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We investigate the implications of string swampland criteria for alternative theories of gravity. Even
though this has not rigorously been proven, there is some evidence that exact de Sitter solutions with a
positive cosmological constant cannot be successfully embedded into string theory, and that the low energy
effective field theories containing a scalar field π with a potential V in the habitable landscape should satisfy
the swampland criteria jV 0j=V ≥ c ∼Oð1Þ. As a paradigmatic class of modified gravity theories for
inflation and dark energy, we consider the extensively studied family of Horndeski Lagrangians in view of
cosmological observations. Apart from a possible potential term, they contain derivative self-interactions as
the Galileon and nonminimal couplings to the gravity sector. Hence, our conclusions on the Galileon sector
can be also applied to many other alternative theories with scalar helicity modes containing derivative
interactions such as massive gravity and generalized Proca. In the presence of such derivative terms, the
dynamics of the scalar mode is substantially modified, and imposing the cosmological evolution
constrained by observations places tight constraints on c within the swampland conjecture.

DOI: 10.1103/PhysRevD.99.124020

I. INTRODUCTION

The standard cosmological paradigm relies on the
existence of hypothetical scalar fields causing two phases
of accelerated expansion during the evolution history of the
universe. First of all, cosmological inflation is a period of
extremely rapid expansion of the universe that is thought to
have taken place immediately after the big bang. To explain
the dynamics of inflation, a scalar quantum field is needed,
which is spatially homogeneous and has a finite energy
density. If the field changes sufficiently slowly in time, it
has negative pressure and effectively behaves like a
cosmological constant, thus causing the expansion of the
universe to accelerate. Second, the present universe seems
to have entered into a similar phase of accelerated expan-
sion. The explanation of this observed acceleration is the
subject of current research and has led to the concept of
dark energy. The ΛCDM model is a cosmological model

that describes the development of the universe since the big
bang with a few parameters. It is the simplest model that is
in good agreement with virtually all cosmological mea-
surements. Λ stands for the positive cosmological constant.
Extensions of this simple model typically entail a time-
evolving scalar field. Up to now, cosmological observations
show no significant deviation of the cosmic acceleration
from that expected from a cosmological constant, so we
seem to be living in a universe that is either of de Sitter type
or close to it.
Einstein’s theory of general relativity (GR) describes the

interaction between matter on the one hand and space and
time on the other. It interprets gravity as the geometric
property of the curved four-dimensional space-time. GR
extends special relativity and Newtonian gravity and has
been experimentally confirmed in numerous tests.
However, in order to account for inflation and time
evolving dark energy, one has to introduce additional fields
beyond the standard model and extend the underlying
theory accordingly. In this context, modifications of gravity
have been considered, with the most studied ones contain-
ing an additional scalar field. As a paradigmatic class of
modified gravity theories for inflation and dark energy, one
can study scalar-tensor theories and, in particular, the
extensively studied family of Horndeski Lagrangians [1].
One characteristic property of these theories is the second-
order nature of the derivative self-interactions of the scalar
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field that, in turn, require the presence of derivative non-
minimal couplings to the gravity sector (see, e.g., [2] for a
recent review). Most of our effective field theories of
gravity, GR or beyond, face the same tenacious challenge
concerning their consistent UV completion into a quantum
gravity theory. A promising candidate for quantum gravity
is string theory in view of its successful unification of the
standard model of particle physics with gravity. Should
string theory be the ultimate theory of quantum gravity,
one pertinent question would be whether our constructed
effective field theories of gravity can naturally be
embedded into string theory.
One can divide the effective field theories into two

groups: the landscape, where field theories can success-
fully be embedded into string theory, and the swampland as
an inhabitable region, where field theories are incompatible
with quantum gravity [3]. Motivated by string-theoretical
constructions, a new de Sitter swampland conjecture was
postulated recently [4], asserting that any scalar field
arising from string theory should satisfy a universal bound
on its potential jV 0j ≥ c

MP
V. One immediate consequence of

this conjecture is that (meta-)stable de Sitter vacua in string
theory would be excluded. The existence of stable de Sitter
vacua in critical string theory has been questioned in the
literature before [5], however metastable de Sitter vacua
might be possible. The cosmological implications of this
new swampland conjecture are multifaceted, in particular,
quintessence-type models for inflation and dark energy are
highly constrained [6] (see also [7] for some other related
discussions).
These string-theory criteria can also be used to constrain

alternative theories of gravity. Still remaining within the
class of theories containing one additional scalar field, we
consider the Horndeski scalar-tensor theories with deriva-
tive self-interactions. They can be applied to both infla-
tionary scenarios and concrete dark-energy models. The
quintessence models are very limited theories with just a
potential term of the scalar field, whereas the Horndeski
models represent the most general Lagrangians for a scalar
field in the presence of derivative interactions. They contain
the Galileon interactions as a subclass [8], which is part of
many modified gravity theories including massive gravity
[9] and generalized Proca theories [10]. Thus, even though
we specifically study the implications of the string swamp-
land criteria for the Horndeski scalar field, these implica-
tions will also be directly applicable to the longitudinal
mode of many other modified gravity theories, at least
concerning their derivative interactions. In fact, the decou-
pling limit of massive gravity can be covariantized and the
resulting theory belongs to a subclass of Horndeski theories
[11]. Of course both massive gravity and generalized Proca
theories contain important nontrivial interactions that go
beyond the Galileon interactions and the associated degrees
of freedom descend from a full-fledged tensor and vector
field respectively. The presence of the additional helicity

modes will have important implications for the swampland
conjectures, that go beyond the scope of our present work.
It is well known that the Galileon interactions are

protected from quantum corrections due to their antisym-
metric structure. In order for them to have a local, analytic
Wilsonian UV completion, the positivity requirements of
the tree level scattering amplitudes impose for instance a
constraint between the quartic and cubic interactions and in
[12] it has been shown that there is no obstruction to a local
UV completion. Going beyond the Galileon interactions,
the class of Horndeski theories where the Galileon invari-
ance is weakly broken, is insensitive to loop corrections on
quasi–de Sitter backgrounds [13].

II. HORNDESKI AND THE
STRING SWAMPLAND

Among the prominent field theories for gravity, we will
consider the scalar-tensor theories with derivative self-
interactions and nonminimal couplings. Promoting
Galileon interactions into curved space-time revealed the
necessity of nonminimal couplings and the rediscovery of
Horndeski interactions. They constitute the most general
Lagrangian for a scalar field on curved space-time with
second order equations of motion despite the presence of
derivative self-interactions. The action reads S ¼R
d4x

ffiffiffiffiffiffi−gp
Li where the individual Lagrangians have to

be of the following form

L2 ¼ G2ðπ; XÞ
L3 ¼ G3ðπ; XÞ½Π�
L4 ¼ G4ðπ; XÞRþG4;Xð½Π�2 − ½Π2�Þ

L5 ¼ G5ðπ; XÞGμνΠμν −
G4;X

6
ð½Π�3 − 3½Π�½Π2� þ 2½Π3�Þ;

ð1Þ

where X stands for the standard kinetic term X ¼
− 1

2
∂μπ∂μπ and Πμν ¼ ∇μ∂ν, ½Π� ¼ Πμ

μ. In the fourth
and fifth Lagrangian we see the presence of nonminimal
couplings to gravity through the Ricci scalar and the
Einstein tensor and their relative tunings to the derivative
self-interactions are essential to guarantee the second order
nature of the equations of motion. Since the fourth order
Lagrangian already captures all the particularities of
derivative self-interactions and nonminimal couplings,
we will only study the Horndeski Lagrangian including
cubic and quartic interactions in this work, hence our action
will be

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p fL2 þ L3 þ L4g: ð2Þ

Within this class of nonminimally coupled scalar-tensor
theories, we need to make an Ansatz for the general
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coefficient functions G2;3;4 in order to be able to study the
presence of concrete self-accelerating models. For an
exhaustive classification of possible interesting Ansatz
we refer to the review article [14]. Our aim is to consider
one of the simplest Ansatz, which gives rise to self-
accelerating solution and apply the swampland condition
on it. Such a realization is for instance given by (detailed
information can be found in [15])

G2ðπ; XÞ ¼ ð1 − 6α2ÞfðπÞX − VðπÞ; ð3Þ

G3ðπ; XÞ ¼ α3X; ð4Þ

G4ðπ; XÞ ¼
MP

2
fðπÞ þ α4X2; ð5Þ

where the function fðπÞ is assumed to be fðπÞ ¼
e−2αðπ−π0Þ=MP and α, α3, α4 and π0 are constant parameters.
The action Sm of the standard matter fields has to be added.
Let us now introduce the following dynamical variables:

x1 ¼ _π=ð
ffiffiffi
6

p
HMPÞ;

x2 ¼ VðπÞ=ð3M2
PH

2fðπÞÞ;
x3 ¼ 6α3 _π

3=ðM2
PHfðπÞÞ;

x4 ¼ 10α4 _π
4=ðM2

PfðπÞÞ;
Ωr ¼ y2 ¼ ρr=ð3M2

PH
2fðπÞÞ; and

λ ¼ −MPV 0=V: ð6Þ

The background equations of motion of the system can then
be brought into the autonomous form [15]

dx1
dN

¼ x1ðϵπ − hÞ; ð7Þ

dx2
dN

¼ x2ð
ffiffiffi
6

p
ð2α − λÞx1 − 2hÞ; ð8Þ

dx3
dN

¼ x3ð2
ffiffiffi
6

p
αx1 þ 3ϵπ − hÞ; ð9Þ

dx4
dN

¼ x4ð2
ffiffiffi
6

p
αx1 þ 4ϵπÞ; ð10Þ

dy
dN

¼ yð
ffiffiffi
6

p
αx1 − 2 − hÞ; ð11Þ

dλ
dN

¼
ffiffiffi
6

p
λ2x1; ð12Þ

with the cumbersome expressions for h ¼ _H=H2 and ϵπ ¼
π̈=ðH _πÞ given in the Appendix. Furthermore, we have

Ωm ¼ 1 − ð1 − 6α2Þx21 − 2
ffiffiffi
6

p
αx1 − x2 − x3 −Ωr ð13Þ

for the matter-density parameter. On the other hand, the
dark-energy equation of state w≡ P=ρ satisfies

w ¼ weff − ðΩr=3Þðf=f0Þ
1 − ðΩm −Ωr=3Þðf=f0Þ

; ð14Þ

with f0 being the present value of fðπÞ and weff the
effective equation of state weff ≡ −1 − 2 _H=ð3H2Þ,

weff ¼ −1 −
2h
3
: ð15Þ

Note that the presence of the cubic and quartic derivative
self-interactions are encoded in the dynamical variables x3
and x4. In the absence of these interactions, i.e., for x3 ¼ 0
and x4 ¼ 0, we have a k-essence field coupled to the Ricci
scalar. In this case, the autonomous system admits the
critical points (x1, x2, y)

I∶ ð0; 0; 1Þ;
II∶ ðð

ffiffiffi
6

p
α − 1Þ−1; 0; 0Þ;

III∶ ðð
ffiffiffi
6

p
αþ 1Þ−1; 0; 0Þ;

IV∶ ð
ffiffiffiffiffiffiffiffi
2=3

p
αð2α2 − 1Þ−1; 0; 0Þ;

V∶ ð2
ffiffiffiffiffiffiffiffi
2=3

p
=λ; 4=ð3λ2Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4þ ðλ − 4αÞ2

q
=λÞ;

VI∶ ð
ffiffiffiffiffiffiffiffi
3=2

p
=λ; ð3þ 2αðλ − 3αÞÞ=ð2λ2Þ; 0Þ; and

VII∶ ðð
ffiffiffi
6

p
ðαþ ðλ − 4αÞ−1Þ−1;

ð−6þ ðλ − 4αÞ2Þ=ð6ð1þ αðλ − 4αÞÞ2Þ; 0Þ: ð16Þ

The critical point I corresponds to the radiation-dominated
epoch, whereas the critical points IV and VII represent the
matter- and scalar-field-dominated epochs, respectively.
This is shown in Fig. 1.
The previous model did not include the important

derivative self-interactions. Additional cosmological back-
ground evolutions arise after reintroducing the parameters
α3 ≠ 0 and α4 ≠ 0. The number of critical points increases
significantly. Their exact expressions as well as the five-
dimensional phase map become cumbersome to illustrate.
Instead, we show a particular example of the phase map
with the possible trajectories in the x3 and x4 plane, where
these derivate self-interactions dominate, x4 ≫ x3 ≫ x21. In
order to show some of the critical points, we have chosen
the points of intersections in the higher dimensional field
space as y ¼ 0, x1 ¼ 0 and x2 ¼ 0. This example is shown
in Fig. 2.
These effective field theories admit a rich phenomenol-

ogy and many models for an accelerated universe relevant
for the cosmological evolution. We will now use the
additional constraint from the swampland conjecture in
order to further restrict the Horndeski interactions. An
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effective field theory consistent with string theory has to
satisfy

(i) the derivative of the scalar-field potential has to
satisfy the lower bound jV 0j=V > c ∼Oð1Þ [4]; and

(ii) the range traversed by a scalar field is bounded by
jΔπj < d ∼Oð1Þ in reduced Planck units [16].

The former conjecture has also a refined version, according
to which if the condition on the first derivative is not
satisfied, then a condition on the second derivative
minðV 00Þ=V ≤ −c̃ ∼Oð1Þ [17] needs to be met. This
applies in particular to models where the scalar field is
close to a local maximum of the potential. Here, we are
interested in evolving configurations like those used to
obtain quintessence models in which the condition on the
second derivative is violated and hence the criterium on the
first derivative needs to be met. The second conjecture is
automatically satisfied for the relevant cosmological
evolution, since we do not require many e-foldings of
accelerated expansion. We will focus on the bound
jV 0j=V > c ∼Oð1Þ in this work.
In the following, we will solve the background equa-

tions (7) numerically, construct specific cosmological mod-
els, and compare them with cosmological observations.

III. OBSERVATIONAL BOUNDS

A. Solutions for the dynamical variables

We intend to apply the observational bounds from SNeIa,
CMB,BAO, andH0 measurements aswell as the forecast for
Euclid on the Horndeski Lagrangian together with the
swampland conjecture on the potential term. For doing so,
we will solve the underlying background equations numeri-
cally. These will sensitively depend on the choice of the
initial conditions. They will be chosen in such a way that the
resulting cosmological evolution has the right radiation-,
matter-, and scalar-field dominated phases. In order to not
strongly modify the distance to the last-scattering surface of
the cosmic microwave background, we will impose
jαj < 0.1. On the other hand, the absence of fifth forces
on the Solar System scales forces us to set jαj ≳ 0.001 [15].
Similarly, the presence of a proper matter-dominated phase
requires x4ðz ¼ 0Þ ≲ 10−6 and x3ðz ¼ 0Þ≲ 10−4. The pres-
ence of the derivative self-interactions strongly modifies the
dynamics of the scalar field. In order to reproduce the right
cosmological evolution, the interactions have to be signifi-
cantly tuned. Such a tuning is realized for the set of
initial conditions satisfying x4 ≫ x3 ≫ x21 (for instance
x1 ¼ 1.66 × 10−13, x2 ¼ 7.02 × 10−25, x3 ¼ 6.51 × 10−22.
x4 ¼ 1.54 × 10−18, x5 ¼ 0.99985 at redshift z ¼ 1.02 × 107

[15]). We will keep these initial conditions throughout this
work and scan only the two-dimensional parameter space
(λ, α).
Since the de Sitter swampland conjecture demands

jV 0j=V ≥ c ∼Oð1Þ, we will only consider the cases
λðπÞ ≥ c ∼Oð1Þ. In Fig. 3 we show an example of our
numerical solutions for the dynamical variables of the
autonomous system (7) for jαj ¼ 0.02 and λ ¼ 0.9. It can
be clearly seen that the evolution starts from the initial
conditions satisfying x4 ≫ x3 ≫ x21. During the radiation-
dominated phase, x21 grows faster than x4 and x3 and
outpaces them by the end of the radiation-dominated epoch.

10 5 0 5 10

2

0

2

4

6

x 4

x3

FIG. 2. The figure shows the phase map of the autonomous
system for the model with x1 ¼ 0 and x2 ¼ 0. The trajectories of
fx3; x4g on the y ¼ 0 plane are shown for α ¼ −0.02 and
λ ¼ 0.9. The critical point (blue) represents the scalar-field-
dominated epoch with x4 ≫ x3 ≫ x21.

3 2 1 0 1 2 3

3

2

1

0

1

2

3

x1

x 2

FIG. 1. The figure shows the phase map of the autonomous
system for the model with α3 ¼ 0 and α4 ¼ 0. The trajectories of
fx1; x2g on the y ¼ 0 plane are shown for α ¼ −0.02 and
λ ¼ 0.9. The critical points II (green), III (brown), IV (pink),
VI (red), and VII (blue) are highlighted. The latter represents the
scalar-field-dominated epoch, whereas IV represents the matter-
dominated phase. The critical point I (corresponding to the
radiation-dominated epoch) cannot be shown in this y ¼ 0 slice.
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Then, the matter-dominated phase takes over and x2 starts
dominating. During this period, we have x2>x21>x3>x4
and the derivative self-interactions x3 and x4 decrease
significantly. Next, the π-dominated phase starts. During
this epoch, the cosmic acceleration starts only once x2 also
overtakes Ωm. While the universe undergoes the phase of
acceleration with almost constant H, the ratios between the
derivative self-interactions and x1 are kept nearly constant.
The evolution of the density parameters ΩDE, Ωm, and Ωr
together with the equation of state parameter w of the dark
energy are also shown in the figure. It illustrates that the
cosmic evolution follows the radiation-, matter-, and π-
dominated phases throughout the history of the universe.

B. Observational upper bound on wðzÞ
The observational constraints can be approximately rep-

resented by a confidence ellipse with semiaxes a and b,
described by x2=a2 þ y2=b2 ¼ 1 in its principal-axis frame
with the origin of x⃗ ¼ ðx; yÞ⊤ on the center of the ellipse,
with the coordinates represented by x and y. If the coordinate
frame is rotated by an orthogonal matrix R and has its origin

shifted to the point x⃗c ¼ ðxc; ycÞ⊤, the ellipse is described by
ðx⃗ − x⃗cÞ⊤Mðx⃗ − x⃗cÞ ¼ 1 with M ¼ R diagða−2; b−2ÞR⊤.
In the Chevallier-Polarski-Linder parametrization [18] of

w as a function of redshift z,

wðzÞ ¼ w0 þ
z

1þ z
wa ≕w0 þ ζwa; ð17Þ

we approximate the measured constraints on w0 and wa by
elliptical uncertainty contours in the (w0, wa) plane around
the best-fitting point w⃗c ¼ ðw0; waÞ⊤c , modeled by the
inverse Fisher matrix M with its independent elements
M11,M12 ¼ M21 andM22. These confidence contours then
satisfy the equation

ðw⃗ − w⃗cÞ⊤Mðw⃗ − w⃗cÞ ¼ 1: ð18Þ

If we parametrize the contour by an angle ϕ ∈ ½0; 2πÞ and
write it in the form

w⃗ðϕÞ ¼ w⃗c þ δwðcosϕ; sinϕÞ⊤; ð19Þ

Eq. (18) implies δw ¼ q−1=2 with

q ¼ M11cos2ϕþ 2M12 cosϕ sinϕþM22sin2ϕ: ð20Þ

Inserting

w0ðϕÞ ¼ w0c þ δw cosϕ;

waðϕÞ ¼ w0a þ δw sinϕ ð21Þ

into the Chevallier-Polarski-Linder parametrization (17)
gives

wðz;ϕÞ ¼ aðϕÞ þ ζ
bðϕÞffiffiffi

q
p ð22Þ

with aðϕÞ ¼ w0c þ ζwac and bðϕÞ ¼ cosϕþ ζ sinϕ. We
can then find the upper limit on wðzÞ allowed by the
observational constraints analytically by searching for
maxϕwðz;ϕÞ. Taking the derivative of wðz;ϕÞ with respect
to ϕ and equating the result to zero gives 2qb0 − bq0 ¼ 0,
where the prime denotes the derivative with respect to ϕ.
This is a third-order polynomial in tanϕ with the only real
solution

tanϕ≕ τ ¼ M12 − ζM11

ζM12 −M22

ð23Þ

for tanϕ. Since the tangent is π-periodic, this solution
contains both maxima and minima of wðz;ϕÞ, with the
maximum identified by the solution with positive cosϕ.
Inserting this solution into (22) gives the upper bound

wmaxðzÞ ¼ w0c þ ζwac þ
j1þ ζτjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M11 þ 2M12τ þM22τ
2

p ð24Þ

FIG. 3. The figure shows the numerical solutions for (top) xi and
(bottom)Ωi as a function of redshift 1þ z for the model parameter
α ¼ −0.02 and the initial conditions (at z ¼ 1.02 × 107)
x1 ¼ 1.66 × 10−13, x2 ¼ 7.02 × 10−25, x3 ¼ 6.51 × 10−22. x4 ¼
1.54 × 10−18, x5 ¼ 0.999 85, and λ ¼ 0.9. One clearly sees
the transition between the radiation-, matter-, and scalar-field-
dominated phases throughout the cosmic evolution.
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on wðzÞ, characterized by the elements of the inverse Fisher
matrix M. We will apply this analytical expression to the
corresponding 1- and 2-σ ellipses enclosing the domain in
the (w0, wa) plane allowed by the observations.

C. Constraints in the (λ, α) plane

In order to compare our numerical solutions for the
equation of state parameter w for different values of (λ, α)
with the observational constraints obtained in [19], we
estimate the inverse Fisher matrix M from the 1- and 2-σ
contours of Fig. 21 in [19]. In this way, we can directly
compare the empirical upper bound on the equation of state
parameter w as a function of redshift from (24) with our
numerical solutions of the background equations. The
result is illustrated in Fig. 4. The comparison of the
observational uncertainties on w0 and wa with the regime
still allowed by the string swampland criteria requires
λ≲ 0.6 for a wide range of values for α.
Similarly, we can use the near-future limits of Stage-4

surveys to obtain tighter constraints on the allowed
Horndeski models within the swampland criteria. The
outcome is shown in Fig. 5, where the prospective
1- and 3-σ upper bounds on w0 and wa were taken
from the Euclid Definition Study Report [20], and the
orientation of the inverse Fisher matrix was assumed to be
the same as in the current observational constraints. As we
can see, the planned Stage-4 surveys exemplified by Euclid
can already be expected to lower the allowed values for λ to
λ≲ 0.2. With this, the entire class of Horndeski dark-
energy models would be pushed into an uncomfortable
corner.
The significant discovery of two merging neutron stars

has significantly constrained the propagation speed cT of
gravitational waves to be very close to the speed of light
jcT=c − 1j < 10−15. Horndeski theories including the
quartic and quintic interactions are tightly constrained by

this observation. Specifically, the nonminimal couplings to
the gravity sector in L4 and L5 [which we did not consider
in (2)] contribute to the propagation speed of the tensor
modes as

c2T ¼ 2G4 − 2XG5;π − 2XG5;Xπ̈

4qT
; ð25Þ

where qT represents the kinetic term of the tensor modes

qT ¼ 1

4
ð2ðG4 − 2XG4;XÞ − 2XðG5;Xπ̈ÞÞ: ð26Þ

Hence, luminal propagation of gravitational waves in
Horndeski models would require G4;X ¼ 0 and G5 ¼ 0

(see for instance [21] and some reviews [2,14,22]). We have
taken this into account when we produced the allowed
parameter space in Figs. 4 and 5.

IV. CONCLUSION

In this work, we have applied the de Sitter swampland
conjecture to Horndeski scalar-tensor theories, which
represent a prominent class of alternative theories of gravity
based on an additional scalar field. The defining properties
of the Horndeski interactions are that they contain deriva-
tive self-interactions and non-minimal couplings, but still
give rise to second-order equations of motion. The quintes-
sence model corresponds to just a restricted subclass of this
general scalar-tensor theories. The presence of these
derivative self-interactions crucially influences the dynam-
ics of the scalar field. The requirement of the appropriate
cosmological evolution strengthens the implications of the
de Sitter swampland conjecture. The distinctive interactions
arise in this cubic and quartic Horndeski Lagrangians,
which we encoded in x3 and x4. The dynamical background
equations rely strongly on the choice of the initial con-
ditions. In order for these higher-order interactions not

FIG. 4. The figure shows the allowed parameter space (λ, α)
after comparing the upper bound on the reconstructed equation of
state wðzÞ of the 1- and 2-σ contours of Fig. 21 of [19] with our
numerical solutions of the Horndeski model. Luminal propaga-
tion speed for gravitational waves is assumed, i.e., we set α4 ¼ 0.

FIG. 5. The figure illustrates the allowed parameter space (λ, α)
of Euclid type stage-4 experiment.
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to be too small and to have appreciable effects with
x4 ≫ x3 ≫ x21, the initial conditions have to be signifi-
cantly tuned for the appropriate cosmology. We have
chosen such conditions throughout this work, such that
the successive epochs of radiation-, matter- and π-domi-
nation were ensured. Conversely, this leaves little room for
the slope of the potential. Hence, the de Sitter swampland
conjecture gives rise to tighter constraints within the
Horndeski dark energy models.
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APPENDIX: VARIABLES OF THE DYNAMICAL SYSTEM

ϵϕ ¼ ½3
ffiffiffi
6

p
x21f5x3 − 20þ 2q2ð20þ 5x3 − 4x4Þ þ 12x4g þ 12qx31f25 − 2x4 þ 6q2ð2x4 − 5Þg þ

ffiffiffi
6

p
f−24x2x4

þ 3x3ðx4 − 5x2 − 5Þ þ ð5x3 þ 8x4Þx25g − 12x1fλx2ðx4 − 5Þ þ 5qð1þ 3x2 þ 2x3 þ 3x4 − x25Þg�=ð
ffiffiffi
6

p
DÞ; ðA1Þ

h ¼ −½30ð1 − 8q2 þ 12q4Þx41 þ 15x23 þ 2
ffiffiffi
6

p
qð6q2 − 1Þx31ð5x3 þ 8x4 − 10Þ þ

ffiffiffi
6

p
x1f5x3ð2q − λx2Þ þ 8x4ðq − λx2Þg

þ 10x3ð3 − 3x2 þ 3x4 þ x25Þ þ 12x4ð3 − 3x2 þ x4 þ x25Þ þ 2x21ð15 − 15x2 þ 30x3 þ 39x4 þ 5x25Þ
− 60qx21fλx2 − qð1þ 3x2 − 2x3 − 3x4 − x25Þg�=D; ðA2Þ

D ¼ 5x3ð4þ x3Þ þ 12ð2þ x3Þx4 þ 8x24 þ 4
ffiffiffi
6

p
qx1ð5x3 þ 8x4Þ þ 4x21f5þ ð6q2 − 1Þx4g: ðA3Þ
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