

Surrogate models for uncertainty quantification and design optimization

Other Conference Item

Author(s):

Sudret, Bruno (D); Mai, Chu V.; Marelli, Stefano (D); Schöbi, Roland; Wagner, Paul-Remo (D)

Publication date:

2019-05-13

Permanent link:

https://doi.org/10.3929/ethz-b-000359599

Rights / license:

In Copyright - Non-Commercial Use Permitted

Surrogate models for uncertainty quantification and design optimization

Bruno Sudret

How to cite?

This presentation is the plenary lecture given at the " $14^{\rm ème}$ Colloque National en Calcul des Structures" in Giens (France), May 13-17, 2019 (https://csma2019.sciencesconf.org/)

How to cite

Sudret, B. Surrogate models for uncertainty quantification and design optimization (2019), Proc. 14^{ème} Colloque National en Calcul des Structures, Giens (France), May 13-17.

Computational models in engineering

Complex engineering systems are designed and assessed using computational models, a.k.a simulators

A computational model combines:

- A mathematical description of the physical phenomena (governing equations), e.g. mechanics, electromagnetism, fluid dynamics, etc.
- Discretization techniques which transform continuous equations into linear algebra problems
- Algorithms to solve the discretized equations

$$\begin{aligned} \operatorname{div} \, \boldsymbol{\sigma} + \boldsymbol{f} &= \mathbf{0} \\ \boldsymbol{\sigma} &= \mathbf{D} \cdot \boldsymbol{\varepsilon} \\ \boldsymbol{\varepsilon} &= \frac{1}{2} \left(\nabla \boldsymbol{u} + ^{\mathsf{T}} \! \nabla \boldsymbol{u} \right) \end{aligned}$$

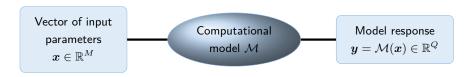
Computational models in engineering

Computational models are used:

- To explore the design space ("virtual prototypes")
- To optimize the system (e.g. minimize the mass) under performance constraints
- To assess its robustness w.r.t uncertainty and its reliability
- Together with experimental data for calibration purposes

Computational models: the abstract viewpoint

A computational model may be seen as a black box program that computes quantities of interest (QoI) (a.k.a. model responses) as a function of input parameters



- Geometry
- Material properties
- Loading

- Analytical formula
- Finite element model
- Comput. workflow

- Displacements
- Strains, stresses
- Temperature, etc.

Real world is uncertain

- Differences between the designed and the real system:
 - Dimensions (tolerances in manufacturing)
 - Material properties (e.g. variability of the stiffness or resistance)

 Unforecast exposures: exceptional service loads, natural hazards (earthquakes, floods, landslides), climate loads (hurricanes, snow storms, etc.), accidental human actions (explosions, fire, etc.)

Outline

- 1 Introduction
- 2 Uncertainty quantification: why surrogate models?
- 3 Polynomial chaos expansions PCE basis Computing the coefficients Sparse PCE Post-processing Extensions
- 4 Kriging (a.k.a Gaussian process modelling) Kriging equations Use in structural reliability

Global framework for uncertainty quantification

Step B

Quantification of sources of uncertainty

Step A

Model(s) of the system Assessment criteria

Step C

Uncertainty propagation

Random variables

Computational model

Moments

Probability of failure Response PDF

Step C'

Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral methods (2007)

Step B: Quantification of the sources of uncertainty

Goal: represent the uncertain parameters based on the available data and information

Probabilistic model f_X

Experimental data is available

- What is the distribution of each parameter?
- What is the dependence structure ?

Copula theory

No data is available: expert judgment

- Engineering knowledge (e.g. reasonable bounds and uniform distributions)
- Statistical arguments and literature (e.g. extreme value distributions for climatic events)

Scarce data + expert information



Step C: uncertainty propagation

Goal: estimate the uncertainty / variability of the quantities of interest (QoI) $Y = \mathcal{M}(X)$ due to the input uncertainty f_X

 Output statistics, i.e. mean, standard deviation, etc.

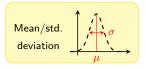
$$\mu_Y = \mathbb{E}_{\boldsymbol{X}} \left[\mathcal{M}(\boldsymbol{X}) \right]$$

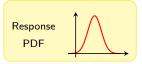
$$\sigma_Y^2 = \mathbb{E}_{\boldsymbol{X}} \left[\left(\mathcal{M}(\boldsymbol{X}) - \mu_Y \right)^2 \right]$$

Distribution of the Qol

 Probability of exceeding an admissible threshold y_{adm}

$$P_f = \mathbb{P}\left(Y \ge y_{adm}\right)$$

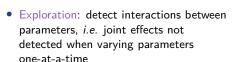


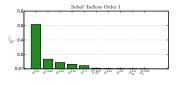


Step C': sensitivity analysis

Goal: determine what are the input parameters (or combinations thereof) whose uncertainty explains the variability of the quantities of interest

- Screening: detect input parameters whose uncertainty has no impact on the output variability
- Feature setting: detect input parameters which allow one to best decrease the output variability when set to a deterministic value





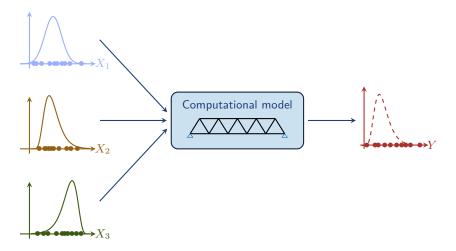
Variance decomposition (Sobol' indices)

Uncertainty propagation using Monte Carlo simulation

Principle: Generate virtual prototypes of the system using random numbers

- A sample set $\mathcal{X} = \{x_1, \, \dots, x_n\}$ is drawn according to the input distribution $f_{m{X}}$
- For each sample the quantity of interest (resp. performance criterion) is evaluated, say $\mathcal{Y}=\{\mathcal{M}(x_1),\,\ldots\,,\mathcal{M}(x_n)\}$
- The set of model outputs is used for moments-, distribution- or reliability analysis

Uncertainty propagation using Monte Carlo simulation



Advantages/Drawbacks of Monte Carlo simulation

Advantages

- Universal method: only rely upon sampling random numbers and running repeatedly the computational model
- Sound statistical foundations: convergence when $n \to \infty$
- Suited to High Performance Computing: "embarrassingly parallel"

Drawbacks

- Statistical uncertainty: results are not exactly reproducible when a new analysis is carried out (handled by computing confidence intervals)
- Low efficiency: convergence rate $\propto n^{-1/2}$

Monte Carlo for reliability analysis

To compute $P_f=10^{-k}$ with an accuracy of $\pm 10\%$ (coef. of variation of 5%), $4\cdot 10^{k+2}$ runs are required

Surrogate models for uncertainty quantification

A surrogate model $\bar{\mathcal{M}}$ is an approximation of the original computational model \mathcal{M} with the following features:

- It is built from a limited set of runs of the original model $\mathcal M$ called the experimental design $\mathcal X = \left\{ {{{\boldsymbol x}^{(i)}},\,i = 1, \ldots ,N} \right\}$
- ullet It assumes some regularity of the model ${\cal M}$ and some general functional shape

Name	Shape	Parameters
Polynomial chaos expansions	$\mathcal{ ilde{M}}(oldsymbol{x}) = \sum a_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{x})$	a_{lpha}
Low-rank tensor approximations	$\tilde{\mathcal{M}}(\boldsymbol{x}) = \sum_{l=1}^{R} b_l \left(\prod_{i=1}^{M} v_l^{(i)}(x_i) \right)$ $\tilde{\mathcal{M}}(\boldsymbol{x}) = \boldsymbol{\beta}^T \cdot \boldsymbol{f}(\boldsymbol{x}) + Z(\boldsymbol{x}, \omega)$	$b_l,z_{k,l}^{(i)}$
Kriging (a.k.a Gaussian processes)	$ ilde{\mathcal{M}}(oldsymbol{x}) = oldsymbol{eta}^T \cdot oldsymbol{f}(oldsymbol{x}) + Z(oldsymbol{x}, \omega)$	$oldsymbol{eta},\sigma_Z^2,oldsymbol{ heta}$
Support vector machines	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum_{i=1}^m a_i K(oldsymbol{x}_i, oldsymbol{x}) + b$	$oldsymbol{a},b$

Ingredients for building a surrogate model

ullet Select an experimental design ${\mathcal X}$ that covers at best the domain of input parameters: Latin hypercube sampling (LHS), low-discrepancy sequences

- Run the computational model ${\mathcal M}$ onto ${\mathcal X}$ exactly as in Monte Carlo simulation
- Smartly post-process the data $\{\mathcal{X}, \mathcal{M}(\mathcal{X})\}$ through a learning algorithm

Name	Learning method	
Polynomial chaos expansions	sparse grid integration, least-squares, compressive sensing	
Low-rank tensor approximations	alternate least squares	
Kriging	maximum likelihood, Bayesian inference	
Support vector machines	quadratic programming	

Advantages of surrogate models

Usage

$$\mathcal{M}(m{x}) \quad pprox \quad ilde{\mathcal{M}}(m{x})$$
 hours per run seconds for 10^6 runs

Advantages

- Non-intrusive methods: based on runs of the computational model, exactly as in Monte Carlo simulation
- Suited to high performance computing: "embarrassingly parallel"

Challenges

- Need for rigorous validation
- Communication: advanced mathematical background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo

Outline

- 1 Introduction
- 2 Uncertainty quantification: why surrogate models?
- 3 Polynomial chaos expansions PCE basis Computing the coefficients Sparse PCE Post-processing Extensions
- 4 Kriging (a.k.a Gaussian process modelling)

Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991; 2003); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

- Consider the input random vector X (dim X = M) with given probability density function (PDF) $f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{M} f_{X_i}(x_i)$
- Assuming that the random output $Y = \mathcal{M}(X)$ has finite variance, it can be cast as the following polynomial chaos expansion:

$$Y = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^M} y_{\boldsymbol{\alpha}} \, \underline{\Psi}_{\boldsymbol{\alpha}}(\boldsymbol{X})$$

where:

- $\Psi_{\alpha}(X)$: basis functions
- y_{α} : coefficients to be computed (coordinates)
- ullet The PCE basis $ig\{\Psi_{oldsymbol{lpha}}(X),\, lpha\in\mathbb{N}^Mig\}$ is made of multivariate orthonormal polynomials

Multivariate polynomial basis

Univariate polynomials

• For each input variable X_i , univariate orthogonal polynomials $\{P_k^{(i)}, k \in \mathbb{N}\}$ are built:

$$\left\langle P_j^{(i)}, P_k^{(i)} \right\rangle = \int P_j^{(i)}(u) P_k^{(i)}(u) f_{X_i}(u) du = \gamma_j^{(i)} \delta_{jk}$$

e.g. , Legendre polynomials if $X_i \sim \mathcal{U}(-1,1)$, Hermite polynomials if $X_i \sim \mathcal{N}(0,1)$

• Normalization: $\Psi_j^{(i)} = P_j^{(i)}/\sqrt{\gamma_j^{(i)}} \quad i=1,\,\ldots\,,M, \quad j\in\mathbb{N}$

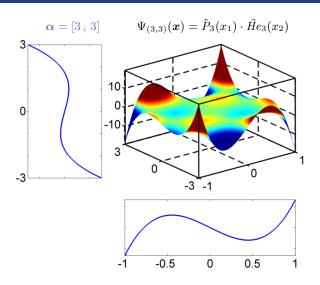
Tensor product construction

$$\Psi_{m{lpha}}(m{x}) \stackrel{\mathsf{def}}{=} \prod_{i=1}^M \Psi_{lpha_i}^{(i)}(x_i) \qquad \quad \mathbb{E}\left[\Psi_{m{lpha}}(m{X})\Psi_{m{eta}}(m{X})
ight] = \delta_{m{lpha}m{eta}}$$

where $\alpha = (\alpha_1, \ldots, \alpha_M)$ are multi-indices (partial degree in each dimension)

Example: M=2

Xiu & Karniadakis (2002)



- $X_1 \sim \mathcal{U}(-1,1)$: Legendre polynomials
- $X_2 \sim \mathcal{N}(0,1)$: Hermite polynomials

Dealing with complex input distributions

Independent variables

Input parameters with given marginal CDFs $X_i \sim F_{X_i}$, $i = 1, \ldots, M$

- Arbitrary PCE: orthogonal polynomial computed numerically on-the-fly
- Isoprobabilistic transform through a one-to-one mapping to reduced variables, e.g. :

$$X_i = F_{X_i}^{-1} \left(\frac{\xi_i + 1}{2} \right) \qquad \text{if } \xi_i \sim \mathcal{U}(-1, 1)$$

$$X_i = F_{X_i}^{-1} \left(\Phi(\xi_i) \right) \qquad \text{if } \xi_i \sim \mathcal{N}(0, 1)$$

General case: addressing dependence

Sklar's theorem (1959)

The joint CDF is defined through its marginals and copula

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = \mathcal{C}\left(F_{X_1}(x_1), \ldots, F_{X_M}(x_M)\right)$$

Rosenblatt or Nataf isoprobabilistic transform is used

Outline

- 1 Introduction
- 2 Uncertainty quantification: why surrogate models?
- 3 Polynomial chaos expansions

PCE basis

Computing the coefficients

parse PCE

Post-processing

Extension

4 Kriging (a.k.a Gaussian process modelling)

Computing the coefficients by least-square minimization

Isukapalli (1999); Berveiller, Sudret & Lemaire (2006)

Principle

The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:

$$Y = \mathcal{M}(\boldsymbol{X}) = \sum_{\alpha \in \mathcal{A}} y_{\alpha} \Psi_{\alpha}(\boldsymbol{X}) + \varepsilon_{P} \equiv \boldsymbol{\mathsf{Y}}^{\mathsf{T}} \Psi(\boldsymbol{X}) + \varepsilon_{P}(\boldsymbol{X})$$

where :
$$\mathbf{Y} = \{y_{\alpha}, \ \alpha \in \mathcal{A}\} \equiv \{y_0, \dots, y_{P-1}\}$$
 (P unknown coefficients)

$$\boldsymbol{\Psi}(\boldsymbol{x}) = \{\Psi_0(\boldsymbol{x}), \ldots, \Psi_{P-1}(\boldsymbol{x})\}$$

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

$$egin{equation} \hat{\mathbf{Y}} = rg \min \ \mathbb{E} \left[\left(\mathbf{Y}^\mathsf{T} \mathbf{\Psi}(m{X}) - \mathcal{M}(m{X})
ight)^2
ight] \end{aligned}$$

Discrete (ordinary) least-square minimization

An estimate of the mean square error (sample average) is minimized:

$$\hat{\mathbf{Y}} = \arg\min_{\mathbf{Y} \in \mathbb{R}^P} \frac{1}{n} \sum_{i=1}^n \left(\mathbf{Y}^\mathsf{T} \boldsymbol{\Psi}(\boldsymbol{x}^{(i)}) - \mathcal{M}(\boldsymbol{x}^{(i)}) \right)^2$$

Procedure

- Select a truncation scheme, e.g. $\mathcal{A}^{M,p} = \left\{ oldsymbol{lpha} \in \mathbb{N}^M \,:\, |oldsymbol{lpha}|_1 \leq p
 ight\}$
- Select an experimental design and evaluate the model response

$$\mathbf{M} = \left\{\mathcal{M}(oldsymbol{x}^{(1)}),\,\ldots\,,\mathcal{M}(oldsymbol{x}^{(n)})
ight\}^{\mathsf{T}}$$

Compute the experimental matrix

$$\mathbf{A}_{ij} = \Psi_j(\mathbf{x}^{(i)})$$
 $i = 1, ..., n ; j = 0, ..., P - 1$

Solve the resulting linear system

$$\hat{\mathbf{Y}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{M}$$

Simple is beautiful!

Error estimators

In least-squares analysis, the generalization error is defined as:

$$E_{gen} = \mathbb{E}\left[\left(\mathcal{M}(\boldsymbol{X}) - \mathcal{M}^{\text{PC}}(\boldsymbol{X})\right)^{2}\right] \qquad \qquad \mathcal{M}^{\text{PC}}(\boldsymbol{X}) = \sum_{\alpha \in \mathcal{A}} y_{\alpha} \, \Psi_{\alpha}(\boldsymbol{X})$$

ullet The empirical error based on the experimental design ${\mathcal X}$ is a poor estimator in case of overfitting

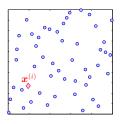
$$E_{emp} = rac{1}{n} \sum_{i=1}^n \left(\mathcal{M}(oldsymbol{x}^{(i)}) - \mathcal{M}^{\sf PC}(oldsymbol{x}^{(i)})
ight)^2$$

The coefficient of determination R² is often used as an error estimator:

$$R^2 = 1 - \frac{E_{emp}}{\text{Var}[\mathcal{Y}]}$$
 $\text{Var}[\mathcal{Y}] = \frac{1}{n} (\mathcal{M}(\boldsymbol{x}^{(i)}) - \bar{\mathcal{Y}})^2$

 \mathbb{R}^2 is a poor estimator of the accuracy of the PCE when there is overfitting

Leave-one-out cross validation



- An experimental design $\mathcal{X} = \{ m{x}^{(j)}, \ j=1, \ldots, n \}$ is selected
- Polynomial chaos expansions are built using all points but one, *i.e.* based on $\mathcal{X} \setminus \mathbf{x}^{(i)} = \{\mathbf{x}^{(j)}, j = 1, \dots, n, j \neq i\}$
- Leave-one-out error (PRESS)

$$E_{LOO} \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \left(\mathcal{M}(\boldsymbol{x}^{(i)}) - \mathcal{M}^{PC \setminus i}(\boldsymbol{x}^{(i)}) \right)^{2}$$

Analytical derivation from a single PC analysis

$$E_{LOO} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\mathcal{M}(x^{(i)}) - \mathcal{M}^{PC}(x^{(i)})}{1 - h_i} \right)^{2}$$

where h_i is the *i*-th diagonal term of matrix $\mathbf{A}(\mathbf{A}^\mathsf{T}\mathbf{A})^{-1}\mathbf{A}^\mathsf{T}$

Outline

- 1 Introduction
- 2 Uncertainty quantification: why surrogate models?
- 3 Polynomial chaos expansions

Computing the coefficients

Sparse PCE

Post-processing Extensions

4 Kriging (a.k.a Gaussian process modelling)

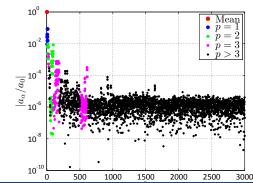
Curse of dimensionality

- The cardinality of the truncation scheme $\mathcal{A}^{M,p}$ is $P=\frac{(M+p)!}{M!\,p!}$
- Typical computational requirements: $n = OSR \cdot P$ where the oversampling rate is OSR = 2 - 3

However ... most coefficients are close to zero!

Example

- Elastic truss structure with M=10 independent input variables
- PCE of degree p=5(P=3,003 coefficients)



Hyperbolic truncation sets

Sparsity-of-effects principle

Blatman & Sudret, Prob. Eng. Mech (2010); J. Comp. Phys (2011)

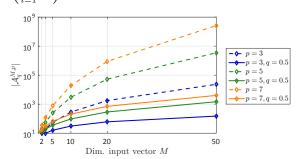
In most engineering problems, only low-order interactions between the input variables are relevant

• q-norm of a multi-index α :

Hyperbolic truncation sets:

$$||\alpha||_q \equiv \left(\sum_{i=1}^M \alpha_i^q\right)^{1/q}, \quad 0 < q \le 1$$

$$\mathcal{A}_q^{M,p} = \{ \boldsymbol{\alpha} \in \mathbb{N}^M : ||\boldsymbol{\alpha}||_q \le p \}$$



Compressive sensing approaches

Blatman & Sudret (2011); Doostan & Owhadi (2011); Sargsyan et al. (2014); Jakeman et al. (2015)

• Sparsity in the solution can be induced by ℓ_1 -regularization:

$$oldsymbol{y_{lpha}} = rg \min rac{1}{n} \sum_{i=1}^n \left(oldsymbol{\mathsf{Y}}^\mathsf{T} oldsymbol{\Psi}(oldsymbol{x}^{(i)}) - \mathcal{M}(oldsymbol{x}^{(i)})
ight)^2 + oldsymbol{\lambda} \parallel oldsymbol{y_{lpha}} \parallel_1$$

Different algorithms: LASSO, orthogonal matching pursuit, Bayesian compressive sensing

Least Angle Regression

Efron *et al.* (2004) Blatman & Sudret (2011)

- Least Angle Regression (LAR) solves the LASSO problem for different values of the penalty constant in a single run without matrix inversion
- Leave-one-out cross validation error allows one to select the best model

Sparse PCE: wrap up

Algorithm 1: LAR-based Polynomial chaos expansion

```
Input: Computational budget n
    Initialization
          Sample experimental design \mathcal{X} = \{ oldsymbol{x}^{(1)}, \dots, oldsymbol{x}^{(n)} \}
 3:
          Evaluate model response \mathcal{Y} = \{\mathcal{M}(x^{(1)}), \ldots, \mathcal{M}(x^{(n)}\})
 4:
    PCE construction
          for p = p_{\min} : p_{\max} do
 6:
               for q \in \mathcal{Q} do
 7:
                    Select candidate basis \mathcal{A}_a^{M,p}
 8:
                    Run LAR for extracting the optimal sparse basis \mathcal{A}^*(p,q)
 9:
                    Compute coefficients \{y_{\alpha}, \ \alpha \in \mathcal{A}^*(p,q)\} by OLS
10:
                    Compute e_{LOO}(p,q)
11:
               end
12:
         end
13:
          (p^*, q^*) = \arg\min e_{\mathsf{LOO}}(p, q)
14.
    Return Optimal sparse basis \mathcal{A}^*(p,q), PCE coefficients, e_{LOO}(p^*,q^*)
```

Outline

- Introduction
- Uncertainty quantification: why surrogate models?
- 3 Polynomial chaos expansions

Post-processing

4 Kriging (a.k.a Gaussian process modelling)

Post-processing sparse PC expansions

Statistical moments

• Due to the orthogonality of the basis functions $(\mathbb{E}\left[\Psi_{\alpha}(X)\Psi_{\beta}(X)\right]=\delta_{\alpha\beta})$ and using $\mathbb{E}\left[\Psi_{\alpha\neq0}\right]=0$ the statistical moments read:

Mean:
$$\hat{\mu}_Y = y_0$$

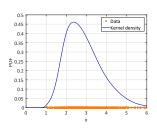
Variance:
$$\hat{\sigma}_Y^2 = \sum_{\alpha \in A \setminus \mathbf{0}} y_{\alpha}^2$$

Distribution of the Qol

 The PCE can be used as a response surface for sampling:

$$\mathfrak{y}_j = \sum_{m{lpha} \in A} y_{m{lpha}} \Psi_{m{lpha}}(m{x}_j) \quad j = 1, \ldots, n_{big}$$

 The PDF of the response is estimated by histograms or kernel smoothing



Sensitivity analysis

Goal

Sobol' (1993); Saltelli et al. (2008)

Global sensitivity analysis aims at quantifying which input parameter(s) (or combinations thereof) influence the most the response variability (variance decomposition)

Hoeffding-Sobol' decomposition

$$(\boldsymbol{X} \sim \mathcal{U}([0,1]^M))$$

$$\mathcal{M}(\boldsymbol{x}) = \mathcal{M}_0 + \sum_{i=1}^{M} \mathcal{M}_i(x_i) + \sum_{1 \le i < j \le M} \mathcal{M}_{ij}(x_i, x_j) + \dots + \mathcal{M}_{12...M}(\boldsymbol{x})$$
$$= \mathcal{M}_0 + \sum_{\mathbf{u} \in \{1, \dots, M\}} \mathcal{M}_{\mathbf{u}}(\boldsymbol{x}_{\mathbf{u}}) \qquad (\boldsymbol{x}_{\mathbf{u}} \stackrel{\mathsf{def}}{=} \{x_{i_1}, \dots, x_{i_s}\})$$

• The summands satisfy the orthogonality condition:

$$\int_{[0,1]^M} \mathcal{M}_{\mathbf{u}}(\boldsymbol{x}_{\mathbf{u}}) \, \mathcal{M}_{\mathbf{v}}(\boldsymbol{x}_{\mathbf{v}}) \, d\boldsymbol{x} = 0 \qquad \forall \, \mathbf{u} \neq \mathbf{v}$$

Sobol' indices

 $D \equiv \operatorname{Var} \left[\mathcal{M}(X) \right] = \sum_{\mathbf{v}} \operatorname{Var} \left[\mathcal{M}_{\mathbf{u}}(X_{\mathbf{u}}) \right]$ Total variance: $\mathbf{u} \subset \{1, \dots, M\}$

Sobol' indices:

$$S_{\mathbf{u}} \stackrel{\mathsf{def}}{=} \frac{\mathrm{Var}\left[\mathcal{M}_{\mathbf{u}}(\boldsymbol{X}_{\mathbf{u}})\right]}{D}$$

First-order Sobol' indices:

$$S_i = \frac{D_i}{D} = \frac{\operatorname{Var}\left[\mathcal{M}_i(X_i)\right]}{D}$$

Quantify the additive effect of each input parameter separately

Total Sobol' indices:

$$S_i^T \stackrel{\mathsf{def}}{=} \sum_{\mathbf{u} \supset i} S_{\mathbf{u}}$$

Quantify the total effect of X_i , including interactions with the other variables.

Link with PC expansions

Sobol decomposition of a PC expansion

Sudret, CSM (2006); RESS (2008)

Obtained by reordering the terms of the (truncated) PC expansion

$$\mathcal{M}^{\operatorname{PC}}(X) \stackrel{\operatorname{def}}{=} \sum_{\alpha \in \mathcal{A}} y_{\alpha} \, \Psi_{\alpha}(X)$$

Interaction sets

For a given
$$\mathbf{u} \stackrel{\text{def}}{=} \{i_1, \ldots, i_s\}$$
: $\mathcal{A}_{\mathbf{u}} = \{\alpha \in \mathcal{A} : k \in \mathbf{u} \Leftrightarrow \alpha_k \neq 0\}$

$$\mathcal{M}^{\mathrm{PC}}(\boldsymbol{x}) = \mathcal{M}_0 + \sum_{\mathbf{u} \subset \{1,\,\dots\,,M\}} \mathcal{M}_{\mathbf{u}}(\boldsymbol{x}_{\mathbf{u}}) \qquad \text{where} \qquad \mathcal{M}_{\mathbf{u}}(\boldsymbol{x}_{\mathbf{u}}) \stackrel{\text{def}}{=} \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{\mathbf{u}}} y_{\boldsymbol{\alpha}} \, \Psi_{\boldsymbol{\alpha}}(\boldsymbol{x})$$

PC-based Sobol' indices

$$S_{\mathbf{u}} = D_{\mathbf{u}}/D = \sum_{\alpha \in \mathcal{A}_{\mathbf{u}}} y_{\alpha}^2 / \sum_{\alpha \in \mathcal{A} \setminus \mathbf{0}} y_{\alpha}^2$$

The Sobol' indices are obtained analytically, at any order from the coefficients of the PC expansion

Example: sensitivity analysis in hydrogeology

Source: http://www.futura-sciences.com/

Source: http://lexpansion.lexpress.fr/

- When assessing a nuclear waste repository, the Mean Lifetime Expectancy MLE(x) is the time required for a molecule of water at point x to get out of the boundaries of the system
- Computational models have numerous input parameters (in each geological layer) that are difficult to measure, and that show scattering

Geological model

Joint work with University of Neuchâtel

Deman, Konakli, Sudret, Kerrou, Perrochet & Benabderrahmane, Reliab. Eng. Sys. Safety (2016)

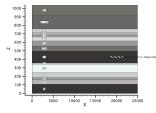
- Two-dimensional idealized model of the Paris Basin (25 km long / 1,040 m depth) with 5×5 m mesh (10^6 elements)
- Steady-state flow simulation with Dirichlet boundary conditions:

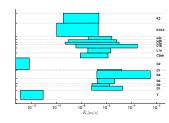
$$\nabla \cdot (\mathbf{K} \cdot \nabla H) = 0$$

- 15 homogeneous layers with uncertainties in:
 - Porosity (resp. hydraulic conductivity)
 - Anisotropy of the layer properties (inc. dispersivity)
 - Boundary conditions (hydraulic gradients)

78 input parameters

Sensitivity analysis





Geometry of the layers

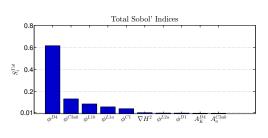
Conductivity of the layers

Question

What are the parameters (out of 78) whose uncertainty drives the uncertainty of the prediction of the mean life-time expectancy?

Sensitivity analysis: results

Technique: Sobol'indices computed from polynomial chaos expansions



aos expansions	
Parameter	$\sum_{j} S_{j}$
ϕ (resp. K_x)	0.8664
A_K	0.0088
heta	0.0029
$lpha_L$	0.0076
A_{lpha}	0.0000
∇H	0.0057

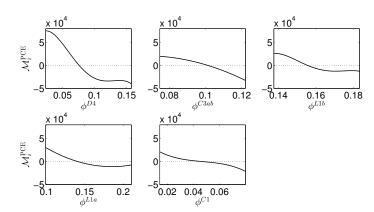
Conclusions

- Only 200 model runs allow one to detect the 10 important parameters out of 78
- Uncertainty in the porosity/conductivity of 5 layers explain 86% of the variability
- Small interactions between parameters detected

Bonus: univariate effects

The univariate effects of each variable are obtained as a straightforward post-processing of the ${\sf PCE}$

$$\mathcal{M}_i(x_i) \stackrel{\mathsf{def}}{=} \mathbb{E}\left[\mathcal{M}(\boldsymbol{X})|X_i = x_i\right], i = 1, \dots, M$$



Outline

- 1 Introduction
- ② Uncertainty quantification: why surrogate models?
- 3 Polynomial chaos expansions

PCE basis
Computing the coefficients
Sparse PCE
Post-processing

Extensions

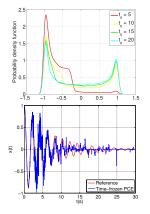
4 Kriging (a.k.a Gaussian process modelling)

Polynomial chaos expansions in structural dynamics

Spiridonakos et al. (2015); Mai, Spiridonakos, Chatzi & Sudret, IJUQ (2016); Mai & Sudret, SIAM JUQ (2017)

Premise

- For dynamical systems, the complexity of the map $\xi \mapsto \mathcal{M}(\xi,t)$ increases with time.
- Time-frozen PCE does not work beyond first time instants



PC-NARX

 Use of non linear autoregressive with exogenous input models (NARX) to capture the dynamics:

$$y(t) = \mathcal{F}(x(t), \dots, x(t-n_x), y(t-1), \dots, y(t-n_y)) + \epsilon_t \equiv \mathcal{F}(z(t)) + \epsilon_t$$

Earthquake engineering – Bouc-Wen oscillator

Governing equations

Kafali & Grigoriu (2007), Spiridonakos & Chatzi (2015)

$$\ddot{y}(t) + 2\zeta \omega \dot{y}(t) + \omega^{2}(\rho y(t) + (1 - \rho) z(t)) = -x(t),$$

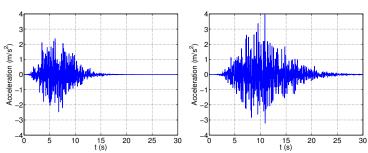
$$\dot{z}(t) = \gamma \dot{y}(t) - \alpha |\dot{y}(t)| |z(t)|^{n-1} z(t) - \beta \dot{y}(t) |z(t)|^{n},$$

Excitation

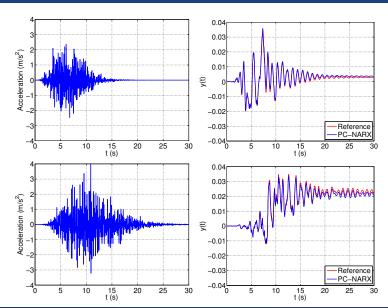
x(t) is generated by a probabilistic ground motion model

Rezaeian & Der Kiureghian (2010)

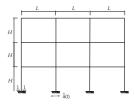
$$x(t) = q(t, \boldsymbol{\alpha}) \sum_{i=1} s_i (t, \boldsymbol{\lambda}(t_i)) U_i$$



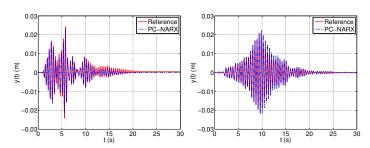
Bouc-Wen model: prediction



Earthquake engineering – frame structure



- 2D steel frame with uncertain properties submitted to synthetic ground motions
- Experimental design of size 300

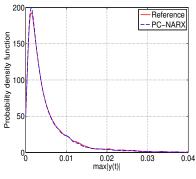


Surrogate model of single trajectories

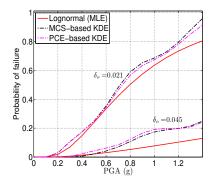
Frame structure – fragility curves

First-storey drift

- PC-NARX calibrated based on 300 simulations
- Reference results obtained from 10,000 Monte Carlo simulations



PDF of max. drift



Fragility curves for two drift thresholds

Outline

- 1 Introduction
- ② Uncertainty quantification: why surrogate models?
- 3 Polynomial chaos expansions
- 4 Kriging (a.k.a Gaussian process modelling) Kriging equations Use in structural reliability

Gaussian process modelling (a.k.a Kriging)

Santner, Williams & Notz (2003)

Kriging assumes that $\mathcal{M}(x)$ is a trajectory of an underlying Gaussian process

$$\mathcal{M}(oldsymbol{x}) pprox \mathcal{M}^{(\mathsf{K})}(oldsymbol{x}) = oldsymbol{eta}^\mathsf{T} oldsymbol{f}(oldsymbol{x}) + \sigma^2 \, Z(oldsymbol{x}, \omega)$$

where:

- $\beta^{\mathsf{T}} f(x)$: trend
- $Z(x,\omega)$: zero mean, unit variance Gaussian process with autocorrelation function, e.g. :

$$R\left(x, x'\right) = \exp\left(\sum_{k=1}^{M} - \left(\frac{x_k - x'_k}{\theta_k}\right)^2\right)$$

• σ^2 : variance

The Gaussian measure artificially introduced is different from the aleatory uncertainty on the model parameters \boldsymbol{X}

Kriging prediction

Unknown parameters

• Parameters $\{\theta, \beta, \sigma^2\}$ are estimated from the experimental design $\mathcal{Y} = \{y_i = \mathcal{M}(\boldsymbol{\chi}_i), i = 1, \dots, n\}$ by maximum likelihood estimation, cross validation or Bayesian calibration

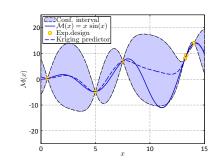
Mean predictor

$$\mu_{\hat{g}}(oldsymbol{x}) = oldsymbol{f}\left(oldsymbol{x}
ight)^{\mathsf{T}} \ \hat{oldsymbol{eta}} + oldsymbol{r}\left(oldsymbol{x}
ight)^{\mathsf{T}} oldsymbol{R}^{-1} \left(oldsymbol{\mathcal{Y}} - oldsymbol{F} \ \hat{oldsymbol{eta}}
ight)$$

where:

$$r_i(\boldsymbol{x}) = R\left(\boldsymbol{x} - \boldsymbol{x}^{(i)}, \boldsymbol{\theta}\right)$$

 $\boldsymbol{R}_{ij} = R\left(\boldsymbol{x}^{(i)} - \boldsymbol{x}^{(j)}, \boldsymbol{\theta}\right)$
 $\boldsymbol{F}_{ij} = f_j\left(\boldsymbol{x}^{(i)}\right)$



Kriging variance

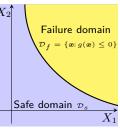
$$\sigma_{\widehat{Y}}^{2}\left(x\right) = \sigma_{Y}^{2}\left(1 - \left\langle\begin{array}{cc}f\left(x\right)^{\mathsf{T}} & r\left(x\right)^{\mathsf{T}}\end{array}\right\rangle \left[\begin{array}{cc}0 & F^{\mathsf{T}}\\F & R\end{array}\right]^{-1}\left[\begin{array}{cc}f\left(x\right)\\r\left(x\right)\end{array}\right]\right)$$

Structural reliability

Problem statement

- A limit state function $g: x \in \mathcal{D}_X \subset \mathbb{R}^M \mapsto \mathbb{R}$ that describes the performance of the system:
 - $+ \ g(m{x}) > 0$ means "safe configuration" $+ \ g(m{x}) \leq 0$ means "failure"
 - a conficient behaviour in defined by

e.g. Elastic behaviour is defined by:
$$g(x) = \sigma_Y - \max_{\text{Structure}} \sigma_{VM}(x)$$



- A probabilistic model (PDF) of the uncertainties:
- $X \sim f_X$

The probability of failure is defined by:

$$P_f = \mathbb{P}\left(g(\boldsymbol{X}) \le 0\right) = \int_{\{\boldsymbol{x} \in \mathcal{D}_{\boldsymbol{X}}: g(\boldsymbol{x}) \le 0\}} f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x}$$

Use of Kriging for structural reliability analysis

- From a given experimental design $\mathcal{X} = \left\{ x^{(1)}, \ldots, x^{(n)} \right\}$, Kriging yields a mean predictor $\mu_{\hat{g}}(x)$ and the Kriging variance $\sigma_{\hat{g}}(x)$
- The mean predictor is substituted for the "true" limit state function, defining the surrogate failure domain

$$\mathcal{D}_f^0 = \{ \boldsymbol{x} \in \mathcal{D}_{\boldsymbol{X}} : \mu_{\hat{\boldsymbol{g}}}(\boldsymbol{x}) \le 0 \}$$

• The probability of failure is approximated by:

Kaymaz, Struc. Safety (2005)

$$P_f^0 = \mathbb{P}\left[\mu_{\hat{g}}(X) \le 0\right] = \int_{\mathcal{D}_f^0} f_X(x) \, dx = \mathbb{E}\left[\mathbf{1}_{\mathcal{D}_f^0}(X)\right]$$

Monte Carlo simulation can be used on the surrogate model:

$$\widehat{P_f^0} = \frac{1}{N} \sum_{k=1}^N \mathbf{1}_{\mathcal{D}_f^0}(\boldsymbol{x}_k)$$

Confidence bounds on the probability of failure

Shifted failure domains

Dubourg et al. , Struct. Mult. Opt. (2011)

• Let us define a confidence level $(1-\alpha)$ and $k_{1-\alpha}=\Phi^{-1}(1-\alpha/2)$, i.e. 1.96 if $1-\alpha=95\%$, and:

$$\mathcal{D}_{f}^{+} = \{ \boldsymbol{x} \in \mathcal{D}_{\boldsymbol{X}} : \mu_{\hat{g}}(\boldsymbol{x}) + k_{1-\alpha} \, \sigma_{\hat{g}}(\boldsymbol{x}) \leq 0 \}$$

$$\mathcal{D}_{f}^{+} = \{ \boldsymbol{x} \in \mathcal{D}_{\boldsymbol{X}} : \mu_{\hat{g}}(\boldsymbol{x}) - k_{1-\alpha} \, \sigma_{\hat{g}}(\boldsymbol{x}) \leq 0 \}$$

- Interpretation $(1 \alpha = 95\%)$:
 - If $m{x} \in \mathcal{D}_f^0$ it belongs to the true failure domain with a 50% chance
 - If $x \in \mathcal{D}_{+}^{f}$ it belongs to the true failure domain with 95% chance: conservative estimation

Bounds on the probability of failure

$$\mathcal{D}_f^- \subset \mathcal{D}_f^0 \subset \mathcal{D}_f^+ \qquad \Leftrightarrow \qquad P_f^- \leq P_f^0 \leq P_f^+$$

Adaptive designs for reliability analysis

Premise

- When using high-fidelity computational models for assessing structural reliability, the goal is to minimize the number of runs
- Adaptive experimental designs allow one to start from a small ED and enrich it
 with new points in suitable regions (i.e. close to to the limit state surface)

Enrichment (infill) criterion

Bichon et al., (2008, 2011); Echard et al. (2011); Bect et al. (2012), Balesdent et al. (2013), Morio & Balesdent (2015-16)

The following learning function is used:

$$LF(\boldsymbol{x}) = \frac{|\mu_{\hat{g}}(\boldsymbol{x})|}{\sigma_{\hat{g}}(\boldsymbol{x})}$$

- Small if $\mu_{\hat{g}}(x) \approx 0$ (x close to the limit state surface) and/or $\sigma_{\hat{g}}(x) >> 0$ (poor local accuracy)
- The probability of misclassification is $\Phi(-LF(x))$
- At each iteration, the new point is: $\chi^* = \arg\min LF(x)$

Adaptive Kriging for reliability analysis

Algorithm 2: Adaptive Kriging for reliability analysis

```
Initialization
          Initial experimental design \mathcal{ED} = \{ \boldsymbol{\chi}^{(1)}, \dots, \boldsymbol{\chi}^{(n)} \}
 2:
          Monte Carlo sample \mathcal{X} = \{x_1, \ldots, x_n\}
 3:
     while NotConverged do
          Train a Kriging model \widehat{\mathcal{M}} on the current experimental design
 5:
          Compute the probability of failure \hat{P}_f^0, and its bounds [\hat{P}_f^-, \hat{P}_f^+] using \widehat{\mathcal{M}}
 6:
          if (\hat{P}_{f}^{+} - \hat{P}_{f}^{-})/\hat{P}_{f}^{0} \leq TOL then
 7:
                NotConverged = FALSE
 8:
          else
 9:
                Evaluate the learning function LF on \mathcal{X}
10:
                Compute the next ED point: \chi^* = \arg\min_{x \in \mathcal{X}} LF(x)
11:
                Update the experimental design: \mathcal{ED} \leftarrow \mathcal{ED} \cup \{\chi^*\}
12:
13.
          end
14: end
    Return Probability of failure \hat{P}_f^0 and confidence interval [\hat{P}_f^-, \hat{P}_f^+]
```

Series system

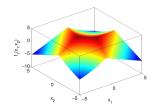
Consider the system reliability analysis defined by:

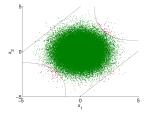
$$g(x) = \min \begin{pmatrix} 3 + 0.1 (x_1 - x_2)^2 - \frac{x_1 + x_2}{\sqrt{2}} \\ 3 + 0.1 (x_1 - x_2)^2 + \frac{x_1 + x_2}{\sqrt{2}} \\ (x_1 - x_2) + \frac{6}{\sqrt{2}} \\ (x_2 - x_1) + \frac{6}{\sqrt{2}} \end{pmatrix}$$

where $X_1, X_2 \sim \mathcal{N}(0, 1)$

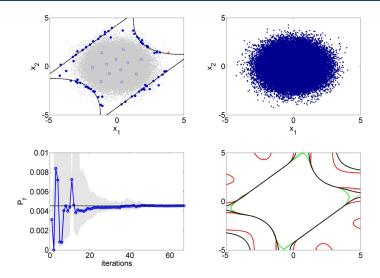
- Initial design: LHS of size 12 (transformed into the standard normal space)
- In each iteration, one point is added (maximize the probability of missclassification)

Schöbi, Sudret & Marelli, ASCE J. Risk Unc. (2016)





Results with PC Kriging

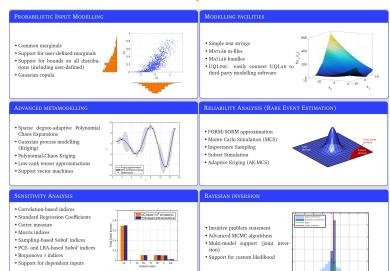


Conclusions

- Surrogate models are unavoidable for solving uncertainty quantification problems involving costly computational models (e.g. finite element models)
- Depending on the analysis, specific surrogates are most suitable: polynomial chaos expansions for distribution- and sensitivity analysis, Kriging (and low-rank tensor approximations) for reliability analysis
- Kriging and PC-Kriging are suitable for adaptive algorithms (enrichment of the experimental design)
- All these techniques are non-intrusive: they rely on experimental designs, the size of which is a user's choice
- They are versatile, general-purpose and field-independent
- All the presented algorithms are available in the general-purpose uncertainty quantification software UQLab

UQLab: The Uncertainty Quantification Software

www.uqlab.com



UQLab: The Uncertainty Quantification Software

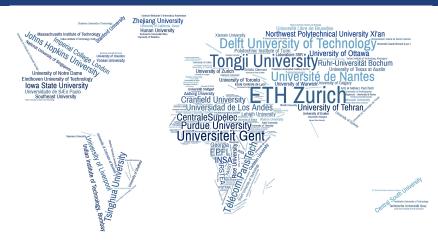
http://www.uqlab.com

- 1,900 downloads
- 950⁺ active users from 77 countries
- Release of V0.9 on July 1st, 2015 (beta version)
- V1.0 on April 28th, 2017
 UQLabCore + modules (PCE, Kriging, Sensitivity, Rare events)
- V1.1 on July 1st, 2018
 Support vector machines, UQLink
- V1.2 on February 22nd, 2019
 Bayesian inversion, UQLib

Country	# Users
United States	343
China	217
France	214
Switzerland	177
Germany	130
United Kingdom	89
Italy	70
India	56
Brazil	50
Canada	50
·	

As of April 23, 2019

UQLab users



Indian Institute of Science
Katholieke Universiteit Leuven echnische Universiteit München

Questions?

Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

The Uncertainty Quantification Laboratory

www.uqlab.com

Thank you very much for your attention!

References

M. Berveiller, B. Sudret, and M. Lemaire.

Stochastic finite elements: a non intrusive approach by regression.

Eur. J. Comput. Mech., 15(1-3):81-92, 2006.

G. Blatman and B. Sudret.

An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis.

Prob. Eng. Mech., 25:183-197, 2010.

G. Blatman and B. Sudret.

Adaptive sparse polynomial chaos expansion based on Least Angle Regression.

J. Comput. Phys, 230:2345-2367, 2011.

A. Doostan and H. Owhadi

A non-adapted sparse approximation of PDEs with stochastic inputs.

J. Comput. Phys., 230(8):3015-3034, 2011.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani.

Least angle regression.

Annals of Statistics, 32:407-499, 2004.

G. Deman, K. Konakli, B. Sudret, J. Kerrou, P. Perrochet, and H. Benabderrahmane.

Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model.

Reliab. Eng. Sys. Safety, 147:156-169, 2016.

R. Ghanem and P. Spanos.

Stochastic Finite Elements: A Spectral Approach.

Courier Dover Publications, Mineola, 2nd edition, 2003.

S. S. Isukapalli.

Uncertainty Analysis of Transport-Transformation Models.

PhD thesis. The State University of New Jersey. 1999.

J.D Jakeman, M. S. Eldred, and K. Sargsyan.

Enhancing ℓ_1 -minimization estimates of polynomial chaos expansions using basis selection. J. Comput. Phys., 289:18–34, 2015.

C. V. Mai, M. D. Spiridonakos, E. N. Chatzi, and B. Sudret.

Surrogate modeling for stochastic dynamical systems by combining nonlinear autoregressive with exogeneous input models and polynomial chaos expansions.

Int. J. Uncer. Quant., 6(4):313–339, 2016.

C. V. Mai and B. Sudret.

Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping. SIAM/ASA J. Unc. Quant., 5:540–571, 2017.

S. Rezaeian and A. Der Kiureghian.

Simulation of synthetic ground motions for specified earthquake and site characteristics.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola.

Global Sensitivity Analysis - The Primer.

Eartha, Eng. Struct. Dvn., 39(10):1155-1180, 2010.

K. Sargsvan, C. Safta, H. Naim, B. Debusschere, D. Ricciuto, and P. Thornton,

Dimensionality reduction for complex models via Bayesian compressive sensing. Int. J. Uncertain. Quantificat., 4(1):63–93, 2014.

A. Sklar.

Fonctions de répartition à n dimensions et leurs marges.

Publications de l'Institut de Statistique de L'Université de Paris 8, 8(1):11, 1959.

C. Soize and R. Ghanem.

Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput., 26(2):395–410, 2004.

I. M. Sobol'.

Sensitivity estimates for nonlinear mathematical models.

Math. Modeling & Comp. Exp., 1:407-414, 1993.

M. D. Spiridonakos and E. N. Chatzi.

Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models.

Comput. Struct., 157:99–113, 2015.

B. Sudret.

Uncertainty propagation and sensitivity analysis in mechanical models – Contributions to structural reliability and stochastic spectral methods.

Université Blaise Pascal, Clermont-Ferrand, France, 2007. Habilitation à diriger des recherches, 173 pages.

B. Sudret.

Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Sys. Safety, 93:964–979, 2008.

D. Xiu and G. E. Karniadakis.

The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2):619–644, 2002.

D. Xiu.

Numerical methods for stochastic computations – A spectral method approach.

Princeton University press, 2010.

Mathieu Balesdent, Jérôme Morio, and Julien Marzat.

Kriging-based adaptive importance sampling algorithms for rare event estimation. Structural Safety, 44:1–10, 2013.

B. J. Bichon, M. S. Eldred, L. Swiler, S. Mahadevan, and J. McFarland.

Efficient global reliability analysis for nonlinear implicit performance functions. AIAA Journal, 46(10):2459–2468, 2008.

B. J. Bichon, J. M. McFarland, and S. Mahadevan.

Efficient surrogate models for reliability analysis of systems with multiple failure modes. Reliab. Eng. Sys. Safety, 96(10):1386–1395, 2011.

V. Dubourg, B. Sudret, and J.-M. Bourinet,

Reliability-based design optimization using Kriging and subset simulation. Struct. Multidisc. Optim., 44(5):673–690, 2011.

B. Echard, N. Gayton, and M. Lemaire.

AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Structural Safety, 33(2):145–154, 2011.

I. Kaymaz.

Application of Kriging method to structural reliability problems.

P. Kersaudy, B. Sudret, N. Varsier, O. Picon, and J. Wiart.

A new surrogate modeling technique combining Kriging and polynomial chaos expansions – Application to uncertainty analysis in computational dosimetry.

J. Comput. Phys, 286:103-117, 2015.

T. J. Santner, B. J. Williams, and W. I. Notz.

The Design and Analysis of Computer Experiments. Springer, New York, 2003.

R. Schöbi, B. Sudret, and S. Marelli,

Rare event estimation using Polynomial-Chaos-Kriging.

ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2016.

D4016002.

R. Schöbi, B. Sudret, and J. Wiart.

Polynomial-chaos-based Kriging.

Int. J. Uncertainty Quantification, 5(2):171-193, 2015.