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1. The problem

Urban transportation is complex due to interactions of many road users with many different transportation
modes, e.g. cars, bicycles, buses, taxis, pedestrians etc. In general, the mere existence of any road user in the
network imposes negative externalities to all other users leading to delayed journeys. Thus, which allocation
of time and space resources to transportation modes is optimal for a city? This classic question has frequently
been asked and answered in many ways, but, so far, no comprehensive methodology exists that quantifies
the multimodal interactions at the network level. However, the macroscopic fundamental diagram (MFD)
offers a novel approach for understanding network-wide traffic (Daganzo, 2007; Daganzo and Geroliminis,
2008). Some studies have already investigated interactions between cars and buses (Geroliminis et al., 2014;
Loder et al., 2017; Castrillon and Laval, 2018), and cars and pedestrians (Daganzo and Knoop, 2016).

In this paper, we propose a novel and general methodology to describe analytically the effects of local and
microscopic disturbances in multimodal traffic, e.g. cars, buses, bicycles, on the overall performance of urban
networks. We use a recently formulated functional form for the MFD (Ambühl et al., 2018) in conjunction
with the two-fluid theory of town traffic by Herman and Prigogine (1979) to link additional delays for cars
generated by such disturbances to the MFD shape.

We organize this paper as follows. Section 2 introduces to the mechanism to link the delays caused by the
interaction between modes to the MFD. Thereafter, we introduce to our idea of formulating the analytical
delay functions in Section 3. In the full paper, we provide the full analytical delay functions and illustrate
how optimal mode shares given network topology and demand can be derived with this proposed model.

∗Corresponding author
Phone: +41 /(0)44-633-6258
E-mail address: allister.loder@ivt.baug.ethz.ch

Preprint submitted to hEART 2019 Budapest February 28, 2019



0
.0

5
.1

.1
5

.2
.2

5
Fl

ow
 [v

eh
/s

]

0 .03 .06 .09 .12 .15
Density [veh/m]

min()
λ0=0.015 (-)
λ0=0.06 (-)

(a) Illustration of the λ0 parameter.
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(b) Illustration of the two-fluid parameter.

Figure 1: Fundamental relationships of urban-scale traffic.

2. Methodology

The presented multimodal network interaction model uses the following notation. The model generally
applies to the interaction of m modes, but here we focus on cars (subscript c), buses (subscript b), and
bicycles (subscript v, for velo - french bicycle). We define that k is the three-dimensional state vector of the
system with elements car density, ka, bus density, kb, and bicycle density, kv. Each mode has a well-defined
corridor macroscopic fundamental diagram (MFD). Generally, the MFD is a lower envelope to all possible
states in the relationships between network’s average flow, q, and density, k (Daganzo, 2007; Daganzo and
Geroliminis, 2008). Originally defined for car traffic only, we simply transfer the idea to buses and bicycles
as the three modes basically only differ in propulsion and some operational characteristics, e.g. speeds,
passenger occupancy, vehicle size. We denote this lower envelope as the upper MFD (uMFD) that is known
a priori (Ambühl et al., 2018; Daganzo et al., 2017). All observed traffic states will always be located below
this uMFD due to traffic heterogeneity (e.g. Mazloumian et al., 2010; Geroliminis and Sun, 2011; Gayah and
Daganzo, 2011; Daganzo et al., 2011) and network dynamics (e.g. Mariotte et al., 2017). Here, we use a
functional form for the MFD proposed by Ambühl et al. (2018) that captures in particular the gap between
the a priori known uMFD and the observed MFD with just a single parameter, λ0. This parameter can
be seen as a quantification of network homogeneity or the between-vehicle interactions. Eqn. 1 shows this
functional form for a trapezoidal uMFD. Such uMFD has been used, for example, by Daganzo et al. (2017).
For the reader’s convenience we omit the subscript m for the mode as it appears at every item.

q (k) = − λ0 ln

(
exp

(
−v

fk

λ0

)
+ exp

(
− Q
λ0

)
+ exp

(
− (κ− k)w

λ0

))
(1)

Here, vf is the free flow speed in the network, Q is the network’s capacity as defined by the most constraining
intersection (Daganzo and Geroliminis, 2008), κ is the jam spacing in the network, and w the backward wave
speed. Arguably, each mode m has its characteristic values. In Figure 1a we illustrate the behavior of this
MFD function for different values of λ0 in comparison with the uMFD as defined by the minimum operator
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with the trapezoidal shape (Eqn. 1). With λ0 approaching zero, the resulting curve approaches the uMFD,
in this case the trapezoidal shape. When λ0 increases, the curve moves further down but still describes the
familiar MFD shape.

We also define the total travel time per kilometer Tm of mode m. It consists of two parts as given by Eqn.
2. The first term, T 0

m (km), denotes the homogeneous travel time of mode m given its current accumulation
levels, km, without any interactions with other modes. The second term, Γm (k), describes the additional
delays caused by the interactions of modes among each other on mode m. In other words, the homogeneous
travel time of m is given by each modes’ own MFD, while the delays Γm jointly depend on all modes’
accumulations.

Tm (k) = T 0
m (km) + Γm (k) (2)

To then obtain each modes’ MFD capturing the interaction effects, we must update with the travel times
from Eqn. 2 each modes’ MFD in Eqn. 1. In other words, we want to find µ (k) as defined in Eqn. 3, that

augments λ0 due to the interactions between modes to λ̆ at a given state vector k. Here, µ (k) is a function

with Rm → R. The model proposed in this paper allows to calculate µ (k), allowing to calculate either λ̆ or
λ0 if one of the latter two values is measured.

λ̆ = λ0 + µ (k) (3)

We establish the link between delays Γ and λ with the well-established two-fluid theory of urban traffic
(Herman and Prigogine, 1979). The two-fluid theory of urban traffic is analogous to the Bose-Einstein
condensation of particles at low temperatures. In this theory, traffic is considered as consisting of running
vehicles (subscript r) and stopped vehicles (subscript s), where the running speed of vehicles vr is related to
the fraction of running vehicles fr by Eqn. 4 and by definition Eqn. 5. Here, n is a network-wide constant
and assumed to result from driving behavior, network topology and signal settings, and vf is the free-flow
speed. As in case of using the MFD idea for all modes, we use also apply this theory to all modes m.

vr = vf (fr)
n

(4)

v = vrfr (5)

Further, by definition the fraction of vehicles stopped fs and the fraction of running vehicles fr always add
up to one: fs + fr ≡ 1. Then, the space-mean speed in the network v results from Eqn. 6.

v = vf (1− fs)n fr = vf (1− fs)n+1
(6)

Importantly, Herman and Prigogine (1979) point out that fs is proportional to a power law with exponent
p of the density to jam density ratio. In an empirical study, Lu et al. (2018) report that p ≈ 1 making
computation easier, but we carry the p further along in this section as it can be context specific.

fs =

(
Ts
T

)
∝

(
k

κ

)p
(7)

The fundamental equation of the two-fluid theory results from Eqns. 4 and 6 and is given by Eqn. 8.
This equation establishes a relationship between the total travel time per kilometer T , the running time
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per kilometer Tr, the free flow speed vf as well as the network parameter n. We illustrate the functional
behavior of this equation in Figure 1b for different values of n. For higher values of n, the fraction of stop
time out of the total trip time decreases.

log Tr =
n

n+ 1
log T +

1

n+ 1
log

(
1

vf

)
(8)

With the MFD expressed by Eqn. 1, we can algebraically derive formulae for T , Tr, Ts. The total trip time
per kilometer or pace, T , is simply obtained by the inverse of the space-mean speed in the MFD as shown
by Eqn. 9.

T (k) =
k

−λ0 ln
(

exp
(
−vfkλ0

)
+ exp

(
− Q
λ0

)
+ exp

(
− (κ−k)w

λ0

)) (9)

Then, we obtain the running time per kilometer, Tr, by using Eqns. 5, 7 and T (k) from Eqn. 9.

Tr (k) =

(
1−

(
k

κ

)p)
T (k) (10)

Last, we obtain the stopping time per kilometer, Ts, by subtracting the running time from the total trip
time as given by Eqn. 11.

Ts (k) = T (k)− Tr (k) (11)

In their empirical work, Herman and Prigogine (1979), Ardekani and Herman (1985) and Ardekani et al.
(1992) estimate n econometrically from measurements of Tr and T . As we obtained formulae for T and Tr,
we can derive n analytically. Thus, after some algebra, we can solve Eqn. 8 for n, resulting in Eqn. 12.

n =
log

(
vf

)−1 − log Tr

log Tr − log T
(12)

In the following, we introduce the following notation. We define λ0, n0, T 0, T 0
r and T 0

s with superscript 0
to denote the case of a homogeneous and steady-state car traffic stream without any disturbances. Let us
then consider that the interactions with other transport modes create additional delays Γ. We assume that
these delays either affect only the stopping time with Γs (k) or the running time Γr (k). We discuss these
functions in detail later in this section. Here, Γ is a scalar function with Rm → R. Accordingly, the two-fluid
travel time variables can be rewritten for the case with additional delays with Eqns. 13-15.

Tr (k) = T 0
r (k) + Γr (k) (13)

Ts (k) = T 0
s (k) + Γs (k) (14)

T (k) = T 0
r (k) + Γr (k) + T 0

s (k) + Γs (k) (15)
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With the additional delays on travel times quantified, we can use Eqn. 12 to calculate n̆ of the system that
describes the network performance in the presence of interactions across modes according to Eqn. 16.

n̆ (k) =
log

(
vf

)−1 − log
(
T 0
r (k) + Γr (k)

)
log (T 0

r (k) + Γr (k))− log (T 0
r (k) + Γr (k) + T 0

s (k) + Γs (k))
(16)

At this stage, with given λ0 and k we have calculated n̆. However, recall that we are interested in the effects
on λ̆ from Eqn. 3, and ultimately in the MFD capacity of each mode. For this, we equate in Eqn. 17 the
space-mean speed of the λ trapezoidal function from Eqn. 1 and the speed of the two-fluid theory from Eqn.
6. Note that the information of k is now carried along with n̆ and that the right-hand side of Eqn. 17 is
similar to the inverse of Eqn. 9, but where λ0 is replaced by n̆ to calculate the interaction effects.

vf
(

1−
(
k

κ

)p)n̆(k)+1

= − λ̆
ln
(

exp
(
−v

fk
λ̆

)
+ exp

(
−Q
λ̆

)
+ exp

(
− (κ−k)w

λ̆

))
k

(17)

Eqn. 17 can simply then be solved as a root problem in mathematical software when transformed into Eqn.
18. The only unknown is λ̆.

0 = −λ̆
ln
(

exp
(
− v

fk
λ̆

)
+ exp

(
−Q
λ̆

)
+ exp

(
− (κ−k)w

λ̆

))
k

− vf
(

1−
(
k

κ

)p)n̆(k)+1

(18)

The problem formulated in Eqn. 18 must be solved for each mode m separately and because of the high
non-linearity of model, we propose to solve Eqn. 18 for each demand situation separately, i.e. for all possible
values of k, instead of assuming constant n or λ values over all densities.

3. Delay functions

In the following, we focus on identifying delay functions, i.e. Γ (k) for an urban corridor with given MFDs
for each mode. Here, we consider that the interactions between modes are continuously distributed along the
corridor. The methodology presented above is generic and allows to use any formulation of Γs (k) and Γr (k)
functions. Here, we use the following notation: Γc→bs describes the additional stopping delays caused by cars
on buses. We use the→ operator to indicate which mode affects which other mode. Where we do not provide
the→ operator, Γ corresponds to the total additional delay caused by all other modes. Intuitively, the delay
functions are a function of the network topology, i.e. in case all modes run on dedicated infrastructure the
interaction delays are zero, while they are non-zero when their infrastructure is (partially) overlapping.

As aforementioned, Γ (k) has two mechanism: stopping delays Γs (k) and running delays Γr (k). We assume
additivity of delays within each mechanism as formulated in Eqn. 19 for the additional stopping delays for
cars Γas (k), i.e. we calculate additional delays pairwise, which sum is then the total additional delay. In
other words, this assumes no combined or second order effects, e.g. from bicycles and buses on cars.

Γcs (k) = Γb→cs (kc, kb) + Γv→cs (kc, kv) (19)

The full paper then provides the mathematical formulations of the delay functions for each mode.
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4. Conclusions

In this paper, we presented a novel multimodal interaction model for the MFD. The model is generic
and flexible to accommodate interactions between all sorts of transportation modes, but in this analysis
we restricted ourselves to cars, buses and bicycles. This multimodal interaction model for the MFD is a
substantial contribution, not only in modeling urban traffic flow, but also in policy making as it allows to
discuss the optimal mode share given demand urban network topology.
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Ambühl, L., Loder, A., Bliemer, M. C., Menendez, M., Axhausen, K. W., 2018. A functional form for the
macroscopic fundamental diagram with a physical meaning. Transportation Research Part B (in press),
12–19.

Ardekani, S. A., Herman, R., 1985. A comparison of the quality of traffic service in downtown networks of
various cities around the world. Traffic Engineering and Control, 574–581.

Ardekani, S. A., Williams, J. C., Bhat, S., 1992. Influence of urban network features on quality of traffic
service. Transportation Research Record: Journal of the Transportation Research Board 1358, 6–12.

Castrillon, F., Laval, J., 2018. Impact of buses on the macroscopic fundamental diagram of homogeneous
arterial corridors. Transportmetrica B: Transport Dynamics 6 (4), 286–301.

Daganzo, C. F., 2007. Urban gridlock: Macroscopic modeling and mitigation approaches. Transportation
Research Part B: Methodological 41, 49–62.

Daganzo, C. F., Gayah, V. V., Gonzales, E. J., 2011. Macroscopic relations of urban traffic variables:
Bifurcations, multivaluedness and instability. Transportation Research Part B: Methodological 45 (1),
278–288.

Daganzo, C. F., Geroliminis, N., 2008. An analytical approximation for the macroscopic fundamental diagram
of urban traffic. Transportation Research Part B: Methodological 42, 771–781.

Daganzo, C. F., Knoop, V. L., 2016. Traffic flow on pedestrianized streets. Transportation Research Part B:
Methodological 86, 211–222.

Daganzo, C. F., Lehe, L. J., Argote-Cabanero, J., 2017. Adaptive offsets for signalized streets. Transportation
Research Part B: Methodological, 1–9.

Gayah, V. V., Daganzo, C. F., 2011. Clockwise hysteresis loops in the macroscopic fundamental diagram:
An effect of network instability. Transportation Research Part B: Methodological 45, 643–655.

Geroliminis, N., Sun, J., 2011. Properties of a well-defined macroscopic fundamental diagram for urban
traffic. Transportation Research Part B: Methodological 45 (3), 605–617.

Geroliminis, N., Zheng, N., Ampountolas, K., 2014. A three-dimensional macroscopic fundamental diagram
for mixed bi-modal urban networks. Transportation Research Part C: Emerging Technologies 42, 168–181.

Herman, R., Prigogine, I., 1979. A two-fluid approach to town traffic. Science 204, 148–151.

6
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