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Abstract— Autonomous vehicles are being used increasingly
often for a range of tasks, including automated highway driving
and automated parking. Such systems are typically either spe-
cialized for structured environments and depend entirely on such
structure being present in their surroundings, or are specialized
for unstructured environments and ignore any structure that may
exist. In this paper, we present a hybrid autonomous system that
recognizes and exploits structure in the environment in the form
of driving lanes, yet also navigates successfully when no such
information is present. We believe such an approach is more
flexible and more robust than either of its sub-components alone.
We demonstrate the effectiveness of our system on both marked
roads and unmarked lots.

I. INTRODUCTION

In Europe, over forty thousand people were killed through
road accidents in the year 2000, with another 1.7 million
injured [1]. The great majority of these accidents were due
to human error, with only 5% caused by defective vehicles.
Such staggering findings motivate the use of driver assistant
systems and fully automated vehicles to increase driver and
passenger safety.

Driver assistant systems can help drivers to identify dan-
gerous vehicle states and traffic scenarios and reduce the risk
of accidents. These driver assistant systems are widespread
in all categories of vehicles and range from anti-lock brakes
to radar based adaptive cruise control. The development of
these systems has been accelerated by integrated drive-by-wire
components such as electronic gas pedals, brakes, and steering
systems.

The development of such components has also hastened
the arrival of autonomous passenger vehicles. In 1997, the
NavLab vehicles travelled ‘no hands’ across the United States,
requiring only accelerator and brake pedal interaction from
the driver [2]. In 2005, 23 autonomous vehicles started a race
across the Nevada desert in the DARPA Grand Challenge race
[3], with 5 of them finishing the 211.1 Km distance.

Most of these systems depend on environmental structure
like driving lanes or dense sets of GPS points. However, in
many common driving scenarios neither of these sources of
information will be available, for example, when leaving a
road and entering a parking lot.

Autonomous navigation in unstructured environments is an
active research area in field robotics, and a number of effective
approaches have been developed that address this task [4]–[7].
A common technique is to maintain a map of the environment

and use this to plan safe paths to a desired goal location.
As the vehicle traverses the environment, it updates its map
and path based on its observations. Such an approach works
well when dealing with reasonably small areas, but storing and
planning over maps of the entire environment is impractical
when traversing long distances. Further, without taking into
account non-spatial information such as road markings, these
approaches are unable to ensure that the vehicle stays within
its lane (or even on the road) when navigating through highway
or urban environments.

In this paper we present a hybrid navigation system that
combines the benefits of existing approaches for driving in
structured environments (e.g. roads) and unstructured envi-
ronments (e.g. parking lots). When driving on detectable
roads, the system uses visual lane detection and laser range
data to generate a local map, which is processed by a local
planner to guide the vehicle down the lane while avoiding
obstacles. When driving in unstructured environments, the
system employs a global map and planner to generate an
efficient trajectory to a desired goal. The combined system is
capable of navigating a passenger car to a given goal position
without relying on road structures, yet it makes use of such
structure when it is available.

We begin by introducing our test vehicle and its sensing and
computing hardware. We then describe our system for navigat-
ing structured and unstructured environments. In Section VI
we present results from runs performed in road and parking
lot scenarios. We conclude with discussion and future work.

II. VEHICLE AND SENSORS

Our vehicle is a Smart fortwo passenger car that has been
modified for autonomous operation. Firstly, we have interfaced
the Smart’s controller area network (CAN) bus to access data
on the dynamic state of the vehicle, specifically the wheel
speed and the steering angle. We have also added actuators
to the accelerator, the brake pedals, and the steering column.
Finally, a number of sensors (discussed below) have been
added to provide vehicle and environmental information.

At the core of our control system is a standard laptop
computer running the Linux operating system. It is connected
to the entire sensor setup and the CAN-bus. Our software
platform is based on GenoM [8], a real-time framework for
Linux. Data acquisition is performed at a rate of 100 Hz for



Fig. 1. Our autonomous Smart car platform at EPFL. The white SICK laser
range finder used for mapping and obstacle detection can be seen attached to
the front of the vehicle. The camera used for lane detection is mounted below
the rear-vision mirror inside the car (and is attached to the yellow/light-gray
cable).

the wheel encoders and IMU, 20 Hz for the laser scanner and
25 fps for the camera.

A. Proprioceptive Sensors

As with many other passenger cars, the Smart is equipped
with a variety of sensors which are linked using the vehicle’s
CAN bus. By interfacing this bus it is possible to access the
sensor data and measure the vehicle’s dynamic state precisely.

a) Wheel Encoders: The overall vehicle speed is derived
from the four wheel encoders with a resolution of 0.5 revo-
lutions/minute. The steering wheel angle is available with a
resolution of 0.04◦.

b) IMU: We have added a 6 degree of freedom IMU to
the Smart that is able to measure angular rates up to 100◦/sec
at a resolution of 0.025◦. Lateral accelerations in all three
dimensions can be measured up to 2g with a resolution of
0.01 m/s2.

B. Exteroceptive Sensors

c) Laser Range Finder: We use a SICK LMS 291
laser range finder for sensing the spatial structure of the
environment. This is a configurable laser range finder based
on time of flight measurements, with an angular resolution of
1 or 0.5 ◦, an angular range of 180 ◦ and a measuring range
up to 80 meters. The laser is mounted directly on the front
bumper of the vehicle to detect obstacles.

d) Monocular Camera: An automotive gray-scale cam-
era is mounted inside the vehicle at the top of the windscreen
for observing the area in front of the vehicle and detecting
lane information. The resolution of the camera is 750 × 400
pixels and it delivers information at 25 frames per second.

III. POSE ESTIMATION AND MAPPING

For accurate navigation and mapping it is necessary to have
a precise estimation of the vehicle’s position at all times.
To estimate the position of our vehicle we have two main

sources of information. The Smart’s built-in sensors provide
an accurate approximation of the steering wheel angle and
the translational velocity of the car. Additionally, our IMU
provides the angular and translational accelerations of the
vehicle.

Our position estimation is based on two Kalman filters [9]
- one for the translational speed of the vehicle and one for the
angular velocity. Both filters use the output of the IMU for
the prediction step. The first filter uses the output of the wheel
encoders to provide the translational speed update, while the
second uses the steering angle to provide the angular velocity
update. Combining these filters provides accurate position
estimation over reasonable distances. See [10] for more details
on this approach.

Given the vehicle’s position, we can convert measurements
from our laser range finder into world coordinates. This
enables us to produce maps of the environment that can be
used for navigation. Figure 5 shows a map of a rural road and
parking lot created online during an autonomous traverse.

IV. DRIVING IN STRUCTURED ENVIRONMENTS

When driving in structured environments such as roads or
highways, it is important for safety that vehicles abide by
traffic rules and stay in their own lanes. For autonomous
vehicles, such structure is useful because it constrains the
available actions of the vehicle and reduces the complexity of
the navigation task. For instance, if an autonomous vehicle is
traveling down a road, it knows it must stay within its current
lane so the lane can be used as a guide for where the vehicle
must travel to next. Such an approach can be coupled with a
standard commercial navigation unit that provides higher-level
guidance on when to turn down which street.

However, to ensure safe navigation, it is not enough to just
follow the current lane. The vehicle must be alert at all times
and able to avoid other cars and objects that may unexpectedly
place themselves in its path, such as cars pulling out from
driveways or pedestrians crossing the street, for example. To
achieve such behavior in our Smart, we construct a local map
representing the immediate surroundings of the vehicle and
then plan a collision-free path through this map. Both the
map and the plan are updated frequently (at 20 and 10 Hz,
respectively, for vehicle speeds up to 5 m/s). With both the
local obstacles and lane information encoded in the local map,
the vehicle is able to plan trajectories that keep it within the
current lane andd also avoid any obstacles.

A. Local Planning

We use the information from our laser range finder to
construct a local grid-based cost map specifying the nearby
obstacles and difficult areas to traverse for the vehicle. Each
cell in the grid is a square of width 20 cm. Cells containing ob-
stacles are assigned an infinite cost, representing untraversable
areas, with cells corresponding to less difficult terrain assigned
less-expensive cost values. We perform a configuration space
expansion on this map, which has the effect of ‘growing’ the
obstacles and other expensive areas out by the width of the



Fig. 2. Example results from our lane detection approach applied to images
from a straight (top) and curved (bottom) section of road.

vehicle. This allows us to treat the vehicle as a single point
during planning.

Given this local map and the current vehicle position and
orientation within this map, we can then project potential
vehicle actions onto the map and check the cost of these
actions. We use a discrete set of variable-length arcs for our
vehicle actions, corresponding to different steering angles and
vehicle speeds [4]. Each of these arcs represents an action that
is feasible from the current vehicle position, orientation, and
velocity. We then choose the best of these arcs according to
their costs and perhaps also some general objective, such as
the amount of distance the arc takes us in our desired direction
of travel (e.g. down the road). This arc can then be directly
executed by the vehicle.

B. Lane Detection

Because the laser only recovers spatial structure from the
environment, it is unable to provide information not manifested
in spatial structure but e.g. color, such as lane markings. As
a result, local maps constructed from only the laser will not
indicate the boundary of the current lane or road.

To extract lane information, we use a monocular gray-
scale camera designed for automotive use and a real-time lane
detection algorithm running on a separate computer equipped
with a frame grabber. Our approach combines hypotheses
from several lane detection algorithms, each designed to detect
different types of lanes, such as the closest lane to the vehicle,
straight lanes, or curved or symmetric lanes. These algorithms
rely mainly on the spatial gradient of the image to extract
their hypotheses. The results of the individual algorithms are

Fig. 3. Local Planning in Structured Environments. The vehicle projects
a set of feasible arcs through the local map from its current position and
orientation (arcs for a single speed are shown in red/gray). The cost of each
of these arcs is computed, based on the cost of the cells the arc travels through
(darker areas are more expensive, with black cells representing obstacles). The
best arc is shown in blue/black. The current lane information is shown as a
series of expensive (dark gray) cells, while an obstacle appears in front of the
robot as a series of black cells.

then combined to determine the most probable lane. Example
results from our lane detection algorithm are shown in Figure
2 and more details on the algorithm can be found in [11].

Once the lane has been extracted, it is added to the local
map as a high-cost area so that the vehicle will prefer to stay
within the center of the lane but may move towards one side
if it has to in order to avoid an obstacle.

An illustrative example of the combined approach is shown
in Figure 3. Here, the darker an area, the more costly it is to
traverse. Each small square in this map represents 20 cm and
the vehicle can be treated as a point because the map represents
its configuration space. The lane information is shown as a
series of dark-gray cells. In this example, an obstacle also
appears at the right side of the lane (this could be a person
stepping into the lane). The obstacle is shown in black and
must be avoided at all costs. The area adjacent to the obstacle
is shown as high-cost area that should be avoided if possible.
The robot picks the best arc (shown in blue/black) from its
available set of arcs (shown in red/gray) according to the cost
of the arcs and some higher-level objective (such as distance
traveled parallel to the road).

V. DRIVING IN UNSTRUCTURED ENVIRONMENTS

In unstructured environments where there is no lane in-
formation to guide or constrain the actions of the vehicle,
the vehicle must use a more general approach for navigation.
For instance, imagine our vehicle has arrived at its intended
destination address and now wants to park in a specified
goal location within the parking lot. To do this, we could
use the local planning component of our system and modify
our higher-level objective so that the planner selects arcs
that minimize the distance between the vehicle and its goal
location. However, such an approach is susceptible to local
minima, meaning that it can cause the vehicle to get ‘stuck’
behind obstacles that reside between its initial position and the



Fig. 4. Global Planning in Unstructured Environments. The vehicle
projects a set of feasible arcs through the local map from its current position
and orientation (arcs for a single speed are shown in red/gray). The cost
of each of these arcs is computed, based on the cost of the cells the arc
travels through (darker areas are more expensive, with black cells representing
obstacles). A global path is planned from the end of each arc to the goal
(shown as a filled circle on the right side of the map) and the cost of this
path is added to the cost of the arc. The best arc is shown in blue/black, along
with the global path from the end of this arc to the goal.

goal.
To avoid this limitation of purely local planners, our ap-

proach combines a global planner with the local planning
capability mentioned in Section IV-A. This enables the vehicle
to plan efficient trajectories through cluttered areas (such as
parking lots) since the vehicle takes into account the entire
map and all the obstacles during planning. This allows for
early avoidance of obstacles and much better behaviour.

Our global planner is based on the Field D* algorithm,
which has been incorporated into several fielded robotic sys-
tems [12]. This algorithm provides very low-cost paths through
grid-based representations of an environment. These paths do
not take into account the heading restrictions of the vehicle and
instead approximate the least-cost path to the goal for a vehicle
that can turn in place. Because Field D* does not encode the
mobility constraints of the vehicle, it cannot be used alone for
accurate trajectory planning for the vehicle. Consequently, we
combine it with our local, vehicle-specific arc-based planner
to provide feasible paths. Our combined system maintains a
global map of the environment containing all the observed
obstacles and high-cost areas. Then, every planning cycle, the
vehicle projects out its set of available arcs into this map and
computes the cost of each arc based on its distance and the
cost of the cells it travels through, exactly as described in
Section IV-A. This gives the cost of traversing the arc itself.
To this value we then add the cost of a global path from the
end of the arc to the goal. This cost is provided by our global
Field D* planner. Then, the arc with the minimum combined
cost is selected and executed by the vehicle.

Figure 4 shows an illustrative example of this combined
approach. The set of available arcs are shown in red/gray,
with the best arc shown in blue/black. Here, the best arc was
selected based on a combination of the cost of the arc itself
and the cost of a global path from the end of the arc to the goal

Fig. 6. Results from our lane detection and mapping in a structured
environment. Data was gathered from roughly 100 meters of traverse down a
road (travelling from left to right). The top image shows the combined local
maps created by the vehicle during the traverse, with lane information shown
as dark gray areas and obstacles shown in black. Notice that the obstacle
information does not provide any real indication of the location of the lane or
even road, and so does not suffice for safely guiding the vehicle. The bottom
image shows a satellite map of the area.

(the goal is shown as a filled circle at the right of the figure).
The global path from the end of the best arc to the goal is also
shown in blue/black. In this example, a purely local planner
would have selected the straight arc leading directly to the
right, as this brings it closest to the goal in terms of straight-
line distance. However, such an arc could cause it to get stuck
behind the clump of obstacles in the middle of the map.

VI. EXPERIMENTS

We have tested our system in both structured and unstruc-
tured environments. For structured environments, we had the
vehicle drive down a road and record the resulting local maps.
Figure 6 shows the combined cost map constructed from the
series of local maps and highlights both obstacles and lane
information. Since the laser range data does not contain any
information about the lane markings, the vision-based lane
detection system is necessary to keep the vehicle in its lane.

To test our vehicle in unstructured environments, we gave it
a more complex task. We began on a road and tasked it with
autonomously navigating to a goal location in a nearby parking
lot. Because there were large shrubs between its initial position
and its goal, it was forced to travel down the road until it
observed an opening through which it could enter the parking
lot. At this point it entered the parking lot and navigated to
its goal location.

Figure 5 shows the resulting map built by the vehicle and
the vehicle’s traverse. Figure ?? shows a series of images taken



Fig. 5. Results from global planning and mapping in an unstructured environment. Shown here is the map created from the laser during an autonomous
traverse from an initial position on a rural road to a goal position inside a large parking lot. Also shown is the path (in blue/black) traversed by the vehicle.
The vehicle began from the position marked in green/gray at the top of the map, and navigated to the goal position marked in red/gray at the bottom.

from a video of the traverse. Overall the vehicle travelled
about 140 meters in 62 seconds, i.e. at average speed of
roughly 2.3 m/s. It traversed clear parts of its path (including
portions of the turn) at speeds of up to 4 m/s and slowed down
significantly near obstacles.

The vehicle trajectory seen in figure 5 illustrates the ad-
vantage of our arc-based local planner. Because these arcs
accurately represent the actual driving abilities of our vehicle,
the resulting path is very smooth, especially in the wide turn
the vehicle takes to enter the parking lot.

Together these experiments illustrate our vehicle’s ability
to navigate through both road and non-road environments.
Our vehicle effectively avoids obstacles to reach a defined
goal position without relying on an apriori model of the
environment.

These experiments also showed that the complex tasks of
data aquisition, vehicle localization, environment mapping,
and local and global planning can be performed on a single
standard laptop computer.

VII. CONCLUSIONS AND FUTURE WORK

In our paper we have presented a hybrid approach for
autonomous navigation in structured and unstructed environ-
ments. As long as road structure like driving lanes are available
our approach is able to integrate this structure into the mapping
and path planning process. Whenever lane structure is not
available, as is the case for example in parking lots, our system

is able to navigate based on observations from its laser and
safely reach a given goal while avoiding obstacles like curbs
and parking cars. We have provided results demonstrating the
operation of the vehicle in both structured and unstructured
environments.

We are currently working on a number of extensions to
this approach. Firstly, we are incorporating a scan matching
algorithm for improved position estimation and mapping [10].
This algorithm matches two consecutive laser scans to provide
an approximation of the distance travelled by the vehicle
between the scans. We are also working on an improvement
to classical scan matching that can detect and model dynamic
obstacles in the environment, which is useful when navigating
through environments in which other vehicles and people are
moving.

Secondly, although our current system can successfully
navigate to some specified goal point, it cannot yet turn from
road to road to arrive at an address-specified destination.
Consequently, we are installing a GPS-enabled commercial
navigation unit into the Smart car to provide high-level direc-
tions to the vehicle when navigating over roads. By coupling
this unit with our local planner, our vehicle will be able to drive
to an arbitrary destination using local roads and highways.

Another interesting research direction we are pursuing is
using a 3D laser scanner to obtain a 3D model of the car’s
environment. With full 3D information we can create local and
global maps for the robot that encode the slope of the terrain as



well as holes and other obstacles that cannot be seen with our
current 2D laser [13]. This allows for navigation over rough
outdoor terrain. We can also combine this with vision systems
to produce textured 3D models of outdoor environments [14].
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