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Abstract. We apply the slave-boson approach of Kotliar and Ruckenstein to the two-band Hubbard model
with an Ising like Hund’s rule coupling and bands of different widths. On the mean-field level of this
approach we investigate the Mott transition and observe both separate and joint transitions of the two
bands depending on the choice of the inter- and intra-orbital Coulomb interaction parameters. The mean-
field calculations allow for a simple physical interpretation and can confirm several aspects of previous
work. Beside the case of two individually half-filled bands we also examine what happens if the original
metallic bands possess fractional filling either due to finite doping or due to a crystal field which relatively
shifts the atomic energy levels of the two orbitals. For appropriate values of the interaction and of the
crystal field we can observe a band insulating state and a ferromagnetic metal.

PACS. 71.30.+h Metal-insulator transitions and other electronic transitions – 71.20.Be Transition metals
and alloys – 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.Fd Lattice fermion
models (Hubbard model, etc.)

1 Introduction

The Mott transition in multiorbital systems with several
bands gives rise to complex and intriguing physics. Multi-
band systems occur naturally in rare earth intermetallic
compounds and in systems involving transition metals. In
the former extended conduction electrons and almost lo-
calized f -electrons couple through local hybridization and
give rise to Kondo and heavy Fermion physics. In transi-
tion metal oxides, chalcogenides etc. several partially filled
d-orbitals are the origin of rather similar electron bands of
different but comparable width. Here the question arises
how the interaction among these orbitals, Coulomb repul-
sion and Hund’s rule coupling, influences the transition
to partially or fully localized degrees of freedom. What is
the nature of the Mott transition that occurs as the mag-
nitude of the interactions is increased gradually? In this
paper we will be concerned with these questions.

The two-band Hubbard model with bands of different
widths is the simplest model that captures all the relevant
aspects of the Mott transition in multiorbital systems. In
recent years this model was investigated by several au-
thors [1–11] mainly in the framework of dynamical mean-
field theory (DMFT) and using different methods to solve
the local impurity problem. These calculations have led
to the following understanding of the Mott transition at
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half filling. Depending on the exact choice of the intra-
and inter-orbital interaction parameters, one can observe
a sequence of individual Mott transitions in each band
or a joint transition involving both bands simultaneously.
The existence of a separate transition, usually referred to
as “orbital-selective Mott transition” (OSMT), implies an
intermediate phase between the metal and the Mott in-
sulator where only the narrow band is insulating whereas
the wide band still has metallic properties. Furthermore,
the stability of this intermediate phase strongly depends
on how the Hund’s rule coupling is taken into account.

Early studies of the Mott transition in multiorbital sys-
tems made by Anisimov et al. [12], Liebsch [1–3,13] and
by Koga and coworkers [4–6] and more recent DMFT cal-
culations of de’ Medici et al. [8], Ferrero et al. [9], Arita
et al. [10], and Knecht et al. [11] showed that different im-
purity solvers capture different aspects of the Mott tran-
sition and can partially lead to different conclusions. It
is therefore desirable to investigate the properties of this
Mott transition within a more analytical theory. We apply
the slave-boson approach of Kotliar and Ruckenstein [15]
on the mean-field level, discuss and confirm several aspects
of previous work. Our calculations give reasonable results
in a wide range of parameters and allow in a natural way
for a simple physical interpretation. Beside the case of two
individually half-filled bands we examine what happens if
the original metallic bands possess fractional filling either
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due to finite doping or due to a crystal field which shifts
the atomic energy levels of the two orbitals relative to
each other. In both cases we can observe an OSMT. Due
to the crystal field splitting also a ferromagnetic and a
band insulating phase appear in the phase diagram.

The paper is organized as follows. In Section 2 we in-
troduce the model. In the rather technical Section 3 we
apply the slave-boson formalism and its mean-field ap-
proximation. The results concerning the Mott transition
are presented and discussed in Section 4 for various choices
of the interaction parameters at half filling, in the presence
of a crystal field and for finite doping. Conclusions and a
comparison with previous results are found in Section 5.

2 Model

We consider the following two-band Hubbard Hamiltonian

H =
∑

ασ

∑

〈ij〉
t
(α)
ij c†iασcjασ + V̂ (1)

with

V̂ = U
∑

iα

n̂iα↑n̂iα↓ +
∑

iσσ′
(U ′ − Jδσσ′ )n̂i1σn̂i2σ′ . (2)

As usual c†iασ (ciασ) creates (annihilates) an electron with
spin σ =↑, ↓ and band index α = 1, 2 at the site i and
n̂iασ = c†iασciασ is the corresponding occupation num-
ber operator. The hopping integral for the orbital α is
denoted by t

(α)
ij . We assume vanishing inter-orbital hy-

bridization and that the hopping integrals have different
values for the different orbitals, i.e. that the tight-binding
bands have different bandwidths. The intraband (inter-
band) Coulomb repulsion is denoted by U (U ′) and the
Hund’s rule coupling by J . In two-band Hubbard models
additional spin-flip and pair-hopping terms are usually in-
cluded in the Hund’s rule coupling. As shortly discussed
in the next section, these terms pose problems in the
slave-boson formalism and we therefore concentrate on the
Ising like Hund’s rule coupling in equation (2). Note how-
ever that these terms are not included in Quantum Monte
Carlo (QMC) calculations either [1,2,11]. For a spherically
symmetric screened Coulomb interaction the positive in-
teraction parameters are related by U ′ = U −2J [14]. The
relevant parameter regime is therefore U ≥ U ′ where the
intra-orbital repulsion is bigger than the inter-orbital.

3 Slave-boson formulation of the two-band
Hubbard model

3.1 Slave-boson model

The treatment of on-site interactions with slave bosons
is a well established method in different fields of strongly
correlated electron systems. Kotliar and Ruckenstein [15]
introduced this approach for the (one-band) Hubbard

Table 1. The atomic states in the original model, their corre-
sponding slave-boson states as well as the labeling of the mean
fields. The site index is suppressed, α = 1, 2, and σ̄ =↓ (↑) if
σ =↑ (↓).

Original model Slave-boson model Mean fields

|e〉 |0〉 e†|vac〉 e ≡ 〈e(†)〉
|pασ〉 c†ασ|0〉 p†

ασf̂†
ασ|vac〉 pασ ≡ 〈p(†)

ασ〉
|sα〉 c†α↑c

†
α↓|0〉 s†αf̂†

α↑f̂
†
α↓|vac〉 sα ≡ 〈s(†)

α 〉
|dσσ〉 c†1σc†2σ|0〉 d†

σσf̂†
1σ f̂†

2σ|vac〉 dσσ ≡ 〈d(†)
σσ〉

|dσσ̄〉 c†1σc†2σ̄|0〉 d†
σσ̄f̂†

1σ f̂†
2σ̄|vac〉 dσσ̄ ≡ 〈d(†)

σσ̄〉
|h1σ〉 c†1σc†2↑c

†
2↓|0〉 h†

1σ f̂†
1σ f̂†

2↑f̂
†
2↓|vac〉 h1σ ≡ 〈h(†)

1σ 〉
|h2σ〉 c†1↑c

†
1↓c

†
2σ|0〉 h†

2σ f̂†
1↑f̂

†
1↓f̂

†
2σ|vac〉 h2σ ≡ 〈h(†)

2σ 〉
|f〉 c†1↑c

†
1↓c

†
2↑c

†
2↓|0〉 f†f̂†

1↑f̂
†
1↓f̂

†
2↑f̂

†
2↓|vac〉 f ≡ 〈f (†)〉

model. By a new functional-integral representation of
the partition function they were able to effectively map
the fermionic action on a bosonic action with local con-
straints. The simplest saddle-point approximation of their
approach reproduces the results of the Gutzwiller approxi-
mation [16–18]. The slave-boson approach leads to a novel
mean-field theory which is especially useful for examin-
ing the Mott transition. As the Gutzwiller approxima-
tion, the slave-boson mean-field theory is closely related
to Landau’s Fermi liquid theory [19] since the slave bosons
keep track of the other electrons by measuring the electron
occupancy at each atom which leads to a renormalization
of the hopping amplitude and thus to a change of the ef-
fective mass. Let us first look at one particular lattice site.
The atomic Hilbert space is 16-dimensional and spanned
by the local occupation number basis listed in the first
column of Table 1 and sketched in Figure 1. The essence
of the slave-boson approach of Kotliar and Ruckenstein is
to map the original fermionic model to a mixed fermionic-
bosonic model with local constraints by introducing for
each atomic configuration an auxiliary boson

{
e(†), p(†)

ασ, s(†)
α , d

(†)
σσ′ , h

(†)
ασ, f (†)

}
(3)

where α = 1, 2, σ =↑, ↓. The labeling of the boson opera-
tors is sketched in Figure 1. In the following we denote the
fermionic annihilation (creation) operators in the slave-
boson model by f̂

(†)
iασ to distinguish them from c

(†)
iασ defined

in the purely fermionic model. In the extended model, the
creation of a general slave-boson state is realized by act-
ing with the bosonic creation operators (3) and the new
fermionic operators on the vacuum |vac〉. The states which
correspond to the physical atomic states of the original
model are listed in the second column of Table 1.

The introduction of the bosonic degrees of freedom
leads to unphysical states which are eliminated by local
constraints. Summing up all boson occupancy operators
we define

Îi := e†iei +
∑

ασ

(
p†iασpiασ + h†

iασhiασ

)

+
∑

α

s†iαsiα +
∑

σσ′
d†iσσ′diσσ′ + f †

i fi. (4)
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p1↑ h1↓ fs1p2↑ d↑↑ h1↑d↓↑ d↓↓d↑↓p2↓e p1↓ h2↑ h2↓s2

Fig. 1. The sixteen atomic configurations of the two-band Hubbard model and the corresponding slave bosons.

Furthermore we define the operators

Q̂i1σ := p†i1σpi1σ + s†i1si1 +
∑

σ′
d†iσσ′diσσ′

+h†
i1σhi1σ +

∑

σ′
h†

i2σ′hi2σ′ + f †
i fi, (5)

Q̂i2σ := p†i2σpi2σ + s†i2si2 +
∑

σ′
d†iσ′σdiσ′σ

+h†
i2σhi2σ +

∑

σ′
h†

i1σ′hi1σ′ + f †
i fi. (6)

The physical subspace is given by the local constraints

Îi − 1 ≡ 0, (7)

f̂ †
iασ f̂iασ − Q̂iασ ≡ 0. (8)

These constraints ensure that the slave-boson states listed
in the second column of Table 1 form a complete set in the
physical local Hilbert space of the slave-boson model. The
first relation (7) represents the completeness of the bo-
son operators, i.e., the sixteen states with one boson form
a complete set in the local physical Hilbert space of the
bosons. The operators Q̂iασ count the number of bosons
that correspond to local configurations having an electron
with spin σ in the orbital α. Therefore, we have to ensure
with the constraint (8) that in the physical subspace the
operators Q̂iασ are identical to the operators f̂ †

iασ f̂iασ.
Using these constraints, the interaction term becomes

quadratic in the boson operators

V̂ sb =
∑

i

{
U

∑

α

s†iαsiα + (U + 2U ′ − J)
∑

ασ

h†
iασhiασ

+(U ′ − J)
∑

σ

d†iσσdiσσ + U ′ ∑

σ

d†iσσ̄diσσ̄

+2(U + 2U ′ − J)f †
i fi

}
. (9)

The attempt to include the spin-flip and pair-hopping
term in a similar way fails due to quartic fermion terms
in V sb or in the constraints. In this case additional ap-
proximations are required [8]. Whereas the interaction
term has become much simpler the new formulation of
our model implies that the destruction or creation of a
physical fermion has to be accompanied by slave bosons,

ciασ → z̃iασ f̂iασ,

c†iασ → f̂ †
iασ z̃†iασ,

where

z̃iασ = (1 − Q̂iασ)−1/2ziασQ̂
−1/2
iασ ,

zi1σ = e†ipi1σ + p†i1σ̄si1 + p†i2σdiσσ + p†i2σ̄diσσ̄

+s†i2hi1σ + d†iσ̄σhi2σ + d†iσ̄σ̄hi2σ̄ + h†
i1σ̄fi,

zi2σ = e†ipi2σ + p†i2σ̄si2 + p†i1σdiσσ + p†i1σ̄diσ̄σ

+s†i1hi2σ + d†iσσ̄hi1σ + d†iσ̄σ̄hi1σ̄ + h†
i2σ̄fi. (10)

The “z-operators” keep track of the environment (bosons)
during hopping processes [15]. The choice of the
“z-operators” is not unique. In fact, as long as the con-
straints are fulfilled exactly, the “z-operators” can be
modified by any operator which is the identity operator
when restricted to the physical subspace [15,20]. However,
the mean-field results depend on the choice of these oper-
ators. The choice of Kotliar and Ruckenstein, that we take
in equation (10), reproduces correctly the noninteracting
case in the mean-field approximation [15]. The slave-boson
Hamiltonian is then given by

Hsb =
∑

ijασ

t
(α)
ij f̂ †

iασ z̃†iασ z̃jασ f̂jασ + V̂ sb (11)

and is fully equivalent to the original Hamiltonian pro-
vided the local constraints (7, 8) are handled exactly. They
can be imposed by site dependent Lagrange multipliers λI

i

and λQ
iασ .

3.2 Mean-field approximation

The simplest saddle-point approximation of the grand
canonical partition function Z = Tr[e−β(Hsb−µNsb)P ] is
equivalent to a mean-field approximation where the Bose
fields and Lagrange multipliers are treated as static and
homogeneous fields. Thus, this approximation consists es-
sentially in replacing the creation and annihilation oper-
ators of the slave bosons by site independent c-numbers
which can be chosen to be real. The mean fields are listed
in the fourth column of Table 1. In this approximation, the
constraints are fulfilled only on average and the square of
the mean fields can be interpreted as the probability of
finding the corresponding local configuration at a partic-
ular site. The mean-field Hamiltonian with included aver-
aged constraints can be diagonalized and yields at T = 0
the variational ground-state energy (per site)

ẼG =
∑

ασ

qασ ε̄ασ +VMF +λI
α(I−1)−

∑

ασ

λQ
ασ(Qασ−nασ).

(12)
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By introducing the effective chemical potential
µασ = µ − λQ

ασ in band α for fermions with spin σ,
the average kinetic energy per site and band reads

ε̄α = ε̄α↑ + ε̄α↓ =
∑

σ

∫ µασ/qασ

−∞
dεερα(ε). (13)

Similarly, the density in band α is

nα = nα↑ + nα↓ =
∑

σ

∫ µασ/qασ

−∞
dερα(ε). (14)

The chemical potential µασ has to be determined from
equation (14) for a given density. If both bands are half-
filled separately one finds for example µασ = 0. The bare
density of state (DOS) per spin in the band α is denoted
by ρα and the mean-field Coulomb energy per site is

VMF = U

(
∑

α

(
s2

α +
∑

σ

h2
ασ

)
+ 2f2

)

+ U ′
(

∑

σσ′
d2

σσ′ + 2
∑

ασ

h2
ασ + 4f2

)

− J

(
∑

σ

(
d2

σσ + h2
1σ + h2

2σ

)
+ 2f2

)
. (15)

The band-renormalization factor qασ = z̃2
ασ can be related

to the effective mass of quasiparticles of Landau’s Fermi
liquid theory. For quasiparticles in the band α with spin
σ we have q−1

ασ = m∗
ασ/m [16,21]. The vanishing of qασ

therefore indicates the transition to a localized state. The
mean fields and the Lagrange multipliers are determined
by the stationary point of ẼG which is a saddle point but
not a minimum. With the help of the averaged constraints
and of equation (14) we reduce the number of independent
variables. The stationary point of the variational ground-
state energy per site

EG =
∑

ασ

qασε̄ασ + VMF (16)

then becomes a true minimum and can be found numeri-
cally in a rather simple way.

4 Mott transition in the two-band model
within slave-boson theory

In this section we present the results concerning the
Mott transition obtained by numerically minimizing equa-
tion (16). Unless otherwise stated we always assume a
paramagnetic ground state, i.e. nα↑ = nα↓, and a particle-
hole symmetric bare DOS. Consequently, the following
conditions are satisfied: e = f , pα ≡ pασ = hασ′ ,
s ≡ s1 = s2, d0 ≡ d↑↓ = d↓↑ and d1 ≡ d↑↑ = d↓↓. This
greatly reduces the computational effort.

If both bands are separately half-filled, the results of
the mean-field calculations do not depend on the exact

Fig. 2. Phase diagram at half filling for U ≥ U ′, J = 0 and
D1/D2 = 1/2. Three different phases can be distinguished: a
paramagnetic metal (PM), a Mott insulator (MI) and in be-
tween an orbital-selective Mott insulator (OSMI). Two second-
order lines (dashed) merge at Pt to a single first-order line
(solid) which ends in a critical second-order point Pc.

choice of the bare DOS, as long as it is particle-hole
symmetric. Away from half filling, the mean-field results
slightly depend on the exact choice. For simplicity, we
choose throughout this section for both bands a rectan-
gular DOS and denote its half-width by Dα. The narrow
band is always referred to as band 1 and the wider as
band 2. Unless otherwise stated we choose the ratio of the
bandwidths such that1 D1/D2 = 1/2. Energy is measured
in units of the bandwidth of band 2, i.e. 2D2 = 1. We re-
strict to the relevant parameter regime U ≥ U ′, where the
intra-orbital repulsion is bigger than the inter-orbital. In
Section 4.1 we discuss the U–U ′ phase diagram for J = 0
at half filling. In Section 4.2 we focus on the dependence
of the Mott transition on the ratio D1/D2 for vanishing
Hund’s rule coupling and U = U ′. In Section 4.3 we im-
pose the condition U ′ = U − 2J . In this case we also
examine the effect of a crystal field and the influence of
finite doping.

4.1 U ≥ U′ and J = 0

The phase diagram at half filling is displayed in Fig-
ure 2. We can distinguish three different phases: a metallic
state (PM), a Mott-insulating state (MI) and an interme-
diate state (OSMI) induced by the OSMT where the local-
ized band 1 coexists with the metallic band 2. For vanish-
ing Hund’s rule coupling, our calculations suggest that the
OSMI phase is bounded by two second-order lines (dashed
lines in Fig. 2). They merge to a single first-order line at
Pt which ends in a critical point Pc. The occurrence of
this orbital-selective Mott insulator is not surprising since
we have neglected local spin-spin interactions. Therefore,
if the first band is in a Mott-insulating state, the elec-

1 Originally, this choice was motivated by the fact that in
Ca2−xSrxRuO4 the dxy-bandwidth is approximately twice the
dxz,yz-bandwidth. See [12,13].
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(a) (b)

Fig. 3. Mean fields of the slave bosons and band-
renormalization factors qα (a) for U ′ = J = 0 and (b) for
U = U ′, J = 0.

d s

Fig. 4. For U = U ′ and J = 0 there are six degenerate two-
electron on-site configurations. They are represented by the
mean fields d and s.

trons in the second band only feel an uniform charge back-
ground (arising from the localized electrons in orbital 1)
and the Mott transition in the broader band occurs at
the critical interaction strength Uc2 = 8|ε̄o

2| = 4D2 = 2
which is the value of one independent band with band-
width 2D2 = 1 [15,16]. To understand the behavior of the
system for general values 0 ≤ U ′ ≤ U it is instructive to
consider first the following two limiting cases:

i) U ′ = 0. In this case the two bands are indepen-
dent and the critical interaction strength of the Mott
transition is proportional to the bandwidth Dα. In Fig-
ure 3a we have plotted the mean fields of the slave bosons
and the band-renormalization factors. In the noninteract-
ing system, U = 0, all configurations are equal likely:
e = s = p1 = p2 = d = 1/4 where d ≡ d0 = d1. The
vanishing of q1 is accompanied by the vanishing of e, s
and p2, whereas q2 becomes simultaneously zero with p1.
In the Mott-insulating phase (U > Uc2) we find at each
lattice site one of the possible four atomic configurations
represented by the boson d and therefore d reaches 1/2 at
U = Uc2.

ii) U = U ′. For this choice the interaction Hamiltonian
has an enlarged symmetry with six degenerate two-
electron configurations shown in Figure 4: four spin con-
figurations with one electron in each orbital (represented
by d) and two configurations with both electrons in one of
the two orbitals (represented by s). This higher symmetry
is due to the fact that the Coulomb energy of a local con-
figuration depends only on the total charge on the atom.
The additional symmetry in orbital and spin degrees of

freedom enlarges the phase space for charge fluctuations
and leads to a stabilization of the metallic phase [4]. In
Figure 3b the mean fields of the slave bosons as well as
the band-renormalization factors are plotted as a function
of U . There is a joint Mott transition at the critical inter-
action strength Uc. Because of orbital fluctuations and in
contrast to the case U ′ < U not only configurations repre-
sented by d but also configurations represented by s have
a finite probability at Uc. Despite the high symmetry, it
surprisingly turns out that d �= s. The relative strength of
the mean fields in Figure 3b can be understood as follows.
The high Coulomb energy of a fully occupied local configu-
ration disfavors most strongly the mean field e. The effect
of the intraband Coulomb interaction is stronger in the
narrow band and therefore p1 ≥ p2 since p1 favors local-
ized behavior in the band 1 and itinerant behavior in the
band 2. Furthermore, the z-factors can be approximated
by z1 ≈ 2p1s + 4p2d and z2 ≈ 2p2s + 4p1d for high values
of U . In order to optimize the hopping in the wide band,
d is slightly increased compared to s. Note that above Uc

the ratio of d and s is not determined at zero temperature.
The behavior of the system for general values

0 < U ′ < U is mostly determined by the physics of the
above discussed two special choices of parameters.

4.2 D1 � D2, U = U′ and J = 0

Within our mean-field calculation the existence of a joint
transition for U = U ′ and J = 0 depends on the ratio of
the bandwidths D1/D2. It turns out that for ratios below
a critical value (D1/D2)c the mean-field calculations sug-
gest an OSMT even for U = U ′. Thus, we recover exactly
the same results as Ferrero et al. [9] using the Gutzwiller
approximation and de’ Medici et al. [8] within their slave-
spin approximation. The critical ratio where an OSMI oc-
curs can be calculated analytically within the Gutzwiller
(or slave-boson) approximation and is [9] (D1/D2)c = 1/5.
At first sight, the existence of such a critical ratio seems
to be in contradiction with the symmetry argument given
by Koga et al. [4]. It states that for vanishing J and
U ′ = U the Mott-Hubbard gap in both bands closes at the
same critical interaction strength, independent of D1/D2.
However, it does not exclude the transition into an in-
termediate phase, where the “localized” band is not fully
gapped [8]. Indeed, DMFT calculations for D1 
 D2 [8,9]
show clearly that the “localized” band is not fully gapped
but has spectral weight down to arbitrarily low energies.
This subtle aspect is not captured by the Gutzwiller ap-
proximation and related mean-field theories.

There is however the possibility that the OSMI phase
is replaced by an instability not considered so far. Our
mean-field calculation as well as earlier DMFT calcula-
tions did not take into account a possible enlargement of
the unit cell. Below a critical temperature TN one usu-
ally finds antiferromagnetic long-range order in the Mott-
insulating phase depending on the topology of the lattice.
Interestingly for U ′ = U and J = 0 spin and orbital de-
grees are relevant and it is possible that the OSMI phase
is unstable against an orbitally ordered phase. Whereas
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for U ′ < U there is no tendency toward such an instabil-
ity it cannot be excluded a priori for U ′ = U . We discuss
now the mechanism which may drive orbital order as an
another way to double the unit cell.

Let us look at the extreme limit D1 
 U = U ′ 
 D2

and assume that the lattice is bipartite. In an adiabatic
approximation the narrow band is localized and fully dom-
inated by the intra-orbital Coulomb repulsion (D1/U ≈ 0)
whereas the intra-orbital Coulomb interaction in the wide
band has negligible effect (U/D2 ≈ 0). We look at the
following two limiting cases for the static configuration of
the localized (narrow) band and their implications to the
electronic properties of the wide band:

a) Homogeneous charge distribution with exactly one elec-
tron per orbital.

b) Staggered charge distribution with doubly occupied or-
bitals on one sublattice and empty orbitals on the other
sublattice.

In the case (a), the homogeneous charge background con-
tributes an amount U per site to the total energy. In the
case (b), the doubling of the unit cell and the induced re-
arrangement of electrons in the wide band opens a gap. In
this way the inter-orbital interaction is reduced (<U). For
perfect nesting the wide band is fully gapped and shows
insulating behavior. On the other hand, the doubly occu-
pied orbitals in the localized phase cost a fixed amount
U/2 per site. Thus, there is a competition between these
two effects which can favor an orbitally ordered phase in
a certain parameter range.

In summary, the Mott transition for U ′ = U is a sub-
tle issue due to the aspect of possible orbital order and
we suggest that this plays a relevant role for the case
D1 
 D2. Analogous to the spin ordering in the Mott
insulator, the stability of such a phase depends also on
details of the band structures. Taking into account the
possibility of a doubling of the unit cell is an interesting
topic for further investigations to be reported elsewhere.

4.3 U ≥ U′ and U′ = U − 2J

We turn back to a given ratio D1/D2 = 1/2. From now on
we adopt the relation U = U ′ + 2J which is usually used
in the discussion of the Mott transition in the two-band
Hubbard model. This relation is valid for a rotationally
symmetric (screened) Coulomb interaction.

4.3.1 Mott transition at half filling

The phase diagram is shown in Figure 5. Again we can ob-
serve the OSMI phase, but it is limited to a tiny parameter
regime. In general the Mott transition is shifted to smaller
values of U since the Ising like Hund’s rule coupling favors
localized configurations with parallel spins. For the same
reason the Mott transition in the second band is closer to
the one in the first band because, in contrast to the case
J = 0 discussed in Section 4.1, the electrons in the sec-
ond band not only feel an uniform charge background but

Fig. 5. Phase diagram at half filling for U = U ′ + 2J and
D1/D2 = 1/2. Three different phases can be distinguished: a
paramagnetic metal (PM), a Mott insulator (MI) and in be-
tween an orbital-selective Mott insulator (OSMI). At Pt the
second-order line (dashed) meets the first-order line (solid)
which ends in a continuous critical point Pc.

also a localized spin at each lattice site after the gap for
charge excitations in the first band has opened. For small
values of J the physics for U ′ = U becomes important.
The dashed line in Figure 5, which separates PM-OSMI,
is a second-order line whereas the solid line, which sep-
arates OSMI-MI and PM-MI, is a first-order line2. They
merge at Pt. The first-order line ends in a second-order
transition point Pc (Fig. 3b).

To illustrate the occurrence of the OSMI and the first-
order transition line we show in Figure 6 the slave-boson
mean fields and the band-renormalization factors for a
fixed ratio U ′/U = 1/2 and J/U = 1/4. We clearly see
that there is a sequence of individual transitions and that
q2 jumps at U ≈ 0.89 from a finite value to zero. The dis-
continuity is also observed in the mean fields d0, d1 and p1.
We computed the ground-state energy as a function of p1

for different values of U , where U ′ and J have the same
ratio as above. This is shown in Figure 7. Note that p2

1

represents the probability to find at a particular site one
electron in orbital 1 and either no electron or two electrons
in orbital 2 and serves therefore as the order parameter
for the Mott transition in the second band. At U ≈ 0.89
the metallic solution p1 ≈ 0.2 and the Mott-insulator so-
lution p1 = 0 are degenerate. This results in a first-order
transition and a finite jump in p1 and consequently also
in q2 (Fig. 6).

2 Including spin-flip and pair-hopping terms in the Hund’s
rule coupling Koga et al. [4] reported two successive second-
order transitions at T = 0. For T > 0 Liebsch [3] identified a
sequence of two first-order transitions for the same model. If
spin-flip and pair-hopping terms are omitted he found a first-
order transition followed by a continuous transition.
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Fig. 6. Mean fields of the slave bosons and band-
renormalization factors qα for U ′/U = 1/2 and J/U = 1/4.

Fig. 7. Ground-state energy as a function of p1 for different
values of U , where U ′/U = 1/2 and J/U = 1/4. p1 is the
order parameter for the Mott transition in the second band.
At U ≈ 0.89 the metallic solution p1 ≈ 0.2 and the insulating
solution p1 = 0 are degenerate. This results in a first-order
transition.

4.3.2 Effect of a crystal field

Until now we have assumed that the two bands are both
centered symmetrically around the Fermi energy. What
happens if a crystal field splits the atomic energy level for
the two different orbitals? Let us assume that the overall
system is still half-filled. We introduce an external field
η

∑
i(n̂i1 − n̂i2) in the Hamilton operator (1) which splits

the atomic energy levels by 2η. Particle-hole symmetry al-
lows to concentrate on η ≥ 0. In the noninteracting case,
this leads to a relative shift of the tight-binding bands by
2η and if this shift is bigger than D1 + D2 the lower band
is totally filled whereas the upper band is empty. In this
case the system is a band insulator. How does this band
insulator evolve when we turn on the Coulomb interac-
tion? Is there a transition from the band insulator to the
Mott insulator, or can we observe a new phase in between?

To answer these questions we investigate the effect of
the crystal field on the mean-field level of the slave-boson
approach. In contrast to the case η = 0 we also keep the
spin dependence of the mean fields so as to detect a pos-
sible ferromagnetically ordered state. The external field

Fig. 8. Phase diagram in the presence of an external field η
for U ′/U = 1/2 and J/U = 1/4. The OSMI is limited to a
small parameter regime as shown in the inset. The crystal field
introduces two new phases: a band insulator (BI) and a ferro-
magnetic metal (FM).

leads to an additional term in the variational ground-state
energy (16), EG → EG + η(n1 − n2).

Let us first discuss the phase diagram for a finite
Hund’s rule coupling. To be specific we fix U ′/U = 1/2
and J/U = 1/4. The result of the minimization of the
ground-state energy for different values of U and η is
shown in Figure 8. In our slave-boson approach the OSMI
phase is restricted to a tiny parameter regime and only
present for small values of η as shown in the inset of Fig-
ure 8. The transition in the first band (dashed) defines a
second-order line which merges the first-order transition
line (solid) at Pt′ . If the crystal field is strong enough, the
system is in a band-insulating state (BI), i.e. one energy
band is totally filled whereas the other is empty. For η > 0
this state is characterized by the mean field s2 = 1. For
U = 0 the transition PM-BI is second-order and happens
at η = (D1 + D2)/2 = 0.375. For a finite U the transi-
tion is first-order since the charge abruptly jumps from
n2 < 1 to n2 = 1. For very strong values of U and η
there is a competition between the BI and the MI phase.
The boundary is given by comparing the energy of the
BI phase, U − 2η, with the energy U ′ −J of the MI phase
and yields U = 8η/3 for the above given ratio of the inter-
action parameters. The most interesting region of Figure 8
lies between these limiting cases where a ferromagneti-
cally ordered metal (FM) is observed. This state is twofold
degenerated and triggered by the finite Hund’s rule cou-
pling. Within our approximation we always find maximal
spin polarization which is characterized by a finite value
of the mean fields {s2, h1σ, dσσ , p2σ}. We can get an idea
of the physical mechanism by fixing η = 0.5 and increas-
ing U continuously starting at U = 0. The evolution of the
charge is shown in Figure 9. At the beginning the Coulomb
repulsion is too weak to put electrons in the upper band
and n2↑ = n2↓ = 1. At a critical interaction strength it
is energetically favorable to populate the upper band by
a few electrons of the same spin species and n1↑ jumps
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Fig. 9. The evolution of the charges in the two bands
for U ′/U = 1/2 and J/U = 1/4 and the magnetization
m = n↑ − n↓ for fixed η = 0.5.

Fig. 10. Phase diagram in the presence of an external field η
for U = U ′ and J = 0. At the breakdown of the metallic solu-
tion (PM) there is a transition to a band-insulating phase (BI).

from 0 to a finite value. In the lower band n2↓ simultane-
ously jumps from 1 to a value n2↓ < 1. The Pauli principle
excludes doubly occupied orbitals in the upper band which
reduces the Coulomb energy and leads to a ferromagnetic
order. In addition, J couples the spin between upper and
lower band and we find the same magnetization in both
bands: m1 = m2 = m/2. Note that the critical interaction
for the transition to the FM phase depends on the exact
choice of the bare DOS. Increasing U further increases n1↑
up to 1/2 where we find a first-order transition from the
ferromagnetic metal to the Mott insulator.

Let us now turn to the case of vanishing Hund’s rule
coupling J = 0 and U ′ = U . As shown in Figure 10,
a qualitatively different phase diagram is observed. For
η = 0 we saw in Section 4.1 that the paramagnetic metal is
quite stable due to the enhanced degeneracy of the lowest
atomic configurations and that there is a joint transition
to the Mott-insulating phase. This continuous transition
is denoted by Pc in Figure 10. An arbitrarily small field η
lowers the energy of the BI phase compared to the Mott
insulator and therefore we find at the breakdown of the
metallic solution for any finite η and U a first-order tran-

Fig. 11. Dependence of the Mott transition on the level
of doping.

sition to the BI phase characterized by the mean field
s2 = 1. Similar to a finite J , a finite η lifts the degeneracy
of the six lowest on-site configurations, orbital fluctuations
are suppressed and therefore the stability of the metallic
phase is reduced with increasing crystal field.

Note that our calculations simplify the true behavior of
the system near the transition lines because the uniform
mean-field approximation always reproduces the results
of the atomic limit whenever the kinetic energy vanishes.
Nevertheless they give some insight of the rich behavior
of the system in the presence of a crystal field which rel-
atively shifts the atomic energy levels of the two orbitals.

4.3.3 Mott transition away from half filling

We now address the question of what happens away from
half filling, n = 2 − 2δ, but again with zero crystal-field
splitting. Particle-hole symmetry allows to concentrate on
δ > 0. In general we observe a Mott transition in the nar-
row band which lies at an increased interaction strength
compared to the case δ = 0 (see Fig. 11). Because the sec-
ond band is always away from half filling it stays metallic.
As a representative example we show in Figure 12 the
band-renormalization factors qα and the charges nα for
fixed ratios U ′/U = 1/2 and J/U = 1/4 and given dop-
ing δ = 0.03. Let us first look at the noninteracting case,
U = 0. The ground-state energy per site in this case is

EG = ε̄o
1

(
1 − δ2

1

)
+ ε̄o

2

(
1 − δ2

2

)
(17)

where δα is the deviation from half filling in band
α and ε̄o

α the average kinetic energy per site in
band α for a half-filled band. Since ε̄o

α is proportional
to the bandwidth Dα we find that the kinetic en-
ergy is optimized by choosing the charge imbalance
∆ = (n1 − n2)/2 = (D1 − D2)/(D1 + D2)δ. For δ = 0.03
and D1/D2 = 1/2 this gives the value ∆ = −0.01 as seen
in Figure 12. Thus, for U = 0, the narrow band serves
as a charge reservoir that allows to bring the broader
band closer to half filling. With increasing interaction
the Coulomb energy causes a transfer of electrons from
the wide band to the narrow band in order to reduce the
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Fig. 12. Band-renormalization factor qα for finite hole doping
δ = 0.03 and the charge distribution of the two bands for a
fixed ratio U ′/U = 1/2 and J/U = 1/4.

intra-orbital repulsion. Thus, with increasing interaction
strength, the broader band serves as a charge reservoir.
This gives rise to a half-filled band (∆ = δ) at a certain
interaction strength and to an OSMT. The metallic be-
havior of the second band is due to the finite hole doping
and we find q2 = 2δ up to first order in δ in the atomic
limit ε̄α/U → 0 [22].

5 Discussion

5.1 Comparison to known results at half filling

On the mean-field level of the slave-boson approach we in-
vestigated the Mott transition in the two-band Hubbard
model with different bandwidths and confirmed several
aspects of previous work. As reported by several au-
thors [1–11] we observe the OSMT and consequently an
intermediate phase where only the narrow band is insu-
lating whereas the wide band still has metallic properties.

Our mean-field calculations predict that for
U = U ′ + 2J the OSMI phase is limited to a small
parameter regime in the U -U ′ phase diagram which
is characterized by a rather high value of J (Fig. 5).
Compared to the phase diagram shown in [4] the strength
of the OSMI phase is strongly reduced. In view of our
treatment of the Hund’s rule coupling this can be ex-
pected. As pointed out in [3,5,8,11] the pair-hopping and
the spin-flip term of the full Hund’s rule coupling lead to
a stabilization of the OSMI phase. Since these terms are
omitted in our calculations (and also in previous QMC
studies [1,2,11]) the OSMI phase is strongly reduced.
Nevertheless, also with an Ising like Hund’s rule coupling
we can clearly resolve a sequence of individual Mott
transitions in our slave-boson approach.

In addition, we showed that on the mean-field level
the PM-OSMI transition is second-order whereas the
OSMI-MI and PM-MI transitions are first-order. Near
these transitions there coexist two different solutions and
the energy crossing results in a first-order transition
(Fig. 7). The same behavior was reported in [9] in the
framework of the Gutzwiller approximation. Different re-
sults were found within other methods2 but non of the
used methods is rigorous and the order of the transitions
remains an open problem. Furthermore, temperature as
well as pair-hopping and spin-flip terms might affect the
order of the phase transitions [3].

For the case U = U ′ and J = 0 orbital fluctuations lead
to a stabilization of the metallic phase and for a fixed ra-
tio of the bandwidths D1/D2 = 1/2 a joint second-order
transition is observed (Fig. 3b). For the case of two bands
of much different bandwidths, D1 
 D2, the Gutzwiller
approximation and related mean-field theories predict the
existence of an OSMI if the ratio D1/D2 is below a critical
value. This was first reported in [8,9]. DMFT calculations
give clear evidence that the localized band is not a con-
ventional Mott insulator but has spectral weight down to
arbitrarily small energies. However, an instability toward
an orbitally ordered phase might play an important role
for U = U ′ and should also be taken into account in future
investigations.

5.2 Results for shifted bands

In real materials different atomic orbitals are usually not
degenerate so that each band has non-commensurate fill-
ing. This extension of our model has lead to a considerably
richer phase diagram. Such models correspond to the sit-
uation found in Ca2−xSrxRuO4 which has three bands of
partial filling. This material has been an initial motivation
for the study of the OSMT [12]. Anisimov and coworkers
proposed that the Ca-Sr substitution varies band param-
eters which in the end leads to a Mott transition in two
of the three bands [12]. A further example which belongs
likely to this class is the compound FeSi. This compound
is a small gap semiconductor [23]. On the other hand,
replacing Ge for Si gives rise to a ferromagnetic metal.
Alloying FeSi1−xGex allows in principle for a continuous
change of the band parameters such that the transition
can be observed. However, the transition is simultaneous
accompanied by an abrupt transition in the crystal lat-
tice [24].

Within the mean-field approximation we find the fol-
lowing situation. For small crystal-field splitting an OSMT
is observed. In general, the Mott transition is shifted to
higher values of the interaction parameters. Due to the
crystal field, a band-insulating phase and, in the presence
of the Hund’s rule coupling, also a ferromagnetic phase ap-
pear in the phase diagram (Fig. 8). In the ferromagnetic
phase, a few electrons populate the upper band with a fi-
nite net magnetization. For the case U = U ′ and J = 0 we
find a totally different behavior (Fig. 10). With increasing
field, the metallic phase is less stable because the crystal
field suppresses orbital fluctuations, similar to a finite J ,
by breaking the degeneracy of the local states.

For finite doping our calculations suggest that there
is in general a Mott transition in the narrow band for
not too strong doping. Although strongly correlated, the
second band stays metallic due to the finite doping. This
was also reported in [4].

5.3 Conclusions

In summary, the mean-field theory based on the slave-
boson approach of Kotliar and Ruckenstein gives results
which are in good qualitative agreement with DMFT cal-
culations. While we restricted ourselves to density-density
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interactions, our discussion provides a simple physical pic-
ture in a wide range of parameters. The transverse spin
coupling and the on-site inter-orbital pair hopping had to
be dropped for practical reasons. Nevertheless, we believe
that the effects are rather of quantitative than qualitative
nature.

The method used emphasizes the on-site correlation
and intersite correlations remain treated at a minor level
only. Thus we have ignored symmetry breaking instabil-
ities which double the size of the unit cell, such as anti-
ferromagnetic instabilities or orbital order. These orders
depend strongly on the detailed band structures and cou-
pling topologies. In most of our discussion, however, we
neglected the band structure aspect. Obviously nesting
properties would play a major role in this context. Generic
bands without nesting, however, follow more likely the
“plain” behavior of the simple flat density of states mod-
els that we discussed here. It would be interesting in fu-
ture studies to extend the scheme by including also band
structure effects and the related ordering phenomena.
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