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Abstract While standard parallel machine scheduling is
concerned with good assignments of jobs to machines, we
aim to understand how the quality of an assignment is af-
fected if the jobs’ processing times are perturbed and there-
fore turn out to be longer (or shorter) than declared. We fo-
cus on online scheduling with perturbations occurring at any
time, such as in railway systems when trains are late. For
a variety of conditions on the severity of perturbations, we
present bounds on the worst case ratio of two makespans.
For the first makespan, we let the online algorithm assign
jobs to machines, based on the non-perturbed processing
times. We compute the makespan by replacing each job’s
processing time with its perturbed version while still stick-
ing to the computed assignment. The second is an optimal
offline solution for the perturbed processing times. The de-
viation of this ratio from the competitive ratio of the online
algorithm tells us about the “price of perturbations”. We an-
alyze this setting for Graham’s algorithm, and among other
bounds show a competitive ratio of 2 for perturbations de-
creasing the processing time of a job arbitrarily, and a com-
petitive ratio of less than 2.5 for perturbations doubling the
processing time of a job. We complement these results by
providing lower bounds for any online algorithm in this set-
ting. Finally, we propose a risk-aware online algorithm tai-
lored for the possible bounded increase of the processing
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time of one job, and we show that this algorithm can be
worse than Graham’s algorithm in some cases.

Keywords Robustness · Online · Scheduling · Graham’s
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1 Introduction

Optimization problems are often solved for input data which
only estimate reality. Practical examples include shortest
path and optimum tour computations in graphs when edge
costs represent experienced travel times: The optimum so-
lution defines a travel plan, but executing the plan in reality
will most likely lead to a real travel time that differs from the
planned time, due to unforeseeable (smaller or larger) dis-
turbances, caused by the real traffic situation at the moment
of travel. In general, the quality of the computed plan can
suffer from these perturbations when the plan is executed,
and in extreme cases, the computed plan can even become
infeasible for the perturbed real data.

In some settings, a computed plan can be adjusted in re-
altime, when a perturbation is observed. A car driver may
adjust his trip according to the travel congestion news in the
radio, and a railway operator may reassign a train coming
into a station with a delay to a proper, free track. In this pa-
per, we limit ourselves to situations in which such an adjust-
ment is not possible. In the railway example, for instance,
there may not be a free track at the desired point in time, or
there may not be a chance to let waiting passengers go to a
different platform, so that the delayed train needs to wait for
its assigned track to become free.

Generally speaking, the solution for the original instance
of the problem can, alas, not be changed after the pertur-
bations are revealed. Our interest is in the effect of these
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perturbations on the quality of the precomputed solution, in
the worst case. More specifically, we want to compare the
quality of the plan, evaluated on the perturbed data, with
the quality of the plan based on the original data. In this
paper, we take a step in this direction by studying the par-
allel machine scheduling problem. As a first step, we aim
to study how Graham’s algorithm (Graham 1966) performs
with respect to perturbations. Our motivation for choosing
this algorithm is twofold: On the one hand, the algorithm
is popular and very well understood, so it can nicely serve
to illustrate the principles at work when perturbations oc-
cur; and on the other hand, it works online, emphasizing that
planning decisions may be irrevocable. Technically, the in-
put to the parallel machine scheduling problem is a sequence
of processing times for n jobs, each of which needs to be
processed later on one of m identical machines. A feasible
solution assigns each job to exactly one of the machines. The
objective is to minimize the completion time of the job that
terminates latest (the makespan) (Pinedo 2002). In online
parallel machine scheduling, jobs are presented in consecu-
tion, and a job must be assigned to a machine at the time of
its presentation (Sgall 1998). Just like in the other examples
above, there is a clear distinction between the presentation
of the processing times of the jobs in the planning phase,
and processing the jobs on the planned machines, that is,
executing the plan.

Consider the following example shown in Fig. 1: We
need to schedule online on two machines the sequence of
jobs with processing times 1

2 ,1 and 1
2 using Graham’s algo-

rithm. The algorithm assigns the two jobs of processing time
1
2 on one machine, and the job of processing time 1 alone
on one machine. This is the plan obtained by Graham’s al-
gorithm on the unperturbed instance, and has makespan 1,
which is optimal. Now, assume that the execution time of
one of the jobs of processing time 1

2 turns out to be 3
2 . By

substituting the original processing time with this perturbed
processing time in the plan previously obtained by Graham’s
algorithm, we obtain a makespan of 2. The optimum of-
fline solution with the perturbed processing times assigns
the job of processing time 3

2 on one machine, and the re-
maining two jobs the other machine, and achieves the opti-
mal makespan of 3

2 . For this example, the ratio between the
latter two makespans is 4

3 , and we are interested in a worst-
case analysis of this ratio across all inputs.

Obviously, if the job processing times of the plan have
nothing at all to do with the times during execution, nothing

of interest can be said about the quality of the plan. We there-
fore focus on situations that bound perturbations in some
way. More specifically, we aim at understanding to what
extent a limited number of perturbations of the processing
times affects the performance of online parallel machine
scheduling. We assume that a probability distribution of per-
turbations is either not available, or does not tell a lot (loco-
motive engine breakdowns are an example, since they can
occur anywhere with a very small probability), and focus on
a worst-case analysis.

We study the behavior under perturbations of the well-
known algorithm by Graham (1966) for online scheduling,
the List scheduling algorithm. Graham’s algorithm assigns
the next presented job to the machine that will terminate
earliest for the job sequence seen so far. Although online
algorithms with better competitive ratio exist, Graham’s al-
gorithm remains, in its simplicity and with its competitive
ratio of 2 − 1

m
, a prime example of an interesting online al-

gorithm. All the perturbations of the processing times are
disclosed after the entire solution has been determined. This
models the situation in which the entire plan is produced
before its execution starts (note that if each job’s perturbed
processing time would be revealed immediately after it has
been assigned to a machine, Graham’s algorithm would not
be misled at all). We measure the impact of perturbations as
the worst-case ratio of two makespans. The first makespan is
the makespan that we get by taking Graham’s assignment of
jobs to machines for the original instance, and by replacing,
within this assignment, all original processing times with the
perturbed ones. The second is the makespan of an optimal
offline solution of the perturbed instance. This ratio natu-
rally tends to be larger than Graham’s competitive ratio; the
larger it is, the more Graham’s algorithm suffers from per-
turbations. Our performance measure is not applicable to all
online problems, since a solution computed for the unper-
turbed instance might not be feasible for the perturbed in-
stance (this happens if, for example, the problem has some
resource constraint which can be violated by the perturba-
tion, such as in bin packing). For parallel machine schedul-
ing, however, any assignment of jobs to machines is feasible.

This setting can also be interpreted as introducing a more
powerful adversary with respect to the well-known online
setting. Not only must each decision be taken immediately
each time the adversary presents a new slice of the prob-
lem instance, but the adversary may deliberately distort the
information he gives. Naturally, the extent of the distortion
greatly affects the performance of online algorithms which

Fig. 1 The simple example with three jobs and two machines: Left, the plan obtained online with Graham’s algorithm on the unperturbed instance.
Center, the same plan applied to the perturbed processing times. Right, an optimal offline solution for the perturbed processing times
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are not tuned for distortions. It is therefore no surprise that
Graham’s scheduling algorithm performs better for bounded
perturbations than for unbounded ones.

1.1 Related work

Robustness has been defined in a variety of ways in opti-
mization theory. Exact input values have been replaced by
probability distributions (Scharbrodt et al. 2006) in a prob-
abilistic approach, or by intervals of possible values in a
worst case scenario (Montemanni and Gambardella 2004;
Kasperski and Zieliński 2006), or by uncertainty sets (Ben-
Tal and Nemirovski 2002). A related but different question
to our view of robustness has been addressed in sensitivity
analysis. Sensitivity analysis asks for the amount of pertur-
bation that can be tolerated before the structure of an op-
timal solution changes. Sensitivity analysis has been stud-
ied predominantly for linear programming (Chvátal 1983),
but also for many combinatorial problems such as network
flows (Ahuja et al. 1993) and scheduling (Hall and Posner
2004). We point out that an instance which is unstable with
respect to sensitivity analysis does not necessarily need to
be a bad instance in our worst-case setting. Indeed, although
the structure of the optimal solution might change with a
very small perturbation, the quality of the solution of the
unperturbed optimum can remain very near to the one of
the optimum of the perturbed instance for this perturbation.
Throughout this paper, we allow a small number of process-
ing times to be perturbed a lot, but we will not change the
structure of a solution and merely observe its change in qual-
ity because the perturbation is supposed to happen after the
irrevocable assignment decision.

Online scheduling on m identical parallel machines has
been studied extensively (Sgall 1998). The competitive ra-
tio of 2 − 1

m
of the first deterministic online algorithm

by Graham (1966), the List scheduling algorithm, was im-
proved several times over the years, with the best deter-
ministic online algorithm today achieving a competitive ra-
tio of 1.9201 (Fleischer and Wahl 2000). Randomized al-
gorithms have also been widely addressed as, for instance,
in Albers (2002), with the currently best known (random-
ized) competitive ratio of 1.916.

The effect of perturbations in offline scheduling algo-
rithms has been studied under many different points of
view (Hall and Posner 2004; Kouvelis and Gang 1997).
A sensitivity analysis for different parameters (Hall and Pos-
ner 2004) also addresses how perturbations affect the objec-
tive, and how to reconstruct an optimal solution, given some
perturbations.

A study of single machine scheduling for jobs with prior-
ities and release times allows perturbations of release times
and pursues the goal to efficiently reconstruct a feasible
schedule (Mauroy et al. 1997).

The scheduling variant where binary precedence rela-
tions exist between jobs has been addressed as follows in
the context of robustness. Consider two jobs scheduled on
two different machines that have a direct precedence rela-
tion. Then, there is a communication delay before the sec-
ond job can start being processed, since the result of the first
job must be transferred between the two machines. The un-
certainty lies in the actual size of the communication delay,
which may be given as an interval of possible values. For
this setting, Sanlaville (2005) gives an analysis on which es-
timates an algorithm should use in order to produce a sta-
ble solution. For two machines and restricted precedences,
Moukrim et al. (2003) provides an algorithm with an ab-
solute performance guarantee with respect to the optimum.

The effect of perturbed processing times has also been
addressed in different ways. Parallel machine scheduling
where all jobs’ processing times are accurate up to a fac-
tor (1 ± ε) of a declared value was analyzed in Penz et al.
(2001). The quality of any algorithm deteriorates by a factor
1+ε
1−ε

for the makespan, and by
√

1 + ε for the sum of com-
pletion times, for some small ε. We provide a better bound
for the makespan, since our analysis exploits the structure
of Graham’s schedule. The performance of scheduling has
also been addressed with respect to processing times drawn
from a distribution. With this view, the scheduling algo-
rithm needs to schedule the jobs offline with the knowl-
edge of the distributions only, and the actual realization of
the processing times are disclosed in an online fashion af-
ter the schedule has been computed. This setting has been
addressed in terms of average case analysis for the comple-
tion times (Scharbrodt et al. 2006) and of minimization of
an objective in expectation, as in Möhring et al. (1999). The
stochastic online setting, where jobs are revealed in an on-
line fashion with stochastic processing times, has been thor-
oughly analyzed for the goal of minimizing the completion
times of the jobs (Megow et al. 2006).

From the online perspective and with a probabilistic
viewpoint, smoothed competitive analysis (Becchetti et al.
2006) provides a performance measure of online algorithms
with respect to an optimum offline solution if the input val-
ues are perturbed with some specific type of random noise.
In the context of preemptive scheduling on a single machine
with release times, smoothed competitive analysis has been
applied to the multilevel feedback algorithm for minimizing
the total flow time of the jobs (Becchetti et al. 2006). For this
setting, the authors show that, by smoothing the processing
times according to the partial bit randomization model (see,
e.g., Schäfer 2004) using a distribution function satisfying
certain constraints, they can explain the good practical be-
havior of the multilevel feedback algorithm.

The tolerance to perturbations of Graham’s offline List
scheduling algorithm has been addressed both in terms of
decrease in quality of the objective (Graham 1966, 1969)
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and in the number of different (offline) schedules that arise
from perturbing the processing time of one job and for dif-
ferent input sequences (Kolen et al. 1994). The List schedul-
ing algorithm was presented for a more complex setting than
parallel machine scheduling, which also included prece-
dence constraints. Graham (1966, 1969) analyzed the effects
of relaxing a number of instance-defining parameters as, for
instance, the number of machines or the precedence con-
straints. For each parameter, he analyzed the worst-case ra-
tio of the makespans of the relaxed instance with respect to
the non-relaxed instance, for both instances scheduled with
List. He showed a worst-case ratio of 2 − 1

n
for decreasing

the processing times, and similar results were derived for the
relaxation of other parameters.

1.2 Summary of results

We derive lower bounds on the competitive ratio of Gra-
ham’s algorithm for the perturbed schedule for the following
scenarios: For integer r , and increasing the processing times
of r ≤ n jobs arbitrarily, we show a ratio of (2+r − r+1

m
); for

arbitrarily decreasing the processing times of any number
of jobs scheduled on r ≤ m machines in an optimal offline
schedule we show a ratio of (2 + r−1

m−r
); for x > 1, x ∈ Q+

0 ,
and dividing the processing times of r jobs by a factor x

we show a ratio of (2 + r·(x−1)−1
m

); for either dividing or
multiplying (but not both) the processing times of an ar-
bitrary number of jobs by a factor x > 1 we show a ra-
tio of (1 + x − x

m
) and (1 + x − 1

m
), respectively. We also

give infinite families of examples where the bounds are tight
or come close. Our results imply specific bounds for spe-
cific cases: If the processing times of three jobs increase
arbitrarily, Graham’s algorithm is (5 − 6

m
)-competitive; if

the processing time of one job decreases arbitrarily it is
2-competitive; and if jobs may triplicate their processing
times, it is (4 − 1

m
)-competitive.

We also provide simple lower bounds on the competitive
ratio for several settings of perturbations. We show that no
online algorithm can have a competitive ratio smaller than 2
if the perturbation may decrease the processing time of one
job arbitrarily. For the setting where the perturbation may
decrease the processing time of one job to a factor at least
1
x
, x > 1, x ∈ Q+

0 , of its original processing time, we show
a lower bound of 2 − 2

x+1 ; for the case of perturbations de-
creasing the processing time of at most two jobs to a fac-
tor at least 1

x
of their original processing time, we show a

lower bound of min{x,2}. For the case of the perturbations
increasing the processing time of one job to a factor at most
2 of its original processing time, we show a lower bound
of 3

2 , and for the case of perturbing two jobs to a factor at
most 2 of their original processing time we show a lower
bound of 2.

Finally, we propose a Graham-like algorithm designed to
be robust with respect to the possibility of an x-fold increase

of the processing time of one job, for x > 2, x ∈ Q+
0 . We

show that the algorithm is x-competitive if no perturbation
arises, and 1+x− 1

x
if a perturbation arises, thus performing

much worse than Graham’s algorithm. We also give exam-
ples which come close to these bounds.

2 Problem setting and notation

The problem is specified as a 3-tuple (J,P, P̃ ), where J

is the online sequence of n jobs to be scheduled on m

machines, P and P̃ specify the original processing time
pj ∈ Q+

0 and the perturbed processing time p̃j ∈ Q+
0 of each

job j ∈ J , respectively. A schedule for the sequence of jobs
is an assignment of the jobs to the machines. Graham’s al-
gorithm (which we briefly recall at the end of this section)
schedules the original instance of the online parallel ma-
chine scheduling problem, that is, the job sequence J with
processing times P , and produces a schedule List(J,P ).

Each problem is characterized by the perturbation against
which we analyze robustness. The effect of the perturbation
is reflected in the processing times P̃ , which may either in-
crease or decrease; the perturbation may be of arbitrary size,
or bounded, for each job, by a factor x of the job’s original
processing time. The latter setting is motivated by project
scheduling, where the extent of the misjudgment of a task’s
processing time is often linked to the task’s difficulty. We
refer to the jobs J with processing times P̃ as the perturbed
instance of the online parallel machine scheduling problem.

We denote by OPT(J, P̃ ) the optimal offline schedule
of the sequence of jobs J with processing times P̃ . In the
offline setting, the order in J is irrelevant. The makespan
of a schedule is the time when the last terminating job fin-
ishes being processed. In the literature, the makespan is nor-
mally denoted by Cmax. In our setting, the actual process-
ing times of jobs may differ from the originally given ones.
Since this concept is different from the usual one, we in-
troduce a different notation. We denote by L(S,P ) the
makespan of the schedule S with processing times P . In
this setting, we measure the robustness of Graham’s on-
line algorithm by considering the makespan of the sched-
ule List(J,P ) obtained with the original instance, but eval-
uated on the perturbed processing times P̃ . Hence, we eval-
uate L(List(J,P ), P̃ ). We compare this makespan with the
makespan L(OPT(J, P̃ ), P̃ ) of an optimal offline sched-
ule OPT(J, P̃ ). Note that comparing L(List(J,P ), P̃ ) with
L(List(J,P ),P ) does not provide any useful information,
since the total processing time is different for P and P̃ : If
the processing time of a job increases arbitrarily, any algo-
rithm needs to process this job. Moreover, we do not com-
pare L(List(J,P ), P̃ ) to L(List(J, P̃ ), P̃ ), as such a com-
parison would reveal little about the absolute quality of the
algorithm: Even an algorithm that schedules all jobs on a
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single machine (out of the m � 1 available) would have the
excellent ratio of 1 with this comparison, although in ab-
solute terms it is clearly extremely poor.

In this model, each machine processes its assigned jobs
without pausing in between. The sum of the processing
times of a machine is called load. When machine i ∈ M

is finished, it remains idle up to the makespan. We refer
to the idle time as si , i ∈ M . We call the set of machines
which process some perturbed jobs the affected machines,
and denote them by M �=. Similarly, we call the set of ma-
chines which do not process any perturbed jobs unaffected
machines, and denote them by M=.

For perturbations increasing the jobs’ processing times,
we denote the perturbed processing times as p

↑
j , j ∈ J , and

the set of all increased processing times as P ↑. Similarly,
for decreases we use p

↓
j , j ∈ J and P ↓.

Changing the processing times of the jobs in a sched-
ule also influences the idle times. Therefore, we refer to the
idle time resulting after a perturbation as s

↑
i for increased

processing times and as s
↓
i for decreases. In the analysis,

we look at the perturbations of the jobs sequentially, in any
order. In this way, we can specify the impact of the pertur-
bation of each job on the idle time of each machine. When a
job changes its processing time, the subsequent jobs shift ac-
cordingly in the schedule. This shift may shorten or lengthen
the idle time of various machines. We denote the increase or
decrease in idle time on machine i ∈ M caused by perturb-
ing job j by δi

j ∈ Q, which may be positive or negative.
We recall Graham’s List scheduling algorithm for the on-

line parallel machine scheduling problem (i.e., without per-
turbations). When considering the next job of the online se-
quence, Graham’s algorithm schedules it on a machine hav-
ing least load given the previous assignments of jobs to ma-
chines. As a warm-up for our proofs in later sections, let us
recall the classical competitive analysis of Graham’s algo-
rithm. For a makespan LList obtained with Graham’s algo-
rithm, the processing times of the jobs and the idle times of
the m machines satisfy mLList = ∑

j∈J pj + ∑m
i=1 si . Let

LOPT be the optimal makespan (for unperturbed processing
times). As each job must be scheduled non-preemptively by
any algorithm, pj ≤ LOPT,∀j ∈ J . Furthermore, LOPT ≥
∑

j∈J pj

m
, since no schedule can do better than distribute

the total processing time evenly across all machines. Fi-
nally, consider an arbitrary job j̄ finishing at the makespan
of Graham’s schedule. Then, si ≤ pj̄ ,∀i ∈ M , since other-
wise Graham’s algorithm would have scheduled job j̄ on
the machine not satisfying the inequality. Furthermore, the
machine attaining the makespan has zero idle time. Thus,
mLList = ∑

j∈J pj + ∑m
i=1 si ≤ mLOPT + (m − 1)pj̄ ≤

(2m − 1)LOPT. This proof shows a competitive ratio of
2 − 1

m
for Graham’s algorithm.

Finally, consider the (perturbed) instances where the per-
turbation increases the processing times. For these cases,

L(OPT(J,P ),P ) ≤ L(OPT(J,P ↑),P ↑) holds, since the
total processing time increases and the maximum process-
ing time of the jobs can also only become larger.

To improve the readability of our proofs, we use
the following compact notation for the makespans. In-
stead of L(OPT(J,P ),P ) we write LOPT, and instead of

L(OPT(J,P ↓),P ↓) we write L↓
OPT. Similarly, we write

L↓
List instead of L(List(J,P ),P ↓) for Graham’s algorithm.

The notation for increases in processing times is obtained
accordingly.

3 Arbitrary perturbations

In the following, we analyze robustness for arbitrary size
perturbations of the processing times of jobs. First, we ana-
lyze the case of arbitrary decreases in processing times and
then of arbitrary increases.

3.1 Arbitrary decreases in processing time

As a first step, we bound the quality of the solution of any
best-possible online algorithm if the processing times may
decrease arbitrarily.

Theorem 1 No algorithm for online scheduling on m ≥ 2
identical parallel machines on instances where the process-
ing time of one job may decrease arbitrarily can have a com-
petitive ratio smaller than 2.

Proof Assume such an algorithm exists, and consider the
following sequence of jobs, all with processing time 1.
First, the adversary sequentially presents m jobs. To be
strictly better than 2-competitive, any algorithm must sched-
ule each job on a different machine. Then, the adversary
presents a final job, which may be scheduled on any ma-
chine. Now, the perturbation affects one job which is sched-
uled alone on a machine, and decreases its processing time
to 0. Thus, the computed schedule has an empty machine,
and a makespan of 2. The optimum offline perturbed sched-
ule assigns each of the now m jobs on a different machine,
and has a makespan of 1. �

Note that the construction can be extended to any num-
ber of jobs by introducing an appropriate number of jobs of
processing time ε → 0 which do not influence the construc-
tion and allow for a bound arbitrarily close to 2.

In the following, we derive a bound on the competitive
ratio and a worst-case instance which matches the bound for
the case where the arbitrary perturbations affect r machines,
that is, where r machines of Graham’s schedule process jobs
whose processing time is perturbed. We have the following
theorem:
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Theorem 2 Consider the instances of online scheduling on
m ≥ 2 identical parallel machines where perturbations may
decrease the processing times of some jobs arbitrarily. Re-
stricted to these instances, if Graham’s algorithm schedules
the perturbed jobs on r < m machines, Graham’s algorithm
is (2 + r−1

m−r
)-competitive, and this bound is best possible.

For r = 1, Graham’s algorithm is optimal.

Proof Consider Graham’s schedule List(J,P ). We refer to
the jobs scheduled on the unaffected machines M= as J=.
Hence, by definition, these jobs do not change their process-
ing time. To estimate the makespan after the perturbation we
analyze the schedule of the m− r unaffected machines M=.
We distinguish two cases: in the first, the makespan L↓

List is
attained by at least one machine in M=, while in the second
no machine in M= attains it.

For the first case, we let j̄μ be a job attaining the
makespan after the perturbation on an unaffected machine
μ ∈ M=. In this case, the time spent by the machines M=
up to the makespan is given by:

(m − r) · L↓
List =

∑

j∈J=
p

↓
j +

∑

i∈M=
s
↓
i

≤
∑

j∈J

p
↓
j + (m − r − 1)p

↓
j̄μ

≤ mL↓
OPT + (m − r − 1)L↓

OPT,

since J= ⊆ J and at most (m − r − 1) machines have some
idle time, which due to the workings of Graham’s algorithm
is smaller than p

↓
j̄μ

. Thus, the bound follows:

L
(
List(J,P ),P ↓) ≤

(

2 + r − 1

m − r

)

· L
(
OPT(J,P ↓),P ↓)

.

For the second case, let j̄μ be a job attaining the makespan
after the perturbation on an affected machine μ ∈ M �=. Be-
cause of Graham’s algorithm, when j̄μ was originally sched-
uled, μ was a machine with the least load, say with load �.
Since the processing times on unaffected machines M= re-
main unchanged, the latter machines have load at least � af-
ter the decreases. Thus, their idle time is s

↓
i ≤ p

↓
j̄μ

, i ∈ M=,
since j̄μ attains the makespan. Note that this bound holds
both if j̄μ is perturbed or it remains unchanged. Thus, the

time spent by the machines in M= up to L↓
List can be repre-

sented as follows:

(m − r) · L↓
List =

∑

j∈J=
p

↓
j +

∑

i∈M=
s
↓
i

≤
∑

j∈J

p
↓
j − p

↓
j̄μ

+ (m − r)p
↓
j̄μ

≤ m · L↓
OPT + (m − r − 1) · L↓

OPT,

since by the case analysis j̄μ is not scheduled on a machine
in M=. The bounds lead to the same expression as in the
previous case, thus concluding the first part of the proof.

A worst-case instance for r ≤ m − 2 machines has the
following structure, illustrated in Fig. 2. First, the adver-
sary presents r huge jobs with processing time C > 1+ r−1

m−r

each. Graham’s algorithm schedules each on a different ma-
chine. Next, the adversary presents m − r big jobs with
processing time one. Again, Graham’s algorithm schedules
one of these jobs on each of the m − r idle machines. Then,
the adversary presents (r − 1) · (m − r) small jobs with
processing time 1

m−r
. Graham’s algorithm schedules these

jobs evenly on the machines with load smaller than C, such
that each of these machines has load 1 + r−1

m−r
. Finally, a big

job with processing time one is presented, and is scheduled
on one of the machines with load smaller than C. Now, the
perturbation decreases the processing time of all huge jobs
from C to zero. In this way, the online algorithm was forced
to work with only m−r out of the m available machines, and
the achieved makespan is 2+ r−1

m−r
. The optimal offline algo-

rithm, on the other hand, schedules each big job on a differ-
ent machine, thus using m − r + 1 machines, and schedules
m − r small jobs on each of the remaining r − 1 machines.
In this way, it achieves a makespan of 1. For r = m − 1, the
bound evaluates to L↓

List/L↓
OPT ≤ m. A simple worst-case

example matching this bound first presents m − 1 big jobs
of processing time m, followed by m small jobs of process-
ing time 1. The perturbations shrinks the processing time of
the m − 1 big jobs to zero. The stated bound easily follows.
The analysis above is not suited for r = m. Nevertheless, the
bound L↓

List/L↓
OPT ≤ m can be achieved with the example

for r = m − 1, by additionally scheduling a job of process-
ing time 1

m
between the big jobs and the small jobs, and by

perturbing its processing time to zero as well.

Fig. 2 A worst-case example (for r = 3) matching the bound of Theorem 2. Left, Graham’s schedule on the original instance; the perturbed jobs
have a dotted outline. Right, the optimal schedule of the perturbed instance
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The optimality of Graham’s algorithm for r = 1 follows
from Theorem 1, since the arbitrary decrease in processing
time of one job affects one machine. �

Intuitively, this proof shows that the worst-case scenario
happens if the affected machines are blocked with jobs
whose processing time decreases to zero. Hence, the adver-
sary and the perturbation force the online algorithm to work
with r machines less than initially stated. Surprisingly, this
affects the competitive ratio only with an additive term of

r
m−r

with respect to the usual performance of Graham’s al-
gorithm. Intuitively, this increase means that the jobs which
can be processed on the affected machines in the optimum
offline solution are evenly spread on the unaffected ma-
chines in Graham’s algorithm. Finally, for r = 0 we match
the bound for Graham’s algorithm.

3.2 Arbitrary increases in processing time

We now consider arbitrary increases in the job’s processing
times. The results show that the worst-case perturbation hap-
pens if arbitrarily small jobs are scheduled on the machine
attaining the makespan before the perturbation, and the per-
turbation lets these small jobs increase a lot.

We first consider the case where r jobs increase their
processing time arbitrarily. Then, we give a similar analy-
sis for the case where any number of jobs may be perturbed,
and the jobs result to be scheduled on r machines of an op-
timal offline schedule of the perturbed instance. Also in this
case, our analysis matches Graham’s bound for r = 0.

Theorem 3 Consider the instances of online scheduling on
m identical parallel machines where perturbations may in-
crease the processing times of r jobs arbitrarily. Restricted
to these instances, Graham’s algorithm has a competitive
ratio of 2 + r − r+1

m
, and this bound is best possible for

r ≤ m − 2.

Proof Let J↑ ⊂ J, |J↑| = r be the set of jobs whose
processing times increase. Let ψj = p

↑
j − pj be the in-

crease of job j ∈ J↑, which can be bounded by ψj ≤ p
↑
j ≤

L↑
OPT, j ∈ J↑. Recall that, for the sake of the analysis, we

assume the perturbations to occur sequentially. Thus, each
perturbed job has an associated difference in idle time for
each machine; hence, −ψj ≤ δk

j ≤ ψj , k ∈ M,j ∈ J↑. Fur-
thermore, at least one machine μ ∈ M attains the makespan
before the perturbation, and has idle time sμ = 0. The
idle times of the remaining machines satisfy si ≤ LOPT ≤
L↑

OPT, i ∈ M . Furthermore, the increase of job j ∈ J↑ does
not increase the idle time of the machine the job is sched-
uled on (although it may decrease it). The new makespan of
the machines is thus given by:

m · L↑
List =

∑

j∈J

pj +
∑

i∈M

si +
∑

j∈J↑
ψj +

∑

j∈J↑,k∈M

δk
j

=
∑

j∈J

p
↑
j +

∑

i∈M

si +
∑

j∈J↑,k∈M

δk
j

≤ mL↑
OPT + (m − 1)L↑

OPT + r(m − 1)L↑
OPT,

L
(
List(J,P ),P ↑) ≤

(

2 + r − r + 1

m

)

× L
(
OPT

(
J,P ↑)

,P ↑)
.

To see that the analysis is best possible for r ≤ m − 2,
we give an example, illustrated in Fig. 3, where this bound
is achieved up to an arbitrarily small ε ∈ Q+

0 ,0 < ε < 1
m

.
The adversary uses three types of jobs, namely big, small
and tiny jobs. The processing times of the jobs within each
class are similar and specified in the following. First, the ad-
versary presents m − r − 1 big jobs with processing time
1 − (r+1)

m
. Graham’s algorithm schedules each on a differ-

ent machine. The adversary presents m(r + 1)(1 − r+1
m

)− 1

Fig. 3 A worst-case instance
for arbitrary increase of r jobs.
Top left, Graham’s schedule
before the perturbation. Bottom
left, Graham’s schedule after the
increase. Top right, the optimal
perturbed schedule
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= (r + 1)(m− r − 1)− 1 small jobs with processing time 1
m

next, followed by one small job with processing time 1
m

− ε,
for ε arbitrarily small. Graham’s algorithm schedules the
jobs evenly on the machines processing no big jobs. At this
point, all but one machine have a load of 1 − r+1

m
, and one

machine has load 1 − r+1
m

− ε. Now, the adversary presents
r tiny jobs with processing time ε

r
− ε2 and a last job with

processing time 1. The perturbation increases the processing
times of tiny jobs from ε

r
− ε2 to 1. The makespan of Gra-

ham’s schedule is 2 + r − r+1
m

− ε. On the other hand, the
optimal offline algorithm on the perturbed instance sched-
ules each of the now m big jobs on a different machine, and
then schedules r + 1 small jobs on each machine processing
a big job with processing time 1 − r+1

m
, thus achieving the

makespan of 1. �

Theorem 3 can be generalized as follows. Let J
↑
i be the

set of perturbed jobs which are scheduled on machine i ∈ M

in an optimum offline solution OPT(J,P ↑). Let M �= = {i ∈
M|J↑

i �=∅} be the set of machines in the considered optimal
offline solution which process at least one job with perturbed
processing time, and define r = |M �=|. Note that here the
perturbed machines are defined with respect to OPT(J,P ↑),
and not to Graham’s schedule.

Theorem 4 Consider the instances of online scheduling on
m identical parallel machines with the following properties:
first, the processing times of some jobs may increase arbi-
trarily; second, the perturbed jobs are scheduled on r ma-
chines of an optimal offline perturbed solution. For these
instances, Graham’s algorithm has a competitive ratio of
2 + r − r+1

m
, and this bound is best possible for r ≤ m − 2.

Proof Let J↑ = J
↑
1 ∪ J

↑
2 ∪ · · · ∪ J

↑
m be the union of the sets

J
↑
i . Let ψj = p

↑
j − pj , j ∈ J↑ be the increase in process-

ing time of the perturbed jobs. For the analysis of Graham’s
schedule, we may assume that the increases in process-
ing time of the jobs in J↑ occur sequentially in an arbi-
trary order. Therefore, each job j ∈ J↑ causes a well de-
fined variation δk

j in idle time on each machine k ∈ M of
Graham’s schedule. This variation is bounded by −ψj ≤
δk
j ≤ ψj ; furthermore, this variation is negative or zero on

the machine where j ∈ J↑ is scheduled by Graham’s al-
gorithm. Thus,

∑
k∈M δk

j ≤ (m − 1) · ψj , j ∈ J↑. Finally,
∑

j∈J
↑
i

ψj ≤ ∑
j∈J

↑
i

p
↑
j ≤ L↑

OPT, i ∈ M , since all the jobs

in J
↑
i are scheduled on the same machine in the considered

optimal offline schedule of the perturbed instance. There-
fore,

m · L↑
List =

∑

j∈J

pj +
∑

i∈M

si +
∑

j∈J↑
ψj +

∑

j∈J↑

∑

k∈M

δk
j ,

and we can bound the increases in idle time as follows:
∑

j∈J↑

∑

k∈M

δk
j =

∑

i∈M �=

∑

j∈J
↑
i

∑

k∈M

δk
j ≤

∑

i∈M �=

∑

j∈J
↑
i

(m − 1)ψj

≤ (m − 1)
∑

i∈M �=
L↑

OPT ≤ (m − 1) · r · L↑
OPT.

Hence, we have

m · L↑
List ≤

∑

j∈J

pj +
∑

i∈M

si +
∑

j∈J↑
ψj + r(m − 1)L↑

OPT

=
∑

j∈J

p
↑
j +

∑

i∈M

si + r(m − 1)L↑
OPT

≤ m · L↑
OPT + (m − 1) · L↑

OPT + r(m − 1)L↑
OPT,

since at least one machine attained the makespan before the
perturbation and had zero idle time. Thus, we have the fol-
lowing bound on the makespan:

L
(
List(J,P ),P ↑) ≤

(

2 + r − r + 1

m

)

× L
(
OPT

(
J,P ↑)

,P ↑)
.

The bound is best-possible for r ≤ m− 2, since the example
of Theorem 3 affects r machines. �

4 Bounded perturbations

In the following analyses, we constrain the effect perturba-
tions may have. Here, we assume that the perturbed process-
ing time is related to the original processing time, and
bound the perturbed processing times by a constant factor of
their original processing time. Thus, the perturbed process-
ing times are of the form p̃ = αp for some α. Values of
α > 1 imply perturbations increasing the processing times,
whereas α < 1 imply perturbations decreasing processing
times. In this section, we analyze both cases separately.

4.1 Bounded decreases in processing times

In this section, we analyze the behavior of the makespan
given that the processing times of jobs may decrease by a
bounded factor. We start by stating a simple lower bound.

Theorem 5 Consider the instances of online scheduling on
m ≥ 2 identical parallel machines where the processing time
of at most one job may decrease to a factor at least 1

x
of its

original processing time, for x > 1, x ∈ Q+
0 . No online algo-

rithm applied to these instances can achieve a competitive
ratio smaller than 2 − 2

x+1 .
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The stated bound is 4
3 for halving processing times, and is

arbitrarily close to the lower bound of 2 stated in Theorem 1
for arbitrarily large x.

Proof Consider an adversarial sequence of m + 1 jobs of
processing time 1. Any algorithm aiming at a competitive
ratio strictly smaller than 2 must schedule the first m jobs
each on a different machine. Were this not so, the adversary
could stop the sequence after the first job has been scheduled
on a machine with nonzero load, thus enforcing a competi-
tive ratio of two. The last job may be scheduled on any ma-
chine. Now, the perturbation decreases the processing time
of a job which is scheduled alone on a machine from 1 to 1

x
.

Any online algorithm aiming at a competitive ratio smaller
than two has a makespan of two, whereas the optimum of-
fline perturbed schedule achieves a makespan of 1 + 1

x
by

scheduling a job of processing time 1 on the machine where
the perturbed job is scheduled, and by scheduling the re-
maining m − 1 jobs each on one machine. The lower bound
follows from the ratio of the two makespans. �

A lower bound of 2 on the competitive ratio can be shown
for the case where at most 2 jobs at most halve their process-
ing time due to the perturbations:

Theorem 6 Consider the instances of online scheduling on
m ≥ 3 identical parallel machines where the processing time
of at most two jobs may decrease to a factor at least 1

x
of

their original processing time, with x > 1, x ∈ Q+
0 . Applied

to these instances, no online algorithm can have a competi-
tive ratio strictly smaller than min{x,2}.

Proof By contradiction. Assume an online algorithms with
a strictly smaller competitive ratio exists, and consider an
adversarial sequence of m + 1 jobs of processing time 1. By
the same argument as in the proof of Theorem 5, any on-
line algorithm aiming at a competitive ratio strictly smaller
than 2 has a makespan of two. The perturbation decreases
the processing times of two jobs that are scheduled alone
each on one machine to 1

x
. This perturbation leaves the

makespan of the schedule computed by the online algo-
rithm unchanged. The optimum offline perturbed schedule
achieves a makespan of max{1,2 · 1

x
} by scheduling the two

perturbed jobs on the same machine and the remaining m−1
jobs each on a machine. For x ∈ [1,2] the ratio of the two
objectives is x, and for x > 2 the ratio is two, a contradiction
to our assumption. �

Having assessed these lower bounds, we analyze the
quality of the schedules built by Graham’s algorithm when
facing these kinds of perturbations.

Theorem 7 Consider the instances of online scheduling on
m identical parallel machines where the processing times of

an arbitrary number of jobs may decrease to a factor at least
1
x

of their original processing time, for x > 1, x ∈ Q+
0 . Re-

stricted to these instances, Graham’s algorithm has a com-

petitive ratio between 1 + x − x2

m−1+x
− ε and 1 + x − x

m
,

for a small ε ∈ Q+
0 ,0 < ε < x

m−1 (1 − x
m−1+x

).

Proof Consider a machine μ attaining the makespan after
the perturbation. Let j̄μ be the last job scheduled on μ,
and let � be the load of μ on the original instance when
j̄μ was presented. Hence, the total load of μ before the
perturbation is � + pj̄μ . Because j̄μ was scheduled on μ,
all machines have at least load � with the original process-
ing times. Therefore, m� ≤ ∑

j∈J\{j̄μ} pj . Since at most all

jobs are perturbed and decrease to a factor of at least 1
x

,
∑

j∈J\{j̄μ} pj ≤ x
∑

j∈J\{j̄μ} p
↓
j ≤ xm · L↓

OPT − x · p
↓
j̄μ

,

hence � ≤ xL↓
OPT − x

m
p

↓
j̄μ

. Thus,

L
(
List(J,P ),P ↓) ≤ � + p

↓
j̄μ

≤ x · L↓
OPT − x

m
p

↓
j̄μ

+ p
↓
j̄μ

≤ x · L↓
OPT +

(

1 − x

m

)

p
↓
j̄μ

≤
(

1 + x − x

m

)

L
(
OPT

(
J,P ↓)

,P ↓)
.

An example which comes close to this upper bound is the
following sequence of jobs, illustrated in Fig. 4 for the
case x = 2. The adversary presents m − 1 big jobs with

processing time x − x2

m−1+x
, m − 2 small jobs with process-

ing time x
m−1 (1 − x

m−1+x
), one small job with processing

time x
m−1 (1 − x

m−1+x
) − ε, for a small ε ∈ Q+

0 ,0 < ε <
x

m−1 (1 − x
m−1+x

), followed by the last job with processing
time 1. The perturbation affects the m− 1 big jobs, decreas-
ing their processing time to 1 − x

m−1+x
. Graham’s sched-

ule on the perturbed instance has a makespan of 1 + x −
x2

m−1+x
− ε, whereas the optimum offline perturbed solution

has a makespan L(OPT(J,P ↓),P ↓) = 1. �

Corollary 8 Consider the instances of online scheduling on
m identical parallel machines where the processing times of
an arbitrary number of jobs may halve. Restricted to these
instances, Graham’s algorithm has a competitive ratio of at
most 3 − 2

m
, and at least 3 − 4

m+1 − ε, for ε ∈ Q+
0 ,0 < ε <

2
m−1 − 4

m2−1
,m > 1.

The corollary follows by setting x = 2 in Theorem 7. By
setting x = 1, we match the bound for Graham’s algorithm.

In the following, we bound the number of jobs which a
perturbation may decrease. We show the following theorem:

Theorem 9 Consider the instances of online scheduling on
m identical parallel machines where the perturbations may
decrease the processing times of r jobs to a factor of at least
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Fig. 4 The bad example of
Theorem 7 for x = 2. Top left,
the Graham’s schedule on the
original instance. Bottom left,
the Graham’s schedule after the
perturbation. Right, the
optimum offline perturbed
schedule

1
x

of their original processing time, for x ∈ Q+
0 , x > 1. Re-

stricted to these instances, Graham’s algorithm has a com-
petitive ratio of 2 + r·(x−1)−1

m
.

Proof Consider a machine μ attaining the makespan after
the perturbation. Let j̄μ be the last job scheduled on μ, and
let � be the load of μ in the original instance when j̄μ was
presented. Therefore, m� ≤ ∑

j∈J\{j̄μ} pj . Let Jr be the set
of the r perturbed jobs with the exception of j̄μ, given that
j̄μ was perturbed. Then, we have:

m� ≤
∑

j∈J\{j̄μ}\Jr

pj +
∑

j∈Jr

pj

≤
∑

j∈J\{j̄μ}\Jr

p
↓
j + x ·

∑

j∈Jr

p
↓
j

=
∑

j∈J

p
↓
j + (x − 1)

∑

j∈Jr

p
↓
j − p

↓
j̄μ

≤ (
m + (x − 1) · r)L↓

OPT − p
↓
j̄μ

,

since p
↓
j ≤ L↓

OPT, j ∈ Jr . Finally, as the makespan of Gra-

ham’s algorithm can be bounded by L↓
List ≤ � + p

↓
j̄μ

, we
have:

L
(
List(J,P ),P ↓) ≤

(

2 + (x − 1) · r − 1

m

)

× L
(
OPT

(
J,P ↓)

,P ↓)
. �

Corollary 10 Graham’s algorithm for online scheduling on
m identical parallel machines, applied to instances where
the processing time of one job may halve, has a competitive

ratio not greater than 2 and no smaller than 2 − 1
2m−1 − ε,

for an arbitrary small ε ∈ Q+
0 ,0 < ε < 1

2m−1 .

Proof For the upper bound, it is sufficient to set x = 2
and r = 1 in Theorem 9. A bad example achieving the
lower bound is the following sequence of jobs: the adver-
sary presents m−1 big jobs with processing time 1− 1

2m−1 ,
which Graham’s algorithm schedules each on a different
machine. Then, 2(m − 1) − 1 small jobs with processing
time 1

2m−1 and a small job with processing time 1
2m−1 − ε,

ε ∈ Q+
0 ,0 < ε < 1

2m−1 , follow. All small jobs are scheduled
on the same initially empty machine. Finally, the adversary
presents a job with processing time 1, which is scheduled to-
gether with the small jobs. Now, the perturbation affects any
one of the (m−1) big jobs, decreasing its processing time to
1
2 − 1

2
1

2m−1 . The makespan of this schedule is 2− 1
2m−1 − ε.

The optimum offline perturbed scheduled has a makespan of
1: it schedules each of the m − 2 jobs with processing time
1 − 1

2m−1 together with one job of processing time 1
2m−1 on

a separate machine, the job of processing time 1 alone on
one machine, and the remaining m small jobs with the job
of processing time 1

2 − 1
2

1
2m−1 on the remaining machine. �

Similar to Theorem 4, Theorem 7 can also be stated with
respect to the number r of affected machines M �= in an op-
timum offline solution OPT(J,P ↓).

Theorem 11 Consider the instances for online scheduling
on m identical parallel machines with the following two
properties: first, the perturbations may decrease the process-
ing times of some jobs to a factor of at least 1

x
of their orig-

inal processing time, for x ∈ Q+
0 , x > 1; second, the per-

turbed jobs are scheduled on r machines in an optimum of-
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fline solution. Restricted to these instances, Graham’s algo-
rithm has a competitive ratio of 2 + r·(x−1)−1

m
.

Proof Let J
↓
i be the set of perturbed jobs scheduled on ma-

chine i ∈ M in OPT(J,P ↓), and let M �= = {i ∈ M|J↓
i �=∅},

r = |M �=|. Let J̃ = ⋃
i∈M �= J

↓
i be the set of all perturbed

jobs. Consider a machine μ attaining the makespan after the
perturbation, let j̄μ be the last job scheduled on μ, and let �

be the load of μ in the original instance when j̄μ was pre-
sented. Therefore, L(List(J,P ),P ↓) ≤ � + pj̄μ . Now:

m� ≤
∑

j∈J\{j̄μ}
pj ≤

∑

j∈J̃

pj +
∑

j∈J\J̃
pj − pj̄μ

≤ x
∑

j∈J̃

p
↓
j +

∑

j∈J\J̃
p

↓
j − pj̄μ

≤
∑

j∈J

p
↓
j + (x − 1)

∑

j∈J̃

p
↓
j − pj̄μ

≤
∑

j∈J

p
↓
j + (x − 1)

∑

i∈M �=

∑

j∈J
↓
i

p
↓
j − pj̄μ

≤ mL↓
OPT + (x − 1)rL↓

OPT − pj̄μ

= L↓
OPT

(
m + (x − 1)r

) − pj̄μ,

where the last inequality follows because
∑

j∈J
↓
i

p
↓
j ≤

L↓
OPT. Thus,

L↓
List ≤ L↓

OPT + (x − 1)r

m
L↓

OPT +
(

1 − 1

m

)

pj̄μ

≤
(

2 + (x − 1)r − 1

m

)

L↓
OPT. �

4.2 Bounded increases in processing times

We start by analyzing the impact of doubling the processing
time of one job, proceed by considering the increase by a
constant factor of one job’s processing time, then extend the
analysis to allowing many jobs to change in processing time
by a bounded amount.

Surprisingly, we shall see that the last analysis suggests
that it is not that relevant how many jobs we are allowed to
increase in processing time, but that if we allow an x-factor
increase in processing time, x perturbed jobs are sufficient
to produce a worst-case behavior.

4.2.1 Bounded increase of one job

In this section, we first show a simple lower bound for any
online algorithm on instances where the processing time of
one job may double; then, we show that this setting does not

affect Graham’s algorithm as badly as the arbitrary increase
of one job.

Theorem 12 No algorithm for online scheduling on m ≥ 2
identical parallel machines can have a competitive ratio
strictly smaller than 3

2 if the processing time of one job may
double.

Proof Assume this was possible and consider an online al-
gorithm which achieves a competitive ratio better than 3

2 .
The adversarial sequence consists of m + 1 jobs with
processing time 1. To achieve a competitive ratio smaller
than 2, the online algorithm schedules the first m jobs each
on a different machine. The last job may be scheduled on
any machine. The perturbation now doubles the processing
time of the job scheduled last. By doing so, this schedule
has a makespan of 3, whereas the optimal offline perturbed
schedule has a makespan of 2, obtained by scheduling the
only job with processing time 2 alone on a machine, and by
scheduling the other jobs in such a way that the maximum
load of any machine is 2. �

We now analyze the performance of Graham’s algorithm
in this situation, but for general bounded increase. The
analysis shows a swift transition from the case of bounded
perturbation to arbitrary perturbation of one job.

Theorem 13 Graham’s algorithm for online scheduling
on m identical parallel machines on instances where the
processing time of one job is perturbed to a factor x > 1,

x ∈ Q+
0 of its original processing time has a competitive ra-

tio of 3 − 1
x

− (2− 1
x
)

m
. This bound is best possible for m ≥ 3

and x ≥ m−1
m−2 .

Proof Let j̃ be the perturbed job. In this case, p
↑
j̃

= x · pj̃ .
Therefore, the idle time of each machine may increase by at
most the amount of this increase, that is, by x−1

x
p

↑
j̃

, and the
machine μ where j̃ is scheduled has no increase. Naturally,
since the optimal offline schedule needs to process j̃ as well,
p

↑
j̃

≤ L↑
OPT. Finally, since the processing times may only in-

crease, the idle times of the original schedule are bounded
by L↑

OPT, and the machine μ̄ which attains the makespan
L(List(J,P ),P ) has zero idle time. Now, the schedule of
the machines up to the makespan L(List(J,P ),P ↑) is de-
scribed as follows:

m · L↑
List =

∑

j∈J

p
↑
j +

∑

i∈M

s
↑
i

≤
∑

j∈J

p
↑
j +

∑

i∈M\{μ̄}
si +

∑

i∈M\{μ}

x − 1

x
p

↑
j̃

≤ m · L↑
OPT + (m − 1) ·

(

L↑
OPT + x − 1

x
L↑

OPT

)

.
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Fig. 5 A worst-case example for doubling the processing time of one
job. Top left, Graham’s schedule before the increase. Bottom left, Gra-
ham’s schedule after the increase. Top, the optimum offline perturbed
schedule

Thus,

L
(
List(J,P ),P ↑) ≤

(

3 − 1

x
− (2 − 1

x
)

m

)

× L
(
OPT

(
J,P ↑)

,P ↑)
.

An example coming arbitrarily close to this bound for x =
p
q

∈ Q+
0 is as follows, and shown in Fig. 5 for the case

x = 2
1 . Note that the restriction m ≥ 3 is necessary since

at least 3 machines are needed to schedule the jobs with
a makespan of 1 for the optimum offline perturbed sched-
ule, and x ≥ m−1

m−2 is required for ensuring that all processing
times are positive. The adversary sequentially presents m−3

jobs with processing time 1 − (2− 1
x
)

m
, one job with process-

ing time 1 − 1
x

− 2− 1
x

m
− ε, 2pm− 2qm− 4p + 2q jobs with

processing time 1
pm

, one job with processing time 1
x

, 2qm

jobs with processing time 1
pm

and finally a job with process-
ing time 1. The perturbation increases the job with process-

ing time 1
x

to 1, leading to a makespan of (3 − 1
x

− (2− 1
x
)

m
),

whereas the optimum offline algorithm on the perturbed in-
stance achieves a makespan of 1. �

We remark that for big x we get arbitrarily close to the
result of Theorem 3 for r = 1. Finally, with x = 1 we match
the bound of Graham’s algorithm.

4.2.2 Bounded increase of many jobs

We again begin by showing a simple lower bound.

Theorem 14 No online algorithm for online scheduling on
m identical parallel machines can have a competitive ratio
strictly smaller than 2 if the processing time of two jobs may
double.

Proof The proof is similar to the proof of Theorem 12. As-
sume an online algorithm with a competitive ratio strictly
smaller than 2 exists. The adversarial sequence for this al-
gorithm consists of m + 1 jobs of processing time 1. By the
same arguments of Theorem 5, no two jobs within the first
m can be scheduled on the same machine by the online algo-
rithm. The last of the jobs of the sequence can be scheduled
on any machine. Consider the jobs scheduled on the machine
having a load of 2. The worst-case perturbation doubles the
processing time of these jobs, enforcing a makespan of 4.
The optimum offline perturbed schedule, on the other hand,
schedules the two jobs of processing time 2 each on a sin-
gle machine, and distributes the remaining m − 1 jobs of
processing time 1 on m − 2 machines in such a way that no
machine exceeds a load of 2. The ratio of the two makespans
proves a competitive ratio of 2, a contradiction. �

The previous analyses of Graham’s algorithm can be ex-
tended to the cases where the perturbation affects more than
one job. Our analysis shows that the actual number of per-
turbed jobs is not really relevant, but is tied to the amount of
the perturbation.

Theorem 15 Consider the instances of online scheduling
on m identical parallel machines where perturbations may
increase the processing times of many jobs, each to a factor
at most x ≥ 1, x ∈ Q+

0 of their original processing time. Re-
stricted to these instances, Graham’s algorithm is 1+x− 1

m
-

competitive. For x ∈ N and x ≤ m − 1, the competitive ratio

of Graham’s algorithm is at least 1 + x − x2

m−1+x
− ε, for

arbitrarily small ε ∈ Q+
0 ,0 < ε < 1

x·(m−1+x)
.

Proof Consider a machine μ attaining the makespan L↑
List

as it was in the original instance. We partition the processing
times of the jobs on μ as follows. Let pj̄ be the processing
time of the last job j̄ scheduled on μ, β be the processing
time of perturbed jobs excluding job j̄ if it is perturbed, and
γ be the processing time of unperturbed jobs excluding job
j̄ if it is unperturbed. Due to Graham’s algorithm, β + γ ≤
LOPT − pj̄

m
, since, on the unperturbed instance, when the last

job j̄ was scheduled on μ all machines had at least this load.
Thus, β ≤ LOPT − pj̄

m
− γ . Because the processing times

can only increase, LOPT ≤ L↑
OPT. Finally, let p

↑
j̄ and β↑ be

the perturbed counterpart of the processing times pj̄ and β .
Let z ∈ [1, x] be the actual increase factor of job j̄ ; thus,
p

↑
j̄ = zpj̄ ≤ xpj̄ . The makespan L(List(J,P ),P ↑) can be

bounded as follows:

L↑
List = γ + β↑ + p

↑
j̄

≤ γ + x · β + p
↑
j̄

≤ γ + x

(

LOPT − γ − pj̄

m

)

+ p
↑
j̄
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≤ (1 − x)γ + xL↑
OPT + p

↑
j̄ − xpj̄

m

≤ xL↑
OPT + p

↑
j̄ − zpj̄

m

≤ xL↑
OPT + p

↑
j̄ − p

↑
j̄

m
≤

(

1 + x − 1

m

)

L↑
OPT.

The fourth inequality holds because of zpj̄ ≤ xpj̄ and 1 −
x ≤ 0, the fifth one is satisfied with equality because of

p
↑
j̄ = zpj̄ , and the last inequality because of p

↑
j̄ ≤ L↑

OPT.
Therefore,

L
(
List(J,P ),P ↑) ≤

(

1 + x − 1

m

)

L
(
OPT

(
J,P ↑)

,P ↑)
.

An example achieving a bad competitive ratio for x ≤
m − 1, x ∈ N, has the following structure, shown in Fig. 6.
First, the adversary presents m−x−1 big jobs with process-
ing time 1 − x

m−1+x
. The online algorithm schedules them

on idle machines. Next, the adversary presents the follow-
ing sequence of jobs: one medium job with processing
time 1

x
− 1

m−1+x
− ε, with ε ∈ Q+

0 ,0 < ε < 1
x·(m−1+x)

, and

(m − 1) · x small jobs with processing time 1
x·(m−1+x)

. The
same sequence is repeated x − 1 times with the difference
that the medium jobs have processing time 1

x
− 1

m−1+x
. Be-

cause of the offset ε of the first medium job, all medium
jobs are scheduled on the same machine, and the small
jobs are distributed evenly on x machines. At last, the ad-
versary presents a big job with processing time 1, which
is scheduled on the machine processing the medium jobs.
Now, the perturbation affects the medium jobs, which in-
crease to 1 − x

m−1+x
(except for the first medium job,

which is εx smaller than that) and enforce a makespan of

Fig. 6 The example of Theorem 15, here with x = 3. Top left, the
schedule produced by Graham’s algorithm with the original instance.
Bottom left, the schedule after the perturbations. Top right, the optimum
offline perturbed schedule

1 + x − x2

m−1+x
− xε. The optimal offline algorithm, on the

other hand, achieves a makespan of 1 by scheduling each
big job on a different machine, and by scheduling x2 small
jobs with processing time 1

x·(m−1+x)
on each of the m − 1

machines which do not yet attain the load of 1 with their big
job. Note that in this example it is sufficient to perturb x jobs
to get this bad behavior. �

In the following, we consider increases in processing
times which may be different for all jobs, but where the
impact on the schedule is bounded. To that end, consider
Graham’s schedule List(J,P ). For each machine i ∈ M , we
partition its assigned jobs as follows: Let j̄i be the last job
scheduled on machine i, Pi be the set of jobs, excluding j̄i ,
which are not perturbed, and P̃i the set of jobs, excluding j̄i ,
which are perturbed.

Theorem 16 Consider the instances of online scheduling
on m identical parallel machines where the processing
times of many jobs may increase. Assume that a machine
μ attaining the makespan in a schedule obtained by Gra-
ham’s algorithm has the following properties:

∑
j∈P̃μ

p
↑
j =

x
∑

j∈P̃μ
pj and p

↑
j̄μ

= ypj̄μ . In this case, Graham’s algo-

rithm has a competitive ratio of 1 + x − x
ym

, for x ≥ 1,

x ∈ Q+
0 , y ≥ 1, y ∈ Q+

0 .

Proof Consider a machine μ attaining the makespan L↑
List

in its unperturbed state. When Graham’s algorithm consid-
ered j̄μ, each machine had a load of at least

∑
j∈P̃μ

pj +
∑

j∈Pμ
pj ≤ LOPT − pj̄μ

m
. Thus,

∑
j∈P̃μ

pj ≤ LOPT − pj̄μ

m
−

∑
j∈Pμ

pj . Because the processing times increase, LOPT ≤
L↑

OPT. Finally, ypj̄μ ≤ L↑
OPT, since j̄μ must also be sched-

uled. The makespan L(List(J,P ),P ↑) can be described as
follows:

L↑
List =

∑

j∈Pμ

pj + x
∑

j∈P̃μ

pj + ypj̄μ

≤
∑

j∈Pμ

pj + x

(

LOPT − pj̄μ

m
−

∑

j∈Pμ

pj

)

+ ypj̄μ

≤
∑

j∈Pμ

pj + xLOPT − x
pj̄μ

m
− x

∑

j∈Pμ

pj + ypj̄μ

≤ (1 − x)
∑

j∈Pμ

pj + xLOPT + ypj̄μ

(

1 − x

ym

)

≤
(

1 + x − x

ym

)

L↑
OPT.

Thus,

L
(
List(J,P ),P ↑) ≤

(

1 + x − x

ym

)

L
(
OPT

(
J,P ↑)

,P ↑)
.

�
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5 A Graham-like risk aversion algorithm

In an effort to keep the impact of perturbations under con-
trol, the following strategy could prove to be effective for
online scheduling. When considering the next job in the se-
quence, one could enumerate all possible assignments of this
job to the machines. For each such assignment, we could
evaluate the effect on the competitive ratio of the worst-case
perturbation. Of all assignments, we could then chose the
best one. Such an approach might result in an exponential
running time: not only would one have to compute the opti-
mum offline perturbed schedule in order to draw a compar-
ison, which requires to solve an N P -hard problem; more
than this, such an algorithm must also determine how the
worst-case perturbation looks like (which might be far from
trivial). In an online setting, an exponential-time approach is
nevertheless applicable.

In this section, we consider a similar approach for
bounded perturbations increasing the processing time of
at most one job x-fold. The general idea of the algorithm,
which we call NORISK, is as follows. Each time a new job j

of the online sequence is presented, the algorithm computes
the worst-case load of each machine as follows: for a spe-
cific machine, it computes the load with the current assign-
ment and given that j is assigned to it, and increases this
load with the maximum increase in processing time result-
ing from perturbing any job assigned to it (i.e., the load if
a worst-case perturbation in terms of additional processing
time occurs). The algorithm assigns the job to the machine
having least worst-case load. Thus, NORISK is a greedy algo-
rithm, and in each step minimizes the worst-case makespan
should the sequence of jobs stop at that point, and the biggest
job be perturbed. Here, the perturbation of the biggest job is
seen as the perturbation which harms the schedule most. In
terms of the competitive ratio this assumption is not valid,
but serves as a simple greedy approach that does not require
the computation of the optimal offline schedule for each as-
signment and perturbation.

We now describe NORISK precisely. We number the jobs
in the online sequence increasingly. Thus, the sequence is
J = {1, . . . , n}. As specified earlier, we assume that at most
one job is perturbed. The perturbation increases the job’s
processing time from p to p↑ = x · p, for x > 1, x ∈ Q+

0 .
Let Ji(j), i ∈ M,j ∈ J be the set of jobs which have al-
ready been assigned to machine i when the job j ∈ J is
presented, but j itself has not yet been assigned. Thus,
Ji(1) = ∅,∀i ∈ M , and

⋃
i∈M Ji(n) = J \ {n}. We refer

to the worst-case load of machine i ∈ M when NORISK

is considering job j as �i(j). The worst-case load �i(j)

is defined as �i(j) = ∑
k∈Ji(j) pk + pj + δ

j
i , and δ

j
i =

(x − 1) · max{pk|k ∈ Ji(j) ∪ {j}} is the worst-case increase
in processing time on machine i if job j is assigned to that
machine. Abusing notation slightly, we refer to the jobs as-
signed to machine i ∈ M when the complete sequence has

Input : The online sequence of jobs J = {1, . . . , n}
each with processing time pj , j ∈ J .

Output: An online schedule assigning each job to a
machine

Initialization:
foreach i ∈ M do Ji(1) ← {};
Online sequence:
for j ← 1 to n do

for i ← 1 to m do
compute �i(j);

end
Determine machine with least worst-case load:
k ← argmini∈M(�i(j));
Update assignments of jobs to machines:
foreach i ∈ M do Ji(j + 1) ← Ji(j);
Jk(j + 1) ← Jk(j) ∪ {j};

end

Algorithm 1: The Graham-like risk-aversion online al-
gorithm NORISK

been scheduled as Ji(n + 1) and to the worst-case load of a
machine i ∈ M given the assignment Ji(n+ 1) as �i(n+ 1).
The algorithm NORISK is specified precisely in Algorithm 1
using the notation introduced above.

Before analyzing the algorithm, we remark that, in gen-
eral, we would be happy with an algorithm which has a
worse competitive ratio than Graham’s algorithm if no per-
turbation occurs, given that the competitive ratio is better
than Graham’s if a perturbation does indeed occur. In the
following, we show the competitive ratio of NORISK if no
perturbation occurs.

Theorem 17 Consider the instances of online scheduling
on m ≥ 2 parallel machines where the processing time
of one job may increase to a factor x ≥ 2, x ∈ Q+

0 . Re-
stricted to these instances, and if no perturbation occurs,
the NORISK scheduling algorithm has a competitive ratio
of x.

Theorem 17 implies that for x = 2, NORISK is almost as
good as Graham’s algorithm if no perturbations occur.

Proof Let Lrisk be the makespan obtained by NORISK. We
distinguish two cases. For the first, assume the job j̄μ that
attains the makespan is scheduled on a machine μ that by
removing j̄μ is the machine with least load. In this case, the
same analysis as for Graham’s algorithm applies, since the
idle times of the machines other than μ are upper bounded
by pj̄μ , μ has no idle time and the sum of the processing
times are a lower bound for m times the optimum value.

For the second case, we assume that the job j̄μ that at-
tains the makespan Lrisk on machine μ is scheduled in such
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Fig. 7 The setting for the second case of the proof of Theorem 17. The
picture reflects the situation when NORISK was scheduling job j̄μ. For
convenience, machines are sorted according to increasing load

a way that by removing it from the schedule, μ is not the
machine with least load. Hence, when μ starts process-
ing j̄μ, there is at least one machine which has been idle
for some time. This situation is shown in Fig. 7. Since j̄μ

was scheduled on μ, all other machines had a greater (or
equal) worst-case load when NORISK considered j̄μ. Thus,
�i(j̄μ) ≥ �μ(j̄μ), i ∈ M \ {μ}. Now, let ν be a machine hav-
ing minimum load �∗ when NORISK considered job j̄μ:
�∗ = ∑

k∈Jν(j̄μ) pk ≤ ∑
k∈Ji (j̄μ) pk, i ∈ M \ {ν}. Clearly,

�∗ ≤ LOPT, since all machines have load at least �∗ when re-
moving j̄μ. Let y = Lrisk −�∗. By showing y ≤ (x−1)LOPT
the theorem follows. Since j̄μ is the last job scheduled on μ,
we have that �μ(n + 1) = �μ(j̄μ). Now,

�μ(j̄μ) =
∑

j∈Jμ(n+1)

pj + δ
j̄μ
μ = Lrisk + δ

j̄μ
μ = �∗ + y + δ

j̄μ
μ .

Similarly, �ν(j̄μ) = ∑
j∈Jν(j̄μ) pj +pj̄μ + δ

j̄μ
ν = �∗ +pj̄μ +

δ
j̄μ
ν . Since the perturbations are bounded by a factor x of

the original processing time, δn+1
i ≤ (x −1) ·maxj∈J {pj } ≤

(x−1)LOPT, i ∈ M . Finally, by definition, δ
j̄μ

i ≥ (x−1)pj̄μ .
To conclude, let us assume that y > (x − 1) · LOPT. Then,

�ν(j̄μ) = �∗ + pj̄μ + δ
j̄μ
ν ≤ �∗ + pj̄μ + (x − 1)LOPT

≤ �∗ + (x − 1)pj̄μ + (x − 1)LOPT

< �∗ + (x − 1)pj̄μ + y ≤ �∗ + y + δ
j̄μ
μ = �μ(j̄μ),

a contradiction to having scheduled job j̄μ on machine μ. �

An example which comes close to the stated bound if
no perturbation occurs is as follows. The online sequence
is built by m − 1 big jobs of processing time 1, each of
which is scheduled on an idle machine. These jobs are fol-
lowed by a sequence of x

y
+ 1 − x small jobs of process-

ing time y < 1 followed by a small job of processing time
y − ε, for an arbitrary small ε < y, ε ∈ Q+

0 . All these jobs
are scheduled on the same machine, since the worst-case
load of a machine scheduling a big job is x + y, whereas
the remaining machine not scheduling big jobs has a worst-
case load of ky + x−1

y
when scheduling the kth small job,

which is strictly smaller than x + y for the whole sequence

of small jobs. This schedule has a makespan of Lrisk =
x +2y −xy −ε, whereas the optimum offline schedule has a
makespan of 1 + 1

m
(x + 2y − 1 − xy). For y → 0, m → ∞,

ε → 0, and x � 1
y

, the ratio of the makespans converges to
x+2y−xy

1+ 1
m

(x+2y−1−xy)
→ x.

Theorem 18 Consider the instances of online scheduling
on m ≥ 2 identical parallel machines where the process-
ing time of one job may increase to a factor x ≥ 2,

x ∈ Q+
0 of its original processing time. Restricted to these

instances, NORISK has a competitive ratio of 1 + x − 1
x

.

Proof We bound the makespan L↑
risk of the perturbed in-

stance by bounding the maximum worst-case load, which
is an upper bound for any perturbed makespan. Let μ be the
machine such that �μ(n + 1) is maximum. By Theorem 17,
∑

j∈Jμ(n+1) pj ≤ xLOPT and

L↑
risk ≤ �μ(n + 1) ≤

∑

j∈Jμ(n+1)

pj + δn+1
μ

≤ xLOPT + (x − 1)max
{
pj : j ∈ Jμ(n + 1)

}

≤ xLOPT + (x − 1)

x
max

{
p

↑
j : j ∈ Jμ(n + 1)

}

≤ xL↑
OPT + x − 1

x
L↑

OPT ≤
(

1 + x − 1

x

)

L↑
OPT. �

The analysis shows that NORISK performs worse than
Graham’s algorithm, which by comparison is slightly bet-
ter than 3 competitive in this setting. The main handicap is
caused by the offset which is introduced when scheduling
the unperturbed instance.

An example of a bad instance and perturbation for inte-
gral x ∈ N is as follows: The online sequence starts with
m − 1 jobs of processing time 1. NORISK schedules each
of these jobs on an idle machine. Then, a sequence of
mx2 + m− xm− 1 small jobs of processing time 1

xm
is pre-

sented, followed by one small job of processing time 1
xm

−ε,
for ε < 1

xm
, ε ∈ Q+

0 . All jobs are scheduled on the same ma-
chine μ. Indeed, the worst-case load of μ when the last small
job is considered is (mx2 + m − xm) 1

xm
+ (x − 1) 1

xm
− ε <

x + 1
x

− 1 + 1
m

− 1
xm

≤ x for m ≥ 2 and x ≥ 2, which is less
than the worst-case load x + 1

xm
or x + 1

xm
− ε of the other

machines. The sequence finishes with one job of processing
time 1

x
. This job is also scheduled on μ, since the worst-

case load is (mx2 + m − xm) 1
xm

− ε + 1
x

+ (x − 1) 1
x

=
x + 1

x
− 1 − ε + 1 = x + 1

x
− ε, compared with the worst-

case load x + 1
x

of the other machines. The worst-case per-
turbation increases the processing time of the last job in the
sequence from 1

x
to 1, which results in a perturbed makespan

L↑
risk = x + 1

x
− ε. The optimum offline solution schedules
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the m jobs of processing time 1 (one of which is the per-
turbed job) on different machines, and assigns x2 + 1 − x

small jobs to each machine. In this way, the optimum offline
solution has a makespan of 1 + x

m
+ 1

xm
− 1

m
. For arbitrarily

large m → ∞ and arbitrarily small ε → 0, the ratio of the

objectives converges to
x+ 1

x

1+ x
m

+ 1
xm

− 1
m

→ x + 1
x

.

We remark the following aspects of NORISK. First, for
a subset of instances, NORISK produces the same schedule
as Graham’s algorithm. This happens if the jobs are pre-
sented in order of increasing processing time, since in this
case, for the j th job in the sequence, all δ

j
i , i ∈ M , are the

same. Thus, the job is scheduled on the least loaded ma-
chine. Note that it is on these instances that Graham’s al-
gorithm achieves its worst-case competitive ratio. Also, for
x = 1, NORISK is Graham’s algorithm. Even for x = 2,
where NORISK has almost the same competitive ratio as Gra-
ham’s algorithm, the previous example shows that the latter
can perform better than NORISK. Furthermore, examples can
be constructed where the increase of the job with biggest
processing time causes a greater makespan to NORISK than
to Graham’s algorithm: For example, on two machines and
for ε < 1

6 , ε ∈ Q+
0 , the sequence of jobs with processing

times (1, 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 − ε, 1
2 , 1

2 ,1,1 + ε
3 ) is such a case,

since the perturbation of the last (and biggest) job results in
a makespan of 3.5 + 2

3ε for Graham’s algorithm and in a
makespan 4 − 1

3ε for NORISK.
These results show that a greedy approach on the make-

span is not what we should aim for. The greatest handicap of
this approach is that if no perturbations occur, the machine
attaining the makespan can have (unperturbed) load nearly
as high as the worst-case load of any machine.
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