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Data-Driven Model Predictive Control
for Trajectory Tracking with a Robotic Arm

Andrea Carron1, Elena Arcari1, Martin Wermelinger2, Lukas Hewing1, Marco Hutter2, and Melanie N. Zeilinger1

Abstract—High-precision trajectory tracking is fundamental
in robotic manipulation. While industrial robots address this
through stiffness and high-performance hardware, compliant and
cost-effective robots require advanced control to achieve accurate
position tracking. In this paper, we present a model-based control
approach, which makes use of data gathered during operation to
improve the model of the robotic arm and thereby the tracking
performance. The proposed scheme is based on an inverse
dynamics feedback linearization and a data-driven error model,
which are integrated into a model predictive control formulation.
In particular, we show how offset-free tracking can be achieved
by augmenting a nominal model with both a Gaussian Process,
which makes use of of�ine data, and an additive disturbance
model suitable for ef�cient online estimation of the residual
disturbance via an extended Kalman �lter. The performance
of the proposed offset-free GPMPC scheme is demonstrated on
a compliant 6 degrees of freedom (DoF) robotic arm, showing
signi�cant performance improvements compared to other robot
control algorithms.

Index Terms—List of keywords (from the RA Letters keyword
list)

I. I NTRODUCTION

H IGH-PRECISION trajectory tracking with non-industrial
robotic arms is a major challenge, since, in contrast

to industrial robots, they are non-stiff, have limited actuation
power, and the components can exhibit large variations with
respect to their speci�cations. This limits the use of compliant
or inexpensive robots for tasks that require high accuracy, or
in environments where conditions can quickly change, e.g.
construction sites [1] where robots are exposed to severe
weather and working conditions. A simple way to deal with
these scenarios is to operate robots at low speed, where
the dynamics coupling among joints is low, at the expense
of limiting overall performance and productivity. The goal
addressed in this paper is to achieve both high precision and
speed, in order to leverage the full potential of compliant and
cost-effective robots.
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Fig. 1. Anypulator, the 6DoF compliant robot used for the experiments and
for validating the controller.

The combination of data-driven models and Model Predic-
tive Control (MPC) has shown great potential for addressing
this challenge and has gained signi�cant popularity in recent
years [2], [3], [4], [5]. On one hand, MPC enables optimal
operation while providing constraint satisfaction, on the other
hand, data-driven algorithms can enhance performance and
adapt to system changes.

In this work, we propose a controller that combines the
use of Gaussian Processes (GP) to improve the model of a
robotic arm with an additive disturbance model for offset-free
control. The GP is used as anof�ine estimator of the expected
model mismatch, based on data collected during previous
experiments. In order to also provide offset-free tracking in
regions of the state space where little or no previous data is
available, we make use of an extended Kalman �lter toonline
estimate the residual deviation between measurements and the
nominal model combined with the Gaussian Process.

The main contribution of the paper is therefore to extend
previously presented GP-based MPC methods [6], [7], [8], [9]
to an offset-free tracking approach and the adaptation of this
scheme for trajectory tracking with a robotic manipulator, as
well as its demonstration in hardware experiments. Previous
results have focused on online updates of the GP in order to
achieve high controller performance, which is computationally
infeasible in the considered application. A distinct difference
of the proposed method with respect to available learning-
based robot control techniques is that we do not �t the GP
to the inverse dynamics, but rather to the error between a
double integrator model and the robot controlled via feedback
linearization. This structure permits us to exploit the given
approximate model knowledge, i.e. a parametric inverse dy-
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namics model, and the GP uncertainty.
We support the proposed algorithm with an experimental

validation on a compliant 6DoF robotic arm, shown in Fig-
ure 1, which makes use of low-power series elastic actua-
tors [10]. The results demonstrate that the controller improves
the tracking performance in terms of root mean square tracking
error compared to a PID controller, the offset-free MPC
scheme presented in [11], the nonlinear MPC scheme [12],
and the three learning-based schemes presented in [13], [14].
In particular, the proposed controller reduces the root mean
square tracking error by up to 53% compared with the best-
practice PID controller.

The remainder of the paper is structured as follows: In
Section II and III, we review the literature, and provide a
short introduction to Gaussian Processes, respectively. The
problem formulation is introduced in Section IV. In Section V
we introduce the disturbance model and discuss state and
offset estimation, while in Section VI we illustrate the con-
trol method. Experimental results are shown in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

Model-based control of robotic arms has been well studied
in the literature, including control in joint-space [15], [16],
[17], [18], and task-space [19], [20], [21].

In recent years, learning techniques and learning-based
controllers for robotic manipulation have gained increasing in-
terest, due to their potential for improving control performance
compared to traditional control approaches and potentially
permitting the to use of inexpensive hardware, or compliant
robots, in tasks where high-precision trajectory tracking is
required.

One of the �rst non-parametric estimation approaches ap-
plied to robotic arms has been presented in [22], where non-
linear functions are approximated by many local linear models.
More recently, deep learning techniques have been used to
estimate inverse dynamics, see for example [23], [24]. Two
recent results that exploit non-parametric Gaussian Processes
in the �eld of robot control are outlined in [25] and [26].
In particular, [25] presents a new approach called Manifold
Gaussian Process with the goal of alleviating the smoothness
assumptions on the function to be modeled. The results in [26]
show how to combine direct and indirect learning to speed
up the learning of the inverse dynamics. Examples of non-
parametric GP approaches used within an MPC optimization
scheme are found in [7], [6], [8], [9], [27], [28]. The work
in [6], [7] presents an MPC approach that integrates a nom-
inal system with an additive nonlinear part of the dynamics
modeled as a GP. Approximation techniques for propagating
the state distribution and formulating chance constraints are
also discussed. A similar model is employed in [8], [9], where
the authors study a learning-based path-tracking controller that
exploits a GP to improve the kinematic model. In [27], a
reinforcement learning approach is shown for collecting data to
update the GP model of a ship. The approach in [28] exploits
Pontryagin's maximum principle to deal with state and input
constraints by reformulating the optimal control problem with
uncertainty propagation as a deterministic problem.

When prior model knowledge is available, it can often
be incorporated in data-driven approaches. In the case of
inverse dynamics learning with Gaussian Processes, this can be
re�ected by including the parametric inverse dynamics model
in the mean prior, see [14]. Over the years, many extensions
have been proposed, e.g. [13] presents an inverse dynam-
ics controller based on semi-parametric Gaussian Processes
augmented with adaptive feedback. Online inverse dynamics
learning techniques are also studied in [29] and [30], with
the aim of rendering computations on large-scale data sets
tractable.

Reinforcement learning and iterative learning control are
two other important classes of learning-based control. In
model-free approaches, the goal is to directly learn a
control policy by repeating the same task multiple times
to collect information about the unmodeled uncertainty
and update the controller to achieve better performance,
see e.g. [31], [32], [33], [34]. A reinforcement learning ap-
proach exploiting prior model information can be found
in [35], that uses GPs to model the residual dynamics and
�nds an optimal policy using standard policy search methods.

To the best of our knowledge, no combination of an ex-
pressive data-based model that is trained of�ine with a simple
additive disturbance model estimated online via an EKF for
offset-free tracking has been proposed in the literature.

III. G AUSSIAN PROCESSES

We brie�y state the basic concepts of non-parametric Gaus-
sian Process regression. Letf : X ! R be a zero-mean
Gaussian �eld with kernelK : X � X 7! R , where X is
a compact set. Consider a set ofN 2 N> 0 noisy measurements
of the form

yi = f (xi) + ni ;

whereni is zero-mean Gaussian noise with variances 2, i.e.
ni � N (0;s 2). The predictive mean estimatem of f and its
posterior covarianceS for any inputx 2 X are given by

m(x) = E
�

f (x)jf xi ;yigN
i= 1

�

S(x) = Var
�

f (x)jf xi ;yigN
i= 1

�
;

wheref xi ;yigN
i= 1 is the collected dataset.

IV. PROBLEM FORMULATION

In the following, we derive a model predictive control
formulation for trajectory tracking with a robotic arm. The
proposed scheme is composed of three parts:

1) a feedback linearization inner-loop that exploits a priori
knowledge of the robot dynamics,

2) a model for the closed-loop system with the feedback
linearization, which accounts for two types of uncer-
tainty: a state and input dependent uncertainty estimated
of�ine using a GP, and a constant disturbance estimated
online using an extended Kalman �lter in order to
perform offset-free tracking also in regions of the state
space where little or no data is available,

3) an offset-free nonlinear MPC control scheme for the
outer-loop leveraging the data-driven model and uncer-
tainty.
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In order to derive this control scheme, we �rst introduce the
underlying model of the robot.

The rigid body dynamics of the robot are modeled as a
second-order differential equation

M(q)q̈+ n(q; �q) = t ; (1)

whereq, �q, q̈ represent the joint angles, joint angular velocities,
and joint angular accelerations, respectively,t the torques
applied by the actuators,M(q) is the inertia matrix, and
n(q; �q) includes gravitational, Coriolis, frictional and cen-
tripetal forces. Since (1) is linear int , it is possible to perform
a feedback linearization via the following control law if the
matrix M(q) is full rank for all possibleq [15]

t = M(q)u+ n(q; �q); (2)

whereu is the applied input signal. If the inverse dynamics
is exact, then the feedback linearized system behaves like
D decoupled double integrators, whereD is the number of
degrees of freedom of the robotic arm.

Since the inverse dynamics is usually not perfectly known,
it is common to add an outer-loop controller, which in our
case is designed as a nonlinear MPC, see Figure 2.

GPMPC Inverse
Dynamics Robot

ref. u1 t q

DOUBLE INTEGRATOR

Fig. 2. Control scheme leveraging inverse dynamics model.

The discrete-time model employed in the MPC scheme has
the following form

x(k+ 1) = Ax(k)+ Bu(k)+ Bd(w(x(k);u(k)))

y(k) = Cx(k)+ n(k);
(3)

wherex(k) = [ q(k); �q(k)]T , the matricesA and B model the
discrete-time double integrators,Bd and C are the process-
noise to state matrix and the output matrix,w(x(k);u(k))
is a nonlinear function modeling the uncertainty, andn(k)
represents the measurement noise and is i.i.d., Gaussian with
zero mean and covarianceSn = s 2I . In addition, system (1)
is subject to state and input constraints of the form

x(k) 2 X = f xjAxx � bxg

u(k) 2 U = f ujAuu � bug;

whereX and U are polytopic sets representing the position,
velocity and acceleration limits of the robotic arm.

Remark 1:In robotic arms, velocity and acceleration con-
straints are sometimes non-linear and state-dependent. The
proposed control framework can be directly extended to ad-
dress non-linear constraints [36]. For the sake of clarity, we
will only consider polytopic constraints in this paper, which
can be computed considering the worst-case velocity and
acceleration scenarios for the given trajectory.

In the next sections we will �rst introduce the disturbance
model composed of a Gaussian Process and a constant dis-
turbance, together with a state-disturbance estimator. We will
then introduce the non-linear MPC controller that exploits the
improved model and the estimated disturbance to optimize the
control input. Finally, we will discuss some implementation
details.

V. D ISTURBANCE MODEL

We assume that the uncertainty in (3) consists of two
components, one is modeled as a GP and the other as a
constant offset, i.e.,

w(x(k);u(k)) = d(x(k);u(k))+ d̄: (4)

Differently to the other approaches which �t the GP to the
inverse dynamics, see [14], [29], [30], we use the GP to
model the error with respect to the double integrator model. In
this way, it is possible to directly exploit the GP uncertainty
estimate in the state, without the need to perform a trans-
formation of the probability distributions through the forward
dynamics. The GP provides the residual model uncertainty in
domains where little data is available, which can be used to
ensure constraint satisfaction, however, it can still result in
poor tracking performance and offsets. While this could be
addressed in a GP approach by updating the data for the GP
online, it is computationally prohibitive to train and evaluate
the GP model in the considered dimensions at frequency
rates of around 1kHz. To mitigate this limitation, we take an
offset-free tracking MPC approach and introduce a constant
disturbance termd̄, which can be ef�ciently estimated online
using an extended Kalman �lter [11]. The GP can be thought
of as a feedforward compensation, while the constantd̄
estimated through the extended Kalman �lter as a feedback
compensation. The reaction speed of the constant term depends
on how quickly the extended Kalman �lter converges to
a steady-state estimate compared with the changes in the
reference trajectory. The robot model (3) is augmented with
the disturbance model as follows

x(k+ 1) = Ax(k)+ Bu(k)+ Bd
�
d(x(k);u(k))+ d̄(k)

�

d̄(k+ 1) = d̄(k)

y(k) = Cx(k)+ n(k);

(5)

where we assume the augmented model to be observable, such
that both the state and offset̄d can be estimated using an
extended Kalman �lter. The details of the control scheme are
presented in the following section.

VI. CONTROL SCHEME

We propose a non-linear MPC controller for system (5) that
exploits the disturbance model to provide offset-free tracking
and ensures satisfaction of state and input constraints. Since
we consider noise with in�nite support, we specify state
constraints in a probabilistic manner in the form of chance
constraints

Pr[x(k) 2 X] � 1� e (6)
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wheree is the violation probability. The resulting optimization
problem is given by

min l f (xN; rk+ N) +
NMPC� 1

å
i= 0

l (xi ;ui ; rk+ i) (7a)

s.t. x0 = x̂(k) (7b)

d̄0 = ˆ̄d(k) (7c)

xi+ 1 = Axi + Bui + Bd
�
d(xi ;ui) + d̄i

�
(7d)

d̄i+ 1 = d̄i (7e)

Pr[xi+ 1 2 X] � 1� e; (7f)

ui 2 U; (7g)

8i = 0; : : : ;NMPC � 1

wherel (xi ;ui ; rk+ i) andl f (xi ; rk+ NMPC) are appropriate tracking
stage and terminal cost functions, respectively, that depend
on the state, input, and the reference trajectoryrk = [ rx

k; ru
k].

The initial condition of the optimization problem is obtained
from the extended Kalman �lter, i.e., ˆx(k) and ˆ̄d(k). In the
following we show how to derive a tractable approximation
of problem (7). In particular, we show how to propagate the
model and uncertainty over the prediction horizon, discuss
suitable cost functions, formulate state and input constraints,
and �nally discuss how to reduce the computational burden of
the Gaussian Process estimation. The overall control algorithm
is summarized in Algorithm 1, wheres(k) =

�
x(k)T ; d̄(k)T

� T is
the extended state, and̄A, B̄, B̄d, andC̄ are the extended system
matrices. Steps 4 and 6 of Algorithm 1 describe the update of
the extended Kalman �lter. Step 4 is the open-loop prediction
based on the nonlinear model given by the combination of the
linear system and the GP. Step 6 is the update of the state and
covariance based on the measurements collected.

Algorithm 1 Offset-free GPMPC
1: Input: Extended Kalman Filter matrices,

GP training data
2: Optimize GP hyperparameters
3: for k = 1;2; : : : do
4: Extended Kalman prediction:

ŝk+ 1jk = Āŝkjk + B̄u(k)+ B̄dd(x(k);u(k))
Sk+ 1jk = ĀSkjkĀT + Q

5: Solve approximation of problem (7)
6: Extended Kalman update:

ŝk+ 1jk+ 1 = ŝk+ 1jk + Lk+ 1(yk+ 1 � C̄ŝk+ 1jk)
Sk+ 1jk+ 1 = Sk+ 1jk � Lk+ 1C̄Sk+ 1jk
Lk+ 1 = Sk+ 1jkC̄T (C̄Sk+ 1jk)C̄T + RT )� 1

7: end for

Remark 2:Once new data is collected, the GP hyperparame-
ters can be retrained on an enlarged dataset to further improve
the model and hence the tracking performance. It is, however,
important to note that the online disturbance estimation via the
Kalman �lter and the offset-free MPC formulation improve
tracking performance independent of the GP and thereby for
trajectories for which no prior data is available.

A. Approximate Uncertainty Propagation

Due to the representation of the nonlinearity by a GP and the
presence of noise, the predicted states are given as stochastic
distributions. The evaluation of the posterior distribution of
the GP from an input distribution, however, requires the
computation of an integral that is analytically intractable. A
common approach is to approximate state, input and the GP
describing the nonlinearity as jointly Gaussian [37], [38], [39],
i.e.,

�
xi
di

�
� N (mi ;Si) = N

��
mx

i
md

i

�
;
�

Sx
i Sxd

i
Sdx

i Sd
i + Sn

��
:

The update equation is then given by a simple linear transfor-
mation

mx
i+ 1 =

�
A Bd

�
mi + Bui

Sx
i+ 1 =

�
A Bd

�
Si

�
A Bd

� T :

We adopt a �rst-order Taylor approximation [37] of the esti-
mate to evaluate the GP at a Gaussian input and approximate
the variance and covariance matrices, i.e.

md
i = md

i (mx
i ;ui)

Sd
i = Sd

i (mx
i ;ui) + Ñmd

i (mx
i ;ui)Sx

i (Ñmd
i (mx

i ;ui))T

Sdx
i = Sx

i (Ñmd
i (mx

i ;ui))T :

B. Cost function

We propose two possible cost functions that can be used
in optimization problem (7) in the following, however, any
other cost that makes use of the �rst and second moments
of state could be similarly employed. One option is to take
a certainty equivalence approach, and use a quadratic cost
function evaluated at the GP mean prediction, namely,

l (xi ;ui ; rk+ i) = kmx
i � rx

k+ ik
2
Q + kui � ru

k+ ik
2
R

l f (xNMPC; rk+ NMPC) = kmx
NMPC

� rx
k+ NMPC

k2
P;

(8)

whereQ;R, andP are the cost weights. A second possibility
is the expected value of a quadratic cost, which results in

l (xi ;ui ; rk+ i) = E
�
kxi � rx

k+ ik
2
Q

�
+ kui � ru

k+ ik
2
R

= kmx
i � rx

k+ ik
2
Q + tr(QSx

i ) + kui � ru
k+ ik

2
R

l f (xNMPC; rk+ NMPC) = E
h
kxNMPC � rx

k+ NMPC
k2

Q

i

= kmx
N � rx

k+ NMPC
k2

P + tr(PSx
NMPC

):

Note that both options result in convex cost functions for
positive semide�niteQ, R andP.

C. Chance Constraints

Building on the approximation of the state distribution
discussed in subsection VI-A, state mean and covariance
can be also exploited to approximate the chance constraints.
By approximating the predicted distribution with a Gaussian
multivariate distribution and considering polytopic state con-
straints, chance constraint (6) is given by

Pr
�
h (Axmx

i ;AxSX
i AT

x ) � bx
�

� 1� e; (9)
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whereh (m;S) denotes a normal random vector with meanm
and covarianceS. Equation (9) can be further approximated
using the union bound,

Pr
�
h (Axmx

i ;AxSX
i AT

x ) � bx
�

�
nc

å
j= 1

Pr
�
h ([Ax] j mx

i ; [Ax] jSX
i [Ax]Tj ) � [bx] j

�
�

nc

å
j= 1

1� ej ;

whereej = e
nc

. The individual constraints can then be imposed
by

[Ax] j mx
i + F � 1(1� ej )

q
[Ax] jSX

i [Ax]Tj � [bx] j ;

where F � 1 denotes the quantile function of the standard
normal distribution.

D. Sparse GP

When using a GP model, the size of the available dataset
directly affects the complexity of inference. The computa-
tionally most expensive operation is the inversion of the
sampled kernelKN;N, which is however performed of�ine and
therefore does not affect the computation time of the con-
troller. Other expensive operations are mean and covariance
evaluation, which scale asO(N2), where N is the number
of training examples, due to the multiplication between the
inverted sampled kernel and the kernel evaluated at an input
location of interest. Different techniques have been proposed
in the literature to tackle this problem, generally referred to
as approximate or sparse GP methods [40], [41], [42]. The
approximation is derived by choosing a small set ofM � N
“virtual” data points, typically optimizing over the location of
virtual points, reducing the complexity fromO(N2) to O(NM).
For the proposed offset-free GPMPC controller, we utilize
a technique based on variational learning of inducing inputs
and kernel hyperparameters [40], [43], which are selected by
minimizing the Kullback-Leibler divergence between the exact
posterior GP and its variational approximation.

VII. E XPERIMENTAL RESULTS

In order to validate the tracking capabilities of the proposed
method, we implemented the algorithm on a compliant 6DoF
robotic arm [10]. All joints are equipped with the same
high-performance Series Elastic Actuator (SEA) units. These
actuators, called ANYdrives [44], are composed of a brushless
motor, harmonic drive gear, a torsional spring, and integrated
control electronics and sensors. They have a maximum torque
of 40 Nm and can reach a speed of 12 rad/s. The drive features
a torque control bandwidth of 70 Hz for low amplitudes and
more than 20 Hz for large amplitudes. The arm has a reach
of 0:75 m and an end-effector payload of approximately 3 kg
in nominal con�guration. The approximation of problem (7)
was solved using the interior-point-based NLP solver FORCES
PRO [45]. We employ a double integrator model for each
link, with states given by joint position and velocity. We
assume the model mismatch to act only on the velocity states.
We estimated the process and measurement matrices of the
extended Kalman �lter using the Autocovariance Least-square
method presented in [46]. The stage and terminal cost func-
tions of problem (7) were chosen to be quadratic as in (8), with

weightsQ = diag(50;1) andR= 1 for every double integrator
model corresponding to a link. The terminal cost is chosen as
the solution of the Algebraic Riccati Equation with weights
Q and R for the double integrator system. The offset-free
GPMPC prediction horizon length is chosen toNMPC = 50.
The proposed approach is run in a receding horizon fashion,
i.e., problem (7) is solved at every sampling time and the
optimal solution obtained, together with current position and
velocity, is used for the inverse dynamics computation.

The training data for the Gaussian Process was collected
using the offset-free MPC scheme [11], and in particular we
chose position, velocity and the acceleration computed by [11]
as features. We then trained the GP with all the data collected,
without performing any kind of data pre-selection. It was
observed that the training of the Gaussian Process is a critical
part of the proposed control scheme and over�tting to the
data should be avoided to achieve good control performance.
To cope with this issue, we modeled the GP with zero mean
and Gaussian kernel and estimated the hyperparameters using
leave-one-out cross-validation, followed by a �ne manual
tuning on the hardware. Finally, the inducing points used in
the variational approach [40] were chosen to be a subset of
the measurements. Interestingly, even though the GP is trained
of�ine, the sparse GP approximation is required to render the
MPC prediction with the GP model computationally feasible.
It was in fact not possible to generate the solver with the full
GP model, whereas with the sparse GP it is possible to run
the solver in less than 1ms.

We performed two different tracking experiments. The �rst
task was to track a 6th-order polynomial trajectory generated
in the joint-space, the second task to track a lemniscate
trajectory generated in the task-space and then mapped to
the joint-space through the inverse kinematics. To train the
GP, using [11] we collected about 1;000 samples for the
�rst experiment and 12;000 for the second, which correspond
to about 1 and 12 seconds of data, respectively, given a
sampling time of 1ms. The performance of the proposed
offset-free GPMPC algorithm is compared with the offset-free
MPC scheme presented in [11], the nonlinear MPC scheme
presented in [12], a PID controller, the GP-based inverse
dynamics control presented in [14], and the two learning-
based algorithms presented in [13], all running at a sampling
time of 1ms. The tuning of the PID controller was performed
empirically on the robot, for each joint individually. The goal
was to achieve a critically damped behavior in the nominal
con�guration for a typical step input. The algorithm pre-
sented in [14], hereafter called GPRBD, estimates the inverse
dynamics with a GP where the prior mean is a parametric
model of the inverse dynamics. The loop is closed using an
LQR controller. The �rst method presented in [13], hereafter
called OL, is a gradient-based learning algorithm that estimates
constant offsets of the inverse dynamics model and uses
them to correct the control action of an LQR controller. The
second variant of this method presented in [13], called OL+GP,
�ts a GP to the model error and is used together with the
gradient-based learning algorithm to correct the LQR control
action. While with the PID, MPC, offset-free GPMPC and the
three learning-based schemes we run all experiments on six
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Fig. 4. RMSE over the entire trajectory, 25th and 75th percentiles of the
2-norm of the error at each time step for the three MPC schemes, three
learning-based controllers and the PID controller on a 6th order polynomial
trajectory in joint space, for the �rst three joints.

links, this was not possible with the NMPC approach, being
computationally too demanding for the given hardware. For
this reason we performed all comparisons only on the �rst
three links.

The trajectory of the �rst task for the �rst three links is
shown in Figure 3. As the performance index we use the Root
Mean Square Error (RMSE) between the desired and tracked
positions of the three joints over the entire trajectory, i.e.

RMSE=

s
1
T

T

å
k= 1

kqk � rkk2
2;

whereT is the length of the trajectory, together with the 25th
and 75th percentile of the 2-norm of the error, i.e.,kqk � rkk2.
The results of this experiment are shown in Figure 4. Offset-
free GPMPC outperforms all other techniques with respect
to tracking RMSE, with an improvement of about a factor
of 3 with respect to the offset-free MPC [11], highlighting
the performance gain through the improved model accuracy
provided by the GP, and an improvement of about a factor of 2
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Fig. 5. Estimated offset for the second link obtained from the extended
Kalman �lter for the MPC scheme [11] and the GPMPC.

compared with the best-practice PID controller and the other
learning-based controllers. Figure 5 shows the offset estimated
by the extended Kalman �lter for the second joint. According
to the model and considering only the second link, the states
of which are joint position and velocity, the disturbance only
affects the joint velocity, and is therefore scalar. We noticed
that for the offset-free GPMPC this offset is smaller than for
the offset-free MPC [11], because the prediction model used
in the extended Kalman �lter is more accurate due to the use
of the Gaussian Process in the prediction step.

In the second experiment, the robot tracked a lemniscate
trajectory in task-space. The associated joint angles are gen-
erated through the inverse kinematics and fed as reference to
the control scheme. Figure 6 shows the tracking RMSE over
the whole trajectory in joint-space together with the 25th and
75th percentile of the 2-norm of the error. Figure 7 and 8 show
the reference trajectories for all links together with the closed-
loop trajectory obtained under the offset-free GPMPC control
scheme, and the associated tracking errors, respectively. Also
in this experiment offset-free GPMPC outperforms all other
techniques with respect to tracking RMSE showing a 28%
and 44% performance improvement of the offset-free MPC
and the best-practice PID, respectively. Figure 9 shows the
offset estimate by the extended Kalman �lter and the GP for
the second link. We noticed that most of the correction was
performed by the GP, while a �ner correction was performed
by the disturbance estimated via the extended Kalman �lter.

We performed a third experiment showing the disturbance
rejection capabilities of the offset-free GPMPC, and the result
is shown in Figure 10. We applied an external disturbance to
the end-effector while the controller was tracking a constant
reference. The �gure shows how the second link of the robot
quickly recovers the tracked reference after the application of
the disturbance. A video of the experiments performed can be
found at the following link https://youtu.be/D46Eh59KeU.

VIII. C ONCLUSIONS

This paper presents a novel approach for controlling a
robotic arm based on a data-driven model predictive controller.
The control scheme exploits a Gaussian Process trained of�ine
to estimate the mismatch between the actual and estimated
model, and an extended Kalman �lter to estimate the residual
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Fig. 6. RMSE over the entire trajectory, 25th and 75th percentiles of the
2-norm of the error at each time step for the three MPC schemes, the three
learning-based controllers and the PID controller on a lemniscate trajectory,
for the �rst three joints.
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Fig. 7. Lemniscate reference trajectory (dashed) and closed-loop trajectories
under the offset-free GPMPC controller (solid).

model mismatch online, and provides offset-free tracking. The
proposed algorithm was shown to improve tracking capabil-
ities on a 6DoF robotic arm compared with two other MPC
schemes and a PID controller.
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