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Introduction

Introduction: supervised learning

I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press (2017)

• Machine learning aims at making predictions by building a model based on
data

• Unsupervised learning aims at discovering a hidden structure within unlabelled
data

{
x(i), i = 1, . . . , n

}
• Supervised learning considers a training data set:

X =
{

(x(i), y(i)), i = 1, . . . , n
}

where:
• x(i)’s are the attributes / features (input space)
• y(i)’s are the labels (output space)
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Introduction

Classical problems and algorithms

Classification
• In classification problems, the labels are

discrete, e.g. y(i) ∈ {−1, 1}. The goal is to
predict the class of a new point x

Logistic regression - Support vector machines
- (Deep) neural networks

Regression
• In regression problems, the labels are

continuous, say y(i) ∈ DY ⊂ R. The goal is
to predict the value ŷ = M̃(x) for a new
point x

Neural networks - Gaussian process models -
Support vector regression 0 5 10 15
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Introduction

Uncertainty quantification

• A computational model is defined as a map:

x ∈ DX 7→ y =M(x)

• Uncertainties in the input are represented by a
probabilistic model:

X ∼ fX (joint PDF)

• Uncertainty propagation aims at estimating the
statistics of Y =M(X)

?
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Introduction

Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational model M
with the following features:
• It is built from a limited set of runs of the original model M called the

experimental design X =
{
x(i), i = 1, . . . , n

}
• It assumes some regularity of the model M and some general functional shape

Name Shape Parameters
Polynomial chaos expansions M̃(x) =

∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = βT · f(x) + Z(x, ω) β , σ2
Z , θ

Support vector machines M̃(x) =
m∑
i=1

aiK(xi,x) + b a , b

Neural networks M̃(x) = f2 (b2 + f1 (b1 +w1 · x) ·w2) w, b
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Introduction

Ingredients for building a surrogate model
• Select an experimental design X that covers at best

the domain of input parameters: Latin hypercube
sampling (LHS), low-discrepancy sequences

• Run the computational model M onto X exactly as
in Monte Carlo simulation

• Smartly post-process the data {X ,M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,
compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming

• Validate the surrogate model, e.g. estimate a global error
ε = E

[(
M(X)− M̃(X)

)2
]

B. Sudret (Chair of Risk, Safety & UQ) Surrogate modelling meets machine learning UNCECOMP – June 25, 2019 7 / 42



Introduction

Bridging supervised learning and PC expansions

Features Supervised learning Surrogate modelling
Computational model M

7 4

Probabilistic model of the in-
put X ∼ fX 7 4

Training data: X =
{(xi, yi), i = 1, . . . , n} 4 4

Training data set Experimental design
(big data) (small data)

Prediction goal: for a new x /∈
X , y(x) ?

m∑
i=1

yiK(xi,x) + b
∑
α∈A

yα Ψα(x)

Validation (resp. cross-
validation) 4 4

Validation set Leave-one-out CV
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Introduction

Outline

1 Introduction

2 Sparse polynomial chaos expansions
Spectral expansion
Computing the coefficients
Sparse PCE

3 Applications in machine learning
Probabilistic model of the data
Sparse PCE w. and w/o dependence
Applications: CCPP, Wine grading

4 Surrogate models in high dimensions
DRSM
Unstructured data: resistor network
Data-driven heat diffusion problem

B. Sudret (Chair of Risk, Safety & UQ) Surrogate modelling meets machine learning UNCECOMP – June 25, 2019 8 / 42



Sparse polynomial chaos expansions Spectral expansion

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); S. & Der Kiureghian (2000); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

• Consider the input random vector X (dim X = M) with given probability
density function (PDF) fX(x) =

∏M

i=1 fXi (xi)

• Assuming that the random output Y =M(X) has finite variance, it can be
cast as the following polynomial chaos expansion:

Y =
∑
α∈NM

yα Ψα(X)

where :
• Ψα(X) : basis functions
• yα : coefficients to be computed (coordinates)

• The PCE basis
{

Ψα(X), α ∈ NM
}

is made of multivariate orthonormal
polynomials

Ψα(x) def=
M∏
i=1

Ψ(i)
αi

(xi) E [Ψα(X)Ψβ(X)] = δαβ
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Sparse polynomial chaos expansions Spectral expansion

Isoprobabilistic transform

Premise
Classical orthogonal polynomials are defined for reduced variables e.g.
standard normal variables N (0, 1) (Hermite polynomials) or standard uniform
variables U(−1, 1) (Legendre polynomials)

How to handle arbitrary distributions?

Independent variables with given CDF FXi

• Use arbitrary PCE Wan & Karniadakis (2006); Oladyshkin & Nowak (2012)

Univariate polynomials
{

Ψ(i)
k

}
k≥0

are constructed numerically so as to be

orthogonal w.r.t fXi

• Use a one-to-one mapping to reduced variables: Berveiller et al. (2006)

Xi = F−1
Xi

(
ξi + 1

2

)
if ξi ∼ U(−1 , 1)

Xi = F−1
Xi

(Φ(ξi)) if ξi ∼ N (0, 1)
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Sparse polynomial chaos expansions Spectral expansion

Isoprobabilistic transform

Dependence: copula representation
• Copula theory allows one to represent the joint CDF FX by the set of marginal

distributions {FX1 , . . . , FXM } and a copula C

• Sklar’s theorem:

FX(x) = C (FX1 (x1), . . . , FXM (xM ))

Example: Gaussian copula

CN (u; Θ) = ΦM
(
Φ−1(u1), . . . ,Φ−1(uM ); Θ

)
where ΦM is the multivariate Gaussian CDF

Inference
• In practice, marginals and copulas are inferred from data sequentially

• Rosenblatt or Nataf isoprobabilistic transforms can be used to map X to a
vector Z with independent components
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Sparse polynomial chaos expansions Computing the coefficients

Outline

1 Introduction

2 Sparse polynomial chaos expansions
Spectral expansion
Computing the coefficients
Sparse PCE

3 Applications in machine learning

4 Surrogate models in high dimensions
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Sparse polynomial chaos expansions Computing the coefficients

Computing the coefficients by least-square minimization

Principle Isukapalli (1999); Berveiller, S. & Lemaire (2006)

The exact (infinite) series expansion is considered as the sum of a truncated
series and a residual:

Y =M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP−1} (P unknown coef.)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}

Least-square minimization
The unknown coefficients are estimated by minimizing the mean square
residual error:

Ŷ = arg min E
[(

YTΨ(X)−M(X)
)2
]

= arg min
Y∈RP

1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2
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Sparse polynomial chaos expansions Computing the coefficients

Validation: error estimators

• In least-squares analysis, the generalization error is defined as:

Egen = E
[(
M(X)−MPC(X)

)2
]

MPC(X) =
∑
α∈A

yα Ψα(X)

Leave-one-out cross validation
• From statistical learning theory, model

validation shall be carried out using
independent data

• LOO cross-validation for PCE emulates it
using all data at once

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2

where hi is the i-th diagonal term of matrix
A(ATA)−1AT, Aij = Ψj(x(i))

x
(i)
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Sparse polynomial chaos expansions Sparse PCE

Outline

1 Introduction

2 Sparse polynomial chaos expansions
Spectral expansion
Computing the coefficients
Sparse PCE

3 Applications in machine learning

4 Surrogate models in high dimensions
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Sparse polynomial chaos expansions Sparse PCE

Curse of dimensionality and sparsity-inducing truncation

• The cardinality of the truncation scheme AM,p is P = (M + p)!
M ! p!

• Typical computational requirements: n = OSR · P where the oversampling
rate is OSR = 2− 3

However ... most coefficients are close to zero !
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p = 1
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p = 3
p > 3

Sparsity-of-effects principle
Only low-order interactions between the input
variables are relevant

Hyperbolic truncation
AM,pq = {α ∈ NM : ||α||q ≤ p}

where ||α||q ≡

(
M∑
i=1

αqi

)1/q

, 0 < q ≤ 1

Blatman & S., Prob. Eng. Mech (2010); J. Comp. Phys (2011)
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Sparse polynomial chaos expansions Sparse PCE

Compressive sensing approaches
Blatman & S. (2011); Doostan & Owhadi (2011); Ian, Guo, Xiu (2012); Sargsyan et al. (2014); Jakeman et al. (2015)

• Sparsity in the solution can be induced by `1-regularization:

yα = arg min 1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2
+ λ ‖ yα ‖1

• Different solvers: LASSO, LAR, orthogonal matching pursuit, convex
optimization (SPGL1), Bayesian compressive sensing

• Different sampling schemes
LHS

LHS
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→ Talk by Nora Lüthen: ”Literature survey and benchmarking of sparse polynomial
chaos expansions” Tuesday 14:00 (MS5-II) in Room 2
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Applications in machine learning
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Applications in machine learning Probabilistic model of the data

Sparse PCE for supervised learning

Premise
Polynomial chaos expansions are built based on the PDF of the input
parameters, assuming independence

Overview
• Build a probabilistic model of the input data, say F̂X
• Transform into auxiliary independent variables Z:

T : X 7→ Z ∼
M∏
i=1

fZi (zi)

• Map the data into the auxiliary space: x(i) −→ z(i)

• Use the new data set Z =
{(
z(i), y(i)) , i = 1, . . . , n

}
for building a PCE
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Applications in machine learning Probabilistic model of the data

Probabilistic modelling of raw data

Copula representation
• Non-parametric estimation of the marginals

For each univariate sample Xk
def=
{
x

(1)
k , . . . , x

(n)
k

}
a kernel smoothing

technique is used:

f̂Xk (x) = 1
nhk

n∑
i=1

K

(
x− x(i)

k

h

)
- K: kernel function, e.g. the Gaussian kernel ϕ(t) = e−t

2/2/
√

2π
- hk: bandwidth to be adapted to the data
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• Estimation of the copula: requires flexibility in high-dimensions:

Vine copulas

Torre, Marelli, Embrechts, Sudret (2019), Prob. Eng. Mech. (2019)
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Applications in machine learning Sparse PCE w. and w/o dependence

Outline
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Applications in machine learning Sparse PCE w. and w/o dependence

Approach #1: PCE in the auxiliary space
Procedure
• Data: X =

{
(x(i), y(i)), i = 1, . . . , n

}
• Use kernel smoothing for setting marginals

• Fit a copula e.g. Gaussian, vines

• Transform the data into the resulting auxiliary space, e.g. [−1, 1], to use
Legendre polynomials

Case of Gaussian copula (with correlation matrix Θ̂)
Sudret et al. (2015), Int. Symp. on Big Data and Predictive Computational Modeling, Munich (Germany)

Gaussianize: z
(i)
k = Φ−1(F̂Xk (x(i)

k ))

Decorrelate z’s: z̃(i) = L−1 · z(i) where Θ̂ = L · LT

General case: vine copulas Torre, Marelli, Embrechts, Sudret (2019), J. Comput. Phys. (2019)

→ Talk by Emiliano Torre: ”Representation of complex dependencies with copulas
in UQLab” Tuesday 14:00 (MS10-I) in Room 7
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Applications in machine learning Sparse PCE w. and w/o dependence

Approach #2: aPCE on marginals

Premise
• Approach #1 captures (some of) the complex data dependence, yet requires a

non linear isop. transform into the auxiliary space

• The PC expansion approximates the combination of the “true model” and the
isop. transform

M(x) =M(T (z)) =
∑
α∈A

aα Ψα(z)

Alternative Torre, Marelli, Embrechts, Sudret (2019), J. Comput. Phys.

Disregard the dependencies and work in the original space using arbitrary PCE
based on non-parametric distributions

• Use kernel smoothing for representing the marginals
{
F̂Xi , i = 1, . . . ,M

}
• Compute polynomials that are orthonormal to the PDF in each dimension

• Use least-square analysis with sparse aPCE
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Applications in machine learning Applications: CCPP, Wine grading
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Applications in machine learning Applications: CCPP, Wine grading

Combined cycle power plant (CCPP)

Data set UC Irvine Machine Learning Repository

• 9,568 data points

• 4 features:
- Temperature T ∈ [1.81, 37.11] ◦C
- Exhaust vacuum in the steam turbine V ∈ [25.36, 81.56] cm Hg
- Ambient pressure P ∈ [992.89, 1033.30] mB
- Relative humidity in the gas turbine RH ∈ [25.56− 100.16]%

• Output: net hourly electrical energy output EP ∈ [420.26, 495.76] MW

Reference approach Tüfekci, P. (2014), Int. J. Elec. Power & Energy Systems

• 13 ML techniques including regression trees, ANN and SVR

• 10 pairs of training / validation sets of size 4,784

• Best approach: bagging reduced error pruning (BREP) regression tree
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Applications in machine learning Applications: CCPP, Wine grading

CCPP: Training data (X-space)
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Applications in machine learning Applications: CCPP, Wine grading

CCPP: Results

(Relative) mean absolute error

MAE min. MAE mean-min rMAE (%)

aPCEonX 3.11 ± 0.03 3.05 0.06 0.68 ± 0.007
BREP-NN† 3.22 ± n.a. 2.82 0.40 n.a.

† Tüfekci et al. (2014)
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Estimated PDF of the energy pro-
duced by the CCPP:
• Histogram of raw data
• PDF obtained by PCE (10

diff. training sets) for input
dependencies modelled by
C-vines
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Applications in machine learning Applications: CCPP, Wine grading

Quality of vinho verde wines (Portugal)
Data set http://www3.dsi.uminho.pt/pcortez/wine/

• 6,497 wine samples (1,599 red and 4,898 white) analyzed in laboratory for
physico-chemical parameters, then graded by experts

• 11 features:
• Fixed acidity
• Volatile acidity
• Citric acid
• Residual sugar
• Chlorides
• Free sulfur dioxide
• Total sulfur dioxide
• Density
• pH
• Sulphates
• Alcohol

• Output: Quality score Q, which is the median of 3 (integer) grades between 0
and 10 given by experts

Reference approach Cortez et al. , Decision Support Systems (2009)

• Multilinear regression, single-layer NN, SVM
• 20 × 5-fold randomized cross validation
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Applications in machine learning Applications: CCPP, Wine grading

Quality of vinho verde wines: Training data (X-space)
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Applications in machine learning Applications: CCPP, Wine grading

Quality of vinho verde wines: Results

(Relative) mean absolute error (MAE)

Red wine White wine
MAE rMAE (%) MAE rMAE (%)

aPCEonX 0.44 ± 0.03 8.0 ± 0.6 0.50 ± 0.02 8.8 ± 0.3
SVM† 0.46 ± 0.00 n.a. 0.45 ± 0.00 n.a.

Best NN† 0.51 ± 0.00 n.a. 0.58 ± 0.00 n.a.

†Cortez et al. (2009)
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• PCE predictions rounded to the closest integer
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Applications in machine learning Applications: CCPP, Wine grading

Airfoil

Data set UC Irvine Machine Learning Repository

• 750 training points, 750 validation points

• 41 features:
• Frequency, in Hertz
• Angle of attack, in degrees
• Chord length, in meters
• Free-stream velocity, in meters per second.
• Suction side displacement thickness, in meters
• 36 noise variables (standard normal)

• Output: Scaled sound pressure level, in decibels

Reference approach K. Kandasamy & Y. Yu, ICML16 Proc. of the 33rd Int. Conf. on Machine Learning (2016)

• Sparse LASSO regression (SALSA)

• Beats 13 other regression models, incl. neural networks
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Applications in machine learning Applications: CCPP, Wine grading

Airfoil: Results

(Relative) mean absolute error (MAE)

MAE (dB) rMAE (%)

aPCEonX 3.04 ± 0.07 2.4±0.06
SALSA† 3.81 ± 0.06 3.1±0.04

†Kandasamy & Yu (2016)
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Surrogate models in high dimensions

Outline
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Surrogate models in high dimensions

Challenges of modern engineering simulations

Medium-dimensional inputs
Typically O(10− 100) (possibly dependent) input parameters

Sparse polynomial chaos expansions, low-rank tensor representations

Functional inputs
• Time-series inputs, e.g. to represent climatic loads such as temperature

history, wind velocity, etc.

• Maps of measured geometry/material properties: land elevation (river
hydraulics), surface rugosity (contact problems in mechanical engineering),
thermal conductivity, permeability, etc.
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Surrogate models in high dimensions

Challenges of modern engineering simulations: examples

• Time-series accelerograms in structural dynamics (earthquake engineering)
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• Wind velocity fields in the design of wind turbines
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Surrogate models in high dimensions

Common features

• High-dimensional inputs: 103−5 time steps / pixels per input

• Underlying probabilistic model not necessarily available (data-driven
UQ), e.g. when a catalog of recorded input signals is used (earthquake
engineering)

In order to use classical surrogate modelling techniques,
dimensionality reduction must be used as a pre-processing
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Surrogate models in high dimensions DRSM

Dimensionality reduction

Dimensionality reduction
A mapping g : X ∈ RM 7→ Z ∈ Rm (m << M) of the form:

z = g(x; w)

such that:
• It preserves some properties of X (e.g. information content)
• Its parameters w are inferred from the original data X

Common dimensionality reduction methods
• Principal Component Analysis (PCA)
• Kernel PCA
• Autoencoders
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Surrogate models in high dimensions DRSM

Sequential approach

• Perform dimensionality reduction of
X ∈ RM to Z ∈ Rm

• Construct a surrogate model using
the compressed data Z, i.e.
y ≈ M̃(z)

Findings
A good dimensionality
reduction (w.r.t
reconstruction error)
does not mean that an
accurate surrogate
model can be built in
the input space
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Surrogate models in high dimensions DRSM

DRSM joint approach

Goal Lataniotis, Marelli & Sudret (2018), arxiv 1812.06309

Optimize the parameters w of the DR step in such a way that the reduced
variables z = g(x; w) are suitable to achieve an overall accurate surrogate

Optimization procedure
• Loss function {

ŵ, θ̂
}

= arg min
w∈Dw, θ∈Dθ

`
(
M(·),M̃ (g(·; w), θ)

)
• In practice, a RMS error on a validation set or a leave-one-out error
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Surrogate models in high dimensions DRSM

Block-coordinate descent optimization

Principle
Parameters w and θ are updated in an alternating way

Outer loop
Optimize the compression parameters w so as to minimize the leave-one-out
error of the surrogate:

ŵ = arg min
w∈Dw

εLOO(w; θ̂(w),X ,Y)

Inner loop
Given the current value of the compression parameters w and related z(w)’s,
fit the surrogate:

θ̂ = arg min
θ∈Dθ

εLOO(θ; w,X ,Y)
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Surrogate models in high dimensions DRSM

Computational efficiency

Low-cost intermediate surrogates
During the optimization, cheap-to-calibrate surrogates are used:

Kriging: Isotropic kernel is used together with a limited computational
budget

PCE: Low-degree Legendre polynomials

Final surrogate
Once the optimal DR parameters w∗ are obtained, a high-accuracy surrogate model
is used:

Kriging: Anisotropic kernels and global optimization + gradient-based
refinement

PCE: adaptive sparse arbitrary PCE based on the true distribution of the
Z’s (kernel density estimation)
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Surrogate models in high dimensions DRSM

Summary

• DRSM is a generic algorithm that combines ML for compression and UQ for
surrogating

• Given a data set, multiple combinations can be tested in parallel, e.g.
{SAE, PCA, KPCAs} × {PCE, GP, etc.}

• It provides surrogates for models with high dimensional inputs (e.g. measured
time series / fields)

→ Talk by Stefano Marelli: ”Combining machine learning and surrogate modelling
for data-driven uncertainty propagation in high-dimension” Monday 11:30 (MS15-I)
in Room 3
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Surrogate models in high dimensions Unstructured data: resistor network

Outline

1 Introduction

2 Sparse polynomial chaos expansions

3 Applications in machine learning

4 Surrogate models in high dimensions
DRSM
Unstructured data: resistor network
Data-driven heat diffusion problem
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Surrogate models in high dimensions Unstructured data: resistor network

Unstructured data: resistor network

Dataset description

• Network comprised of 80
uncertain resistors

• Output of interest is voltage
at V

• Effect of resistors onto V
decays with distance

Data courtesy of J. Jakeman (SANDIA National Labs), Jake-

man et al. , J. Comput. Phys (2015)

Optimal DRSM configuration
SM method KPCA kernel m̂ ε̂gen

Kriging Anis. Gaussian 24 2.40 · 10−4

PCE Anis. Gaussian 32 3.25 · 10−5

ε̂gen as a function of m

B. Sudret (Chair of Risk, Safety & UQ) Surrogate modelling meets machine learning UNCECOMP – June 25, 2019 37 / 42



Surrogate models in high dimensions Unstructured data: resistor network

Unstructured data: resistor network
• Kernel PCA with anisotropic Gaussian kernel combined with PCE yields the

most accurate surrogate (ε̂gen = 3.25 · 10−5)
• The optimal reduced dimension m is equal to 32

• The first auxiliary variables {z1, . . . , zm} correspond one-to-one to the
important parameters of the problem (based on Sobol’ indices)
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Surrogate models in high dimensions Data-driven heat diffusion problem

Data-driven heat diffusion problem
Problem statement

−∇·(k(v)∇T (v)) = 500 IA(v), v ∈ [−0.5, 0.5]2

with boundary conditions:
• T = 0 on top boundary
• ∇T · n = 0 on other boundaries

Lognormal diffusion coefficient k(v)

k(v) = exp (ad + bd g(v))

with mean value 1, std. deviation 0.3, square-
exponential autocorrelation function:

R(v, v′) = exp
(
−
∥∥v− v′

∥∥2
/`2
)

Konakli and Sudret, Prob. Eng. Mech. (2016)

Input diffusion coefficient

Output temperature
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Surrogate models in high dimensions Data-driven heat diffusion problem

Data-driven heat diffusion problem

Synthetic input maps Li & Der Kiureghian (1993)

• The underlying Gaussian field is generated from an EOLE expansion

ĝ(v) =
p∑
i=1

ξi√
l(i)

(
φ(i))>Cvv(v),

where:
C(k)

vv = R(v, vk), C(i,j)
vv = R(vi, vj)

• 500 maps of diffusion coefficient are
generated wrt the finite element mesh:
M = 16, 000-dimensional input

(300 training and 200 validation points)

• Scalar output: average temperature in
Domain B

B. Sudret (Chair of Risk, Safety & UQ) Surrogate modelling meets machine learning UNCECOMP – June 25, 2019 40 / 42



Surrogate models in high dimensions Data-driven heat diffusion problem

Results

DRSM output
• Kernel PCA with polynomial kernel

combined with Kriging yields the most
accurate surrogate

• DRSM automatically finds PCA (polynomial
degree 1) with m = 20 components as the
best compression

Conclusion
• Fully data-driven surrogate of the

map-to-temperature model

• Accurate estimation of the distribution of T
through resampling of the auxiliary variables

LOO error as a function of m

DRSM vs. sequential DR+SM
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Surrogate models in high dimensions Data-driven heat diffusion problem

Conclusions

• Machine learning techniques and surrogate modelling for uncertainty
quantification are closer than ever

• Sparse PCE can be used efficiently for supervised learning in low/medium
dimension (better accuracy, no parameters to tweak)

• Compression techniques (PCA, Kernel PCA, stacked auto-encoders) can be
used in combination with classical techniques (PCE, Kriging, etc.) to build
data-driven surrogates in extreme input dimensions

• This opens the path to real-time simulation of models with continously
measured input parameters
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Surrogate models in high dimensions Data-driven heat diffusion problem

UQLab
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Surrogate models in high dimensions Data-driven heat diffusion problem

[NEW] The applied UQ community: uqworld.org
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Surrogate models in high dimensions Data-driven heat diffusion problem

Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

The Uncertainty
Quantification

Software
www.uqlab.com

Thank you very much for your attention !
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