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Structural Identification and Monitoring based on Uncertain/Limited 
Information 

Eleni N. Chatzi1,a, and Minas D. Spiridonakos1  
1Institute of Structural Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich 

Abstract. The goal of the present study is to propose a structural identification framework able to exploit both 
vibrational response and operational condition information in extracting structural models, able to represent the system-
specific structural behavior in its complete operational spectrum.  In doing so, a scheme need be derived for the 
extraction of salient features, which are indicative of structural condition. Such a scheme should account for variations 
attributed to operational effects, such as environmental and operational load variations, and which likely lie within 
regular structural condition bounds, versus variations which indicate short- or long-term damage effects. The latter may 
be achieved via coupling of sparse, yet diverse, monitoring information with appropriate stochastic tools, able to infer 
the underlying dependences between the monitored input and output data. This in turn allows for extraction of 
quantities, or features, relating to structural condition, which may further be utilized as performance indicators. The 
computational tool developed herein for realizing such a framework, termed the PCE-ICA scheme, is based on the use 
of Polynomial Chaos Expansion (PCE) tool, along with an Independent Component Analysis (ICA) algorithm. The 
benefits of additionally fusing a data-driven system model will further be discussed for the case of complex structural 
response. The method is assessed via implementation on field data acquired from diverse structural systems, namely a 
benchmark bridge case study and a wind turbine tower structure, revealing a robust condition assessment tool.

1 Introduction  
The realization of an ageing infrastructure demographic, 
underlined by certain pronounced failures, has in recent 
years brought forth the eminent need for efficient 
infrastructure management and life-cycle assessment 
strategies. The latter however comprises a non-trivial task, 
further hardened by the uncertainties entering every stage 
of the analysis of structural systems, including the loading 
(input), response (output) and even the model of the 
structure under investigation. In curbing the associated set 
of polymorphic uncertainties, it is of the essence to exploit 
feedback from the structure itself in the form of monitored 
data gathered via appropriate sensor deployments. To this 
end, Structural Health Monitoring (SHM) has in recent 
years propelled into an important area of research, dealing 
with the timely problem of structural condition 
assessment. 

Amongst available SHM regimes, vibration-based 
methods have evolved into one of the fastest growing 
research areas, bearing the promise of damage detection 
and potential localization [1]. However, such methods are 
still far from being successfully implemented in large-
scale civil structures due to a variety of factors, including 
lack of precise description of loads, inadequate or overly 
simplified simulation models, as well as due to the 
susceptibility of these structures to uncontrollable 

influences, such as solar irradiation, temporal temperature 
gradients, humidity, and others [2,3]. For common 
structural systems, whose response may be grossly 
assumed as linear and stationary, Operational Modal 
Analysis (OMA) methods [4] offer a robust output-only 
identification procedure for inferring structural 
characteristics that are indicative of its condition, such as 
natural frequencies, modal shapes, and damping. 
However, even for the case of conventional systems, the 
tackling of influences induced by externally operational 
agents is still under research and in focus of a number of 
recent studies. 

In related work, Alampalli [6] identifies natural frequency 
shifts of up to 50% for an abandoned bridge in Claverack 
(NY) justifying this notable variation as a consequence of 
the freezing of the bridge supports. While the former study 
addresses long-term variations, Farrar et al. [5] report a 
variation of the eigen-frequencies of the Alamosa Canyon 
Bridge of approximately 5% over the course of a single 
day owing to varying spatial temperature gradients. 
Deviations of the order of 14-18% have also been reported 
for the first four natural frequencies of the Z24 bridge, a 
benchmark study in Switzerland [4], also addressed herein. 
The effects of ambient temperature are further stressed in 
the study of Catbas et al. [7] within the context of structural 
reliability of long-span truss bridges, while Cross et al. [8] 
introduce further influencing agents into the analysis, 
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including traffic loading and wind speed, while monitoring 
the modal properties of the Tamar (UK) suspension bridge. 
Finally, beyond transportation infrastructure, Yuen and 
Kuok discuss the notable relationship between natural 
frequencies and environmental factors, namely 
temperature and humidity, within the context of tall 
building infrastructure [9].  

In inferring the underlying links between structural 
response and the aforementioned influences, and further 
extracting features tied to irregular (or damaged) states, 
available approaches may be primarily classified in two 
categories:  

i) methods attempting to remove the 
environmental/operational load signatures from 
vibration measurements or associated condition 
indices (e.g. modal properties) [10], and  

ii) methods inferring a functional dependence between 
the measured vibration data and/or the extracted 
structural properties with respect to the evolution of 
the influencing agents [4,9]. This study follows the 
second approach, since the latter is capable of 
providing additional insight into the mechanism of the 
variation of structural properties under operational 
conditions, even for potentially unobserved sources of 
influence. 

The proposed methodological framework is organized in 
three major steps:  

iii) In a first identification (Id) stage, suitable data driven 
identification methods are employed for extracting 
characteristic properties of the healthy, or regularly 
operating, system. This is a relatively straightforward 
task when dealing with stationary systems (commonly 
bridges and buildings will be regarded as such), 
tackled by widely implemented OMA techniques. 
When however dealing with systems that are non-
stationary in nature, such as Wind Turbine facilities, 
the task of extracting response characteristics is a non-
trivial one. In this case, it is important to enforce an 
identification procedure that is capable of capturing 
the underlying physics of the system at hand. To this 
end, it is herein demonstrated how time varying 
methods may be implemented, for tracking the 
characteristics of complex systems [24].  

iv) In a second training stage, the extracted characteristic 
quantities (outputs) are projected onto the space of the 
externally acting agents (inputs) via a polynomial 
chaos expansion (PCE) [19] tool. In this way, the 
dependences on measured environmental and 
operational conditions are formalized via a functional 
representation, which can be regarded as a metamodel 
able to account for the probabilistic traits of the 
measured input and output data. As an added step, a 
feature extraction algorithm, such as an Independent 
Component Analysis (ICA) tool [21] may be 
employed for producing reduced dimensionality 
condition indicators.  

v) In a final tracking stage, the evolution of the PCE-ICA 
estimated indicators is employed for condition 
assessment and potential damage/deterioration 
detection.  

In order to illustrate the workings of the method, the 
proposed framework is applied on a series of data from 
actual structural systems, including the benchmark SHM 
problem of the Z24-bridge in Switzerland [4,20], and a 
monitored Wind Turbine tower structure in Lübbenau 
Germany. The results of these studies demonstrate a tool, 
which may reliably be adopted for condition monitoring of 
large-scale real world structures operating in a wide range 
of environments. 

2 The PCE-ICA Identification framework 

The goal of the proposed approach lies in achieving a 
global representation of a structural system, providing an 
accurate description of structural dynamics for a range of 
operational conditions. The proposed approach is therefore 
a long-term one, relying on a set of training data, which 
should account for a broad range of the variation of the 
influential (input) quantity.   

2.1 Id Stage: Inferring system characteristics 

In a first step, so-called short-term monitoring 
methodologies need be employed for instantaneous 
extraction of structural properties, i.e., of the influenced 
(output) quantities. In what is presented herein this is 
carried out in two main regimes, according to the nature of 
the response of the monitored structure: 

a) Systems described by Stationary Response 

This is a topic widely treated in the literature, with a 
substantial toolkit of operational modal analysis methods 
already available. OMA techniques extract modal 
characteristics relying exclusively on measurements of 
operational response. In such a scheme, the unmeasured 
ambient forces are commonly assumed as white noise 
sequences.  

Two major classes of OMA methods may be identified, 
namely those formulated in the time domain and those 
formulated in the frequency domain. Time domain 
methods are commonly implemented in combination with 
the Natural Excitation Technique (NExT) [11]. NExT 
relies on the use of correlation functions of the random 
response of the structure when subjected to ambient 
(natural) excitation. The idea behind such an 
implementation lies in the realization that the responses of 
the system are uncorrelated to the disturbance, resulting a 
zero cross-correlation. A popular implementation of this 
class is the Eigensystem Realization Algorithm (ERA) 
coupled with NExT. Alternatively, Auto-Regressive and 
Stochastic Subspace type procedures may also be 
employed. On the other hand, frequency domain OMA 
methods essentially rely on the relationship between the 
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input/output power spectrum density (PSD) for the case of 
a stochastic process.  

Amongst a multiplicity of available works overviewing 
this topic, Zhang and Brinchker [12], Reynders and De 
Roeck [20] and Peeters and De Roeck [14] provide an 
extensive review on established techniques, while 
Magalhaes and Cunha [15] provide an informative tutorial 
to OMA based on bridge vibration data. 

b) Systems described by Non-Stationary Response 

A number of systems, including wind turbine structures, 
which are herein explored in the applications section, 
exhibit non-stationary short-term dynamics. Within this 
context, Wavelet-based [29] or Time-varying 
AutoRegressive Moving Average (TARMA) models 
constitute suitable tools for tracking the time evolution of 
the involved dynamics by means of a compact parametric 
formulation.  

In the case of TARMA models, we may define such a 
model of AR/MA order equal to n via the following 
equation: 

1
2

1

[ ] [ ] [ 1] [ ] [ ]

[ ] [ ]e[ 1] [ ] [ ],   [ ] ~ NID(0, [ ])
n

n e

y t a t y t a t y t n

e t c t t c t e t n e t t�

� � ��� � �

� � � ��� �
 (1) 

where t designates discrete time, [ ]y t  denotes the 
observed non-stationary signal, [ ]e t  the residual sequence, 
corresponding to the unmodeled part of the signal, which 
is assumed to be normally identically distributed with zero 
mean and time-varying variance [ ]e t�  while [ ]ia t , [ ]ic t  
are the time-varying AR and MA parameters, respectively.   

Since the aim is to utilize models which are time varying 
in nature, Smoothness Priors models may be employed, 
comprising stochastic difference equations, which govern 
the evolution of each of the AR and MA parameters [17]:  
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where B  is the backshift operator � 	[ ] [ ]B x t x t� �� �  ,�  

designates the difference equation order, and [ ]iw t  zero-
mean, uncorrelated, mutually uncorrelated and also 
uncrosscorrelated with [ ]e t , Gaussian sequences with 
time-dependent variance. 

The smoothness of evolution of the AR/MA parameters is 
controlled by the order of the difference equation 
constraints � , and the variance 2 [ ]

iw t� – where a small 
variance indicates smooth evolution of the corresponding 
time-varying parameter and vice-versa. 

In order to illustrate the model parameter estimation 
through a simple example, consider the TAR(n) case and 
a second order � 	2� �  stochastic smoothness constraint: 

2(1 ) [ ] [ ]

[ ] 2 [ 1] [ 2] [ ]
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The constraints corresponding to all AR parameters may 
be formulated as: 
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In a similar manner, it may be demonstrated that the 
general (� -th order) smoothness constraint of Equation 
(2) can be expressed as: 

     [ ] [ 1] [ ]t t t� 
 � � 
z F z G w                    (5) 
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and ,  F G are matrices of the following forms (depending 
on the value of the order � ): 
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 where ,  n nI 0  designate the n n�  dimensional identity and 

zero matrices, respectively. As indicated by the above 
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expressions, [ ]tz  forms a state vector, whereas [ ]tw  
consists of the residuals entering in each constraint 
expression. The TAR(n) representation may then be 
expressed as: 

   [ ] [ ] [ ] [ ]Tx t t t e t� 
 �h z              (8) 

with: 

  � � 1[ ] [ 1] [ ] 0 0 ]T
nt x t x t n � 
 �� � � �� � �h �            (9) 

Thus, the SP-TAR(n) model may be completely expressed 
in the state space form summarized via Equations (5), (8). 
Its estimation may consequently be achieved via the 
Kalman Filter (KF) approach for given �  order and 
residual variance ratio 2 2[t] / [t]w e� � �� , which is 
considered to be constant for all time instants t. However, 
the full SP-TARMA case results in a nonlinear state 
estimation problem due to the unknown residual sequence 
of [ ]e t in [ ]th . For this reason, the Extended Least 
Squares (ELS) algorithm is presently employed for the 
recursive estimation of the state vector � �tz . Since further 
details on the method are beyond the scope of this paper, 
the interested reader is referred to the work of 
Spiridonakos et al. [16] for a deeper insight into the above 
formulation. 

The model inferred through this process will be referred to 
as “short-term” in the sense that it may represent the WT 
dynamics for a given set of observed conditions. The 
ability to predict the response of the system through such 
a parametric, and therefore low-cost, simulation model 
lays the ground for the subsequent derivation of metrics for 
detecting abnormalities/damage. 

2.2 Training Stage: Inferring input-output 
relationship 

The previously described short-term monitoring methods 
enable, in a first step, extraction of the response 
characteristics of the healthy structure. Once these are 
attained, a polynomial chaos expansion (PCE) method 
[18], [19] is further applied for the projection of these 
output response estimates on the probability space of the 
measured operational conditions. A short overview of the 
employed mathematical framework is provided in this 
section. For further details, the interested reader is pointed 
to previous works of the authoring team [25]-[29].  

2.2.1 Polynomial Chaos Expansion (PCE) 

PCE concerns the expansion of a random output variable 
on polynomial chaos basis functions, which are 
orthonormal to the probability space of the system’s 
random inputs. Consider a system �  comprising M 
random input parameters adequately represented by a set 
of independent random variables � �1 2, , , M� � �� . The 
latter set may for example pertain to temperatures 
measured at different locations of the structure, gathered 

in a random vector �  of prescribed joint Probability 
Density Function (PDF) � 	p ��  [19]. The resulting 

structural output denoted by � 	�Y �� corresponding for 
instance to modal frequencies, will also be random. 
Provided that Y  has finite variance, it can be expressed in 
the following form: 

   � 	 � 	M�
� � � d dd

Y � � � �� �            (10) 

where d�  are unknown deterministic coefficients of 
projection, d  is the vector of multi-indices of the 
multivariate polynomial basis, and � 	d� �  are the 

polynomial basis (PC) functions orthonormal to � 	p �� . 
These basis functions result as tensor products of the 
corresponding univariate functions [19]. Each univariate 
probability density function may be associated with a well-
known family of orthogonal polynomials. For instance, the 
normal distribution is associated with Hermite 
polynomials while the uniform distribution with Legendre 
(Table 1). A list of the most common probability density 
functions along with the corresponding orthogonal 
polynomials and the relations for their construction may be 
found in [22]. 

Table 1.Types of Wiener-Askey polynomial chaos and their 
underlying random variables. 

PDF Support Polynomials 

Normal 
(Gaussian) (-�, �) Hermite 

Gamma [0, �) Laguerre 

Beta [0,1] Jacobi 

Uniform [-1, 1] Legendre 

For implementation purposes, the basis functions series 
need be truncated to a finite number of terms, with the 
usual approach consisted in selection of the multivariate 
polynomial basis with total maximum degree  

,1
,  M

j j mm
d d p j

�
� � �� . When truncating the infinite 

series of expansion of Equation (10) to the first p terms, 
the resulting PCE model is fully parametrized in terms of 
a finite number of deterministic coefficients of projection 

d� . The parameter vector d�  may be estimated by solving 
Equation (10) in a least squares sense. Toward this end, the 
data collected on the sytems’s output response and the 
probabilistic information (PDFs) available on the input 
variables are employed. The PDFs of the input variables 
may be obtained by fitting known statistical distributions 
to the observed input variable datasets. 

Considering for example a structural system subjected to 
ambient excitation which is susceptible to changes of the 
environmental conditions, a given output variable, could 
consist in estimates of its first natural frequency (as 
derived from the data). The evolution of this output 
variable could be expanded on a PC basis constructed to 
be orthogonal to the experimentally estimated PDF of 
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temperature data. In this way, an indication is obtained on 
the sensitivity of the natural frequencies of the structure to 
the probabilistic properties of temperature variations 
affecting the structural system. An implementation of this 
type is demonstrated in the first application provided 
herein, pertaining to the case of a bridge system. 

2.2.2 Independent Component Analysis (ICA) 

As aforementioned PCE relies on the assumption of 
independent input variables. However, when discussing 
environmental conditions (temperature, humidity, wind 
direction and velocity, and others), the common case is that 
a large bulk of data is in fact available, which is in some 
degree correlated. In order to select only a small number 
of independent features, which is nonetheless able to 
describe a large portion of this data, an Independent 
Component Analysis (ICA) algorithm is utilized herein.  

ICA is a source separation method, which aims at 
estimating independent unobservable (latent) variables 
that are intermixed with observed quantities [21]. This is 
herein required for sorting out independent input variables 
among the possibly numerous measurements of 
temperature and humidity that are potentially available via 
a dense grid of corresponding environmental sensors.  

The method relies on the assumption of n observations of 
random variables � 	 ,  1, ,jy t j n� � , which are linear 

mixtures of n independent components � 	 ,  1, ,js t j n� �  
as (in matrix notation): 

     y = As              (11) 

ICA attempts to identify the latent independent variable 
vector � 	ts , via a search for non-Gaussian components, in 
contrast to principal component analysis and other second 
order methods, which are based on the covariance matrix 
of random variables. 

Within this context, ICA aims at identifying the mixing 
matrix A  along with the vector s

 
of unobserved 

independent variables of Equation (11), through the 
available information on the observed vector y . More 
accurately, when inverting the mixing matrix A , as 

1��W A , the vector of the independent latent variables s  
may be readily obtained as: 

     s = Wy              (12) 

As already noted, the key in estimating the ICA model is 
the non-Gaussianity of the unobserved sources. Therefore, 
ICA estimation algorithms implement nonlinear 
optimization methods, aiming at the maximization of the 
non-Gaussianity of each one of the latent variables Tw y , 
with w  designating a column vector of matrix W . 

The adopted measure of non-Gaussianity may be based on 
kurtosis, negentropy, and others [21]. The details of the 
method may be found in [27], while a flowchart of a 

typical ICA algorithm implementation is outlined in Table 
2. 

Table 2. Flowchart of the ICA algorithm. 

Step 1. Obtain a vector of n observations y   

Step 2. Mean value removal 

Step 3. Whitening (eigenvalue decomposition) 

Step 4. While j<n 

Step 4a. Initialize a random vector jw  

Step 4b. Perform iterative nonlinear optimization for jw  based 

on the negentropy of T
j js � w y  

Step 5. For j n�  assemble the independent variable vector s  

 
Apart from its usefulness in rendering independent input 
variables for feeding the PCE tool, the ICA holds one 
further valuable trait within the context of the proposed 
SHM framework, as it helps extract salient features of 
reduced dimensionality. Indeed, significant discussion is 
nowadays allocated  on the storage potential of the Big 
Data stream resulting from long-term SHM 
implementations. ICA assists in reducing the data to be 
stored form the SHM system by enabling extraction of 
latent variables, i.e., of only a small number of valuable 
input and output features to be employed within the PCE 
framework.  

2.3 Tracking Stage 

 
Figure 1. Schematic diagram of the PCE-ICA identification 

approach. 
A schematic diagram of the training phase of the proposed 
framework is illustrated in Figure 1. Following the training 
phase, the PCE-ICA estimated statistical properties of the 
modal characteristics may be utilized in a final tracking 
stage for monitoring the system’s condition and devising 
suitable damage indicators. This is performed via tracking 
of the error between the PCE-ICA predicted values and the 
actually measured ones on site. For a healthy structure 
within conditions of regular operation, this error is 
expected to be normally distributed within prescribed 
thresholds. If the error distribution is indeed close to 
normal � 	0,�� � , an interval of 3��  would correspond 
to approximately a 99.7% confidence interval around the 
estimated mean value. 
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3 Application Case Studies  
The workings of the method will be now demonstrated via 
implementation on a set of actual large-scale structures 
under both operating and damaged conditions.  

3.1 Implementation on a Stationary System – Z24 
bridge 

In already published work [27], the proposed SHM 
framework has been validated using test data from another 
Swiss bridge, i.e., the Z24 benchmark case [20]. The Z24 
bridge was monitored for a period of 9 months and finally 
“artificially damaged” for the purposes of the BRITE-
EURAM SIMCES project. The bridge was over-passing 
the A1 Zurich-Bern highway connecting Utzemstorf and 
Koppigen and its demolition was planned after the 
monitoring period since a new railway, adjacent to the 
highway, required a new bridge with a larger side span. 
The bridge was monitored from November 1977 till 
August 1998 through a permanent system acquiring hourly 
ambient vibration response and environmental condition 
measurements. More specifically, 16 acceleration sensors 
were installed measuring ambient vibration response. 13 
of them are shown in Figure 2a, while three more were 
installed on one of the piers. In addition, 49 environmental 
condition sensors were installed for measuring air 
temperature, wind characteristics, humidity, bridge 
expansion, soil temperatures at the boundaries and bridge 
concrete temperatures. Data from these sensors was 
acquired on an hourly basis.  

 

 
Figure 2. Z24-Bridge: longitudinal section and top view [23]. 

Table 3. Types of artificial damage induced on bridge Z24 [20]. 

No Damage type 

1 Lowering of pier 

2 Tilt of foundation 

3 Spalling of concrete 

4 Landslide at abutment 

5 Failure of concrete hinge 

6 Failure of anchor heads 

7 Rupture of tendons 

 

After the nine-month period, progressive damages were 
artificially induced within one month (August 10 - 
September 11, 1998). The monitoring system was still in 
operation during the demolition phase, while during the 
night-time vibration tests based on hammer, dropping 
mass device and shakers were performed. The specific 
types of induced damages are summarized in Table 3, 
while more details on the damage scenarios and 
description of the simulation of the real damage cause may 
be found in [20].  

The framework described in this study has been applied on 
the monitoring data-stream collected from the Z24 bridge. 
Specifically, the temperatures measured at six locations at 
the center of the middle span along with the air 
temperature serve as input variables, or so called 
influencing agents. The set of output variables comprises 
the first four natural frequencies of the system. These are 
estimated through Stochastic Subspace Identification 
(SSI), i.e., an OMA approach (as mentioned in Section 2.1) 
adopted within the context of an automated modal analysis 
tool. 

The dependence of natural frequency estimates on the 
temperature measured at the center of the web is plotted in 
Figure 3 indicating a bilinear temperature – natural 
frequency dependence.  

 
Figure 3. The first four natural frequency estimates plotted 

against temperature (center of the web). 
Interestingly, the variation that is due to environmental 
conditions is in fact more pronounced than the one 
attributed to the damage. The influence of damage is  
discernable only in the plots of the second mode. A robust 
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predictor tool therefore necessitates incorporation of the 
environmental influence effects in the simulation process. 

Even though, the list of input variables affecting the 
structural behavior of Z24 is not limited to this set of 
temperatures, it is assumed that these are still sufficient for 
describing the variability of the estimated modal 
properties. Had the deployment permitted, the set of 
monitored input parameters could have been expanded to 
include further influences, such as wind or traffic loads. 

 
Figure 4. Histograms of the measured temperatures (upper row 
and left column) along with the scatter plots and the estimated 

correlation values. 

 

As a first step, and before expanding the natural frequency 
estimates to the PC functional basis orthogonal to the 
PDFs of the random input variables, i.e. recorded 
temperatures, the independency of the latter has to be 
checked. Looking at the scatter plots of Figure 4, drawn for 
each pair of measured temperatures, it is evident that they 
are highly correlated (correlation larger than 0.95 for 
almost all pairs), while the smallest correlation is 0.89.  

Therefore, ICA has to be implemented before PCE is 
applied on the natural frequency estimates. The scatter 
plots of the corresponding ICA-based estimates of the 
independent random (latent) variables, are shown in Figure 
5, with most of the variables indicating a correlation 
smaller than 0.1, with the larger correlation being 0.13. It 
should be noted that these transformed variables do not 
correspond to temperature anymore. 

 
Figure 5. Histograms of the ICA-based estimated independent 
random variables (upper row and left column) along with the 

scatter plots and the estimated correlation values. 

 
In a next step, the ICA transformed independent input 
variable set is fed into the PCE tool for inferring the 
relationship between the experimentally calculated natural 
frequencies and the measured temperature inputs. Toward 
this end, the input variables are transformed into uniformly 
distributed variables by using their non-parametrically 
estimated cumulative distribution functions and a PC basis 
comprising multivariate Legendre polynomials is finally 
constructed.  

The set of natural frequency estimates is divided into an 
estimation and a validation set. The estimation set 
comprises 1500 values randomly selected from the first 
eight months of the monitoring period (one month before 
the first damage), while the rest of the values are used as 
validation set including the complete set recorded during 
the last month of the monitoring period plus the complete 
set of values corresponding to the period of induced 
damages, that is 2744 values. 

It is essential that the training set includes a full seasonal 
cycle and therefore this framework is only meaningful 
within a long-term monitoring context. 

Figure 6 summarizes the results of PCE-ICA approach for 
tracking the first four natural frequencies of the bridge.  
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Figure 6. PCE natural frequency estimates for both the 

estimation and validation set contrasted to the true SSI-based 
estimates. 

In the plot: 

(a)  The blue marker denotes the experimentally derived 
natural frequencies, via use of the SSI scheme.  

(b)  The red marker denotes the training set, used for 
deriving the PCE representation between observed inputs 
and outputs. 

(c)  The green marker designates the prediction of the 
PCE model. As long as the model prediction agrees with 
the corresponding measurements (in blue), the structural 
response lies within operational (regular) bounds. 
Deviations of the predicted from the measured quantity 
serve as indications of irregularity or damage.  

A better way to quantify performance however is by 
retaining, not all, but only few, i.e., reduced 
dimensionality, salient features that are indicative of the 
response. This may once again be achieved via use of the 
ICA method, whereby a reduced number of independent 
random variables from both the vector of temperature 
measurements (input variables) and the estimated natural 
frequencies (output variables – damage index) may be 
inferred.  

In this case, a single input latent variable is enough to 
describe the variance of the temperature measurements 
and the same applies for the vector of the natural 
frequencies. PCE of the output to the input (latent variables 
now) results in the upper plot of Figure 7, where the salient 
feature’s PCE-ICA prediction is plotted against its “true” 
value as derived from actual measurements. In the lower 
plot of Figure 7, a single damage index may be inferred, 
defined as the error between measurement and prediction. 

 

Figure 7. Extracted feature variable compared with the PCE 
modeling estimates (top) and the extracted damage index based 
on the PCE prediction errors for the Z24 benchmark case, where 

artificial damage is inflected after 9 months of monitoring 
(vertical line). 

During regular operation, this error should be lie within a 
prescribed threshold indicated by the horizontal dashed 
lines in the plot. Indeed prior to the occurrence of damage 
(marked with a black vertical line), the error lies within the 
prescribed thresholds (denoted via dashed horizontal 
lines), apart from isolated outliers, which can be ignored 
as isolated points. In the period following the point where 
the 1st damage is induced the error plot develops a 
persistent offset from the expected mean, exceeding the 
prescribed thresholds, which correctly translates to 
damage indication. In fact, the method is able to detect, 
also the preliminary works performed on the structure in 
preparation of the damage sequence, consisting in the 
lowering of the piers on August 7th, i.e., 3 days before the 
actual implementation of the designed damage scenarios 
(August 10th), which is marked in the Figure with a red 
vertical line. 

The PCE-ICA monitoring tool and the extracted 
performance index proves therefore capable of reliably 
reproducing the estimation set values, while more 
importantly a very good accuracy is also achieved for 
values belonging in the validation set for the interval prior 
to damage.  

3.2 Implementation on a Non-Stationary System – 
Wind Turbine tower monitoring 

The SHM framework introduced in the previous sections 
is in this section applied on the case study of a real Wind 
Turbine (WT) under operation. The WT under study is one 
of the eight V90 2MW Vestas generators of a wind farm 
in Lübbenau in northern Germany, owned by Repower 
Deutschland GmbH. The vibration response of the WT 
were measured by triaxial accelerometers (STM 
LIS344ALH MEMS sensors) at five distinct locations of 
the WT tower (Figure 8). A 10-minute-long dataset was 
recorded every half hour for 29 days (from 18/18/2013 till 
15/1/2014), resulting in 1392 datasets. The signals 

Web of ConferencesMATEC

01003-p.8



recorded at 200 Hz were low-pass filtered and down-
sampled to 12.5 Hz (cutoff frequency at 5 Hz). 

 
Figure 8: Schematic diagram of the experimental setup on the 

tower of the WT. 
 

A dataset corresponding to the parked WT is initially used 
for extracting its modal properties for the purposes of 
comparison. Toward this end, the y-axis response 
measured at 80 m height (North sensor location; Figure 8) 
and a stationary ARMA method based on prediction error 
method are utilized. The results of a stochastic subspace 
identification method based on the canonical variate 
algorithm are also shown in Table 4 for comparison 
purposes. 

The resulting stabilization diagram for model orders 
between 2 and 50 is shown in Figure 9. The final AR/MA 
orders are selected equal to 32 and the estimated natural 
frequencies and damping ratios based on ARMA model 
are also summarized in this figure. It should be noted, that 
only the natural frequencies with damping ratio less than 
5% are included in the plot. 

In contrast to the stationary dynamics of the parked WT 
the dynamics of the operating WT are susceptible to 
change within some minutes as clearly shown by the 
spectrogram of the signal recorder at 8:30 am,  
26/012/2013 in Figure 10. In this figure a Short Time 
Fourier Transform is employed with a Hamming data 
window (NFFT = 512; overlap 98%).  

Furthermore, it may be clearly observed that some 
additional frequencies are introduced in the spectrogram 
due to the rotation of the WT’s nacelles and blades. On the 
same figure, the evolution of the estimated natural 
frequencies based on SP-TARMA(32,32) with 
smoothness constraints order � equal to 1 and variance 
ratio � = 0.01 are shown by blue solid lines while in dashed 
gray lines the corresponding estimates of an conventional 
ARMA(32,32) model are also shown. The latter are of 
course incapable of tracking any variability and they 
normally return averages of the nonstationaty natural 

frequencies, in contrast to the nonstationary SP-TARMA 
model which tracks with good accuracy the evolution of 
the dynamics when compared to the spectrogram shown in 
the background.     

 

 

Figure 9: Dynamics of the parked WT. Stabilization plot 
for the stationary ARMA and SSI methods. 
 

Table 4. Estimated natural frequencies and damping ratios 
based on an ARMA(32,32) model. 

# 
Natural freq. 

(Hz) 
Damping ratio 

(%) 

1 0.2170 0.2716 

2 1.0817 1.4520 

3 1.4927 0.6207 

4 1.5864 0.3858 

5 2.0033 3.3644 

6 2.5115 3.7262 

7 3.1251 0.6683 

8 3.6084 0.9387 

9 3.8287 2.4248 

10 4.1340 1.3802 

11 4.7153 1.0199 

 
The long-term monitoring framework aims at the accurate 
description of the dynamic properties of the structure for a 
range of acting, operational and environmental conditions. 
In this case, we refer to a variability that is different from 
the short-term one treated in Section 2.1b. This “long-
term” variability pertains to the loading and environmental 
conditions which are continually changing within the 
range of hours, or even minutes: 

i. Non-periodic, stochastic loads caused by wind gusts 
and turbulence (within the order of minutes) 

ii. Changes in the input wind flow profile (within the 
order of minutes).  
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iii. Environmental conditions variation (temperature, 
humidity, solar radiation, wave loading and others; 
within the order of hours). 

 
Figure 10: Dynamics of the WT under normal operation. 
Stationary ARMA(32,32) natural frequency estimates are 

compared with those of the nonstationary SP-
TARMA(32,32) model (spectrogram in the background). 
 
Within such a context, for the long-term monitoring of the 
system the 10 min average information attained from the 
Supervisory Control and Data Acquisition System 
(SCADA), installed in the nacelle, is additionally utilized. 
The list of available operational and environmental 
parameters provided via the SCADA is outlined in Table 
5 with those selected for the subsequent analysis indicated 
in bold. An additional plot of the selected parameters is 
provided in Figure 11. These values correspond to the 
1392 datasets of the vibration response measurements.  

Since these variables are standardly available in a 10-
minute average format, the output of the ICA-PCE 
framework was also selected to be the standard deviation 
(std) of the SP-TARMA(32,32) residuals for the 10 minute 
intervals, that is the mean value of the non-stationary 
residuals std. The input variables were transformed in 
uniform variables and thus the Legendre polynomials are 
used for the PCE while the maximum polynomial order 
was selected equal to seven (R2 criterion is used for this 
selection).  

The residuals std for each dataset and the corresponding 
PCE model estimates are indicated in Figure 12. It is noted 
that the total number of datasets is divided into a 1000-long 
estimation set and a 392-long validation set. The PCE 
errors are also shown in the lower part of Figure 12 along 
with the corresponding 95% confidence intervals 
calculated for the fitted  Gaussian distribution of the 
estimation set errors. Evidently, a statistical hypothesis 
testing could be adopted in this case for damage detection, 
offering an automated SHM tool necessitating little or no 
user inference after the initial model-training period. 

Table 5. List of available operational and environmental 
conditions through the SCADA system. 

Variables 

1 Wind direction [deg] 

2 Min wind speed [m/s] 

3 Average wind speed [m/s] 

4 Max wind speed [m/s] 

5 Min power [kW] 

6 Average power [kW] 

7 Max power [kW] 

8 Nacelle direction [deg] 

9 Nacelle temperature [oC] 

10 Ambient temperature [oC] 
 
 

 
 Figure 11: Long-term monitoring:  Plot of the four selected 
input variables versus time (1392 values corresponding to 
the recorded vibration response datasets). 
 
Since no damages were observed during the almost one 
month measurement campaign described above, a 
monitoring of the WT for a longer period of time, which 
will allow the assessment of the method and its capabilities 
for damage detection, is already planned. It is worth noting 
that SCADA data measured at higher sampling 
frequencies could allow the better statistical 
characterization of the PCE input variables potentially 
leading to improved performance of the method. An effort 
is currently underway for ensuring such a synchronized 
acquisition. 
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Figure 12: Long-term monitoring. SP-TARMA(32,32) 
model residual std as obtained from the modelling of each 
vibration response dataset along with the PCE model 
expansion values. The PCE errors along with their 95% 
confidence intervals are plotted in the bottom��

4. Conclusions 
Environmental and operational condition data, nowadays 
largely available in modern SHM systems of large-scale 
civil engineering structures, should be accounted for in 
favor of identifying comprehensive dynamic models. To 
this end, a long-term monitoring framework (PCE-ICA) is 
herein introduced, relying on a polynomial chaos 
expansion tool for the accurate description of the 
stochasticity emanating from external influencing agents 
onto structural response.  

A procedure for extracting condition indicators, or 
performance indices, is delivered which may serve for 
warning of irregularity/damage on the system and which 
incorporates the effects of operational or environmental 
influences. This component requires the operation of a 
low-cost monitoring system over a long period of time but 
can provide significant information concerning the 
influence of external factors on structural performance, by 
simply relying on ambient (operational) response data. 
Once this influence is quantified, a simple indicator may 
be extracted able to indicate whether the structure's 
condition lies within regular bounds or whether, to the 
contrary, a deviation indicating damage, or deterioration is 
tractable. Application of the method on the two actual 
large-scale civil case studies demonstrates the potential of 
adoption of the proposed framework into practice. 
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