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Abstract
Signals observed in biological systems originate most often from multiple,
superimposed sources: some of those sources are producing continuously
wandering baseline signals and are only vaguely known. By contrast,
other signal sources are pulse-shaped and well characterized, for example,
signals from neuronal or muscular cells, observed in electrocardiogram
(Ecg), electromyogram (Emg), and electroneurogram (Eng) signals,
and the like. The challenges addressed in this thesis are to robustly
identify and detect events in such biological signals, to separate sources
from others, and to extract features. As biological signals take many
shapes, the methods must be chosen carefully.

In this work, we contribute two robust signal processing methods,
whereby both methods are based on localized, linear or non-linear, mod-
els: the first method uses localized autonomous linear state space models
to identify and to detect events with certain characteristics; the second
method applies localized cost functions of general polynomial forms to
solve complex optimization problems. In this context, localization con-
siders the signals only within a weighted window of finite or infinite
length. Both methods, linear state space models and polynomial cost
functions, are modest in their computational complexity and, hence,
suitable for practical applications in wearable and, in particular, im-
plantable medical devices.

This thesis is driven by a project in cardiology which conducts re-
search in esophageal electrocardiography. As part of this project, we
develop novel esophageal catheters with 3 dimensional electrode arrange-
ments to localize cardiac events in 3-D space. The project has the overall
goal to offer a superior, minimally invasive device for improved arrhyth-
mia diagnostics.

In the first part of this thesis, we reconstruct the electrical field of the
heart, as observed in the esophagus. Therefore, we apply our methods
on measurements from an esophageal catheter solely. After depicting
the results graphically as a 2 dimensional map, denoted as esophageal
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viii Abstract

isopotential map, we briefly discuss the medical implications of the ob-
tained new modality. Furthermore, we derive a method to estimate the
cardiac depolarization sequence on the heart surface (epicardium) of the
left atrium. Solving such problems is also known as the inverse problem
of electrocardiography and leads to the technique of electrocardiographic
imaging (Ecgi). The methods used to solve the problems in these first
parts are derived in the following, second part of this thesis.

In the second part, we derive the methods required to solve the prob-
lems introduced in the first part. We introduce autonomous linear state
space models (Alssms) and supplement them with local windows, which
are generated by their own Alssms. We also combine multiple such
Alssms, each localized by its own window, to generate more versatile
models. We likewise superimpose multiple models of different time scales
to discriminate signals of different temporal spread, and we join multi-
ple models with adjacent windows to detect onsets of, or transitions
between, multiple, alternating signal sources. Such joined models are
either applied at particular time indices of interest, or repetitively over a
whole signal leading to a sliding window filter. Such filters do not neces-
sarily have scalar outputs, but rather provide signals of feature vectors.
Applying appropriate transformations to such feature vectors simplifies
unsupervised feature detection. Despite all these modifications and ex-
tensions on Alssms, we strictly preserve the inherent recursive compu-
tation rules of the involved linear state space models, and, thus, their
efficient computations.

Further in the second part, we introduce cost functions of general
polynomial forms and apply them to solve optimization problems. We
expand their fields of application by introducing localization. To apply
our method on a particular problem, we first project a given signal to a
localized feature space, i.e., we locally approximate the signals by a given
class of functions. Then, any further processing is executed in this lower-
dimensional feature space. To efficiently handle problems of increased
complexity, we also provide a new calculus. This calculus simplifies the
manipulation of cost terms of polynomial forms.

In the third and last part, we apply our methods and provide so-
lutions to the problems introduced. Finally, we conclude with a list of
additional practical examples that we have already published, and which
successfully apply our methods.

Keywords: Linear state space models; event detection and estimation;
polynomial cost functions; unsupervised feature extraction.



Kurzfassung

Signale wie sie in biologischen Systemen zu beobachten sind, sind meist
das Ergebnis aus mehreren überlagerten Signalquellen mit jeweils un-
terschiedlichen Eigenschaften: Manche dieser Quellen produzieren sich
stetig ändernde Grundlinien und deren Verhalten ist oft nur ansatzwei-
se bekannt. Andere Quellen wiederum produzieren kurze, pulsförmige
Signale und sind gut charakterisiert; so zum Beispiel die elektrischen
Aktivitäten von Neuronen und Muskelzellen. Solche Signale können un-
ter anderem als Elektrokardiogramm (Ecg), Elektromyogramm (Emg)
oder als Elektroneurogramm (Eng) beobachtet werden.

Die Herausforderung in dieser Arbeit ist es, Ereignisse in solchen
biologischen Signalen zuverlässig zu identifizieren, sowie verschiedene
Signalquellen voneinander abzugrenzen und deren Merkmale zu extra-
hieren. Da biologische Signale in variierender Form in Erscheinung tre-
ten können, müssen die Analysemethoden entsprechend sorgfältig aus-
gewählt werden.

Wir haben in dieser Arbeit zwei robuste Signalverarbeitungsmetho-
den entwickelt. Beide Methoden basierend auf linearen und nichtlinea-
ren, lokalisierten Modellen: Die erste Methode nutzt lokalisierte auto-
nome lineare Zustandsraummodelle zur Identifizierung und Erkennung
von Ereignissen mit bekannten Eigenschaften. Die zweite Methode nutzt
lokalisierte Kostenfunktionen um komplexe Optimierungsprobleme zu
lösen. Lokalisierung in diesem Kontext betrachtet Signale nur in einem
gewichteten zeitlichen Fenster endlicher oder unendlicher Länge. Für sol-
che Kostenfunktionen werden Polynome in allgemeiner Form verwendet.
Beide Methoden sind moderat in ihrer Rechenkomplexität und damit
prädestiniert für praktische Anwendung in mobilen und insbesondere
implantierbaren Medizinalprodukten.

Diese Arbeit ist motiviert durch ein Projekt in der Kardiologie und
betreibt Forschung in der Ösophagus-Elektrokardiographie. Im Rah-
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x Kurzfassung

men dieser Forschungsarbeit haben wir neuartige Ösophaguskatheter mit
dreidimensionaler Elektrodenanordnung entwickelt, welche es erlauben,
die Herzaktivität zeitlich und im 3-D-Raum zu erfassen. Diese räumliche
Erfassung kardialer Ereignisse hat zum Ziel, ein minimalinvasives Medi-
zinalgerät zur Verbesserung der Arrhythmie-Diagnostik zu entwickeln.

Im ersten Teil dieser Arbeit versuchen wir das elektrische Feld des
Herzens einzig anhand von Messungen aus der Speiseröhre zu rekonstru-
ieren. Anschliessend stellen wir die Rekonstruktion grafisch als zweidi-
mensionale Karte dar, welche wir als Esophageal Isopotential Map be-
zeichnen. Weiter diskutieren wir die medizinischen Implikationen dieser
neun Modalität. Zusätzlich leiten wir ein Verfahren her, welches die kar-
diale Depolarisationssequenz, die sogenannte Activation Map, auf Tei-
len der Herzoberfläche (Epikard) des linken Vorhofs rekonstruiert. Diese
Rekonstruktion wird auch als inverses Problem der Elektrokardiographie
bezeichnet und ist der Schlüssel zur elektrokardiographischen Bildgebung
(Electrocardiographic Imaging, kurz: Ecgi).

Im zweiten Teil werden die für die Aufgaben aus dem ersten Teil
verwendeten Methoden hergeleitet. Hierzu führen wir autonome linea-
re Zustandsraummodelle (Autonomous Linear State Space Models, kurz:
Alssms) ein und ergänzen sie jeweils mit einer lokalen Fensterung, wel-
che selber als eigenes Alssm beschrieben werden kann. Um die Fle-
xibilität solcher Modelle zu erhöhen, kombinieren wir mehrere dieser
Alssms verschiedener zeitlicher Ausdehnungen und durch verschiedene
zeitliche Fensterungen lokalisiert. Damit lassen sich überlagerte Signale
separieren. Werden verschiedene Modelle dieser Art in zeitlicher Folge
aneinander gefügt, können damit auch Übergänge zwischen Signalquellen
detektiert werden. Alle diese Modelle können entweder an einem spezifi-
schen Zeitpunkt im Signal angewendet werden, oder aber wiederholt an
jedem Zeitpunkt über die gesamte Länge eines Signals; dies entspricht
einem sogenannten sliding window filter. Solche Filter haben dann nicht
zwingend einen skalaren Ausgang, sondern können ganze Vektoren von
Signalmerkmalen (feature vectors) generieren. Durch geeignete Trans-
formationen solcher Vektoren eignen sie sich auch für eine unüberwach-
te Merkmalsextraktion (unsupervised feature extraction). Dies alles ist
möglich unter Beibehaltung und Nutzung der effizienten rekursiven Be-
rechnungsregeln, welche die zugrundeliegenden linearen Zustandsraum-
modelle ausmachen.

Ebenfalls im zweiten Teil werden Kostenfunktionen in der Form von
allgemeinen Polynomen eingeführt. Solche Polynom-Kostenfunktionen
werden verwendet um komplexe Optimierungsprobleme zu lösen. Da-
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bei sind diese Kostenfunktionen wiederum lokalisiert, d.h. mit einer ge-
wichteten zeitlichen Fensterung versehen. Um solche Kostenfunktionen
auf ein konkretes Problem anwenden zu können, projizieren wir übli-
cherweise zunächst die gegebenen Signale auf einen lokalisierten Merk-
malsraum (feature space), d.h. wir nähern die Signale durch eine ge-
geben Klasse von Funktionen, oft Polynome, an. Die anschliessende
Verarbeitung wird dann zugunsten der Effizienz nur noch in diesem
niedrig-dimensionalen Merkmalsraum durchgeführt. Um auch Probleme
von höherer Komplexität effizient bewältigen zu können, stellen wir ei-
ne Reihe eigener Rechenregeln zur Verfügung, welche die Umformungen
von Polynom-Kostenfunktionen erleichtern. Solche Umformungen helfen
auch den Echtzeitaufwand der Berechnungen zu minimieren.

Im dritten und letzten Teil wenden wir unsere entwickelten Metho-
den an und bieten damit Lösungen für die vorgestellten Probleme an.
Schliesslich führen wir eine Liste bereits publizierter Beispiele auf, welche
unsere Methode erfolgreich anwenden.

Stichworte: Lineare Zustandsraummodelle; Ereignisdetektion und
Ereignisschätzung; Kostenfunktionen in Form von Polynomen; unüber-
wachtes Extrahieren von Merkmalen.
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Chapter 1

Introduction

1.1 Background
This thesis is driven by the 3-D Esophageal ECG project, an interdis-
ciplinary project led by the Institute for Human Centered Engineering,
Bern University of Applied Sciences, Switzerland. This project conducts
research in esophageal electrocardiography and aims to develope a supe-
rior esophageal electrocardiographic device, improving the arrhythmia
diagnostics in cardiology. The key component of this device is a novel
esophageal catheter denoted as EsoECG-3D, which is inserted through
the patient’s nose into the esophagus to its target position behind the
patient’s heart. The signals measured with this catheter offer a spatial
view of the cardiac electrical activity thanks to the catheter’s 3 dimen-
sional electrode arrangement and the beneficial anatomical location of
the catheter next to the heart’s atria.

The catheter EsoECG-3D was designed and fabricated at the Bern
University of Applied Sciences under an ISO 134851 certified environ-
ment. Clinical trials involving patients and healthy subjects were subse-
quently performed in collaboration with the Department of Cardiology,
Bern University Hospital, Switzerland, and are fully approved by the
local ethical authorities and the Swiss Agency for Therapeutic Products,
swissmedic. The signal processing research was conducted at the Signal
and Information Processing Laboratory (ISI), ETH Zürich under super-
vision of Prof. Hans-Andrea Loeliger.

1ISO 13485 is a standard, representing the requirements for a comprehensive qual-
ity management system for the design and manufacture of medical devices

1



2 Introduction

1.2 Outline of Thesis
This thesis is organized in three parts: Part I identifies particular diag-
nostic needs in rhythmology, a special field in cardiology. Part II devel-
ops new signal processing ideas and methods, which are finally applied
in Part III to provide solutions to the needs identified in Part I.

Part I: 3-D Esophageal Electrocardiography
Part I starts in Chapter 2 with an overview of electrocardiographic diag-
nostic methods used in cardiology, along with their current limitations.
Such limitations are (among others): the lack of resolution in atrial sig-
nals and the need for non-invasive methods to study the cardiac depo-
larization sequence of the heart muscle, also known as the electrocardio-
graphic imaging (Ecgi) methods. In Chapter 3, we introduce our project
performing 3-D electrocardiography and already give an overview of the
new results achieved from a medical perspective.

Part II: State Space Filters and Polynomial Costs
Part II contributes new signal processing solutions and extends existing
concepts in order to address the problems introduced in Part I.

For signal detection, discrimination, and filtering tasks, we introduce
in Chapter 4 autonomous linear state space models (Alssms) and sup-
plement them with local windows, which are generated by their own
Alssm. We also combine multiple Alssms, each localized by its own
window, to obtain more versatile models and windows. We likewise su-
perimpose multiple models of different time scales to discriminate pulses
from their baseline signals, and we join multiple models with adjacent
windows to detect either the onset of a model or the transitions from one
model to another. Such joined models are either applied at particular
time indices of interest, or repetitively over a whole signal, leading to
a sliding window filter. Such filters do not necessarily have scalar out-
puts, but rather provide signals of feature vectors. Finally, despite all
these modifications on Alssms, we strictly preserve the inherent recur-
sive computation rules of the involved linear state space models, and,
thus, their efficient computations.

For signal clustering and unsupervised feature detection, we intro-
duce in Chapter 5 a distance measure for Alssms in an Euclidean feature
space. In this space, we apply common clustering methods and thereby
blindly extract features of single- and multi-channel signals.



1.2 Outline of Thesis 3

To efficiently solve optimization tasks, we introduce in Chapter 6 cost
functions of general polynomial forms and expand their field of applica-
tion by introducing localization. In this context, localization refers to a
local perspective, where the signal is only considered within a window of
finite or infinite length. For that, we initially project any observed sig-
nal to a localized feature space, i.e., we locally approximate the signals
by polynomials using a window. Then, any further processing is exclu-
sively done in this feature space. To efficiently handle such optimization
problems of increased complexity, we also provide a new calculus for
polynomials. This calculus simplifies the manipulation of cost terms
of polynomial forms and, e.g., supports the separation of observation-
independent terms to minimize the real-time computation efforts.

The presented methods in Part II are motivated by the practical
needs from Part I. Nevertheless, we think that our approaches are far
more general to be used in just our target applications: the derived
methods are modest in their need of computation power and memory
usage, as is preferred for wearable and implantable medical devices, and
likewise for mobile applications in general.

Part III: Applications and Examples

Part III applies the methods derived in Part II on the medical appli-
cations introduced in Part I and other practical problems. In a first
application in Chapter 7, we use cost functions of polynomial forms to
solve the inverse problem of electrocardiography for our esophageal Ecg
measurements. In a second application in Chapter 8, we refer to our pub-
lished method extensively applying polynomial cost functions to track
the position of an esophageal catheter inside the body and to recon-
struct so-called esophageal isopotential maps of high atrial resolution.
We here supplement the published method with details on the compu-
tations applying our calculus. In a third application in Chapter 9, we
summarize our framework for signal detection and discrimination based
on localized autonomous linear state space models. This framework is
already published in [47]. Finally, in Chapter 10, we conclude Part III
with an overview of applications and examples based on our methods
that are already published. These examples include P wave and QRS
complex detection in Ecg signals, baseline reconstructions, detection of
modulated pulses, signal smoothing, and others.
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1.3 Methods and Contributions
In this thesis, we search for feasible methods that meet the current
state of the art for analyzing biological signals such as electroneurograms
(Engs), electromyograms (Emgs), electroencephalograms (Eegs), and
electrocardiograms (Ecgs) including the signals from our 3-D Esophageal
Ecg project. We look for robust methods that perform in practical
working environments and meet the constraints of medical devices, such
as reliability, limited energy supply, space restrictions, and more. Al-
though it is not a primary goal for the time being, we are also interested
in methods that are suitable for hardware algorithm implementations,
e.g., in an FPGA (Field Programmable Gate Array) or even in an ASIC
(Application Specific Integrated Circuit) to further minimize the power
consumption, as low power consuming hardware is crucial for portable
and implantable medical devices.

In this context, we explore the following methods: linear state space
models in a least squares framework and general cost functions of poly-
nomial forms to state and solve optimization problems.

Autonomous Linear State Space Models By contrast to most sta-
tistical approaches, we only use autonomous linear state space models
(Alssms), which do not have an input and whose outputs are fully de-
termined once an initial state is set. The use of Alssms leads to efficient
recursions for the computation of squared error cost functions. Alssms
are convincing for our applications since:

- an Alssm supplemented by an appropriate window can localize
events like those often observed in biological signals,

- the Alssm system order required to detect and discriminate events
is usually low (in comparison to the number of discrete-time sam-
ples involved) and independent of the actual sampling rate,

- Alssms commonly have a continuous-time equivalent and therefore
facilitate the modeling of non-uniformly sampled or continuous-
time signals,

- the computation of Alssms is non-iterative, i.e., in most applica-
tions a single forward or/and a single backward recursion is suffi-
cient,

- and finally, the Alssm methods as proposed in this thesis, scale
linearly with the number of samples and are of low complexity.



1.4 Related Methods 5

Polynomial Cost Functions We observed that localized polynomi-
als, i.e., polynomials over a certain interval and supplemented with a win-
dow, are convenient to locally approximate many type of pulse-shaped
signals. This is not a new observation, since there are already signal
processing methods proposing this, e.g., when using splines [44].

To go further, we use our approximations of polynomial forms to
define problem-specific cost functions: since most cost functions use the
measure of squared errors—which is by definition a second order polyno-
mial form—cost functions based on polynomial approximations can also
be transformed into terms of convenient polynomial forms.

We explored this idea on multiple problems of varying complex-
ity and observed that, despite similarities, each problem statement re-
quires its own algebraic transformation to gain a “convenient” polyno-
mial form. These transformations are performed manually and for any
non-trivial example get exhaustive despite using only common linear al-
gebra. Therefore, we derived our own calculus for polynomials to ease
this manual work. Overall, we found localized polynomial cost functions
to be convincing for our applications since:

- coefficient terms are fully or in parts precomputable offline,

- remainders to be processed and minimized in real time are poly-
nomial or rational functions,

- minimization of polynomials is done efficiently in closed form or
with well-known numerical methods,

- and, thanks to its low remaining real time complexity, the method
is suitable for low-power and low-memory hardware applications.

1.4 Related Methods
There is a wide variety of existing methods to process biological signals.
Most techniques use some combination of linear filtering, including, but
not restricted to, Fourier transforms [45], matched filters [43], wavelets
[33], or filter banks [1]. However, all these methods have limitations,
especially when interferences and irregular baselines cannot be neglected.

Another suitable approach is the use of linear dynamical systems for
signal modeling with occasional model switches [14, 16, 31]. Yet, such
models require many parameters to be estimated and their estimations
are complex. A related approach was recently proposed in [30,54], where
sparse jumps in linear state space models are handled with normal priors
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of unknown variances. These algorithms are iterative and computation-
ally demanding.

There are many practical examples from the field of medical research.
An overview of signal processing approaches used for QRS wave detection
in Ecg signals is given in [25], a selection of Ecg baseline removal tech-
niques in [27] , or an overview of spike detection in electroencephalogram
(Eeg) signals in [51]. Some of the methods used suffer from undesired
signal distortion or insufficient pulse shape or onset point preservation,
which might have a direct impact on the diagnosis, such as when mea-
suring the ST segment elevation on suspicion of a myocardial infarction.

Overall, biological signals show a wide variability in signal character-
istics and are most often a superposition of various components. In many
processing tasks, single such components need to be detected and sepa-
rated from other components, with only minimal distortion added to the
signal; in particular the preservation of pulse-shapes and onset-points is
essential.

Our first approach presented in this thesis mainly borrows ideas from
autonomous linear state space models and from recursive least square
computations with localization, i.e., with using appropriate windows.
Our second approach solves optimization problems by minimizing local-
ized cost functions of general polynomial shapes.

(Autonomous) Linear State Space Models Linear state space
models have long been used in different fields such as control systems
[22–24] and more recently also in signal analysis and machine learn-
ing [5,15,52]. In contrast to general linear state space models, input-free,
i.e., autonomous, linear state space models are rarely used in practical
applications so far; but they have been thoroughly studied at our in-
stitute in the past [8, 39, 53, 54, 56]. The autonomous linear state space
models were thereby (mainly) used in a squared error setting, borrow-
ing the idea of recursive least squares to gain efficient computation rules.
Recently, linear state space models were also used with higher-order cost
functions, i.e., beyond squared errors [55].

Recursive Least Squares The concept of recursive least squares is
seen in a wide variety of applications including adaptive filters, Bayesian
filters, and Kalman filters [18, 24, 26]. Applying recursive least squares
on autonomous linear state space models was studied intensively at our
institute over the past years [8, 39,53,54,56].
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Localization Using Windows Localization using windows is an old
idea. Often seen are windows of one-sided or two-sided exponentially de-
caying shapes as, for example, proposed in [18,26]; in our institute, they
are used in multiple applications [53,54,56]. Rectangular windows involv-
ing only a fixed number of samples are also common [6]; in combination
with the concept of recursive least squares, these windows lead to filters
referred to as fixed-memory or limited-memory filters [4, 9, 20, 40, 41].
Finally, Bruckstein et al. proposed in 1985 limited memory filtering for
signals with given state space representation [7].

Likelihood ratios Likelihood ratios or also log-likelihood ratios are
well known from statistical theory, and are interpreted as the ratio of
the probabilities between two hypotheses. At our institute, localized
versions of such model likelihoods were used to detect certain events in
given observations [29], [56, Section 7.3], [39, Part II].

Polynomial Cost Functions Polynomial cost functions of second or-
der are ubiquitous in signal processing, and more general, in all engi-
neering and natural sciences. Least square methods or statistical signal
processing using Gaussian distributions are probably the most popular
examples. All these methods rely on quadratic costs (or their Gaussian
counterparts), but quadratic cost terms are not always suitable, which
has motivated the extension to non-linear approach such as extended
Kalman filter (Ekf) or unscented Kalman filter (Ukf) [21], particle fil-
ters, and others [11]. The use of cost functions of general polynomial
forms seems an obvious generalization to quadratic cost functions, at
the cost of losing the immediate statistical counter part, the Gaussian
distribution, and often also at the cost of losing its closed form solutions.

Signal Approximation and Interpolation by Polynomials Al-
ready in 1946, Schoenberger proposed to approximate signals by piece-
wise polynomials, i.e., splines [42]. Schoenberger also introduced the
now well-known B-splines, a beneficial representation of splines, which
are computationally easy to handle [12]. In the fields of mechanics and
computer aided design, splines are extensively used for surface model-
ing [13]. Also in signal processing, there is a wide field of applications for
polynomials [44]. So, splines are often applied to interpolate equidistant
or non-equidistant sampled signals.
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3-D Esophageal
Electrocardiography
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Chapter 2

Physiology and
Electrocardiographic
Methods

In this chapter, we provide a brief summary of cardiophysiology, followed
by the summary of some of today’s electrocardiographic methods.

2.1 Brief Summary of Cardiac Physiology
The cardiac activation denotes the spreading of the electrical cell de-
polarization process through the heart muscle with respect to time. A
charged myocardial cell has an intracellular potential of approximately
−70 mV, a discharged, i.e. a depolarized cell, a potential of about 0 mV.
The switch of a single cell is hardly recordable on the body surface or
in the esophagus, but the orchestrated overturning of many cells at the
same time can indeed be observed; this yields the well-known electrocar-
diogram signal of about 1 mV amplitude on the body surface as well as
in the esophagus.

In a healthy human heart the atrium is triggered by the sinus node,
which is located in the right apical atrium (see also the anatomical view
of the human heart in Fig. 2.1). Subsequently, the ventricle gets acti-
vated via the atrioventricular node (av node) with a delay of approxi-
mately 100 ms. This av node interconnects the atrium and the (otherwise
electrically isolated) ventricle. The current front line of this depolariza-
tion process is denoted as the activation front (cf. Fig. 2.2).

11
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right atrium
(hidden)

pulmonary artery

heartleft ventricle

pulmonary veins

left atrium, posterior wall
pulmonary veins

Figure 2.1: Back view (dorsal view) of a human heart, including the
outlets of the main vessels. Our EsoECG-3D catheter analyzes the elec-
trical activity on the posterior wall of the left atrium (dashed box). The
right atrium is mostly hidden behind the left atrium.

2.2 Surface Electrocardiography (ECG)

The 12-lead electrocardiogram (Ecg) has been the most important di-
agnostic tool in cardiology for more than half a century. This stan-
dard method of Ecg recording uses 10 electrodes1 placed on predefined
anatomical spots on the patient’s thorax and limbs, and is the method of
choice to identify cardiac problems. Nevertheless, for many questions in
rhythmology2 this method shows insufficient resolution, in particular in
the heart’s atrial regions, despite the atria causing many of the common
cardiac arrhythmias such as atrial flutter, atrial fibrillation, and many
others. The atrial signal in a surface Ecg, denoted as the P waves, is
about 5 to 10 times smaller in amplitude than the ventricular signal, the
QRS complex. This difference in amplitude is caused by the discrepan-
cies in myocardial muscle mass: while the atrial myocardium measures
only a few millimeters, the thickness of the ventricle muscle is more than
10 mm. In addition, the atria are unfavorably located for surface Ecgs;
they are deep in the thorax, far from the surface electrodes. Despite
these limitations, the importance of Ecgs in cardiology is undoubtable.

1A so-called 12-lead Ecg only uses 10 physical connections and with these, only
8 independent signals are measured. Nevertheless, a clinical 12-lead Ecg displays 12
Ecg signals, whereof 4 signals are redundant.

2Rhythmology is the medical field studying and curing the electrical cardiac con-
duction system
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2.3 Esophageal Electrocardiography

An alternative low-risk electrocardiogram recording method showing a
high atrial resolution is the esophageal electrocardiography (EsoEcg).
EsoEcg is an old and well-known technique, recording the cardiac elec-
trical signal inside the esophagus, i.e., it measures the electrical poten-
tials directly on the mucosa surface.

First experiments with esophageal electrocardiography started around
1906 [10], but until today, it remained a niche technology. There might
be various reasons for this: probably the surface Ecg was sufficient for
the questions at that time and with increasing experience in this method,
it became difficult for any alternative method to compete.

Today, thin and flexible catheters are used, equipped with multiple
electrodes at the far end of the catheter. These catheters are inserted
through the nose or the mouth into the patient’s esophagus, until the
catheter is located directly behind the heart (see Fig. 2.2 and Fig. 2.3).
At this location, the left atrium is only a few millimeters and the right
atrium some centimeters from the esophagus [3, 36, 50]. The esophageal
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pulmonary artery

left ventricle

pulmonary veins

left atrium,
posterior wall

esophageal catheter

activation front

left atrium,
posterior wall

human heart

Figure 2.2: The left figure illustrates a dorsal view (i.e. a view from
behind) of a human heart with an esophageal catheter located inside the
esophagus (the esophagus is not shown). The right figure illustrates a
detail view of the left atrial posterior wall and the catheter. Further, an
example of an activation front, the myocardial depolarization process,
is depicted: the arrows are pointing in the propagation direction of the
activation front with the depolarized + cells on one side and the polarized
− cells on the other side.
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catheter

catheter tip

heart

Figure 2.3: View from the back side (posterior view) of a human heart
in situ. The esophageal catheter is placed through the nose into the
esophagus, such that the electrodes are located close to the back (dorsal)
side of the heart.

catheter there observes the electrical activity of the atria with high signal
quality. (cf. Fig. 2.2)

Nevertheless, esophageal electrocardiography has its own limitations:
first, esophageal catheters are not fixed to the surrounding mucosa, but
are steadily floating back and forth due to the patient’s breathing and
body motions. Thus, the recording location is continuously altering.
Second, EsoEcg signals show strong interferences, mainly caused by the
continual changes of the electrochemical environment inside the esoph-
agus, such as changes in the saliva composition, including acid reflux
from the stomach. Third, the space for any device inside the esophagus
is limited to its tube-like interior and restricts the possible electrode ar-
rangements, i.e., it is not feasible to widely spread the electrodes apart
as we do on the thorax surface for standard Ecgs.

Nowadays, materials and techniques have greatly improved and, if
needed, local surface anesthesia is used to avoid discomfort during the
insertion procedure. Furthermore, the advances in signal processing, to-
gether with the rapidly increasing computing power, have opened up new
possibilities. Therefore, it makes good sense to look again at esophageal
electrocardiography from today’s perspective.
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2.4 Electrocardiographic Imaging (ECGI)
The idea of electrocardiographic imaging (Ecgi) with the overall goal
to characterize the electrical activity of the heart, has been around for
several decades. Ecgi mostly uses surface Ecg recordings alone, but
there are some cases where these signals are supplemented with some
intra-cardiac (from inside the heart) or esophageal measurements. How-
ever, of main interest are the non-invasive Ecgis, i.e., mapping methods
where no additional intra-cardiac measurements are required. There
was recently a strong upsurge to use this method, most likely driven
by the increasing computation power available and by new therapeutic
options requiring precise diagnostics [19]. Ecgi usually uses an indi-
vidual anatomical volume conductor model derived from an individual
computed tomography scan (CT scan), and a mathematical model for
the electrical propagation through the myocardium.

Overall, Ecgi has made enormous progress over the last years, but
either relies on personalized anatomical models (CT scans) or is strongly
limited in its atrial resolution.





Chapter 3

The 3-D Esophageal
ECG Project

This chapter provides an insight into the 3-D Esophageal Ecg project
and presents the first results from a medical perspective.

3.1 The Esophageal Catheter EsoECG-3D

To lift esophageal electrocardiography to today’s technology standards, a
catheter with a 3-dimensional electrode configuration [46] was developed
at Bern University of Applied Sciences in 2016. This catheter, named
EsoECG-3D, was designed in parallel to this work and is approved by
Swissmedic authority for the use in clinical trials. EsoECG-3D is based
on a soft 3 mm diameter polyurethane tube, where the caudal end, the
end which is inserted into the body, is sealed and equipped with a total of
14 electrodes. Of these 14 electrodes, 8 are common ring electrodes and 6
electrodes are small ring segments, arranged in 2 groups of 3 electrodes
in each group, and each group spanning around the catheter with a
120 degree offset per electrode. The distance between the electrodes
along the catheter varies between 10 mm in the upper (cranial) part,
and 15 mm in the lower (caudal, towards the catheter tip) part. The
cranial end holds a connector as shown in Fig. 3.1.

This EsoECG-3D catheter was applied for the first time during a
collaborative clinical trial in 2018.

17
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(2)
(3)

(1)(4)(5)

(6)

Figure 3.1: Esophageal catheter, EsoECG-3D, designed and fabricated
at Bern University of Applied Sciences. (1) catheter tip of 3 mm soft
polyurethane tube; (2) ring electrode; (3) split 3-D electrodes; (4) con-
nector housing; (5) connector; (6) guide wire (catheter insertion aid).

3.2 Clinical Trials
This thesis uses data sets from two clinical trials with 20 volunteers in the
first, and 52 in the second. Both trials were performed in collaboration
with Bern University Hospital, Switzerland.

Clinical Trial 2016, MC-EECG (n=20) We performed a first clin-
ical trial in 2016, using commercially available esophageal catheters (Es-
oflex 10S, FIAB SpA, Italy) with 10 ring electrodes with 1 cm spacing.
With these catheters, we have recorded EsoEcg signals from 14 patients
with atrial arrhythmias, such as atrial fibrillation and atrial flutter, and
from 6 healthy subjects. This trial was approved by the Swiss ethics
commission (No. 149/15; ClinicalTrials.gov/NCT02541175).

Clinical Trial 2018, esoECG-3D (n=52) Our second clinical trial
was a first in man trial for our own catheter, EsoECG-3D, involving
a total of 52 volunteers, whereof 12 were healthy volunteers and 40
were patients with a history of cardiac diseases. The patients under-
went a scheduled cardiac intervention (electrophysiological surgery) due
to preexisting heart disorders such as atrial fibrillation, atrial flutter,
and others. For these patients, our catheter recorded the esophageal
signals in synchronization to the intra-cardiac measurements obtained
during the interventions; these intra-cardiac measurements are the ac-
cepted “ground truth” signal in that field and are taken as the reference
to validate our results. The 12 remaining volunteers had no history
of cardiac disorders and, therefore, the esophageal measurements were
recorded independent of any intervention. Our catheter as well as the
clinical trial were approved by Swissmedic authority and Swiss ethics
commission (ClinicalTrials.gov/NCT03365440).
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3.3 Results

3.3.1 Esophageal Isopotential Maps
Esophageal isopotential maps, EsoIpms, are a new method of cardiac
field representation and depict the dynamical cardiac electrical field of
the heart as observed in the esophagus. EsoIpms are reconstructed us-
ing our own processing methods, applied on our clinical data sets. We
already published a basic version of this reconstruction technique in [50]
in 2018, along with results based on our first clinical trial performed in
2016. The medical implications of this methods were studied by Simone
Mortier [35] and we presented the results also at the Venice Arrhythmias
Conference 2018 [49].

In the following, we give a brief summary of this published method.
Next, we extend the method in a more efficient way to solve the problem
discussed in [50] and to perform the corresponding computations, before
we conclude with some additional findings.

Summary

EsoIpms plot the temporal changes of the electrical field recorded in the
esophagus; the electrical field is thereby reduced to the single dimension
along the esophagus’ longitudinal axis. Such an EsoIpm is then plot in a
2 dimensional manner with the time on the horizontal axis, the location
along the esophagus on the vertical axis, and the measured electrical
potential displayed as electric isopotential lines. A first example of an
EsoIpm is given in Fig. 3.2.

The reconstruction of such EsoIpms from the recorded esophageal
Ecg signals mainly has to deal with two difficulties: first, the number of
available measurement electrodes (channels) is rather low and leads to
undersampling of the electrical field in space. Second, the constant drift
of the catheter device inside the esophagus, as mentioned in Section 2.3,
constantly alters the location of the electrodes within the cardiac field
of interest. Figure 3.3 depicts such an electric field and illustrates the
moving sampling locations along the esophagus over time.

Interestingly, finding a solution for the latter, the moving electrode
positions problem, also helps to solve the former, the undersampling
problem. The catheter’s arbitrarily drifting back and forth along the
esophagus axis results in a spatial sampling with small but “randomly”
varying changes of the electrode positions. As we have shown in [50], we
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Figure 3.2: Example of an EsoIpm, displaying the reconstructed car-
diac electric field, observed along the esophagus and displayed as a two-
dimensional (2-D) contour plot. An EsoIpm shows the position along the
esophagus on the vertical axis z and the time evolution on the horizontal
axis. The 2-dimensional plot is additionally encoded in colors according
to the electric field’s strength (positive values in orange/red, negative
values in blue). The atrial signal in this example shows a propagation
from top to bottom (i.e., cranio-caudal, dashed arrow), while the propa-
gation in the ventricle runs from bottom to top (i.e., caudo-cranial, solid
arrow). Figure source: [50].

can take advantage of this random catheter drift to increase the spatial
signal resolution.

Method

The reconstruction of EsoIpms applies our method of polynomial cost
functions, which is introduced later in this thesis in Chapter 6.

Examples

Figure 3.2 shows a first example of an EsoIpm, reconstructed using
EsoEcg signals from a healthy subject. This EsoIpm clearly discrimi-
nates and localizes graphically the atrial and ventricular activities. Fig-
ure 3.4 is a pathologic example from a 67 year old patient with atrial
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flutter, i.e., where the atrial electrical activity circles endlessly around
the heart’s atria. Such a diagnosis would clearly indicate for a therapy,
most likely for an intra-cardiac catheter ablation therapy, with which
the aberrant conducting path gets isolated. Figure 3.5 shows the same
sequence as Fig. 3.4 but over a longer time period.

3.3.2 Electrical Activity on the Left Atrial Posterior
Wall (Activation Map)

A cardiac activation map is a well established tool in cardiology and
graphically depicts each single cardiac depolarization process of a pa-

time

z
catheter

0catheter tip isoelectric lines of cardiac field

electrode position at single measurement

Figure 3.3: Illustration of an inserted esophageal catheter and the ob-
served dynamic cardiac electric field overlain by the wandering electrode
positions: the illustration on the left shows a catheter with 6 electrodes
(red marks) inserted into the esophagus. The plot on the right shows
a 2-dimensional plot with the position along the esophagus on the ver-
tical axis, denoted as z-axis, and the time on the horizontal axis. In
this plot are the effective position of each single electrode over a short
sampling time period marked (blue dots). We note that the actual in-
sertion depth (z-axis) of the single electrodes continuously alters due to
patient’s movements and breathing. Further overlaid onto this plot are
the lines of isoelectric fields (thin black curves) inside the esophagus.
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Figure 3.4: EsoIpm of a 67 year old patient with typical counter-
clockwise atrial flutter: atrial flutter waves (a-flu), ventricular wave (v),
baseline signal artifacts (∗). Figure source: [50].

a-flu a-flu
v

a-flu a-flu a-flu
v

Figure 3.5: EsoIpm as in Fig. 3.4 but with time axis spanning 1200 ms
to emphasize the heart rhythm (counterclockwise atrial flutter with 4:1
conduction from the atrium to the ventricle): atrial flutter waves (a-flu),
ventricular waves (v). Figure source: [50].

tient. Data sources for the reconstruction of such maps are commonly in-
vasively measured electrical potentials, gained using intra-cardiac catheters
navigated into the heart through a vein or an artery.

Nowadays, non-invasive Ecgs are increasingly becoming a viable
source for such activation maps, denoted as Electrocardiographic Imag-
ing (Ecgi), cf., Section 2.4. A high-quality map usually immediately
leads to a diagnosis and thus defines the therapy options. Therefore, a
reliable and preferably non-invasive method to reconstruct these activa-
tion maps is of high interest in rhythmology.
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While common Ecgis are based on measurements from dozens to
hundreds of electrodes spread over the thorax, the EsoECG-3D catheter
only offers 14 electrodes measuring in the esophagus. To make matters
even worse, the spatial spreading of the electrodes in our catheter in
the plane perpendicular to the catheter is below 3 mm. Nevertheless,
we found that Ecgi is possible based on EsoECG-3D records alone, if
we restrict to heart areas close to the catheter, in particular to the left
atrium. Furthermore, as our catheters measure atrial signals with a
high signal-to-noise ratio, we can do this inversion for this particular
area based solely on general models, solving the inverse problem for the
left atrial posterior wall, cf. Fig. 2.2. Note that the signal processing
aspects of our method are discussed in details later in Chapter 7.

EsoECG-3D Activation Maps: Preliminary Results

These results are based on the data sets recorded during the second
clinical trial, in 2018. In this trial, patients were electrically stimulated
(paced) at well-defined locations inside the heart (similar to stimula-
tions by a cardiac pace maker). Figure 3.6 demonstrates 3 different
such pacing locations for a single patient and their resulting activation
maps, which were reconstructed using solely esophageal measurements.
We clearly note, that the propagation direction on the posterior wall of
the left atrium fully agrees with the expectation according to the pacing
location: if we pace at the left upper pulmonary vein, then the prop-
agation spreads centrifugal from that spot and leaves its mark in our
activation map on the left atrial wall. For other trigger locations, like
at the right upper or right lower pulmonary veins, at the atrial roof,
or at other anatomical structures, the propagation spreads accordingly.
We emphasize at this point that for the presented results no individual
anatomical data sets such as CT or MRI scans are used.
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(a)

(b)

(c)

Figure 3.6: Reconstructed activation maps for patient IDA07 from our
clinical trial. The reconstruction shown on the left-hand side uses our
method based solely on esophageal measurements. The patient shown
was artificially paced using an intra-cardiac pacemaker electrode placed
at (a) the right superior pulmonary vein (RSPV), (b) the left superior
pulmonary vein (LSPV), (c) the left inferior pulmonary vein (LIPV).
These pacing locations are marked asF. The estimated activation maps
(shown on the left-hand side) use isochronous lines, indicating the loca-
tion of the activation front at t = −30 ms,−20 ms, . . . , 30 ms. Time t is a
relative measure and t = 0 ms indicates when the activation front passes
closest to the catheter.
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Chapter 4

Model-to-Signal Fit
Using ALSSMs

Parametrized models are commonly fit to signals or data sets by min-
imizing a squared error cost function. While this is computationally
feasible for small data sets, it rapidly becomes computationally expen-
sive for larger signals and in particular when a moving time domain is
involved, e.g., when the fit needs to be repetitively performed at many
locations along the signal, as when applying a sliding window. Moving
time domains or sliding windows typically require a recomputation of
the fit at each location. Here, the use of autonomous linear state space
models (Alssms) drastically reduces the computing effort due to their
recursive definition; the inherent recursions of Alssms directly lead to
recursive forms of squared error computations, which is indeed a form of
recursive least squares.

Recursive least squares (Rls) error computation was already used by
Gauss at the beginning of the 19th century. In present day, the concept
of Rls is seen in a wide variety of applications including adaptive filters,
Bayesian filters, and Kalman filters [18,24,26]. Applying Rls on Alssms
is not yet very common, but has been studied intensively at our institute
over the past years [8, 39,53,54,56].

Filters involving only a fixed number of samples, later on also referred
to as fixed-memory or limited-memory filters, were already proposed by
Blum in 1957, where Rls was used to efficiently fit polynomials to a
finite set of data within a moving window [6]. Savitzky and Golay have
proposed in 1964 to use general convolutional filters or least squares fits

27
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over a fixed number of samples to remove random noise from discrete-
time data sets [40, 41]. Jazwinski introduced in 1968 a filter related to
maximum likelihood estimates with limited memory length in a sliding
window manner, called a limited memory filter [20]. Buxbaum and Bier-
man et al. continued on recursive fixed-memory least-squares filtering in
1975 and 1976, and published a fixed-memory Kalman filter version [4,9].
Finally, Bruckstein et al. proposed in 1985 limited memory filtering for
signals with given state space representation [7].

In this chapter, we explore Alssms in a least-squares setting and
introduce sliding window filters based on Alssms, which either consider
a fixed number of observations per estimate, i.e., limited-memory filters,
or an unrestricted number of observations with fading weights. In both
cases, we provide efficient recursion rules, in correspondence to the rules
of the common Rls method.

For the sake of simplicity, this chapter uses solely single channel ob-
servations, but we emphasize that the extension to multi-channel signals
is most often straightforward as we demonstrate in some of the supple-
mentary examples.

4.1 Autonomous Linear State Space
Models (ALSSMs)

The output yk ∈ R of an autonomous (i.e., input free), time-invariant
state space system of order N is given by

xk = Axk−1 ,

yk = cxk (4.1)

with state-transition matrix A ∈ RN×N , output vector c ∈ R1×N , state
vector xk ∈ RN×1, and the sequence index k ∈ Z. We assume here that
A is invertible, giving us more flexibility in the window selection, as we
exploit in this chapter. Such an Alssm generates a wide class of discrete-
time signals as a function of the initial state vector x0 [56, Chapter 3].
Such a signal over index k is given by

sk(x0) = cAkx0 ∈ R. (4.2)

Note that Alssms do not have an input. Thus, the output sequence
{sk(x0), k ∈ Z} is, for any given initial state x0, deterministic. Further,
note that for non-invertible A’s, (4.2) only holds for k ≥ 0.
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A list of common Alssm parametrizations is given in Table 4.1.

Example 1 (Straight line model using an Alssm). Assume a linear model
such as

si(x) = a0 + a1i ∈ R , (4.3)

with known model parameter x = [a0, a1]T ∈ R2; to be more concrete, consider
the numerical values a0 = −1 and a1 = 2. (In this example, a0 obviously
represents the line offset and a1 the line slope.) To write (4.3) in a recursive
form, we use an Alssm of order N = 2 and assign

A =
[

1 1
0 1

]
, c = [1, 0] , (4.4)

which leads with x = [a0, a1]T ∈ R2 to

s(x) = [. . . , s−1(x), s0(x), s1(x), s2(x), s3(x), . . .]
= [. . . , cA−1x, cA0x, cA1x, cA2x, cA3x, . . .]
= [. . . , [1,−1]x, [1, 0]x, [1, 1]x, [1, 2]x, [1, 3]x, . . .]
= [. . . , a0 − a1, a0, a0 + a1, a0 + 2a1, a0 + 3a1, . . .]
= [. . . ,−3,−1, 1, 3, 5, 7, . . .] .

♦
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Table 4.1: Alssm parametrization for a selection of common functions

Signal si(x) State Space Model si(x) = cAix Example

Sine / Cosine
ρi[a0 cos(Ωi)− a1 sin(Ωi)]

ρ ∈ R+, Ω ∈ R+

A = ρ

[
cos Ω − sin Ω
sin Ω cos Ω

]
c = [1, 0]
x = [a0, a1]T ∈ R2×1

i = 0

Line
a0 + a1i

(a0, a1) ∈ R2

A =
[
1 1
0 1

]
c = [1, 0]
x = [a0, a1]T ∈ R2×1

i = 0

Polynomial
of order N − 1

a0+a1i+ . . .+aN−1i
N−1

(a0, a1, . . . , aN−1) ∈ RN

A =

A1,1 . . . A1,N
... An,n′

...
AN,1 . . . AN,N

 , An,n′ =


(
n′

n

)
if n ≤ n′

0 if n > n′

c = [1, 0, . . . , 0] ∈ R1×N

x = [a0, . . . , aN−1]T ∈ RN×1 i = 0

Linear combination
of M systems

s
(1)
i (x(1))+ . . .+s(M)

i (x(M))
s

(m)
i (x(m)) ∈ R

m ∈ {1, . . . ,M}

A = diag (A1, . . . , AM )
c = [c1, . . . , cM ]

x =
[(
x(1)

)T
, . . . ,

(
x(M)

)T
]T

i = 0
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4.2 ALSSM Model Fitting
Now, we are interested in estimating the initial state of a given Alssm
such that its output sequence fits a given signal around some time index
k by the means of least squared error. To localize the fit “around some
time index k”, we use a window shifted by k samples and weight the
squared error cost accordingly.

4.2.1 Squared Error Cost Functions
Let y = [y1, y2, . . . , yK ] ∈ RK be an observed signal with K samples.
Furthermore, we have an Alssm of order N with known parameters
A ∈ RN×N and c ∈ R1×N , but unknown initial state x0 ∈ RN . Recall
that we assume A to be invertible. Additionally, we have a window w
of finite support; the window writes as w = [. . . , w0, w1, w2, . . .] with
wi ∈ R+ and wi = 0 for any |i| sufficiently large.

We will estimate the initial state x0 in RN for any index k such that
the localized squared error cost function is minimized. Note that we get
a solution for each k, subsequently denoted as x̂k. The estimation for
x̂k writes as

x̂k = argmin
x∈RN

+∞∑
i=−∞

wi−k
(
cAi−kx− yi

)2
, (4.5)

assuming yi = 0 wherever the index i exceeds the boundaries of the
observations of K samples. To minimize (4.5), we first reparametrize its
cost term as

Jk(x) =
+∞∑
i=−∞

wi−k
(
cAi−kx− yi

)2 = xTWkx− 2xTξk + κk (4.6)

with

Wk ,
+∞∑
i=−∞

wi−k(Ai−k)TcTcAi−k ∈ RN×N , (4.7)

ξk ,
+∞∑
i=−∞

wi−k(Ai−k)TcTyi ∈ RN×1 , (4.8)

κk ,
+∞∑
i=−∞

wi−ky
2
i inR . (4.9)
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A derivation in detail for this reparametrization is given in (A.1). We
note that the right-hand side term in (4.6) is a quadratic form in x and
is, thus, minimized for any invertible Wk by

x̂k = W−1
k ξk . (4.10)

A proof for this last step is given, in a more generalized form, in Sec-
tion 4.2.2.

4.2.2 Model Fitting With Linear Constraints
The initial state vector x is often subject to constraints in the form of
linear dependencies expressed as

x = Hv + h , (4.11)

with fixed H ∈ RN×M and h ∈ RN , and remaining unknown v ∈ RM ,
M ≤ N . Imposing these constraints on x, the minimization of the right-
hand side of (4.6) as in (4.10) modifies to

v̂k = (HTWkH)−1HT(ξk −Wkh) (4.12)

with (HTWkH) assumed invertible.

Proof. We substitute x in (4.6) by (4.11), i.e.,

v̂ = argmin
v∈RM

(
vTHTWkHv − 2vTHT(ξk −Wkh)

)
= (HTWkH)−1HT(ξk −Wkh) , (4.13)

where in the last step the derivative with respect to v is computed and
set to zero. �

Note that (4.6) is of a quadratic form in x and, thus, is minimized in
closed form according to (4.13). If constraints on x ∈ RN apply, i.e., (4.6)
is minimized for a subset x ⊂ RN , then a wide field of other closed form
solutions or numerical optimization methods are known [56, Chapter 6].
Example 2 (Constrained local fit with sinusoidal signal). We locally fit a
sinusoidal signal of discrete-time frequency ω and of know phase φ ∈ [−π, π] to
the observations y; the fit is done locally around index k0, using a rectangular
window of L samples. Note that the only unknown parameter in this task is
the signal’s amplitude. Thus, we use an Alssm with

A =
[

cos(ω) − sin(ω)
sin(ω) cos(ω)

]
, c = [1, 0] , (4.14)
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and constrain the initial state to

x =
[

cos(φ)
sin(φ)

]
︸ ︷︷ ︸

H

v +
[

0
0

]
︸ ︷︷ ︸
h

(4.15)

with the single remaining independent variable v ∈ R, reflecting the signal’s
amplitude. The amplitude estimate v̂ then immediately follows from (4.12)
and, hence, x̂ from (4.11).

♦

4.2.3 Recursive Computations andWindow ALSSMs
When using a sliding window, the computation of (4.7) to (4.9) needs
to be repeated at every index k and is in general exhaustive. This is
where recursion comes in: it massively reduces the computing effort for
the terms Wk, ξk, and κk over an interval of indices.

The Window ALSSM

To find a recursive form for (4.6), we first need to find a recursive form
for the window w. Therefore we substitute the window by its own Alssm
of order Q, subsequently denoted as the window Alssm, with its own
parameters Ă ∈ RQ×Q, c̆ ∈ R1×Q, and x̆0 ∈ RQ×1 over the interval a to
b, (a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, and a ≤ b), i.e.,

wj =
{
c̆Ăj x̆0 for a ≤ j ≤ b ,
0 otherwise , (4.16)

with fixed initial state x̆0. Note that the parameters for this window
Alssm and the interval borders a and b have to be selected carefully to
guarantee ‖w‖2 < +∞. For the sake of simplicity, we again assume Ă
to be invertible.1

Applying a window with borders a and b as in (4.16), the infinite
sum in (4.5) simplifies into to the finite sum

x̂k = argmin
x∈RN

k+b∑
i=k+a

(c̆Ăi−kx̆0︸ ︷︷ ︸
wi−k

)
(
cAi−kx− yi

)2
. (4.17)

1In many cases invertibility is avoidable if the interval borders and the recursion
direction (discussed later in this section) are chosen accordingly.
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We equally substitute wk in (4.7), (4.8), and (4.9) by (4.16) and get

Wk =
k+b∑
i=k+a

(
c̆Ăi−kx̆0

)
(Ai−k)TcTcAi−k ∈ RN×N , (4.18)

ξk =
k+b∑
i=k+a

(
c̆Ăi−kx̆0

)
(Ai−k)TcTyi ∈ RN×1 , (4.19)

κk =
k+b∑
i=k+a

(
c̆Ăi−kx̆0

)
y2
i ∈ R . (4.20)

At this point, we need to introduce the element-wise product of two
Alssms as already proposed in [55].

Proposition 1 (Product of Alssm signals [55]). Let s(1)
j and s

(2)
j ,

j ∈ Z, be two Alssm signals with respective parameters {c1, A1, x1}
and {c2, A2, x2}, A1 and A2 invertible. Then, s(1)

j · s
(2)
j , j ∈ Z, is also

a Alssm signal with parameters {c1 ⊗ c2, A1 ⊗ A2, x1 ⊗ x2}, where ⊗
denotes the Kronecker product.

Proof of Proposition 1. For any j ∈ Z, we have

s
(1)
j · s

(2)
j = (c1Aj1x1)(c2Aj2x2)

= (c1Aj1x1)⊗ (c2Aj2x2)
= (c1 ⊗ c2)(A1 ⊗A2)j(x1 ⊗ x2). (4.21)

�

Applying Proposition 1, we assign

ĉ , c⊗ c̆ , (4.22)
Â , A⊗ Ă , (4.23)
x̂ , x⊗ x̆0 (4.24)

and rewrite (4.18) to (4.20) as

Wk = ŴkR , (4.25)
ξT
k = ξ̂T

kR , (4.26)
κk = κ̂kx̆0 (4.27)
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with

Ŵk =
k+b∑
i=k+a

(Ai−k)TcTĉÂi−k ∈ RN×(NQ) , (4.28)

ξ̂T
k =

k+b∑
i=k+a

ĉÂi−kyi ∈ R1×(NQ) , (4.29)

κ̂k =
k+b∑
i=k+a

c̆Ăi−ky2
i ∈ R1×Q , (4.30)

and

R = (IN ⊗ x̆0) ∈ R(NQ)×N , (4.31)

with full derivations given in (A.6), (A.7), and (A.8). Note that Wk ∈
RN×N is a square matrix, however Ŵk ∈ RN×(NQ) is not.

The Recursions

While there are in general no immediate recursive forms for Wk, ξk,
or κk, there are recursions for Ŵk, ξ̂k, and κ̂k: the forward recursions
k → k + 1 are

Ŵk+1 = A−TŴkÂ
−1 + C (4.32)

with C = −(Aa−1)TcTĉÂa−1 + (Ab)TcTĉÂb ,

ξ̂T
k+1 = ξ̂T

k Â
−1 − ĉÂa−1yk+a + ĉÂbyk+b+1 , (4.33)

κ̂k+1 = κ̂kĂ
−1 − c̆Ăa−1y2

k+a + c̆Ăby2
k+b+1 , (4.34)

and the backward recursions k → k − 1 are

Ŵk−1 = ATŴkÂ+ C (4.35)
with C = (Aa)TcTĉÂa − (Ab+1)TcTĉÂb+1 , (4.36)

ξ̂T
k−1 = ξ̂T

k Â+ ĉÂayk+a−1 − ĉÂb+1yk+b , (4.37)
κ̂k−1 = κ̂kĂ+ c̆Ăay2

k+a−1 − c̆Ăb+1y2
k+b , (4.38)

with full derivations given in (A.9) to (A.14). This result is the recursive
computation rule for the cost term (4.6),

xTWkx− 2xTξk + κk , (4.39)
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with (4.25), (4.26), and (4.27), and thanks to the window Alssm (4.16).
Note that this quadratic form is still minimized according to (4.10) or,
considering linear constraints, according to (4.12).
Example 3 (Fit of a straight line to a signal using a exponential window).
We wish to locally fit, at any index k ∈ {1, . . . ,K}, a line with offset a0 ∈ R
and slope a1 ∈ R to the observations y1, . . . , yK . The fit is localized by a
right-sided exponentially decaying window with decay γ ∈ R, 0� γ < 1, i.e.,
wk,i = γi−k for i ≥ k and wk,i = 0 for i < k.

To find a recursive form for this fitting problem, we write the window wi,k
as a (degenerated) Alssm according to (4.16) of oder Q = 1 with Ă = [γ],
c̆ = [1], and x̆0 = [1] and with interval borders a = 0 and b → +∞. The
straight line is modeled by another Alssm with A =

[
1 1
0 1
]
, c = [1, 0], and

x = [a0, a1]T. Then, the localized fit error is according to (4.39), with (4.25)
to (4.27),

xT(ŴkR)x− 2xT(RTξ̂k) + κ̂kx̆0 (4.40)

with R = (I2⊗ x̆0) = (I2⊗[1]) = I2. The backward recursions for Ŵk and ξ̃k
are according to (4.35) and (4.37)

Ŵk−1 = γATŴkA+ cTĉ , (4.41)
ξ̂T
k−1 = γξ̂T

kA+ ĉyk−1 , (4.42)
κ̂k−1 = γκ̂k + y2

k−1 . (4.43)

Note that we here use the following simplifications:

Âa = I2 for a=0 , (4.44)
Âb+1 = (A⊗[γ])b+1 = 0 for b→ +∞ . (4.45)

♦

Example 4 (Signal fit using a Hamming window). We wish to fit an Alssm
to a signal applying a Hamming window; a Hamming window is known as

w`−k = 0.54− 0.46 cos( 2π`
L− 1), n = 0, 1, . . . , L− 1 . (4.46)

This translates to a window Alssm with parameters

Ă =

 cos(2π/L) − sin(2π/L) 0
sin(2π/L) cos(2π/L) 0

0 0 1

 ,

c̆ = [1, 0, 1] , (4.47)
x̆0 = [−0.46, 0, 0.54]T ,

in the interval a = 0 to b = L − 1. This window can be applied to any fit as
in (4.17). The output of this window Alssm (4.47) is shown in Fig. 4.1. ♦



4.2 ALSSM Model Fitting 37

10 20 30 40 50 60 70 80 90 100

1

Figure 4.1: Hamming window of length L = 100 produced using the
window Alssm (4.47).

1
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y
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1v

Figure 4.2: Example of signal samples y (black circles), where each
sample comes along with a measure of reliability or sample weight
v ∈ [0, 1] (green stems). The signal y shown is a discrete-time sinusoidal
signal interrupted by a sequence of distorted samples and associated with
a sample weight of v = 1 for samples of highest reliability, and with v = 0
for any samples of lowest reliability.

4.2.4 Weighted Samples
So far, we assumed each sample to be of equal importance or weight.
However, this does not often sufficiently reflect reality, for example when
doing multi-step processing. When signals pass multiple steps, where
the output of one preceding step is the input to the subsequent step,
intermediate values are often complemented by an individual measure
of reliability or uncertainty. Here we should in any subsequent step
incorporate this knowledge and value the samples accordingly. To do
so, we modify our method and complement the single observations by a
specific sample weight, as depicted in Fig. 4.2.

Let y = [y1, y2, . . . , yK ]T ∈ RK be an observed signal where each
sample yi is weighted by its associated sample weight vi ∈ R+. Thus,
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the cost term (4.6) modifies to

Jk(x) =
k+b∑
i=k+a

wi−kvi
(
cAi−kx− yi

)2
. (4.48)

Accordingly, the forward recursions (4.33) to (4.34) for k → k+1 modify
to

Ŵk+1 = A−TŴkÂ
−1 + C(k) (4.49)

with C(k) = −vk+a(Aa−1)TcTĉÂa−1 + vk+b+1(Ab)TcTĉÂb ,

ξ̂T
k+1 = ξ̂T

k Â
−1 − vk+aĉÂ

a−1yk+a + vk+b+1ĉÂ
byk+b+1 , (4.50)

κ̂k+1 = κ̂kĂ
−1 − vk+ac̆Ă

a−1y2
k+a + vk+b+1c̆Ă

by2
k+b+1 , (4.51)

and the backward recursions (4.35) to (4.38) for k → k − 1 to

Ŵk−1 = ATŴkÂ+ C(k) (4.52)
with C(k) = vk+a−1(Aa)TcTĉÂa − vk+b(Ab+1)TcTĉÂb+1 ,

ξ̂T
k−1 = ξ̂T

k Â+ vk+a−1ĉÂ
ayk+a−1 − vk+bĉÂ

b+1yk+b , (4.53)
κ̂k−1 = κ̂kĂ+ vk+a−1c̆Ă

ay2
k+a−1 − vk+bc̆Ă

b+1y2
k+b . (4.54)

Example 5 (A non-equidistant sampling scheme). Let k ∈ {1, . . . ,K}, K ∈
N, be an equidistant time index. Now, we assume an ADC device which only
takes samples at some time indices k but not at the others according to a non-
equidistant sampling scheme; whenever the ADC takes a sample, we denote
the sample yk ∈ R and set its associated sample weight to vk = 1. For all
other samples, we set yk = 0 and vk = 0. Then we directly apply (4.48) to fit
our models to this non-equidistantly sampled signal.

♦

Note that, for any sparse vk, most of the sum terms in (4.49) to
(4.51) and in (4.52) to (4.54) are zero (i.e., multiplied by vk = 0) and
therefore the recursion simplifies. For example, the term A−TŴkÂ

−1 in
(4.49) simplifies for M iteration steps with zero weighted observations
to

(A−T . . . (A−T︸ ︷︷ ︸
M times

Ŵk Â
−1) . . . Â−1)︸ ︷︷ ︸
M times

= (A−M )TŴk(Â−M ) . (4.55)

4.2.5 Time-Variant Windows
In some cases, we even have recursions if the window Alssm is time-
dependent, or more precisely, when each sample comes along with its
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own transition matrix Ăi for the window Alssm. In the following, we
look at the case of a first order system, since this simple case has an
immediate practical application as is already shown in [47].

Let the parameters of the window Alssm be Ăi = [γi] ∈ R, c̆ = [1],
leading to the time-variant system2

x̆j = γk+j x̆j−1 ,

w̆k,j = c̆x̆j . (4.56)

Using this time-variant window, (4.17) modifies to

x̂k = argmin
x∈RN

k+b∑
i=k+a

vi(c̆αk(i)x̆0︸ ︷︷ ︸
wk,i−k

)
(
cAi−kx− yi

)2 (4.57)

with

wk,j =
{
c̆αk(k + j)x̆0 for a ≤ j ≤ b ,
0 otherwise , (4.58)

and with αk(i) ∈ R defined as in [47],

αk(i) ,


∏k
j=i+1 γ

−1
j if k > i ,∏i

j=k+1 γj if k < i ,
1 if k = i .

(4.59)

Summing the weights of the samples involved in the cost term (4.57)
after applying the cost’s window, leads to the value of weighted number
of samples and is defined as

νk ,
k+b∑
i=k+a

viwk,i−k ∈ R+ . (4.60)

We here notice that this weighted number of samples varies with the
sample weights vi; it is not guaranteed, that there is a minimum number
of samples involved in a cost term if the samples within the window are
weighted unfavorable.

If we want to control νk, i.e., to have νk fixed and independent of
k and also independent of any sample weights, i.e., we want νk = g,

2Note that we use index k as the evaluation index, i.e., the localization index of
the window; i denotes the absolute index of a sample along the signal; and index j is
the relative index of a sample within the window with j = i − k.
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g ≥ 0 with a fixed g ∈ R+ for any k, the window needs to adapt locally
depending on the sample weights vi; the window needs to get wider
wherever the sample weights vi are small, and to get smaller wherever
the vi’s are large.

This behavior is achieved with the following trick: for a right-side
window, i.e., a = 0 and b→ +∞, we have

νk =
+∞∑
i=k

vi(c̆αk(i)x̆0︸ ︷︷ ︸
wk,i−k

) (4.61)

with the recursions

νk−1 =
+∞∑
i=k−1

vi(c̆αk−1(i)x̆0)

=
+∞∑
i=k

vi(c̆αk−1(i)x̆0) + vk−1(c̆ αk−1(k − 1)︸ ︷︷ ︸
1

x̆0)

= γk

+∞∑
i=k

vi(c̆αk(i)x̆0) + vk−1c̆x̆0

= γkνk + vk−1c̆x̆0 , (4.62)

where we use for the second last step the relation αk−1(i) = γkαk(i).
Then, if we force νk = νk−1 = g for any indices k, we get for this right-
sided window

−→γ k = g − vk−1c̆x̆0

g
. (4.63)

Correspondingly, we get for a left-sided window

←−γ k = g

g − vk c̆x̆0
. (4.64)

An example using this mechanism is given later in Section 9 on page 99.

4.2.6 Multi-Segment Windows
We have discussed in Section 4.2.3 the use of single windows over a finite
or infinite interval. To generate more versatile windows, multiple such
windows can be joined, where each window comes along with its own
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window Alssm. Thereby, the intervals do not necessarily need to be
directly adjacent; gaps in between the individual intervals may remain.

We assign to the pth interval the Alssms of parameters A(p), c(p),
and common x, and the window Alssm of parameters Ă(p), c̆(p), and
common x̆. Then, each segment comes along with its own cost function
according to (4.39),

xTW
(p)
k x− 2xTξ

(p)
k + κ

(p)
k . (4.65)

It follows that the total cost function over all segments is

J̃k(x) =
∑
p

(
xTW

(p)
k x− 2xTξ

(p)
k + κ

(p)
k

)
= xT

∑
p

(
W

(p)
k

)
︸ ︷︷ ︸

W̃k

x− 2xT
∑
p

(
ξ

(p)
k

)
︸ ︷︷ ︸

ξ̃k

+
∑
p

(
κ

(p)
k

)
︸ ︷︷ ︸

κ̃

= xTW̃kx− 2xTξ̃k + κ̃k (4.66)

with

W̃k =
∑
p

(
W

(p)
k

)
, ξ̃k =

∑
p

(
ξ

(p)
k

)
, κ̃ =

∑
p

(
κ

(p)
k

)
. (4.67)

Note that all segments use a common state vector x. This is not a
loss in generality since multiple Alssm systems might be stacked using
block diagonals (cf. Table 4.1). We note that (4.66) is again of the same
quadratic form as (4.6), and therefore also minimized by (4.10).

4.3 The Hilbert Space Perspective
4.3.1 The Localized Hilbert Space H
A Hilbert space [45] is essentially a vector space with an inner prod-
uct.3 We here denote a localized Hilbert space as a space defined with a
localized inner product.

Let y = [y1, y2, . . . , yK ] ∈ RK and y′ = [y′1, y′2, . . . , y′K ] ∈ RK be
elements in a localized Hilbert space H spanned by RK . Furthermore,

3A Hilbert space requires in addition to the inner product the convergence of
every Cauchy sequence in the space. This is usually true for practical applications
and, thus, here not further discussed.
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we have the weights w = [w1, w2, . . . , wK ] ∈ RK+ as in (4.5). Then the
(localized) inner product in H is defined as

〈y, y′〉w ,
K∑
i=1

wiyiy
′
i

= yT diag(w)y′ (4.68)

and, hence, the (localized) norm writes as

‖y‖w ,
√
〈y, y〉w . (4.69)

4.3.2 The Localized Feature Vector Space F — An-
other Hilbert Space

With prior knowledge of the signal structure of y, the norm in (4.69) can
often be computed more efficiently. In particular, we here consider the
signals y ∈ RK of the form yi = cAix with yi the ith element of y, and
an Alssm with invertible A ∈ RN×N , and with c ∈ R1×N and x ∈ RN .
This is a linear map of the form

RN → RK : x 7→ y (4.70)

with the feature vector x in a feature vector space in RN .
Supplementing this feature vector space with its own inner product

〈x, x′〉F,w ,
K∑
i=1

wiyiy
′
i

=
K∑
i=1

wi(

yi︷ ︸︸ ︷
cAix)(

y′i︷ ︸︸ ︷
cAix′)

= xT
[ K∑
i=1

wi((Ai)TcT)(cAi)︸ ︷︷ ︸
W

]
x′

= xTWx′ (4.71)

with a window w ∈ RK , leads to a new Hilbert space denoted as F .
Hence, the norm of F writes as

‖x‖F,w ,
√
〈x, x〉F,w . (4.72)



4.3 The Hilbert Space Perspective 43

Note that the size of the feature vector x is independent of the size of y,
and we commonly choose N � K. Therefore, it is often preferred to use
x as a lower dimensional surrogate of y and to compute the norm using
(4.72) instead of (4.69).

4.3.3 An Euclidean Feature Vector Space
Similarly, under some linear transformations, as for the Alssms, the
norm (4.72) can be manipulated and often simplified. Applying a linear
transformation to the feature vector space F from Section 4.3.2 turns it
into an Euclidean feature vector space, with an Euclidean norm and inner
product. This transformation often simplifies any further processing.

Starting from (4.71), we write

〈x, x′〉F,w = xTWx′

= (xTV T)(V x′)
= zTz′

= 〈z, z′〉 , (4.73)

where we use in the second step the Cholesky decomposition,

W = V TV (4.74)

of the positive semi-definite matrix W and substitute z = V x and z′ =
V x′. This substitution is the linear transformation

RN → RN : x 7→ V x , (4.75)

mapping elements from the feature vector space F to a transformed
feature vector space with an Euclidean inner product and norm. An
application to this mapping is given later on in Section 5.3.

4.3.4 The Feature Vectors as a Signal Surrogate
Summarizing Sections 4.3.2 and 4.3.3, we have for any two signals y ∈ F
and y′ ∈ F with corresponding x ∈ RN and x′ ∈ RN , and z ∈ RN and
z′ ∈ RN , the following interesting relations:

〈y, y′〉w = 〈x, x′〉F,w = 〈z, z′〉 , (4.76)
‖y‖w = ‖x‖F,w = ‖z‖ , (4.77)
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where the rightmost terms are Euclidean inner products and norms.
Recall that y is of lengthK and is expressed by the output sequence of

an Alssm of order N , with fixed parameters A and c, but with free initial
state x. F is a Hilbert space spanned by the initial states x ∈ RN with an
non-Euclidean inner product (see Section 4.3.2), and z is a transformed
version of x with an Euclidean inner product (see Section 4.3.3). As we
commonly choose N � K, it is often beneficial to use for any further
processing the states z (or also x) as a surrogate instead of the much
larger time signal y.

As a final remark, we note that F is also a Hilbert space if x is an
element of a subspace of RN , e.g., also if linear constraints are applied
on x as in Section 4.2.2.

4.4 The Feature-Vector Perspective

The unconstrained minimization (4.5) for a signal y ∈ RK at any index
k ∈ {1, . . . ,K} is a linear mapping in y,

RK × Z→ RN : (y, k) 7→ x̂k . (4.78)

Applying this mapping at every index k results in a new feature vector
signal x̂ = [x̂1, . . . , x̂K ] ∈ RN×K . This immediately leads to the Alssm
filtering application in Section 4.5 and is the basis for the clustering
application later in Section 5.5.

4.5 ALSSMs as LTI Filters

Choosing a selection vector c0 ∈ R1×N and applying the mapping (4.78)
leads to a linear time-invariant (Lti) single-input single-output filter

ŷk = c0x̂k . (4.79)

This application is closely related to Savitzky-Golay filters [41]. Note
that the extension to M inputs or/and L outputs is straightforward by
extending c ∈ RM×N or/and c0 ∈ RL×N .
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Example 6 (Signal smoothing with a one-sided or two-sided polynomial
Alssm filter). Let y ∈ RK be a recorded signal. To get a smoothed ver-
sion of that signal, we apply an Alssm filter using a second order polynomial
model with

A =

[ 1 1 1
0 1 2
0 0 1

]
, c = [1, 0, 0] ,

supplemented with a left-sided exponential decaying window with decay factor
γ ∈ R+, 0� γ < 1, i.e., the window Alssm writes as

Ă =
[
γ−1] , c̆ = [1] , x̆0 = [1]T ,

with interval borders a → −∞ and b = −1. Note that this left-sided window
Alssm needs to be computed in forward direction k → k + 1 to get stable re-
cursions. The output selection vector for this filter is chosen as c0 = c. An
example of this one-sided, non-symmetric filter’s output is shown Fig. 4.3.

If a symmetric filter is needed, the window needs to be extended to a two-
sided and symmetric window: we add a second cost function with the same
ALSSM but with a right-sided window, leading to a multi-segment window as
in Section 4.2.6; the corresponding right-sided window Alssm writes as

Ă = [γ] , c̆ = [1] , x̆0 = [1]T ,

with interval borders a = 0 and b → +∞. Note that this right-sided win-
dow Alssm computes in backward direction k → k − 1. The output of this
symmetric filter ŷ′ wth this two-sided multi-segment window is also shown in
Fig. 4.3.

♦

4.6 Localization of Events Using Local Cost
Ratios (CRs)

Often we are interested in localizing certain events in a signal. Such
events include pulses of particular shapes, changes in the signal’s char-
acteristics, and outlier samples or outlier sequences.4 All these events
have in common that the accuracy with which a selected model fits on
the signal abruptly changes. A good measure for accuracy is a cost ratio
(CR) or log-cost ratio (LCR), which compare the fit of two alternative
models; both ratios peak at event locations.

4We here refer to outliers as samples or sequences that have signal qualities that
differ from the rest of the signal.
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−1

1

k

y
ŷ
ŷ′

Figure 4.3: Alssm filter as in Example 6 with output ŷk = c0xk.
Input signal y (gray); filter output ŷ (black line) applying a one-sided,
non-symmetric model; alternative filter output ŷ′ using a two-sided, sym-
metric model (dashed blue line).

CRs or LCRs correspond to likelihood ratios (LRs) or log-likelihood
ratios (LLRs) as known from statistical theory; LRs and LLRs are the
probability ratios between two hypotheses. At our institute, localized
versions of model likelihoods were derived to detect certain events such as
model switches or pulses in given observations [29], [56, Section 7.3], [39,
Part II]; [38] applies the likelihood to estimate a model with constrained
parameters. In this thesis, CRs and LCRs are used in various applica-
tions; a prominent example follows later on in Chapter 7, localizing the
cardiac activation.

Let Jk(x) ∈ R be the squared error of an Alssm parametrized by
its state vector x and fitting a signal y around time index k, if an event
occurs at index k. J ′k(x′) ∈ R is an alternative model parametrized by
its own state vector x′ and fitting the same signal around the same index
k, if there is no event occurrence at index k. Then we define the local
cost ratio as

CRk ,
min
x
Jk(x)

min
x′

J ′k(x′)
∈ R+ (4.80)

which peaks at every occurrences of the event [39, Section 6].
In statistical theory, this ratio is, up to irrelevant constants, inter-

preted as a likelihood ratio between two hypotheses [56]. In analogy, we
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additionally introduce the local log-cost ratio

LCRk , −
1
2 log

(
CRk

)
= −1

2 log
min
x
Jk(x)

min
x′

J ′k(x′)
∈ R . (4.81)

This logarithmic measure, the LCR, preserves the local minima and
maxima of the CR (up to a sign switch) and is often more practical
to be displayed.

4.6.1 Detection of Pulses

When detecting a pulse or a class of pulses within a signal, we need an
Alssm approximating the particular shape(s). Let Jk(x) be the error
when fitting that Alssm to the signal at index k, assuming the pulse
to be located at index k; Jk(0) is the error when we assume to have no
pulse. Good candidates for pulse locations are then where the LCR as
in (4.80) is locally maximal, i.e., where

LCRk = −1
2 log

min
x
Jk(x)

Jk(0) ∈ R (4.82)

peaks.
This method is used later on in Example 3, Section 5.5, and ex-

tensively in [47, 48]. Further references to more examples are given in
Section 10.1.

4.6.2 Detection of Model Switches

A model switch denotes the change in the signal generator of an observed
signal. Model switches are, for example, observed at the starting point
and the ending point of a pulse in a recorded signal, or at the transition
from one signal form to another as in Fig. 4.4.

Let y be the observations of a signal generator switching between
two different models. Further, ←−Jk(1)(x1) denotes the error when fitting
an Alssm corresponding to the first model using a left-sided window
(i.e., wk = 0 for k ≥ 0), and −→Jk(1)(x1) using a right-sided window (i.e.,
wk = 0 for k < 0). ←−Jk(2)(x2) and −→Jk(2)(x2) denote the errors fitting the
second model with its own state x2 and corresponding windows.
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0
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2 k k′a) y
s1(x̂k)
s2(x̂k)
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Figure 4.4: Toy example of model switch detection using log-cost ratios
(LCR) as in Section 4.6.2. The upper plot (a) shows: observations y
(black circles) generated by two alternating sinusoidal models of different
frequencies; model trajectories at detected model switches from model
1 (s1(x̂k), red line), to model 2 (s2(x̂), blue line) at index k = 19, and
from model 2 to model 1 at index k′ = 36. The lower plot (b) shows:
log-cost ratio LCR1→2 (solid line) with local maxima.

Then we find the switches from the first to the second model at the
local maxima of

LCRk = −1
2 log

min
x

←−
Jk

(1)(x) + min
x

−→
Jk

(2)(x)

min
x

(←−
Jk

(1)(x) +−→Jk(1)(x)
) ∈ R . (4.83)

It’s vice versa to detect switches from the second model back to the
first model. A toy example using this method to detect model switches
is given in Fig. 4.4. Furthermore, model switches are also discussed, in
more detail, in [47, Section III.G] and in [56].

4.6.3 Detection of Outliers
We refer to outliers in a signal as samples or sequences whose properties
differ in one way or another from those of the other samples, as for
example in Fig. 4.5.

Let y be the signal of a signal generator, interrupted by some outlier
samples. Furthermore, J(x) is the error function locally fitting the (out-
lier free) signal appropriately well; J ′(x) is the error function using the
same model and the same window with the only difference being that its
window is set to zero over a short interval, i.e., wi = 0 for i ∈ {a, . . . , b},
for a < b, a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}.
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Figure 4.5: Toy example of outlier detection according to Section 4.6.3,
using an Alssm with a second order polynomial model and a two-sided
exponentially decaying window with a gap interval of 5 samples. Plot (a):
observations y with outliers. Plot (b): log-cost ratio LCR (solid line)
with threshold for outlier detection (dashed line). Plot (c): detected
outliers y∗, remaining observations y0, and local model fit of model s(x̂k)
with state estimate xk localized at index k = 13 (red dashed line).

Then, the local cost ratio

LCRk = −1
2 log J

′
k(x̂)
Jk(x̂) ∈ R (4.84)

with

x̂ = min
x
J ′k(x) (4.85)

will rise whenever the model within this gap interval {a, . . . , b} fails and
a simple threshold on the LCR will do the outlier discrimination. Such
an example is given in Fig. 4.5.

Note that outlier detection using our Alssm method is also discussed
in more detail in [47, Section III.G].





Chapter 5

Model-to-Model Fit
Using ALSSMs

In Chapter 4, we have fit Alssm output sequences to discrete-time sig-
nals. In this chapter, we compare the output sequences of two Alssms
using the squared error cost, and we minimize this cost by optimizing
the initial state of one or both Alssms (while leaving model parameters
A and c fixed).

We focus on optimizations in the feature space of Alssms because
complex optimization problems can often be broken into simpler succes-
sive optimization steps, whereby each step only relies on the output, i.e.,
the feature vectors, of the previous step.

In our examples, we commonly extract a feature vector as a first
step by applying an Alssm fit. The later optimization steps map this
extracted feature vector onto more sophisticated feature vectors. While
this multi-step approach generally entails the risk of error accumulation,
this risk is avoidable if the individual steps are carefully selected, as we
will show later.

5.1 Fit of Any Two ALSSMs
Given are two Alssms, the first of orderN1 ∈ N with fixed parametersA1
and c1 and output sequence y1 with elements y1,k = c1A

k
1x1; the second

of order N2 ∈ N with fixed parameters A2 and c2 and output sequence
y2 with elements y2,k = c2A

k
2x2. We are interested in optimizing the

51
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initial states x1 ∈ RN1 and/or x2 ∈ RN2 of the two Alssms such that
the localized squared error ‖y1 − y2‖2w as in (4.69) is minimum. The
localization is again expressed by the window w = [. . . , w0, w1, w2, . . .],
with wi ∈ R+ and wi = 0 for any |i| sufficiently large (cf. localized norm
in Section 4.3). Therefore, we look at the cost

‖y1 − y2‖2w =
+∞∑
i=−∞

wi
∥∥c1Ai1x1 − c2Ai2x2

∥∥2

=
+∞∑
i=−∞

wi
(
c1A

i
1x1 − c2Ai2x2

)T (
c1A

i
1x1 − c2Ai2x2

)
= xT

1

( +∞∑
i=−∞

wi(Ai1)TcT
1 c1A

i
1︸ ︷︷ ︸

W11

)
x1 − 2xT

1

( +∞∑
i=−∞

wi(Ai1)TcT
1 c2A

i
2︸ ︷︷ ︸

W12

)
x2

+xT
2

( +∞∑
i=−∞

wi(Ai2)TcT
2 c2A

i
2︸ ︷︷ ︸

W22

)
x2

= xT
1W11x1 − 2xT

1W12x2 + xT
2W22x2 . (5.1)

For a fixed x2, the unconstrained minimization for x1 follows in anal-
ogy to (4.10) as

x̂1 = W−1
11 W12x2 (5.2)

for any invertible W11 (which is the case for most of the practical model
and window selections). The minimization with linear constraints on x1
is according to Section 4.2.2 after applying the substitutes Wk = W11,
ξk = W12x2, and κk = xT

2W22x2. For a constrained x2, the substitution
is analogous.

5.2 Fit Using a Window ALSSM

To efficiently compute W11, W12, and W22, we replace the window w by
its own Alssm with wi = c̆Ăix̆0 within bounds a ≤ i ≤ b and wi = 0
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otherwise, as in (4.16). Thus, we get using the example of W11,

W11 =
b∑
i=a

(c̆Ăix̆0)(Ai1)TcT
1 c1A

i
1

= Ŵ11R (5.3)

with

Ŵ11 =
b∑
i=a

(Ai)TcTĉÂi , (5.4)

and with ĉ, Â, and R as in (4.22), (4.23), and (4.31). The full derivation
is in analogy to the derivation in Section 4.2.3.

To simplify computation of Ŵ11 for large intervals, we might use the
subtraction trick of geometric series,

AŴ11 − Ŵ11Â
−1 =

b∑
i=a

(Ai+1)TcTĉÂi −
b−1∑
i=a−1

(Ai+1)TcTĉÂi

= (Ab+1)TcTĉÂb − (Aa)TcTĉÂa−1 (5.5)

which is then a standard problem of the form “AX − XB = C” and
solved for Ŵ11 by solving a linear equation system [2]. For W12 and W22
we proceed similarly.

5.3 Distance Between Two ALSSMs

We note that, if two Alssms share common model parameters A and c,
and are supplemented by a common window w, then they also share their
feature vector space F , cf. Section 4.3. As an immediate consequence
of the Euclidean feature vector space introduced in Section 4.3.3, the
Euclidian distance between the output sequences of two such systems is
efficiently computed using transformed feature vectors.

Given are two Alssms, both of order N ∈ N and with common fixed
parameters A ∈ RN×N and c ∈ R1×N , individual initial states x ∈ RN×1

and x′ ∈ RN×1, and output sequences y with elements yk = cAkx and
y′ with elements y′k = cAkx′ and a window w as in Section 5.1. Then
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the localized Euclidean distance writes as

‖y − y′‖2w =
b∑
i=a

wi
∥∥cAkx− cAkx′∥∥2

=
b∑
i=a

wi(x− x′)T(Ak)TcTcAk(x− x′)

= (x− x′)T
( b∑
i=a

wi(Ak)TcTcAk︸ ︷︷ ︸
W = V TV

)
(x− x′)

= ‖V x− V x′‖2 (5.6)
= ‖z − z′‖2 , (5.7)

where in step (5.6) the Cholesky decomposition W = V TV is used (W
is a positive semi-definite matrix, cf. also Section 4.3.3). Note that W
(and also V ) does not depend on the state vectors x or x′ and, thus, the
decomposition is preferably precalculated.

5.4 Lossless Multi-Step Model Fitting
As applied later in Chapter 7 and in [50], it is often computationally
advantageous to split up fitting tasks involving complex models into
multiple consecutive steps. In a first step the input signal is fit to an
intermediate model, while the later step(s) fit the advanced model(s)
onto the feature vectors of the preceding step(s).

In general, such a multi-step fitting comes with the risk of error ac-
cumulation. However, we can avoid such an error accumulation for least
square error fits, if the intermediate fitting steps respect the following
conditions: first, all fitting steps with exception of the last one are pro-
jections to the model’s feature vector space, i.e., their step’s input signals
are fit unconstrained. Second, each step’s feature vector space is a super-
set of the next step’s feature vector space. It then follows that splitting
up a task does not modify the final result.

Proposition 2. Let V be a Hilbert Space, U a subspace of V , and S a
subset of U , i.e., S ⊂ U ⊂ V . Then, for any given v ∈ V

argmin
s∈S

‖v − s‖2 = argmin
s∈S

‖u− s‖2 (5.8)
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with u ∈ U the projection of v to U .
Proof. Let v ∈ V , s ∈ S with s = argmin

s∈S
‖v − s‖2, and s′ ∈ S with

s′ 6= s, i.e.,
‖v − s′‖2 ≥ ‖v − s‖2 . (5.9)

Then, with u ∈ U the projection of v to U , it follows that
‖v − u+ u− s′‖2 ≥ ‖v − u+ u− s‖2

‖v − u‖2 + ‖u− s′‖2 ≥ ‖v − u‖2 + ‖u− s‖2

‖u− s′‖2 ≥ ‖u− s‖2 (5.10)
where in (5.10) the Pythagoras’ Theorem is applied.

�

Example 1 (Fit of multi-channel signal to common polynomial). Let y(m)
k ∈ R

be the kth sample of the mth channel of an M -channel discrete-time signal
(see Fig. 5.1). We are interested in finding a single discrete-time polynomial
of order Q that fits over the time interval k ∈ [a, b] the given samples of the
M channels best (in terms of least square error). Therefore, we look for

α̂ = argmin
α

M∑
m=1

b∑
k=a

[
αTxq − y(m)

k

]2
(5.11)

with polynomial coefficients α ∈ RQ, polynomial exponents q ∈ NQ0 . Note that
we here already use the vector exponent notation where xq = [xq1 , xq2 , . . . , xqQ ]T
with qi the ith element of q, as introduced later on in (6.1) in Chapter 6.

To simplify this minimization, we decompose the task into a first step, a
channel-wise fit to a polynomial model,

α̃m = argmin
α

b∑
k=a

[
αTxq − y(m)

k

]2
, (5.12)

and into a second step, constraining all channel-wise polynomials from the first
step to be the same,

α̂ = argmin
α

M∑
m=1

b∑
k=a

[
αTxq − α̃T

mx
q
]2

. (5.13)

We note that the set of all multi-channel polynomials from the first step
with coefficients (α̃1, . . . , α̃M ) form a subspace of the space RN×M spanned by
all samples, whereas polynomials from the second step with common coeffi-
cients (α̂, . . . , α̂) form a subset of that subspace (in this case the subset is even
a subspace). It follows that, according to Proposition 2, the result of (5.13) is
equal to the result of (5.11).

♦
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a b−1
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a b−1

1
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Figure 5.1: Local signal approximation of a multi-channel signal over
the interval {a, . . . , b} according to (5.11). The plot shows multi-channel
discrete-time signals y(1)

k . . . y
(3)
k (solid, gray lines); per-channel polyno-

mial approximation with polynomial coefficients α̃1 . . . α̃3 (dashed lines);
polynomial approximation in common for all channels with polynomial
coefficients α̂ (solid, dark blue lines).

5.5 ALSSM Signal Clustering in a Trans-
formed Feature Space

Blind identification and clustering of repetitive intervals in a signal is
a general problem in signal processing. In particular, when process-
ing biological signals such as ECGs (electrocardiograms), EMGs (elec-
tromyograms), ENGs (electroneurograms), etc., repetitive pulses of dis-
tinct shapes are observed, but their shapes are not known a priori. This
is due to the natural variations of biological systems and the variability
in sensor locations. Nevertheless, we are interested in blindly identifying
these repetitive signal parts, i.e., without knowing their shapes a priori.

Let y ∈ RK be a single-channel signal of K samples and F be a
feature vector space defined by an Alssm with parameters A ∈ RN×N
and c ∈ R1×N and the window w ∈ RK as proposed in Section 4.3.2.
For efficient comparison of signal intervals, we first extract the feature
vectors x̂k ∈ RN of y for any index k (cf. Section 4.4) and map them
to the Euclidean feature vectors ẑk ∈ RN (cf. Section 4.3.3). Then,
we apply a conventional clustering method onto the transformed feature
vectors, such as k-means or the like.
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Note that the generalization of this approach to multi-channel signals
is straightforward (e.g., for M channels by stacking the single-channel
feature vectors xk ∈ RN to a multi-channel feature vector xk ∈ RNM ).

Example 2 (Clustering of noisy pulse signal). We observe a two-channel sig-
nal y containing multiple spikes (e.g., neuronal spikes) of different origins and,
thus, of different shapes (see Fig. 5.2). The spikes are approximately of dura-
tion L = 20 samples. To identify and cluster these pulses, we first project the
signal for any index k to a local feature space spanned by the Alssm

A = 0.9
[

cos(2π/L) − sin(2π/L)
sin(2π/L) cos(2π/L)

]
, c = [1, 0] , x0 = [0, λ]T ,

which is a fast decaying cosine pulse of amplitude λ ∈ R (to be estimated),
and with a degenerated window Alssm

Ă = [γ] , c̆ = [1] , x̆0 = [1] ,

with a decay factor γ = 0.98, which is a simple exponentially decaying window.
Then we transform the resulting features to the Euclidean feature space and
sort them into 4 clusters with the method of k-means. Figure 5.2 shows a
synthetic signal sequence with two channels and three different types of pulse
patterns and the results after applying our approach. Figure 5.3 shows the
cluster assignment over all sample indices.

♦

Example 3 (Clustering pulses of different duration). In this example, we
identify and sort pulses of similar shapes but variable duration into 3 clusters.
Therefore, we first transform the given 2-channel signal into a feature space
spanned by a second order polynomial with a right-sided, exponentially decay-
ing window, cropped at a finite length of 50 samples; the Alssm parameters
are

A =

[ 1 1 1
0 1 2
0 0 1

]
, c = [1, 0, 0] , x0 = [0, a1, a2]T ,

which lead to a discrete-time second order polynomial P (x) = a0 +a1x+a2x
2

with a0 fixed to 0 and with the two unknown coefficients a1 ∈ R and a2 ∈ R
(to be estimated). Note fixing a0 = 0 avoids a jump at the model’s signal onset
(which is what we expect from our pulses). The parameters for the associated
window Alssm are

Ă = [γ] , c̆ = [1] , x̆0 = [1] ,

with a decay factor γ = 0.98, and within a finite support interval with borders
a = 0 and b = 50. To localize the onset of the pulses, we use the LCR (4.82),
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Figure 5.2: Blindly identified pulses in a two-channel signal of syn-
thetic neuronal spikes as in Example 2. The upper plot (a) shows the
two-channel signal with pulses of damped cosine pulses but of three dif-
ferent amplitudes per channel. The lower plot (b) shows the assignment
of each index k to one out of four clusters according to its local surround-
ing: clusters 2 to 4 (colored dots in yellow/green/blue) mark the three
different pulses, cluster 1 (grey) contains all remaining samples with low
signal energy. The feature vectors and their clustering is shown in details
in Fig. 5.3.

which here is

LCRk = −1
2 log

min
x∈Ω

Jk(x)

Jk(0) , (5.14)

with Ω =
{

[0, a1, a2]T | a1 ∈ R, a2 ∈ R
}
and with the cost function

Jk(x) =
b∑
i=a

(c̆Ăi−kx̆0)
(
cAi−kx− yi

)2
= xTWkx− 2xTξk + κk .
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zk,1
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Figure 5.3: Feature vectors zk,1 and zk,3 of the pulse signal as in
Example 2 and Fig. 5.2 assigned to 4 clusters. The colors represent
the cluster assignments after applying a k-means algorithm, whereof the
gray cluster contains all samples of low energy, i.e., basically the baseline.
(Note that zk,2 and zk,4 are all zero as we are only looking for cosine
shapes)

according to (4.17) and (4.39). To express the constrained minimization in
(5.14) over x ∈ Ω we apply the linear constraint

x = Hv with H =

[ 0 0
1 0
0 1

]
, v ∈ R2 (5.15)

and use the constrained minimization (4.12)

v̂ = (HTWkH)−1HTξk .

Then, the pulse onsets are most likely located at the maxima of the LCR.
To finally sort the detected pulses into different clusters, we transform the
feature vectors x̂ = Hv̂ into an Euclidean feature space (cf. Section 5.5)
and apply some common clustering algorithm; for this example we used the
k-means algorithm.

Figure 5.4 shows the result of the pulse detection and clustering on a noisy
two-channel signal and Fig. 5.5 displays the Alssm trajectories according to
the clustered feature vectors.

♦
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Figure 5.4: Pulse identification and clustering for a signal as in Ex-
ample 3. Plot (a) shows a synthetic single-channel signal with pulses
of common shapes but of 3 different durations. Plot (b) depicts the
identified pulses with their cluster assignments (red/green/blue lines)
according to three different pulse durations and Plot (c) shows the de-
tection of the pulse onset, localized at the local maxima of the log-cost
ratio (LCR).

1

k

Figure 5.5: Identified and clustered pulses (red/green/blue) from
Fig. 5.4. The cluster centers are superimposed (dashed lines).



Chapter 6

Polynomial Cost
Functions

6.1 Introduction

We have used Alssms to locally approximate discrete-time signals in
Chapter 4 and to approximate the output of another Alssm in Chap-
ter 5, both by the means of squared error minimization.

In this chapter, we approximate and substitute discrete-time signals
by continuous-time polynomials and use those polynomials to solve com-
plex optimization problems. Substituting discrete-time signals by local-
ized polynomials has shown to be practical, not only in terms of compu-
tational efficiency, but also when sub-sample resolution is required or the
discrete-time samples are non-equidistant. Polynomials are also useful
when multiple variables are involved, leading to multi-variate polynomi-
als. Dealing with polynomial signal approximations in quadratic cost
terms is very convenient, since quadratic costs are of a polynomial shape
themselves.

Substituting a signal by localized polynomials is not a new idea. Al-
ready in 1946, Schoenberger proposed to interpolate (in case of fixed
samples) or approximate (in case of samples afflicted with some uncer-
tainty) signals by piece-wise polynomials, i.e., splines [42]. Schoenberger
also introduced the now well-known B-splines, a beneficial representation
of splines, which is not only nice to handle numerically, but also efficient
to evaluate [12]. Nevertheless, the idea of splines later lost its attrac-

61
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tion in the field of signal processing when Shannon’s sampling theory
took off in the 1950s [44], but remained in focus in fields of mechanics
and computer aided design, with particular interest in the surface (2D)
modeling [13]. These days, the benefits of splines has been rediscovered
for signal processing, as well as for image processing, as emphasized by
Unser in 1999 [44].

In the past, polynomials were mostly applied to equidistant (usual
case) or non-equidistant (rare case) sampled signals with predefined poly-
nomial borders, i.e., fixed spline knots, and with a rectangular window,
weighting each sample equally, when doing the approximation. In our
work, we additionally allow non-rectangular, e.g., decaying, windows
when approximating a signal. We use such approximations to state
application-specific cost functions, commonly by means of least square
errors. In such cost functions, we sometimes also allow linear trans-
forms (shifting and dilation) to the time axis of the polynomials (and
their windows), to gain optimal shape match. The implementation of
applications then often leads to demanding cost functions.

Due to the following interesting properties, polynomials have shown
to be practical signal models to work with:

- the sum of two polynomials is a polynomial,

- the product of two polynomials is a polynomial,

- scaling a polynomial in time (dilation) is still a polynomial (of the
same order),

- the derivative and the integral of a polynomial is a polynomial,

- the composition of two polynomials, which is obtained by substi-
tuting a variable of the first polynomial by the second polynomial,
is a polynomial,

- the minimization of polynomials and rational functions is a stan-
dard problem and supported by all numerical libraries,

- and finally, as mentioned before, a quadratic cost term itself is
already of a polynomial form.

Thanks to these properties, least square cost-terms involving polynomial
signal approximations are often also of a convenient polynomial form.

To facilitate algebraic transformations and simplifications of such
polynomial cost terms, we provide in this chapter our own calculus for
polynomials.
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A simplistic example illustrating the idea, fitting a multi-channel
signal by a single polynomial, was already given in Example 1 in Sec-
tion 5.4. Multiple examples demonstrating the calculus will be given
later in Section 6.3. Finally, non-trivial examples in the field of cardi-
ology, which successfully apply cost functions of polynomial forms, are
given in Section 7.3 and in [50].

6.2 A Calculus for Polynomials
The use of polynomials in quadratic (or higher order) cost terms soon
leads to complex cost functions. Algebraic transformations are needed
not only to simplify the terms, but also facilitate precomputations and
optimizations using standard libraries. These transformations are often
cumbersome, in particular when multivariate terms are involved. There-
fore, we here propose a vector-based notation for polynomials, along with
a set of manipulation rules and conclude with several examples.

6.2.1 Vector Exponent Notation

There are many ways to represent univariate or multivariate polynomi-
als. Probably most common is the writing of a polynomial of order Q
as a sum a0 + a1x + a2x

2 + . . . + aQx
Q or, using the summation no-

tation, as
∑Q
i=0 aix

i, where we have the scalar coefficients ai and the
scalar indeterminate x. But there are alternative representation forms
using coefficient vectors as, for example, in [17], which are often more
convenient, once one gets used to them. We propose and explore in
the following such an alternative representation form, which uses scalars
to the power of vectors, denoted as vector exponents. For multivariate
polynomials, the Kronecker product is used to flatten multidimensional
matrices, cf. Section (6.3.4) and [28].

Let x be a scalar in R and q = [q1, . . . , qQ]T a vector in NQ0 , Q ∈ N.
Then we define the function (x, q) 7→ xq as the vector of powers of x by
each element of q, i.e.,

xq , [xq1 , . . . , xqQ ]T . (6.1)

Note that the elements of q are neither ordered nor unique. These two
properties are essential for an efficient calculus.
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6.2.2 Univariate Polynomials
The use of vector exponents leads to the following properties for univari-
ate polynomials:

1. The inner product between the coefficient vector α ∈ RQ and xq
from (6.1) is an univariate polynomial in x of order max (q),

αTxq ∈ R . (6.2)

Example 1 (A polynomial as an inner product). a0x
0 + a1x

1 + a2x
3 =

αTxq is true for αT = [a0, a1, a2] and q = [0, 1, 3]T. ♦

2. The sum of such two polynomials with α ∈ RQ and β ∈ RQ is

αTxq + βTxq = (α+ β)Txq ∈ R . (6.3)

Example 2 (Sum of Polynomials). (a0x
1 + a1x

3) + (b0x1 + b1x
3) =

(α+ β)Txq is true for α = [a0, a1]T, β = [b0, b1]T and q = [1, 3]T. ♦

3. The sum of such two polynomials with α ∈ RQ and β ∈ RR,
with exponent vectors q = [q1, . . . , qQ] and r = [r1, . . . , rR], and
Q,R ∈ N0 is

αTxq + βTxr = ∼
αTx

∼
q ∈ R , (6.4)

with

∼
α =

[
α
β

]
∈ R(Q+R) (6.5)

∼
q =

[
q
r

]
∈ R(Q+R) . (6.6)

4. The product of two polynomials with common exponent vector q
and coefficients α ∈ RQ and β ∈ RQ is

(αTxq)(βTxq) = (α⊗β)T(xq ⊗xq)
= ∼
αTx

∼
q (6.7)

with
∼
α = α⊗β ∈ RQ

2
(6.8)

∼
q = Mq ∈ NQ

2

0 , (6.9)
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and with

M = (IQ⊗1Q) + (1Q⊗ IQ) (6.10)

where In is the identity matrix and 1n = [1, . . . , 1]T, both of size
n. The full derivation is given in Appendix (B.1) on page 117.

5. The square of a polynomial is

(αTxq)2 = ∼
αTx

∼
q (6.11)

with
∼
α = α⊗α ∈ RQ

2
, (6.12)

∼
q = Mq ∈ NQ

2

0 , (6.13)

and with M as in (6.10). Obviously, this is a special case of poly-
nomial multiplication (6.7).

6. The product of two polynomials with distinct exponent vectors
q ∈ NQ0 and r ∈ NR0 , and coefficients α ∈ RQ and β ∈ RR, is

(αTxq)(βTxr) = ∼
αTx

∼
q (6.14)

with
∼
α = α⊗β ∈ RQR , (6.15)
∼
q = (IQ⊗1R)q + (1Q⊗ IR)r ∈ NQR0 . (6.16)

The derivation is in analogy to the derivation given in Appendix B.1
on page 117.

7. The integral of a polynomial with α ∈ RQ is∫
(αTxq)dx = αT

∫
xqdx

= ∼
αTx

∼
q . (6.17)

with
∼
α = Λα ∈ RQ , (6.18)
∼
q = q + 1Q ∈ NQ0 , (6.19)
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and with

Λ = diag (δ) ∈ RQ×Q, (6.20)

where δ ∈ RQ and

δi = 1
qi + 1 , i ∈ {1, . . . , Q} (6.21)

with δi denoting the ith element of vector δ and qi the ith element
of vector q.

8. Definite integral of polynomial with α ∈ RQ:∫ b

a

(αTxq)dx = (Λα)T(b
∼
q − a

∼
q)

= ∼
αTx0 (6.22)

with
∼
α = (Λα)T(b

∼
q − a

∼
q) ∈ R , (6.23)

and ∼q as in (6.19) and with Λ as in (6.20).

9. The derivative of a polynomial with α ∈ RQ is

d

dx
(αTxq)dx = αT d

dx
xq

= ∼
αTx

∼
q (6.24)

with
∼
α = Λα ∈ RQ , (6.25)
∼
q = max(q − 1Q,0Q) ∈ NQ0 , (6.26)

where max (v1, v2) denotes the element-wise maxima of correspond-
ing elements in vectors v1 and v2, and with

Λ = diag (q) . (6.27)

10. Shifting a polynomial by a constant value γ ∈ R leads to

αT(x+ γ)q = ∼
αTx

∼
q (6.28)
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with
∼
α = Λα ∈ RQ̃ , (6.29)
∼
q = [0, . . . ,max(q)]T ∈ NQ̃0 , (6.30)
Q̃ = max (q) + 1 , (6.31)

and with

Λ ∈ RQ̃×Q ,

where, for all i ∈ [1, . . . , Q] and j ∈ [1, . . . , Q̃],

Λ{j,i} =


qi!

q̃j !(qi − ∼qj)!
γ(qi−

∼
qj) for ∼qj ≤ qi,

0 otherwise.
(6.32)

Note that the scalar Λ{j,i} refers to the element in the jth row and
the ith column of Λ and is also denoted as a coefficient of Bernoulli
polynomials.

11. The dilation of a polynomial by constant value η ∈ R is

αT(ηx)q = ∼
αTxq (6.33)

with
∼
α = ηq ◦ α = Λα ∈ RQ , (6.34)

and with

Λ = diag(ηq) . (6.35)

6.2.3 Multivariate Polynomials
To extend our calculus to multivariate polynomials, we for now restrict
to bivariate examples; note that the generalization to multivariate poly-
nomials is most often straightforward, e.g., by applying the calculus rules
repeatedly.

Bivariate polynomials in x and y, both scalars in R, write as

αT(xr ⊗ yq) ∈ R (6.36)

with r ∈ NR0 and q ∈ NQ0 , R and Q ∈ N, and the coefficient vector
α ∈ RRQ. Such polynomials have the following properties:
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1. The sum of two univariate polynomials is

αTxq + βTyr = (∼α+
∼
β)T(x

∼
q ⊗ y

∼
r) (6.37)

with

∼
α =

[
0
α

]
⊗
[

1
0R

]
,

∼
q =

[
0
q

]
, (6.38)

∼
β =

[
1

0Q

]
⊗
[

0
β

]
,

∼
r =

[
0
r

]
, (6.39)

with 0n = [0, . . . , 0]T of size n. The full derivation to this is given
in Appendix B.4 on page 118.

2. The product of two univariate polynomials is

(αTxq)(βTyr) = (α⊗β)T(xq ⊗ yr) (6.40)

with full derivation given in Appendix B.5 on page 119.

3. The product of an univariate and a bivariate polynomial is

(αTxq)(βT(yr1
1 ⊗ y

r2
2 )) = (α⊗β)T(xq ⊗ yr1

1 ⊗ y
r2
2 ) , (6.41)

using a derivation in analogy to the derivation given in Appendix B.5
on page 119.

4. The square of a bivariate polynomial with coefficients decomposed
as a Kronecker product, i.e., of the form α⊗β with α ∈ RQ and
β ∈ RR, is[

(α⊗β)T(xq ⊗ yr)
]2

=
[
(α⊗α)⊗(β⊗β)

]T[(xq ⊗xq)⊗(yr ⊗ yr)
]

=
(
(α⊗α)⊗(β⊗β)

)T(
xMq ⊗ yM

′r
)

(6.42)

with M and M ′ as in (6.10). The derivation of the first line is in
analogy to the derivation in Appendix B.1 on page 117, and for
the last line (6.65) is used.

5. The square of a multivariate polynomials (with non-factorized co-
efficients) is [

αT(xq ⊗ yr)
]2

= ∼
αT(x

∼
q ⊗ y

∼
r) (6.43)



6.2 A Calculus for Polynomials 69

with

∼
α = RQ;R(α⊗α) ∈ RQ

2R2
, (6.44)

∼
q = Mq ∈ RQ

2
, (6.45)

∼
r = M ′r ∈ RR

2
, (6.46)

and RQ;R as in (6.103), and M and M ′ as in (6.10). The full
derivation is given in Appendix B.2 on page 117.

6. Variable duplicates merge as

αT(zs⊗xq ⊗xr ⊗ yq) = αT(zs⊗x
∼
q ⊗ yq) (6.47)

with

∼
q = (1R⊗ IQ)q + (IR⊗1Q)r (6.48)

according to (6.65).

7. A polynomial with variable shift y ∈ R is

αT(x+ y)q = ∼
αT(x

∼
q ⊗ y

∼
q) (6.49)

with

∼
α = Λα ∈ RQ̃

2
, (6.50)

∼
q = [0, . . . ,max(q)]T ∈ NQ̃0 , (6.51)

and with Q̃ = max (q) + 1 and

Λ =

 G1(q, ∼q)
...

G
Q̃

(q, ∼q)

 ∈ RQ̃
2×Q , (6.52)

where, for all i ∈ [1, . . . , Q] and j ∈ [1, . . . , Q̃], and n ∈ N0,

[Gn(r, s)]{j,i} =


ri!
sj !

1
(ri − sj)!

for ri − sj = n ,

0 otherwise.
(6.53)
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Example 3 (Polynomial with variable shift).

a0 + a1(x+ y)2

= [a0
a1]T (x+ y)[

0
2]

= (Λ [a0
a1])T︸ ︷︷ ︸

∼
α ∈ R9

(x
∼
q ⊗ y

∼
q) with q̃ =

[
0
1
2

]
and,

with Λ =
[

1 0 0 0 0 0 0 0 0
0 0 1 0 2 0 1 0 0

]T

, cf. (6.52).

= [a0, 0, a1, 0, 2a1, 0, a1, 0, 0](x

[
0
1
2

]
⊗ y

[
0
1
2

]
)

= [a0, 0, a1, 0, 2a1, 0, a1, 0, 0]
×[x0y0, x0y1, x0y2, x1y0, x1y1, x1y2, x2y0, x2y1, x2y2]T

= a0 + a1y
2 + 2a1xy + a1x

2 = ∼
αT(x

∼
q ⊗ y

∼
q)

♦

8. A polynomial dilated by a constant η ∈ R is

αT(zs⊗(ηx)q ⊗ yr) = αT(zs⊗(ηq ◦ xq)⊗ yr)
= (α ◦ (1S ⊗ ηq ⊗1R))T(zs⊗xq ⊗ yr)
=
(

diag(1S ⊗ ηq ⊗1R)︸ ︷︷ ︸
Λ

α
)T(zs⊗xq ⊗ yr)(6.54)

= (Λα)T(zs⊗xq ⊗ yr) (6.55)

using (6.116) in the second step.

9. The dilation of a polynomial by an indeterminate y ∈ R is

αT(yx)q = αT(yq ◦ xq) = vdiag(α)T(yq ⊗xq) (6.56)

with

vdiag(α) , vec(diag(α)) . (6.57)

10. Substituting variables by constants, e.g., c ∈ R is given and known,
leads to

αT(xq ⊗ cs⊗ yr) = (Λ̃α)T(xq ⊗ yr) (6.58)

with

Λ̃ = (IQ⊗(cs)T⊗ IR) . (6.59)

The full derivation for this is given in Appendix B.6 on page 119.
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11. The integral of a multivariate polynomial with respect to the scalar
variable x is given by∫

αT(zs⊗xq ⊗ yr)dx =
(
α ◦ (1s⊗ δ⊗ 1r)

)T(zs⊗x
∼
q ⊗ yr) (6.60)

with δ ∈ RQ as in (6.21) and with q̃ as in (6.19). The full derivation
is given in Appendix B.7 on page 119.
In some applications α is given in a factorized form α = Λα′ with
an appropriate matrix Λ and vector α′. Then we get, using (6.121),∫

αT(zs⊗xq⊗yr)dx =
(

diag(1s⊗δ⊗1r)Λ︸ ︷︷ ︸
Λ̃

α′
)T(zs⊗x

∼
q⊗yr) . (6.61)

12. The definite integral of a multivariate polynomial with respect to
the scalar variable x is given by∫ b

a

αT(zs⊗xq ⊗ yr)dx

= (Λα)T((zs⊗ b∼q ⊗ yr)− (zs⊗ a
∼
q ⊗ yr)

)
=
(

(Is⊗(b
∼
q − a

∼
q)T⊗ Ir)Λ︸ ︷︷ ︸

Λ̃

α
)T(zs⊗ yr) (6.62)

= (Λ̃α)T(zs⊗ yr) (6.63)

with q̃ as in (6.19) and Λ corresponds to Λ̃ in (6.61). In the last
step of the derivation, (6.58) is used.

Some Useful Operators on Vector Exponents

Let xq, xq′ , and xr with q, q′ ∈ NQ0 and r ∈ NR0 be vectors as defined in
(6.1). Then the following relation apply:

1. The Hadamard product (element wise product) of two vector ex-
ponents is

xq ◦ xq
′

= xq+q
′
. (6.64)

2. The Kronecker product of two vector exponents of any size is

xq ⊗xr = xq̃ (6.65)
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with
∼
q = (IQ⊗1R)q + (1Q⊗ IR)r , (6.66)

with full derivation given in Appendix B.3 on page 118.

3. The outer vector product of two vector exponents is

xq(xr)T = (xr)T⊗xq (6.67)

which directly follows from property (6.106) of Kronecker products.

6.2.4 Table Summary
Table 6.1 and Table 6.2 provide a tabular summary of the calculus de-
rived in Section 6.2.2 and Section 6.2.3.
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Table 6.1: Calculus for Univariate Polynomials (x∈R, y∈R, Q∈N, R∈N, α∈RQ, β ∈RR, q∈NQ0 , r∈NR0 )

f(x) ∈ R f(x) = ∼
αTx

∼
q Polyn. order

∼
α ∈ RQ̃ ∼

q ∈ NQ̃0 Q̃ ∈ N0 =̂ max (∼q)

αTxq + βTxq (α+ β) q Q max(q)

αTxq + βTxr

 α

β

  q

r

 Q+R max(q, r)

(αTxq)2 α⊗α
[
(IQ⊗1Q) + (1Q⊗ IQ)

]
q Q2 max(q)2

(αTxq)(βTxq) α⊗β
[
(IQ⊗1Q) + (1Q⊗ IQ)

]
q Q2 max(q)2

(αTxq)(βTxr) α⊗β (IQ⊗1R)q + (1Q⊗ IR)r QR max(q) max(r)∫
(αTxq)dx Λα,

Λ see (6.20)
q + 1Q Q max(q) + 1∫ b

a
(αTxq)dx (Λα)T(b

∼
q − a

∼
q),

for Λ see (6.20)
0 1 max(q) + 1

d
dx (αTxq)dx diag(q)α q − 1Q Q max(q)− 1

αT(x+ γ)q Λα, for Λ see (6.32) [0, . . . ,max(q)]T max(q) + 1 max(q)

αT(ηx)q ηq ◦ α
= diag(ηq)α

q Q max(q)
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Table 6.2: Calculus for Multivariate Polynomials (x∈R, y∈R, Q∈N, R∈N, α∈RQ, β ∈RR, q∈NQ0 , r∈NR0 )

f(x, y, . . .) ∈ R f(x, y, . . .) = ∼
αTX

∼
α ∈ RQ̃ X ∈ RQ̃ Q̃

(αTxq)(βTyr) (α⊗β) (xq ⊗ yr) QR

(αTxq)(βT(yr1
1 ⊗ y

r2
2 )) (α⊗β) (xq ⊗ yr1

1 ⊗ y
r2
2 ) QR1R2[

(α⊗β)T(xq ⊗ yr)
]2

(α⊗α)⊗(β⊗β)
(
xMq ⊗ yM ′r

)
with M =

[
(IQ ⊗1Q) + (1Q ⊗ IQ)

]
with M ′ =

[
(IR ⊗1R) + (1R ⊗ IR)

][
αT(xq ⊗ yr)

]2 RQ;R(α⊗α),
RQ;R as in (6.102) Q2R2

αTxq + βTyr

(∼α+
∼
β)T(x

∼
q ⊗ y

∼
r)

∼
α =

[
0 αT ]T⊗ [ 1 0T

R

]T
∼
β =

[
1 0T

Q

]T⊗ [ 0 βT ]T
∼
q =

[
0 qT ]T

,
∼
r =

[
0 rT ]T

(xq ⊗ yr) Q R

αT(zs⊗xq ⊗xr ⊗ yq) α
(zs⊗x

∼
q ⊗ yq)

with ∼q = (1r ⊗ q) + (r ⊗ 1q)

αT(x+ y)q Λα, (for Λ see (6.52)) (xq̃ ⊗ yq̃)
with q̃ = [0, . . . , Q̃ − 1]T

αT(yx)q vdiag(α) (yq ⊗xq)∫
αT(. . .⊗xq ⊗ yr ⊗ . . .)dx

(
α ◦ (. . .⊗ δ⊗ 1r ⊗ . . .)

)
(. . .⊗x

∼
q ⊗ yr ⊗ . . .)∫ b

a
αT(. . .⊗xq ⊗ yr ⊗ . . .)dx Λ̃α, (for Λ̃ see (6.62)) (. . .⊗ yq ⊗ . . .)
αT(xq ⊗ cs⊗ yr) Λ̃∼α, (cf. (6.58)) (xq ⊗ yr)
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6.3 Applications

6.3.1 Squared Error Between Two Polynomials
Within a Given Interval

In a first application, we calculate the squared error between two poly-
nomials of any order over a fixed interval. The polynomial coefficients
are known but vary depending on observations, e.g., the coefficients are
the result from approximating a signal with local polynomials. Thus,
the terms should be arranged in such a way, that any term independent
of the coefficients can be precalculated off-line.

Let α ∈ RQ and β ∈ RQ be the coefficients and q ∈ NQ0 the common
exponent vector of two polynomials of oder max(q), Q ∈ N; we here
assume that the two polynomials αTxq and βTxr are local approxima-
tions of observed signals. Thus, we are interested in the squared error
J(α, β) ∈ R between the two polynomials over the interval [a, b]. This
cost function writes as

J(α, β)

=
∫ b

a

[
αTxq − βTxq

]2
dx

=
∫ b

a

[
(α− β)Txq

]2
dx

=
∫ b

a

(
(α− β)⊗(α− β)

)T
xMqdx

=
[(

Λ
(
(α− β)⊗(α− β)

))T
x
∼
q
]b
a

=
(

Λ
(
(α− β)⊗(α− β)

))T
(b
∼
q − a

∼
q)

=
(
(α⊗α)− (β⊗α)− (α⊗β) + (β⊗β)︸ ︷︷ ︸

observation dependant

)TΛT(b
∼
q − a

∼
q)︸ ︷︷ ︸

constant
∈ R , (6.68)

with M =
[
(IQ⊗1Q) + (1Q⊗ IQ)

]
according to (6.45), Λ according to

(6.20), and ∼
q = Mq + 1 according to (6.19). Note that in the last line

the right part is constant and, hence, fully precomputable.

Example 4 (Local squared error between two first order polynomials). Let
α1x + α0 and β1x + β0 be two first order polynomials with coefficients α =
[α1, α0]T ∈ R2 and β = [β1, β0]T ∈ R2, respectively. Then the squared error
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over the given interval [a, b] is

J(α, β) =
∫ b

a

[
(α1x+ α0)− (β1x+ β0)

]2
dx ,

or using the vector exponent notation, with q = [1, 0],

J(α, β) =
∫ b

a

[
αTxq − βTxq

]2
dx .

This is according to (6.68) equivalent to,

J(α, β)
=
(
(α⊗α)− (β⊗α)− (α⊗β) + (β⊗β)

)TΛT(b
∼
q − a

∼
q)

=
(
([α1
α0]⊗[α1

α0] )−(
[
β1
β0

]
⊗[α1
α0] )−([α1

α0]⊗
[
β1
β0

]
)+(
[
β1
β0

]
⊗
[
β1
β0

]
)
)T[ 1

4 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

2

]T

(b
∼
q−a

∼
q)

=

([
α1α1
α1α0
α0α1
α0α0

]
−
[
β1α1
β1α0
β0α1
β0α0

]
−
[
α1β1
α1β0
α0β1
α0β0

]
−
[
β1β1
β1β0
β0β1
β0β0

])T[ 1
4 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

2

] T([
b3

b2

b2

b1

]
−
[
a3

a2

a2

a1

])

=

 1
4α

2
1−

1
2α1β1+ 1

4β
2
1

1
3α1α0− 1

3β1α0− 1
3α1β0+β1β0

1
3α1α0− 1

3β0α1− 1
3α0β1+ 1

3β1β0
1
2α

2
0−α0β0+ 1

2β
2
0

T [
b3−a3

b2−a2

b2−a2

b1−a1

]
(6.69)

with

q̃ =
[
(I2⊗12) + (12⊗ I2)

]
q + 14

= ([1 0
0 1]⊗[11]+ [11]⊗[1 0

0 1])[10]+
[

1
1
1
1

]
=
[

3
2
2
1

]
.

Note that for fixed borders a and b the right bracket in (6.69) is also fixed.
It remains a single multivariate polynomial in α and β.

♦

6.3.2 Minimum Squared Error Fit of Polynomials by
Scaling in its Amplitude and its Time

This application originates from Section 7.3 which addresses the inverse
problem in electrocardiography. For that, Ecg signals are locally ap-
proximated by higher-order (e.g., fifth order) polynomials and then fit
to multiple templates; a template here refers to a polynomial approxima-
tion of a synthetic Ecg sequence generated with a specific set of param-
eters. To fit a signal to a single template, we minimize the squared error
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while we allow the template to scale in its amplitude and time dilation.
After this has been done for all templates, we identify the best matching
template and thus the best set of parameters.

Note that the ECG signals and the templates used later as in Sec-
tion 7.3 are of multiple channels. For the sake of simplicity, we here only
consider single-channel signals, but the generalization is straightforward.

Let α ∈ RQ be the polynomial coefficients locally approximating a
signal, β ∈ RQ the polynomial coefficients of a template, and q ∈ NQ0
the vector exponent of both polynomials and of oder max(q), Q ∈ N.
We are interested to minimize the squared error J(λ, η) ∈ R between
the two polynomials over the interval [a, b] by optimizing the template
amplitude λ ∈ R and its time dilation η ∈ R. The comparison considers
the fixed interval [a, b], a ∈ R, b ∈ R, a < b. Then the cost function
writes as

J(λ, η) =
∫ b

a

[
αTxq − λβT(ηx)q

]2
dx (6.70)

=
[
(δ ◦ (α⊗α)︸ ︷︷ ︸

c1

)T(xMq+1)
]b
a

−2λ
[(

(1q ⊗ δ) ◦ (vdiag(β)⊗α)︸ ︷︷ ︸
c2

)T(ηq ⊗xMq+1)
]b
a

+λ2
[(

(1Mq ⊗ δ) ◦ (RQ;Q(vdiag(β)⊗ vdiag(β)))︸ ︷︷ ︸
c3

)T

·
(
ηMq ⊗xMq+1

)]b
a

= ∼
α1 − 2λ∼αT

2 η
q + λ2∼αT

3 η
Mq (6.71)

with the coefficient vectors
∼
α1 = (bMq+1 − aMq+1)Tc1 ∈ R , (6.72)
∼
α2 =

(
IQ⊗(bMq+1 − aMq+1)T)c2 ∈ RQ , (6.73)

∼
α3 =

(
IQ2 ⊗(bMq+1 − aMq+1)T)c3 ∈ RQ

2
, (6.74)

and, as in (6.10), with

M =
[
(IQ⊗1Q) + (1Q⊗ IQ)

]
. (6.75)

Note that these coefficient vectors ∼α1, ∼α2, and ∼
α3 are independent

of λ, η and x and, thus, precomputable. The full derivation is given in
Appendix B.14 on page 120.
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Finally, as we have in (6.71) a quadratic form in λ, it is minimized
over λ by

λ̂ = argmin
λ

J(λ, η) = −
∼
αT

2 η
q

∼
αT

3 η
Mq

. (6.76)

Further, substituting λ by λ̂ in (6.71) we get

J(λ̂, η) =
(
−

∼
αT

2 η
q

∼
αT

3 η
Mq

)2
∼
αT

3 η
Mq − 2

(
−

∼
αT

2 η
q

∼
αT

3 η
Mq

)
∼
αT

2 η
q + ∼

α1

= − (∼αT
2 η

q)2

∼
αT

3 η
Mq

+ 2(∼αT
2 η

q)2

∼
αT

3 η
Mq

+ ∼
α1

= (∼αT
2 η

q)2

∼
αT

3 η
Mq

+ ∼
α1 , (6.77)

and minimized over η, we get

η̂ = argmin
η

J(λ̂, η) = argmin
η

(∼αT
2 η

q)2

∼
αT

3 η
Mq

= argmin
η

(∼α2⊗
∼
α2)TηMq

∼
αT

3 η
Mq

. (6.78)

Note that (6.78) is a univariate rational function of maximum nominator
and denominator order of 2 max(q) and needs to be minimized with
respect to η ∈ R, e.g., by applying any standard numerical method.

An immediate application to this result, generalized to multiple chan-
nels, is given in Section 7.3, solving the inverse problem of esophageal
ECG signals.

6.3.3 Offset-Free Minimum Squared Error Fit of
Polynomials by Scaling in Amplitude and Time

We extend the application given in Section 6.3.2 and perform an offset-
free comparison, i.e., we ignore any constant offset values between the
signals and the templates. Thus, we modify (6.70) to

J(λ, η) =
∫ b

a

[(
αTxq −mα

)
− λ
(
βT(ηx)q −mβ(η)

)]2
dx (6.79)
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with the two mean or offset values

mα = 1
b− a

∫ b

a

αTxqdx , (6.80)

mβ(η) = 1
b− a

∫ b

a

βT(ηx)qdx , (6.81)

which we rewrite using the vector exponent notation as

mα = αT( 1
b− a

diag(δ)(bq+1 − aq+1)
)
, (6.82)

mβ(η) = βT
mη

q , (6.83)

with

βm = 1
b− a

(IQ⊗(bq − aq))
(

diag(1q ⊗ δ)β
)
. (6.84)

The full derivation to this is given in Appendix B.9 on page 121.
On the way to minimize J(λ, η) in (6.79), we now substitute mα and

mβ in (6.79), and expand all polynomial terms to a common exponent
vector q̃, i.e.,

J(λ, η) =
∫ b

a

[( ∼
αTx

∼
q︸ ︷︷ ︸

αTxq

− ∼αmTx
∼
q︸ ︷︷ ︸

mα

)
− λ
( ∼
βT(ηx)

∼
q︸ ︷︷ ︸

βT(xη)q

−
∼
βmη

∼
q︸ ︷︷ ︸

βT
mη

q

αT
0x
∼
q︸ ︷︷ ︸

1

)]2
dx

with

q̃ =
[

0 qT ]T ∼
α =

[
0 αT ]T ∼

αm=
[
mα 0T

Q

]T
,

∼
β =

[
0 βT ]T ∼

βm=
[

0 βT
m

]T ∼
α0 =

[
1 0T

Q

]T
.

Thus, we get

J(λ, η) =
∫ b

a

[
(α− αm)Txq̃

−λ
(

vdiag (
∼
β)

T
(x
∼
q ⊗ η

∼
q)− (

∼
βm⊗α0)T(η

∼
q ⊗x

∼
q)
)]2

dx

=
∫ b

a

[
(α− αm︸ ︷︷ ︸

α′

)Txq̃ − λ
(

vdiag (
∼
β)− (

∼
βm⊗α0)︸ ︷︷ ︸

β′

)T(η
∼
q ⊗x

∼
q)
]2
dx

=
∫ b

a

[
α′

T
xq̃ − λβ′T(η

∼
q ⊗x

∼
q)
]2
dx , (6.85)

which is of the same form as (6.70), or more precisely as (B.11) in Ap-
pendix B.8 on page 120, and can be minimized with respect to λ and η
accordingly.
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6.3.4 Delay Estimation Using Local Polynomial Ap-
proximations

In this application, we wish to estimate the time delay between two
signals of a single source but observed with a per-channel time-dependent
delay. This delay will be estimated using local signal approximates and
comparing them by means of minimum squared error.

Let α ∈ RN and β ∈ RN be the polynomial coefficients of the local
approximations over the interval [a, b] of the two observed signals. Then
we find the estimate ŝ ∈ R of the time-delay between the signals by
minimizing the squared error

J(s) =
∫ b

a

[
αT(x− 1

2
s)q − βT(x+ 1

2
s)q
]2
dx (6.86)

=
∫ b

a

[
(Λα)T(x

∼
q ⊗(−1

2
s)
∼
q)− (Λβ)T(x

∼
q ⊗(1

2
s)
∼
q)
]2
dx

=
∫ b

a

[
(Λ̃α)T(x

∼
q ⊗ s

∼
q)− (

∼
Bβ)T(x

∼
q ⊗ s

∼
q)
]2
dx

=
∫ b

a

[(
Λ̃α−

∼
Bβ
)T(x

∼
q ⊗ s

∼
q)
]2
dx

=
∫ b

a

(
RQ;Q[(Λ̃α−

∼
Bβ)⊗(Λ̃α−

∼
Bβ)]

)T(x

q′︷︸︸︷
M
∼
q ⊗ s

q′︷︸︸︷
M
∼
q )dx

=
(
C̃
[
(Λ̃α−

∼
Bβ)⊗(Λ̃α−

∼
Bβ)

])T
sq
′

=
(
C̃
[
(Λ̃α⊗ Λ̃α)− (Λ̃α⊗

∼
Bβ)− (

∼
Bβ⊗ Λ̃α) + (

∼
Bβ⊗

∼
Bβ)

])T
sq
′

=
(
C̃
[
(Λ̃α⊗ Λ̃α)− K̃(Λ̃α⊗

∼
Bβ) + (

∼
Bβ⊗

∼
Bβ)

])T
sq
′

=
(
C̃(Λ̃⊗ Λ̃)︸ ︷︷ ︸

A

(α⊗α)− C̃K̃(Λ̃⊗
∼
B)︸ ︷︷ ︸

B

(α⊗β) + C̃(
∼
B⊗

∼
B)︸ ︷︷ ︸

C

(β⊗β)
)T
sq
′

= (A(α⊗α)−B(α⊗β) + C(β⊗β))Tsq
′
, (6.87)

with Λ as in (6.52), ∼q as in (6.51), Λ̃ = diag(1
∼
q ⊗ (− 1

2 )
∼
q)Λ according to

(6.54),
∼
B = diag(1

∼
q ⊗ ( 1

2 )
∼
q)Λ, C̃ = ((bq′+1 − aq′+1)T⊗ Iq̃)C̃ ′ according

to (6.62), and C̃ ′ =
(

diag(δ⊗ 1q′+1)Rq;r
)
according to (6.61), and with

K̃ = I +K|
∼
Bβ|,|Λ̃α| according to (6.115).

Note that A, B, and C are constant matrices independent of α or β,
and, thus, are precomputable.
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Example 5 (Delay estimation). We observe two signals, whereof the second
signal has a variable time-delay as in Fig. 6.1. To estimate this time delay,
we approximate the signals locally and at every index k by a fourth order
polynomial and estimate the delay using (6.87). The result is likewise shown
in Fig. 6.1.

1
k

C
H
1

1
k

C
H
2

−5

5
k

sh
ift

s
ŝ

Figure 6.1: Two-channel signal (CH1 and CH2) with variable time shift
according to Example 5. The dashed line in CH2 is a copy of CH1 to
illustrate the local time delay between the two channels. The true shift
s and its local estimate ŝ after solving (6.87) are shown in the bottom
plot.

♦
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Annex: Kronecker Product ⊗

The Kronecker product is defined, for any matrices A ∈ Rm×n and
B ∈ Ri×j , as

A⊗B ,

 A{1,1}B · · · A{1,n}B
...

...
A{m,1}B · · · A{m,n}B

 (6.88)

with A{m,n} ∈ R the element in the mth row and nth column of A [28].
In the following, we give a brief summary of properties of Kronecker

products, collected and modified from [28, 37]. A and A′ are both in
Rm×n, B and B′ are both ∈ Ri×j , and C is of any finite dimension.
Then we have

AT⊗BT = (A⊗B)T (6.89)
(A⊗B)⊗C = A⊗(B⊗C) (6.90)
C ⊗(A+A′) = (C ⊗A) + (C ⊗A′) (6.91)
(A+A′)⊗C = (A⊗C) + (A′⊗C) (6.92)

(A⊗B)(C ⊗D) = AC ⊗BD (6.93)
Tr(A⊗B) = Tr(A) Tr(B) (6.94)
vec(ABC) = (CT⊗A) vec(B) (6.95)

vec(AB) = (I ⊗A) vec(B) (6.96)
vec(A) = (IT

n ⊗A) vec(In) (6.97)
vec(A⊗B)T vec(A′⊗B′) =

(vec(A)⊗ vec(B))T(vec(A′)⊗ vec(B′)) (6.98)
vec(Adiag(c) B) =

(
(BT⊗ 1a) ◦ (1b⊗A)

)
c (6.99)

vec(A⊗B) = Rm,n;i,j(vec(A)⊗ vec(B)) (6.100)
Rm,n;i,j

T vec(A⊗B) = vec(A)⊗ vec(B) (6.101)

with permutation matrix

Rm,n;i,j , In⊗Km,j ⊗ Ii ∈ Rmnij×mnij (6.102)

and for square A and B, i.e., n = m and i = j,

Rm;i , Rm,m;i,i (6.103)

with Km,j as in (6.115).
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Applying the Kronecker product to vectors leads to further proper-
ties. Let a and b be column vectors of finite length, and a′ a column
vector of the same size as a and b′ a column vector of the same size as
b, respectively. Then we have

a⊗ b = vec(baT) (6.104)
a⊗ b = (I ⊗ b)a (6.105)
aT⊗ b = baT = b⊗ aT (6.106)

diag(b) = Ib ◦ (1b⊗ bT) (6.107)
= Ib ◦ ((1b)T⊗ b) (6.108)
= Ib ◦ (b⊗(1b)T) (6.109)
= Ib ◦ (bT⊗ 1b) (6.110)

(a⊗ b)T(a′⊗ b′) = (b⊗ a)T(b′⊗ a′) (6.111)
(a⊗ b) = vec(baT) = K|a|,|b| vec(abT) (6.112)

= K|a|,|b|(b⊗ a) . (6.113)

The commutation matrix Km,n ∈ Rmn×mn is a special case of the per-
mutation matrix and commutes any matrix A ∈ Rm×n, i.e.,

Km,n vec(A) = vec(AT) ∈ Rmn×mn (6.114)

with

Km,n =
m∑
i=1

n∑
j=1

(em,ieT
n,j)⊗(en,jeT

m,i) = (Kn,m)T ∈ Rmn×mn (6.115)

with the vectors em,i = [0, . . . , 0, 1, 0, . . . , 0]T, having a single 1 at the
ith row [37].

Annex: Hadamard Product (Elementwise Product) ◦

Let matrix A ∈ RM×N , and vectors a, b ∈ RM , and c, d ∈ RN .

(a ◦ b)⊗(c ◦ d) = (a⊗ c) ◦ (b⊗ d) (6.116)
a⊗ d = (a⊗1N ) ◦ (1M ⊗ d) (6.117)

as a special case of (6.116)
a ◦ b = diag(a)b = diag(b)a (6.118)

= [IM ◦ (1M ⊗ aT)]b (cf. (6.107)) (6.119)
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A(a ◦ b) = [A ◦ (1M ⊗ aT)]b (6.120)
(Ab) ◦ c = diag(c)Ab = [Ic ◦ (1c⊗ cT)]Ab (6.121)

= diag(Ab)c = [IAb ◦ (1Ab⊗(Ab)T)]c (6.122)

Annex: Trace

Tr(AB) = vec(AT)T vec(B) (6.123)
Tr(A+B) = Tr(A) + Tr(B) (6.124)
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Chapter 7

Activation Map
Reconstruction From
EsoECG Signals

7.1 Introduction
As summarized in Section 3.3.2, a cardiac activation map provides a
diagnostic tool in cardiology, visualizing the propagation of the electrical
activity on the heart surface. In this chapter, we provide the details on
how an activation map of the left atrial posterior wall is reconstructed,
based on measurements from our esophageal catheter, EsoEcg-3D.

As the solution to this problem is not unique (we only have a very
limited number of observations while the propagation patterns on the
heart surface are highly diverse), this problem is known to be “ill-posed”
and denoted as the inverse problem in electrocardiography [34]. Conse-
quently, an effective regularization on the result, or as we will do, the
application of a restrictive model, is required.

7.2 Solving the Inverse Problem Using
ALSSMs in a Filter Bank

One way to efficiently solve our inverse problem using our methods is
through the application of multiple Alssms and to form a filter bank,
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as we have proposed in [54]. Thereby, each Alssm in the filter bank is
parametrized such that it generates a signal corresponding to a physical
model; in this case the physical model is a single moving electric dipole.
Multiple such Alssms then form a filter bank to cover multiple measuring
channels and multiple parameter selections.

This method was applied to in vitro recordings using our 3-D catheter
and has successfully localized single moving electric dipoles in 3-D space.
Overall, this method is convincing in its efficiency, but it restricts the
possible electrode arrangements on the catheter, which limits its use for
our project.

7.3 Solving the Inverse Problem Using Poly-
nomials

This second approach performs the computations in the domain of local
polynomials, using the methods proposed in Chapter 6. Therefore, we
first choose an appropriate model for the cardiac field. Then, we approx-
imate the model’s output signals by localized polynomials, as well as for
the measured EsoEcg signals. Finally, we directly match the two sets
of polynomials, those originating from the models and those from the
measurements, in their own feature space. According to Section 6.3.3,
we here allow the polynomials to scale in amplitude and time (dilation).
Note that matching the signals with variable time dilation is essential,
since we do not know the physical propagation speed of the observed
cardiac activations and, thus, also not the temporal spreading of their
electrical signals.

7.3.1 Method

We recall that we want to estimate the spatial propagation of the car-
diac activation front on the heart surface based on the measured signals.
For that, we need an effective regularization which is, in this approach,
introduced by a restrictive model. We here use the model of a straight
moving dipole line in 3-D space to approximate the activation front on
the heart surface; we denote a straight dipole line a dipole, where its
dipole moment is spread homogeneously along a straight line of finite
length as depicted in Fig. 7.1 and Fig. 7.2. We use this model to match
the activation front locally, i.e., only on a small area on the heart sur-
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Figure 7.1: Modeling the myocardial activation process by multiple
dipole lines after subdividing the atrial surface into multiple areas (yel-
low shaded squares). Figure (a): Left atrial posterior wall with elec-
trical trigger point F and the observed activation front at time 0 ms,
10 ms, 20 ms, and 30 ms (thin red curves). Straight dipole line models
(thick blue lines) with their local observation areas, propagation direc-
tions (blue arrows), and the assigned sets of electrodes I and II. Figure
(b): Zoomed catheter view with labeled electrodes (e5, e6.1, . . .), the mea-
sured potential differences (black arrows), and the assignment to the sets
of electrodes I and II.

face, where we assume the movements to be linear and to propagate at
constant speed.

For that, we first subdivide the myocardium of the left atrial poste-
rior wall into multiple, possibly overlapping areas, which are processed
independently. Then we assign to each such area those electrodes which
are close; the minimum number of electrodes required per area depends
on the complexity of the model to be estimated. For our model with
only 5 parameters, 5 electrodes per area are sufficient. An example of 2
such areas of approximately 1.50 cm × 1.50 cm in size, along with their
assigned set of electrodes is depicted in Fig. 7.1. Note that certain elec-
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η−→v0

ϕXY
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x

y

z

ϕZ
rdr

x/y

M
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R

esophageal catheter

straight dipole line
(activation front model)

linearized myocardial
area

Figure 7.2: Parametrization of the straight dipole line model and the
orthogonal reference coordinate system x/y/z (cf., Table 7.1). Addition-
ally shown are: dipole line (solid blue line) and myocardium area to be
analyzed (yellow area). O denotes the origin of the coordinate system
and R a center point of one of the electrodes.

trodes can belong to more than one such set at the same time. The final
activation map is then an aggregation of the results of the single areas1.

7.3.2 Physical Model
To use the physical model of a straight dipole line, we need to introduce
its parameters and to map them to our specific application.

Straight Dipole Line Model

Let M be the closest point on a straight dipole line to a center point O
on the catheter, both in 3-D space (see Fig. 7.2). Furthermore, r ∈ R+

1We are aware that the results could be improved, if the inversion for all areas
was performed jointly. This idea should be considered in a later version.
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Table 7.1: Dipole line model parametrization according to Fig. 7.2 after
reducing the number of model parameters.

Symbol Description Unit

λ ∈ R dipole line strength per line unit mAs/m
η ∈ R+ activation front speed ms−1

r ∈ R+ minimal activation front distance to
the catheter (orthogonal to the myo-
cardium plane)

m

ϕXY ∈ [−π, π] activation front angle rad
ϕZ ∈ [−π, π] catheter rotation angle rad

denotes the distance from M to O and
−→
dr ∈ R3 the unit direction of the

position vector −−→OM , λ ∈ R the dipole moment with unit direction −→p0 ∈
R3, and η ∈ R the dipole line movement speed with its unit movement
direction −→v 0 ∈ R3. Note that we will assume −→p0 and −→v 0 to be parallel,
as we will see later.

The electrical field strength produced by a straight moving dipole
line and observed at point R is

φR(t) =
∫ b

a

ρ

〈
η−→p0 ,

(
r
−→
dr + η−→v0t+ x

−→
l −
−−→
OR
) 〉

∥∥∥r−→dr + η−→v0t+ x
−→
l −
−−→
OR
∥∥∥3 dx ∈ R (7.1)

with
−→
l ∈ R3 the unit vector pointing along the dipole line, a ∈ R and

b ∈ R the length of the dipole line to both sides of the center point M ,
and ρ ∈ R some constant value, summarizing all physical constants. In
our case, R is chosen as the location of one of the catheter’s electrodes.
Note that the field in (7.1) is derived in analogy to [54].

Parameter Reduction and Reparametrization

We note that (7.1) has more than 10 scalar parameters, which all need
to be specified. Fortunately, the number of parameters reduces consider-
ably if we take anatomical and physiological considerations into account.
First, we use a fact known from experience in physiology: the directions
of the dipole movement and of the dipole moment are in good approxi-
mation parallel [32, Chapter 5.3], i.e., we assume that −→p0 ≈ −→v0 . Second,
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considering the human body’s anatomy, we see that the left atrium pos-
terior wall is roughly in parallel to the catheter axis, i.e., 〈

−→
dr ,
−→c0〉 ≈ 0.

To apply these dependencies, we introduce the new angles ϕXY and ϕZ ,
indicating the angle between the x/y plane of our coordinate system
and the dipole line (cf. Fig. 7.2). Reparametrizing the model accord-
ingly reduces the number of parameters to 5 scalars, which are listed in
Table 7.1.

7.3.3 Model Inversion
To estimate the two model parameters dipole strength λ and front speed
η, we have closed forms, as we will see later. To handle the remaining
non-linear parameters, we discretize them according to their physiologi-
cal range, as in Table 7.2. Then, we generate with our physical model for
each selection of parameters a synthetic multi-channel EsoEcg output
signal, and substitute these outputs by local polynomials. We subse-
quently denote such a multi-channel polynomial approximation a tem-
plate. An example of parameter discretization is given in Table 7.2,
and polynomials approximating the outputs of the model are shown in
Fig. 7.3.

We equally approximate the EsoEcg measurements by local poly-
nomials, and then match these local polynomials to all templates; the
polynomials are matched directly in their feature space, for which we
have derived a closed from solution in Section 6.3.3.

Table 7.2: Example of model parameter discretization. Note that the
dipole strength λ and front speed η are estimated in closed form and
are, therefore, not discretized.

Symbol Discretization #

λ (closed form) -
η (closed form) -
r 1× 10−2 m 1
ϕXY [0, 1, 2, . . . , 35]π/18 36
ϕZ [0, 1, 2, . . . , 35]π/18 36

Total 1296
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Figure 7.3: Examples of local polynomial approximations of synthetic
4-channel EsoEcg signals. The synthetic signals were generated using
the physical model of a moving dipole line with parameters: r = 10 mm,
v = 1 m/s, ϕZ = 30◦, ϕXY = 30◦/ 60◦ / 90◦, and λ = 1 mAs/m. To
improve readability, an individual offset of 3 to 12 mV was added to each
channel.

Template Matching With Variable Time Dilation

We note that a decrease in the activation front speed η leads to a dilation
in time of the observed signal shapes; if we know the signal dilation, we
also know the source’s speed.

Let αr ∈ R(Q+1)×M be the polynomial coefficients of such an M-
channel template, r denotes the template index and Q the polynomial
order. Furthermore, βk ∈ R(Q+1)×M are the coefficients of the local
polynomial approximation of our measured EsoEcg signal around time
index k.

Due to unknown baseline offsets superimposed on all signal channels,
we use the offset-free comparison of Section 6.3.3 to estimate the signal
amplitude λr and the signal propagation speed ηr independent of any
per-channel offset voltage: according to (6.78), the speed estimate is

η̂r = argmin
η

(α̃r,2⊗ α̃r,2)TηBq

α̃T
r,3 , η

Mq
, (7.2)
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with α̃r,2 and α̃r,3 according to (6.73) and (6.74), and after substituting
βk by β′k and αr by α′r as in (6.85). The estimate of the dipole moment
scalar λ̂r is according to (6.76)

λ̂r = argmin
λ

Jr(λ, η̂r) = −
α̃T
r,2η̂r

q

α̃T
r,3η̂r

Mq
. (7.3)

Finally, after having fit each individual template, we take that template
r̂ with the smallest remaining square error, which is

r̂ = argmin
r

Jr(λ̂r, η̂r) . (7.4)

Note that the least squared error Jr(·) when fitting template r to our
signal at index k, conveniently follows from (6.71) and is

Jr(λ̂r, η̂r) = α̃r,1 − 2λ̂rα̃T
r,2η̂r

q + λr
2α̃T

r,3η̂r
Mq . (7.5)

Figure 7.4 shows an example of an atrial EsoEcg signal of approx-
imately 30 ms duration for a set of 4 electrodes and depicts the local
fit after successfully optimizing the model parameters and selecting the
best matching template. Figure 7.5 shows a longer EsoEcg sequence
and additionally displays the estimated model parameters for each de-
tected atrial signal wave. First graphical results of aggregated activation
maps, i.e., after aggregating multiple results derived using different sets
of electrodes, were already given in Fig. 3.6, Section 3.3.2.

Detection of Actual Wavefronts

At this point, the discrimination between real wave fronts and signal
artifacts is still missing; we so far applied our model blindly at any time
index k, regardless of whether at that moment a wave front passed by
or not. To make up for this, we will use the measure of the cost ratio
(4.80) from Section 4.6.

We recall that the model’s distance vector
−→
dr was defined to be per-

pendicular to the activation front movement direction −→v0 . But clearly
this can only be true for a single instant as our activation fronts are mov-
ing. As we do not know this instant a priori, we first applied our model
at every time index k, and now use the cost ratio (4.80) retroactively:
we are looking for a local minimum in

CR = J(λr̂, ηr̂)
J(0, ηr̂)

. (7.6)
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Figure 7.4: Example of parametrized dipole line model fitting a multi-
channel EsoEcg signal sequence. Plot (a) shows a 4-channel EsoEcg
signal y of an atrial beat. The model output ŷ is generated using best
matching parameters with index r̂ = 423 (ϕXY = −30◦, ϕZ = −70◦)
and time dilation η = 1.12 and amplitude scaling λ = 1.43. These
model parameters were selected at the local minimum of the CR in plot
(b) at t = 54 ms (dashed line), as in (7.6) on page 94. To improve
readability, an individual offset of 2 to 8 mV was added to each channel
in Plot (a). Data source: clinical trial esoECG-3D patient IDA07 around
t = 5732.97 s.

Figure 7.4 depicts this CR over a short time period containing a single
activation front, indicating a clear local minimum. Figure 7.5 (a) depicts
an EsoEcg of multiple heart beats, where we detect in each beat the
activation front of the atrial activity, and Fig. 7.5 (b) and (c) provide the
corresponding model parameters estimated for each detected activation
front.
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Figure 7.5: Model parameter estimation for atrial waves in an EsoEcg
signal. Plot (a) shows a 4-channel EsoEcg signal of 10 seconds dura-
tion. At time t = 6 s, electric stimulation starts using an intra-cardiac
pace maker. Plots (b) and (c) show the estimated model parameters
(Table 7.1) at the location of minimal CR (7.6). ϕXY changes for t > 6s
due to the simulations, from 20◦ to −120◦, indicating an alteration of the
trigger’s origin. φZ is not affected by the stimulations; this parameter
is the rotation of the catheter with respect to the heart. Fig. 7.4 shows
a zoomed version of this figure. To improve readability, an individual
offset of 2 to 8 mV was added to each channel in Plot (a). Data source:
clinical trial esoECG-3D patient IDA07 at t0 = 5559 s.



Chapter 8

Esophageal Isopotential
Map Reconstruction
(Supplements)

Esophageal isopotential maps (EsoIpms), as introduced in Section 3.3.1,
have already been published by us in 2018 [50]. We here supplement
this published method by a closed-form solution using our calculus for
polynomials from Chapter 6. Note that our calculus was not yet available
at the time of that publication.

Katheter Depth Estimation

In [50] we introduced univariate polynomials of order Nϕ in z ∈ R,
denoted as ϕj(z) ∈ R, interpolating the esophageal measurements across
all measuring channels at a single time index j ∈ N; z is the position
along the catheter (and the esophagus).

As we have learned, such an esophageal catheter is constantly drifting
back and forth due to breathing and body motions and the like. To
obtain an estimate of that vertical catheter shift between two heart beats,
we compare the EsoEcg signals recorded at corresponding time indices
j and j′. We need to find the shift ŝ, minimizing the squared error
between the two polynomials ϕj(z − ŝ/2) and ϕj′(z + ŝ/2) for a given
interval of z [50, Equation (1)]. Note that we here shift both polynomials
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symmetrically by ŝ/2 such that the interval center point remains at z.
We will solve this problem using our calculus.1

For that, we first assign ϕj(z) =̂αTzq and ϕj′(z) =̂βTzq with coeffi-
cient vectors α ∈ RN and β ∈ RN , and exponent vectors q = [0, . . . , Nϕ]T
and get the cost function

J(s) =
∫ b

a

[
αT
(
z − s

2

)q
− βT

(
z + s

2

)q ]2
dz . (8.1)

This cost function is of the same form as the already solved problem
(6.86) in Section 6.3.4 and is therefore minimized by

ŝ = argmin
s

α̃Tsq
′

(8.2)

with

α̃ = (A(α⊗α)−B(α⊗β) + C(β⊗β)) , (8.3)

and A, B, C, and q′ according to (6.87).
We note that A, B, and C are independent of the data samples which

are incorporated in α and β. Therefore, the repeated minimization of
(8.1) for multiple data samples is efficiently executed.

1In contrast to the published version, we here use fixed and symmetric integration
boundaries, as they simplify the computations and we expect the solution to be more
robust.



Chapter 9

Windowed State Space
Filters (Summary)

We here briefly introduce our framework “Windowed State-Space Filters
for Signal Detection and Separation” [47] based on Alssms for signal
detection and signal filtering tasks. This framework was published in
2018 and is an immediate application of Chapter 4.1

This framework introduces a uniform formal and graphical notation
(cf. Fig. 9.1) to design filters for practical applications, using the cost
functions derived in Section 4. Cost terms based on a single Alssm
supplemented by its window are denoted as cost segments, while the
combination of multiple such cost segments, leading to a multi-segment
window, is denoted as a composite cost. Finally, it also takes use of
time-variant windows as introduced in Section 4.2.5.

This framework provides a ready-to-use method and includes all rel-
evant recursive computations in a tabular overview, supplemented by
multiple examples.

The Cost Segments

We denote a cost segment the quadratic cost function

Jba(k, x, θ) =
k+b∑
i=k+a

αk+δ(i)vi
(
yi − cAi−kx

)2 (9.1)

1Note that [47] is written before the method of window Alssms was derived. Thus,
this method is lacking in the published framework.
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over a fixed interval {a, . . . , b}, with a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞},
and a ≤ b, and with initial state vector x ∈ RN×1 and parameter set
θ = (c, δ,α) where c ∈ R1×N , δ ∈ Z and α = [αk(i)](k,i)∈Z2 . This cost
is of a similar form as (4.57) on page 39 and also computed recursively.
Note that the shift δ introduced in (9.1) leads to the normalization of
the window to a value of 1 at index δ and thereby simplifies the window
design. This is an immediate application of the property αk+δ(k+δ) = 1
for all (k, δ) ∈ Z2, derived from (4.59). Finally, vi ∈ R is the per-sample
weight as introduced in (4.48) on page 38.

The Composite Cost

The cost segment (9.1) is nicely computable, but it is restricted to a
single model (c, A) and a single window. To overcome these limitations,
we join several such cost segments together, as proposed in Section 4.2.6
on page 40, and create a more versatile cost, called a composite cost.

We define P ∈ N cost segments with parameters θp =
(
cp, δ

(p),α(p))
and boundaries ap ∈ Z∪{−∞}, bp ∈ Z∪{+∞}, ap ≤ bp, p ∈ {1, . . . , P},
leading to the general form of a composite cost

J̃(k, x,Θ) =
P∑
p=1

βpJ
bp
ap(k, x, θp) , (9.2)

with Θ = (θ1, θ2, . . . , θP ) and the segment scalars βp ∈ R+; the segment
scalar βp is an engineering parameter to weight cost terms individually.

A Graphical Notation

To efficiently design new such composite costs for particular applications,
we introduce the graphical notation as shown in Fig. 9.1. This notation
arranges the used models in a grid, indicating time on the horizontal axis
and superposition of models on the vertical. In this grid, each column
denotes a cost segment and each row a single Alssm model; multiple
models in a single column indicates model superposition (see Linear
combination of M systems in Table 4.1 on page 30). At the top of each
column, an arrow further indicates the applied window shape and the
direction of stable recursion computations.

Example: Separation of Pulse and Baseline Interference

This is a basic example to separate a pulse from its baseline interfer-
ences. Figure 9.3 shows a noisy single-channel EsoEcg signal with two
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Figure 9.1: Graphical representation of a composite cost. Each column
denotes a cost segment and each row a single Alssm model. This cost
is composed of two superimposed models (A1, c1) and (A2,c2): while
the first model contributes with its non-zero output vector c1 to all
three segments, the second model only contributes with c2 to the middle
segment in the time interval {−∆, . . . ,∆ − 1}, but has zero outputs in
the other two segments. At top of each column, an arrow indicates the
applied window shape (exponentially decaying in the first and the last
segment, and rectangular in the middle segment), and the computation
direction of stable recursions.

pulses superimposed by a baseline signal. To locally decompose the sig-
nal, we apply the composite cost as in Fig. 9.1 with 3 segments and 2
models, where model (A1, c1), a 2nd order polynomial, generates the
baseline over a two-sided decaying window, and model (A2, c2), a 3rd
order polynomial, the pulse signal with a rectangular window of finite
support. Finally, to identify the pulse locations and separate them from
the baseline, we look for local maxima in the cost ratio (4.82)

LCRk = −1
2 log

J̃(k,
[
x̂2
x̂1

]
,Θ)

J̃(k,
[ 0
x̂1

]
,Θ)

(9.3)

with

{x̂1, x̂2} = argmin
x1,x2

J̃(k, [x2
x1] ,Θ) . (9.4)

The pulse estimates along with the local baseline estimates at a single
LCRk maximum are shown in Fig. 9.3.
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Figure 9.2: Local decomposition of an ECG signal wave from its base-
line signal. This local decomposition applies the composite cost as in
Fig. 9.1 with 3 segments and 2 models. Plot (a) shows the two-sided
exponentially decaying window w(1), a composition of all three window
segments. This composed window applies to the first model (A1, c1)
only and is fitting the baseline interferences. The second window w(2)

is of finite support and only active for the middle segment; this window
applies to the second model (A2, c2) and fits the ECG pulses. Plot (b)
shows the model trajectories after minimization of the composite cost:
the trajectory of the first model (blue dashed line) corresponds to that
of the local baseline estimate, and the trajectory of the second model
(black line) corresponds to the estimate of the pulse shape.

Example: Separation of Pulse and Baseline Interference Using
a Time-Variant Window

We frequently process signals in multiple consecutive steps, where in-
termediate results are supplemented with some per-sample reliability
measure or sample weight. In this example, we incorporate this prior
knowledge and weight each sample in our squared cost function accord-
ingly. Furthermore, we use the method of time-variant windows, cf. Sec-
tion 4.2.5, to keep the weighted number of samples within each squared
error function constant; this elongates the window wherever samples of
low or zero sample weights are involved, and narrows the window wher-
ever the sample weights are elevated. Figure 9.3 shows the same noisy
single-channel EsoEcg signal as already shown in Fig. 9.2, but now ap-
plying a time-variant window using the given sample weights.
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Figure 9.3: Local decomposition of an ECG signal wave from its base-
line signal as in Fig. 9.2, but using a time-variant windows. Plot (a)
shows the two-sided exponential decaying window w(1), now with a
plateau whenever the samples are weighted zero, i.e., vk = 0. Plot
(b) shows the a priori assigned sample weight vk ∈ [0, 1] for each sam-
ple. Plot (c) shows the model trajectories as in Fig. 9.3, but with an
extended window to the left and a improved baseline fit due to applied
sample weights.





Chapter 10

Further Applications and
Examples
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We here provide a (non-exhaustive) list of further examples and ap-
plications, which are based on our methods and already published.

10.1 Examples on Signal Detection and
Discrimination Using ALSSMs

Sinusoidal Pulse Detection. Robust detection of a single pulse of
sinusoidal shape in a noisy single-channel signal. See [47, Paragraph
V. A].

Separation of Unknown Pulses From Baseline Signal. This ex-
ample demonstrates the separation of a pulse of (approximately) known
duration but of unknown shape from a interference or baseline signal.
See [47, Section V. B].

ECG Signal Baseline Recovery. ECG signals, such as most bio-
logical signals, are superimposed by an interference signal, denoted as a
baseline signal. This example demonstrates how to separate the ECG
from its baseline signal. See [47, Section V. B].

Morse Code Detection. Morse codes are an excellent textbook ex-
ample to demonstrate the robust detection of a known signal within noisy
observations. This example demonstrates the use of multi-segment win-
dows (cf. 4.2.6) to generate a model for a Morse code symbol. See [47,
Section V. F].

Detection of a Modulated Signal. This example demonstrates the
multiplicability of ALSSM: The product of two ALSSMs is used to model
and detect an amplitude modulated signal. See [55, Section V. A.].

ECG Wave Discrimination Using Multi-Timescale Baseline Es-
timates. In this example, Alssms and local polynomial approxima-
tions are used to efficiently detect and discriminate atrial and ventricular
ECG waves of distinct shapes in a single-channel esophageal ECG signal.
The Alssms are composed of multiple models and not only approximate
the ECG waves but also the baseline signal. See [48, Section 4.2].
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P Wave Discrimination in Multi-Channel ECG. This example
demonstrates the use of Alssms in a multi-channel ECG signal. The
ECG signal used is of low SNR and the P waves of interest only vary
very little in shape. Here the multi-channel approach and the use of
fixed-amplitude signal templates help to increase the detection and dis-
crimination robustness. See [48, Section 4.3].

Model Switch Detection - A Toy Example. A further basic ex-
ample of model switch detection, along with an in-detail description.
See [47, Section III.G].

Outlier Detection - A Toy Example. A further basic example
of outlier detection, along with an in-detail description. See [47, Sec-
tion III. G].

10.2 Examples on ALSSMs in a Filter Bank

Inferring Depolarization of Cells from 3D-Electrode Measure-
ments Using a Bank of Linear State Space Models. Solving the
inverse problem as introduced in Section 7 is computationally intense.
In this example, a bank of Alssms is used to efficiently address a sim-
plistic form of this problem. This method was tested on basic in-vitro
measurements. See [54].

10.3 Examples on Signal Interpolation and
Reconstruction Using ALSSMs

Reconstruction of a Signal From Its Quantized Version. Quan-
tizing a signal’s amplitude drops the signal’s smoothness. In this ex-
ample, a localized polynomial in combination with window of adaptive
length is used to reconstruct a smooth version of the unquantized signal.
See [47, Section V.E].
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10.4 Applications of Polynomial Cost
Functions

Estimation of the Cardiac Field in the Esophagus Using a Mul-
tipolar Esophageal Catheter. This journal article demonstrates the
use of polynomial cost functions in order to solve the catheter tracking
problem introduced in Section 3.3.1. See [50].
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Appendix A

Derivations in Chapter 4

A.1 Derivation of (4.6)
To find the parametrized form from the cost term (A.1), we write

k+b∑
i=k+a

wi−k
(
cAi−kx− yi

)2 (A.1)

=
k+b∑
i=k+a

wi−k
(
cAi−kx− yi

)T(
cAi−kx− yi

)
=

k+b∑
i=k+a

wi−kx
T(Ai−k)TcTcAi−kx

−2
k+b∑
i=k+a

wi−kx
T(Ai−k)cTyi +

k+b∑
i=k+a

wi−ky
2
i

= xT( k+b∑
i=k+a

wi−k(Ai−k)TcTcAi−k︸ ︷︷ ︸
Wk

)
x− 2xT( k+b∑

i=k+a
wi−k(Ai−k)TcTyi︸ ︷︷ ︸

ξk

)

+
k+b∑
i=k+a

wi−ky
2
i︸ ︷︷ ︸

κk

= xTWkx− 2xTξ + κk (A.2)
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with

Wk ,
k+b∑
i=k+a

wi−k(Ai−k)TcTcAi−k (A.3)

ξk ,
k+b∑
i=k+a

wi−k(Ai−k)TcTyi (A.4)

κk ,
k+b∑
i=k+a

wi−ky
2
i . (A.5)

A.2 Derivation of (4.28) and (4.29)

To derive (4.28), we write

Wk =
k+b∑
i=k+a

(
(Ai−k)TcTcAi−k

)(
c̆Ăi−kx̆0

)
=

k+b∑
i=k+a

((Ai−k)TcT)
(
(cAi−k)⊗(c̆Ăi−kx̆0)

)
=

k+b∑
i=k+a

(
(Ai−k)TcT)((c⊗ c̆)(Ai−k ⊗(Ăi−kx̆0))

)
=

k+b∑
i=k+a

(
(Ai−k)TcT)((c⊗ c̆)((Ai−kIN )⊗(Ăi−kx̆0))

)
=

k+b∑
i=k+a

(
(Ai−k)TcT)((c⊗ c̆)((Ai−k ⊗ Ăi−k)(IN ⊗ x̆0))

)
=
( k+b∑
i=k+a

(Ai−k)TcTĉÂi−k︸ ︷︷ ︸
Ŵk

)
(IN ⊗ x̆0)︸ ︷︷ ︸

R

= ŴkR (A.6)

where we use property (6.93) of Kronecker products in the third and
fifth derivation step.
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To derive (4.29), we write

ξT
k =

k+b∑
i=k+a

(cAi−k)
(
c̆Ăi−kx̆0

)
yi

=
k+b∑
i=k+a

(c⊗ c̆)
(
Ai−k ⊗(Ăi−kx̆0)

)
yi

=
k+b∑
i=k+a

(c⊗ c̆)
(
(Ai−kIN )⊗(Ăi−kyix̆0)

)
=
( k+b∑
i=k+a

(c⊗ c̆)(Ai−k ⊗ Ăi−k)yi
)

(IN ⊗ x̆0)︸ ︷︷ ︸
R

=
( k+b∑
i=k+a

ĉÂi−kyi︸ ︷︷ ︸
ξ̂T
k

)
R

= ξ̂T
kR (A.7)

also using property (6.105) of Kronecker products.
To derive (4.30), we write

κk =
k+b∑
i=k+a

(c̆Ăi−kx̆0)y2
i =

( k+b∑
i=k+a

c̆Ăi−ky2
i︸ ︷︷ ︸

κ̂k

)
x̆0

= κ̂kx̆0 , (A.8)

A.3 Derivation of (4.33), (4.33), and (4.34)
The forward recursions (k → k + 1) for (4.33), (4.33), and (4.34) are

Ŵk+1 =
k+b+1∑
i=k+a+1

(Ai−k−1)TcTĉÂi−k−1

= A−T
( k+b∑
i=k+a

(Ai−k)TcTĉÂi−k
)
Â−1

−(Aa−1)TcTĉÂa−1 + (Ab)TcTĉÂb
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= A−TW̃kÂ
−1 − (Aa−1)TcTĉÂa−1 + (Ab)TcTĉÂb (A.9)

ξ̂k+1 =
k+b+1∑
i=k+a+1

ĉÂi−k−1yi

=
( k+b∑
i=k+a

ĉÂi−kyi

)
Â−1 − ĉÂa−1yk+a + ĉÂbyk+b+1

= ξ̂T
k Â
−1 − ĉÂa−1yk+a + ĉÂbyk+b+1 (A.10)

κ̂k+1 =
k+b+1∑
i=k+a+1

c̆Ăi−k−1y2
i

=
( k+b∑
i=k+a

c̆Ăi−ky2
i

)
Ă−1 − c̆Ăa−1y2

k+a + c̆Ăby2
k+b+1

= κ̂kĂ
−1 − c̆Ăa−1y2

k+a + c̆Ăby2
k+b+1 (A.11)

A.4 Derivation of (4.35), (4.37), and (4.38)

The backward recursions (k → k − 1) for (4.35), (4.37), and (4.38) are

Ŵk−1 =
k+b−1∑
i=k+a−1

(Ai−k+1)TcTĉÂi−k+1

= AT
( k+b∑
i=k+a

(Ai−k)TcTĉÂi−k
)
Â

+(Aa)TcTĉÂa − (Ab+1)TcTĉÂb+1

= ATŴkÂ+ (Aa)TcTĉÂa − (Ab+1)TcTĉÂb+1 (A.12)

ξ̂T
k−1 =

k+b∑
i=k+a

ĉÂi−k+1yi

=
( k+b∑
i=k+a

ĉÂi−kyi

)
Â+ ĉÂayk+a−1 − ĉÂb+1yk+b

= ξ̂T
k Â+ ĉÂayk+a−1 − ĉÂb+1yk+b (A.13)

κ̂k−1 =
k+b−1∑
i=k+a−1

c̆Ăi−k+1y2
i
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=
( k+b∑
i=k+a

c̆Ăi−ky2
i

)
Ă+ c̆Ăay2

k+a−1 − c̆Ăb+1y2
k+b

= κ̂kĂ+ c̆Ăay2
k+a−1 − c̆Ăb+1y2

k+b (A.14)
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Derivations in Chapter 6

B.1 Derivation of (6.7)

(αTxq)(βTxq) = (αTxq)⊗(βTxq)
= (α⊗β)T(xq ⊗xq)

= α̃Tx

[
(IQ⊗ 1Q)+(1Q⊗ IQ)

]
q (B.1)

using property (6.93) of Kronecker products in the second step and (6.65)
in the last step

B.2 Derivation of (6.43)

[
αT(xq ⊗ yr)

]2
= Tr

(
(xq ⊗ yr)TααT(xq ⊗ yr)

)
= Tr

(
ααT(xq ⊗ yr)(xq ⊗ yr)T)
using (6.123)

= vec
(
ααT)T vec

(
(xq ⊗ yr)(xq ⊗ yr)T)

using (6.93)
= vec

(
ααT)T vec

(
(xq(xq)T)⊗(yr(yr)T)

)
using (6.100)

=
(

vec(ααT)
)T
RQ;R

[
vec(xq(xq)T)⊗ vec(yr(yr)T)

]
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using (6.104)
=
(
α⊗α

)T
RQ;R

[
(xq ⊗xq)⊗(yr ⊗ yr)

]
=
(
RQ;R(α⊗α)

)T(
xMq ⊗ yM

′r
)

= α̃T(xq̃ ⊗ yr̃) (B.2)

and RQ;R as in (6.103), and M and M ′ as in (6.10).

B.3 Derivation of (6.65)
The Kronecker product of two vector exponents writes as

xq ⊗xr = (xq ⊗1R) ◦ (1Q⊗xr)
= x(q⊗ 1R) ◦ x(1Q⊗ r)

= x(IQq)⊗(1R·1) ◦ x(1Q·1)⊗(IRr)

= x(IQ⊗ 1R)q ◦ x(1Q⊗ IR)r)

= x(IQ⊗ 1R)q+(1Q⊗ IR)r (B.3)

applying (6.117) to find the first line, (6.93) to the exponents of the third
line, and (6.64) to the second last line.

B.4 Derivation of (6.37)
The sum of two vectors as in (6.37) is

αTxq + βTyr

=
([0
α

]T
xq̃︸ ︷︷ ︸

αTxq

⊗
[

1
0R

]T
yr̃︸ ︷︷ ︸

1

)
+
([ 1

0Q

]T
xq̃︸ ︷︷ ︸

1

⊗
[

0
β

]
︸︷︷︸
βTyr

T
yr̃
)

=
([0
α

]T
⊗
[

1
0R

]T)(
xq̃ ⊗ yr̃

)
+
([ 1

0Q

]T
⊗
[

0
β

]T)(
xq̃ ⊗ yr̃

)
=
(([0

α

]
⊗
[

1
0R

])
+
([ 1

0Q

]
⊗
[

0
β

]))T(
xq̃ ⊗ yr̃

)
=
(([0

α

]
⊗
[

1
0R

]
︸ ︷︷ ︸

α̃

)
+
([ 1

0Q

]
⊗
[

0
β

]
︸ ︷︷ ︸

β̃

))T(
xq̃ ⊗ yr̃

)
(B.4)
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with

α̃ =
[

0
α

]
⊗
[

1
0R

]
, q̃=

[
0
q

]
, (B.5)

β̃ =
[

1
0Q

]
⊗
[

0
β

]
, r̃=

[
0
r

]
, (B.6)

and with 0n = [0, . . . , 0]T of size n.

B.5 Derivation of (6.40)

(αTxq)(βTyr) = (αTxq)⊗(βTyr)
= (αT⊗βT)(xq ⊗ yr)
= (α⊗β)T(xq ⊗ yr) (B.7)

using (6.93) in the second line.

B.6 Derivation of (6.58)

αT(xq ⊗ cs⊗ yr) = αT(IQxq ⊗ cs1⊗ IRyr)
= αT(IQ⊗ cs⊗ IR)(xq ⊗ 1⊗ yr)
= ((IQ⊗ cs⊗ IR)Tα)T(xq ⊗ yr)
= ((IQ⊗(cs)T⊗ IR)α)T(xq ⊗ yr) (B.8)

applying (6.93) in the first line.

B.7 Derivation of (6.60)
∫
αT(zs⊗xq ⊗ yr)dx = αT(zs⊗

( ∫
xqdx

)
⊗ yr)

= αT(zs⊗
(
δ ◦ xq̃

)
⊗ yr)

= αT((1s⊗ δ⊗ 1r) ◦ (zs⊗xq̃ ⊗ yr)
)

=
(
α ◦ (1s⊗ δ⊗ 1r)

)T(zs⊗xq̃ ⊗ yr) (B.9)

using (6.120) in the last step and with q̃ as in (6.19).
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B.8 Derivation of (6.71)

J(λ, y)

=
∫ b

a

[
αTxq − λβT(yx)q

]2
dx (B.10)

=
∫ b

a

[
αTxq − λ vdiag(β)T(yq ⊗xq)

]2
dx (B.11)

=
∫ b

a

(αTxq)2dx− 2λ
∫ b

a

αTxq vdiag(β)T(yq ⊗xq)dx

+λ2
∫ b

a

(
vdiag(β)T(yq ⊗xq)

)2
dx

=
∫ b

a

(α⊗α)TxMqdx− 2λ
∫ b

a

(vdiag(β)⊗α)T(yq ⊗xq ⊗xq︸ ︷︷ ︸
xMq

)dx

+λ2
∫ b

a

RQ;Q(vdiag(β)⊗ vdiag(β))T(yMq ⊗xMq)dx (B.12)

=
[
(δ ◦ (α⊗α)︸ ︷︷ ︸

c1

)T(xMq+1)
]b
a

−2λ
[(

(1q ⊗ δ) ◦ (vdiag(β)⊗α)︸ ︷︷ ︸
c2

)T(yq ⊗xMq+1)
]b
a

+λ2
[(

(1Mq ⊗ δ) ◦ (RQ;Q(vdiag(β)⊗ vdiag(β)))︸ ︷︷ ︸
c3

)T(yMq ⊗xMq+1)
]b
a

(B.13)

= cT
1 (bMq+1 − aMq+1)− 2λcT

2 [(yq ⊗ bMq+1)− (yq ⊗ aMq+1)]
λ2cT

3 [(yMq ⊗ bMq+1)− (yMq ⊗ aMq+1)]
= α̃1 − 2λα̃T

2 y
q + λ2α̃T

3 y
Mq (B.14)

applying in line (B.11) the rule of dilation (6.56); in line (B.12) the rules
(6.48), (6.42) and (6.41) with M =

[
(IQ⊗1Q) + (1Q⊗ IQ)

]
as in (6.10)

or (6.48); in line (B.13) the rule (6.61) with δ according to (6.21) and
RQ;Q as in (6.103); and with the coefficient vectors

α̃1 = (bMq+1 − aMq+1)Tc1 (B.15)
α̃2 =

(
IQ⊗(bMq+1 − aMq+1)T)c2 (B.16)

α̃3 =
(
IQ2 ⊗(bMq+1 − aMq+1)T)c3 . (B.17)
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B.9 Derivation of (6.82) and (6.83)
For mα we get, using (6.17),

mα = 1
b− a

(diag(δ)α)T(bq+1 − aq+1)

= αT( 1
b− a

diag(δ)(bq+1 − aq+1)︸ ︷︷ ︸
Am

)
= αTAm . (B.18)

For mβ(y) we get, applying in the first line (6.56),

mβ(y) = 1
b− a

∫ b

a

vdiag (β)T(yq ⊗xq)dx

= 1
b− a

(
diag(1q ⊗ δ)β

)T((yq ⊗ bq)− (yq ⊗ aq)
)

= 1
b− a

(
diag(1q ⊗ δ)β

)T(
yq ⊗(bq − aq)

)
= βT

my
q (B.19)

with δ according to (6.21) and

βm = 1
b− a

(IQ⊗(bq − aq))
(

diag(1q ⊗ δ)β
)

(B.20)
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