
ETH Library

Secure Brokered Delegation
Through DelegaTEE

Journal Article

Author(s):
Schneider, Moritz ; Matetic, Sinisa; Juels, Ari; Miller, Andrew; Capkun, Srdjan

Publication date:
2019-07

Permanent link:
https://doi.org/10.3929/ethz-b-000353925

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Security & Privacy 17(4), https://doi.org/10.1109/MSEC.2019.2909712

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-8069-9848
https://doi.org/10.3929/ethz-b-000353925
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/MSEC.2019.2909712
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


1

Secure Brokered Delegation through DelegaTEE
Moritz Schneider∗, Sinisa Matetic∗, Ari Juels†, Andrew Miller‡ and Srdjan Capkun∗

∗ ETH Zurich, {moritz.schneider, sinisa.matetic, srdjan.capkun}@inf.ethz.ch,
† Cornell Tech, juels@cornell.edu,
‡ UIUC, soc1024@illinois.edu

Abstract—We introduce DELEGATEE, a system that enables
users to delegate their rights and resources in existing services
safely and selectively to others—without ever revealing their
access credentials to third parties. By using hardware-enforced
Trusted Execution Environments, DELEGATEE enables contex-
tually rich delegation policies that were previously unachievable.

I. INTRODUCTION

Delegation, the ability to share capabilities or privileges
selectively to other entities, is a well-studied concept in access
control. Delegation remains mostly unsupported in today’s
online services, however. Most web-based financial services
lack support for any kind of delegation, while other services,
such as Facebook, support it in a limited and coarse-grained
way. Facebook allows a user to delegate to a third-party
application the authority to post to the user’s wall, but not
to impose a limit of, say, three posts per day.

The ability to delegate access to existing online accounts and
services, safely and selectively, could give rise to new forms
of cooperation among users. One example is flexible sharing
(or resale) of digital content, such as streaming services like
Netflix. Another is the outsourcing of online tasks, such as
replying to email, to remote workers. Yet another is delega-
tion of access to financial service accounts, such as Paypal.
Given such capabilities, ordinary users could play a role in
broadening global financial inclusion.

One obstacle to this vision is that service providers today
exert almost complete control over resource sharing by their
users. If users want to share data or delegate access to services
in ways not natively supported by their service providers, they
must resort to sharing credentials directly. This is a danger-
ous practice: an abused shared credit-card number can mean
significant monetary loss, while an abused shared password
can result in high charges, service termination, and even legal
jeopardy. Such dangers naturally deter against many forms of
online content and service sharing.

The goal of our work is to enable delegation by an Owner,
i.e., the entity that has access to a resource or a service, to a
Delegatee, i.e., a borrower of that resource or service, while
achieving several key properties. First, we want delegation to
be fine-grained, i.e., to limit the capabilities of the Delegatee
in carefully specified ways. We also want it to be trust-
limited: the Owner need not trust the Delegatee with direct
access to the delegated credential, the Delegatee need not
trust the Owner to make the credential available, and neither
need to trust any third party with its credentials. Finally, we
want delegation to be provider-independent: there should be
no need for explicit support (or even awareness) by service

providers. This puts Owners in full control of delegation of
their resources and services.

We refer to the new kind of flexible and powerful sharing of
resources embodied in these properties as brokered delegation.
Brokered delegation has only recently become broadly practi-
cal thanks to recent advances in trusted execution environments
(TEEs), a hardware-based application-security technology that
is available today in Intel chipsets under the name Software
Guard eXtensions (SGX) [6] as well as the Keystone project
in RISC-V based systems [11] and ARM TrustZone [2].

To demonstrate the potential of brokered delegation, we
present DELEGATEE. DELEGATEE provides brokered dele-
gation for many existing web services with rich, contextually-
dependent access-control policies. Its use of TEEs enables it to
do so while concealing and thus protecting Owner credentials.
We develop several application prototypes to demonstrate
how the brokered delegation in DELEGATEE can potentially
give rise to new markets: secure outsourcing of personal and
commercial microtasks, tokenization (i.e., creation of fungible,
tradeable units of resource), resale of resources and services,
and new payment methods - all without changes to legacy
infrastructure. One of the key features of DELEGATEE is its
high degree of provider-independence: it requires no changes
whatever to the service managing the resource or to users’
accounts.

DELEGATEE also demonstrates a broader insight into the
security consequences of trusted hardware: TEEs can funda-
mentally subvert access-control policy enforcement in existing
online services. Depending on the application, DELEGATEE
can either enrich a target service or undermine its security
policies (or both). For example, reselling a paid subscription
service in regions where the service is intentionally restricted
undermines the service’s security policy, while delegating
access to office tools such as mail and calendar to administra-
tive assistants can enrich the capabilities and usability of the
service itself. Brokered delegation can also facilitate violations
of web services’ terms of use. Users may thereby circumvent
mandatory access control (MAC) policies, reducing them to
discretionary access control (DAC). DELEGATEE subverts
full mediation. We refer the interested readers to the full paper
for a more in-depth view on the topic [13].

By enabling new forms of sharing and cooperation among
users, DELEGATEE evokes the technology-fueled resource-
sharing models for physical resources pioneered by Airbnb
and Uber. These companies have challenged legal and regula-
tory frameworks while creating and delivering appealing new
services. We view DELEGATEE as a catalyst for a new class
of such contributions to the sharing economy.



2

II. MOTIVATION AND PROBLEM STATEMENT

A. Motivation

There are two major motivations for our work: To demon-
strate the many settings in which brokered delegation gives
rise to new functionality, and to demonstrate how (for good
or bad) TEEs can transform practically any mandatory access
control policy in an online service into a discretionary one. Our
four different application scenarios illustrate both motivations,
without requiring the explicit support (or even knowledge)
of the service providers. We stress that our motivation lies
in extending legacy and current systems with delegation
capabilities without security implications for the involved
parties. Many services could implement native and extensive
delegation policies themselves, however, this is often not of
general interest to them and not in line with their business
strategies.
Mail/Office. Full or restricted delegation of a personal mailbox
or other office tasks can be appealing for many reasons. These
include a desire to delegate work to administrative assistants
(e.g., read-only access, send mail only to a specific domain)
or to allow limited access to law-enforcement authorities (e.g.,
read emails from a certain time window relevant to a court
case). The first is especially valuable for virtual-assistant ser-
vices, which outsource office tasks off-site. Existing services
offer some delegation capabilities, such as calendar access
by a third person, however these may be limited and usually
do not cover the delegation on the full scope of the service
offering. Today, these services require users to completely
share their credentials, a dangerous practice that discourages
many potential users.
Payments. Virtually all payments, cash and cryptocurrencies
excepted, happen through intermediaries. Users may naturally
desire a richer array of choices of these intermediaries. Con-
sider, for example, a payment system where the users pay
using each others’ bank accounts, credit cards, or third-party
providers (e.g., PayPal). This can have large benefits regarding
cost-saving, business operations, and anonymity guarantees.

Imagine that a company wants to allow its employees
to execute online purchases with the company credit card
or PayPal, but restricted to a certain limit per expenditure
and specific merchants. Currently, this cannot be done since
access to the card details or PayPal credentials allows users
to execute arbitrary payments. Companies therefore typically
provide such information only to a few employees who
then execute payments for the rest, resulting in a highly
inefficient process. Corporate credit cards exist and support
more extensive reporting and control over the spending, e.g.
tied to specific employees or expenditures, however, rich and
contextual access control policies are still lacking and would
be difficult to implement.

Delegation of payment credentials can also enable direct
cost-savings for the end user. An example online system based
on this premise is Sofort. Sofort works as an internet payment
middleman, with lower transaction fees than for credit cards.
Sofort pays merchants for clients’ online purchases and is
repaid by clients via bank transfer. To guarantee repayment,
Sofort requires users to share their e-banking credentials with

the service, a practice that clearly raises security and privacy
risks.
Full Website Access. The most versatile form of delegation is
delegation for arbitrary existing web services, which typically
authenticate user accounts through password challenges and
then cookies over HTTPS. This model includes access to
users’ social networking sites, video services, online media
such as news and music, and general website content available
only to registered users. One appealing example from the
academic world is Sci-Hub. The site bypasses publishers’
paywalls using a collection of credentials (user IDs and
passwords) belonging to educational institutions which have
purchased access to the journals.” Many anonymous academics
from around the world donate their credentials voluntarily [3].
Some services, such as Netflix and various news sites, already
offer users the ability to log in from different devices. Users
can thus share their subscriptions by sharing credentials, but
only in a dangerous all-or-nothing manner. More fine-grained,
e.g., service-specific, and secure delegation could facilitate
much broader sharing (for good and bad).
Sharing Economy. The examples above involve an Owner
delegating credentials to known Delegatees, e.g., friends or
colleagues. However, Owners can also offer access to their
services on an open market to a wide range of potentially
pseudonymous or anonymous Delegatees. This would result
in a shared economy in which Owners sell time-limited and
restricted access to their accounts in return for other services
or financial compensation. For example, users could sell access
to Netflix accounts on an open market. They could also sell
space in their social networking accounts to advertisers; e.g.,
a user could sell the ability to post in her name, enabling an
advertiser to target her social network. The right to post could
be restricted to a particular volume and type of content to
prevent abuse by advertisers.

B. Problem Statement

If service providers regularly offered richly featured native
delegation options, there would be no need for brokered
delegation. Most do not, however, usually for business or
regulatory reasons. Our work aims to change this situation
fundamentally — DELEGATEE empowers users to delegate
their authority, making use of any existing internet service,
such that:

• The Owner’s credentials remain confidential.
• The Owner can restrict access to her account, e.g.,

regarding time, duration of access, no. of reads/writes,
etc.

• The system logs the actions of Owners and Delegatees
so that post-hoc attribution of their behaviors is possible
(as a means of resolving disputes).

• The system minimizes the ability of a service to distin-
guish between access by the Delegatee and that of the
legitimate Owner, thus, preventing delegation.

III. DELEGATEE

The main idea behind the DELEGATEE system is to send
the Owner’s credentials (such as usernames and passwords)



3

to a Trusted Execution Environment (TEE) that implements
the delegation policy. The Delegatee communicates with the
resource (web service) indirectly, using the TEE as a proxy. In
this section, we briefly introduce background on TEEs, then
present the DELEGATEE system design.

A. TEEs and Intel SGX Background

Modern TEE environments, most notably ARM Trust-
Zone [2], Intel SGX [6], RISC-V’s Keystone [11] and Sanc-
tum [7], enable isolated code execution within a user’s system.
Intel introduced SGX in the 6th generation of its CPUs as
an instruction set architecture extension. Like TrustZone, an
older TEE that permits execution of code in a “secure world”
and is used widely in mobile devices, SGX allows isolated
execution of the code in what is referred to as secure enclaves.
The SGX security architecture guarantees enclave isolation,
using protective mechanisms enforced in the processor, from
all software running outside of the enclave. The control-flow
integrity of the enclave is preserved and the state is not
observable. The code and data of an enclave are stored in
a protected memory area that resides in Processor Reserved
Memory (PRM) [14].

In TrustZone, the transition to the secure world involves a
complete context switch. In contrast, the SGX’s secure en-
claves only have user-level privileges and a special instruction
is invoked to switch between the enclaves and the OS.

Additionally, SGX includes a key feature unavailable in
TrustZone, called remote attestation. Attestation is the process
of verifying that enclave code has been properly initialized. In
remote attestation the verifier may reside on another platform.
A special system service called Quoting Enclave signs the
attestation statement, which includes the enclave measurement
(code and date), with the secret key derived from the embedded
platform key. The verifier checks the signature with the help
of an online attestation service run by Intel, and if successful,
can be sure that a specific piece of code is running in a genuine
SGX environment.

In summary, the main protective mechanisms supported
by SGX are: runtime isolation [14], sealing [1], and attesta-
tion [9], [6]. The SGX architecture enables the app developer
to create multiple enclaves for security-critical code, protect-
ing it from malicious applications [16], a compromised OS,
virtual machine manager [5], or BIOS [10], and even insecure
hardware [8] on the same system. We relegate further details
below; for an in-depth treatment of SGX, see [6]. Note that
recent research has shown that SGX is susceptible to various
side-channel [4] as well as speculative execution attacks [15],
however, we consider these out of scope in this work.

Recently, academia has proposed two new TEE platforms
based on the open-source RISC-V instruction set architecture:
Keystone [11] and Sanctum [7]. They are both based on a
trusted Security Monitor that manages isolation and attestation
of enclaves, and they support similar guarantees as Intel SGX.

B. System Design

Three distinct parties participate in DELEGATEE: credential
Owner(s) A, Delegatee(s) B, and service(s) G. Additionally,

the system distinguishes 2 data types: credential(s) C and
access control policy(ies) P. Owners and Delegatees are gener-
ically referred to as users.

The system supports a potentially large population of cre-
dential Owners A1...An (henceforth referred to as Owners)
and Delegatees B1...Bn. In general, the Owner Ai has access
to a service Gk. The Delegatee Bj does not have access to the
service, but she can get access by using credentials Cx of the
Owner Ai. However, the Owner Ai does not want to reveal
the credentials to the Delegatee Bj . The Owner Ai wants
her credentials to remain confidential and used only by an
authorized Delegatee. Additionally, the Owner wants to restrict
access to the services that she enjoys (i.e., Gk) according
to an access control policy Pijxk specific to this delegation
relationship. Pijxk defines an policy involving Owner Ai,
Delegatee Bj, credentials Cx, and service Gk. The type and
structure of the access control policy depend on the service
that the Owner delegates.

In our system, a Delegatee directly coordinates with the
Owner to gain access to a specific service. The Intel SGX
enclave is hosted by a third party, called the Central Broker.
The Central Broker is responsible to host the enclave but he
is not implicitly trusted, e.g., the OS on the broker can be
compromised or a malicious administrator is present. More in-
depth discussion follows in Section IV. The steps to execute
secure credential delegation, also given in Figure 1, are:

1) Both the Owners (A1...An) and the Delegatees (B1...Bn)
need to register with the system to acquire unique login
information (username and password). After registration,
both Owners and Delegatees can execute credential del-
egation for service access.

2) The Owners A1...An now establish a secure channel to
the system (using the ordinary web PKI) and start storing
the credentials C1...Cn for specific services G1...Gn. The
variety of credentials that can be stored depends on the
supported services.

3) The Owners A1...An may agree directly with the Dele-
gatees B1...Bn for which specific service (Gk) the Owner
will grant access using her credentials (Cx). The agree-
ment is done at the user’s discretion through any available
out-of-band channel and is limited by the implemented
technical capabilities of the system (i.e., for supported
use cases implemented by DELEGATEE).

4) During the agreement, users exchange their unique identi-
fiers (i.e., system username) so that the Owner from party
A knows whom to authorize from party B.

5) The Owner Ai establishes a secure channel to the system,
specifies for which credentials (Cx) she wants to perform
the delegation, for which service (Gk) and to whom
(username of Bj), while she additionally specifies the
access control policy Pijxk that restricts usage.

6) After receiving the confirmation, Ai disconnects.
7) The Delegatee Bj now establishes a secure channel to the

system and can immediately see that she has been dele-
gated credentials for a particular service. The credentials
are hidden for the Delegatee Bj . If the Delegatee wants
to access the service Gk, she may proceed.

8) The access to the service is always proxied through the



4

Owners A1…n 1…Delegatees B n

any informal communication channel

3

attestation attestation

Services G1…n

attestation

owner registration delegatee registration
1 1

login information acquired login information acquired

store credentials for Services G1…n

2

agreement on credential delegation

4

Owner Ai: delegate -
credentials Cx to Bj for service Gk

with access control policy Pijxk

establish secure communication

Owner Ai Delegatee Bj

ok

5

6

X establish secure communication

available delegated credentials7

9
check access control policy
if expired, terminate access

8service access*

* enforced and constrained under specified
access control policy in the central system

X

Centrally Brokered system

exchange unique identifiers for the system

Fig. 1: DELEGATEE’s system architecture

central broker with no direct communication between the
Delegatee and the service. Any attempt to circumvent this
results in protocol termination (e.g., if the user clicks an
external link outside the proxied service).

9) After the defined access control policy expires (e.g., if
it is time-limited) the Delegatee Bj loses access and the
credentials are no longer delegated.

Authentication mechanisms. Note that attestation alone is
not enough to authenticate the enclave and the Delegatee.
The Owner must be sure that she connects to the correct
enclave and that only the intended Delegatee is able to use
the credentials.

IV. SECURITY ANALYSIS

In this brief security analysis, we mostly describe how Intel
SGX protects the credentials, how it enforces access policies
and how only the intended Delegatee is allowed to use the
service. We consider a strong attacker that has hardware access
and root platform privileges on the centrally brokered system
as well as complete control over the network.

Remember that the processor encrypts the memory of an
Intel SGX enclave with a key that is inferred from the platform
embedded key and the measurement of the enclave amongst
others. Therefore, any local attacker cannot just read out
the runtime memory of an enclave. Since the memory of
an enclave is kept in the clear only in cache, the processor
protects the cache lines that belong to the enclave from any
other software running on the platform. A malicious operating
system also cannot access any cache entries of an enclave.

Intel SGX provides another important primitive: Attestation.
Attestation allows any participant to verify the code that is
running inside the enclave and that it is a genuine Intel
SGX enclave. Before any interaction with the enclave, all
participants first perform attestation and, only if it succeeds,
they proceed. Therefore, they can verify that the policy is
always enacted and that only the intended delegatee can access
the delegated credentials.

We use TLS on all outgoing and incoming connections to
protect against a network attacker. The attacker can, however,
cut arbitrary connections. We consider this to be a similar
attack vector to pulling the plug as it is essentially a Denial
of Service which we consider out of scope.

V. PROTOTYPE IMPLEMENTATION

We implemented all four previously mentioned use cases,
but we will only go into detail on two of them: mail/office
and payments (PayPal). DELEGATEE also supports other
use cases and we refer the reader to the full paper for a
detailed description [13]. To realize the system architecture,
we split it into two parts: the service-specific stateless enclaves
and a management enclave. The management enclave, further
referred to as API, authenticates the Owners and Delegatees
and stores credentials. Users interact with the system through
an ordinary website and a browser extension for increased
usability. All communication between the users, the enclaves
and the browser extension is done using TLS with replay
protection. In this Section we presume that the Owner Ai and
Delegatee Bj authenticate to the management enclave with



5

SMTP server

IMAP server

1

5

Centrally
Brokered system

Delegatee Bj

API Mail enclave

32

4

Fig. 2: Sending and receiving emails through DELEGATEE.

username and password and the Owner has already authorized
the Delegatee by storing credentials Cx and access policy Pijxk

for a specific service. Thus, the Owner Ai is not shown in the
figures.

The operating system is relied upon to handle incoming and
outgoing TCP connections while the SSL endpoints reside in
the trusted enclaves. We use the mbedtls library developed
by ARM, which also comprises the bulk of our trusted
computing base (TCB).

A. Mail/Office

Delegation of email accounts under a specific access policy,
one of the DELEGATEE motivated applications, is imple-
mented in the mail enclave. IMAP and SMTP clients are
implemented to allow a Delegatee Bj to read and send emails
using the delegated credentials Cx. Below we describe the
architecture depicted in Figure 2:

1) The Delegatee Bj wants to use some credentials Cx that
have been delegated by Ai. Bj connects securely to the
centralized API using her username and password. She
then requests to perform some action using Cx.

2) The API verifies that the Delegatee has access to Cx

and then forwards the request, Cx and the corresponding
policy Pijxk to the mail enclave.

3) The mail enclave connects to either the SMTP server (for
sending mail) or the IMAP server (for receiving mail) and
executes the requested operation.

4) Pijxk gets applied to the response from the external
servers (IMAP) or to the outgoing requests (SMTP) and
the resulting response gets forwarded to the API.

5) The API delivers the final response to Bj .

B. Payments

PayPal does not want to endorse giving away your creden-
tials or automating the payments as this could compromise
their security. Thus it is non-trivial to automate a PayPal
payment and there is no public API. We must emulate a
browser inside our enclave that accurately simulates a real user.
Our implemented emulated browser follows redirects, fills
known forms, and handles cookies until the final confirmation
page is reached. The enclave then returns a confirmation id to
the issuer that is used by the merchant to finalize the payment.
Our browser extension simplifies the use of delegated PayPal
credentials by adding a DELEGATEE checkout button next
to the original PayPal checkout button if the Delegatee is

Delegatee Bj

Centrally 
Brokered system

PayPal

Merchant

6

48

1

3

9
2

API

PayPal enclave

5

7

Fig. 3: PayPal payments through DELEGATEE.

Type Test case Mean (± std)

a)
SSL
handshake

openssl 52.12ms (± 3.62)
mbedtls 57.14ms (± 3.37)
mbedtls in SGX 105.22ms (± 4.23)

b) Mail normal operation 1.12s (± 0.27)
mail enclave 1.19s (± 0.22)

c) PayPal normal operation 25.92s (± 6.83)
PayPal enclave 27.00s (± 4.35)

TABLE I: Latency for a) SSL handshakes, b) receiving e-mails
in inbox, and c) executing PayPal transactions. Samplesize:
1000.

logged in to our system and has some delegated credentials.
Upon clicking on the DELEGATEE checkout, the Delegatee
can choose one of the available PayPal credentials delegated
to her and then the automated payment process starts. After
that, no further user interaction is needed and the Delegatee
will be forwarded to the confirmation page of the merchant
if the payment succeeds. Below we describe the architecture
depicted in Figure 3:

1) The Delegatee Bj wants to buy something from a mer-
chant using credentials Cx delegated by Ai. Bj connects
to the merchant and asks for a PayPal payment.

2) The merchant uses PayPal API to create a payment.
3) The payment is then forwarded to Bj .
4) Bj connects securely to the centralized API enclave using

her username and password. She then requests to pay with
PayPal using Cx.

5) The API enclave verifies that the user can access to Cx

and then forwards the request, Cx and the corresponding
policy Pijxk to the PayPal enclave.

6) The PayPal enclave connects to PayPal and pays the
payment with Cx if it is allowed by the policy Pijxk. The
PayPal service responds with a confirmation number.

7) The confirmation number is forwarded to the API.
8) The API delivers the confirmation number to Bj .
9) Bj forwards the confirmation number to the merchant and

then the PayPal payment is finalized by the PayPal API
using the received confirmation number.

VI. PERFORMANCE ANALYSIS

Table I-a shows an overhead of around 50ms for a full SSL
handshake using mbedtls inside an enclave compared to nor-
mal mbedtls and openssl. The handshake involves three
exchanged messages, thus at least three ocalls/ecalls,



6

all of which have to copy potentially large buffers. Previous
work has shown that calls that copy large buffers across the
trust boundary infer a large overhead. In our measurements,
we recorded 19 ocalls during a request to the enclave.

The mail enclave incurs minimal overhead (Table I-b) with
one extra handshake to the IMAP server. The overhead of this
one additional handshake is insignificant compared to the time
waiting for a response. In our test, we retrieve all emails from
the account inbox.

The PayPal example does not seem to suffer from any
delay added by our implementation (Table I-c). Note that
we performed tests using the sandbox environment, provided
by PayPal itself for testing integration with their services.
This environment is feature-complete but slow as it is only
functionality-oriented. Most time is spent by waiting for the
PayPal servers. We also conducted tests in the real PayPal
environment executing a real payment and buying an item
online with a merchant supporting PayPal. However, due to the
CAPTCHA protective mechanism involving the Delegatees’
actions, it is not feasible to measure performance, since it
depends on the user input.

VII. DISCUSSION & LIMITATIONS

a) Authentication challenges.: Authentication in modern
web services is complex. It can involve not just passwords but
additional factors such as personal questions, email challenges,
phone challenges, and “two-step authentication” apps such as
Authy and Google Authenticator. Some of these can be sup-
ported with DELEGATEE, such as, email challenges or 2FA
apps that could run inside the enclave as well, while for some,
e.g., phone challenges, the current design of DELEGATEE
cannot overcome the challenge.

Contextual factors, such as the IP address, time of day, and
nature of service requests are often used to detect malicious
or irregular behavior. Financial services, i.e., PayPal, have par-
ticularly sophisticated fraud detection regimes; e.g., ordering
unusual products with Paypal may trigger a fraud alert. Con-
sequently, the service might ask for additional authentication
steps and a single credential in the form of a password may
not suffice to delegate a resource or service via DELEGATEE.
CAPTCHAs can easily be solved by forwarding them to the
delegatee

To illustrate, consider a scenario where an Owner Alice (an
inhabitant of the U.S.) delegates her password to DELEGATEE
and allows her PayPal account to be rented. Suppose then
that Delegatee Bob, in Nigeria, rents Alice’s PayPal account
in a prescribed way and attempts to execute a transaction.
Paypal will see an unusual request coming from an IP address
in a country with a different risk profile than the U.S., and
potentially one that Alice has never visited. Bob’s transaction
request is likely to be suspicious. PayPal may then deny the
transaction or request additional confirmation, e.g., via e-mail,
to proceed. If Alice is unavailable or denies the transaction
- which she may fail to recognize as originating with her
delegation - the transaction will fail.

b) Authentication collisions.: Attempts at simultaneous
use of a resource may fail, as many web services do not

support multiple concurrent sessions for a given account. For
example, if Alice has delegated use of her bank account to
Bob, then she may be unable to use it herself while Bob
(or DELEGATEE, to be precise) is logged in. Such collisions
can be treated by invoking failure modes like those for basic
authentication failures. Other policies are possible, however.
For example, Owner Alice may set a policy that only delegates
her resource at times when she is unlikely to use it. A
small enhancement to DELEGATEE can also enable Alice to
preempt the session of a Delegatee if desired.

c) Usability, Deployment and Service Prevention.:
Throughout the paper we have presented multiple use-cases
and implemented prototypes that support delegation of dif-
ferent services. The usability of these services by potential
Delegatees is as if they were using the original service as
its Owner. However, the usability of the DELEGATEE in
general depends on the supported use-cases. A limitation of
our system is that for each and every use-case a specific
module (that matches the capabilities and technical challenges)
has to be implemented. Until now, we have not found a way
in order to develop a generic module that could support a
wide variety of services. For example, interpreted languages,
such as Javascript, remain an open problem since by executing
unmeasured code in an enclave running the interpreter we
cannot guarantee the security properties of DELEGATEE. In
addition to that, almost all services (even the ones from
the same category) have different user mechanisms, UI and
control. Thus, a specific policy needs to be created that
matches these controls in order to allow Owners to specify how
their service could be used by potential Delegatees. Due to the
complexity, the policies have to be created beforehand along
with the implemented delegation scenario, while the end-user
involvement is limited to configuring parameters, out of a set
of given policy characteristics.

If all service operators would share a unique set of API calls
that could cover the full functionality of their services, then
the deployment of DELEGATEE would be feasible for almost
all service categories. This would also allow for the creation
of more general and richer access control policies that could
be created by the end-users of the service as well, possibly
overcoming the initially discussed complexity of complete
policies that require serious engineering and evaluation of each
specific use-case scenario.

However, it is hard to imagine that the service operators
would view the above even as a viable option. In many cases,
DELEGATEE allows the creation of secondary markets and
poses a threat to the revenue stream of the original service
operator. Additionally, DELEGATEE reduces the operators’
ability to control and track their users since virtually, the
number of users could grow but they would be seen only
through the increased activity of users registered to the original
service. Thus, most service operators would try to deny service
access if executed through this form of delegation. As already
mentioned, IP geofencing, pattern matching of actions and
service usage, 2FA, along with the already existing fraud-
detection mechanisms may endanger the functionality of our
system. We stress that most of these protection mechanisms
present a cat-and-mouse game between the service provider



7

and DELEGATEE. In the security world, the attacker is usually
a step ahead of the service provider since the provider has
to react to the adversaries actions. In this case, however,
the advantage lies with the service. Any change to the user
interaction with the service requires a change in the service-
specific enclave, therefore rendering it unusable for a short
time.

d) Secondary markets.: Brokered delegation could give
rise to offerings that compete directly with those of the very
platforms hosting the delegated resources.

Facebook users could sell opportunities for “sponsored
post” - unsolicited advertisements sent to their networks
of friends or shown on their walls, as discussed above.
Facebook users would then compete with Facebook itself in
selling ads. Similarly, users could rent use of their Netflix
account. Account sharing is already common within families
and close friend circles. Brokered delegation could enable
broad reselling and foster competition with direct sales of the
subscription service.

Such secondary markets would in many cases violate
providers’ existing terms of service and might resemble
markets for underground sales of virtual goods [12]. Those
underground markets have met with two responses, sometimes
used in tandem: (1) providers aim to detect facilitators of
secondary markets and penalize or ban them, and (2) providers
themselves seek to capture the revenue streams generated
by secondary markets. DELEGATEE could provoke similar
responses.

Peer-to-peer cryptocurrency-for-fiat exchanges is another
setting that can benefit from DELEGATEE. Today, websites
like LocalBitcoins.com receive Bitcoin deposits and hold them
in escrow. Then they match-make and allow a buyer and a
seller to negotiate an e-banking transfer. When the receiver
gets the bank transfer, they instruct the LocalBitcoins service
to complete the payment from the escrowed funds. If the
receiver raises a dispute, then the service must investigate and
ultimately determine whether to release the funds. However,
such services naturally have limited investigative ability. They
may call the user’s bank, or ask both parties for evidence
(i.e., screenshots). Neither option is satisfactory; the latter is
prone to forgery, while the former may inadvertently draw
suspicion to the user’s bank account. Credential delegation
provides an alternative, simplifying this business model and
implementing a secure intermediary that guarantees execution
and fair exchange.

VIII. CONCLUSION

The range of new sharing-economy applications we have
considered as targets for DELEGATEE are just the tip of the
iceberg. Many others—good, bad, and legally and morally
ambiguous—await discovery: sharing of characters or virtual
goods in online role-playing games, trustworthy delegation to
financial advisors of online portfolio adjustment, safer rental
of botnets by blackhat hackers, etc.

How brokered delegation may impact existing industries
is an intriguing question. Service providers could attempt to
detect and block services such as DELEGATEE. Considering

such an adversarial model, would robust brokered delegation
be possible? Alternatively, service providers could embrace
the market disruption and co-opt users or central brokers as
re-sellers of their services, turning a threat into an opportunity.

Other important questions arise regarding user privacy,
rights, and control of personal information. If users can dele-
gate control selectively, would they more commonly outsource
curation of their social media personas and e-mail com-
munications, in effect creating personal information supply
chains? Conversely, would such a system empower employers
to be more aggressive in monitoring and controlling their
employees’ social media accounts, all with the excuse of being
able to tailor safeguards via brokered delegation?

Whatever happens, we believe that brokered delegation will
create a crop of new and more pervasive resource-sharing
models, further advancing the proven disruptive power of
sharing economies.

REFERENCES

[1] ALEXANDER, B. Introduction to Intel SGX Sealing,
2016. https://software.intel.com/en-us/blogs/2016/05/04/
introduction-to-intel-sgx-sealing.

[2] ALVES, T., AND FELTON, D. TrustZone: Integrated Hardware and
Software Security-Enabling Trusted Computing in Embedded Systems,
2004.

[3] BOHANNON, J. Who’s downloading pirated papers? Everyone, 2016.
[4] BRASSER, F., MÜLLER, U., DMITRIENKO, A., KOSTIAINEN, K., CAP-

KUN, S., AND SADEGHI, A. Software Grand Exposure: SGX Cache
Attacks are Practical, 2017. http://arxiv.org/abs/1702.07521.

[5] CHECKOWAY, S., AND SHACHAM, H. Iago attacks: Why the system
call api is a bad untrusted rpc interface. In ASPLOS (2013), vol. 13,
pp. 253–264.

[6] COSTAN, V., AND DEVADAS, S. Intel SGX explained. In Cryptology
ePrint Archive (2016).

[7] COSTAN, V., LEBEDEV, I. A., AND DEVADAS, S. Sanctum: Minimal
hardware extensions for strong software isolation. In USENIX Security
Symposium (2016), pp. 857–874.

[8] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARKSON,
W., PAUL, W., CALANDRINO, J. A., FELDMAN, A. J., APPELBAUM,
J., AND FELTEN, E. W. Lest we remember: Cold-boot Attacks on
Encryption Keys. Communications of the ACM 52, 5 (2009), 91–98.

[9] JOHNSON, S., SCARLATA, V., ROZAS, C., BRICKELL, E., AND MC-
KEEN, F. Intel SGX: EPID provisioning and attestation services,
2016. https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-
provisioning-and-attestation.

[10] KAUER, B. OSLO: Improving the Security of Trusted Computing. In
USENIX Security Symposium (2007), pp. 229–237.

[11] LEE, D., KOHLBRENNER, D., KARANDIKAR, S., OU, A., ASANOVIC,
K., SONG, D., LEBEDEV, I., AND DEVADAS, S. Keystone - Open-
source Secure Hardware Enclave. https://keystone-enclave.org/, 2018.

[12] LEHDONVIRTA, V., AND CASTRONOVA, E. Virtual economies: Design
and analysis. MIT Press, 2014.

[13] MATETIC, S., SCHNEIDER, M., MILLER, A., JUELS, A., AND CAP-
KUN, S. Delegatee: Brokered delegation using trusted execution envi-
ronments. In USENIX Security Symposium (2018), pp. 1387–1403.

[14] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS, C. V.,
SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR, U. R. Innovative
instructions and software model for isolated execution. In HASP@ ISCA
(2013).

[15] VAN BULCK, J., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI, B.,
PIESSENS, F., SILBERSTEIN, M., WENISCH, T. F., YAROM, Y., AND
STRACKX, R. Foreshadow: Extracting the keys to the intel {SGX}
kingdom with transient out-of-order execution. In 27th {USENIX}
Security Symposium ({USENIX} Security 18) (2018), pp. 991–1008.

[16] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking SMM memory via
Intel CPU cache poisoning. Invisible Things Lab (2009).


