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Abstract: Quantifying and mapping ecosystem services (ES) is seen as one way to improve 

decision making and land management to better integrate environmental issues. This study aimed 

to characterize ES supply in deforestation context where an improvement of scientific knowledge 

should help reaching a more efficient environmental management. For three case studies in the 

Brazilian Amazon impacted by deforestation, seven indicators of potential ES supply were 

mapped at a spatial resolution of 30 x 30m: biodiversity index (indicator of food web support); 

richness of pollinators (pollination); index of soil chemical quality (support to production); water 

available for plants (water regulation); soil carbon stocks (support to production and climate 

regulation); rate of water infiltration into the soil (soil erosion control) and vegetation carbon 

stocks (climate regulation). To map these indicators, in situ measurements of ES for 135 

sampling points and remote-sensing data were linked using regression methods. These methods 

were used to predict ES values and identify environmental factors that influence ES supply. The 

resulting maps help understanding the influence of environmental factors on ES spatial 

distribution within the sites. The analyses illustrate the influence of land-use changes on ES 

supply and the role of context effects due to the heterogeneity of the biophysical environment, the 
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temporality of deforestation, and/or their diversified socio-political contexts. From a 

methodological viewpoint, the study highlights the importance of choices inherent in all 

cartographic practices and that need to be considered, especially in the context of rendering ES 

maps operational. 

 

Keywords: ecosystem service indicators, biophysical processes, statistical model, regression, 

remote sensing, land cover, deforestation, Brazilian Amazon.  

 

 

 1. Introduction 

 

Ecosystem services (ES) are the benefits humans obtain from ecosystems (Daily, 1997; MEA, 

2005). Since the publication of the Millennium Ecosystem Assessment (MEA) in 2005, the 

concept of ES has become one of the new key concepts in environmental governance. 

Quantifying and mapping the ES, or indicators of their associated biophysical processes, is seen 

as one way to improve decision making and land management to better integrate biodiversity 

issues (Daily and Matson, 2008). Mapping ES should help policy makers target strategic areas, 

formulate new policies and/or evaluate impacts of previous policies (McInerny et al., 2014).  

 

Since ES are intermediaries between the ecosystems that supply them and the society that 

receives them, it is hard to measure them directly. Therefore their assessment and mapping are 

mainly done through the definition of indicators. In our study, as we aim to quantify and map ES 

supply, we choose indicators of the biophysical processes. An indicator is a polysemic term 
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(Heink and Kowarik, 2010) whose definition used in this paper is partly based on the one 

proposed by the OECD. It defines an indicator as a measure of an environmental phenomenon 

used to describe or assess environmental conditions or changes or to set environmental objectives 

(OECD, 2003). For example, one of the most commonly spatial indicators in the scientific 

literature on ES is carbon stock, allowing the apprehension of the service of regulation of the 

climate. 

 

Methodological questions exist while mapping ES indicators (Grêt-Regamey et al., 2014; Schulp 

et al., 2014; Le Clec’h et al., 2016) as the interpolation and extrapolation of ES indicators rely on 

arbitrary choices, such as choices related to the methodology and the spatial scale of 

representation. The importance of spatial scales in environmental assessments is often 

emphasized (National Assessment of Climate Change, 2000), since each scalar level allows an 

analysis that is differentiated according to geographical characteristics and conditions both the 

type of input data and its accuracy. Pagella and Sinclair (2014) defined in this sense five 

categories of spatial scales: local, regional, national, supra-national and global, according the size 

and the main actors of the study area, among others.  

For example, at the local scale, ES maps can be based on reliable estimates that take local 

characteristics into account. They present major methodological and operational challenges 

(Grêt-Regamey et al., 2014; Malinga et al., 2015). Thus, they enable precise distinction of areas 

where ES is high (hotspots – high supply of one or few ES) and low (coldspots) based on 

accurate datasets. These maps can also associate these areas with controlling factors, such as 

topographical variations or land-cover changes. In this way, local ES maps can help spatially 

target conservation and development activities and assess benefits and costs of alternative 
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policies (Grêt-Regamey et al., 2014). Furthermore, they help transfer knowledge and information 

among many actors, especially farmers, who expect to visualize their land in a recognizable 

context (Pagella and Sinclair, 2014). At broader scales, ES maps provide an overview of general 

trends or the general state within a political and / or administrative entity at the scale of which 

decisions are made. Despite the issues associated to the local scale, few studies have mapped ES 

or their indicators at the local scale1. Following the criteria proposed by Pagella and Sinclair 

(2014), we decided to characterize our study sites as belonging to the local scale. Indeed, they 

cover less than 250 km² and are relatively homogeneous in terms of climate, landscape and socio-

economic characteristics. As pointed out by Pagella and Sinclair (2014), our local-scaled maps 

can then be seen as a tool to help farmers since they could allow them to situate themselves in a 

familiar context and requires a set of spatial data at high or very high spatial resolution. 

 

In addition to the scale related issues, questions about extrapolation and interpolation methods 

exist. Indeed, several ways exist to map ES indicators. Most studies attributing one ES value per 

land-cover type (Fisher et al., 2011) or on applying ecological (Nelson et al., 2009; Bai et al., 

2012) or economic models (Naidoo et Ricketts, 2006; Busch et al., 2012). Less common ways are 

based on using complex models (e.g. ARIES model - Villa et al., 2009  ) or process-based models 

(e.g. InVEST- Sharp et al., 2014), developing participatory approaches (Sherrouse et al., 2011; 

Palomo et al., 2013, Darvill et Lindo, 2015) or applying statistical methods to extrapolate field 

data using remote sensing to a large region. Although statistical methods for mapping ES remain 

                                                            
1  Only 15% of articles with an ES (indicator) map belonging to the scientific literature from 
1990-2014 that can be found on the Web of Science by identifying the following keywords: 
“ecosystem* service*” AND mapping (or map*) OR “environmental* service*” AND mapping 
(or map*) OR “ecological* service*” AND mapping (or map)*). 
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rare, they have high potential: they enable better understanding of ES supply and the factors that 

influence it, and they help predict values of ES indicators for an entire region. Moreover, they 

must be created with sampling data. 

 

In this context, this study aimed to analyze and characterize ES supply in the context of 

deforestation where an improvement of scientific knowledge should help to understand the 

impacts of deforestation activities and to reach a more efficient environmental management 

(Théry, 2012). Our specific objectives were (1) to identify factors of control of several ES 

indicators and (2) to map these indicators and analyze the resulting maps to determine principal 

spatial components and structures of the landscape. To do so, we describe our use of statistical 

methods to map a relatively large set of ES indicators (a biodiversity index, richness of 

pollinators, a soil chemical quality index, water available for plants, soil carbon stocks, rate of 

water infiltration into the soil and vegetation carbon stocks). Most of the ES indicators mapped in 

this paper are rarely studied, possibly due to a lack of understanding about their issues by the 

scientific community or by stakeholders who order maps to be made. For instance, very few 

papers consider soil ecosystem services, in comparison with climate regulation service or services 

related to water supply (Dominati et al., 2010). Our statistical modelling is based on a dataset 

highly diversified in terms of addressed thematic areas (related to the site, vegetation and 

topography) and number of data. Indeed, ES are provided by biophysical processes or ecological 

functions whose functioning can be complex and, if ES are still often mapped from one data, 

such as a land use classification (eg Kienast et al., 2009), it seems essential to take into account a 

wide variety of information. This paper is thus based on the interpolation of field data points to 

an entire study site, via the use of data derived from remote sensing. We applied the method to 
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three study sites in deforestation areas in the Brazilian Amazon. In this part of the world, 

deforestation processes occur through the implantation of deforestation fronts (Arnauld de Sartre, 

2006), highly dynamic areas where deforestation occurs at a very high rate. These areas are 

subject to very strong tensions between environmental protection and economic development. 

Therefore, it is interesting to implement in this context the notion of ES whose ambition is to 

analyze these tensions. Moreover, as changes in these areas are intense and fast, the analyses of 

ES and their dynamics are very interesting and ES maps could be seen as a new tool to support 

environmental management in these areas. 

 

The resulting maps were analyzed to determine the main spatial elements of the region and to 

understand the factors that controlled the ES indicators. In this way, as they are one simple way 

to represent biophysical processes and show variations in ES supply, maps of ES indicators 

enable better understanding of environmental challenges in the studied areas. 

 

 

 2. Methods 

 

  2.1. General approach 

 

In a deforestation dynamics areas context, the study of ES supply is highly relevant because of 

the lack of regulations, public policies and environmental management. It should improve the 

understanding of environmental impacts of deforestation and help the evaluation of past and 

current public policies (or their absence) influence on ecosystems. 
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The methodology was based on the implementation of a regression method to model various ES 

indicators from dataset obtained by satellite image processing. In other words, we tried to 

estimate for all the pixels of each study area values for seven ES indicators. As, this information 

was measured in situ and was known only at the sampling points, we applied a regression method 

as an extrapolation method. Doing that, the study followed three main steps.  

• First, we identified a reliable statistical method to map each ES indicator. To do so, we 

implemented and compared for each indicator two regression methods (regression tree and 

linear regression). The method with the highest predictive capacity was used in the other steps. 

• Next, we identified factors controlling each indicator of ES supply. To do so, we applied the 

variable selection procedure on each selected regression method to identify remote sensing 

data that impacted significantly the ES supply. 

• Finally, we mapped each ES indicator and described its spatial distribution for the three study 

sites. To do so, the selected regression methods were used to predict new values from the 

significant remote sensing data.  

 

  2.2. Study sites 

 

This paper studied three locations in the Brazilian Amazon rainforest in the state of Pará: 

Macaranduba, Pacajá and Palmares II (Figure 1). The Brazilian Amazon, like any forest, provides 

a large number of ES. Yet, large parts of the Amazon are dramatically threatened by deforestation 

and the dynamics of forest degradation (Evans et al., 2001; Fearnside, 2005; INPE-Prodes, 2014), 

especially in Pará State, which has one of the highest deforestation rates in the Amazon (1887 
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km² in 2014 – INPE-Prodes, 2014). With high deforestation rates and forest degradation, the 

Amazon presents significant challenges for creating effective environmental policies. In tropical 

forests, especially the Amazon, the ecological issues of biodiversity and ES are well known and 

documented (Metzger et al., 2006). As the largest tropical forest in the world, the Amazon has 

one of the highest levels of biodiversity and is considered an ES hotspot. At the same time, the 

Amazon has experienced several decades of significant deforestation, mainly for timber and 

cattle (Fearnside, 2008; Godar et al., 2012), even though rates have decreased in recent years 

(INPE-Prodes, 2014). According to the FAO, more than 100 million ha were deforested in 

tropical forests from 1996-2010 (FAO, 2012).  

 

At nearly 1,25 km², Pará is the second largest state in Brazil and includes the Amazon rainforest 

as part of its territory. In 2013, deforestation in Pará represented almost 50% of all deforestation 

in Brazil. Deforestation, even partial, impacts the supply of ES highly. Environmental and 

agricultural policies and stakeholders need tools to evaluate, monitor and respond to these 

impacts.  

 

Figure 1 

 

Maçaranduba is a 220 km² site belonging to the municipality of Nova Ipixuna. Located in a 

largely deforested area, it has been deforestation since the 1970s but the forest cover remains 

relatively well preserved. Pacajá is 175 km² site, located about 60 km from the urban center. 

Deforestation from spontaneous colonization began in the 1990s and follows a track (Traverssão 

338 south) perpendicular to the Trans-Amazon highway, called the "fishbone". Forest cover was 
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still high (63%) in 2007. Palmares II is an assentamento (settlement) of approximately 160 km². 

it is located near the Carajas iron mine. Emblematic of agrarian reform, the site was divided into 

similar-sized lots, which fragmented the area. 

 

 

  2.3. Data 

 

Two datasets were used to model ES indicators: field data (the response variable) and remote-

sensing data (explanatory variables). 

 

   2.3.1. Field data: response variables 

 

Thus, seven ES indicators related to three groups: biodiversity (an index of biodiversity and 

species richness of pollinator moths - Sphingidae), biophysical soil processes (soil chemical 

quality, water available for plants, soil carbon stocks and rate of water infiltration into the soil) 

and vegetation structure (vegetation carbon stocks) were sampled (Table 1). 

 

Table 1 

 

These seven indicators were chosen for three main reasons: first, the study of each of them was 

relevant in a context of deforestation. Secondly, as they were provided from diversified 

biophysical processes and at different spatial scales, they were complementary to each other. 

Preliminary statistical analyses demonstrated that they are not auto-correlated. Thirdly, we chose 
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to study indicators, such as vegetation and soil carbon stocks, biodiversity and pollinator 

richness, that were associated with ES that are frequently taken into account in scientific studies 

and in public policies, and indicators, such as water available for plants, are often understudied or 

forgotten. In other words, the issues of indicators from the first category are well known among 

the scientific and non scientific communities, whereas the issues of the others are not, or in a less 

extent. These indicators were statistically very heterogeneous (for instance, some are indexes, 

others are variables). However, this heterogeneity was not a problem for our analyses, since each 

indicator was study independently of the others. 

 

All indicators were assessed using field data collected from 9 farms per site. These nine selected 

farms were representative of the differences in landscape and socio-economic characteristics of 

the farmers that are present on each of the sites. On each of the 27 farms, five sampling points 

were spaced equally along a transect corresponding to the longest diagonal of the farm or a north-

south axis. Transects intersected all major land covers in the region, including disturbed and 

intact forests, and had an average length of 1 km (std. dev. ≈ 0). The distance among points was 

equal to 1/6 of the transect length. Measurements and data collection took place in 2008 during 

four months (April-July) of the rainy season. The indicators were calculated as follows (for more 

details, see Grimaldi et al., 2014): 

 

Biodiversity index 

Despite historically strong links, the relationship between the notions of biodiversity and ES is far 

from being clear and the nature of these links is often controversial (Larrère and Larrère, 2015). 

In this study, biodiversity was considered an ES indicator because of its essential role in human 
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well-being (MEA, 2005; Diaz et al., 2006). It indeed can be considered as an indicator of the food 

web support service. 

Biodiversity was represented through the use of a standardized indicator of species richness 

which indicates the mean of several species richnesses for each of the 135 sampling points. 

It was built from twelve groups of organisms that were sampled during field works: moths, birds, 

bees, fruit flies, ground spiders, ants, termites, earthworms, other soil macro-invertebrates, and 

lower, medium and higher strata of the vegetation. For each taxonomic group, the species 

composition and the number of individuals observed for each species were recorded. Groups of 

organisms were chosen for at least one these factors: 

- their link to different ES, for instance related to some soil ES (earthworms, spiders, termites, 

soil macrofauna, plants) or to pollination (Sphingidae)  

- their sensitivity to local perturbations (fruit flies)  

- their specific response to landscape composition and their migrating abilities (bees, moths 

and birds). 

For each group, we first normalized the species richness as a proportion (0-1) of the highest 

richness observed (of the same group) in the 135 sampling points (Equation 1). Then, we 

averaged the normalized richness for each sampling point to calculate the final index of species.  

 

With T1,…T9 : taxa used for the calculations 
Max(T): maximal value for the considered taxa 
 

Equation 1: Formula used to calculate the biodiversity index 
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Richness of pollinators 

Pollination is considered in the MEA as a regulatory service (MEA, 2005) and corresponds to the 

interaction between plants and pollinators. Since the characteristics of the species (trophic 

regimes for example) are very different within a taxonomic group, it is difficult to associate the 

supply of the same ES to all the species of one group. Thus, it had been considered more 

appropriate to work at the level of taxonomic groups for which almost all species provide a 

service. We decided to take the specific richness of Sphingidae moths as an indicator of the 

pollination service because most organisms of this species are pollinators. It is recognized that 

they account for 5% to 10% of the pollination in tropical forests (Oliveira et al. 2004, Primo 

2008). 

All Sphingidae moths were collected by light trapping at a single point of each transect, 

following the methodology described in Lamarre et al., (2015). We chose the point at the location 

closest to the largest forest present in the agricultural zone. The moths were attracted by a 175W 

mercury vapor bulb - powered by a small portable generator. A white sheet 2 m high x 3 m wide 

was used as a reflector. At each point, the collection was carried out over a single night, from 

18:00 to 06:00. Collected as soon as they arrived on the leaf, the moths were then killed by 

injection of ammonia, stored and dried in marked paper envelopes, and taken to the lab for 

identification and enumeration. We used the resulting number of the enumeration as a variable 

for the pollination service. 

 

Soil chemical quality index 

Support of primary production is one supporting ES, according to the MEA categories. Since the 
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role of soil fertility as an indicator of primary production has been emphasized by the MEA 

(MEA, 2005), we primary production support through an indicator of soil fertility: an index of 

soil chemical quality.  

The index was calculated using particle-size distribution and chemical properties of the 0-10 cm 

soil horizon that were measured from a composite from two pits.  

A Principal Components Analysis (PCA) was performed on several soil chemical proprieties (pH 

H2O, cation exchange capacity –CEC- at soil pH; exchangeable Al3
+, Ca2

+, Mg2
+ and K+; 

exchangeable N4
+ and extractable P - Velasquez et al., 2007), measured using standard methods 

(Pansu and Gautheyrou, 2006). The soil chemical quality index was determined from this PCA.  

 

Water available for plant 

Water regulation is considered as a regulation ES. It is highly dependent on the volume of water 

retained or stored in the ground. The water regulation ES has therefore been studied through the 

volume of water available for plants. 

Measurement of soil storage capacity (i.e. height) of plant-available water in the 0-10 cm soil 

horizon followed a specific sampling protocol: cores with undisturbed structure (cylinders of 100 

cm3) in the 0-10 cm horizon (four replicates) were taken from one of the five points on each farm, 

chosen so that the main land use types were sampled in each area proportional to their 

occurrence. From laboratory measurements with a pressure-plate apparatus (Pansu and 

Gautheyrou, 2006) for 27 points (108 cores), multiple-linear-regression models were generated to 

estimate, from the simplest soil variables measured at all points (clay, silt and sand contents, bulk 

densities (qb), vertical resistance (Rv) of the superficial horizon measured with a cone 

penetrometer, pH, CEC and C content), the water retention capacities at different water 
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potentials. Plant-available water capacity was then calculated as the water volume drained 

between matrix potentials of -30 kPa and -16 MPa. 

 

Soil carbon stocks 

Soil carbon stocks are an indicator of the soil chemical fertility. It thus can be considered as an 

indicator of the supporting ES “support to primary production”. 

Soil carbon stocks were calculated from bulk density measurements in the 0-30 cm horizon 

(CHNS analyzer in three samples from each plot). 

 

Rate of water infiltration into the soil 

Rate of water infiltration into the soil is an indicator erosion control, a regulating ES. By 

infiltration capacity soil, surface water run-off can be prevented or limited, reducing the risks of 

upstream erosion and downstream flooding (Zimmerman et al., 2006) 

Rate of water infiltration into the soil was measured on the field, using a Beerkan infiltration test 

from a fixed water volume of 250 cm3 poured into a 20 cm diameter simple ring inserted at the 

soil surface to a depth of approximately 1 cm. 

 

Vegetation carbon stocks 

Climate regulation is a regulatory service, according to the MEA classification. Forested 

ecosystems, through their ability to store carbon, play an important role in mitigating climate 

change. As such, we studied the service of climate regulation on the basis of an indicator: 

vegetation carbon stocks. 

Samples were made for plots of 50 ×10 m² for forests and 50 × 5 m² for fallows. First, after 
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identifying vegetation species, the diameter and height of individuals and water content at 70°C 

of corresponding biomass aliquots (all individuals with dbh < 5 cm) were measured.  Then, 

allometric equations were implemented to estimate aboveground dry plant biomass for forests 

(Gerwing, 2002) and fallows (Nelson et al., 1999). In the case of individual with dbh > 5 cm, the 

factor 0.603 was applied and in the absence of carbon analysis of plant samples, a factor of 0.5 

was used (Markewitz et al., 2004). 

 

   2.3.2. Remote sensing data: explanatory variables 

 

To map ES indicators, we applied spatial extrapolations uniting the plot-level measures with local 

high-resolution satellite imagery (Table 2). The studied ES indicators were strongly related to 

environmental conditions, explanatory variables were chosen to characterize different aspects of 

the landscape. Thus, we used remote sensing data that give information about vegetation cover 

(e.g. land cover, vegetation density) and topography (e.g. elevation, slope). They were derived 

from the processing of the 1990, 1994, 1996, 2001 and 2007 Landsat TM images (30 x 30 m 

spatial resolution) carried out under ENVI and the processing of the Aster Digital Elevation 

Model (DEM - 30 x 30 m spatial resolution). These data were known for all three study sites. All 

the spatial data obtained by remote sensing were extracted for the 135 sampling points. 

Landsat images were radiometrically and geometrically corrected prior to classification to ensure 

comparability across Pará. The Landsat classifications were produced by supervised maximum-

likelihood classifications of six land-cover classes (forest, burned forest, juquira-capoeira [fallow 

lands], grasslands with trees, clean grasslands and bare soils) for 2007. Training data used for the 

supervised classification were sampled during field campaigns using a GPS. In addition, analysis 
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and processing of land cover classification were also extended to all Landsat TM images of the 

dataset (from 1986 to 2007). Thus, from the land-use maps obtained for the four dates, five 

classes of land-use trajectories were determined (Oszwald et al., 2012), from a homogeneous 

forest structure (class 1) to an agricultural dynamic of extensive breeding (class 5). Landsat TM 

images were also use to calculate two vegetation indexes giving information about vegetation 

density (NDVI) and water content into plants (NDWI). Finally, we calculated the distance to each 

pixel to the closest forest patch (in meters). 

The topography data informed the elevation (in meters) at every point. Slopes synthesized the 

altitude difference between two adjacent pixels and were provided as a percentage. These two 

variables were quantitative and were treated as continuous raw data. The "topography" variable 

corresponded to a synthetic characterization of the topographic context comprising four 

modalities: bottom of valleys, hilltops, zones of steep slopes and zones of low slopes. Finally, we 

deduced from the DEM the hydrographic network and then to determine a distance to the rivers 

(0 to 100 meters, 100 to 200 meters, 200 to 300 meters, 300 to 500 meters and more than 500 

meters) . The size of the watercourses was not taken into account since there was no difference in 

size between the rivers in the study area. 

We also used a variable, named “Site” that corresponded to the identity of the study site to which 

each pixel belonged. 

Table 2 

 

  2.4. Regression methods 

   2.4.1. General principle 

From a statistical point of view, the approach consisted in the implementation, for each ES 
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indicator, of two regression methods (Figure 2). Regression methods aimed to explain the relation 

of variable (an ES indicator) with other variables, described as explanatory (geographic data 

obtained by remote sensing). Through variable-selection procedures, we selected only the 

significant explanatory variables. From a statistical point of view, such procedures were 

necessary to get the smallest model that fitted the data and to avoid noise and collinearity. From a 

thematic point of view, they were necessary to identify the components of the landscape that 

impact the ES supply and how they impacted. Once the method was built on the available data 

(135 sampling points - field data and remote-sensing data extracted for these 135 sampling 

points), it was applied to the entire study sites, to predict the variable of interest from new 

observations collected on explanatory variables only (pixels). 

Figure 2 

 

These regression methods were then used to predict the values of ES indicators only from the 

remote-sensing data. We had two objectives for using the statistical methods. First, we wished to 

explain the variations observed in each indicator. Applying a statistical method meant impartially 

selecting factors, the control factors, that significantly influence the ecological bioprocesses. 

Second, we wished to predict values of ES indicators for entire areas to develop ES indicator 

maps from sampling data. Two regression methods were selected to predict quantitative variables 

from categorical and quantitative variables: multiple linear regression (Cornillon and Matzner, 

2011) and regression trees (Classification And Regression Trees (CART) algorithm - Breiman, 

1984). We chose these two methods among others because (1) both are regression methods and 

they can be used to get predictions; (2) both could deal with qualitative and quantitative data and 

(3) however, since one is parametric and the other is not, they are based on two different 
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modeling principles. To implement the cross validation procedures, the original dataset was split 

into a learning sample on which each model was built and of a test sample on which the model 

was applied to predict the ES values. A prediction error was calculated for each by averaging the 

mean squared differences between predictions and observed values on the whole test sample. 

This allowed the comparison between the predictive properties of each regression method. To 

facilitate the interpretation, the scores were standardized (for each indicator, the two scores were 

divided by the maximal value).  

 

   2.4.2. Maps validation 

Maps validations were based on a confrontation between the ES observed values (135 sampling 

points) and the values predicted by the models. 

For comparative purposes, cross-validation procedure (cumulated prevision error) is more 

reliable than R², which automatically increases with the number of explanatory variables. We 

then used the cross-validation score to determine the best methodology for each indicator. To 

perform cross-validation procedure, we split the original dataset (135 points) into a learning 

sample on which each model was constructed and a test sample on which the model was applied 

to predict new ES values (Refaeilzadeh et al., 2009). From a total of 100 replays, a mean square 

error measuring the difference between the predicted values on the test sample and the values 

observed in the field was calculated for each model. In the procedure, about 90% of the 

individuals (around 120 individuals), were randomly selected to form the learning sample.  

 

Once the predictive properties of both methods had been compared through data splitting (cross 

validation) procedures, ES maps were built using the chosen model. Then computing the R² 
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yields a convenient way of interpreting the reliability of the resulting maps. Indeed the more the 

R² are close to 1 the closer the ajusted values are to the original data (Cornillon and Matzner-

Lober, 2011). Thus computing R² on a final map gave a measure of its goodness of fit. However, 

the R² could neither be used as a variable selection procedure (adding variables automatically 

increases the R2 so using this criteria would always lead to keep all the variables) nor as a criteria 

to compare the regression methods (goodness of fit should not be confused with predictive 

properties. 

 

 3. Results 

 

  3.1. General statistical results 

 

The statistical models were generally reliable (e.g., R² = 0.65 for the biodiversity index and 0.67 

for the soil chemical quality index; Table 3). Results differed greatly among indicators (R² 

varying from 0.39 for water available for plants to 0.75 for vegetation carbon stocks). 

Consequently, we decided to map only indicators with R² > 0.50. Four indicators were predicted 

with regression trees: the biodiversity index, richness of pollinators, soil carbon stocks and soil 

chemical quality. The other two indicators (vegetation carbon stocks and rate of water infiltration 

into the soil) were predicted with linear models. 

 

Table 3 

 

Besides variability in their ability to predict a given indictor, models sometimes differed greatly 
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in the number and nature of variables selected (Table 4 - The variable written in bold characters 

correspond to the most significant variable). However, we could notice two general trends: first, 

in general, a large number of variables were selected, around 5 on average, underlying the 

complexity of the phenomena studied. Second, for five of the six models, “site” was selected as a 

categorical variable.  

 

Table 4 

 

 

  3.2 ES indicator maps 

 

   3.2.1. Influence of the general location 

Spatially, the index differed greatly among sites for most of the six mapped indicators, such as 

the biodiversity index (Figure 3, C and D), richness in pollinators (Figure 4B, C and D), soil 

chemical quality (Figure 5B, C and D), soil carbon stocks (Figure 6B, C and D) and vegetation 

carbon stocks (Figure 8B, C and D). For instance, biodiversity index and richness in pollinators 

were generally higher in Maçaranduba than in the two other sites (Figures 3 and 4). This site 

effect could be the result of multiple factors, such as the diversity of pedological characteristics, 

public policies and local socio-economic context, differences in the vegetation state. 

 

Figures 3 to 8 

 

   3.2.2. Influence of land-cover characteristics 
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The influence of land cover characteristics depended on three main factors: (1) the land cover, (2) 

its changes and (3) the landscape configuration. (1) Most ES indicator maps showed the influence 

of land-cover changes on ES supply (e.g., for biodiversity index, richness of pollinators 

(Maçaranduba), soil chemical quality index, rate of water infiltration into the soil and vegetation 

carbon stocks, Figures 3-8). For four of these indicators (biodiversity index, richness of 

pollinators, rate of water infiltration into the soil and vegetation carbon stocks), the highest values 

were located in forested areas, with the lowest values in deforested areas: farms and riversides in 

Maçaranduba, the main road in Pacajá, and the southern part of Palmares II close to the city, 

influenced by the railway and the road. Maps of soil chemical quality index showed opposite 

trends: soil in forested areas was chemically poor, and slash-and-burn agriculture, along with the 

decrease in forest nutrient recycling, improved soil chemical quality (Grimaldi et al., 2014). 

Contrasts within the forest and pasture areas were due to certain topographical effects (Figure 5B, 

C and D). For example, if the highest vegetation carbon stocks were located in the most forested 

areas (preserved forests and, to a lesser extent, burned forests) in the three sites (Figure 8 A, B 

and C), the highest stocks in Palmares II were lower than those in the two other sites (Figure 8). 

Indeed, carbon storage depended on the state of the vegetation. Forests in Palmares II, which 

were highly degraded, store less carbon than forests in the other sites. (2) Some regression 

models and maps also highlighted the crucial role of land cover changes across in ES supply, 

through the influence of the variable “historical trajectory of land cover”. For instance, the maps 

of soil infiltrability showed contrasting homogeneous patches of the ES supply (Figure 8). At the 

three study sites, areas of high infiltrability indeed contrasted with those of low infiltrability, such 

as riversides in Maçaranduba (Figure 7.A), the deforestation front in Pacajá (Figure 7.B) and the 

southern part of Palmares II (Figure 7.C). In other words, the rate of water infiltration into the 

soil was lowest in the areas that had been deforested the longest. (3) Some differences in the ES 
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supply, especially among the three sites, could also reflect the influence of landscape 

configuration. For instance, in Maçaranduba, contrasts between high richness and low richness in 

Sphingidae moths were due to sharp contrasts in the landscape, between large areas of preserved 

forests and pastures. At the other two sites, differentiation between land covers was less clear: 

since Pacajá was colonized, a landscape gradient is evolving. In Palmares II, forests were highly 

degraded and residual, and pastures were abandoned then transformed into fallow lands. 

Consequently, at these two sites, continuity in land-cover types existed, leading to an absence of 

statistical and spatial contrasts in biodiversity and richness of pollinators. 

 

To better understand the role of land cover changes in ES supply, we performed analyses of 

variance (ANOVA) on the plot data to analyze the differences in ES values among land cover 

classes. For some indicators (Biodiversity index, index of soil chemical quality, rate of water 

infiltration into soil and vegetation carbon stocks), the analyses were significant. Some boxplots 

provided an overview of the contribution of different areas in providing ES (figure 3), 

highlighting that land cover changes impacted most of the indicators. The boxplots underlined the 

presence of a gradient from forests where ES supply was globally high to pastured and cultivated 

areas where ES supply was globally low. This transition from forest to pastured or cultivated 

areas resulted in a gradual decline in the vegetation carbon stocks and in the rate of water 

infiltration into oil. It also caused an enrichment of the soil chemical quality. 

 

Figure 9 

 

However the analyses were not significant for the two indicators: richness in Sphingidae and soil 
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carbon stocks. It was then necessary to study and map our indicator with other data than the land 

cover classification sole. As a matter of fact, most regressions also emphasized the influence of 

other factors such as topographical factors and the general location (site effect). For instance, the 

biodiversity-related indicators were very impacted by the general location, the topography, and to 

a lesser extent, slope, vegetation density and its water contents, elevation and historical land-

cover trajectory. 

 

   3.2.3. Influence of the other factors 

The regression models underlined the role of inherent proprieties of the ecosystem in ES supply, 

such as the elevation or the slope. Moreover, the site effect previously identified could reflect the 

influence of such factors. For instance, soil carbon stocks were higher in Palmares II than in the 

two other sites, because of the soil nature. Indeed, these two last sites had a large amount of 

hydromorphic soils. Areas that stocked the most carbon in the soil had temporally stable land 

cover (forests and old pastures), especially in areas of dense vegetation. In Pacajá and 

Maçaranduba, stocks were lower due to the nature of the soils. Morphologically, water stagnated 

in these soils during the rainy season, leading to a deficit or absence of oxygen. In these soils, 

crystallization (transformation of CO2), took more time.  

 

 4. Discussion 

In this paper, we participated to the improvement of scientific knowledge about the impacts of 

deforestation activities. To do so, we identified factors of control of a large set of ES indicators 

and developed maps of these indicators. The resulting maps showed variations in ES supply in a 

context of deforestation front and enable better understanding of environmental challenges in 
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these areas. For example, most of the maps presented highlighted a site effect. This meant that the 

study site where the sampling was made is important in terms of the ES supply: for instance, 

carbon stocks in the forests of Palmares II were globally lower than carbon stocks in the forests 

of Maçaranduba and Pacajá. This site effect illustrated three potential factors:  

- the environmental specificities of each study site, e.g. the soil of the three sites were 

globally very different,  

- historical depth of the deforestation process. Pacajá, as the site with the most recent 

deforestation processes, presented globally higher ES supply than the two other sites 

- the specific socio-political context of the study site.  

 

Furthermore, the analyses illustrated the influence of land-cover changes on ES supply in a 

deforestation context (Figure 10): in Maçaranduba, ES supply was structured by the distance to 

the main river, in Palmares II by the railway and the distance to city centers, and in Pacajá by the 

main road. These three elements constituted the main historical and current elements of 

deforestation. Forests could be distinguished from cultivated or deforested areas because of their 

relatively high levels of ES supply (except for the soil chemical index - Grimaldi et al., 2014). 

Within areas of human influence, transition areas (burned forests and fallow lands) provided an 

intermediate level of ES. Indeed, trees emit carbon when burning (Dixon et al., 1994). Moreover, 

roots and leaves decrease the impact of raindrops on the ground, which reduces soil infiltrability 

(Zimmerman et al., 2006). In cultivated areas, transformations due to human activities have been 

experienced more intensively and for a longer time. This has led to degradation of most of the 

services through the loss of forest and exposure of the areas to climatic and other human factors. 

However, even though land-cover changes have a crucial influence on ES supply, other factors 
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were important, such as topography (Dominati et al., 2010; Grimaldi et al., 2014). Yet, such 

factors often miss in ES mapping procedures (Troy et Wilson, 2006; Fang et al., 2014). Some 

indicators of ES supply (soil carbon stocks and richness in Sphingidae) ae not impacted, or very 

little, by land cover changes. This underlines limitations in the use of lookup tables approaches to 

map ES (Sumarga et Hein, 2014); when specific values for an ES are attributed to every pixel in a 

certain land cover class. 

 

Figure 10 

 

Besides this thematic dimension, our work was also an opportunity to lead a reflection on issues 

and challenges in ES mapping. In this sense, we highlighted significant benefits in ES mapping 

processes and the contributions of statistical methods to characterize the spatial distribution of ES 

supply. The use of remote-sensing and GIS tools can produce indicators describing ES at any 

point in a region, which helps implementing ES concept by giving information about the 

environment state of a location. The utility of mapping ES is partly based on the applicability of 

the concept for policymakers, but also for local people (Oszwald et al. 2011). Although margins 

of error, inherent in the mapping processes itself such as data sampling, modeling processes, may 

exist, ES mapping is an essential tool for local actors, who can appropriate the ES and effectively 

develop territories by adapting management practices to local characteristics and public policies. 

The potential offered by ES mapping is attractive for implementing public policies that aim to 

restore habitat or protect certain ES. They are also attractive for identifying territories currently 

influenced by human dynamics and in which protective policies are underway (Burkhard et al., 

2010; Burkhard et al., 2012; Nemec et al., 2013). Development of these mapping approaches 
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seems to facilitate actions or encourage the development of new regionalized legislation to 

promote the protection of ES (Hervé-Fournereau, 2012). As margins of error exist, it seems 

essential to make explicit the level of the map’s uncertainty. For that reason, we systematically 

associated a R² to each map and a map of residuals of the model, so giving information about the 

reliability of each ES map.  

 

Despite these significant benefits of specific tools such as remote sensing, statistics or GIS to 

map ES, our results also demonstrated the complexity of the mapping processes. Firstly, the 

previously exposed site effect highlights the importance of the local scale when mapping ES, to 

take local characteristics into account. In this sense, land-management decisions are often 

associated with local studies (Van der Biest et al., 2014). For operational purposes, it can actually 

be a burden to map ES at larger scales, even though these larger scales can be very useful, 

especially to inform societies about the importance of ES (Van der Biest et al., 2014). However, 

even if we proposed here a highly reproductible methodology, this site effect implies also that the 

regressions used in this study to map indicators of ES supply cannot be applied elsewhere. New 

modelling (model selection) should be done for any case study. In addition to that, the remote 

sensing data we used are free and worldwide available but our approach implies the availability 

of field data that could be a limitation for a reproductibility of the methodology. Secondly, the 

variations of the R² from one indicator to another highlighted limits to model certain ES 

indicators from remote-sensing data. Variations in certain indicators, such as vegetation carbon 

stocks, can be mostly or entirely explained by modified properties of ecosystems, such land cover 

changes, that respond to management. These properties can be partly explained using remote-

sensing data. Some indicators, however, such as water available for plants, could be greatly 
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influenced by inherent ecosystem properties. Unfortunately, these properties can rarely be 

inferred from remote-sensing data (Dominati et al., 2010). Thirdly, the large number of selected 

variables underlined the necessity to use a diverse dataset and to adapt the data to the specific 

indicators studied while modeling ES indicators. Finally, the presence of the “site” variable in 5 

of the final regressions illustrated a site effect that emphasized the influence of political and/or 

historical context(s) on ES supply. Each study site had specific public policies, a spatially 

different history of colonization and development of the territory, all of which greatly impacted 

ES supply. 

 

In a more general way, this paper highlighted the importance of methodological choices inherent 

in all cartographic practices and that are only now studied in ES mapping communities. The 

analyses described in this study are based on statistical methods that link field and remote-

sensing data. Unlike most studies that map ES indicators, which use ecological relations (e.g. 

USLE – Universal Soil Loss erosion, allometric equations - Nelson et al., 2009; Bai et al., 2011) 

or economic models (Eigenbrod et al., 2010; Roces-Diaz et al., 2014), statistical methods help 

identify factors controlling ES and account for the characteristics of the region. The statistical 

results emphasized three main points: 

(1) Remote-sensing data have unequal ability to map ES indicators. The maps are associated 

with uncertainty, which depends on the ability to predict ES values and varies among 

indicators. Certain indicators, such as vegetation carbon stocks, are easily modeled, but this 

is not the case for all indicators, such as water available to plants. The issue of uncertainty 

can become particularly important when maps aim to support policies and/or when they are 

used to analyze trade-offs and synergies. 

27 
 



(2) Models need to be adapted to each indicator. Certain indicators are better modeled with a 

regression tree and others with a linear model, and the input data can vary according to the 

ES indicator. Certain indicators, such as water available for plants, are influenced by 

inherent soil properties (Dominati et al., 2010) and thus cannot be easily modeled from 

remote-sensing data. 

(3) It is important to model with accurate data, especially for land-cover class. Indeed, most of 

our regressions underlined the different capacity of land cover classes in ES supply. For 

instance, each land cover class is characterized by a specific vegetation carbon stock; 

however, accurate classifications are more easily available at local scales (Domaç, 2004; 

Foody, 2015). Moreover, modeling at a local scale enables data such as land cover, 

topography, and geology to be collected more easily, since multivariate models seem 

essential (Chan et al., 2006). 

 

Key to environmental management, ES frequently appear to be neutral and effective (Kull et al., 

2015); however, implicit choices must be made to conceptualize and implement ES (e.g. 

measurement method, spatial scale of analysis). In this way, the concept is eminently political, 

and its usefulness depends on its purpose and the context in which it is used (Arnauld de Sartre et 

al., 2014; Kull et al., 2015). This political dimension is not without consequence. Spatial 

representation (and measurement - Oszwald et al., 2014) of ES determines potential directions for 

action. For example, ES mapping seems to provide arguments that support political and social 

decisions. 

 

Since critical mapping approaches have just begun to emerge in the field of ES mapping 
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(feedbacks from 2014 and 2015 Ecosystem Services Partnership conferences - Willemen et al., 

2015), we have discussed methodological aspects of critical approaches. It has been shown that 

maps do not faithfully represent reality, but depend on methodological choices during their 

creation (predicted values, identified spatial structures and uncertainty). But these choices 

inherent in creating maps are black boxes for policies (Rangan and Kull, 2009). It is essential to 

better understand the political choices and consequences inherent in the use of ES and to question 

the extent to which the concept changes our understanding and description of reality. Since the 

difficulties encountered when mapping ES reflect vagueness in the concept, a critical look at the 

mapping tool can be seen as a contribution to critical analysis of the concept. 
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Table 1. Description of the 7 ES indicators modeled in this study 

Spatial 
indicator 

Unit or 
measurement 
range 

ES provided MEA 
category 

Variables used to 
calculate the indicator 

Biodiversity 
index 0.1-1.0 Food web 

support  Support 

Number of moths, birds, 
bees, fruit flies, spiders, 
ants, soil macrofauna, 
termites, earthworms, and 
small, medium and high 
plants 

Richness of 
pollinators 

Total number of 
Sphingidae 
collected  

Support to 
production and 
pollination 

Support and 
regulation Number of Sphingidae 

Soil chemical 
quality index 0.1-1.0 Support to 

production Support 

Exchangeable Ca2
+, Mg2

+, 
K+, Al3

+ and NH4
+, and 

extractable P contents at a 
0-10 cm depth 

Available 
water for 
plants 

cm 

Water 
regulation and 
support to 
primary 
production 

Regulation 

Clay, silt and sand 
contents, qb, vertical 
resistance, C content, pH, 
cation 
exchange capacity at 0–10 
cm depth 

Soil carbon 
stock mg/ha 

Climate 
regulation and 
support to 
production 

Support and 
regulation 

Bulk density and total C 
content at 0-10, 10-20 and 
20-30 cm depths 

Rate of water 
infiltration into 
the soil 

mm/h 

Water cycle 
regulation and 
soil erosion 
control 

Regulation Infiltration rate 

Vegetation 
carbon stock mg/ha Climate 

regulation Regulation 
Aboveground dry biomass 
of trees, bushes and 
herbaceous plants 

 
 

Table 2. Remote sensing data used to model the 7 ES indicators 
Data name Source Description and unit/range 

Land cover 

Landsat TM 
30x30 spatial 
resolution 
 

Land cover classification (2007) 
6 modalities 

Trajectory of land 
cover 

Historical trajectory of land cover (from 19990, 1994, 
1996, 2001 and 2007 images) 
5 modalities 

NDVI Normalized Difference Vegetation Index 
(-1;1) 

NDWI Normalized Difference Water Index (-1 ;1) 
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Distance to forest Meter (m) 
Elevation 

DEM ASTER 
30 x 30 m spatial 
resolution 

Meter (m) 
Slope  Percent (%) 

Topography Topographical units 
 4 modalities 

Distance to water Distance to the rivers 
5 modalities 

Site  Identity of the study site each pixel belongs to. 
3 modalities (Maçaranduba, pacaja and Palmares II) 

 
 
Table 3. For the seven ES indicators, R$² and cross-validation scores (CV).  

Indicator Decision tree Linear model Selected model 
 R² CV R² CV  

Biodiversity index 0.65 0.98 0.34 1 Regression tree 
Pollinators richness 0.57 0.91 0.18 1 Regression tree 
Soil chemical quality index 0.67 0.79 0.50 1 Regression tree 
Available water for plants 0.55 1 0.39 0.78 Linear regression
Soil carbon stocks 0.52 0.93 0.47 1 Regression tree 
Rates of water infiltration into soil 0.66 1 0.57 0.86 Linear regression
Vegetation carbon stocks 0.74 1 0.75 0.92 Linear regression

 
 

Table 4. Selected variables for the most reliable method, for each indicator. In bold, the most 
significant variable. 

 Biodiversity Pollinators
Soil 

chemical 
quality 

Soil 
carbon 
stock 

Rate of water 
infiltration 
into the soil 

Vegetation 
carbon stock 

Land cover X X X X X X 
Topography X   X   

Site X X X X  X 
Slope X  X    

Distance to 
forest  X     

Distance to 
water   X X   

NDVI X X     
NDWI X X X X   

Land cover 
trajectory X  X X X  

Elevation X X     
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Figure 1. Location of Pará tate and the study sites of Macaranduba (MC), Pacajá (PC), and 
Palmares II (PR). Colored maps represent land use of the study sites in 2007. 
 

 
Figure 2. Statistical methodology to map an ecosystem services indicator  
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Figure 3. Spatial distribution of the biodiversity index in 2007 in A. Maçaranduba, B. Pacajá and 
C. Palmares II 
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Figure 4. Spatial distribution of pollinators () in 2007 in A. Maçaranduba, B. Pacajá and C. 
Palmares II 
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Figure 5. Spatial distribution of the soil chemical quality index in 2007 in A. Maçaranduba, B. 
Pacajá and C. Palmares II 
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Figure 6. Spatial distribution of soil carbon stocks in 2007 in A. Maçaranduba, B. Pacajá and C. 
Palmares II 
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Figure 7. Rates of water infiltration into soil in 2007 in A. Maçaranduba, B. Pacajá and C. 
Palmares II. More information about the statistical model can be found in supplementary 
materials 
 
 

 
Figure 8. Vegetation carbon stocks in 2007 in A. Maçaranduba, B. Pacajá and C. Palmares II. 
More information about the statistical model can be found in supplementary materials 
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Figure 9.  Ecosystem services provided by the six land cover classes. 
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Figure 10. Relation between intensification of human activities and ES supply 
 


