

# Surrogate modelling meets machine learning

**Other Conference Item** 

Author(s): Sudret, Bruno (b; Lataniotis, Christos (b; Lüthen, Nora (b; Marelli, Stefano (b; Torre, Emiliano (b)

Publication date: 2019-06-25

Permanent link: https://doi.org/10.3929/ethz-b-000359596

Rights / license: In Copyright - Non-Commercial Use Permitted





# Surrogate modelling meets machine learning

## Bruno Sudret

Contributions from: C. Lataniotis, N. Lüthen, S. Marelli, E. Torre

Chair of Risk, Safety and Uncertainty Quantification

3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering June 24-26, 2019 This presentation is the semi-plenary lecture given at the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP2019) in Hersonissos, Crete (Greece), June 24-26, 2019 (https://2019.uncecomp.org/)

How to cite

Sudret, B. *Surrogate modelling meets machine learning* (2019), Proc. 3rd Int. Conf. on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP2019), Hersonissos, Crete (Greece), June 24-26.

## Introduction: supervised learning

I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press (2017)

- Machine learning aims at making predictions by building a model based on data
- Unsupervised learning aims at discovering a hidden structure within unlabelled data  $\left\{\pmb{x}^{(i)},\,i=1,\,\ldots\,,n\right\}$
- Supervised learning considers a training data set:

$$\mathcal{X} = \left\{ (\boldsymbol{x}^{(i)}, y^{(i)}), \, i = 1, \dots, n \right\}$$

where:

- $x^{(i)}$ 's are the attributes / features (input space)
- $y^{(i)}$ 's are the labels (output space)

# Classical problems and algorithms

## Classification

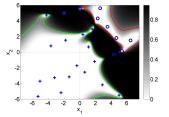
• In classification problems, the labels are discrete, e.g.  $y^{(i)} \in \{-1, 1\}$ . The goal is to predict the class of a new point x

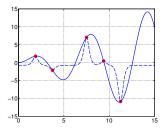
Logistic regression - Support vector machines - (Deep) neural networks

#### Regression

In regression problems, the labels are continuous, say y<sup>(i)</sup> ∈ D<sub>Y</sub> ⊂ ℝ. The goal is to predict the value ŷ = M̃(x) for a new point x

Neural networks - Gaussian process models -Support vector regression





## Uncertainty quantification

• A computational model is defined as a map:

 $x \in \mathcal{D}_X \mapsto y = \mathcal{M}(x)$ 

• Uncertainties in the input are represented by a probabilistic model:

 $X \sim f_X$  (joint PDF)

• Uncertainty propagation aims at estimating the statistics of  $Y = \mathcal{M}(\mathbf{X})$ 







# Surrogate models for uncertainty quantification

A surrogate model  $\tilde{\mathcal{M}}$  is an approximation of the original computational model  $\mathcal{M}$  with the following features:

- It is built from a limited set of runs of the original model  $\mathcal M$  called the experimental design  $\mathcal X=\left\{\pmb{x}^{(i)},\,i=1,\,\ldots\,,n\right\}$
- It assumes some regularity of the model  ${\mathcal M}$  and some general functional shape

| Name                               | Shape                                                                                                                                                                  | Parameters                                   |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Polynomial chaos expansions        | $	ilde{\mathcal{M}}(m{x}) = \sum a_{m{lpha}}  \Psi_{m{lpha}}(m{x})$                                                                                                    | $a_{lpha}$                                   |
|                                    | $R \xrightarrow{\alpha \in \mathcal{A}} M$                                                                                                                             |                                              |
| Low-rank tensor approximations     | $	ilde{\mathcal{M}}(m{x}) = \sum_{l=1}^{R} b_l \left( \prod_{i=1}^{M} v_l^{(i)}(x_i)  ight) \\ 	ilde{\mathcal{M}}(m{x}) = m{eta}^T \cdot m{f}(m{x}) + Z(m{x}, \omega)$ | $b_l,z_{k,l}^{(i)}$                          |
| Kriging (a.k.a Gaussian processes) | $	ilde{\mathcal{M}}(m{x}) = m{eta}^T \cdot m{f}(m{x}) + Z(m{x},\omega)$                                                                                                | $oldsymbol{eta},\sigma_Z^2,oldsymbol{	heta}$ |
| Support vector machines            | $	ilde{\mathcal{M}}(oldsymbol{x}) = \sum^m a_i  K(oldsymbol{x}_i,oldsymbol{x}) + b$                                                                                    | a,b                                          |
| Neural networks                    | $	ilde{\mathcal{M}}(m{x}) = f_2 \left( b_2 + f_1 \left( b_1 + m{w}_1 \cdot m{x}  ight) \cdot m{w}_2  ight)$                                                            | $oldsymbol{w},oldsymbol{b}$                  |

# Ingredients for building a surrogate model

- Select an experimental design X that covers at best the domain of input parameters: Latin hypercube sampling (LHS), low-discrepancy sequences
- Run the computational model  $\mathcal{M}$  onto  $\mathcal{X}$  exactly as in Monte Carlo simulation



• Smartly post-process the data  $\{\mathcal{X}\,,\,\mathcal{M}(\mathcal{X})\}$  through a learning algorithm

| Name                           | Learning method                                                |
|--------------------------------|----------------------------------------------------------------|
| Polynomial chaos expansions    | sparse grid integration, least-squares,<br>compressive sensing |
| Low-rank tensor approximations | alternate least squares                                        |
| Kriging                        | maximum likelihood, Bayesian inference                         |
| Support vector machines        | quadratic programming                                          |

• Validate the surrogate model, *e.g.* estimate a global error  $\varepsilon = \mathbb{E}\left[\left(\mathcal{M}(\boldsymbol{X}) - \tilde{\mathcal{M}}(\boldsymbol{X})\right)^2\right]$ 

## Bridging supervised learning and PC expansions

| Features                                                                                                                 | Supervised learning                                    | Surrogate modelling                                                                           |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Computational model ${\cal M}$                                                                                           | ×                                                      | ~                                                                                             |
| Probabilistic model of the input $oldsymbol{X} \sim f_{oldsymbol{X}}$                                                    | ×                                                      | V                                                                                             |
| $\begin{array}{ll} {\sf Training} & {\sf data:} & {\cal X} & = \\ \{({\pmb x}_i, y_i),  i=1,  \ldots  , n\} \end{array}$ | ~                                                      | v                                                                                             |
|                                                                                                                          | Training data set<br>(big data)                        | Experimental design<br>(small data)                                                           |
| Prediction goal: for a new $\pmb{x} \notin \mathcal{X}$ , $y(\pmb{x})$ ?                                                 | $\sum_{i=1}^m y_i  K(oldsymbol{x}_i,oldsymbol{x}) + b$ | $\sum_{oldsymbol{lpha}\in\mathcal{A}}y_{oldsymbol{lpha}}\Psi_{oldsymbol{lpha}}(oldsymbol{x})$ |
| Validation (resp. cross-<br>validation)                                                                                  | ~                                                      | ~                                                                                             |
|                                                                                                                          | Validation set                                         | Leave-one-out CV                                                                              |

## Outline

## 1 Introduction

Sparse polynomial chaos expansions Spectral expansion Computing the coefficients Sparse PCE

#### 3 Applications in machine learning

Probabilistic model of the data Sparse PCE w. and w/o dependence Applications: CCPP, Wine grading

#### Surrogate models in high dimensions DRSM Unstructured data: resistor network Data-driven heat diffusion problem

## Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991); S. & Der Kiureghian (2000); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

- Consider the input random vector X (dim X = M) with given probability density function (PDF)  $f_X(x) = \prod_{i=1}^M f_{X_i}(x_i)$
- Assuming that the random output  $Y = \mathcal{M}(X)$  has finite variance, it can be cast as the following polynomial chaos expansion:

$$Y = \sum_{oldsymbol{lpha} \in \mathbb{N}^M} y_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{X})$$

where :

- $\Psi_{\alpha}(X)$  : basis functions
- $y_{\alpha}$  : coefficients to be computed (coordinates)
- The PCE basis  $\left\{\Psi_{oldsymbollpha}(X),\,oldsymbollpha\in\mathbb{N}^M
  ight\}$  is made of multivariate orthonormal polynomials

$$\Psi_{\boldsymbol{\alpha}}(\boldsymbol{x}) \stackrel{\text{def}}{=} \prod_{i=1}^{M} \Psi_{\alpha_{i}}^{(i)}(x_{i}) \qquad \mathbb{E}\left[\Psi_{\boldsymbol{\alpha}}(\boldsymbol{X})\Psi_{\boldsymbol{\beta}}(\boldsymbol{X})\right] = \delta_{\boldsymbol{\alpha}\boldsymbol{\beta}}$$

# Isoprobabilistic transform

#### Premise

Classical orthogonal polynomials are defined for reduced variables *e.g.* standard normal variables  $\mathcal{N}(0,1)$  (Hermite polynomials) or standard uniform variables  $\mathcal{U}(-1,1)$  (Legendre polynomials)

How to handle arbitrary distributions?

## Independent variables with given CDF ${\it F}_{{\it X}_i}$

• Use arbitrary PCE

Wan & Karniadakis (2006); Oladyshkin & Nowak (2012)

Univariate polynomials  $\left\{\Psi_k^{(i)}\right\}_{k\geq 0}$  are constructed numerically so as to be orthogonal w.r.t  $f_{X_i}$ 

Use a one-to-one mapping to reduced variables:

$$\begin{aligned} X_i &= F_{X_i}^{-1} \left( \frac{\xi_i + 1}{2} \right) & \text{if } \xi_i \sim \mathcal{U}(-1, 1) \\ X_i &= F_{X_i}^{-1} \left( \Phi(\xi_i) \right) & \text{if } \xi_i \sim \mathcal{N}(0, 1) \end{aligned}$$

Berveiller et al. (2006)

# Isoprobabilistic transform

#### Dependence: copula representation

- Copula theory allows one to represent the joint CDF  $F_X$  by the set of marginal distributions  $\{F_{X_1}, \ldots, F_{X_M}\}$  and a copula C
- Sklar's theorem:

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = \mathcal{C}\left(F_{X_1}(x_1), \ldots, F_{X_M}(x_M)\right)$$

Example: Gaussian copula

$$\mathcal{C}^{\mathcal{N}}(\boldsymbol{u};\boldsymbol{\Theta}) = \Phi_M\left(\Phi^{-1}(u_1),\ldots,\Phi^{-1}(u_M);\boldsymbol{\Theta}\right)$$

where  $\Phi_{M}$  is the multivariate Gaussian CDF

#### Inference

- In practice, marginals and copulas are inferred from data sequentially
- Rosenblatt or Nataf isoprobabilistic transforms can be used to map X to a vector Z with independent components

## Outline

## Introduction

 Sparse polynomial chaos expansions Spectral expansion Computing the coefficients Sparse PCE

**3** Applications in machine learning

④ Surrogate models in high dimensions

## Computing the coefficients by least-square minimization

Principle

Isukapalli (1999); Berveiller, S. & Lemaire (2006)

The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:

$$Y = \mathcal{M}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X}) + \varepsilon_{P} \equiv \boldsymbol{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{X}) + \varepsilon_{P}(\boldsymbol{X})$$

where :  $\mathbf{Y} = \{y_{\alpha}, \, \alpha \in \mathcal{A}\} \equiv \{y_0, \, \dots, y_{P-1}\}$  (*P* unknown coef.)

$$\boldsymbol{\Psi}(\boldsymbol{x}) = \{\Psi_0(\boldsymbol{x}), \ldots, \Psi_{P-1}(\boldsymbol{x})\}$$

#### Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

$$\begin{split} \hat{\mathbf{Y}} &= \arg\min \, \mathbb{E}\left[\left(\mathbf{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{X}) - \mathcal{M}(\boldsymbol{X})\right)^{2}\right] \\ &= \arg\min_{\mathbf{Y} \in \mathbb{R}^{P}} \, \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{Y}^{\mathsf{T}} \boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)})\right)^{2} \end{split}$$

## Validation: error estimators

• In least-squares analysis, the generalization error is defined as:

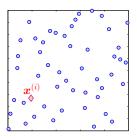
$$E_{gen} = \mathbb{E}\left[\left(\mathcal{M}(\boldsymbol{X}) - \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X})\right)^{2}\right] \qquad \qquad \mathcal{M}^{\mathsf{PC}}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{X})$$

#### Leave-one-out cross validation

- From statistical learning theory, model validation shall be carried out using independent data
- LOO cross-validation for PCE emulates it using all data at once

$$E_{LOO} = \frac{1}{n} \sum_{i=1}^{n} \left( \frac{\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{PC}(\boldsymbol{x}^{(i)})}{1 - h_i} \right)^2$$

where  $h_i$  is the *i*-th diagonal term of matrix  $\mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}, \quad \mathbf{A}_{ij} = \Psi_j(\boldsymbol{x}^{(i)})$ 



## Outline

## 1 Introduction

## 2 Sparse polynomial chaos expansions

Spectral expansion Computing the coefficients Sparse PCE

**3** Applications in machine learning

4 Surrogate models in high dimensions

## Curse of dimensionality and sparsity-inducing truncation

- The cardinality of the truncation scheme  $\mathcal{A}^{M,p}$  is  $P = \frac{(M+p)!}{M! \, p!}$
- Typical computational requirements:  $n = OSR \cdot P$  where the oversampling rate is OSR = 2 3

However ... most coefficients are close to zero !

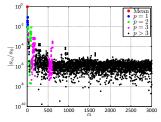
#### Sparsity-of-effects principle

Only low-order interactions between the input variables are relevant

Hyperbolic truncation

$$\mathcal{A}_q^{M,p} = \{ oldsymbol{lpha} \in \mathbb{N}^M \; : \; ||oldsymbol{lpha}||_q \leq p \}$$
  
where  $||oldsymbol{lpha}||_q \equiv \left(\sum_{i=1}^M lpha_i^q\right)^{1/q} \;, \quad 0 < q \leq 1$ 

Blatman & S., Prob. Eng. Mech (2010); J. Comp. Phys (2011)



v

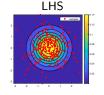
## Compressive sensing approaches

Blatman & S. (2011); Doostan & Owhadi (2011); Ian, Guo, Xiu (2012); Sargsyan et al. (2014); Jakeman et al. (2015)

• Sparsity in the solution can be induced by  $\ell_1$ -regularization:

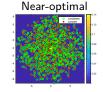
$$\boldsymbol{y_{\alpha}} = \arg\min\frac{1}{n}\sum_{i=1}^{n}\left(\boldsymbol{Y}^{\mathsf{T}}\boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)})\right)^{2} + \lambda \parallel \boldsymbol{y_{\alpha}} \parallel_{1}$$

- Different solvers: LASSO, LAR, orthogonal matching pursuit, convex optimization (SPGL1), Bayesian compressive sensing
- Different sampling schemes





D-optimal



McKay, Beckman, Conover 1979

Hampton, Doostan 2015

Diaz, Doostan, Hampton 2018

Alemazkoor, Meidani 2018

 $\rightarrow$  Talk by Nora Lüthen: "Literature survey and benchmarking of sparse polynomial chaos expansions" Tuesday 14:00 (MS5-II) in Room 2

B. Sudret (Chair of Risk, Safety & UQ)

Surrogate modelling meets machine learning

## Outline

## 1 Introduction

2 Sparse polynomial chaos expansions

Applications in machine learning Probabilistic model of the data Sparse PCE w. and w/o dependence Applications: CCPP, Wine grading

4 Surrogate models in high dimensions

# Sparse PCE for supervised learning

#### Premise

Polynomial chaos expansions are built based on the PDF of the input parameters, assuming independence

#### Overview

- Build a probabilistic model of the input data, say  $\hat{F}_{oldsymbol{X}}$
- Transform into auxiliary independent variables Z:

$$\mathcal{T}: \boldsymbol{X} \mapsto \boldsymbol{Z} \sim \prod_{i=1}^M f_{Z_i}(z_i)$$

- Map the data into the auxiliary space:  $x^{(i)} \longrightarrow z^{(i)}$
- Use the new data set  $\mathcal{Z} = \left\{ \left( m{z}^{(i)}, \, y^{(i)} 
  ight), \, i = 1, \, \ldots \, , n 
  ight\}$  for building a PCE

# Probabilistic modelling of raw data

#### Copula representation

• Non-parametric estimation of the marginals

For each univariate sample  $\mathcal{X}_k \stackrel{\text{def}}{=} \left\{ x_k^{(1)}, \ldots, x_k^{(n)} \right\}$  a kernel smoothing technique is used:

$$\hat{f}_{X_k}(x) = \frac{1}{n h_k} \sum_{i=1}^n K\left(\frac{x - x_k^{(i)}}{h}\right)$$

- K: kernel function, e.g. the Gaussian kernel  $\varphi(t) = e^{-t^2/2}/\sqrt{2\pi}$ 

-  $h_k$ : bandwidth to be adapted to the data









• Estimation of the copula: requires flexibility in high-dimensions:

Vine copulas

Torre, Marelli, Embrechts, Sudret (2019), Prob. Eng. Mech. (2019)

## Outline

## 1 Introduction

2 Sparse polynomial chaos expansions

3 Applications in machine learning Probabilistic model of the data Sparse PCE w. and w/o dependence Applications: CCPP, Wine grading

4 Surrogate models in high dimensions

# Approach #1: PCE in the auxiliary space

#### Procedure

- Data:  $\mathcal{X} = \left\{ (oldsymbol{x}^{(i)}, y^{(i)}), \, i = 1, \, \ldots, n 
  ight\}$
- Use kernel smoothing for setting marginals
- Fit a copula e.g. Gaussian, vines
- Transform the data into the resulting auxiliary space, e.g. [-1, 1], to use Legendre polynomials

Case of Gaussian copula (with correlation matrix  $\hat{\Theta}$ )

Sudret et al. (2015), Int. Symp. on Big Data and Predictive Computational Modeling, Munich (Germany)

Gaussianize: 
$$z_k^{(i)} = \Phi^{-1}(\hat{F}_{X_k}(x_k^{(i)}))$$

Decorrelate z's:  $\tilde{z}^{(i)} = \mathsf{L}^{-1} \cdot z^{(i)}$  where  $\hat{\Theta} = \mathsf{L} \cdot \mathsf{L}^{\mathsf{T}}$ 

#### General case: vine copulas

Torre, Marelli, Embrechts, Sudret (2019), J. Comput. Phys. (2019)

 $\rightarrow$  Talk by Emiliano Torre: "Representation of complex dependencies with copulas in UQLab" Tuesday 14:00 (MS10-I) in Room 7

B. Sudret (Chair of Risk, Safety & UQ)

# Approach #2: aPCE on marginals

#### Premise

- Approach #1 captures (some of) the complex data dependence, yet requires a non linear isop. transform into the auxiliary space
- The PC expansion approximates the combination of the "true model" and the isop. transform

$$\mathcal{M}(\boldsymbol{x}) = \mathcal{M}(\mathcal{T}(\boldsymbol{z})) = \sum_{\boldsymbol{lpha} \in \mathcal{A}} a_{\boldsymbol{lpha}} \Psi_{\boldsymbol{lpha}}(\boldsymbol{z})$$

#### Alternative

Torre, Marelli, Embrechts, Sudret (2019), J. Comput. Phys.

Disregard the dependencies and work in the original space using arbitrary PCE based on non-parametric distributions

- Use kernel smoothing for representing the marginals  $\{\hat{F}_{X_i}, i=1,\ldots,M\}$
- Compute polynomials that are orthonormal to the PDF in each dimension
- Use least-square analysis with sparse aPCE

## Outline

## 1 Introduction

2 Sparse polynomial chaos expansions

3 Applications in machine learning Probabilistic model of the data Sparse PCE w. and w/o dependence Applications: CCPP, Wine grading

4 Surrogate models in high dimensions

# Combined cycle power plant (CCPP)

#### Data set

UC Irvine Machine Learning Repository

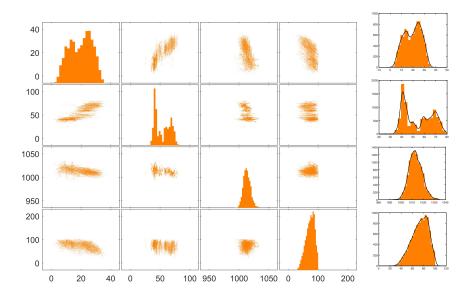
- 9,568 data points
- 4 features:
  - Temperature  $T \in [1.81, 37.11]$  °C
  - Exhaust vacuum in the steam turbine  $V \in [25.36, 81.56]$  cm Hg
  - Ambient pressure  $P \in [992.89, 1033.30] \text{ mB}$
  - Relative humidity in the gas turbine  $RH \in [25.56 100.16]\%$
- Output: net hourly electrical energy output  $EP \in [420.26, 495.76]$  MW

Reference approach

Tüfekci, P. (2014), Int. J. Elec. Power & Energy Systems

- 13 ML techniques including regression trees, ANN and SVR
- 10 pairs of training / validation sets of size 4,784
- Best approach: bagging reduced error pruning (BREP) regression tree

# CCPP: Training data (X-space)

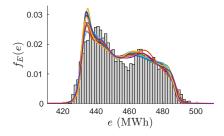


## **CCPP:** Results

## (Relative) mean absolute error

|                          | MAE                  | min. MAE | mean-min | rMAE (%)       |
|--------------------------|----------------------|----------|----------|----------------|
| aPCEonX                  | $3.11\pm0.03$        | 3.05     | 0.06     | $0.68\pm0.007$ |
| $BREP\text{-}NN^\dagger$ | $3.22\pm\text{n.a.}$ | 2.82     | 0.40     | n.a.           |

<sup>†</sup> Tüfekci et al. (2014)



Estimated PDF of the energy produced by the CCPP:

- Histogram of raw data
- PDF obtained by PCE (10 diff. training sets) for input dependencies modelled by C-vines

# Quality of vinho verde wines (Portugal)

#### Data set

http://www3.dsi.uminho.pt/pcortez/wine/

- 6,497 wine samples (1,599 red and 4,898 white) analyzed in laboratory for physico-chemical parameters, then graded by experts
- 11 features:
  - Fixed acidity
  - Volatile acidity
  - Citric acid
  - Residual sugar
  - Chlorides
  - Free sulfur dioxide
  - Total sulfur dioxide
  - Density
  - pH
  - Sulphates
  - Alcohol
- Output: Quality score Q, which is the median of 3 (integer) grades between 0 and 10 given by experts

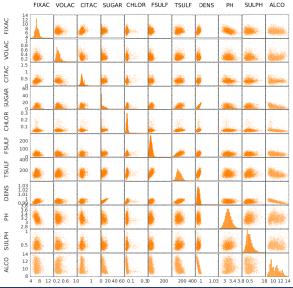
## Reference approach

Cortez et al. , Decision Support Systems (2009)

- Multilinear regression, single-layer NN, SVM
- 20  $\times$  5-fold randomized cross validation

B. Sudret (Chair of Risk, Safety & UQ)

# Quality of *vinho verde* wines: Training data (X-space)



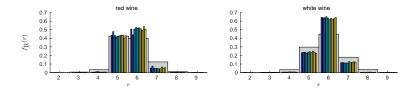
B. Sudret (Chair of Risk, Safety & UQ)

## Quality of *vinho verde* wines: Results

#### (Relative) mean absolute error (MAE)

|                     | Red wine      |             | White wine                    |
|---------------------|---------------|-------------|-------------------------------|
|                     | MAE           | rMAE (%)    | MAE rMAE (%)                  |
| aPCEonX             | $0.44\pm0.03$ | $8.0\pm0.6$ | $0.50 \pm 0.02$ $8.8 \pm 0.3$ |
| SVM <sup>†</sup>    | $0.46\pm0.00$ | n.a.        | $0.45\pm0.00$ n.a.            |
| Best $NN^{\dagger}$ | $0.51\pm0.00$ | n.a.        | $0.58\pm0.00$ n.a.            |

Cortez et al. (2009)



• PCE predictions rounded to the closest integer

# Airfoil

Data set

UC Irvine Machine Learning Repository

- 750 training points, 750 validation points
- 41 features:
  - Frequency, in Hertz
  - Angle of attack, in degrees
  - Chord length, in meters
  - Free-stream velocity, in meters per second.
  - · Suction side displacement thickness, in meters
  - 36 noise variables (standard normal)
- Output: Scaled sound pressure level, in decibels

Reference approach

K. Kandasamy & Y. Yu, ICML16 Proc. of the 33rd Int. Conf. on Machine Learning (2016)

- Sparse LASSO regression (SALSA)
- Beats 13 other regression models, incl. neural networks

## Airfoil: Results

## (Relative) mean absolute error (MAE)

|                 | MAE (dB)      | rMAE (%) |
|-----------------|---------------|----------|
| aPCEonX         | $3.04\pm0.07$ | 2.4±0.06 |
| $SALSA^\dagger$ | $3.81\pm0.06$ | 3.1±0.04 |

<sup>†</sup>Kandasamy & Yu (2016)

## Outline

## 1 Introduction

2 Sparse polynomial chaos expansions

3 Applications in machine learning

Surrogate models in high dimensions DRSM Unstructured data: resistor network Data-driven heat diffusion problem

# Challenges of modern engineering simulations

#### Medium-dimensional inputs

Typically  $\mathcal{O}(10-100)$  (possibly dependent) input parameters

Sparse polynomial chaos expansions, low-rank tensor representations

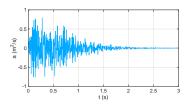
#### Functional inputs

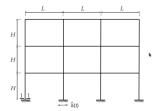
- Time-series inputs, *e.g.* to represent climatic loads such as temperature history, wind velocity, etc.
- Maps of measured geometry/material properties: land elevation (river hydraulics), surface rugosity (contact problems in mechanical engineering), thermal conductivity, permeability, etc.

Surrogate models in high dimensions

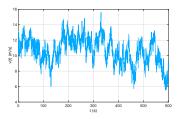
# Challenges of modern engineering simulations: examples

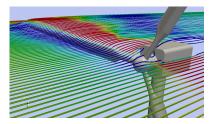
• Time-series accelerograms in structural dynamics (earthquake engineering)





• Wind velocity fields in the design of wind turbines





# Common features

- High-dimensional inputs:  $10^{3-5}$  time steps / pixels per input
- Underlying probabilistic model not necessarily available (data-driven UQ), *e.g.* when a catalog of recorded input signals is used (earthquake engineering)

In order to use classical surrogate modelling techniques, dimensionality reduction must be used as a pre-processing

#### DRSM

# Dimensionality reduction

#### Dimensionality reduction

A mapping  $g: \mathcal{X} \in \mathbb{R}^M \mapsto \mathcal{Z} \in \mathbb{R}^m$  ( $m \ll M$ ) of the form:

$$\mathbf{z} = g(\mathbf{x}; \mathbf{w})$$

such that:

- It preserves some properties of  $\mathcal{X}$  (e.g. information content)
- Its parameters **w** are inferred from the original data  $\mathcal{X}$

## Common dimensionality reduction methods

- Principal Component Analysis (PCA) ٠
- Kernel PCA
- Autoencoders

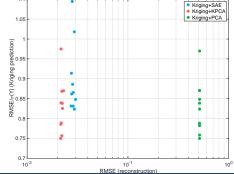
# Sequential approach



- Perform dimensionality reduction of  $\mathcal{X} \in \mathbb{R}^M$  to  $\mathcal{Z} \in \mathbb{R}^m$
- Construct a surrogate model using the compressed data  $\mathcal{Z}$ , *i.e.*  $y \approx \tilde{\mathcal{M}}(\mathbf{z})$

## Findings

A good dimensionality reduction (w.r.t reconstruction error) does not mean that an accurate surrogate model can be built in the input space

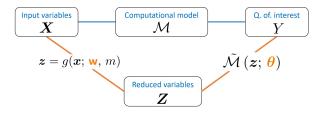


# DRSM joint approach

Goal

Lataniotis, Marelli & Sudret (2018), arxiv 1812.06309

Optimize the parameters **w** of the DR step in such a way that the reduced variables  $z = g(x; \mathbf{w})$  are suitable to achieve an overall accurate surrogate



### Optimization procedure

Loss function

$$\left\{\widehat{\mathbf{w}},\widehat{\boldsymbol{\theta}}\right\} = \arg\min_{\mathbf{w}\in\mathcal{D}_{\mathbf{w}},\ \boldsymbol{\theta}\in\mathcal{D}_{\boldsymbol{\theta}}} \ell\left(\mathcal{M}(\cdot),\tilde{\mathcal{M}}\left(g(\cdot;\mathbf{w}),\boldsymbol{\theta}\right)\right)$$

• In practice, a RMS error on a validation set or a leave-one-out error

# Block-coordinate descent optimization

## Principle

Parameters **w** and  $\theta$  are updated in an alternating way

## Outer loop

Optimize the compression parameters  $\mathbf{w}$  so as to minimize the leave-one-out error of the surrogate:

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}\in\mathcal{D}_{\mathbf{w}}} \varepsilon_{LOO}(\mathbf{w}; \widehat{\boldsymbol{\theta}}(\mathbf{w}), \mathcal{X}, \mathcal{Y})$$

## Inner loop

Given the current value of the compression parameters w and related z(w)'s, fit the surrogate:

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta} \in \mathcal{D}_{\boldsymbol{\theta}}} \varepsilon_{LOO}(\boldsymbol{\theta}; \mathbf{w}, \mathcal{X}, \mathcal{Y})$$

# Computational efficiency

#### Low-cost intermediate surrogates

During the optimization, cheap-to-calibrate surrogates are used:

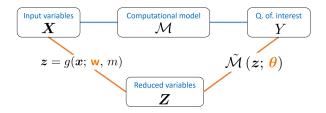
- Kriging: Isotropic kernel is used together with a limited computational budget
  - PCE: Low-degree Legendre polynomials

### Final surrogate

Once the optimal DR parameters  $\mathbf{w}^*$  are obtained, a high-accuracy surrogate model is used:

- $\label{eq:Kriging:Kriging:Kriging:Anisotropic kernels and global optimization + gradient-based refinement$ 
  - PCE: adaptive sparse arbitrary PCE based on the true distribution of the  $\mathcal{Z}$ 's (kernel density estimation)

# Summary



- DRSM is a generic algorithm that combines ML for compression and UQ for surrogating
- Given a data set, multiple combinations can be tested in parallel, *e.g.* {SAE, PCA, KPCAs} × {PCE, GP, etc.}
- It provides surrogates for models with high dimensional inputs (*e.g.* measured time series / fields)

 $\rightarrow$  Talk by Stefano Marelli: "Combining machine learning and surrogate modelling for data-driven uncertainty propagation in high-dimension" Monday 11:30 (MS15-I) in Room 3

B. Sudret (Chair of Risk, Safety & UQ)

# Outline

## 1 Introduction

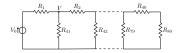
2 Sparse polynomial chaos expansions

3 Applications in machine learning

 Surrogate models in high dimensions DRSM
 Unstructured data: resistor network
 Data-driven heat diffusion problem

# Unstructured data: resistor network

#### Dataset description

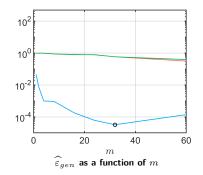


## Optimal DRSM configuration

| SM method | KPCA kernel    | $\widehat{m}$ | $\widehat{\varepsilon}_{gen}$ |
|-----------|----------------|---------------|-------------------------------|
| Kriging   | Anis. Gaussian | 24            | $2.40\cdot 10^{-4}$           |
| PCE       | Anis. Gaussian | 32            | $3.25\cdot10^{-5}$            |

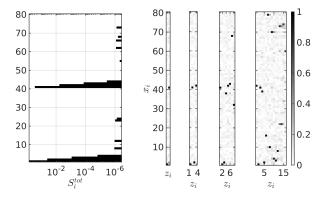
- Network comprised of 80 uncertain resistors
- Output of interest is voltage at V
- Effect of resistors onto V decays with distance

Data courtesy of J. Jakeman (SANDIA National Labs), Jakeman *et al.*, J. Comput. Phys (2015)



## Unstructured data: resistor network

- Kernel PCA with anisotropic Gaussian kernel combined with PCE yields the most accurate surrogate ( $\hat{\varepsilon}_{gen} = 3.25 \cdot 10^{-5}$ )
- The optimal reduced dimension m is equal to 32



• The first auxiliary variables  $\{z_1, \ldots, z_m\}$  correspond one-to-one to the important parameters of the problem (based on Sobol' indices)

B. Sudret (Chair of Risk, Safety & UQ)

# Data-driven heat diffusion problem

#### Problem statement

$$-\nabla \cdot (k(\mathbf{v})\nabla T(\mathbf{v})) = 500 I_A(\mathbf{v}), \quad \mathbf{v} \in [-0.5, 0.5]^2$$

with boundary conditions:

- T = 0 on top boundary
- $\nabla T \cdot \boldsymbol{n} = 0$  on other boundaries

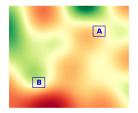
Lognormal diffusion coefficient  $k(\mathbf{v})$ 

 $k(\mathbf{v}) = \exp\left(a_d + b_d g(\mathbf{v})\right)$ 

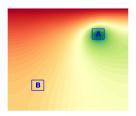
with mean value 1, std. deviation 0.3, squareexponential autocorrelation function:

$$R(\mathbf{v}, \mathbf{v}') = \exp\left(-\left\|\mathbf{v} - \mathbf{v}'\right\|^2 / \ell^2\right)$$

Konakli and Sudret, Prob. Eng. Mech. (2016)



Input diffusion coefficient



#### Output temperature

# Data-driven heat diffusion problem

## Synthetic input maps

Li & Der Kiureghian (1993)

• The underlying Gaussian field is generated from an EOLE expansion

$$\widehat{g}(\mathbf{v}) = \sum_{i=1}^{p} \frac{\xi_{i}}{\sqrt{l^{(i)}}} \left(\boldsymbol{\phi}^{(i)}\right)^{\top} \boldsymbol{C}_{\mathbf{vv}}(\mathbf{v}),$$

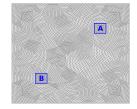
where:

$$C^{(k)}_{\boldsymbol{v}\boldsymbol{v}} = R(\boldsymbol{v}, \boldsymbol{v}_k), \qquad C^{(i,j)}_{\boldsymbol{v}\boldsymbol{v}} = R(\boldsymbol{v}_i, \boldsymbol{v}_j)$$

• 500 maps of diffusion coefficient are generated wrt the finite element mesh: M = 16,000-dimensional input

(300 training and 200 validation points)

• Scalar output: average temperature in Domain B



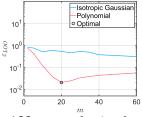
# Results

## DRSM output

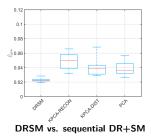
- Kernel PCA with polynomial kernel combined with Kriging yields the most accurate surrogate
- DRSM automatically finds PCA (polynomial degree 1) with m = 20 components as the best compression

## Conclusion

- Fully data-driven surrogate of the map-to-temperature model
- Accurate estimation of the distribution of *T* through resampling of the auxiliary variables



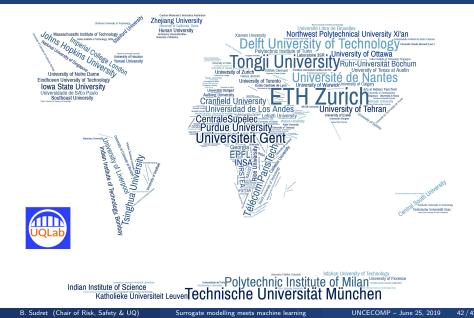
LOO error as a function of  $\boldsymbol{m}$ 



# Conclusions

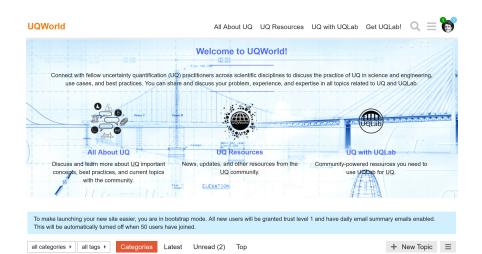
- Machine learning techniques and surrogate modelling for uncertainty quantification are closer than ever
- Sparse PCE can be used efficiently for supervised learning in low/medium dimension (better accuracy, no parameters to tweak)
- Compression techniques (PCA, Kernel PCA, stacked auto-encoders) can be used in combination with classical techniques (PCE, Kriging, etc.) to build data-driven surrogates in extreme input dimensions
- This opens the path to real-time simulation of models with continously measured input parameters

# UQLab



Surrogate models in high dimensions Data-driven heat diffusion problem

# [NEW] The applied UQ community: uqworld.org



## Questions ?



The Uncertainty Quantification Software

www.uqlab.com



Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

## Thank you very much for your attention !

B. Sudret (Chair of Risk, Safety & UQ)

Surrogate modelling meets machine learning