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Privacy-by-Design Generative Models of Urban Mobility

Cuauhtemoc Andaa,∗, Sergio A. Ordonez Medinaa

aFuture Cities Laboratory, ETH Zurich, 1 Create Way #06-01, Singapore 138602

Abstract

New streams of Location-based Services (LBS) Big data have risen society’s
concerns in regards to data privacy. Even though these type of data sets are
anonymised and aggregated in space and time, the risk of a privacy breach
by user’s re-identification is still imminent. Still, LBS data has the potential
to improve current travel demand models and transportation applications.
We this in mind, we introduce a Privacy by Design framework that gener-
ates realistic disaggregated daily mobility patterns without the need for any
personal information or access to individual-level LBS data. On the first
step of the framework, we estimate the joint probability distribution of daily
mobility patterns using modified Markov models, followed by an adaptation
of the rejection sampling algorithm to improve the distribution of the daily
tour types. We validate the synthetic mobility patterns against six different
distributions and reach an average accuracy over 95%. With this, we hope
to open the discussion in the transportation community in regards to data
privacy and travel demand models.

Keywords: travel demand models, generative models, data privacy, Big
data

1. Introduction1

New streams of location-based Big data (LBS) allows us to observe and2

understand mobility behaviour on an unprecedented level of detail [1]. From3

the array of LBS data, mobile phone telco data has drawn special attention4

due to its pervasiveness, extensive coverage, and persistent collection. These5
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type of data corresponds to events on the phone, such as voice call, inter-6

net usage, periodical updates and location area changes. After these event7

are triggered, a timestamp is recorded along with the user id and the con-8

nected cell tower, generally the one closest to the device. The nature of this9

data collection process requires some processing steps to filter out systematic10

noise and be able to extract the trajectories [2] for further mobility analy-11

sis. Nonetheless, it has already improved current travel demand models for12

transport planning [3][4] and our knowledge on human mobility [5][6].13

Conversely, the fact that daily mobility patterns can be reconstruct from14

these a series of LBS data points has awaken growing concerns in regards15

to data privacy [7]. People’s patterns of movement in space and time are16

repetitive and predictable, making LBS data a potent quasi-identifier for17

single person [8]. For instance, in [9] was found that even for data with a18

temporal resolution of one hour and a spatial resolution equal to the cellular19

network’s base tower cells, just four spatio-temporal points were sufficient20

to isolate and uniquely identify 95% of the individuals. This means that21

anonymising LBS data sets is by any means a solution to guarantee users’22

privacy.23

Despite LBS data being particularly vulnerable to breaches in privacy, the24

challenge of balancing out the privacy concerns with the usefulness in travel25

demand models has attracted little attention in the transportation field. We26

argue that one of the reasons is that traditionally, transport planning data27

sets (e.g. household travel surveys) have by default people’s consent, plus28

the data sets are generally owned by the same public agencies that calibrate29

the models. However, if we want to make LBS Big data useful for transport30

planning applications, we need to tackle first the growing concerns related to31

data privacy.32

To this extent we introduce a new framework to reproduce realistic in-33

dividual level mobility patterns by taking the Privacy by Design approach.34

This approach holds that data collection systems and practices should be35

designed from the ground up to include strong and irreversible pro-privacy36

measures [10]. This translates into taking privacy measures upfront when37

designing new travel demand models fuelled by LBS Big data. Specifically,38

our framework is designed in such way that it does not require any personal39

information, including any individual level trajectories. With this we hope40

to open the discussion in the transportation community in regards to data41

privacy and travel demand models.42

The remainder of this paper is organised as follows. In Section 2, we43
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review previous literature on travel demand models. Section 3 provides an44

overview of the general framework. In Section 4 we introduce a couple of45

models that capture the joint probability distribution of individual mobility46

patterns. In Section 5 we present the results for the different models and47

strategies. Finally, Section 6 and 7 contains further discussion about the48

proposed framework and the conclusions of the work respectively.49

2. Literature Review50

The traditional approach to model travel demand is with choice models.51

They are generally estimated using census and household travel surveys which52

collect personal information, information about the household and informa-53

tion about the journeys. They also generally use the utility maximisation54

paradigm where the different alternatives are weighted through parameters55

corresponding to the characteristics of the individual making the decision56

(e.g. socio-demographics), the characteristics of the alternatives and some57

context information. The realisation of the utility function for each individ-58

ual dictates then the choice probabilities among the alternatives. Prominent59

examples are [11], where individual tours with activities and itineraries are60

constructed through a series of discrete choice models; and [12], where the61

choice of different daily plan aspects are modelled through a series of decision62

trees.63

However, for the case of LBS big data, seldom times one has access to64

personal information such as socio-demographics, household structure, or trip65

purpose. In exchange, the sensing nature of LBS Big data allows for greater66

spatio-temporal granularity, wider population coverage, and a persistent data67

collection process. This has open opportunities to model travel demand with68

a human dynamics perspective. In [13] home and work activity locations are69

inferred from mobile phone data. These information along with spatial and70

temporal mechanisms inferred as well from mobile phone data are used to71

model flexible activity locations and schedules. In a similar way, [14] inferred72

primary activity locations from mobile phone data, and then trained a Long73

Short Term Memory (LSTM) Recurrent Neural Network (RNN) to model74

the spatio-temporal aspect of flexible activities. In both frameworks access75

to individual level LBS data is required, as well as the the identification of76

home and work locations of mobile phone users.77

The difference in the framework we are proposing is that we aim aim to78

generate not only the information related to flexible activities, but all the79
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sequence of daily locations with schedules for a person. Furthermore, we80

designed our framework adopting the Privacy by Design approach, mean-81

ing that no individual level trajectory or personal information is used. To82

this extent, we employ generative models in the centre of our framework to83

accomplish our aim. These models have been already used in the field of84

transportation. Principally to produced synthetic populations [15] [16] [17],85

but also to generate mobility patterns [14] [18].86

3. General Framework87

In order to satisfy the Privacy by Design approach the objective of our88

framework is to reproduce a population of individual mobility patterns for89

one day by means of only user-aggregated mobile phone data from the telco90

operator, a data trust, or any other data steward. Such population should91

behave as close as possible to the real population in terms of the closeness92

to a series of target histograms related to temporal, spatial and individual93

aspects of mobility.94

We start by assuming that there exist a true distribution that describes95

the population mobility patterns. This true distribution encodes the joint96

probability distribution of the series of places visited along with their tem-97

poral description (i.e. start times, durations).98

fX(x) = P (X1, X2, X3, ..., XN) (1)

All the spatial and temporal information related to every stay-location99

throughout the day is encapsulated by Xi where i = 1, 2, 3...N where N is100

the index for the last stay-location of the day. Every Xi corresponds then to101

the tuple [Li, Sti, Di] which relates to the spatial stay-location, stay-location102

start time, and stay-location duration respectively.103

The idea is then to approach as much as possible to the true distribution104

by constructing a proposal distribution g(x) that encloses the real distribu-105

tion f(x). We then follow up with a adaptation of the rejection sampling106

algorithm to improve over the model deficiencies and ultimately get individ-107

ual mobility patterns samples as close as possible to the real population.108

3.1. Markov Models109

Given the total number of different possible combinations of the random110

variables in the joint distribution f(x), we require a model that can factorised111
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f(x) into a set of marginal and conditional probability distributions. We112

use then Dynamic Bayesian Networks to build different Markov models that113

can approximate f(x). This type of models inherit the 1st order Markov114

constraint which means that future states, or locations in our case, depend115

only on the current state. For the case of mobility patterns this represents116

an important constraint to model real tour structures. Thus, the different117

models proposed principally differed in the introduction of different strategies118

to mitigate this constraint. Eq. 2 introduces our general approximation119

model g(X) as the factorisation given by the 1st order Markov property120

where the current state Xi only depends on the information of previous the121

state Xi−1122

f(x) ≈ g(x) = P (X1)
n∏

i=2

P (Xi|Xi−1) (2)

3.1.1. Privacy by Design via Maximum Likelihood Estimation123

We estimate the model parameters of g(X) using the Maximum Likeli-124

hood Estimation (MLE). The Dynamic Bayesian Network framework allows125

us to generalise the factorisation of the transition probabilities of the Markov126

property into a factorisation of conditional probabilities P (Xi,k|UXi,k
), where127

UXi,k
refers to Xi,k parents or dependants, and k is the iterator across the128

tuple [L, St,D]. Hence, given that we have a data set D with a list of samples129

{dm}Mm=1, we can construct the likelihood function as:130

LG(Θ : D) =
∏
m

∏
i

∏
k

P (Xi,k[m]|UXi,k
[m] : Θ) (3)

A second restriction for the design of our Markov models is that the131

random variables involved should be of categorical nature and fully observ-132

able. This means that we can represent the different conditional probabilities133

P (Xk|UXk
) as tables and the parameters θk,x,u being the entry values of those134

tables. Taking this into account the log likelihood can be express as:135

lG(Θ : D) =
∑
k

∑
x

∑
u

M [u, x]log(θk,x,u)) (4)

Where M [u, x] is the number of times that Xk = x and UXk
= u happens136

in D. Hence, x ∈ V al(Xk) and u ∈ V al(UXk
).137

After having constructed the log likelihood (Eq. 4) we can then proceed138

by formulating the optimisation problem to calculate Θ̂, as follows,139
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Θ̂ = argmaxΘlG(Θ : D) s.t.
∑
x

θk,x,u = 1∀(k, u) (5)

And finally get the closed form solution of the optimisation problem:140

θ̂k,x,u =
M [u, x]

M [u]
∀ (k, x, u) (6)

Eq. 6 means that for the Markov models designed under the conditions141

of the random variables being categorical distributions and completely ob-142

servable, the estimation of the parameters Θ̂ via MLE result in counting143

the frequencies of the different events as described by the conditional and144

marginal probabilities. Hence, only requiring histograms where the data is145

user-aggregated to estimate g(x) and satisfy the Privacy by Design approach.146

3.1.2. Sampling147

Having estimated g(x) we can proceed with the generation of the differ-148

ent individual locations and schedules throughout one day by using forward149

sampling. This method of sampling consists in assigning an outcome to the150

marginal distributions and then continue sampling following the order of151

the conditional probabilities. The sampling is stopped after the full day is152

completed.153

3.2. Rejection Sampling154

The second step of the framework takes into advantage the ability of155

generating any number of samples from gX . We adapt the original idea156

of rejection sampling to further improve the daily tour type distribution in157

relation to the target ftour. Since this daily tour type distribution is not158

directly encoded in gX , we then estimate an empirical proposal distribution159

ĝtour by drawing a large pool of samples from gX . We then calculate the160

envelope factor M = supx
f(x)
g(x)

, x ∈ V al(X) and proceed with the rejection161

sampling algorithm:162

1. Generate Y ∼ gX(x)163

2. Calculate Ytour|Y164

3. Generate U ∼ Uniform[0,Mĝtour(Ytour)]165

4. If U ≤ ftour(Ytour), then accept: set Xtour = Ytour and stop. Other-166

wise, reject: return to step (1)167
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4. Modified Markov models for individual mobility patterns168

The base idea for the two architectures proposed is to model the sequence169

of individual stay-zones, stay-zone start times, end times, and durations for170

one day, where a stay-zone is defined as the location where the individual171

performs an activity. From [19] this is factorised as:172

P (Z1:N , S1:N , E1:N , D2:N) = P (S1)P (Z1|S1)P (E1|Z1, S1)

N∏
k=2

P (Zk|Zk−1, Ek−1)P (Sk|Zk, Zk−1, Ek−1)P (Dk|Zk, Sk)P (Ek|Sk, Dk)
(7)

Where,173

Z = Stay-zone174

S = Stay-zone start time175

E = Stay-zone end time176

D = Stay-zone duration177

This means that the next stay-location depends only on the previous178

stay-location and the previous end time. Another remark is that the first179

end time is model as a probability that refers to the first departure time of180

the day, while Ek = Sk + Dk for k = 2, ..., N . As mentioned previously, the181

1st order Markov constraint is an important restriction to generate realistic182

daily tours. To this end, we present two different variations on the base183

architecture to capture longer dependencies in an efficient way.184

4.1. Explore & Return Model185

Following the idea in [20] that exploration and preferential return are186

two mechanisms that describe human mobility, we added an Explore/Return187

(XR) random variable. This variable dictates whether the agent will explore188

a new stay-zone or will return to a previously visited one. It depends on189

the current stay-zone and the current end time, so as day develops, the190

agent will have a higher probability of returning to one of the previously191

visited places, specially if the agent is currently in a non-residential zone.192

The transition probability is now encoded as P (Zk|Zk−1, Ek−1, XRk). If the193

agent chooses to explore, then the previously visited zones are filtered out194

from the original P (Zk|Zk−1, Ek−1) and the probabilities are re-normalised. If195

the agent chooses to return, then only the already visited zones are considered196
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in P (Zk|Zk−1, Ek−1) and the probabilities are as well re-normalised. Fig.1a197

shows the graphical representation of the model.198

(a) Explore and Return model (b) Tour kernel model

Figure 1: Graphical representation of modified Markov models for individual mobility
patterns. (a) Explore & Return model (b) Tour kernel model

4.2. Tour Kernel Model199

Instead of having the Explore/Return variable that models indirectly the200

individual tour types, we can add a random variable that captures in a more201

direct way the construction of the daily tour chains. If we encode a tour202

chain as a sequence of digits, where every digit refers to a particular lo-203

cation, then the sequence 01020 might refer to someone that performs the204

activity chain: Home, Work, Home, Shopping, Home, where it is assumed205

that each type of activity is performed in a different location. For the tour206

kernel model we introduce a random variable K that models the next digit207

in the sequence given the current tour sequence or chain, the current time208

and the current zone. This is P (K|Zk, Ek, tc), where tc is the current tour209

chain. If K is present already in tc, then the transition is made directly to210

the linked zone. Otherwise, the transition is made through the probability211

P (Zk+1|Zk, Ek, K, i), where i is the iterator of the state number. Fig. 1b212

shows the graphical representation of the model.213

4.3. Types of urban travellers214

Another strategy that we tested was the idea of having independent mod-215

els for each type of traveller, instead of a general model for the full population.216

The intuition is that tour sequences can be more accurately constructed if the217

conditional and marginal distributions come from a series of homogeneous218
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groups. In traditional travel demand models, this segmentation is taking219

into consideration through the demographics and social roles, however, in220

LBS Big data, seldom times we have access to these type of personal infor-221

mation. To this extent, in [21] a clustering framework based only on the222

series of individual stay-locations for one day was proposed. A set of five223

variables that reflect travel behaviour is designed, and different clustering224

algorithms are tested and validated. Adopting this framework, we tested the225

Explore and Return and the Tour kernel models for both cases: trained on226

the full population, and as independent models for each of the types of urban227

travellers.228

5. Results229

The framework was tested using mobile phone data from one the major230

telco operators in Singapore. All histograms relate to the 18th of April of231

2017, a typical working Tuesday. For the spatial resolution, all histograms232

provided were aggregated into subzone planning boundaries1. Where these233

subzones are divisions within a planning area centred around a focal point234

such as a neighbourhood centre or an activity node. A total of 315 subzones235

which cover the extension of the main island were considered. As for the236

temporal resolution, the histograms were aggregated in an hourly basis. For237

the types of urban travellers part, we considered 16 different clusters as238

obtained in [21] for the case of Singapore.239

For the validation part, we considered 6 different target distributions:240

start time, duration, subzone, distance travelled, number of trips and tour241

type distribution. We assume that if our models are capable to match those242

target distributions, then we can conclude that the mobility patterns of the243

synthetic population behave similarly to the real population ones. We use244

the Root Sum of Squared Errors (RSSE) to measure the error between the245

distributions produced (π̂) and the target ones (π), where RSSE is defined246

as:247

RSSE(π̂, π) =

√∑
i

(π̂i − πi)2 (8)

1https://data.gov.sg/dataset?q=Subzone+Boundary
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5.1. Temporal distributions248

Fig. 2a presents the results for the start times distribution of every stay-249

zone. The x-axis represents the hour of the day, and the black colour plot250

represents the target distribution. Fig. 2b presents the results for the dura-251

tions distributions. Here the x-axis is for the different durations from 0 hour252

duration to 20 hour duration. For both target distributions we can identify253

a close match.254

(a) Start times distribution (b) Durations distribution

Figure 2: Temporal distributions validation. (a) Start time distributions (b) Durations
distribution

5.2. Spatial distributions255

For the case of the subzone distribution, we calculated the RSSE for each256

hour of the day. Fig. 3a shows how this error develops across the day for the257

different models proposed. One can notice that for all models and all hours258

of the day the error does not surpass the threshold of 0.1%. In Fig. 3b we259

can see a close match in the total distance travelled distribution by agent in260

a day. The units of the x-axis are given in km.261
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(a) Subzone error distribution (b) Distance travelled distribution

Figure 3: Spatial distributions validation. (a) Subzone error distribution (b) Distance
travlled distribution

5.3. Individual related distributions262

In Fig. 4a we present the distribution over the number of trips performed263

during the day by a single agent. The x-axis indicates the number of trips.264

Fig. 4b shows the daily tour chain distribution. Here, the x-axis indicates265

the target top 12 tour chains. We can notice that as compared to the tem-266

poral and spatial distributions, the tour chain distribution is more difficult267

to match, firstly because it is not directly encoded in the joint probability268

distribution, and secondly, because of the 1st order Markov property in the269

models.270

(a) Number of trips per person distribution (b) Daily tour chain distribution

Figure 4: Individual related distributions validation. (a) Number of trips per person
distribution (b) Daily tour chain distribution
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5.4. Rejection sampling efficiency271

Another important metric for model comparison is the rejection sampling272

efficiency (1/M). It is a measurement of how far your proposal distribution273

is from the target distribution. The rejection sampling efficiency can also be274

interpret with its inverseM , which refers to the expected number of rejections275

needed in order to get one accepted sample. As explained in section 3.2, we276

have applied an adaptation of the rejection sampling algorithm to match the277

daily tour chain distribution. The calculation of Mtour then gives us a proxy278

of the distance between our models and the true distribution.279

Fig. 5 shows the relationship between model performance, complexity280

and rejection sampling efficiency. Here the y-axis indicates the average model281

accuracy which is calculated as the complement of the average error for all282

target distributions, the x-axis indicates the number of model parameters,283

and the size of the dot relates to the expected number of rejections per284

sample. The first conclusion that we can draw is that there is an improvement285

in terms of model accuracy when clusters are considered. Another conclusion286

is that the Tour kernel model performs generally better than the Explore &287

Return one. The model that achieved the highest accuracy was the Tour288

kernel model with clusters, however, the number of parameters for this model289

is considerably larger as compared to the other ones. A balanced model is290

the Tour kernel (without clusters) since it still achieves over 90% accuracy,291

it has a good rejection efficiency (4.21 rejections per acceptance), and the292

number of parameters is not as large as the version with clusters.293

Finally, Table 1 presents the full results on all the RSSE for every target294

distribution, as well as the RSSE average, the average accuracy, number295

of parameters and expected number of rejections per acceptance. We also296

present the results after doing rejection sampling on the Tour kernel model.297

As expected, the error of the top 100 daily tours drops down to virtually298

zero. What it is relevant to notice is that the change in this distribution299

does not substantially degrade the performance over the other distributions.300
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Figure 5: Model performance vs. complexity. Y-axis denotes the average accuracy perfor-
mance of the model, X-axis denotes the total number of model parameters, the diameter
size denotes the expected number of rejections for an acceptance.

Table 1: Table of results showing RSSE for target distributions, model performance,
complexity and rejection sampling efficiency. E&R = Explore and Return model, E&R C
= Explore and Return model with clusters, TK = Tour kernel model, TK C = Tour kernel
model with clusters, TK RS = Tour kernel model after rejection sampling

RSSE (Root Sum of Squared Errors) Model
perfor-
mance

Model
com-
plexity

Rejection
sampling

Model
name

Start
time

Duration Number
of trips

Tours
top
100

Subzone
(24
hours
mean)

Distance
trav-
elled

RSSE
aver-
age

Average
accu-
racy

Number
of
params.

Expected
rejec-
tions /
sample

E&R 1.30% 0.47% 11.00% 15.77% 0.46% 1.36% 19.28% 80.72% 4.50E+06 76.69
E&R C 1.28% 1.95% 5.58% 8.52% 0.39% 1.00% 10.46% 89.54% 6.76E+07 48.36
TK 3.26% 1.50% 1.52% 5.88% 0.53% 0.58% 7.07% 92.93% 2.89E+07 4.21
TK C 2.57% 0.87% 1.39% 2.00% 0.38% 0.39% 3.66% 96.34% 4.34E+08 3.62

TK RS 3.11% 1.44% 1.37% 0.09% 0.51% 0.65% 1.20% 98.81% 2.89E+07 4.21
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6. Discussion301

As observed in Table 1 the average accuracy of the models proposed302

ranged from 80% to 96%. The principal variation in the models’ accuracy303

comes from the error of the daily top 100 tours distribution. This translates in304

some models being able to overcome the 1st order Markov constraint better305

than others. However, the generative nature of the model, allows us to306

sample indefinite times and, as mentioned previously, use rejection sampling307

to improve the tour types distribution. It means that any of the models is308

useful as long as one has the computational power and time to produce the309

required number of expected rejections per acceptance needed. In theory,310

one could just sample from the random variables independently (i.e. without311

any model behind) and then use rejection sampling. However, given the312

dimensions of the variables and all the possible combinations it would not313

result in a practical solution. This is why the first step of the framework is to314

develop different model architectures to get as close as possible to the target315

distribution, and have a good rejection sampling efficiency for the second316

part.317

Another point to discuss is the adoption of generative models through318

Dynamic Bayesian Networks instead of recent developments in deep learning319

generative models for sequences. Models such as Long Short Term Memory320

(LSTM) Recurrent Neural Networks (RNN) can encode in an efficient way321

the joint probability distribution over the whole sequence. However, adopting322

the deep learning approach would defeat in principle the Privacy by Design323

purpose since one would require access to individual level data to train these324

models. In contrast, for the case of our Explore & Return model, it is only325

5 user-aggregated histograms that are required from the data provider: an326

initial zone histogram, the histogram of the time of the first departure |327

zone, dynamic origin and destination matrices, the histogram of duration |328

(time,zone) histogram, and the explore/return | (time,zone) histogram.329

7. Conclusion330

We introduced a new framework to harness LBS Big Data in transporta-331

tion while mitigating privacy breach risks. The Privacy by Design Generative332

Models of Urban Mobility produce realistic daily mobility patterns without333

any personal information, including any individual level LBS data. The334

framework consists of two steps. The first step approximates the joint prob-335

ability distribution over the different stay-locations and temporal attributes336
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by modified Markov models. The second step applies rejection sampling to337

further improve the generation of daily tour sequences. For the different338

models and strategies the average accuracy spanned from 80% to 96% when339

applied to Singapore mobile telco data before rejection sampling. We also340

showed that rejection sampling on the daily tour types distribution further341

improves model performance.342

There are several directions in which the current framework can be ex-343

tended: an efficient adaption of the rejection sampling algorithm for several344

targets, a rigorous test on user re-identification, an extrapolation of the model345

for future scenarios, combination of other data sources to include mode of346

transport and socio-demographic information, and a study that measure the347

performance of synthetic mobility patterns against real mobility patterns in348

an agent-based simulation.349
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