅,
define RelT(r) = Conf (r). �

The parameter T corresponds to the same parameter T in the definition
of over-permissiveness. The following observation, which is proven in Ap-
pendix B.2, gives the connection between reliability and over-permissiveness.

Observation 1 Let T ≥ 1, K ∈ [0, 1], and r be a rule. RelT(r) ≥ K iff
Conf (r) ≥ K and r is not overly permissive with respect to T and K.

We compute the 4-reliability for Country(u) = “FR′′ and Job(u) = “E′′ for

65

4. Rhapsody: Reliable Apriori Subgroup Discovery

the ABAC instance of Figure 4.1a.

Rel4(Country(u) = “FR′′)

= min

Conf
(
Country(u) = “FR′′

)
,

Conf
(
Country(u) = “FR′′ ∧ Job(u) = “E′′

)
,

Conf
(
Country(u) = “FR′′ ∧ Job(u) = “M′′

)
,

Conf
(
Country(u) = “FR′′ ∧ Job(u) = “S′′

)
,

Conf
(
Country(u) = “FR′′ ∧ Job(u) = “T′′

)

= min{0.75, 1.0, 1.0, 1.0, 0.0} = 0.0.

(4.3)

Rel4(Job(u) = “E′′)

= min

Conf (Job(u) = “E′′) ,

Conf
(
Job(u) = “E′′ ∧ Country(u) = “FR′′

)
,

Conf
(
Job(u) = “E′′ ∧ Country(u) = “US′′

)

= min{0.67, 1.0, 0.5} = 0.5.

(4.4)

For any measure in Table 4.2, Country(u) = “FR′′ gets a higher score than
Job(u) = “E′′, despite Country(u) = “FR′′ being overly permissive. However,
Rel4(Country(u) = “FR′′) < Rel4(Job(u) = “E′′), as we have shown above.

The previous example and Observation 1 show that reliability achieves what
other measures could not: it gives a high score to precisely those rules that
have a high confidence and are not overly permissive.

4.4 Rhapsody

We now present Rhapsody, our ABAC mining algorithm. Rhapsody builds
upon the algorithm APRIORI-SD [84]. We start with a brief overview of how
APRIORI-SD can be used for ABAC mining.

4.4.1 APRIORI-SD

APRIORI-SD receives as input two parameters T′ and K′ and operates in
three stages. We just summarize the main idea and refer the reader to the
original paper [84].

1. Compute a set FreqRules of rules, such that r ∈ FreqRules iff r covers at
least T′ requests.

2. Compute a subset ConfRules ⊆ FreqRules, such that r ∈ ConfRules iff
Conf (r) ≥ K′.

66

4.4. Rhapsody

3. Compute a subset W ⊆ ConfRules by iteratively selecting from ConfRules
the rule with highest weighted relative accuracy (WRAcc on Table 4.2),
until W covers all authorized requests.

Although APRIORI-SD mines policies that generalize well, our experiments
confirmed that it also mines overly permissive rules. APRIORI-SD uses the
WRAcc measure to guide rule selection, which, as discussed in Section 4.5.2,
may give high values to overly permissive rules. For example, when given
T′ = 4, K′ = 0.5, and the ABAC instance of Figure 4.1a, APRIORI-SD out-
puts the overly-permissive rule Country(u) = “FR′′.

4.4.2 Rhapsody algorithm

Rhapsody builds on APRIORI-SD by replacing its last two stages with two
new stages that prevent the mining of overly permissive or unnecessarily
large rules. Rhapsody takes as input an ABAC instance (U, P, A, D), T ≥ 1,
and K ∈ [0, 1]. Recall that T and K are the input parameters defining when
a rule is overly permissive.

Rhapsody’s three stages are as follows.

1. Compute the set FreqRules, such that r ∈ FreqRules iff r covers at least
T requests.

2. Compute the subset RelRules ⊆ FreqRules of rules whose T-reliability
is at least K and that do not cover a denied request.

3. Remove from RelRules all rules that have an equivalent shorter (i.e.,
smaller size) rule in RelRules and output the remaining rules.

We explain each stage in detail.

Stage 1 (Algorithm 1)

Compute the following:

• A set FreqRules = {r : |JrKU×P| ≥ T}.

• A function nU×P : FreqRules→N, such that nU×P(r) = |JrKU×P|.

• A function nA : FreqRules→N, such that nA(r) = |JrKA|.

To compute FreqRules and nU×P, Rhapsody uses the APRIORI algorithm [3,
4] (not to be confused with APRIORI-SD). We give a brief overview of
APRIORI and explain how Rhapsody uses it.

For T′ > 0 and F a family of sets, we say that a set C is T′-frequent in
F if |{S ∈ F : C ⊆ S}| ≥ T′. APRIORI receives a family F of sets and a
threshold T′ and outputs

67

4. Rhapsody: Reliable Apriori Subgroup Discovery

(i) all T′-frequent sets in F and

(ii) a function nF mapping each T′-frequent set C in F to |{S ∈ F : C ⊆ S}|.

Rhapsody computes FreqRules and nU×P as follows. First, it computes for
each request (u, p) ∈ U × P the set A(u, p) of all atoms that (u, p) satis-
fies (Line 2). Then it invokes APRIORI on {A(u, p) : (u, p) ∈ U × P} with
the threshold T (Line 3). Afterwards, it uses APRIORI’s output to com-
pute the set FreqRules (Line 4). Finally, it computes nA as follows. Initially,
nA(r) = 0, for all r ∈ FreqRules (Lines 5–7). Then, for each (u, p) ∈ A and
each r ∈ FreqRules that covers (u, p), it increments nA(r) by 1 (Lines 8–12).

Algorithm 1 Rhapsody’s first stage

1: function Stage1(U, P, A, T)
2: F ← {A(u, p) : (u, p) ∈ U × P}
3: FreqItemSets, nU×P ← APRIORI(F , T)
4: FreqRules←

{α1 ∧ . . . ∧ αk : {α1, . . . , αk} ∈ FreqItemSets}
5: for r ∈ FreqRules do
6: nA(r)← 0
7: end for
8: for (u, p) ∈ A do
9: for r ∈ FreqRules s. t. r covers (u, p) do

10: nA(r)← nA(r) + 1
11: end for
12: end for
13: return FreqRules, nU×P, nA
14: end function

Stage 2 (Algorithm 2)

This stage computes the set RelRules of all rules in FreqRules whose T-reliability
is at least K and that do not cover a denied request.

Definition 58 For two rules r1 and r2, r2 proves that RelT(r1) < K if

(i) r2 is a refinement of r1,

(ii) |Jr2KU×P| ≥ T, and

(iii) Conf (r2) < K.

�

Observation 2 For a rule r1, if a rule proves that RelT(r1) < K, then r1’s
T-reliability is less than K.

68

4.4. Rhapsody

In this stage, Rhapsody computes from FreqRules two subsets: UnrelRules
and CoversDenied. A rule r1 ∈ FreqRules is added to UnrelRules if some rule
in FreqRules proves that RelT(r1) < K. The rule r1 is added to CoversDenied if
it covers a denied request. Afterwards, Rhapsody computes the set RelRules =
FreqRules \ (UnrelRules∪ CoversDenied).

Algorithm 2 Rhapsody’s second stage

1: function Stage2(FreqRules, nU×P, nA, T, K)
2: UnrelRules← ∅
3: CoversDenied← ∅
4: for r1, r2 ∈ FreqRules do
5: if r2 proves that RelT(r1) < K then
6: UnrelRules← UnrelRules∪ {r1}
7: end if
8: if r1 covers a denied request then
9: CoversDenied← CoversDenied∪ {r1}

10: end if
11: end for
12: RelRules← FreqRules \ (UnrelRules∪ CoversDenied)
13: return RelRules
14: end function

Stage 3 (Algorithm 3)

This stage removes redundant rules from RelRules and outputs the result.

Definition 59 A rule r1 is equivalent to a rule r2 if Jr1KU×P = Jr2KU×P. �

Observation 3 Two rules r1, r2 ∈ RelRules are equivalent iff r1 ∧ r2 ∈
FreqRules and nU×P(r1) = nU×P(r2) = nU×P(r1 ∧ r2).

In this final stage, Rhapsody computes a set Subsumed of redundant rules
from the set RelRules. For this, each pair of rules r1, r2 ∈ RelRules is ana-
lyzed. If r2 is both shorter than and equivalent to r1, then r1 is inserted into
Subsumed. Then Rhapsody computes ShortRules = RelRules \ Subsumed.

Rhapsody’s parameters. Rhapsody receives as input two parameters T and
K, which guide the selection of mined rules. The values for these param-
eters depend on the ABAC instance and affect how well the mined policy
generalizes. To find the best values, we recommend evaluating Rhapsody

as described in Section 4.5.3 with different values and then choosing those
values for which Rhapsody mines the policy that generalizes best. In our ex-

69

4. Rhapsody: Reliable Apriori Subgroup Discovery

Algorithm 3 Rhapsody’s third stage

1: function Stage3(RelRules, nU×P, nA, FreqRules)
2: Subsumed← ∅
3: for r1, r2 ∈ RelRules do
4: if r1 and r2 are equivalent and
5: r2 is shorter than r1 then
6: Subsumed← Subsumed∪ {r1}
7: end if
8: end for
9: ShortRules← RelRules \ Subsumed

10: return ShortRules
11: end function

periments, the best values for T and K are respectively around 0.01 ∗ |U × P|
and |A| / |U × P|.

Rhapsody’s performance. The time complexity of Rhapsody’s first stage
is determined by APRIORI’s time complexity, which is O(|U × P| ∗ L) [4],
where L a bound on the maximum number of semantically different rules
that a request may satisfy. Observe that we assume only signatures with
finitely many symbols and U and P are assumed to be finite, so L is al-
ways finite. Since Rhapsody’s second and third stage’s time complexity is
quadratic in |FreqRules| ∗ L. In the worst case, |FreqRules| is O (|U × P| ∗ L).
We conclude then that Rhapsody’s time complexity is O(|U × P|2 ∗ L4).

Note that L grows exponentially in the number of attributes, so Rhapsody

cannot mine logs with many attributes. Fortunately, in access control scenar-
ios, the number of attributes is usually small, namely less than 20 [102]. Even
for Amazon’s logs, which are the largest logs in our case studies, the num-
ber of attributes is less than 15 [82, 93]. This allows Rhapsody to mine from
any of the ABAC instances in our experiments within 24 hours. Moreover,
there already exists feature selection techniques for mining access control poli-
cies [59], where one can extract a small subset of attributes that are relevant
for deciding authorization before executing Rhapsody.

Finally, note that an ABAC mining algorithm does not need to mine poli-
cies in real time and organizations specify their access control policies only
infrequently. Since the implemented policy is security critical, an offline al-
gorithm providing guarantees is preferable to an online algorithm providing
overly-permissive or unnecessarily long rules.

Policy simplification. After executing Rhapsody on (U, P, A, D), it is still
possible to prune redundant rules from π by keeping only a small subset

70

4.5. Evaluating generalization

that covers all requests covered by π. In our experiments, we found that the
best way to build this subset is using APRIORI-SD’s last stage. This stage
iteratively selects the rule with highest weighted relative accuracy (WRAcc
in Table 4.2) from π until all selected rules cover A. Algorithm 4 gives the
details of APRIORI-SD’s last stage applied to our setting.

Algorithm 4 Policy simplification

1: function simplify(π, U, P, A)
2: uReqs← U × P
3: uLog← A
4: simpPolicy← ∅
5: while uLog 6= ∅ and π 6= ∅ do
6: r ← argmaxr′{WRAcc(r′) : r′ ∈ π}
7: uReqs← uReqs \ {(u, p) : r covers (u, p)}
8: uLog← uLog \ {(u, p) : r covers (u, p)}
9: π ← π \ {r}

10: simpPolicy← simpPolicy∪ {r}
11: end while
12: return simpPolicy
13: end function

Correctness. The following theorem, whose proof is given in Appendix B.2,
establishes Rhapsody’s main property: Rhapsody mines exactly those rules
that do not cover a denied request, have a high reliability, and are shorter
than any other equivalent rule.

Theorem 60 A rule r is output by Rhapsody iff

(i) |JrKU×P| ≥ T,

(ii) r covers no denied request,

(iii) RelT(r) ≥ K, and

(iv) there is no rule r′ that is both shorter than and equivalent to r, with
RelT(r′) ≥ K.

4.5 Evaluating generalization

We discuss next two common methods for evaluating the precision and gen-
eralization of models mined from logs. We explain why they are inadequate
and propose a better alternative: universal cross-validation.

71

4. Rhapsody: Reliable Apriori Subgroup Discovery

4.5.1 Limitations of using an organizational security policy for eval-
uation

One evaluation method for ABAC mining algorithms uses only ABAC in-
stances where the organizational security policy is already known. In this
method, a mining algorithm is given the instance as input and the set of re-
quests authorized by the mined policy is compared with the set of requests
authorized by the security policy. For example, a policy mined from the
instance in Figure 4.1a, would be compared with the security policy, which
is described by the light-green shaded rectangles in Figure 4.1b. We explain
next why this is not an adequate approach to evaluate mining algorithms.

In ABAC instances with sparse logs, there are rules covering a significant
number of requests, but none of which occurs in the log. We call these rules
uncertain. In Figure 4.1a, the rules Country(u) = “US′′ ∧ Job(u) = “S′′ and
Country(u) = “FR′′ ∧ Job(u) = “T′′ are uncertain.

Observe that a mining algorithm cannot decide if an uncertain rule is part of
the organizational security policy. Therefore, whenever a mining algorithm
mines an uncertain rule, there is the risk that the rule is not part of the
security policy, and hence, the rule can incorrectly authorize requests. As
discussed in Section 4.2.3, mining algorithms should opt for incorrect denial
in this case. Since the requests covered by the uncertain rule do not occur
in the log, this means that these requests happen infrequently, so the work
required by the policy administrator is low in case some of these requests
are incorrectly denied.

Mining algorithms should mine a rule only if the log provides evidence for
that rule. Therefore, if an algorithm mines an uncertain rule, then it should
be penalized, even when this rule happens to be part of the organizational security
policy, like the rule Country(u) = “US′′ ∧ Job(u) = “S′′ in Figure 4.1b.

Summarizing, the approach of evaluating mined policies using the organiza-
tional security policy is inadequate as it may not penalize algorithms mining
uncertain rules. In contrast, universal cross-validation, which we present in
Section 4.5.3, uses metrics that penalize algorithms mining uncertain rules.

4.5.2 Limitations of using cross-validation on logs

A standard method for evaluating the precision and the generalization of
models mined from logs is cross-validation [47, 135, 42]. In its simplest
form, cross-validation splits the log into a training and a testing log. Only
the training log is given to the algorithm. Once the algorithm finishes, the
mined policy is evaluated on the testing log using performance metrics like
the true positive rate (TPR) and false positive rate (FPR) [111]. The true positive
rate is the fraction of authorized requests in the testing log that are correctly

72

4.5. Evaluating generalization

authorized by the mined policy. The false positive rate is the fraction of de-
nied requests in the testing log that are incorrectly authorized by the mined
policy. Figure 4.2 illustrates cross-validation on logs.

Figure 4.2: Cross-validation on logs. ©2018, IEEE. Reprinted with permis-
sion.

If we use cross-validation to evaluate ABAC mining algorithms, then we
would give only the training log as input to the mining algorithm, and then
we would evaluate the mined policy only on the requests in the testing log. Min-
ing algorithms would not receive in the input requests outside the log and
mined policies would not be evaluated on requests not occurring in the log.

In the context of ABAC mining from sparse logs, cross-validation on logs val-
idates overly permissive rules. To illustrate this, we use the ABAC instance
from Figure 4.1a and the classification-tree learning algorithm (CTA) [29,
117], which is used to train classification trees from labeled data. It is easy
to extract rules from a classification tree explaining how the tree classifies
instances. Hence, CTA is suitable for ABAC mining. We illustrate next what
happens if we use cross-validation on logs in this scenario.

Suppose that we split the log into a training and a testing log, as shown in
Figure 4.2. If we use CTA on the training log, then we obtain the policy π =
{Country(u) = “FR′′, Job(u) = “E′′}, which correctly authorizes and denies
all requests in the testing log. Since no French technician has requested
access yet, it seems like π grants and denies access perfectly. However, π
contains the rule Country(u) = “FR′′ and, as discussed in Section 4.5.2, this
rule is questionable, as it authorizes all French technicians with no evidence
from the log. Cross-validation does not evaluate π on those requests because
the log does not contain requests from French technicians.

The problem of using cross-validation on logs is that it does not account for
the precision of the mined policy. Precision is a standard machine-learning
metric that measures the ratio of authorized requests covered by the policy
to the total number of requests covered by the policy [111]. A mined policy

73

4. Rhapsody: Reliable Apriori Subgroup Discovery

(a) In cross-validation on logs, algorithms are only given as input the log
A∪D of an ABAC instance (U, P, A, D), and therefore they cannot evaluate
the over-permissiveness of the mined rules. Moreover, the testing log does
not include requests outside the original log. As a consequence, algorithms
mining overly permissive rules, like Country(u) = “FR′′, are not penalized.

(b) In universal cross-validation, algorithms are now given as input
(U, P, A, D). Moreover, the testing log is expanded with requests not oc-
curring in the original log and the precision of the mined policy is mea-
sured. With these changes, algorithms mining overly permissive rules, like
Country(u) = “FR′′, are penalized.

Figure 4.3: Cross-validation on logs and universal cross-validation. ©2018,
IEEE. Reprinted with permission.

74

4.5. Evaluating generalization

may correctly authorize all requests in the log, but it may also have a low pre-
cision and authorize an unnecessarily large number of non-logged requests.
A good ABAC mining algorithm should be able to anticipate from the log
which requests are likely to occur in the future that can also be authorized,
but without authorizing requests for which the log gives no evidence.

Although our critique addresses a simple form of cross-validation, it directly
extends to more sophisticated forms of cross-validation, like K-fold cross-
validation and leave-one-out cross-validation [60].

4.5.3 Universal cross-validation

Cross-validation on logs is problematic because it ignores all requests that
are not in the log. Therefore, to validate an ABAC mining algorithm, we
propose to include these ignored requests in the validation process. A good
ABAC mining algorithm should then mine policies that strike a balance
among the following properties:

• Attain a high true positive rate (TPR) by authorizing as many autho-
rized requests in the testing log as possible.

• Attain a low false positive rate (FPR) by authorizing as few denied
requests in the testing log as possible.

• Attain a high precision by authorizing as few requests outside the log
as possible.

Based on these three properties, we present universal cross-validation, a new
method for evaluating ABAC mining algorithms, illustrated in Figure 4.4.
Assume given an ABAC mining algorithm and an ABAC instance (U, P, A, D).
Sample uniformly at random two training sets Tr(A) and Tr(D) from A
and D, respectively. Let Ts(A) = A \ Tr(A) and Ts(D) = D \ Tr(D). Give
(U, P, Tr(A), Tr(D)) as input to the algorithm. Once the algorithm outputs a
policy π, evaluate π’s F1 score and π’s false positive rate as follows:

TPR(π) =
|JπKU×P ∩ Ts(A)|

|Ts(A)| FPR(π) =
|JπKU×P ∩ Ts(D)|

|Ts(D)| (4.5)

Prec(π) =
|JπKU×P ∩ Ts(A)|∣∣∣JπK(U×P) ∩ Tr(A) ∪ Tr(D)

∣∣∣ (4.6)

F1(π) =
2 ∗ TPR(π) ∗ Prec(π)

TPR(π) + Prec(π)
(4.7)

Recall that JπKU×P is the set of requests in U × P authorized by π. The de-
nominator in Prec(π) is the number of requests authorized by π and outside

75

4. Rhapsody: Reliable Apriori Subgroup Discovery

the training sets. We use the F1 score and the FPR to measure how well a
policy generalizes.

Observe that when computing the scores above, all requests have the same
weight. However, the policy administrator can add more weight to requests
for permissions that are more critical than others, so that policies incorrectly
authorizing or denying critical requests are more heavily penalized.

Figure 4.4: Universal cross-validation. ©2018, IEEE. Reprinted with permis-
sion.

Figure 4.3 compares cross-validation on logs with universal cross-validation.
First, the input to the algorithm is not only the log, but also the set of all
possible requests. Second, universal cross-validation enlarges the set over
which algorithms are evaluated. This set now includes a sample from all
unknown requests (see the solid purple area in Figure 4.4).

4.6 Experiments

In this section, we experimentally compare Rhapsody with other ABAC min-
ing algorithms and compare universal cross-validation with standard cross-
validation. The results are the following.

Sparse logs. Previous ABAC mining algorithms generalize poorly when
mining from sparse logs.

Over-permissiveness. Subgroup-discovery algorithms mine overly-permissive
rules.

Rule size. Current machine-learning algorithms mine unnecessarily large
rules.

Cross-validation. Cross-validation finds policies that generalize worse than
those found using universal cross-validation.

Moreover, we show that Rhapsody is the only algorithm that is capable of
mining succinct rules from sparse logs, without mining overly permissive rules.

76

4.6. Experiments

4.6.1 ABAC instances

We use ABAC instances from four case studies for our evaluation. We sum-
marize them briefly and refer to Appendix B.1 for details.

Amazon 1. We built four instances from an access log provided by Amazon
in Kaggle, a platform for predictive modeling competitions [81, 82]. The log
contains more than 12,000 users and 7,000 permissions and is very sparse.
For any permission, less than 7% of all users have requested access.

Amazon 2. We built seven instances from another log provided by Amazon
in the UCI machine learning repository [93]. The log contains more than
36,000 users and 27,000 permissions. For any permission, less than 10% of
all users have requested access.

University. We used a log of students accessing a computer lab at ETH
Zurich. The log contains more than 50,000 users. Less than 1% of the stu-
dents have requested access and less than 5% of them were denied access.
Experiments were approved by ETH’s security administration.

Basic Organization. We generated five simple synthetic instances, where
users and permissions contain only one attribute. All users, except those
with a specific attribute value, are authorized to have any permission. The
logs in these instances contain approximately 50% of all possible requests
and less than 5% of the logged requests are denied.

4.6.2 Algorithms

We compare Rhapsody with the following algorithms.

1 Xu and Stoller’s ABAC miner [132].

2 CN2 [37], an algorithm for learning classification rules. We used the
implementation provided by the Orange data mining library [45].

3 The classification-tree learning algorithm (CTA) provided by the scikit-
learn library [110].

4 APRIORI-SD [84], as described in Section 4.4.

We give an overview of these algorithms in Section 4.7.

4.6.3 Evaluation methodology

For each ABAC mining algorithm and each ABAC instance, we ran cross-
validation on logs five times and then computed the average FPR, average
F1 score, average TPR, and average size of the mined policies. Similarly, we
ran universal cross-validation five times and then computed the average of
the same metrics. In both types of cross-validation, we split the log into

77

4. Rhapsody: Reliable Apriori Subgroup Discovery

a training log and a testing log containing 80% and 20% of the requests,
respectively.

Each mining algorithm has a set of parameters that affect the F1 score, FPR,
TPR, and the size of the mined policy. We evaluated each algorithm with
different values for these parameters. Among all the policies mined by the
algorithm, we selected the one with the highest F1 score, subject to an FPR
< 0.05.

APRIORI-SD and Rhapsody were evaluated on machines with a 2,8 GHz
8-core CPU and 32 GB of RAM. CTA and CN2 were evaluated on machines
with a 3,8 GHz 8-core CPU and 32 GB of RAM. All algorithms were given
a time limit of 24 hours for each instance. CN2 timed out when mining the
instances from Amazon 2 and University. Xu and Stoller’s miner timed out
when mining the instances from University.

4.6.4 Results

Figure 4.5 compares the F1 score of policies selected using cross-validation
on logs with the F1 score of policies selected using universal cross-validation.
In most of the cases, the policy selected by universal cross-validation has an
FPR equal to 0 (not shown in Figure). Figures 4.6a, 4.6b, and 4.7 compare,
respectively, the F1 scores, sizes, and TPRs of the policies mined by each
algorithm on the instances of each case study. The FPR was close to 0 for
almost all mined policies. From these figures, we make four observations.

Cross-validation. In 80% of the cases, the policy selected by universal cross-
validation has an F1 score greater than or equal to the policy selected by
cross-validation on logs. In most of the cases, the improvement is at least
30%. Observe that the improvement holds for any ABAC mining algorithm.

Sparse logs. Xu and Stoller’s ABAC miner generalizes poorly. In most of
the cases, policies mined by their miner attain an F1 score equal to 0. This is
because this algorithm was designed mainly for mining from non-sparse logs,
where a large percentage of all access requests have already been decided. In
contrast, Rhapsody’s F1 score is among the highest, for almost all instances.

Over-permissiveness. APRIORI-SD mines overly permissive rules. Con-
sider the results for the instances of the basic organization in Figure 4.7. The
TPR of the policies mined by APRIORI-SD is below 0.4 whereas the TPR of
the policies mined by Rhaposdy is close to 1. This is because APRIORI-SD
uses the confidence measure to mine rules. In Section 4.3, we explained how
this measure leads to mining policies with overly permissive rules, which

78

4.7. Related work

Figure 4.5: Comparison of F1 score of policies selected using cross-validation
on logs versus F1 score of policies selected using universal cross-validation.
Policies with higher F1 score are better as they are more accurate in deciding
requests outside the log. ©2018, IEEE. Reprinted with permission.

yielded FPRs above 0.1. The only policies mined by APRIORI-SD that at-
tained FPR < 0.05, as we required in Section 4.6.3, attained a TPR < 0.4.

Rule size. CTA and CN2 mine unnecessarily large rules. In the Amazon
1 instances, the policies mined by CN2 have a size at least twice as large
as those mined by Rhapsody and those mined by CTA are 10 times larger
than those mined by Rhapsody. This cannot be fixed by expanding CTA or
CN2 with Rhapsody’s third stage, which searches for each mined rule, the
shortest equivalent rule. This is because these algorithms cannot compute
for each rule the set of equivalent rules.

We conclude that Rhapsody is the only ABAC mining algorithm capable of
mining succinct rules from sparse logs, without mining overly permissive rules.
Competing approaches mine rules that generalize poorly, mine unnecessar-
ily large rules, or mine overly permissive rules.

4.7 Related work

Numerous algorithms have been proposed to mine policies from existing as-
signments of permission to users or from logs recording which users have re-
quired which permissions for their jobs. The approaches taken have been pri-

79

4. Rhapsody: Reliable Apriori Subgroup Discovery

(a) Average F1 score of the policies mined by ABAC mining algorithms.
Policies with a higher F1 score are better as they are more accurate in decid-
ing requests outside the log.

(b) Average sizes of the policies mined by all ABAC mining algorithms.
The sizes are logarithmically scaled. Smaller policies are better, as they are
easier to maintain and audit.

Figure 4.6: F1 score and size of the policies mined by ABAC mining algo-
rithms. ©2018, IEEE. Reprinted with permission.

Figure 4.7: Average TPR of the policies mined by ABAC mining algorithms.
Observe that the policies mined by APRIORI-SD have a TPR below 0.4 for
the basic organization instances, whereas those mined by Rhapsody have a
TPR close to 1. ©2018, IEEE. Reprinted with permission.

80

4.7. Related work

marily oriented towards role-based access control (RBAC), e.g., [101, 59, 103],
and more recently towards ABAC [132, 133, 82]. Moreover, there are ma-
chine learning algorithms that learn models from sets of labeled requests,
e.g. [29, 112, 37, 71, 59, 103]. The models learned by these algorithms gener-
alize well and can be adapted to ABAC mining. We discuss them next.

Xu and Stoller’s ABAC miner. Xu and Stoller have proposed an ABAC
mining algorithm [132, 133] that mines ABAC policies from access control
matrices and logs. Their algorithm considers only the case of logs that con-
tain a large fraction of the authorized requests. In contrast, Rhapsody can
mine succinct policies that generalize well, even from sparse logs.

Rule learning. Rule learning addresses the following problem: Given a set
of requests, where each request is labeled as positive or negative, find a set
of rules that describe the requests labeled as positive. Several algorithms
have been proposed for this, such as CN2 [37] and RIPPER [38]. They all
work iteratively, where each iteration learns one rule at a time. In each iter-
ation, the algorithm learns a rule r by computing a series of rules r0, r1, · · · ,
rk, where r0 = true, ri+1 = ri ∧ αi, for i ≤ k, and rk = r. The atom αi
is chosen in a way that ri+1 maximizes a rule quality measure. After rk is
computed, all requests that satisfy rk are removed and the algorithm starts
learning another rule. This is repeated until all positive requests are covered
or a given termination condition is satisfied.

The main limitation of these algorithms stems from their greedy behavior.
There may be a high-quality rule where each of its atoms has a low qual-
ity, according to the quality measure. These rules will not be mined by the
rule learning algorithm. Rhapsody, in contrast, uses ideas from association
rule mining [3, 4]. This guarantees that if a high-quality rule is very often
satisfied, then Rhapsody will find it, irrespective of the quality of its atoms.
Hence, Rhapsody can discover rules that are ignored by rule learning algo-
rithms and can propose more accurate and more succinct rules.

Classification trees. A classification tree is a function encoding a partition of
a set of labeled requests. Each partition has an associated label. To predict
a value for a new request, the classification tree finds the partition where
the new request belongs and uses the label associated to that partition as
prediction. Algorithms for mining classification trees [29, 112] yield trees
that generalize well. Moreover, one can easily extract rules from these trees.
However, as our experiments demonstrate, these rules are unnecessarily
long. Rhapsody, in contrast, keeps track of all possible ways to specify a
rule and at the end selects the most succinct one.

Random forests and neural networks. Classification trees are prone to over-
fitting because of their low bias and high variance [60]. For this reason,
random forests are recommended. A random forest is a collection of classifi-
cation trees trained over subsamples of the data. The classification decision

81

4. Rhapsody: Reliable Apriori Subgroup Discovery

of a random forests is obtained from the classification decisions of each tree,
usually by a majority vote.

For this reason, we cannot apply the algorithms proposed by the winners
of the Kaggle competition [83] for ABAC mining. Their models involve
mixtures of 15 different models, including classification trees and logistic
models. The competition only measured models according to how well the
models generalized and not the simplicity of the rules proposed. The re-
quirement of mining simple rules makes other techniques like neural net-
works unsuitable for ABAC mining.

Subgroup discovery. Subgroup discovery algorithms mine frequent and
statistically significant rules from a set of labeled requests. These algo-
rithms [11, 92, 84] require as input a threshold T for the number of requests
that must satisfy a rule to be considered as frequent. Moreover, the rules
must be statistically significant: the distribution of the requests’ labels satis-
fying the rule must differ significantly from the distribution of all requests’
labels. These algorithms compute all statistically significant rules that are
satisfied by at least T requests.

All subgroup discovery algorithms use rule quality measures that depend
just on the confidence of the rule. This results in these algorithms mining
overly permissive rules. For example, the subgroup discovery algorithm
APRIORI-SD uses the WRAcc measure for rule selection. As a result, it
mines the overly permissive rule Country(u) = “FR′′ when given as input the
ABAC instance of Figure 4.1a. Our experiments with the basic organization
(Section 4.6.4) also show that APRIORI-SD mines overly permissive rules.
In contrast, Rhapsody uses our new measure, reliability, for rule selection.
Reliability is guaranteed to select rules with high confidence that are not
overly permissive (Theorem 1).

4.8 Conclusion

Mining ABAC policies from logs can identify future access requests that
should be authorized. To get the maximum benefit from this, one should
mine policies before a large fraction of all requests have been decided. When
the log contains limited information, we observed two phenomena. First,
cross-validation on logs is insufficient as it validates policies with overly per-
missive rules. Second, state-of-the-art algorithms mine policies with overly
permissive rules or unnecessarily large rules.

We proposed universal cross-validation as a method for evaluating mined
policies. This method penalizes policies with overly permissive rules but
without causing mining algorithms to overfit logs. We also proposed a
new measure, reliability, that quantifies better than standard measures how
overly permissive a rule is. Based on reliability, we developed Rhapsody,

82

4.8. Conclusion

which mines exactly all rules that cover a large number of requests, have a re-
liability above a given threshold, and have no shorter equivalent rule. When
compared with other ABAC mining algorithms, Rhapsody mines policies
that generalize better and have smaller size.

83

Chapter 5

Unicorn: Universal access-control
policy mining

5.1 Introduction

5.1.1 The problem of designing policy miners

Numerous access control policy languages have been proposed over the
last decades, e.g., RBAC (Role-Based Access Control) [52], ABAC (Attribute-
Based Access Control) [68], XACML (eXtended Access-Control Markup Lan-
guage) [64], and new proposals are continually being developed, e.g., [134,
104, 25, 35, 21]. To facilitate the policy specification and maintenance process,
policy miners have been proposed, e.g., [59, 133, 96, 30, 61, 39, 103, 82].

Designing a policy miner is challenging and requires sophisticated combi-
natorial or machine-learning techniques. Moreover, policy miners are tailor-
made for the specific policy language they were designed for and they are
inflexible in that any modification to the miner’s requirements necessitates
the miner’s redesign and reimplementation. For example, miners that mine
RBAC policies from access control matrices [59] are substantially different
from those that mine RBAC policies from access logs [103]. As evidence for
the difficulty of this task, despite extensive work in policy mining, no policy
miner exists for XACML [64], which is a well-known standard for access con-
trol specification. Therefore, each organization that wishes to benefit from
policy mining faces the challenge of designing a policy miner that fits its
own policy language and its own requirements. This problem, which we
examine in Section 5.2, is summarized with the following question: is there
a more general and more practical method to design policy miners?

85

5. Unicorn: Universal access-control policy mining

5.1.2 Contribution

We propose a radical shift in the way policy miners are built. Rather than de-
signing specialized mining algorithms, one per policy language, we propose
Unicorn, a universal method for building policy miners. Using this method, the
designers of policy miners no longer need to be experts in machine learn-
ing or combinatorial optimization to design effective policy miners. Our
method gives a step-by-step procedure to build a policy miner from just the
policy language and an objective function that measures how well a policy fits
an assignment of permissions to users.

Let Γ be a policy language. We sketch in Figure 5.1 the workflow for design-
ing a policy miner for Γ using Unicorn.

Policy language (Section 5.3) The designer specifies a template formula for
Γ in a fragment L of first-order logic. Template formulas will be explained
in Definition 62.

Objective function (Section 5.4) The designer specifies an objective func-
tion L that measures how well a policy fits a permission assignment.

Probability distribution (Section 5.4) From ϕ and L, we define a proba-
bility distribution P on permission assignments and policies. Recall that a
permission assignment is a relation between the set of users and the set of
permissions. The desired policy miner is a program that receives as input
a permission assignment Auth and aims to compute the most likely policy
conditioned on the given permission assignment; that is, the policy I that
maximizes P (I | Auth).

Approximation distribution (Section 5.5) Since this maximization is in-
tractable, we propose the use of mean-field variational inference [26, 23] to
derive an iterative procedure that computes a distribution q on policies that
approximates P (I | Auth). Computing arg maxI q (I) is much easier than
computing arg maxI P (I | Auth) as it only takes time linear in ϕ’s size.

Policy miner template (Section 5.6) The desired policy miner is then a
procedure that computes and maximizes q.

Using Unicorn, the policy miner designer need not understand variational
inference or the logic behind the computation of q. The designer is only
required to specify a template formula for the policy language, specify the
objective function, and implement Algorithm 5 using Lemma 79. Our exam-
ples show that specifying the template formula in L amounts to a straight-
forward encoding of the policy language’s semantics in first-order logic and

86

5.1. Introduction

Figure 5.1: Workflow for designing a policy miner using Unicorn.

that the implementation of Algorithm 5 requires only basic knowledge of
probability theory.

We emphasize that the Unicorn approach is substantially different from
Rhapsody. Rhapsody is a policy miner whereas Unicorn is a universal
method for building policy miners. In particular, Rhapsody receives as in-
put an ABAC instance and outputs an ABAC policy. In Unicorn, the input
includes a template formula that represents a policy language and the output
is a policy miner. Unicorn requires a change in the way we model policy
languages. In the previous chapters, policies were modeled using formulas
and policy languages were sets of policies. In this chapter, we model policy
languages with formulas and policies in those languages with structures. We
explain this in detail in Section 5.3.

5.1.3 Applications and evaluation

In Section 5.7, we show how Unicorn facilitates the design of miners by
building miners for different policy languages like RBAC, ABAC, and RBAC
with user attributes. Furthermore, in Sections 5.8 and 5.9, we build policy
miners for RBAC with spatio-temporal constraints and an expressive frag-
ment of XACML. For these two languages, no miner existed before.

In Section 5.10, we conduct an extensive experimental evaluation using
datasets from all publicly available real-world case studies on policy mining.
We compare the miners we built with state-of-the-art miners on real-world
as well as synthetic datasets. The true positive rates of the policies mined by
our miners are within 5% of the true positive rates of the policies mined by
the state of the art. For policy languages like XACML or RBAC with spatio-
temporal constraints, the true positive rates are above 75% in all cases and
above 80% in most of them. The false positive rates are always below 5%.
In the case of mining ABAC policies, we mine policies with a substantially
smaller size and higher precision than those mined by the state of the art.
This demonstrates that, using Unicorn, we can build a wide variety of po-
licy miners, including new ones, that are competitive with or even better
than the state of the art.

87

5. Unicorn: Universal access-control policy mining

We examine related work, draw conclusions, and discuss future work in
Sections 5.11 and 5.12.

5.2 The problem of designing policy miners

Status quo: specialized solutions

Numerous policy languages exist for specifying access control policies, which
fulfill different organizational requirements. Moreover, new languages are
continually being proposed. Some of them allow the formulation of new
concepts, like extensions of RBAC that can express temporal and spatial
constraints [113, 34, 90, 125, 31, 6, 41]. Other languages facilitate policy spec-
ification in more specialized settings like distributed systems [64, 126] or
social networks [56].

Policy mining researchers have proposed miners for a variety of policy lan-
guages. Moreover, for some policy languages, multiple miners have been
developed that optimize different objectives. For example, initial RBAC min-
ers mined policies with a minimal number of roles [127, 95, 116, 129, 136].
Subsequent RBAC miners mined policies that are as consistent as possible
with the user-attribute information [103, 57, 130].

The development of policy miners is non-trivial and generally requires ad-
vanced combinatorial and machine-learning algorithms. Recent ABAC min-
ers have also used association rule mining [39] and classification trees [33].
The most effective RBAC miners use deterministic annealing [57] and latent
Dirichlet allocation [103].

The proposed miners are so specialized that it is usually unclear how to ap-
ply them to other policy languages or even to extensions of the languages for
which they were conceived. For example, different extensions of RBAC that
allow the specification of spatio-temporal constraints have been proposed
over the last two decades, e.g., [113, 34, 90, 125, 31, 6, 41]. However, not
a single miner has been proposed for these extensions. Miners have only
recently emerged that can mine RBAC policies with constraints, albeit only
temporal ones [97, 98, 121]. As a result, if an organization wants to use a
specialized policy language, it must invent its own policy miner, which is
challenging and time-consuming.

Alternative: A universal method for building policy miners

To facilitate the development of policy miners, we propose a new method,
universal access control policy mining (Unicorn). With this method, organiza-
tions no longer need to spend substantial effort designing specialized policy
miners for their unique and specific policy languages; they only need to
perform the following tasks (see also Figure 5.1).

88

5.3. A universal policy language

Task 1 Define a template formula ϕ for the organization’s policy language.
We explain later in Section 5.3 what a template formula is.

Task 2 Specify an objective function.

Task 3 Implement the policy miner as indicated by the algorithm template
in Section 5.6.

We formalize these tasks in the next sections.

5.3 A universal policy language

Let Γ be a policy language for which we want to design a policy miner. The
first step is to specify a template formula ϕΓ for Γ. This is a first-order for-
mula that fulfills some conditions that we explain later in Definition 62. We
propose a fragment L of first-order logic that is powerful enough to contain
template formulas for policy languages like RBAC, ABAC, and an expres-
sive fragment of XACML. We show afterwards, using RBAC as an example,
how a policy language Γ can be identified with a template formula ϕΓ ∈ L
and how policies in Γ can be identified with interpretation functions (Defi-
nition 17) that interpret ϕΓ’s symbols. We thereby reduce the problem of
designing a policy miner to designing an algorithm that searches a particu-
lar interpretation function.

5.3.1 Motivating example

The approach taken by Unicorn requires a change in the way we model
policies and policy languages. So far, policies have been modeled as formu-
las built with symbols from some signature and we have modeled policy
languages as sets of policies. Unicorn requires policies to be modeled as
structures and policy languages as template formulas. We illustrate how to
model a simplified version of RBAC as a template formula. We only pro-
vide here an intuition and leave a formal presentation for Section 5.3.4. We
formally define template formulas later in Definition 62.

RBAC policies were defined in Definition 26. Consider the set of RBAC
policies with at most N roles. Assume given a signature Σ′ with two rela-
tion symbols UA and PA of types USERS×ROLES and ROLES×PERMS,
respectively. Observe that for any Σ′-structure K = (S, I) , the tuple

πK =
(

USERSS, ROLESS, PERMSS, UAS, PAS
)

(5.1)

is an RBAC policy, as defined in Section 2.3.1.

89

5. Unicorn: Universal access-control policy mining

Consider now the following formula:

ϕRBAC
N (u, p) ≡

∨
i≤N

(UA (u, ri) ∧ PA (ri, p)) . (5.2)

We show later that ϕRBAC
N is a template formula for the set of RBAC policies

with at most N roles. For the moment, observe that for any Σ’-structure K,
any user u in K, and any p in K, we have the following: πK assigns p to u iff
K, σu,p � ϕRBAC

N (u, p), where σu,p is the substitution mapping u to u and p to
p. That is, ϕRBAC

N (u, p) describes when an RBAC policy assigns a permission
to a user; it holds when the permission represented by p is assigned to a role
that is assigned to the user represented by u.

We see then that every Σ′-structure defines an RBAC policy and ϕRBAC
N de-

scribes the semantics for RBAC policies with at most N roles. Therefore, we
identify ϕRBAC

N with the language of RBAC policies with at most N roles and
any Σ′-structure with an RBAC policy.

Unicorn rephrases the policy mining problem as follows: given a template
formula for a policy language and an objective function, find a structure
(S, I) that minimizes the objective function. In all cases we consider here,
S defines the carrier sets for the sorts and, as we have seen in the previ-
ous chapters, such sets denote sets like the sets of users, permissions, and
integers. Such sets are already known by the organization and need not be
mined. Therefore, the policy mining problem’s goal is to mine an interpreta-
tion function I that minimizes a given objective function.

5.3.2 Language definition

We now define the fragment L of first-order logic that we use to specify
template formulas.

In this chapter, for any signature, we require the organization to specify, for
every relation and function symbol, whether it is rigid or flexible. Rigid sym-
bols are those for which the organization already knows the interpretation
function. Flexible symbols are those for which an interpretation function
must be found using mining. For example, a function that maps each user
to a unique identifier should be modeled with a rigid function symbol, as the
organization is not interested in mining new identifiers. In contrast, when
mining RBAC policies, for example, one should define a flexible relation
symbol to denote the assignment of roles to users, as the organization does
not know this assignment and wants to compute one using mining.

Definition 61 The universal policy language L is the set of all quantifier-free
first-order formulas having at most two free variables u and p of sorts
USERS and PERMS, respectively. �

90

5.3. A universal policy language

In this chapter, we restrict ourselves to finite structures. A structure K =
(S, I) is finite if, for every sort S, SS is finite. As a result, for every function
or relation symbol W, WI is finite. Observe that no structure used in the
previous chapters is finite. For example, in any of those structures, INTI

is always the set of integers, which is not a finite set. However, notice that
organizations never work with the whole set of integers; they work with a
finite range like the set of integers between −263 and 263 − 1. Therefore, we
can assume in this chapter that INTI is a finite subset of integers. We make
similar assumptions for all other sorts.

Let K = (S, I) be a structure. Recall that I is called an interpretation func-
tion and it maps function and relation symbols to function and relations,
respectively. We can see I as the union of two interpretation functions Ir
and I f , where Ir takes as input rigid symbols and I f takes as input flexible
symbols. Recall also that the goal of policy mining for the organization is to
find an interpretation function I f for the flexible symbols that minimizes an
objective function. It does not need to search for S as these function defines
the carrier sets for sorts like USERS and PERMS, which the organization
already knows. It does not need to search for Ir either. Hence, we assume S
and Ir fixed and known to the organization. We also let U = USERSS and
P = PERMSS. As a consequence, we will not distinguish between S and
SS, for any sort S. We underline rigid symbols and, since Ir is fixed, we do
not distinguish between W and WIr .

Recall from Definition 24 that the function I gives rise to a function that
maps each formula ϕ(u, p) ∈ L to a relation ϕI ⊆ USERSS ×PERMSS.

5.3.3 Template formulas

We can now formalize template formulas. We assume that the semantics of
any policy language Γ defines a function assignΓ satisfying the following:

• assignΓ maps every policy π that can be specified with Γ to a relation
assignΓ(π) ⊆ U × P.

• For (u, p) ∈ U × P, (u, p) ∈ assignΓ(π) iff p is assigned to u by π.

For example, in the case of RBAC, assignRBAC maps an RBAC policy (U, P, Ro, Ua, Pa)
to the relation Ua ◦ Pa.

Definition 62 Let Γ be a policy language. A formula ϕ (u, p) ∈ L is a tem-
plate formula for Γ if there exists a functionM fulfilling the following:

• M is a surjective function from the set of all interpretation functions
to the set of all policies that can be specified with Γ.

• For any interpretation function I and any (u, p) ∈ U × P, (u, p) ∈ ϕI

iff (u, p) ∈ assignΓ (M (I)).

91

5. Unicorn: Universal access-control policy mining

�

The first task to build a policy miner using Unicorn is to define a template
formula for the organization’s policy language.

The mapping M shows that there is a correspondence between interpreta-
tions and policies. Although not injective,M guarantees that each policy is
represented by at least one interpretation. Therefore, we can search for an
interpretation instead of a policy. For this reason, for the rest of this chapter,
we identify every formula in L with a policy language and sometimes refer to
interpretation functions as policies. Remember that our modeling of policies
with interpretation functions in this chapter contrasts with our modeling of
policies with formulas in Chapters 3 and 4.

5.3.4 An example: RBAC

We now present a template formula ϕRBAC
N (u, p) ∈ L for the language ΓN

of all RBAC policies with at most N roles. Recall that RBAC policies were
defined in Section 2.3.1.

Template formula definition: Consider a signature with a sort ROLES de-
noting roles and with two (flexible) binary relation symbols UA and PA of
types USERS× ROLES and ROLES× PERMS, respectively. Define the fol-
lowing formula:

ϕRBAC
N (u, p) ≡

∨
i≤N

(UA(u, ri) ∧ PA(ri, p)) . (5.3)

Here, ri, for 1 ≤ i ≤ N, is a rigid constant symbol of sort ROLES (recall that
we underline rigid symbols and denote constant symbols with serif letters).
One could also use flexible constant symbols for roles, but, as we see later,
the policy miner’s complexity increases with the number of flexible symbols.

Correctness proof: We now define a mappingM that proves that ϕRBAC
N is

a template formula for ΓN . For any interpretation function I, let

M (I) =
(

U, P, {r1, . . . , rN}, UAI, PAI
)

. (5.4)

Observe thatM (I) is an RBAC policy. Moreover, for (u, p) ∈ U× P, (u, p) ∈(
ϕRBAC

N
)I iff (u, p) ∈ assignRBAC (πI) (Recall that assignRBAC (πI) = UAI ◦

PAI). It is also easy to prove that I is surjective on the set of all RBAC policies
with at most N roles. Hence, we can identify ϕRBAC

N with the language of all
RBAC policies with at most N roles.

Example 63 To facilitate the understanding of how M works we show an
RBAC policy π and an interpretation function I such thatM (I) = π.

92

5.3. A universal policy language

Let N = 2 and assume that U = {Alice, Bob, Carlos, David} and that P =
{readfile, writefile, createfile}. Let r1 and r2 denote two roles. Consider the
RBAC policy defined by Tables 5.1 and 5.2.

r1 r2

Alice ×
Bob ×

Carlos ×
David ×

Table 5.1: User-
assignment relation

read write create

r1 × ×
r2 ×

Table 5.2: Permission-
assignment relation

We can define an interpretation function I such that M (I) corresponds to
the RBAC policy above. I interprets the relation symbols UA and PA in the
formula ϕRBAC

N (u, p) as follows. For u ∈ U and i ≤ 2, UAI (u, ri) iff (u, ri) is
marked with an × in Table 5.1. Similarly, for p ∈ P and i ≤ 2, PAI (ri, p) iff
(ri, p) is marked with an × in Table 5.2.

�

5.3.5 Another example: simple ABAC

We now present a template formula ϕABAC
N (u, p) ∈ L for the language ΓN of

all simple ABAC policies with exactly N rules. A simple ABAC policy is an
ABAC policy, as in Definition 29, where all atomic formulas are only of the
form f (u) = c or f (p) = c. Here, f is a function symbol and c is a constant
symbol. Afterwards, we show how to change ϕABAC

N (u, p) into a template
formula the language of all simple ABAC policies with at most N rules.

For simplicity, we assume that there are no permission attributes (i.e., the
object associated to the permission has no attributes) and that the user at-
tributes are UAtt1, UAtt2, . . ., UAttM. The presentation can easily be adapted
to the general case where there are also permission attributes. Observe that
we use rigid function symbols to denote the user attributes, as the organiza-
tion knows how to interpret these symbols and is not interested in mining
one.

Consider the following formula ϕABAC
N (u, p):

∨
i≤N

∧
j≤M

(
bij = 1→ UAttj (u) = cij

)
. (5.5)

Here, bij, for i ≤ N and j ≤ M, is a flexible constant symbol of sort BOOL
and cij is a flexible constant symbol of sort STR. The rigid constant symbol

93

5. Unicorn: Universal access-control policy mining

1 : INT represents the value 1. For an interpretation function I, if bI
ij = 1,

then the i-th rule requires the value of UAttj to be equal to cij.

LetM be the mapping that maps an interpretation function I to the follow-
ing simple ABAC policy:

M (I) ≡
∨

i≤N

∧
j≤M
bij=1

UAttj (u) = cIij. (5.6)

It is straightforward to show that M fulfills all conditions of Definition 62.
Therefore, ϕABAC

N (u, p) is a template formula for the language of simple
ABAC policies with exactly N rules.

Example 64 To better understand how M works we show a simple ABAC
policy π and an interpretation function I such thatM (I) = π.

We assume M = 2 and N = 3. That is, there are 2 user attributes and we
consider only simple ABAC policies with exactly three rules. Consider the
following simple ABAC policy:

π =

 UAtt1 (u) = 1 ∨
UAtt2 (u) = 2 ∨

UAtt1 (u) = 11 ∧ UAtt2 (u) = 22

 . (5.7)

We now present an interpretation function I such that M (I) = π. This
function I interprets the symbols in Formula 5.5 as follows:

bI
11 = 1 bI

12 = 0 cI11 = 1 cI12 = 42
bI

21 = 0 bI
22 = 1 cI21 = 42 cI22 = 2

bI
31 = 1 bI

32 = 1 cI31 = 11 cI32 = 22

Observe that cI21 and cI12 can take arbitrary values. Observe also that we
do not need to specify the interpretation for any UAtti, for i ≤ N, as they
are rigid symbols and, hence, we assume that the interpretation of those
symbols has already been fixed by the organization. �

Finally, we redefine ϕABAC
N (u, p) so that it becomes a template formula for

the language of simple ABAC policies with at most N rules. Let

ϕABAC
N (u, p) ≡

∨
i≤N

ψi, (5.8)

where ψi ≡ hi = 1 ∧ ηi and ηi ≡
∧

j≤M

(
bij = 1→ UAttj (u) = cij

)
. Observe

that ηi, for i ≤ N, is the same formula for modeling rules in Formula 5.5.
The only difference between this new definition of ϕABAC

N (u, p) and the one

94

5.4. A probability distribution on permission assignments and policies

in Formula 5.5 is that we introduced the constants h1, h2, . . ., hN . Also, for an
interpretation function I and i ≤ N, if hI

i = 0, then the value of ηI
i does not

affect the value of ψI. Hence, the value of hI
i defines if the rule represented

by ηi is part of the policy or not. In particular, setting hI
i = 1, for all i ≤ N,

yields a policy with N rules and setting hI
i = 0, for all i ≤ N, yields a policy

with no rules.

5.3.6 A remark on signatures

Observe that the designer of a policy miner only needs to specify a template
formula ϕ ∈ L for a policy language. He does not need to specify a signature
as this can be deduced from the symbols occurring in ϕ. Therefore, from
now on, whenever we speak in the context of a formula ϕ ∈ L, we assume
that the underlying signature consists only of those symbols occurring in ϕ.

5.4 A probability distribution on permission assignments
and policies

Let ϕ (u, p) ∈ L be a policy language. To design a policy miner using Uni-
corn one must also specify an objective function L. This is a function takes
two inputs: a permission assignment Auth ⊆ U × P, which is a relation
between U and P indicating what permissions each user has, and a policy
I. An objective function outputs a value in R+ measuring how well ϕI fits
Auth and other policy requirements. We remark that the objective function
must be defined by the policy miner designer.

For illustration, we define the following objective function:

L (Auth, I; ϕ) = ∑
(u,p)∈U×P

∣∣∣Auth(u, p)− ϕI(u, p)
∣∣∣ . (5.9)

Here, we give a value of 1 to the Boolean value true and 0 to the Boolean
value false. Observe that L (Auth, I; ϕ) is the size of the symmetric differ-
ence of the relations Auth and ϕI. Hence, lower values for L (Auth, I; ϕ) are
better. In Section 5.7, we give other examples of objective functions.

The policy miners built with Unicorn are probabilistic. They operate by re-
ceiving as input a permission assignment Auth and then computing a prob-
ability distribution over the set of all policies in a fixed policy language Γ.
We use a Bayesian instead of a frequentist interpretation of the concept of
probability. The probability of a policy I does not measure how often I is
the outcome of an experiment, but rather how strong we believe I to be the
policy that decided the requests in Auth.

95

5. Unicorn: Universal access-control policy mining

We now define a probability distribution P on permission assignments and
policies. We first give an intuition on P’s definition and then formally define
P. For a permission assignment Auth and a policy I, we can see P (Auth, I)
as a quantity telling us how much we believe I to be the organization’s
policy and how much we believe Auth to be the organization’s permission
assignment. P’s definition must satisfy the chain rule of probability theory:

P (Auth, I) = P (I | Auth)P (Auth) . (5.10)

The value P (I | Auth) indicates how much we believe I is the organization’s
policy after we see that Auth is the organization’s permission assignment.
Policy miners receive as input a permission assignment Auth and then com-
pute a policy I∗ that maximizes P (I | Auth). We later see that how P (Auth)
is defined is irrelevant. So we focus only on defining P (I | Auth).

The conditional probability P (I | Auth) is defined as the “most general” dis-
tribution that fulfills the following requirement: for any policy I, the lower
L (Auth, I; ϕ) is, the more likely I is. Following the principle of maximum en-
tropy [85], the most general distribution that achieves this is the following:

P(I | Auth) =
exp (−βL(Auth, I; ϕ))

∑I′ exp (−βL(Auth, I′; ϕ))
, (5.11)

where I′ ranges over all policies. Recall that we consider only finite struc-
tures. Hence, all our carrier sets are finite, so there are only finitely many
policies.

The value β > 0 is a parameter that the policy miner changes during the
search for the most likely policy. The search uses deterministic annealing,
an optimization procedure inspired by simulated annealing [?, 114, ?]. In
our case, it initially sets β to a very low value, so that all policies are equally
likely. Then it gradually decreases β while, at the same time, searching
for the most likely policy. As β decreases, those policies that minimize
L(Auth, I; ϕ) become more likely. In this way, deterministic annealing has
experimentally been shown to escape low-quality local maxima. When β→
∞, only those policies that minimize L(Auth, I; ϕ) have a positive probability
and the search converges to a local maximum.

We now formally define the probability distribution given in Equation 5.11.

Definition 65 For a formula ϕ ∈ L, we define the probability space Pϕ =(
Ω, 2Ω, P

)
as follows.

• Ω contains all pairs (Auth, I), where Auth ⊆ U × P and I is an inter-
pretation function.

• 2Ω is the set of all subsets of Ω. We assume that all carrier sets for all
sorts are finite. Therefore, Ω and 2Ω are finite.

96

5.4. A probability distribution on permission assignments and policies

• For (Auth, I) ∈ Ω, let P (Auth) be any real-valued function on permis-
sion assignments such that P (Auth) ≥ 0 and ∑Auth′ P

(
Auth′

)
= 1. Let

also

P(I | Auth) =
exp (−βL(Auth, I; ϕ))

∑I′ exp
(
−βL(Auth′, I′; ϕ)

) . (5.12)

P (Auth, I) = P(I | Auth)P (Auth) . (5.13)

Finally, for O ∈ 2Ω, let P(O) = ∑(Auth,I)∈O P (Auth, I).

�

We also define the shorthand P (I) = P ({I}) = ∑Auth P (Auth, I).

The theorem below proves that P (I | Auth) is the “most general” distribu-
tion that fulfills the requirement mentioned above. More precisely, P (I | Auth)
is the maximum-entropy probability distribution with a bounded expected
value for L(Auth, I; ϕ) and where the probability of I increases whenever
L(Auth, I; ϕ) decreases [74, 124].

Theorem 66 P (I | Auth) is the probability distribution P on policies that
maximizes P’s entropy and is subject to the following constraints.

• ∑I P (I) L(Auth, I; ϕ) ≤ `, for some fixed bound ` and a fixed Auth.

• If β > 0, then P (I) > P (I′), for any two policies I and I′ with
L(Auth, I; ϕ) < L(Auth, I′; ϕ).

Proof. It suffices to drop the second constraint and then use Lagrange mul-
tipliers to find an optimal distribution P∗. One can verify that P∗ (I) =
P (I | Auth) and that P∗ (I) satisfies the second constraint. �

Example 67 We illustrate the probability distribution defined above for the
language of all RBAC policies with at most N roles, defined in Section 5.3.4.
For simplicity, we fix N = 2 and β = 1 in this example. Assume that U =
{Alice, Bob, Carlos, David} and that P = {read, write, create}. Assume given
two permission assignments Auth1 and Auth2 and two policies I1 and I2 as
shown in Tables 5.9–5.8. Table 5.12 computes the conditional probabilities
P
(
Ij, Authi

)
with i, j ∈ {1, 2}. Observe the following relations:

• L
(
Auth1, I1; ϕRBAC

N
)
< L

(
Auth1, I2; ϕRBAC

N
)
. This is because the permis-

sion assignment induced by the policy I1 resembles more Auth1 than
the permission assigned induced by I2.

• L
(
Auth2, I2; ϕRBAC

N
)
< L

(
Auth2, I1; ϕRBAC

N
)

. The reason for this is anal-
ogous to the previous one.

• P (I1 | Auth1) > P (I2 | Auth1). This is because L
(
Auth1, I1; ϕRBAC

N
)
<

L
(
Auth1, I2; ϕRBAC

N
)

and the second property stated in Theorem 66.

97

5. Unicorn: Universal access-control policy mining

rI1
1 rI1

2

Alice ×
Bob ×

Carlos ×
David ×

Table 5.3: UAI1

rI2
1 rI2

2

Alice ×
Bob ×

Carlos ×
David ×

Table 5.4: UAI2

read write create

rI1
1 × ×

rI1
2 ×

Table 5.5: PAI1

read write create

rI2
1 ×

rI2
2 × ×

Table 5.6: PAI2

read write create

Alice × ×
Bob × ×

Carlos ×
David ×

Table 5.7:
(

ϕRBAC
N

)I1

read write create

Alice ×
Bob ×

Carlos × ×
David × ×

Table 5.8:
(

ϕRBAC
N

)I2

read write create

Alice × ×
Bob × ×

Carlos ×
David × ×

Table 5.9: Auth1

read write create

Alice ×
Bob ×

Carlos ×
David ×

Table 5.10: Auth2

L
(
Auth1, I1; ϕRBAC

N
)
= 1 L

(
Auth2, I2; ϕRBAC

N
)
= 2

L
(
Auth1, I2; ϕRBAC

N
)
= 3 L

(
Auth2, I1; ϕRBAC

N
)
= 4

Table 5.11

P (I1 | Auth1) = exp (−1) /Z1 P (I2 | Auth2) = exp (−2) /Z2
P (I2 | Auth1) = exp (−3) /Z1 P (I1 | Auth2) = exp (−4) /Z2

Table 5.12: Probabilities for the policies and permission assignments de-
picted in Tables 5.9–5.8. Here, Zi = ∑I exp

(
−L

(
Authi, I; ϕRBAC

N
))

. Recall
that we assume β = 1.

98

5.5. Approximating distributions with mean-field variational inference

• P (I2 | Auth2) > P (I1 | Auth2).

�

5.5 Approximating distributions with mean-field varia-
tional inference

The policy miner that is built with Unicorn is an algorithm that receives as
input a permission assignment Auth and computes a policy I that approxi-
mately maximizes P(I | Auth); that is, the most likely policy, conditioned on
the given permission assignment. However, computing this maximizer is in-
tractable. Hence, we use mean-field variational inference [23], a technique that
defines an iterative procedure to approximate P(· | Auth) with a distribu-
tion q (·). It turns out that maximizing q(·) is much easier than maximizing
P(· | Auth). The policy miner is then an algorithm implementing the com-
putation of q and its maximization.

This section has two parts. First, we introduce some random variables that
help to measure the probability that a policy authorizes a particular request
(u, p) ∈ U × P. Afterwards, we present the approximating distribution q.

5.5.1 Random variables

Recall that the sample space Ω of the distribution P from Definition 65 is the
set of all pairs (Auth, I) with Auth a permission assignment and I a policy.

Definition 68 Let X be a random variable mapping (Auth, I) ∈ Ω to I. �

Following standard probability theory, we can understand X as an “un-
known policy” and, for a policy I, the probability statement P (X = I) mea-
sures how much we believe that X is actually I. Recall that, by definition,

P (X = I) = P
({(

Auth′, I′
)
∈ Ω | X

(
Auth′, I′

)
= I

})
(5.14)

= ∑
Auth

P (Auth, I) = P (I) .

Definition 69 Let ϕ ∈ L, and let W be a flexible relation symbol occurring
in ϕ of type S1 × . . .× Sk and let f be a flexible function symbol occurring
in ϕ of type S1 × . . .× Sk → S. Let (a1, . . . , ak) ∈ SS

1 × . . .× SS
k . Recall that

S maps sorts to carrier sets. We define the random variable WX (a1, . . . , ak) :
Ω→ {0, 1} that maps (Auth, I) ∈ Ω to WI (a1, . . . , ak) ∈ {0, 1}. Similarly, we
define the random variable fX (a1, . . . , ak) : Ω→ SS that maps (Auth, I) ∈ Ω
to f I (a1, . . . , ak) ∈ SS. We call these random variables random facts of ϕ. �

Example 70 Let us examine some random facts of the formula ϕRBAC
N from

Example 67. One such random fact is UAX (Alice, r1), which can take the val-
ues 0 and 1, so UAX (Alice, r1) is a Bernoulli random variable. Its probability

99

5. Unicorn: Universal access-control policy mining

distribution is defined in the standard way by the following:

P
(

UAX (Alice, r1) = 1
)

(5.15)

= P
({

(Auth, I) ∈ Ω | UAI (Alice, r1) = 1
})

.

More generally, the set of all random facts for the formula ϕRBAC
N is the

following:

F
(

ϕRBAC
N

)
=
{

UAX (u, ri) | u ∈ U, i ≤ N
}
∪ (5.16){

PAX (ri, p) | p ∈ P, i ≤ N
}

.

If we set N = 2 and replace each random fact with a Boolean value, as
indicated by Tables 5.3 and 5.4, then we obtain an RBAC policy. �

Just like a statement of the form P (X = I) quantifies how much we believe
that X = I, a statement of the form P

(
UAX (Alice, r1) = 1

)
quantifies how

much we believe that role r1 is assigned to Alice.

Example 71 The set of all random facts for the formula ϕABAC
N presented in

Section 5.3.5 is the following:

F
(

ϕABAC
N

)
=
{

bX
ij | i ≤ N, j ≤ M

}
∪
{

cXij | i ≤ N, j ≤ M
}

. (5.17)

If we set N = 3 and replace each random fact f with a value in Range (f),
as indicated by the interpretation function in Section 5.3.5, then we obtain a
simple ABAC policy. �

Observation 4 Since we assume carrier sets to be finite, a random fact al-
ways has a discrete distribution. In particular, random facts built from
flexible relation symbols have Bernoulli distributions as they can only take
Boolean values. �

We usually denote random facts with Fraktur letters f, g, . . . For a random
fact f of the form WX (a1, . . . , ak), we denote by fI the Boolean value WI (a1, . . . , ak).
Similarly, when f is of the form fX (a1, . . . , ak), we denote by fI the value
f I (a1, . . . , ak). Finally, we denote with Range (f) the range of a random fact f.

For a policy language ϕ ∈ L, we denote by F (ϕ) the set of all random facts
of ϕ. Recall that we assume all our carrier sets to be finite, so F (ϕ) is finite.

Observe that, for any formula ϕ ∈ L, replacing each random fact f in
F (ϕ) with a value in Range (f) yields a policy. Indeed, we prove below

100

5.5. Approximating distributions with mean-field variational inference

in Lemma 72 that fixing the values of all random facts determine a policy
and, conversely, each policy determines the values of all random facts.

The observation above plays an important role in Unicorn. The policy
miner for ϕ built with Unicorn, when given a permission assignment as
input, works by computing the set F (ϕ) and then computing values that
are approximately most likely for all random facts. Such values determine a
policy. The lemma below shows that we can cast the problem of maximizing
P (I | Auth) in a way that we will later see to be suitable for the application
of mean-field approximation.

Lemma 72 For a policy language ϕ ∈ L,

P (I | Auth) = P (X = I | Auth) (5.18)

= P

((
fX
)
f∈F(ϕ)

=
(
fI
)
f∈F(ϕ)

∣∣∣∣Auth
)

.

Proof. The first equality follows from X’s definition, so we prove the second
equality only. Let F be the random vector

(
fX
)
f∈F(ϕ)

. That is, F is a random

variable that maps
(
Auth′, I′

)
∈ Ω to

(
fI
′
)
f∈F(ϕ)

. It suffices to show that the

events X = I and F =
(
fI
)
f∈F(ϕ)

are the same. To achieve this, note that
these events can be written, respectively, as follows:{(

Auth′, I′
)
∈ Ω | Auth′ = Auth, X

(
Auth′, I′

)
= I

}
. (5.19)

{(
Auth′, I′

)
∈ Ω | Auth′ = Auth, F

(
Auth′, I′

)
=
(
fI
)
f∈F(ϕ)

}
. (5.20)

It suffices to show then that, for
(
Auth′, I′

)
∈ Ω, X

(
Auth′, I′

)
= I iff

F
(
Auth′, I′

)
=
(
fI
)
f∈F(ϕ)

. To achieve this, observe that I completely deter-

mines
(
fI
)
f∈F(ϕ)

. Moreover, the values
(
fI
)
f∈F(ϕ)

also turn out to completely
determine I. We conclude then that the two sets and, therefore, the two
events are the same. �

We denote by hF (·) the probability density function P
((

fX
)
f∈F(ϕ)

= ·
∣∣∣Auth

)
.

To avoid awkward notation, we write hF (I) instead of hF
((

fI
)
f∈F(ϕ)

)
.

We conclude this section by defining some other useful random variables.

Definition 73 For (u, p) ∈ U × P, ϕ ∈ L, and the random variable X from
Definition 68, we define the random variable ϕX (u, p) : Ω → {0, 1} as the
function mapping (Auth, I) to ϕI (u, p). �

101

5. Unicorn: Universal access-control policy mining

Definition 74 For ϕ ∈ L, Auth ⊆ U × P, and the random variable X from
Definition 68, we define the random variable L (Auth,X; ϕ) as

∑
(u,p)∈U×P

∣∣∣Auth(u, p)− ϕX(u, p)
∣∣∣ . (5.21)

�

5.5.2 Approximating the conditional distribution

Mean-field variational inference approximates the probability distribution
hF with a distribution q defined as follows:

q (I) := ∏
f∈F(ϕ)

qf
(
fI | θf

)
, (5.22)

where qf (· | θf) is a probability density function for f, which can be repre-
sented with a function θf : Range (f) → [0, 1] such that ∑b∈Range(f) θf (b) = 1.
For b ∈ Range (f), the value θf (b) denotes the probability, according to
qf (· | θf), that f = b.

Observe that q (I)’s factorization implies that the set of random facts is mu-
tually independent. This is not true in general, as hF may not be necessarily
factorized like q. This independence assumption is imposed by mean-field
theory to facilitate computations. Our experimental results in Section 5.10
show that, despite this approximation, we still mine high quality policies.

In Appendix [?], we show that the set of parameters
{

θ̂f | f ∈ F (ϕ)
}

that
makes q best approximate hF is defined by the following equation:

θ̂f (b) =
exp (−βEf 7→b[L (Auth,X; ϕ)])

∑b′∈Range(f) exp
(
−βEf 7→b′ [L (Auth,X; ϕ)]

) , (5.23)

where b ∈ Range (f) and Ef 7→b[L (Auth,X; ϕ)] is the expectation of L (Auth,X; ϕ)
after replacing every occurrence of the random fact f with b. This expecta-
tion is computed using the distribution q. Therefore,

Ef 7→b[L (Auth,X; ϕ)]

= ∑
I

q (I) (L (Auth, I; ϕ) {f 7→ b})

= ∑
I

∏
g∈F(ϕ)
g 6=f

qg
(
gI | θ̂g

)
(L (Auth, I; ϕ) {f 7→ b}) .

(5.24)

Here, L (Auth, I; ϕ) {f 7→ b} is obtained from L (Auth, I; ϕ) by replacing f
with b. For a formal derivation of Equation 5.23, we refer to [23].

Using Lemma 72 and the distribution q, we can approximate arg maxI P (I | Auth)
by maximizing q.

102

5.6. Building the policy miner

Observation 5 Let I∗ = arg maxI P (I | Auth). Then,

P (I∗ | Auth) = P (X = I∗ | Auth) = hF (I∗) ≈ q (I∗) . (5.25)

The desired miner is then an algorithm that computes and maximizes q.

5.6 Building the policy miner

To compute q, the desired policy miner uses Equation 5.23 to compute θ̂f, for
each f ∈ F (ϕ). Observe, however, that this is a recursive equation as the com-
putation of the expectations on the right hand side requires

{
θ̂f | f ∈ F (ϕ)

}
.

This recursive dependency is handled by iteratively computing, for each
f ∈ F (ϕ), a function θ̃f that approximates θ̂f [23].

Algorithm 5 gives the pseudocode for this approximation, which is the
essence of the desired policy miner. We give next an overview.

1 Initialization (lines 2–4). Each parameter θ̃f is randomly set to an
arbitrary function, respecting the constraint that ∑b θ̃f(b) = 1.

2 Update loop (lines 5–12). We perform a sequence of iterations that
update

{
θ̃f | f ∈ F (ϕ)

}
and β, the hyper-parameter controlling P’s en-

tropy. The number of iterations is fixed before execution.

a) Parameter update (line 6–10). At each iteration, we compute a
random ordering RS(F (ϕ)) of all random facts. Then, for each
f in that order, θ̃f is updated to the right-hand side of Equa-
tion 5.23 (lines 7–8), but using

{
qf
(
· | θ̃f

)
| f ∈ F (ϕ)

}
instead of{

qf
(
· | θ̂f

)
| f ∈ F (ϕ)

}
to compute the expectations.

b) Hyper-parameter update (line 11). After each iteration, we in-
crease β by a factor of α, defined before execution. This avoids
that a θ̃f is trapped in a local minimum in the early iterations and
facilitates its convergence in later iterations [114, 67].

3 Policy computation (line 13). Finally, we compute I∗ = arg maxI q (I).
By looking at Equation 5.22, we see that to maximize q (·), it suffices to
maximize qf (· | θf), for every f ∈ F (ϕ). Hence, we let I∗ be the policy
that satisfies fI

∗
= arg maxb∈Range(f) qf(b | θf).

Observe that the policy miner requires values for the hyper-parameters α, β,
and T as input. Adequate values can be computed using machine-learning
methods like grid search [118], which we briefly recall in Appendix C.1.

103

5. Unicorn: Universal access-control policy mining

Algorithm 5

1: function PolicyMiner(L, Auth, ϕ, α, β, T)
2: for f ∈ F (ϕ) do
3: Initialize θ̃f : Range (f)→ {0, 1} with an arbitrary distribution.
4: end for
5: for i = 1 . . . T do
6: for f ∈ RS (F (ϕ)) do
7: for b ∈ Range (f) do

8: θ̃f (b)←
exp (−βEf 7→b[L (Auth,X; ϕ)])

∑b′∈Range(f) exp
(
−βEf 7→b′ [L (Auth,X; ϕ)]

) .

9: end for
10: end for
11: β← α× β.
12: end for
13: Define I∗ by letting fI

∗
= arg maxb∈Range(f) qf(b | θf), for f ∈ F (ϕ).

14: return I∗

15: end function

5.6.1 Simplifying the computation of expectations

One need not be knowledgeable about variational inference to implement
Algorithm 5 in a standard programming language. The only part requiring
knowledge in probability thereby is the computation of the expectation in
line 8. We now define the notion of diverse random variables and show
that expectations of some diverse random variables can easily be computed
recursively using some basic equalities.

Definition 75 A random variable X is diverse if (i) it can be constructed
from constant values and random facts using only arithmetic and Boolean
operations and (ii) any random fact is used in the construction at most once.

�

Example 76 Let (u, p) ∈ U × P and let V, W, and Y be flexible relation
symbols. Then the random variable VX (u, p) + WX (u, p) is diverse, but the
random variable VX (u, p)WX (u, p) +WX (u, p)YX (u, p) + VX (u, p)YX (u, p)
is not, since each random fact there occurs more than once. �

Corollary 77 Let ϕ ∈ L and (u, p) ∈ U× P, then ϕX (u, p) is diverse iff every
atomic formula that occurs in ϕ occurs exactly once.

This corollary is a direct consequence of Definition 75. Observe that, for
ϕ ∈ L, one can check in time linear in ϕ’s length that every atomic formula
occurring in ϕ occurs exactly once.

Example 78 Recall the formulas ϕRBAC
N and ϕABAC

N defined in Sections 5.3.4
and 5.3.5. Observe that each atomic formula in any of these formulas occurs

104

5.7. Mining policies

exactly once. Hence, for (u, p) ∈ U× P, the random variables
(

ϕRBAC
N

)X
(u, p)

and
(

ϕABAC
N

)X
(u, p) are diverse. �

The following lemma, proved in Appendix C.3, shows how to recursively
compute Ef 7→b[L (Auth,X; ϕ)] when ϕX(u, p) is diverse.

Lemma 79 Let f and g be facts, ϕ be a formula in L, (u, p) ∈ U × P, and
{ψi}i ⊆ L. Assume that ϕX(u, p), (¬ϕ)X (u, p), and (

∧
i ψi)

X (u, p) are diverse.
Then the following equalities hold.

Ef 7→b[g] =

{
b if f = g and

∑b∈Range(g) θg (b) b otherwise.
(5.26)

Ef 7→b

[
(¬ϕ)X (u, p)

]
= 1−Ef 7→b

[
ϕX(u, p)

]
. (5.27)

Ef 7→b

(∧
i

ψi

)X

(u, p)

 = ∏
i

Ef 7→b

[
ψX

i (u, p)
]
. (5.28)

Ef 7→b[L (Auth,X; ϕ)] = ∑
(u,p)∈U×P

∣∣∣Auth(u, p)−Ef 7→b

[
ϕX(u, p)

]∣∣∣ . (5.29)

Recall that ∧ and ¬ form a complete set of Boolean operators. So one can
also use this lemma to compute expectations of diverse random variables of
the form (ϕ→ ψ)X (u, p) and (ϕ ∨ ψ)X (u, p).

5.7 Mining policies

We explain next how to use Unicorn to build policy miners for a wide
variety of policy languages.

5.7.1 RBAC policies

We already explained how formula ϕRBAC
N ∈ L is a template formula for the

language of all RBAC policies with at most N roles. To implement Algo-
rithm 5, we only need a procedure to compute Ef 7→b

[
L
(
Auth,X; ϕRBAC

N
)]

.

Since, as noted in Example 78,
(

ϕRBAC
N

)X
(u, p) is diverse, we can apply

Lemma 79 to show that

Ef 7→b

[
L
(

Auth,X; ϕRBAC
N

)]
= (5.30)

∑
(u,p)∈U×P

∣∣∣∣Auth(u, p)−Ef 7→b

[(
ϕRBAC

N

)X
(u, p)

]∣∣∣∣ .

105

5. Unicorn: Universal access-control policy mining

Ef 7→b

[(
ϕRBAC

N

)X
(u, p)

]
= (5.31)

1−∏
i≤N

(
1−Ef 7→b

[
UAX(u, ri)

]
Ef 7→b

[
PAX(ri, p)

])
,

where,

Ef 7→b

[
UAX(u, ri)

]
=

{
b if UAX(u, ri) = f

∑b∈Range(UAX(u,ri))
θUAX(u,ri)

(b) b otherwise.

Ef 7→b

[
PAX(ri, p)

]
is computed analogously. We can now implement an RBAC

miner by implementing Algorithm 5 in a standard programming language
and using the results above to compute the needed expectations.

5.7.2 Simple RBAC policies

The objective function used above has a limitation. When the number of
role constants N used by ϕRBAC

N (u, p) is very large, we might obtain a po-
licy Ĩ that assigns each role to exactly one user. The role assigned to a
user would be assigned all permissions that the user needs. As a result,
L(Auth, Ĩ; ϕRBAC

N) = 0, but Ĩ is not a desirable policy. We can avoid mining
such policies by introducing in the objective function a regularization term
that measures the complexity of the mined policy I. A candidate regulariza-
tion term is:

‖I‖ = ∑
i≤N

(
∑
u∈U

UAI(u, ri) + ∑
p∈P

PAI(ri, p)

)
. (5.32)

Observe that ‖I‖ measures the sizes of the relations UAI and PAI, for i ≤ N,
thereby providing a measure of I’s complexity. We now define the following
loss function:

Lr
RBAC(Auth, I) = λ ‖I‖+ L(Auth, I; ϕ). (5.33)

Here, λ > 0 is a trade-off hyper-parameter, which again must be fixed before
executing the policy miner and can be estimated using grid search. Note that
Lr

RBAC now penalizes not only policies that substantially disagree with Auth,
but also policies that are too complex.

The computation of Ef 7→b

[
Lr

RBAC(Auth,X)
]

now also requires the computa-
tion of Ef 7→b[‖X‖], where ‖X‖ is the random variable obtained by replacing
each occurrence of I in ‖I‖ with X. Fortunately, one can see that ‖X‖ is
diverse. Hence, we can use the linearity of expectation and Lemma 79 to
compute all needed expectations.

106

5.7. Mining policies

5.7.3 Mining policies from unbalanced permission assignments

During our experiments in Section 5.10, we found permission assignments
where the set of authorized requests was so small in comparison to the
whole set of requests, that policy miners produced policies that did not
authorize any request.

To force miners to give more importance to the authorized requests, we use
the objective function ` (Auth, I; ϕ):

λ1 ∑
(u,p)∈Auth

(
1− ϕI(u, p)

)
+ λ2 ∑

(u,p)/∈Auth
ϕI(u, p). (5.34)

Here, λ1 and λ2 are hyper-parameters assigning weight importance to the
authorized and denied requests, respectively. By setting λ1 substantially
higher than λ2, the mined policies were more accurate when deciding re-
quests in Auth. However, one must take care not to set λ1 too high, as this
would incentivize policy miners to mine overly permissive policies. To find
suitable values for hyper-parameters, we refer to Appendix C.1.

5.7.4 ABAC policies

When mining ABAC policies, we are not only given a permission assigment
Auth ⊆ U × P, but also attribute assignment relations UAtt ⊆ U ×AttVals and
PAtt ⊆ P × AttVals that describe what attribute values each user and each
permission has. Here, AttVals denotes the set of possible attribute values.
We refer to previous work for a discussion on how to obtain these attribute
assignment relations [133, 39].

The objective in mining ABAC policies is to find a set of rules that assigns
permissions to users based on the users’ and the permissions’ attribute val-
ues. We explain next how to build a policy miner for ABAC using Unicorn.
Let Rules and AttVals be sorts for rules and attribute values, respectively. Let
RUA and RPA be flexible binary relation symbols of type Rules×AttVals. For
M, N ∈N, the formula ϕABAC

M,N (u, p) below is a template formula for ABAC:

∨
i≤N

∧
j≤M

 (
RUA

(
si, aj

)
→ UAtt(u, aj)

)
∧(

RPA
(

si, aj

)
→ PAtt(p, aj)

) . (5.35)

In this formula, si, for i ≤ N, is a rigid constant symbol of sort Rules de-
noting a rule. The symbol aj, for j ≤ M, is a rigid constant denoting an

attribute value. The formula RUA
(

si, aj

)
describes whether rule si requires

the user to have the attribute value aj. The formula RPA
(

si, aj

)
describes an

analogous requirement. We use two rigid relation symbols UAtt and PAtt to

107

5. Unicorn: Universal access-control policy mining

represent the attribute assignment relations. The formulas UAtt
(

u, aj

)
and

PAtt
(

p, aj

)
describe whether u and p, respectively, are assigned the attribute

value aj. Intuitively, the formula ϕABAC
M,N (u, p) is satisfied by (u, p) ∈ U × P

if, for some rule si, (u, p) possesses all user and permission attribute values
required by si under RUA and RPA.

Observe that a policy miner does not need to find an interpretation for the
symbols UAtt and PAtt because the organization already has interpretations for
those symbols. When mining ABAC policies, the organization already knows
what attribute values each user and each permission has and wants to mine
from them an ABAC policy. The miner only needs to specify which attribute
values must be required by each rule. This is why we specify the attribute
assignment relations with rigid symbols.

We use L(Auth, I; ϕABAC
M,N) as the objective function. Observe that every atomic

formula occurs at most once in ϕABAC
M,N , so, by Corollary 77, we can use

Lemma 79 to compute all relevant expectations.

Finally, we can also add a regularization term to L(Auth, I; ϕABAC
M,N) to avoid

mining policies with too many rules or unnecessarily large rules. One such
regularization term is

‖I‖ = ∑
i≤N

∑
j≤M

RUAI
(

si, aj

)
+ RPAI

(
si, aj

)
. (5.36)

The expression ‖I‖ counts the number of attribute values required by each
rule, which is a common way to measure an ABAC policy’s complexity [133,
39]. If we instead use the objective function λ ‖I‖+ L(Auth, I; ϕABAC

M,N), then
the objective function penalizes not only policies that differ substantially
from Auth, but also policies that are too complex. Observe that ‖X‖ is di-
verse. Hence, we can use the linearity of expectation and Lemma 79 to
compute all expectations needed to implement Algorithm 5.

5.7.5 ABAC policies from logs

Some policy miners, like Rhapsody, are geared towards mining policies from
logs of access requests [103, 132, 39]. We now present an objective function
that can be used to mine ABAC policies from access logs, instead of permis-
sion assignments. We let ϕ ≡ ϕABAC

M,N for the rest of this subsection.

A log G is a disjoint union of two subsets A and D of U × P, denoting the
set of requests that have been authorized and denied, respectively.

In the case of ABAC, a policy mined from a log should aim to fulfill three
requirements. As discussed in Section 2.5, the policy should be succinct,
generalize well, and be precise [39]. Therefore, we define an objective function

108

5.7. Mining policies

L′ABAC (G, I) as the sum

L′ABAC (G, I) = λ0 ‖I‖+ L1 (G, I) + L2 (G, I) . (5.37)

The term ‖I‖ is as defined in Section 5.7.4 and aims to make the policy
succinct by penalizing complex policies. The term L1 (G, I) aims to make
the mined policy generalize well and is defined as follows:

L1 (G, I) = λ1,1 ∑
(u,p)∈A

(
1− ϕI(u, p)

)
+ (5.38)

λ1,2 ∑
(u,p)∈D

ϕI(u, p).

Finally, the function L2 (G, I) aims to make the mined policy precise by
penalizing policies that authorize too many requests that are not in the log.

L2 (G, I) = λ2 ∑
(u,p)∈U×P\G

ϕI(u, p). (5.39)

One can show that ϕX (u, p) is diverse, for any (u, p) ∈ U× P. Therefore, we
can compute Ef 7→b

[
L′ABAC (G,X)

]
using only the linearity of expectation and

Lemma 79.

5.7.6 Business-meaningful RBAC policies

Frank et. al. [57] developed a probabilistic policy miner for RBAC policies
that incorporated business information. Aside from a permission assign-
ment, the miner takes as input an attribute-assignment relation AA ⊆ U×AVal,
where AVal denotes all possible combination of attribute values. It is as-
sumed that each user is assigned exactly one combination of attribute values.

This miner grants similar sets of roles to users that have similar attribute
values. For this, it uses the following formula ∆(u, u′, I) that measures the
disagreement between the roles that a policy I assigns to two users u and u′:

∆(u, u′, I) = (5.40)

∑
i≤N

UAI(u, ri)
(

1− 2UAI(u, ri)UAI(u′, ri)
)

.

The formula ‖I‖ below shows how Frank et al.’s miner measures an RBAC
policy’s complexity. The complexity increases whenever two users with the
same combination of attribute values get assigned significantly different sets
of roles.

‖I‖ = 1
N ∑

u,u′∈U
∑

a∈AVal
AA(u, a)AA(u′, a)∆(u, u′, I). (5.41)

109

5. Unicorn: Universal access-control policy mining

Here, N denotes the total of users. Note that AA is a rigid relation symbol
representing AA. Its interpretation is therefore fixed and not computed by
the policy miner.

To mine business-meaningful RBAC policies, we use the objective function
λ ‖I‖+ L

(
Auth, I; ϕRBAC

N
)
, where λ > 0 is a trade-off hyper-parameter. Ob-

serve that this objective function penalizes the following types of policies.

• Policies that assign significantly different sets of roles to users with the
same attribute values.

• Policies whose assignment of permissions to users substantially differs
from the assignment given by Auth.

The random variable ‖X‖ is, however, not diverse. This is because, for i ≤ N,
the random fact UAX(u, ri) occurs more than once in ∆(u, u′,X). Nonetheless,
observe that

∆(u, u′,X) = (5.42)

∑
i≤N

UAX(u, ri)− 2
(

UAX(u, ri)
)2

UAX(u′, ri).

One can then compute Ef→b[∆(u, u′,X)] by using the linearity of expectation
and the fact that E [Xn] = (E [X])n, for n ∈ N and X a Bernoulli random
variable. Hence,

Ef→b

[
∆(u, u′,X)

]
= (5.43)

∑
i≤N

 Ef→b

[
UAX(u, ri)

]
−

2
(

Ef→b

[
UAX(u, ri)

])2
Ef→b

[
UAX(u′, ri)

]
 .

One can check that this observation and Lemma 79 suffice to compute the
expectations necessary for Algorithm 5.

5.7.7 Disjunctive policy languages

We call a policy language Γ disjunctive if (i) there is a template formula ϕ ∈ L
for Γ of the form ϕ1 ∨ . . . ∨ ϕn and (ii) every atomic formula in ϕ occurs ex-
actly once. RBAC and ABAC are examples of disjunctive policy languages.

Let L be an objective function. If Γ is a disjunctive policy language, then
we recommend that, instead of executing MinePolicy (L, Auth, ϕ, α, β, T),
we mine N policies I1, . . . ,IN as follows. For i ≤ N, Ii is the output of
MinePolicy (Li, Authi, ϕi, α, βi, T) where Li = L(Authi, I; ϕi), Authi is the re-
sult of removing from Auth all requests authorized by any Ij, with j < i, and
βi = ηiβ0, with η > 1 and β0 ∈ R+. The final mined policy is

⋃
j≤N Ij. This

approach works faster while still yielding policies that generalized well.

110

5.8. Spatio-temporal RBAC policies

5.8 Spatio-temporal RBAC policies

We now use Unicorn to build the first policy miner for RBAC extensions
with spatio-temporal constraints [6, 40, 79, 22, 18, 19]. In policies in these
extensions, users are assigned permissions not only according to their roles,
but also based on constraints depending on the current time and the user’s
and the permission’s locations. The syntax for specifying these constraints
allows for policies like “A user is assigned a role the third Monday of every
month, except in December, and from 8:00 AM through 17:00 PM” or “A
role is granted permission to access an object within a radius of three miles
from the main building.”

We present a template formula ϕst(t, u, p) ∈ L for a policy language that
we call spatio-temporal RBAC. This is an extension of RBAC enhanced with
a syntax for spatial constraints based on [18, 19] and a syntax for temporal
constraints based on temporal RBAC [20].

ϕst(t, u, p) =
∨

i≤N

(ψUA(t, u, ri) ∧ ψPA(t, ri, p)) . (5.44)

Here, we assume the existence of a sort TIME and that t is a variable of this
sort representing the time when u exercises p. We also assume the existence
of a sort SPACE that we use later to specify spatial constraints. The formulas
ψUA(t, u, ri) and ψPA(t, ri, p) describe when a user is assigned the role ri and
when a permission is assigned to the role ri, respectively. We use the rigid
constants r1, . . . , rN to denote roles.

The grammar below defines the syntax of ψUA and ψPA.

〈cstr list〉 ::= 〈cstr〉 (∧ 〈cstr〉)∗
〈cstr〉 ::= 〈sp cstr〉 | 〈tmp cstr〉

〈sp cstr〉 ::= 〈loc〉 (∨ 〈loc〉)∗
〈loc〉 ::= (¬?) isWithin (Loc (o) , d, b)

〈tmp cstr〉 ::= 〈tmp itv〉 (∨ 〈tmp itv〉)∗
〈tmp itv〉 ::= ψcal (t)

An expression in Γ is a conjunction of constraints, each of which is either a
disjunction of temporal constraints or a disjunction of spatial constraints.

5.8.1 Modeling spatial constraints

A spatial constraint is a (possibly negated) formula of the form isWithin (Loc (o) , d, b),
where o is a variable of sort USERS or PERMS, Loc (o) denotes o’s loca-
tion, d is a flexible constant symbol of a sort whose carrier set is N≤M =
{0, 1, . . . , M} (where M is a value fixed in advance), and b is a flexible con-
stant symbol of a sort describing the organization’s physical facilities. For

111

5. Unicorn: Universal access-control policy mining

example, isWithin (Loc (u) , 4, MainBuilding) holds when the user represented
by u is within 4 space units of the main building.

Intuitively, the formula isWithin (Loc (o) , d, b) evaluates whether the entity
represented by o is located within d spatial units from b. Observe that a
policy miner does not need to compute interpretations for rigid function
symbols like Loc or rigid relation symbols like isWithin, since they already
have a fixed interpretation.

5.8.2 Modeling temporal constraints

A temporal constraint is a formula ψcal (t) that represents a periodic expres-
sion [20], which describes a set of time intervals. We give here a simplified
overview and refer to the literature for a more technical presentation.

Definition 80 A periodic expression is a tuple

(yearSet, monthSet, daySet, hourSet, hourDuration) ∈
(

2N
)4
×N. (5.45)

A time instant is a tuple (y, m, d, h) ∈ N4. A time instant (y, m, d, h) satisfies
a periodic expression (yearSet, monthSet, daySet, hourSet, hourDuration) if y ∈
yearSet, m ∈ monthSet, d ∈ daySet, and there is h′ ∈ hourSet such that h′ ≤
h ≤ h′ + hourDuration. �

Previous works on analyzing temporal RBAC with SMT solvers [75] show
that temporal constraints can be expressed as formulas in L. Furthermore,
one can see that any expression in Γ and, therefore, ϕst are in L.

As objective function, we use λ ‖I‖+ L
(
Auth, I; ϕst). Here, ‖I‖ counts the

number of spatial constraints plus the sum of the weighted structural com-
plexities of all temporal constraints [121]. One can show that ‖X‖ is diverse
and that every atomic formula in ϕst occurs exactly once. Hence, one can
compute all necessary expectations using the linearity of expectation and
Lemma 79.

5.9 XACML policies

Although XACML is the de facto standard for access control specification,
no algorithm has previously been proposed for mining XACML policies. We
now illustrate how, using Unicorn, we build the first XACML policy miner.

5.9.1 Background

XACML syntax. To simplify the presentation, we use a reduced version of
XACML, given as a BNF grammar below. However, our approach extends to
the core XACML. Moreover, our reduced XACML is still powerful enough

112

5.9. XACML policies

to express Continue [87, 55], a benchmark XACML policy used for policy
analysis.

<Dec> ::= allow | deny
<Rule> ::= (〈<Dec>〉, α)
<Comb> ::= FirstApp | AllowOv | DenyOv
<Pol> ::= (<Comb>, (<Pol>∗ | <Rule>∗))

Fix a set AVals of attribute values. An XACML rule is a pair (δ, α), where δ ∈
{allow, deny} is the rule’s decision and α is a subset of AVals. An XACML po-
licy is a pair (κ, π̄), where κ ∈ {FirstApp, AllowOv, DenyOv} is a combination
algorithm and π̄ is either a list of policies or a list of XACML rules. FirstApp,
AllowOv, DenyOv denote XACML’s standard policy combination algorithms.
We explain later how they work. For a policy π, we denote its combination
algorithm by Comb (π) and, for a rule r, we denote its decision by Dec(r).

XACML semantics. We now recall XACML’s semantics. A request is a subset
of AVals denoting the attribute values that a subject s, an action a, and an
object o satisfy when s attempts to execute a on o. We denote by 2AVals the
set of requests. A request satisfies a rule (δ, α) if the request contains all
attributes in α. In this case, if δ = allow, then we say that the rule authorizes
the request; otherwise, we say that the rule denies the request.

A policy π of the form (AllowOv, (π′1, . . . , π′`)) authorizes a request z if there
is an i ≤ ` such that π′i authorizes z. The policy π denies z if no π′i , for i ≤ `,
authorizes z, but some π′j, for j ≤ `, denies it.

A policy π of the form (DenyOv, (π′1, . . . , π′`)) denies a request if some π′i
denies it. The policy authorizes the request if no π′i denies it, but some π′i
authorizes it.

A policy π of the form (FirstApp, (π′1, . . . , π′`)) authorizes a request if there
is an i ≤ ` such that π′i authorizes it and π′j, for j < i, neither authorizes it
nor denies it. The policy denies a request if there is i ≤ ` such that π′i denies
it and π′j, for j < i, neither authorizes it nor denies it.

5.9.2 Auxiliary definitions

We provide some definitions that will facilitate some proofs later. For a
policy π = (κ, (π′1, . . . , π′`)), we call π′i a child of π. A policy is a descendant
of π if it is a child of π or is a descendant of a child of π.

A policy π has breadth N ∈ N if ` ≤ N and each of π’s children is either a
rule or has breadth N. A policy π has depth is M ∈ N (i) if M = 1 and each
of its children is a rule, or (ii) if M > 1 and some child of π has depth M− 1
and the rest have depth at most M− 1.

113

5. Unicorn: Universal access-control policy mining

Two formulas ψ1, ψ2 ∈ L are mutually exclusive if there is no I and no z ∈
2AVals such that both ψI

1 (z) and ψI
2 (z) hold. When ψ1 and ψ2 are mutually

exclusive, we write ψ1 ⊕ ψ2 instead of ψ1 ∨ ψ2.

5.9.3 A template formula for XACML

For M, N ∈ N, we present a template formula for the language of all
XACML policies of depth and breadth at most M and N, respectively.

Let S be the set of all N-ary sequences of length at most M and let ε ∈ S be
the empty sequence. For j ∈ {0, . . . , N − 1}, we denote by σ . j the result of
appending j to σ and by j / σ the result of prepending j to σ.

Let REQS be a sort representing all requests, AVALS be a sort representing
all attribute values, and POLS a sort representing policies and rules. For
each σ ∈ S , define a rigid constant y

σ
symbol of sort POLS such that y

σ
6=

y
σ′

, whenever σ 6= σ′.

The set of rigid constants {y
σ
| σ ∈ S} are intended to represent a tree of

XACML policies and rules. The constant y
ε

is the root policy. For σ ∈ S
with length less than M and j ∈ {0, . . . , N − 1}, the constant y

σ.j represents
one of y

σ
’s children.

Let z be a variable of sort REQS. The formula ϕXACML
M,N

(
y

ε
, z
)

below is a
template formula for the XACML fragment introduced above. We explain
its main parts.

• We define signature symbols that represent all terminal symbols in
the BNF grammar above. For example, we define two rigid constant
symbols XAllows and XDenies that represent the decisions allows and
denies. We define two flexible function symbols XDec and XComb.
For a rigid constant y

σ
, XDec

(
y

σ

)
denotes the decision of the rule

represented by y
σ
. Similarly, XComb

(
y

σ

)
denotes the combination

algorithm of the policy represented by y
σ
.

• The formula allows
(

y
σ
, z
)

holds if y
σ

authorizes the request repre-

sented by z. The formula denies
(

y
σ
, z
)

holds if y
σ

denies the request

represented by z and is defined analogously. Observe that allows
(

y
σ
, z
)

and denies
(

y
σ
, z
)

denote formulas. Hence, allows and denies are

not symbols in the signature we use to specify ϕXACML
M,N .

• XActive is a flexible relation symbol and XActive
(

y
σ

)
holds if y

σ
is a

descendant of y
ε
.

114

5.9. XACML policies

• The formula NA
(

y
σ
, z
)

holds if y
σ

neither authorizes nor denies the
request represented by z. It can be expressed in L as follows:

NA
(

y
σ
, z
)
≡ ¬XActive

(
y

σ

)
∨

∧
j≤N

NA
(

y
σ.j, z

)
. (5.46)

• The formula z � y
σ

holds if all attributes required by y
σ

are contained
by the request represented by z. This formula can be expressed in L
as follows: ∧

a∈AVals

(
XReqsAVal

(
y

σ
, a
)
→ hasAttVal (z, a)

)
, (5.47)

where XReqsAVal is a flexible relation symbol and hasAttVal and a, for
a ∈ AVals, are rigid symbols. For a policy I, XReqsAValI

(
y

σ
, a
)

holds
if y

σ
is a rule and requires attribute a to be satisfied. The formula

hasAttVal (z, a) checks if the request contains attribute a.

ϕXACML
M,N

(
y

ε
, z
)
≡ allows

(
y

ε
, z
)

(5.48)

allows
(

y
σ
, z
)
≡
(

XIsRule
(

y
σ

)
→ allowsRule

(
y

σ
, z
))
∧ (5.49)(

¬XIsRule
(

y
σ

)
→ allowsPol

(
y

σ
, z
))

allowsRule
(

y
σ
, z
)
≡ XActive

(
y

σ

)
∧ XDec

(
y

σ

)
= allow ∧ z � y

σ
(5.50)

allowsPol
(

y
σ
, z
)
≡ XActive

(
y

σ

)
∧ (5.51)

 XComb
(

y
σ

)
= AllowOv ∧∨

j≤N allows
(

y
σ.j, z

) ⊕

XComb
(

y
σ

)
= FirstApp ∧

⊕
j≤N

 ∧
i<j NA

(
y

σ.i, z
)
∧

allows
(

y
σ.j, z

)
⊕

XComb

(
y

σ

)
= DenyOv ∧

⊕
j≤N

 ∧
i<j NA

(
y

σ.i, z
)
∧

allows
(

y
σ.j, z

)
∧ ∧

i<k ¬denies
(

y
σ.k, z

)

(5.52)

Lemma 81 Formula ϕXACML
M,N is a template formula for the language of all

XACML policies of depth and breadth at most M and N, respectively.

115

5. Unicorn: Universal access-control policy mining

Proof. We define a mapping M from interpretation functions to XACML
policies using an auxiliary mapping M′. For a sequence σ ∈ S , we induc-
tively defineM′ (I, σ) as follows:

• If (i) σ has length M or (ii) XActiveI
(

y
σ.j

)
= 0, for all j ≤ N, then

M′ (I, σ) =
(

XDecI
(

y
σ

)
,
{

a ∈ AVals | XReqsAValI
(

y
σ
, a
)})

. (5.53)

• Otherwise,

M′ (I, σ) =
(

XCombI
(

y
σ

)
,
(
M′ (I, σ . j)j≤N

))
. (5.54)

For an interpretation function I, we defineM (I) =M′ (I, ε). We show that
M is surjective. Let π be a XACML policy. For σ ∈ S and π′ a descendant
of π, we inductively define the following policy:

π′[σ] ≡
{

π′ if σ = ε and
π′i [σ

′] if σ = i / σ′ and π′ =
(
κ,
(
π′1, . . . , π′k

))
.

(5.55)

We now present an interpretation function I such thatM (I) = π. Let σ ∈ S
and ⊥ be any arbitrary value. Then

XActiveI
(

y
σ

){1 if there is a descendant π′ of π with π [σ] = π′ and
0 otherwise.

(5.56)

XCombI
(

y
σ

){Comb (π[σ]) if π [σ] is a policy and
⊥ otherwise.

(5.57)

XDecI
(

y
σ

){Dec (π[σ]) if π [σ] is a rule and
⊥ otherwise.

(5.58)

XIsRuleI
(

y
σ

){1 if π [σ] is a rule and
0 otherwise.

(5.59)

XReqsAValI
(

y
σ
, a
)

1 if π[σ] is a rule of the form (d, α),
α ⊆ AVals, and a ∈ α

0 otherwise.

(5.60)

116

5.9. XACML policies

It is straightforward to verify thatM (I) = π. �

Having a template formula for this XACML fragment, we now define an ob-
jective function. An example of an objective function is λ ‖I‖+ L

(
Auth, I; ϕXACML

M,N

)
,

where λ > 0 is a hyper-parameter and ‖I‖ defines I’s complexity. We in-
ductively define the complexity compl (π) of a XACML policy π as follows.

• If π is a rule of the form (δ, α), then compl (π) = |α|.

• If π is a policy of the form (κ, (π1, . . . , πk)), then compl (π) = |α|.

Finally, we define ‖I‖ as compl (M (I)).

5.9.4 Computing expectations

For a formula ϕ ∈ L and a request z ∈ 2AVals, we define the random variable
ϕX (z) in a way similar to the one given in Section 5.5.1. We now give some

auxiliary definitions that help to compute Ef→b

[(
ϕXACML

M,N

)X
(z)

]
.

Lemma 82 Let z ∈ 2AVals and ψ1, ψ2 be mutually exclusive formulas, then

Ef 7→b

[
(ψ1 ⊕ ψ2)

X (z)
]
= Ef 7→b

[
ψX

1 (z)
]
+ Ef 7→b

[
ψX

2 (z)
]
. (5.61)

Proof. Note that (ψ1 ⊕ ψ2)
I (z) = 1 iff either ψI

1 (z) = 1 or ψI
2 (z) = 1.

Ef 7→b

[
(ψ1 ⊕ ψ2)

X (z)
]
= ∑

I

q (I) (ψ1 ⊕ ψ2)
I (z) (5.62)

= ∑
I:(ψ1⊕ψ2)

I(z)=1

q (I) (5.63)

= ∑
I:ψI

1 (z)=1

q (I) + ∑
I:ψI

2 (z)=1

q (I) (5.64)

= ∑
I

q (I)ψI
1 (z) + ∑

I

q (I)ψI
2 (z) (5.65)

= Ef 7→b

[
ψX

1 (z)
]
+ Ef 7→b

[
ψX

2 (z)
]
. (5.66)

�

Definition 83 A set Φ ⊆ L of formulas is unrelated if for every ϕ ∈ Φ and
every atomic formula α occurring in ϕ, there is no ψ ∈ Φ \ {ϕ} such that α
occurs in ϕ. �

Lemma 84 If z ∈ 2AVals and Φ is a set of unrelated formulas, then
{

ϕX (z) | ϕ ∈ Φ
}

,
under the distribution q, is mutually independent.

117

5. Unicorn: Universal access-control policy mining

Proof. For simplicity, we assume that Φ = {ϕ1, ϕ2}. The proof for the
general case is analogous.

Observe that, since Φ is unrelated, an interpretation function I can be re-
garded as the union of two interpretation functions I1 and I2 where I1
interprets the atomic formulas occurring in ϕ1 and I2 interprets those in
ϕ2. Consequently, the distribution q (I) can be factorized as q1 (I1) q2 (I2),
where qi, for i ≤ 2, is the marginal mean-field approximating joint distribu-
tion of the random facts of ϕi.

For an event A, let Pq (A) denote the probability of A under the distribu-
tion q. To prove the lemma, it suffices to show, for b1, b2 ∈ {0, 1}, that
Pq
(

ϕX
1 (z) = b1, ϕX

2 (z) = b2
)
= Pq

(
ϕX

1 (z) = b1
)

Pq
(

ϕX
2 (z) = b2

)
, which im-

plies that Φ is mutually independent.

Pq

(
ϕX

1 (z) = b1, ϕX
2 (z) = b2

)
(5.67)

= ∑
I:ϕI

1 (z)=b1
ϕI

2 (z)=b2

q (I) (5.68)

= ∑
I:ϕI

1 (z)=b1
ϕI

2 (z)=b2

q1 (I1) q2 (I2) (5.69)

= ∑
I1:ϕ

I1
1 (z)=b1

∑
I2:ϕI2

2 (z)=b2

q1 (I1) q2 (I2) (5.70)

=

 ∑
I1 :ϕ

I1
1 (z)=b1

q1 (I1)

 ∑
I2 :ϕI2

2 (z)=b2

q2 (I2)

 (5.71)

=

 ∑
I1 :ϕ

I1
1 (z)=b1

∑
I2

q1 (I1) q2 (I2)

∑
I1

∑
I2:ϕI2

2 (z)=b2

q1 (I1) q2 (I2)

 (5.72)

=

 ∑
I:ϕI

1 (z)=b1

q (I)

 ∑
I:ϕI

2 (z)=b2

q (I)

 (5.73)

= Pq

(
ϕX

1 (z) = b1

)
Pq

(
ϕX

2 (z) = b2

)
. (5.74)

�

Lemma 85 We can compute Ef→b

[(
ϕXACML

M,N

)X
(z)

]
using only the equations

given in Lemmas 79 and 82.

Proof. Observe that every atomic formula in allowsRule
(

y
σ
, z
)

occurs ex-

actly once, so allowsRuleX
(

y
σ
, z
)

is diverse. Hence, by Corollary 77, we

118

5.9. XACML policies

can use Lemma 79 to compute Ef→b

[
allowsRuleX

(
y

σ
, z
)]

.

The formula allowsPol
(

y
σ
, z
)

has the form

XActive
(

y
σ

)
∧
(

ψ1

(
y

σ
, z
)
⊕ ψ2

(
y

σ
, z
)
⊕ ψ3

(
y

σ
, z
))

. (5.75)

Each formula ψi

(
y

σ
, z
)

is built from a set of unrelated formulas. Hence,

by Lemma 84, we can use Lemma 79 to compute Ef→b

[
ψi

(
y

σ
, z
)]

. Finally,
observe that the set{

XActive
(

y
σ

)
, ψ1

(
y

σ
, z
)

, ψ2

(
y

σ
, z
)

, ψ3

(
y

σ
, z
)}

(5.76)

is unrelated. Hence, by Lemma 84, the corresponding set of random vari-
ables is independent. Using Lemmas 82 and 79, we can show that

Ef→b

[
allowsPolX

(
y

σ
, z
)]

= (5.77)

Ef→b

[
XActiveX

(
y

σ
, z
)]
×

Ef→b

[
ψX

1

(
y

σ
, z
)]

+

Ef→b

[
ψX

2

(
y

σ
, z
)]

+

Ef→b

[
ψX

3

(
y

σ
, z
)]

.

 (5.78)

Therefore, Ef→b

[
allowsPolX

(
y

σ
, z
)]

can be computed using only Lemmas 82
and 79.

Finally, recall that ϕXACML
M,N

(
y

ε
, z
)
= allows

(
y

ε
, z
)

. Observe now that allows
(

y
ε
, z
)

is built from the following unrelated set:{
XIsRule

(
y

σ

)
, allowsRule

(
y

σ
, z
)

, allowsPol
(

y
σ
, z
)}

. (5.79)

By Lemma 84, the corresponding set of random variables is independent.

Hence, we can use Lemma 79 to reduce the computation of Ef→b

[(
ϕXACML

M,N

)X
(z)

]
to the computation of Ef→b

[
XIsRuleX

(
y

σ

)]
, Ef→b

[
allowsRuleX

(
y

σ
, z
)]

, and

Ef→b

[
allowsPolX

(
y

σ
, z
)]

. However, as observed above, all these expecta-
tions can be computed using Lemmas 79 and 82. Hence, we can compute

Ef→b

[(
ϕXACML

M,N

)X
(z)

]
using only those two lemmas. �

Having proven the previous lemmas, we can now implement Algorithm 5
to produce a policy miner for XACML policies.

119

5. Unicorn: Universal access-control policy mining

5.10 Experiments

In this section, we experimentally validate two hypotheses. First, by using
Unicorn, we can build policy miners for a wide variety of policy languages.
Second, the policies mined by these miners have as low complexity and high
generalization ability as those mined by the state of the art.

5.10.1 Datasets

Our experiments are divided in the following categories.

Mine RBAC policies from access control matrices We use three access con-
trol matrices from three real organizations, named “healthcare”, “firewall”,
and “americas” [49]. For healthcare, there are 46 users and 46 permissions,
for firewall, there are 720 users and 587 permissions, and for americas, there
are more than 10,000 users and around 3,500 permissions. We refer to these
access control matrices as RBAC1, RBAC2, and RBAC3.

Mine ABAC policies from logs We use four logs of access requests pro-
vided by Amazon for a Kaggle competition in 2013 [82], where participants
had to develop mining algorithms that predicted from the logs which per-
missions must be assigned to which users. We refer to these logs as ABAC1,
ABAC2, ABAC3, and ABAC4.

Mine business-meaningful RBAC policies from access control matrices We
use the access control matrix provided by Amazon for the IEEE MLSP 2012
competition [72], available at the UCI machine learning repository [93]. It
assigns three types of permissions, named “HOST”, “PERM GROUP”, and
“SYSTEM GROUP”. The number of permissions for each type are approxi-
mately 1,700, 6,000, and 20,000, respectively. For each type of permission,
we created an access control matrix containing more than 5,000 users. We
explain in detail how we create these matrices in Appendix C.5.1. We refer
to these matrices as BM-RBAC1, BM-RBAC2, and BM-RBAC3.

Mine XACML policies from access control matrices We use Continue [87,
55], the most complex set of XACML policies to our knowledge in the liter-
ature. We use seven of the largest policies in the set. For each of them, we
compute the set of all possible requests and decide which of them are autho-
rized by the policy. We then mine a policy from this set of decided requests.
For the simplest policy, there are around 60 requests and for the most com-
plex policy, there are more than 30,000 requests. We call these seven sets of
requests XACML1, XACML2, ..., XACML7.

120

5.10. Experiments

Mine spatio-temporal RBAC policies from logs There are no publicly avail-
able datasets for mining spatio-temporal RBAC policies. Based on policies
provided as examples in recent works [18, 19], we created a synthetic policy
and a synthetic log by creating 1,000 access requests uniformly at random
and evaluating them against the policy. We refer to this log as STARBAC.
The synthetic policy is in Appendix C.5.2.

5.10.2 Methodology

For RBAC and ABAC, we mine two policies in the corresponding policy
language’s syntax. The first one using a miner built according to Unicorn

and the second one using a state-of-the-art miner. For RBAC, we use the
miner presented in [57] and, for ABAC, we use the miner from [39]. For the
XACML and spatio-temporal RBAC categories, there are no other known
miners, so we only mine one policy in these categories using our miner.
For business meaningful RBAC, we contacted the authors of miners for this
RBAC extension [57, 103], but implementations of their algorithms were not
available.

The objective function we use to mine ABAC policies from logs is the one
defined in Section 5.7.5. For all other policy languages, we use λ1 ‖I‖ +
` (Auth, I; ϕ), where λ1 is a hyper-parameter, ‖I‖ was the complexity mea-
sure defined for each policy language in Section 5.7, ϕ is the template for-
mula for the corresponding policy language, and ` (Auth, I; ϕ) was defined
in Section 5.7.3. The values for the hyper-parameters were computed using
grid search (Appendix C.1).

To evaluate miners for RBAC, BM-RBAC, and XACML, we use 5-fold cross-
validation [47, 135, 42]. We refer to Appendix 4.1.4 for an overview of cross-
validation. To measure the mined policy’s generalizability, we measure its
true positive rate (TPR) and its false positive rate (FPR) [111]. To measure
a mined policy’s complexity, we use ‖I‖. To evaluate miners for ABAC
and STARBAC, which receive a log instead of an access control matrix as
input, we use universal cross-validation (Chapter 4). We measure the mined
policy’s TPR, FPR, precision, and complexity.

All policy miners, except the one for BM-RBAC, were developed in Python
3.6 and were executed on machines with 2,8 GHz 8-core CPUs and 32 GB of
RAM. The miner for BM-RBAC was developed in Pytorch version 0.4 [109]
and executed on an NVIDIA GTX Titan X GPU with 12 GB of RAM. For
all policy languages except STARBAC, our experiments finished within 4
hours. For STARBAC, they took 7 hours. We remark that organizations do
not need to mine policies on a regular basis, so policies need not be mined
in real time [39].

121

5. Unicorn: Universal access-control policy mining

RBAC1

RBAC2

RBAC3

ABAC1

ABAC2

ABAC3

ABAC4

BM
-R

BAC1

BM
-R

BAC2

BM
-R

BAC3

XACM
L1

XACM
L2

XACM
L3

XACM
L4

XACM
L5

XACM
L6

XACM
L7

ST
ARBAC

0.4

0.6

0.8

1
TP

R

Unicorn State of the art

Figure 5.2: Comparison of the TPRs between policies mined using Unicorn

and policies mined by a state-of-the-art policy miner across different policy
languages. Policies with higher TPRs are better at granting permissions to
the correct users.

5.10.3 Results

Figures 5.2–5.4 compare, respectively, the TPRs, complexities, and precisions
of the policies we mined with those mined by an available state-of-the-art
policy miner across the different datasets with respect to the different policy
languages. We make the following observations.

• We mine policies whose TPR is within 5% of the state-of-the-art poli-
cies’ TPR. For the XACML and STARBAC scenarios, where no other
miners exist, we mine policies with a TPR above 80% in most cases.

• In most cases, we mine policies with a complexity lower than the com-
plexity of policies mined by the state of the art.

• When mining from logs, we mine policies that have a similar or greater
precision than those mined by the state of the art, sometimes substan-
tially greater.

• In all cases, we mine policies with an FPR ≤ 5% (not shown in the
figures).

5.10.4 Discussion

Our experimental results show that, with the exception of ABAC, all policies
we mined attain a TPR of at least 80% in most of the cases. The low TPR
in ABAC is due to the fact that the logs contain only 7% of all possible
requests [39]. But even in that case, the ABAC miner we built attains a TPR
that is within 5% of the TPR attained by the state of the art [39]. Moreover,

122

5.10. Experiments

RBAC1

RBAC2

RBAC3

ABAC1

ABAC2

ABAC3

ABAC4

BM
-R

BAC1

BM
-R

BAC2

BM
-R

BAC3

XACM
L1

XACM
L2

XACM
L3

XACM
L4

XACM
L5

XACM
L6

XACM
L7

ST
ARBAC

101

102

103

C
om

pl
ex

it
y

Unicorn State of the art

Figure 5.3: Comparison of the complexities between policies mined using
Unicorn and policies mined by a state-of-the-art policy miner across dif-
ferent policy languages. Policies with lower complexities are better as they
are easier to interpret by humans. For XACML and STARBAC, there is no
known miner, but we compared the mined policy’s complexity with that of
the original policy.

ABAC1

ABAC2

ABAC3

ABAC4

ST
ARBAC

10−2

10−1

Pr
ec

is
io

n

Unicorn State of the art

Figure 5.4: Comparison of the precision between policies mined using Uni-
corn and policies mined by a state-of-the-art policy miner across different
policy languages. Policies with higher precision are better as they avoid in-
correct authorizations. We only compare the precision of mined policies
when mining from logs, as discussed in Chapter 4.

123

5. Unicorn: Universal access-control policy mining

our ABAC miner mines policies with substantially smaller size and higher
precision. These results provide strongly support our hypothesis that by
using Unicorn we can build competitive policy miners for a wide variety
of policy languages.

5.11 Related work

We recount the areas where policy mining research has focused in the last
years and discuss the techniques that have been proposed to mine policies
in different policy languages.

5.11.1 Policy mining

RBAC mining

Early research on policy mining focused on RBAC [49, 88, 128]. The ap-
proaches developed used combinatorial algorithms to find, for an assign-
ment of permissions to users, an approximately minimal set of role assign-
ments, e.g., [127, 95, 116, 129, 136]. A major step forward was the devel-
opment of probabilistic models to model the assignment of permissions to
roles and the assignment of roles to users. These works employ machine-
learning techniques like latent Dirichlet allocation [103] and deterministic an-
nealing [57, 123] to find the model parameters that maximize the likelihood
of the given assignment of permission to users. More recent works mine
RBAC policies with time constraints [97, 98] and role hierarchies [121, 65],
using combinatorial techniques that are specific to the RBAC extension.

Despite the plethora of RBAC miners, there are still many RBAC extensions
for which no miner has been developed. A recent survey in role mining [99],
covering over a dozen RBAC miners, reports not a single RBAC miner that
can mine spatio-temporal constraints, even though there have been several
spatio-temporal extensions of RBAC since 2000, e.g., [113, 34, 90, 125, 31,
6, 41], and additional extensions are under way [18, 19]. Unicorn offers
a practical solution for mining RBAC policies for these extensions. As we
illustrated in Section 5.8, we can now mine spatio-temporal RBAC policies.

Other miners

Miners have recently been proposed for other policy languages like ABAC [132,
39] and ReBAC (Relationship-Based Access Control) [30]. These algorithms
use dedicated combinatorial and machine-learning methods, but mine poli-
cies tailored to the given policy language. Unicorn has the advantage of
being applicable to a much broader class of policy languages.

124

5.12. Conclusion

5.11.2 Interpretable machine learning

Machine-learning algorithms have been proposed for classification that train
an interpretable model [84, 80, 120, 36, 9] consisting of a set of human-readable
rules that describe how an instance is classified. Such algorithms are attrac-
tive for policy mining, as policies must not only correctly grant and deny
access, they should also be easy to understand.

The main limitation of the rules mined by these models is that they often do
not comply with the underlying policy language’s syntax. State-of-the-art
algorithms in this field [120, 36, 9] produce rules that are simply conjunc-
tions of constraints on the instances’ features. This is insufficient for many
policy languages, like XACML, where policies can consist of nested subpoli-
cies that are composed with XACML’s policy combination algorithms [64].
Moreover, the rules produced by these algorithms are often unnecessarily
long and complex [39].

The main advantage of Unicorn is that it can mine policies that not only
correctly grant and deny access in most cases, but are also compliant with a
given policy language’s syntax, like XACML’s (Appendix 5.9). Moreover, as
illustrated in Sections 5.7.2 and 5.7.5, one can tailor the objective function so
that the policy miner searches for a simple policy.

5.12 Conclusion

The difficulty of specifying and maintaining access control policies has spawned
a large and growing number of policy languages with associated policy min-
ers. However, developing such miners is challenging and substantially more
difficult than creating a new policy language. This problem is exacerbated
by the fact that existing mining algorithms are inflexible in that they cannot
be easily modified to mine policies for other policy languages with different
features. In this paper, we demonstrated that it is in fact possible to create a
universal method for building policy miners that works very well for a wide
variety of policy languages.

We validated the effectiveness of Unicorn experimentally, including a com-
parison against state-of-the-art policy miners for different policy languages.
In all cases, the miners built using Unicorn are competitive with the state
of the art.

As future work, we plan to automate completely the workflow in Figure 5.1.
We envision a universal policy mining algorithm based on Algorithm 5 that,
given as input the policy language, the permission assignment, and the
objective function, automatically computes the probabilistic model and the
most likely policy constrained by the given permission assignment. As a
result, the designer of a policy miner would not need to do Tasks 1 or 3.

125

Chapter 6

Conclusion

Organizations define access control policies in order to prevent users from
abusing their privileges and performing nefarious acts. In spite of a plethora
of mechanisms for specifying and maintaining access control infrastructures,
privilege abuse continues to be one of the main causes for data breaches and
organizations are exhorted to ensure that only the necessary permissions are
granted to users [50, 51]. In this thesis, we propose three solutions to prevent
privilege abuse.

First, we propose FORBAC, a new extension for RBAC that strikes a bal-
ance between expressiveness in policy specification and complexity in po-
licy analysis. FORBAC offers a new framework for policy specification and
analysis by which policy administrators can analyze RBAC policies. By us-
ing policy analysis, the policy administrator can ensure that users have the
permissions they need and that only those authorized users get sensitive
permissions. We designed FORBAC so that it could express the complex
policies that current organizations need to specify, while at the same time
keeping the complexity of policy analysis within NP. We also argued why
this is a natural complexity class for policy analysis.

Second, we propose Rhapsody, an algorithm for mining ABAC policies
from sparse logs. Rhapsody is a policy miner that analyzes how users exer-
cise permissions in the organization and uses that information to mine an
adequate policy. In the context of preventing privilege abuse, policy mining
helps to compute a policy that better reflects the users’ needs within the
organization. Rhapsody’s main advantage over other ABAC miners is that
it guarantees to mine exactly all significant, reliable, and succinct rules from
any given sparse log. Such guarantees ensure that mined policies prevent
privilege abuse by assigning permissions to users only if there is substantial
evidence in the log.

Finally, we propose Unicorn, a universal method for building policy miners

127

6. Conclusion

that depends only on the policy language and an objective function evalu-
ating policy quality. Unicorn’s main advantages are that it streamlines the
process of designing policy miners and removes the need for knowledge of
machine-learning. Using Unicorn, we developed competitive policy min-
ers for a wide variety of policy languages. In the case of ABAC, the policy
miner built by Unicorn outperformed Rhapsody.

The research on these works have shown some challenges for future work.

Including constraints and role hierarchies in FORBAC. FORBAC cannot
specify separation-of-duty or cardinality constraints [52]. More generally,
there is no standard way to specify such concepts in the presence of role
templates. For example, it is unclear how a role instance’s attribute values
from one role template R1 affect another role instance’s attribute values from
another role template R2 that is subsumed by R1 in a role hierarchy. Cardi-
nality constraints can also be difficult to specify. For example, just limiting
the number of role instances may not be enough, as role instances with ex-
actly the same attribute values or where one instance’s attribute values are
just a subset of the other’s should not count as different instances. A case
study on organizations using role templates could help to understand the
requirements for such concepts.

Mining RBAC policies with role hierarchies. We do not know yet of any
formalization of RBAC with role hierarchies in first-order logic that can be
a template formula for that policy language. Finding such a formula or
extending Unicorn’s approach so that it can mine RBAC policies with role
hierarchies would help to provide simpler RBAC policies.

A universal policy miner. Is it possible to extend Unicorn so that Tasks 1
and 3 are done automatically? Ideally, this universal policy miner would re-
ceive as input a policy language, specified as a BNF grammar or some other
standard language specification, and an objective function and it would di-
rectly output a policy miner. As a result, the policy administrator would be
relieved of the work of finding a template formula for a policy language and
then implementing the pseudo-code of Algorithm 5.

128

Appendix A

Appendix for FORBAC

A.1 Complexity results for F

Theorem 86 For a policy T ≡ ϕ1(u, p) ∨ . . . ∨ ϕ`(u, p) in F, deciding
whether the formula ∀u : USERS . ∀p : PERMS . (ϕ1(u, p) ∨ . . . ∨ ϕ`(u, p))
is valid is NP-hard.

Proof. We reduce this problem to the validity problem for propositional
Boolean formulas in disjunctive normal form. Let ψ =

∨
i≤M

∧
j≤N `ij be a

propositional Boolean formula in disjunctive normal form. For every propo-
sitional variable y occurring in ψ, pick a binary relation symbol Qy of type
USERS × PERMS. For i ≤ M and j ≤ N, let Lij(u, p) be the following
formula:

Lij(u, p) =

{
Qy(u, p) if `ij = y
¬Qy(u, p), if `ij = ¬y.

(A.1)

It is easy to check that ψ is valid iff the following formula is valid.

∀u : USERS . ∀p : PERMS .

 ∨
i≤M

∧
j≤N

Lij(u, p)

 . (A.2)

�

We now explain how to translate a policy T in F to a Margrave [106] policy
T′. Define a Margrave formula Permit(x) with a free variable x and one
Margrave formula Q′(x) for every first-order formula of the form Q(u, p)
occurring in T. For every formula

∧
i≤M Pi(u, p) ∧ ∧

j≤N ¬Qj(u, p) in T,
define the following Margrave rule in T′:

Permit(x) : − P′1(x), P′2(x), . . . , P′M(x),
¬Q′1(x),¬Q′2(x), . . . ,¬Q′N(x).

(A.3)

129

A. Appendix for FORBAC

The rule says that those access requests that satisfy P′1, P′2, . . ., P′M and not
Q′1, Q′2, . . ., Q′N are authorized. It is easy to check that an access request
is authorized by T iff the access request is also authorized by T′. The same
technique can be used to translate policies in F into policies in other popular
and recent languages [10, 18, 19].

A.2 Complexity results for FORBAC

A.2.1 Complexity of deciding authorization in FORBAC

Theorem 87 Given a FORBAC-policy (Σ,UA,PA), a Σ-FORBAC-structure
K = (S, I), a user u ∈ USERSS, and a permission p ∈ PERMSS, deciding
whether u is authorized for p takes time

O
(∣∣∣ROLESS

∣∣∣ · |K|2 · (|UA|+ |PA|)) ,

where ROLESS is the set of role instances in K, |K| is the length of K

encoded as a string, |UA| = ∑R∈RT(Σ) |UAR|, and |PA| = ∑R∈RT(Σ) |PAR|..

Proof. The next algorithm checks if u is authorized for p:

1 For every r ∈ ROLESS, do the following.

a) Compute JUAR(u, r) ∧ PAR(r, p)K, a propositional Boolean for-
mula obtained from UAR(u, r) ∧ PAR(r, p) by replacing every
atomic formula ϕ with > or ⊥, depending on whether K, σu,p � ϕ
or not. Here, σu,p is the substitution mapping u and p to u and p,
respectively.

b) If JUAR(u, r) ∧ PAR(u, r)K evaluates to true, then output that u
is authorized for p; otherwise, try another r ∈ ROLESS.

2 If this fails with all r ∈ ROLESS, then output that u is not authorized
for p.

Note that Steps 1b and 2 take O (|UA|+ |PA|) and constant time, respec-
tively. It suffices to show then that Step 1a takes O

(
|K|2 · (|UA|+ |PA|)

)
time. We can achieve this time by encoding K in a way that (i) checking the
value of f I(e) for f a single-valued attribute and e ∈ {u, r, p} takes O(|K|)-
time and (ii) checking whether e ∈ FI(v) holds, for F a set-valued attribute,
e ∈ {u, r, p}, and v an integer or a string, takes O(|K|)-time. As a result,
checking whether K, σu,p � ϕ, for an atomic formula ϕ, takes O

(
|K|2

)
-

time. �

130

A.2. Complexity results for FORBAC

A.2.2 Complexity of deciding satisfiability of an existential FOR-
BAC-formula

We now prove Theorem 50: Deciding satisfiability of an existential FORBAC-
formula is NP-complete.

We prove NP-hardness by reduction to the satisfiability problem for propo-
sitional Boolean formulas. Let ψ be a Boolean propositional formula. De-
fine a FORBAC-signature that contains a single-valued attribute fp of type
USERS → INT, for each proposition p in ψ. Let ∃u. ψ′(u) be the existen-
tial FORBAC-formula where ψ′(u) is obtained from ψ by replacing every
proposition p in ψ with fp(u) = 1. Note that ∃u. ψ′(u) is satisfiable iff ψ is
satisfiable. Hence, satisfiability of existential FORBAC-formulas is NP-hard.

We now prove that satisfiability of existential FORBAC-formulas is in NP.
Let Σ be a FORBAC-signature and

Φ := ∃x1 : S1 ∃x2 : S2 . . . ∃xk : Sk . ϕ(x1, x2, . . . , xk) (A.4)

be an existential FORBAC-formula over Σ. We assume that all functions
map to integers. The proof for the general case is analogous. A certificate
for Φ is a function C mapping every single-valued term in Φ to an integer
and every set-valued term in Φ to a set of integers. A term is any single or
set-valued term. For a term t occurring in C, let JtKC := C(t). C satisfies a
formula ψ if the expression that results from replacing every term t in ψ with
JtKC evaluates to true. Note that Φ is satisfiable iff there is a certificate that
satisfies Φ.

Notation used in the proof. We define the size of a certificate C for Φ. The
size of an integer is the length of its natural representation as a string. The
size of a set of integers is the sum of the sizes of its elements. The size of
a certificate C for Φ is the sum of all the sizes of JtKC , where t ranges over
terms occurring in Φ.

From now on, we write t and t′ to denote single-valued terms, c and c′

to denote integer constants, T and T′ to denote set-valued terms, C and C′

to denote sets of integer constants, f (e) to denote any single-valued term
with f a single-valued attribute and e a variable, and F(e) to denote any
set-valued term with F a set-valued attribute and e a variable.

Goal of the proof. To show that the set of satisfiable existential FORBAC-
formulas is in NP, it suffices to show that for a satisfiable existential FOR-
BAC-formula Φ, there exists a certificate C that satisfies Φ and is small. A
certificate is small if its size is at most n2 log(d + n), where d is the size of
the largest integer constant occurring in Φ and n is the length of Φ. Observe
that d ≤ n.

131

A. Appendix for FORBAC

If Φ is satisfiable, then there exists a certificate C that satisfies Φ; however C
does not need to have a size polynomial in the length of Φ for two reasons.
First, the size of J f (e)KC might be large. Second, the set JF(e)KC might have
a large number of elements or some element in JF(e)KC might have a large
size. The rest of the proof shows how to build a small certificate C from C.

Auxiliary set. We start by building an auxiliary set σ having the following
property: any certificate that satisfies all formulas in σ also satisfies Φ. This
set is built as follows. For every atomic formula ψ occurring in Φ, put ψ in
σ, if C satisfies ψ, and put ¬ψ in σ, otherwise.

We now reduce the variety of types of formulas in σ by rewriting some of
them as follows:

1 f (e) ≤ t: Replace f (e) ≤ t with f (e) = t, if J f (e)KC = JtKC , and with
f (e) < t, otherwise.

2 t ≤ f (e): Proceed analogously.

3 f (e) = t: Replace every occurrence of f (e) in σ with t. After C is built,
define J f (e)KC as JtKC .

4 f (e) 6= t: If J f (e)KC < c, then replace every occurrence of this formula
with f (e) < t. Otherwise, replace it with f (e) > t.

5 c ∼ c′ with ∼∈ {=,≤,>, 6=}: Remove c ∼ c′ from σ.

6 C1 ∼ C2, with ∼∈ {=,⊆, 6=, 6⊆}: Remove the formula from σ.

7 c ∈ C or c /∈ C: Remove the formula from σ.

8 F(e) = T: Replace every occurrence of F(e) in σ with T. After C is
built, define JF(e)KC as JTKC .

9 F(e) 6= T: Replace F(e) 6= T in σ with F(e) * T if JF(e)KC * JTKC and
T * F(e) otherwise.

10 c ∈ F(e): Replace this formula in σ with {c} ⊆ F(e).

11 c /∈ F(e): Replace this formula in σ with F(e) * Z \ {c}.

12 f (e) /∈ C: Replace f (e) /∈ C in σ with f (e) ∈ Z \ C.

13 T * T′: Take a new unary function symbol f and a variable e and
replace T * T′ with the two formulas f (e) ∈ T and f (e) /∈ T′. Af-
terwards, define J f (e)KC as a number that belongs to JTKC but not to
JT′KC .

After this, every formula in σ has one of the following forms: c < f (e),
f (e) < c, f (e) < f ′(e′), C ⊆ F(e), F(e) ⊆ C, F(e) ⊆ F′(e′), f (e) ∈ F(e),
f (e) /∈ F(e), and f (e) ∈ C.

132

A.2. Complexity results for FORBAC

We sometimes write [ψ] ∈ σ instead of ψ ∈ σ to prevent awkward notation
like f (e) ∈ F(e) ∈ σ. For two set-valued terms T and T′, we say that T ⊆σ T′

if [T ⊆ T′] ∈ σ. We denote with ⊆∗σ the reflexive-transitive closure of ⊆σ.

Note that any certificate that satisfies all formulas in σ will also satisfy Φ. In
particular, C satisfies all formulas in σ.

Sketch of the proof. Let f1(e1), . . ., fm(em) be all the non-constant single-
valued terms that occur in Φ. We suppose that they are enumerated in a
way that J f j(ej)KC ≤ J f j+1(ej+1)KC , for j < m. We build from C a sequence
of certificates C = C0, C1, . . ., Cm that satisfies the following invariant: for
Cj and i < j, J fi(ei)KCj ≤ J f j(ej)KCj and J f j(ej)KCj ≤ j + d, where d is the
largest constant that occurs in Φ. Therefore, the size of J fi(ei)KCj is at most
log(j + d) ≤ log(n + d), which is polynomial in the length of Φ. After
that, we build from Cm a certificate C that satisfies Φ and where for every
set-valued term F(e) the size of JF(e)KC is also polynomial in the length of
Φ.

Construction of C1, C2, . . ., Cm. For j such that 0 < j ≤ m, suppose that
C0, C1, . . . , Cj−1 are already built. We explain how to build Cj. For any set-
valued term F(e), let JF(e)KCj := JF(e)KC . For i < j, let J fi(ei)KCj := J fi(ei)KCj−1

and for i > j, let J fi(ei)KCj := J fi(ei)KC . Next, we compute a value for J f j(ej)KCj

small enough that fits all the constraints in σ that f j(ej) must fulfill. First,
we compute the set Aj of feasible values for J f j(ej)KCj . Let Aj be the set of
integers a such that

1 J f j−1(ej−1)KCj−1 ≤ a, if j > 1.

2 c < a, for any integer constant c such that [c < f j(ej)] ∈ σ.

3 a ∈ C, for any set of constants C and any set-valued term F(e) such
that [f j(ej) ∈ F(e)] ∈ σ and F(e) ⊆∗σ C.

4 a /∈ C, for any set of constants C and any set-valued term F(e) such
that [f j(ej) /∈ F(e)] ∈ σ and C ⊆∗σ F(e).

5 a 6= J fi(ei)KCj−1 , for any single-valued term fi(ei) with i < j and any
set-valued term T such that

a) [fi(ei) ∈ T′] ∈ σ, [f j(ej) /∈ T] ∈ σ and T′ ⊆∗σ T, or

b) [fi(ei) /∈ T] ∈ σ, [f j(ej) ∈ T′] ∈ σ and T′ ⊆∗σ T.

Note that Aj is an intersection of sets of integer intervals, one set for every
item above. Furthermore, an extreme point in any of those intervals is either
J fi(ei)KCj−1 , for some i < j, or an integer constant occurring in σ. Therefore,
an extreme point in any interval of Aj is at most one plus the maximum

133

A. Appendix for FORBAC

among J f1(e1)KCj−1 , . . . , J f j−1(ej1)KCj−1 and d, the largest integer constant oc-
curring in σ. By our invariant, J fi(ei)KCj−1 ≤ d + j− 1, for any i < j. There-
fore, an extreme point in any interval of Aj is at most d + j.

Let f j(ej) be the minimum value of Aj. Note that (i) Aj is not empty, as
J f j(ej)KCj−1 ∈ Aj and (ii), for j > 1, Aj has a minimum, as it is bounded
below by J f j−1(ej−1)KCj−1 . Aj might be unbounded below when j = 1. In that
case, let J f1(e1)KC1 be an extreme point of A1 and, if A1 is the entire set of
integers, then let it be 0.

Recall that J f j(ej)KCj−1 ∈ Aj. Therefore, J f j(ej)KCj ≤ J f j(ej)KCj−1 ≤ j + d. More-
over, by Item 1, J fi (ei)KCj ≤ J f j

(
ej
)
KCj , for any i < j.

Correctness of construction of Cm. Let σS be the subset of σ that contains
all atomic formulas where a set-valued term of the form F(e) occurs.

Lemma 88 If C satisfies all formulas in σ, then Cm satisfies all formulas in
σ \ σS.

Proof. Suppose that C satisfies all formulas in σ. It suffices to show by
induction on j ≤ m that Cj satisfies all formulas in σ. The base case is
obvious, since C0 = C by definition, so suppose that Cj satisfies all formulas
in σ. We show that Cj+1 satisfies all formulas in σ. Cj and Cj+1 differ only
on the interpretation of f j(ej), so it suffices to show that Cj+1 satisfies any
atomic formula ψ ∈ σ that involves f j(ej). We evaluate the possible cases for
ψ:

• c < f j(ej). Since J f j(ej)KCj ∈ Aj, we have by Item 2 of the definition of
Aj that c < J f j(ej)KCj .

• f j(ej) < c. Recall that J f j(ej)KCj−1 ∈ Aj. Therefore, J f j(ej)KCj ≤ J f j(ej)KCj−1 .
Also, note that J f j(ej)KCj−1 < c as, by the induction hypothesis, Cj−1 sat-
isfies all formulas in σ. Therefore, J f j(ej)KCj < c.

• f j(ej) < f ′(e′). First, recall that J f j(ej)KCj ≤ J f j(ej)KCj−1 . Second, note
that J f j(ej)KCj−1 < J f ′(e′)KCj−1 as, by the induction hypothesis, Cj−1 sat-
isfies all formulas in σ. Finally, observe that f ′(e′) must be different
from f j

(
ej
)
, so J f ′(e′)KCj−1 = J f ′(e′)KCj . From these three observations,

we conclude that J f j(ej)KCj < J f ′(e′)KCj .

• f ′(e′) < f j(ej). By assumption, J f ′(e′)KC ≤ J f j(ej)KC . Since we assume
that J f`(e`)KC ≤ J fk(ek)KC , for any ` and k such that ` < k, we must
have that, for some i < j, f ′(e′) ≡ fi(ei). By our invariant, we have that
J fi(ei)KCj < J f j(ej)KCj . Therefore, J f ′(e′)KCj < J f j(ej)KCj .

• f j(ej) ∈ F(e) and f j(ej) /∈ F(e). Formulas of this form do not belong to
σ \ σS.

134

A.2. Complexity results for FORBAC

• f (e) ∈ C. Since J f j(ej)KCj ∈ Aj, we have, by Item 3 of the definition of
Aj, that J f j(ej)KCj ∈ C.

�

Once Cm is built, J fi(ei)KCm ≤ d + m ≤ d + n, for i ≤ m. Recall that d is the
largest constant occurring in Φ. Therefore, the size of J fi(ei)KCm , for i ≤ m, is
at most log(d + n).

Construction of C. We now address the problem that, for a set-valued term
of the form F(e), the size of JF(e)KCm might be very large. We define a final
certificate C where J f (e)KC := J f (e)KCm and JF(e)KC is the smallest set that
satisfies the following:

1 It contains the union of all sets of constants C such that C ⊆∗σ F(e).

2 It contains every J f (e)KC such that there is a formula of the form f (e) ∈
F′(e′) in σ and F′(e′) ⊆∗σ F(e).

Note that there is at least one set that satisfies this: JF(e)KCm . Therefore,
JF(e)KC ⊆ JF(e)KCm .

Correctness of construction of C.

Lemma 89 If Cm satisfies all formulas in σ \ σS, then C satisfies all formulas
in σ.

Proof. Suppose that Cm satisfies all formulas in σ \ σS. Note that Cm and C
agree on the interpretation of single-valued terms. Therefore, it suffices to
show that C satisfies all atomic formulas ψ ∈ σ that involve set-valued terms.
We proceed by evaluating the possible cases for ψ:

• C ⊆ F(e). By construction, C ⊆ JF(e)KC .

• F(e) ⊆ C. Recall that JF(e)KC ⊆ JF(e)KCm and that Cm interprets set-
valued terms in the same way C does. Therefore JF(e)KC ⊆ JF(e)KC .
Since C satisfies all formulas in σ, we have JF(e)KC ⊆ C. Therefore
JF(e)KC ⊆ C.

• F(e) ⊆ F′(e′). The same argument holds. Recall that JF(e)KC ⊆
JF(e)KCm and that Cm interprets set-valued terms in the same way C
does. Therefore JF(e)KC ⊆ JF(e)KC . Since C satisfies all formulas in σ,
we have JF(e)KC ⊆ JF′(e′)KC . Therefore JF(e)KC ⊆ JF′(e′)KC .

• f (e) ∈ F(e). By construction, J f (e)KC ∈ JF(e)KC .

• f j(ej) /∈ F(e), with j ≤ m. By the definition of JF(e)KC , it suffices to
show that

135

A. Appendix for FORBAC

1 J f j(ej)KC /∈ C, for any set of integer constants C such that C ⊆∗σ
F(e). Recall that J f j(ej)KC = J f j(ej)KCm = J f j(ej)KCj ∈ Aj, which
implies, by Item 4 of the definition of Aj, that J f j(ej)KC /∈ C.

2 J f j(ej)KC 6= J f`(e`)KC for any single-valued term f`(e`) such that
[f`(e`) ∈ F′(e′)] ∈ σ and F′(e′) ⊆∗σ F(e). We consider two subcases.
If ` < j, then since J f j(ej)KC = J f j(ej)KCj ∈ Aj, [f j(ej) /∈ F(e)] ∈
σ, [f`(e`) ∈ F′(e′)] ∈ σ and F′(e′) ⊆∗σ F(e), by Item 5a of the
definition of Aj, we have that J f j(ej)KCj 6= J f`(e`)KCj . If ` > j, then
since J f`(e`)KC = J f`(e`)KC` ∈ A`, [f j(ej) /∈ F(e)] ∈ σ, [f`(e`) ∈
F′(e′)] ∈ σ and F′(e′) ⊆∗σ F(e), by Item 5b of the definition of A`,
we have that J f`(e`)KC` 6= J f j(ej)KC` .

We conclude then that J f j(ej)KC /∈ JF(e)KC .

�

This concludes the proof of Theorem 50. We showed that the problem of
deciding satisfiability of existential FORBAC-formulas is NP-hard by reduc-
tion of the Boolean satisfiability problem. Then we showed that this problem
is in NP. For this, we assumed given an existential FORBAC-formula Φ and
a certificate C for Φ and we explained how to compute a certificate C whose
size is polynomial in the length of Φ. C was built from a sequence C1, . . . , Cm
of auxiliary certificates, which were in turn built from C. Lemmas 88 and 89
ensure that C is a certificate for Φ. Hence, deciding satisfiability of existen-
tial FORBAC-formulas is NP-complete.

136

Appendix B

Appendix for Rhapsody

B.1 ABAC instances used for experiments

Amazon 1. These are instances built from two access logs provided by Ama-
zon in Kaggle, a platform for predictive modelling competitions [81, 82].
One log is for training and contains access requests made by Amazon’s em-
ployees over two years [82]. Each entry in this log describes an employee’s
request to a resource and whether the request was authorized or not. The
request contains all the employee’s attribute values and the resource identi-
fier. The second log is for evaluation. It contains access requests only, but it
does not specify which requests are authorized. Participants in the Kaggle
competition had to decide for the evaluation log which requests to authorize.
The logs contain more than 12,000 users and 7,000 resources.

From the Amazon logs one can build an ABAC instance (U, P, A, D), where
U and P are the set of users and the set of resources occurring in the logs,
respectively, and A ∪ D are the requests occurring in the training log. How-
ever, such an instance is too large to fit in main memory and some of the im-
plementations of competing ABAC mining algorithms (Rhapsody included)
cannot handle such large amounts of data. To deal with this, we observe that
the only permission attribute is the resource’s identifier, so any ABAC rule
authorizes requests for at most one resource. Therefore, any ABAC policy
for (U, P, A, D) can be partitioned into several policies, each authorizing re-
quests for only one resource. Hence, rather than mining over (U, P, A, D),
we can mine over instances of the form (U, {p}, Ap, Dp), where p is a single
resource and Ap ∪ Dp are all requests for p occurring in the training log.
These instances are much smaller and are easily handled by all competing
ABAC mining algorithms.

For our experiments, we selected the five instances (U, {p}, Ap, Dp) with the
highest value for |Ap ∪ Dp|. In all cases, |Ap ∪ Dp| / |U| < 0.07. Hence, the
log contains, for each resource, less than 7% of all possible requests.

137

B. Appendix for Rhapsody

Table B.1: Properties of the basic organization policies

Instance
1 2 3 4 5

Num. jobs 10 10 10 20 20
Num. categories 5 10 20 5 10

Amazon 2. These are instances built from access data provided by Amazon
in the UCI machine learning repository [93]. The data contains more than
36,000 users and 27,000 permissions. We took the eight most requested per-
missions and for each of them, we created an ABAC instance (U, {p}, A, D)
where U is the set of all users in the access data, p is the permission, A is the
set of users who requested p and were authorized, and D is the set of users
who requested p and were denied.

Basic Organization. These are synthetic instances with only one user at-
tribute value, Job, identifying the job the user performs and only one permis-
sion attribute value, Category, identifying the category where the permission
belongs. We use natural numbers to identify jobs and categories. There is
only one permission for each category and there are 100 users for each job.
For each category, we assume that all jobs, except one, are authorized to
request permissions for that category. For each category c, we denote by pc
the permission from that category and by jc the job that is not authorized
to request pc. We let J and C denote the total number of jobs and cate-
gories, respectively. The values for J and C in each instance are described in
Table B.1.

We now describe the log for each instance. For each category c and for each
job j 6= jc, the fraction of users with job j that have requested pc is c/C.
We use this to simulate a non-uniform distribution of the categories of the
permissions requested by users. In addition, for each category c, there is
only one user with job jc that has requested access to pc. This yields fewer
denied requests than authorized requests in the log.

138

B.2. Proofs

B.2 Proofs

Observation 1

Proof. We assume that |JrKU×P| ≥ T. For the case when |JrKU×P| ≤ T, the
proof follows directly from Definitions 56 and 57.

(⇒) Assume that RelT(r) ≥ K and let > be a trivially true rule. Observe
that > ∈ FT(r), the set of refinements of r that cover at least T requests.
Therefore Conf (r) = Conf (r ∧ >) ≥ RelT(r) ≥ K. Let now r′ be a rule such
that |Jr ∧ r′KU×P| ≥ T. Then r′ ∈ FT(r), which implies that Conf (r ∧ r′) ≥
RelT(r) ≥ K. By Definition 56, r is not overly permissive with respect to T
and K.

(⇐) Assume now that Conf (r) ≥ K and that r is not overly permissive with
respect to T and K. Let r′ ∈ FT(r). Then r ∧ r′ is a refinement of r with
|Jr ∧ r′KU×P| ≥ T. Since r is not overly permissive, Conf (r ∧ r′) ≥ K. This
means that K ≤ minr′∈FT(r) Conf (r ∧ r′) = RelT(r). �

Observation 2

Proof. Suppose that r2 proves that RelT(r1) < K. Then, r2 ∈ FT(r1), as
defined in Definition 57. Therefore RelT(r1) < K. �

Observation 3

Proof. (⇒) Let r1 and r2 be two equivalent rules. Then Jr1KU×P = Jr2KU×P.
This implies that nU×P(r1) = |Jr1KU×P| = |Jr2KU×P| = nU×P(r2). Moreover,
nU×P(r1 ∧ r2) = |Jr1 ∧ r2KU×P| = |Jr1KU×P ∩ Jr2KU×P| = |JriKU×P| = nU×P(ri),
for i ∈ {1, 2}.
(⇐) Suppose that nU×P(r1) = nU×P(r2) = nU×P(r1 ∧ r2). Then, for any
i ∈ {1, 2}, |JriKU×P| = nU×P(ri) = nU×P(r1 ∧ r2) = |Jr1KU×P ∩ Jr2KU×P|.
Since Jr1KU×P and Jr2KU×P are finite, it follows that Jr1KU×P ⊆ Jr2KU×P and
Jr2KU×P ⊆ Jr1KU×P, which means that Jr1KU×P = Jr2KU×P. Therefore r1 and
r2 are equivalent. �

Theorem 1

Proof. Let π be the policy output by Rhapsody. Observe that π = FreqRules\
(UnrelRules∪ CoversDenied∪ Subsumed).

(⇒) Let r ∈ π. Therefore, r ∈ FreqRules, r /∈ UnrelRules, r /∈ CoversDenied,
and r /∈ Subsumed.

(i) Since r ∈ FreqRules, |JrKU×P| ≥ T.

(ii) Since r /∈ CoversDenied, r does not cover a denied request.

(iii) Since r /∈ UnrelRules, there is no r′ ∈ FreqRules proving that RelT(r) <
K. That is, Conf (r ∧ r′′) ≥ K, for any r′′ such that |Jr ∧ r′′KU×P| ≥ T.
Thus, by the definition of RelT, we have that RelT(r) ≥ K.

139

B. Appendix for Rhapsody

(iv) Since r /∈ Subsumed, there is no r′ ∈ RelRules both shorter than and
equivalent to r. Hence there is no rule r′ that is both shorter than and
equivalent to r, with RelT(r′) ≥ K.

(⇐) Let r be a rule such that |JrKU×P| ≥ T, RelT(r) ≥ K, r covers no denied
request, and for which there is no rule r′ that is both shorter and equivalent
to r, with RelT(r′) ≥ K. It suffices to show that, after Rhapsody finishes,
r ∈ FreqRules, r /∈ UnrelRules, r /∈ CoversDenied, and r /∈ Subsumed.

(i) If |JrKU×P| ≥ T, then the set consisting of all atoms occurring in r is
found by APRIORI. As a consequence, r ∈ FreqRules.

(ii) Since r covers no denied request, then r /∈ CoversDenied.

(iii) If RelT(r) ≥ K, then, by the definition of RelT, no rule r′ ∈ FreqRules
proves that RelT(r) < K. Therefore r /∈ UnrelRules.

(iv) If there is no rule r′ with RelT(r′) ≥ K that is both shorter than and
equivalent to r, then r /∈ Subsumed.

Since r ∈ FreqRules, r /∈ UnrelRules, r /∈ CoversDenied, and r /∈ Subsumed, we
conclude that r ∈ π. �

140

Appendix C

Appendix for Unicorn

C.1 Grid search for policy mining

Policy miners sometimes require input values for hyper-parameters. To deter-
mine the values that make the miners compute the best policies, we use grid
search [118], which we briefly recall next. Grid search uses cross-validation,
which we recall in Section 4.5.

Let α1, . . . , αN be the hyper-parameters of a policy miner. In grid search, for
i ≤ N, one defines a set Di of candidate values. Then for each (a1, . . . , aN) ∈
D1 × . . .×DN , one executes cross-validation using (a1, . . . , aN) as values for
the hyper-parameters. Let TPR (a1, . . . , aN) and FPR (a1, . . . , aN) be the TPR
and FPR of the policy mined during that execution of cross-validation, re-
spectively. Finally, one chooses the tuple (a∗1 , . . . , a∗N) that maximizes TPR (a1, . . . , aN)
subject to FPR (a∗1 , . . . , a∗N) ≤ c. The threshold c for the FPR is arbitrary (we
used 0.05) and can be adjusted. It defines a maximum bound of false posi-
tives that can be tolerated from a mined policy.

C.2 Optimal parameters for the mean-field approximat-
ing distribution

Variational inference establishes that the set of parameters
{

θ̂f | f ∈ F (ϕ)
}

that makes q best approximate hF is defined by the following equation:

θ̂f (b) =
exp (Ef 7→b[log P (Auth, I)])

∑b′∈Range(f) exp
(
Ef 7→b′ [log P (Auth, I)]

) . (C.1)

The derivation of this equation can be found in [23]. From here, we derive
the following:

141

C. Appendix for Unicorn

θ̂f (b) =
exp (Ef 7→b[log P (Auth, I)])

∑b′∈Range(f) exp
(
Ef 7→b′ [log P (Auth, I)]

) (C.2)

=
exp (Ef 7→b[log P (I | Auth) + log P (Auth)])

∑b′∈Range(f) exp
(
Ef 7→b′ [log P (I | Auth) + log P (Auth)]

) (C.3)

=
exp (Ef 7→b[log P (I | Auth)]) exp (Ef 7→b[log P (Auth)])

∑b′ exp
(
Ef 7→b′ [log P (I | Auth)]

)
exp

(
Ef 7→b′ [log P (Auth)]

) . (C.4)

Observe that Ef 7→b[log P (Auth)] = log P (Auth) as log P (Auth) does not
involve f. Therefore,

θ̂f (b) =
exp (Ef 7→b[log P (I | Auth)]) exp (log P (Auth))

∑b′∈Range(f) exp
(
Ef 7→b′ [log P (I | Auth)]

)
exp (log P (Auth))

(C.5)

=
exp (Ef 7→b[log P (I | Auth)])

∑b′∈Range(f) exp
(
Ef 7→b′ [log P (I | Auth)]

) (C.6)

=
exp (−βEf 7→b[L (Auth,X; ϕ)])

∑b′∈Range(f) exp
(
−βEf 7→b′ [L (Auth,X; ϕ)]

) . (C.7)

C.3 Simplifying the computation of expectations

We prove here Lemma 79. We start with some auxiliary lemmas and defini-
tions.

Lemma 2 Let f and g be facts, ϕ be a formula in L, (u, p) ∈ U × P, and
{ψi}i ⊆ L such that {ψX

i (u, p)}i is a set of mutually independent random
variables under the distribution q.

Ef 7→b[g] =

{
b if f = g

θg otherwise.
(C.8)

Ef 7→b

[
(¬ϕ)X (u, p)

]
= 1−Ef 7→b

[
ϕX(u, p)

]
. (C.9)

Ef 7→b

(∧
i

ψi

)X

(u, p)

 = ∏
i

Ef 7→b

[
ψX

i (u, p)
]
. (C.10)

Proof. Observe that, for a Bernoulli random variable X, E [X] = P (X = 1).
Recall also that E [XY] = E [X]E [Y], whenever X and Y are mutually inde-
pendent. With these observations and using standard probability laws, one
can derive the equations above. �

142

C.4. Modeling RBAC temporal constraints

Lemma 3 Let ϕ ∈ L and let (u, p) ∈ U × P. If ϕX (u, p) is diverse, then
Ef 7→b

[
ϕX (u, p)

]
can be computed using only the equations from Lemma 79.

This lemma is proved by induction on ϕ and by recalling that any two dif-
ferent random facts are independent under the distribution q, which follows
from the way that the distribution q is factorized.

Corollary 4

Ef 7→b[L (Auth,X; ϕ)] = ∑
(u,p)∈U×P

∣∣∣Auth(u, p)−Ef 7→b

[
ϕX(u, p)

]∣∣∣ . (C.11)

Proof. L (Auth,X; ϕ) can be rewritten as follows:

∑
(u,p)∈Auth

(
1− ϕX (u, p)

)
+ ∑

(u,p)∈U×P\Auth
ϕX(u, p). (C.12)

The result follows from the linearity of expectation. �

Lemma 79 follows from Lemma 3 and Corollary 4.

C.4 Modeling RBAC temporal constraints

C.4.1 Periodic expressions

We recall here the definition of temporal constraints and then explain how
we model them in our language L. We start by defining a periodic expres-
sion. In order to prove some results, we use a formal definition instead of
the original definition [20].

Definition 5 A calendar sequence is a tuple C = (C0, . . . , Cn) of strings. Each
Ci, for i ≤ n, is called a calendar. �

Each string in a calendar sequence denotes a time unit. A standard example
of a calendar sequence is Cs =

(
“Months′′, “Days′′, “Hours′′, “Hours′′

)
. The

string “Hours′′ intentionally occurs twice.

Definition 6 Let C = (Ci)i≤n be a calendar sequence. A C-periodic expression
is a tuple

(O1, O2, . . . , On−1, w) ∈
(

2N
)n−1

×N. (C.13)

The set of all C-periodic expressions is denoted by PEx (C). �

Intuitively, for i < n, the set Oi represents a set of time units in Ci and r is a
time length, measured with the unit Cn. We give an example.

143

C. Appendix for Unicorn

Example 7 Let Cs =
(
“Months′′, “Days′′, “Hours′′, “Hours′′

)
. The first eight

hours of the first and fifth day of each even month can be represented with
the following Cs-periodic expression:

({2, 4, . . . , 12} , {1, 5} , {1} , 8) .

Here, the first set in the tuple denotes the even months, the second set de-
notes the first and fifth day, the third set denotes the first hour, and the last
number denotes the 8-hour length. �

Definition 8 Let C = (Ci)i≤n be a calendar sequence. A C-time instant t is a
tuple in Nn−1. A C-time instant t = (ti)i<n satisfies a C-periodic expression
(O1, . . . , On−1, w) if all of the following hold:

• For i < n− 1, ti ∈ Oi.

• There is t′n−1 ∈ On−1 such that t′n−1 ≤ tn−1 < t′n−1 ⊕ w. Here, t′n−1 ⊕ w
is the result of transforming t′n−1 and w to a common time unit and
then adding them.

�

Example 9 Let P be the Cs-periodic expression from Example 7. Then the
Cs-time instant (4, 1, 2) (i.e., the second hour of the first day of April) satisfies
P, whereas the Cs-time instant (5, 1, 2) (i.e., the second hour of the first day
of May) does not. �

C.4.2 Formalizing periodic expressions in L
Let C be a calendar sequence. We now show how to formalize periodic
expressions in PEx (C) in our language L. For illustration, we show how to
do this when C = Cs, but the general case is analogous. We start by defining
a signature for defining temporal constraints. We first formally introduce
the components of this signature and then give some intuition.

Definition 10 Let Σt be a signature containing the following:

• A sort INSTANTS for denoting Cs-time instants.

• Three sorts MONTHS, DAYS, HOURS for denoting months, days, and
hours, respectively.

• Three flexible unary relation symbols:

– PM : MONTHS.

– PD : DAYS.

– PH : HOURS.

144

C.4. Modeling RBAC temporal constraints

• Three rigid unary function symbols:

– monthOf : INSTANTS→MONTHS.

– dayOf : INSTANTS→ DAYS.

– hourOf : INSTANTS→ HOURS.

• Rigid binary relation symbols≤: HOURS×HOURS and <: HOURS×
HOURS.

• Rigid constant symbols 1, 2, . . . , 12 of type MONTHS.

• Rigid constant symbols 1, 2, . . . , 31 of type DAYS.

• Rigid constant symbols 1, 2, . . . , 24 of type HOURS.

�

For an interpretation function I, the sets PMI, PDI, and PHI define the first
three entries of a Cs-periodic expression. The functions monthOf I, dayOf I,
and hourOf I compute, respectively, the month, day, and hour of a time in-
stant. Recall that monthOf , dayOf , and hourOf are rigid symbols, so monthOf I,
dayOf I, and hourOf I do not depend on I.

Let INSTANTS be a sort denoting Cs-time instants, t be a variable of type
INSTANTS, and ϕ (t) be the following formula:(∨

1≤m≤12

(
PM (m) ∧ monthOf (t) = m

))
∧ (C.14)(∨

1≤d≤31

(
PD (d) ∧ dayOf (t) = d

))
∧(∨

1≤h≤24

(
PH (h) ∧ h ≤ hourOf (t) < h + w

))
.

Definition 11 We define M as the following mapping from interpretation
functions to PEx (Cs) defined as follows. For an interpretation function I,
M (I) := (MI, DI, HI, 1), where

• MI :=
{

m | m ∈ PMI
}

,

• DI :=
{

d | d ∈ PDI
}

,

• HI :=
{

h | h′ ≤ h < h′ + wI, for some h′ ∈ PHI
}

,

�

145

C. Appendix for Unicorn

We use M to prove Theorem 12 below, which claims that ϕ is a template
formula for the set of periodic expressions. Note thatM is not surjective on
PEx (Cs). However, any periodic expression (O1, O2, O3, w) is equivalent to
an expression of the form (O1, O2, Ow

3 , 1), where Ow
3 := {o + w′ | o ∈ O3, w′ < w} .

Therefore, although M is not surjective, it is expressive enough to capture
all periodic expressions up to equivalence.

Theorem 12 For every interpretation function I, a Cs-time instant t = (m, d, h)
satisfiesM (I) = (MI, DI, HI, 1) iff t ∈ ϕI.

Proof.

t satisfiesM (I) (C.15)
⇔ m ∈ MI, d ∈ DI, h ∈ HI (C.16)

⇔ m ∈ PMI, d ∈ PDI, there is h′ ∈ PHI such that h′ ≤ h < h′ + wI (C.17)

⇔

 m ∈ PMI, monthOf I (t) = m,
d ∈ PDI, dayOf I (t) = d,
there is h′ ∈ PHI s.t. h′ ≤ h < h′ + wI, hourOf I (t) = h

 (C.18)

⇔ t ∈ ϕI. (C.19)

�

C.5 Datasets and synthetic policies used for experi-
ments

C.5.1 Datasets for BM-RBAC

We use the access control matrix provided by Amazon for the IEEE MLSP
2012 competition [72]. They assign three types of permissions, named “HOST”,
“PERM GROUP”, and “SYSTEM GROUP”. For each type of permission, we
created an access control matrix by collecting all users and all permissions
belonging to that type. There are approximately 30,000 users, 1,700 permis-
sions of type “HOST”, 6,000 of type “PERM GROUP”, and 20,000 of type
“SYSTEM GROUP”.

The resulting access control matrices are far too large to be handled effi-
ciently by the policy miner we developed. To address this, during 5-fold
cross-validation (see Section 4.1.4 for an overview), we worked instead with
an access control submatrix induced by a sample of 30% of all users. Each
fold used a different sample of users. To see why this is enough, we remark
that, in RBAC policies, the number R of roles is usually much smaller than
the number N of users. Moreover, the number K of possible subsets of per-
missions that users are assigned by RBAC policies is small in comparison to
the whole set of possible subsets of permissions. If N is much larger than

146

C.5. Datasets and synthetic policies used for experiments

K, then, by the pidgeonhole principle, many users have the same subset of
permissions. Therefore, it is not necessary to use all N users to mine an
adequate RBAC policy, as only a fraction of them has all the necessary infor-
mation. The high TPR (above 80%) of the policy that we mined supports the
fact that using a submatrix is still enough to mine policies that generalize
well.

C.5.2 Synthetic policy for spatio-temporal RBAC

We present here the synthetic spatio-temporal RBAC policy that we used
for our experiments. We assume the existence of five rectangular buildings,
described in Table C.1. The left column indicates the building’s name and
the right column describes the two-dimensional coordinates of the build-
ing’s corners. There are five roles, which we describe next. We regard a
permission as an action executed on an object.

Name Corners
Main building (1, 3), (1, 4), (4, 4), (4, 3)

Library (1, 1), (1, 2), (2, 2), (2, 1)
Station (8, 1), (8, 9), (9, 9), (9, 1)

Laboratory (2, 6), (2, 8), (4, 8), (4, 6)
Computer room (6, 6), (6, 7), (7, 7), (7, 6)

Table C.1

The first role assigns a permission to a user if all of the following hold:

• The user is at most 1 meter away from the computer room.

• The object is in the computer room or in the laboratory.

• The current day is an odd day of the month.

• The current time is between 8AM and 5PM.

The second role assigns a permission to a user if all of the following hold:

• The user is outside the library.

• The object is at most 1 meter away from the library.

• Either

– the current day is before the 10th day of the month and the current
time is between 2PM and 8PM or

– the current day is after the 15th day of the month and the current
time is between 8AM and 12PM.

147

C. Appendix for Unicorn

The third role assigns a permission to a user if all of the following hold:

• The user is at most 3 meters away from the main building.

• The object is at most 3 meters away from the main building.

The fourth role assigns a permission to a user if all of the following hold:

• The user is inside the library.

• The object is outside the library.

• The current day is before the 15th day of the month.

• The current time is between 12AM and 12PM.

The fifth role assigns a permission to a user if all of the following hold:

• The user is inside the main building, at most 1 meter away from the
library, inside the laboratory, at most 2 meters away from the computer
room, or inside the station.

• The object satisfies the same spatial constraint.

• The current day is before the 15th day of the month.

• The current time is between 12AM and 12PM.

148

Bibliography

[1] Business: The Economy, how Leeson broke the bank. http://news.

bbc.co.uk/2/hi/business/375259.stm.

[2] Ali E Abdallah and Etienne J Khayat. A formal model for parameter-
ized role-based access control. In Formal Aspects in Security and Trust,
pages 233–246. Springer, 2005.

[3] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining associ-
ation rules between sets of items in large databases. In ACM SIGMOD
Record, volume 22, pages 207–216. ACM, 1993.

[4] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for
mining association rules. In Proc. 20th International Conference on Very
Large Databases, VLDB, volume 1215, pages 487–499, 1994.

[5] Gail-Joon Ahn and Ravi Sandhu. The rsl99 language for role-based
separation of duty constraints. In Proceedings of the fourth ACM work-
shop on Role-based access control, pages 43–54. ACM, 1999.

[6] Subhendu Aich, Shamik Sural, and Arun K Majumdar. STARBAC:
Spatiotemporal role based access control. In OTM Confederated Interna-
tional Conferences” On the Move to Meaningful Internet Systems”, pages
1567–1582. Springer, 2007.

[7] Mohammad A Al-Kahtani and Ravi Sandhu. A model for attribute-
based user-role assignment. In Computer Security Applications Confer-
ence, 2002. Proceedings. 18th Annual, pages 353–362. IEEE, 2002.

[8] Mohammad A Al-Kahtani and Ravi Sandhu. Induced role hierarchies
with attribute-based rbac. In Proceedings of the eighth ACM Symposium
on access control models and technologies, pages 142–148. ACM, 2003.

149

http://news.bbc.co.uk/2/hi/business/375259.stm
http://news.bbc.co.uk/2/hi/business/375259.stm

Bibliography

[9] Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer,
and Cynthia Rudin. Learning certifiably optimal rule lists. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 35–44. ACM, 2017.

[10] Konstantine Arkoudas, Ritu Chadha, and Jason Chiang. Sophisticated
access control via smt and logical frameworks. ACM Transactions on
Information and System Security (TISSEC), 16(4):17, 2014.

[11] Martin Atzmueller and Frank Puppe. SD-map–a fast algorithm for
exhaustive subgroup discovery. In Knowledge Discovery in Databases:
PKDD 2006, pages 6–17. Springer, 2006.

[12] Ezedin Barka, Ravi Sandhu, et al. A role-based delegation model and
some extensions. In Proceedings of the 23rd National Information Systems
Security Conference, volume 4, pages 49–58. Citeseer, 2000.

[13] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Handbook of Model Checking, pages 305–343. Springer, 2018.

[14] Jon Barwise. Handbook of mathematical logic, volume 90. Elsevier, 1982.

[15] David Basin, Manuel Clavel, Jürgen Doser, and Marina Egea. Auto-
mated analysis of security-design models. Information and Software
Technology, 51(5):815–831, 2009.

[16] Moritz Y Becker, Cédric Fournet, and Andrew D Gordon. SecPAL: De-
sign and semantics of a decentralized authorization language. Journal
of Computer Security, 18(4):619–665, 2010.

[17] Moritz Y Becker and Peter Sewell. Cassandra: Flexible trust manage-
ment, applied to electronic health records. In Computer Security Founda-
tions Workshop, 2004. Proceedings. 17th IEEE, pages 139–154. IEEE, 2004.

[18] Ameni Ben Fadhel, Domenico Bianculli, and Lionel Briand.
GemRBAC-DSL: a high-level specification language for role-based ac-
cess control policies. In Proceedings of the 21st ACM on Symposium on
Access Control Models and Technologies, pages 179–190. ACM, 2016.

[19] Ameni Ben Fadhel, Domenico Bianculli, Lionel Briand, and Benjamin
Hourte. A model-driven approach to representing and checking
RBAC contextual policies. In Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, pages 243–253. ACM, 2016.

[20] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A tempo-
ral role-based access control model. ACM Transactions on Information
and System Security (TISSEC), 4(3):191–233, 2001.

150

Bibliography

[21] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. ABAC with group
attributes and attribute hierarchies utilizing the policy machine. In
Proceedings of the 2nd ACM Workshop on Attribute-Based Access Control,
pages 17–28. ACM, 2017.

[22] Rafae Bhatti, Arif Ghafoor, Elisa Bertino, and James BD Joshi. X-
gtrbac: an xml-based policy specification framework and architecture
for enterprise-wide access control. ACM Transactions on Information
and System Security (TISSEC), 8(2):187–227, 2005.

[23] Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006.

[24] Matt Bishop. Computer security: art and science. Addison-Wesley Pro-
fessional, 2003.

[25] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. Label-based access
control: an ABAC model with enumerated authorization policy. In
Proceedings of the 2016 ACM International Workshop on Attribute Based
Access Control, pages 1–12. ACM, 2016.

[26] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational in-
ference: A review for statisticians. Journal of the American Statistical
Association, 112(518):859–877, 2017.

[27] Piero Bonatti, Clemente Galdi, and Davide Torres. ERBAC: event-
driven RBAC. In Proceedings of the 18th ACM symposium on Access
control models and technologies, pages 125–136. ACM, 2013.

[28] Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision
problem. Springer Science & Business Media, 2001.

[29] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Ol-
shen. Classification and regression trees. CRC press, 1984.

[30] Thang Bui, Scott D Stoller, and Jiajie Li. Mining relationship-based
access control policies. arXiv preprint arXiv:1708.04749, 2017.

[31] Suroop Mohan Chandran and James BD Joshi. LoT-RBAC: a location
and time-based RBAC model. In International Conference on Web Infor-
mation Systems Engineering, pages 361–375. Springer, 2005.

[32] Suresh N Chari and Ian M Molloy. Generation of attribute based access
control policy from existing authorization system, September 2 2014.
US Patent App. 14/474,747.

151

Bibliography

[33] Suresh N Chari and Ian M Molloy. Generation of attribute based access
control policy from existing authorization system, February 16 2016.
US Patent 9,264,451.

[34] Liang Chen and Jason Crampton. On spatio-temporal constraints and
inheritance in role-based access control. In Proceedings of the 2008 ACM
symposium on Information, computer and communications security, pages
205–216. ACM, 2008.

[35] Yuan Cheng, Khalid Bijon, and Ravi Sandhu. Extended ReBAC admin-
istrative models with cascading revocation and provenance support.
In Proceedings of the 21st ACM on Symposium on Access Control Models
and Technologies, SACMAT ’16, pages 161–170, New York, NY, USA,
2016. ACM.

[36] Peter Clark and Robin Boswell. Rule induction with CN2: Some recent
improvements. In European Working Session on Learning, pages 151–163.
Springer, 1991.

[37] Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine
learning, 3(4):261–283, 1989.

[38] William W Cohen. Fast effective rule induction. In Proceedings of the
twelfth international conference on machine learning, pages 115–123, 1995.

[39] Carlos Cotrini, Thilo Weghorn, and David Basin. Mining ABAC rules
from sparse logs. In European Symposium on Security and Privacy (Eu-
roS&P). IEEE, 2018. ©2018, IEEE. Reprinted with permission.

[40] Carlos Cotrini, Thilo Weghorn, David Basin, and Manuel Clavel. An-
alyzing first-order role based access control. In Computer Security
Foundations Symposium (CSF)., pages 3–17. IEEE, 2015. ©2015, IEEE.
Reprinted with permission.

[41] Xiutao Cui, Yuliang Chen, and Junzhong Gu. Ex-RBAC: an extended
role based access control model for location-aware mobile collabora-
tion system. In Internet Monitoring and Protection, 2007. ICIMP 2007.
Second International Conference on, pages 36–36. IEEE, 2007.

[42] Massimiliano de Leoni and Wil MP van der Aalst. Data-aware process
mining: discovering decisions in processes using alignments. In Pro-
ceedings of the 28th annual ACM Symposium on Applied Computing, pages
1454–1461. ACM, 2013.

[43] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

152

Bibliography

[44] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo the-
ories: introduction and applications. Communications of the ACM,
54(9):69–77, 2011.

[45] Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž Hočevar,
Mitar Milutinovič, Martin Možina, Matija Polajnar, Marko Toplak,
Anže Starič, Miha Štajdohar, Lan Umek, Lan Žagar, Jure Žbontar,
Marinka Žitnik, and Blaž Zupan. Orange: Data mining toolbox in
python. Journal of Machine Learning Research, 14:2349–2353, 2013.

[46] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool
paper at http://yices. csl. sri. com/tool-paper. pdf, 2(2):1–2, 2006.

[47] AG D’yakonov. Solution methods for classification problems with cat-
egorical attributes. Computational Mathematics and Modeling, 26(3):408–
428, 2015.

[48] Herbert Enderton and Herbert B Enderton. A mathematical introduction
to logic. Elsevier, 2001.

[49] Alina Ene, William Horne, Nikola Milosavljevic, Prasad Rao, Robert
Schreiber, and Robert E Tarjan. Fast exact and heuristic methods for
role minimization problems. In Proceedings of the 13th ACM symposium
on Access control models and technologies, pages 1–10. ACM, 2008.

[50] Verizon Enterprise. Data breach investigation report. http://www.

verizonenterprise.com/verizon-insights-lab/dbir/2017/.

[51] Verizon Enterprise. Data breach investigation report. https:

//www.verizonenterprise.com/resources/reports/rp_DBIR_2018_

Report_en_xg.pdf.

[52] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based
access control. ACM Transactions on Information and System Security
(TISSEC), 4(3):224–274, 2001.

[53] Anna Lisa Ferrara, P Madhusudan, and Gennaro Parlato. Policy anal-
ysis for self-administrated role-based access control. In Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 432–447.
Springer, 2013.

[54] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and
Michael Carl Tschantz. Verification and change-impact analysis of
access-control policies. In Proceedings of the 27th International Confer-
ence on Software Engineering, ICSE ’05, pages 196–205, New York, NY,
USA, 2005. ACM.

153

http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/
http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/
https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_en_xg.pdf
https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_en_xg.pdf
https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_en_xg.pdf

Bibliography

[55] Kathi Fisler, Shriram Krishnamurthi, Leo A Meyerovich, and
Michael Carl Tschantz. Verification and change-impact analysis of
access-control policies. In Proceedings of the 27th international conference
on Software engineering, pages 196–205. ACM, 2005.

[56] Philip WL Fong. Relationship-based access control: protection model
and policy language. In Proceedings of the first ACM conference on Data
and application security and privacy, pages 191–202. ACM, 2011.

[57] Mario Frank, Joachim M Buhman, and David Basin. Role mining with
probabilistic models. ACM Transactions on Information and System Secu-
rity (TISSEC), 15(4):15, 2013.

[58] Mario Frank, Joachim M Buhmann, and David Basin. On the defini-
tion of role mining. In Proceedings of the 15th ACM symposium on Access
control models and technologies, pages 35–44. ACM, 2010.

[59] Mario Frank, Andreas P Streich, David Basin, and Joachim M Buh-
mann. A probabilistic approach to hybrid role mining. In Proceedings
of the 16th ACM Conference on Computer and Communications Security,
pages 101–111. ACM, 2009.

[60] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of
statistical learning, volume 1. Springer Series in Statistics, Berlin, 2001.

[61] Mayank Gautam, Sadhana Jha, Shamik Sural, Jaideep Vaidya, and Vi-
jayalakshmi Atluri. Poster: Constrained policy mining in attribute
based access control. In Proceedings of the 22nd ACM on Symposium on
Access Control Models and Technologies, pages 121–123. ACM, 2017.

[62] Mei Ge and Sylvia L Osborn. A design for parameterized roles. In
Research Directions in Data and Applications Security XVIII, pages 251–
264. Springer, 2004.

[63] Luigi Giuri and Pietro Iglio. Role templates for content-based access
control. In Proceedings of the second ACM workshop on Role-based access
control, pages 153–159. ACM, 1997.

[64] Simon Godik, Anne Anderson, Bill Parducci, Polar Humenn, and
Sekhar Vajjhala. OASIS eXtensible Access Control 2 Markup Language
(XACML) 3. Technical report, Technical Report, OASIS, 2002.

[65] Qi Guo, Jaideep Vaidya, and Vijayalakshmi Atluri. The role hierarchy
mining problem: Discovery of optimal role hierarchies. In Computer
Security Applications Conference, 2008. ACSAC 2008. Annual, pages 237–
246. IEEE, 2008.

154

Bibliography

[66] Joseph Y Halpern and Vicky Weissman. Using first-order logic to rea-
son about policies. ACM Transactions on Information and System Security
(TISSEC), 11(4):21, 2008.

[67] Thomas Hofmann and Joachim M Buhmann. Pairwise data cluster-
ing by deterministic annealing. Ieee transactions on pattern analysis and
machine intelligence, 19(1):1–14, 1997.

[68] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J
Lang, Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert
Miller, Karen Scarfone, et al. Guide to attribute based access control
(ABAC) definition and considerations (draft). NIST special publication,
800(162), 2013.

[69] Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. Attribute-
based access control. IEEE Computer, 48(2):85–88, 2015.

[70] Jingwei Huang, David M Nicol, Rakesh Bobba, and Jun Ho Huh. A
framework integrating attribute-based policies into role-based access
control. In Proceedings of the 17th ACM Symposium on Access Control
Models and Technologies, pages 187–196. ACM, 2012.

[71] Jens Hühn and Eyke Hüllermeier. FURIA: an algorithm for unordered
fuzzy rule induction. Data Mining and Knowledge Discovery, 19(3):293–
319, 2009.

[72] IEEE. 2012 IEEE International workshop on machine learning for
signal processing. Amazon data science competition, 2012. http:

//mlsp2012.conwiz.dk/index.php?id=43.

[73] Neil Immerman. Descriptive complexity. Springer, 1999.

[74] Edwin T Jaynes. Information theory and statistical mechanics. Physical
review, 106(4):620, 1957.

[75] Sadhana Jha, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri.
Security analysis of temporal rbac under an administrative model.
Computers & Security, 46:154–172, 2014.

[76] Xin Jin, Ram Krishnan, and Ravi Sandhu. A role-based administration
model for attributes. In Proceedings of the First International Workshop on
Secure and Resilient Architectures and Systems, pages 7–12. ACM, 2012.

[77] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based
access control model covering dac, mac and rbac. In Data and Applica-
tions Security and Privacy XXVI, pages 41–55. Springer, 2012.

155

http://mlsp2012.conwiz.dk/index.php?id=43
http://mlsp2012.conwiz.dk/index.php?id=43

Bibliography

[78] Xin Jin, Ravi Sandhu, and Ram Krishnan. Rabac: role-centric attribute-
based access control. In Computer Network Security, pages 84–96.
Springer, 2012.

[79] James BD Joshi. Access-control language for multidomain environ-
ments. Internet Computing, IEEE, 8(6):40–50, 2004.

[80] Viktor Jovanoski and Nada Lavrač. Classification rule learning with
Apriori-C. In Portuguese Conference on Artificial Intelligence, pages 44–
51. Springer, 2001.

[81] Kaggle: the home of data science. http://www.kaggle.com.

[82] Amazon.com – Employee access challenge. http://www.kaggle.com/
c/amazon-employee-access-challenge.

[83] Amazon.com – Employee access challenge. Winners’ so-
lution and final results. https://www.kaggle.com/

c/amazon-employee-access-challenge/forums/t/5283/

winning-solution-code-and-methodology.

[84] Branko Kavšek and Nada Lavrač. Apriori-SD: Adapting association
rule learning to subgroup discovery. Applied Artificial Intelligence,
20(7):543–583, 2006.

[85] HK Kesavan and JN Kapur. Maximum entropy and minimum cross-
entropy principles: Need for a broader perspective. In Maximum En-
tropy and Bayesian Methods, pages 419–432. Springer, 1990.

[86] Gregg Kreizman, Ant Allan, Felix Gaehtgens, Brian Iverson, and An-
mol Singh. Identity and access management scenario 2020: Power-
ing digital business, 2015. https://www.gartner.com/doc/3174723/

identity-access-management-scenario-.

[87] Shriram Krishnamurthi. The continue server (or, how i administered
padl 2002 and 2003). In Practical aspects of declarative languages, pages
2–16. Springer, 2003.

[88] Martin Kuhlmann, Dalia Shohat, and Gerhard Schimpf. Role mining-
revealing business roles for security administration using data mining
technology. In Proceedings of the eighth ACM symposium on Access control
models and technologies, pages 179–186. ACM, 2003.

[89] D Richard Kuhn, Edward J Coyne, and Timothy R Weil. Adding at-
tributes to role-based access control. Computer, 43(6):79–81, 2010.

156

http://www.kaggle.com
http://www.kaggle.com/c/amazon-employee-access-challenge
http://www.kaggle.com/c/amazon-employee-access-challenge
https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/5283/winning-solution-code-and-methodology
https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/5283/winning-solution-code-and-methodology
https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/5283/winning-solution-code-and-methodology
https://www.gartner.com/doc/3174723/identity-access-management-scenario-
https://www.gartner.com/doc/3174723/identity-access-management-scenario-

Bibliography

[90] Mahendra Kumar and Richard E Newman. STRBAC–an approach
towards spatio-temporal role-based access control. In Communication,
Network, and Information Security, pages 150–155, 2006.

[91] Nada Lavrač, Peter Flach, and Blaz Zupan. Rule evaluation measures: A
unifying view. Springer, 1999.

[92] Nada Lavrač, Branko Kavšek, Peter Flach, and Ljupčo Todorovski.
Subgroup discovery with CN2-SD. The Journal of Machine Learning
Research, 5:153–188, 2004.

[93] M. Lichman. UCI machine learning repository. amazon access samples
data set, 2013.

[94] Torsten Lodderstedt, David Basin, and Jürgen Doser. Secureuml: A
uml-based modeling language for model-driven security. In UML 2002
The Unified Modeling Language, pages 426–441. Springer, 2002.

[95] Haibing Lu, Jaideep Vaidya, and Vijayalakshmi Atluri. Optimal
boolean matrix decomposition: Application to role engineering. In
Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference
on, pages 297–306. IEEE, 2008.

[96] Barsha Mitra, Shamik Sural, Vijayalakshmi Atluri, and Jaideep Vaidya.
Towards mining of temporal roles. In IFIP Annual Conference on Data
and Applications Security and Privacy, pages 65–80. Springer, 2013.

[97] Barsha Mitra, Shamik Sural, Vijayalakshmi Atluri, and Jaideep Vaidya.
The generalized temporal role mining problem. Journal of Computer
Security, 23(1):31–58, 2015.

[98] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri.
Mining temporal roles using many-valued concepts. Computers & Se-
curity, 60:79–94, 2016.

[99] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri.
A survey of role mining. ACM Computing Surveys (CSUR), 48(4):50,
2016.

[100] Decebal Mocanu, Fatih Turkmen, and Antonio Liotta. Towards ABAC
Policy Mining from Logs with Deep Learning. In Proceedings of the
18th International Multiconference, Intelligent Systems, 2015.

[101] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa
Bertino, Seraphin Calo, and Jorge Lobo. Mining roles with semantic
meanings. In Proceedings of the 13th ACM Symposium on Access Control
Models and Technologies, pages 21–30. ACM, 2008.

157

Bibliography

[102] Ian Molloy, Jorge Lobo, and Suresh Chari. Adversaries’ holy grail:
access control analytics. In Proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security, pages
54–61. ACM, 2011.

[103] Ian Molloy, Youngja Park, and Suresh Chari. Generative models for
access control policies: applications to role mining over logs with at-
tribution. In Proceedings of the 17th ACM Symposium on Access Control
Models and Technologies, pages 45–56. ACM, 2012.

[104] Subhojeet Mukherjee, Indrakshi Ray, Indrajit Ray, Hossein Shirazi,
Toan Ong, and Michael G. Kahn. Attribute based access control
for healthcare resources. In Proceedings of the 2Nd ACM Workshop on
Attribute-Based Access Control, ABAC ’17, pages 29–40, New York, NY,
USA, 2017. ACM.

[105] National Cybersecurity Center of Excellence. Attribute-based
Access Control, 2017. https://nccoe.nist.gov/projects/

building-blocks/attribute-based-access-control.

[106] Tim Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler,
Shriram Krishnamurthi, and Varun Singh. The margrave tool. http:

//www.margrave-tool.org/v3/.

[107] Timothy Nelson, Christopher Barratt, Daniel J Dougherty, Kathi Fisler,
and Shriram Krishnamurthi. The margrave tool for firewall analysis.
In LISA, 2010.

[108] Orange: Rule Induction with CN2. http://orange.readthedocs.io/
en/latest/reference/rst/Orange.classification.rules.html.

[109] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Ed-
ward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. Automatic differentiation in pytorch. In
NIPS-W, 2017.

[110] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[111] David Martin Powers. Evaluation: from precision, recall and F-
measure to ROC, informedness, markedness and correlation, 2011.

158

https://nccoe.nist.gov/projects/building-blocks/attribute-based-access-control
https://nccoe.nist.gov/projects/building-blocks/attribute-based-access-control
http://www.margrave-tool.org/v3/
http://www.margrave-tool.org/v3/
http://orange.readthedocs.io/en/latest/reference/rst/Orange.classification.rules.html
http://orange.readthedocs.io/en/latest/reference/rst/Orange.classification.rules.html

Bibliography

[112] J Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann,
1993.

[113] Indrakshi Ray and Manachai Toahchoodee. A spatio-temporal role-
based access control model. In IFIP Annual Conference on Data and
Applications Security and Privacy, pages 211–226. Springer, 2007.

[114] Kenneth Rose, Eitan Gurewitz, and Geoffrey C Fox. Vector quantiza-
tion by deterministic annealing. IEEE Transactions on Information theory,
38(4):1249–1257, 1992.

[115] Ravi Sandhu. Role hierarchies and constraints for lattice-based access
controls. In European Symposium on Research in Computer Security, pages
65–79. Springer, 1996.

[116] Jürgen Schlegelmilch and Ulrike Steffens. Role mining with ORCA.
In Proceedings of the tenth ACM symposium on Access control models and
technologies, pages 168–176. ACM, 2005.

[117] sklearn.tree.DecisionTreeClassifier. http://

scikit-learn.org/stable/modules/generated/sklearn.

tree.DecisionTreeClassifier.html#sklearn.tree.

DecisionTreeClassifier.

[118] Scikit-learn. Tuning the hyper-parameters of an estimator, 2007–2017.

[119] Claude Elwood Shannon. A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379–423, 1948.

[120] Dan Steinberg and Phillip Colla. Cart: classification and regression
trees. The top ten algorithms in data mining, 9:179, 2009.

[121] Scott D Stoller and Thang Bui. Mining hierarchical temporal roles with
multiple metrics. In IFIP Annual Conference on Data and Applications
Security and Privacy, pages 79–95. Springer, 2016.

[122] Scott D Stoller, Ping Yang, Mikhail I Gofman, and CR Ramakrishnan.
Symbolic reachability analysis for parameterized administrative role-
based access control. Computers & Security, 30(2):148–164, 2011.

[123] Andreas P Streich, Mario Frank, David Basin, and Joachim M Buh-
mann. Multi-assignment clustering for boolean data. In Proceedings of
the 26th annual international conference on machine learning, pages 969–
976. ACM, 2009.

159

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

Bibliography

[124] Y Tikochinsky, NZ Tishby, and Raphael David Levine. Alternative ap-
proach to maximum-entropy inference. Physical Review A, 30(5):2638,
1984.

[125] Manachai Toahchoodee, Indrakshi Ray, Kyriakos Anastasakis, Geri
Georg, and Behzad Bordbar. Ensuring spatio-temporal access control
for real-world applications. In Proceedings of the 14th ACM symposium
on Access control models and technologies, pages 13–22. ACM, 2009.

[126] Petar Tsankov, Srdjan Marinovic, Mohammad Torabi Dashti, and
David Basin. Decentralized Composite Access Control. Springer, 2014.

[127] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining
problem: finding a minimal descriptive set of roles. In Proceedings
of the 12th ACM Symposium on Access Control Models and Technologies,
pages 175–184. ACM, 2007.

[128] Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining
problem: A formal perspective. ACM Transactions on Information and
System Security (TISSEC), 13(3):27, 2010.

[129] Jaideep Vaidya, Vijayalakshmi Atluri, and Janice Warner. Roleminer:
mining roles using subset enumeration. In Proceedings of the 13th
ACM conference on Computer and communications security, pages 144–
153. ACM, 2006.

[130] Zhongyuan Xu and Scott D Stoller. Algorithms for mining meaningful
roles. In Proceedings of the 17th ACM symposium on Access Control Models
and Technologies, pages 57–66. ACM, 2012.

[131] Zhongyuan Xu and Scott D Stoller. Mining attribute-based access con-
trol policies from RBAC policies. In Emerging Technologies for a Smarter
World (CEWIT), 2013 10th International Conference and Expo on, pages
1–6. IEEE, 2013.

[132] Zhongyuan Xu and Scott D Stoller. Mining attribute-based access con-
trol policies from logs. In Data and Applications Security and Privacy
XXVIII, pages 276–291. Springer, 2014.

[133] Zhongyuan Xu and Scott D Stoller. Mining attribute-based access con-
trol policies. Dependable and Secure Computing, IEEE Transactions on,
12(5):533–545, 2015.

[134] Kan Yang, Zhen Liu, Xiaohua Jia, and Xuemin Sherman Shen. Time-
domain attribute-based access control for cloud-based video content
sharing: A cryptographic approach. IEEE Transactions on Multimedia,
18(5):940–950, 2016.

160

Bibliography

[135] Qiang Yang, Haining Henry Zhang, and Tianyi Li. Mining web logs
for prediction models in WWW caching and prefetching. In Proceed-
ings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 473–478. ACM, 2001.

[136] Dana Zhang, Kotagiri Ramamohanarao, and Tim Ebringer. Role engi-
neering using graph optimisation. In Proceedings of the 12th ACM sym-
posium on Access control models and technologies, pages 139–144. ACM,
2007.

161

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Background
	Challenges
	Contributions
	Overview

	Preliminaries
	Motivating example
	Many-sorted first-order logic
	Access control
	Policy analysis
	Policy mining
	Conclusion

	FORBAC: First-order Role-based Access Control
	Introduction
	Requirements for FORBAC
	Syntax and semantics of FORBAC
	Policy analysis in FORBAC
	Experimental results
	Related work
	Conclusion and future work

	Rhapsody: Reliable Apriori Subgroup Discovery
	Introduction
	The ABAC mining problem
	Quantifying over-permissiveness
	Rhapsody
	Evaluating generalization
	Experiments
	Related work
	Conclusion

	Unicorn: Universal access-control policy mining
	Introduction
	The problem of designing policy miners
	A universal policy language
	A probability distribution on permission assignments and policies
	Approximating distributions with mean-field variational inference
	Building the policy miner
	Mining policies
	Spatio-temporal RBAC policies
	XACML policies
	Experiments
	Related work
	Conclusion

	Conclusion
	Appendix for FORBAC
	Complexity results for F
	Complexity results for FORBAC

	Appendix for Rhapsody
	ABAC instances used for experiments
	Proofs

	Appendix for Unicorn
	Grid search for policy mining
	Optimal parameters for the mean-field approximating distribution
	Simplifying the computation of expectations
	Modeling RBAC temporal constraints
	Datasets and synthetic policies used for experiments

	Bibliography

