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A B S T R A C T

Travel demand models have increased their data demands massively both
in scope and scale as they have become more complex over the course of
years. Against that trend, the current dissertation pursues the development
of a direct demand modelling approach tailored for speed and volume pre-
diction purposes. In this regard, the main objective of this dissertation is
twofold. First, to investigate how the predictive accuracy of a direct de-
mand model can be enhanced if viewed through the lens of a spatial per-
spective, and second to identify and resolve the statistical shortcomings
that arise due to the spatial nature of data. Methodologically, the family of
spatial regression models is exploited while the issue of endogeneity gov-
erning the relationship between the two modelled transport phenomena is
taken into consideration.

On the spatial interaction side, a new framework that revisits the defi-
nition of the distance decay function is introduced. Subsequently, this re-
vision is translated into a series of modified accessibility measures. Fur-
thermore, a new indicator that combines the concepts of centrality and
gravity-based accessibility in a unified measure is introduced. This indi-
cator provides a richer picture of the ways a transport system generates
connectivity and how accessibility is jointly generated by the network and
the landscape of opportunities. In addition, the new centrality indicator
is thoroughly tested for its ability to improve the predictive accuracy of
direct demand models.

Finally, a comparison of the results of the developed modelling approach
against the output of a traditional four-step model showcases that direct
demand models can provide a trustworthy alternative to more advanced,
but definitely more data demanding and computationally burdensome ap-
proaches. Especially in cases where the development of more advanced
models is not possible, either due to data availability issues, or due to var-
ious limitations in place, a direct demand model can constitute a viable
alternative.
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Z U S A M M E N FA S S U N G

Die gegenwärtigen Verkehrsnachfragemodelle werden zunehmend kom-
plexer und beruhen auf immer grösseren sowie detaillierteren Daten. Im
Gegensatz zu diesem Trend konzentriert sich die vorliegende Arbeit auf
die Entwicklung eines direkten Ansatzes zur Modellierung der Verkehrs-
nachfrage. Im Vordergrund steht dabei die Vorhersage von Verkehrsge-
schwindigkeiten und -mengen. In diesem Zusammenhang ergeben sich
zwei Hauptziele für diese Dissertation. Das erste besteht darin zu unter-
suchen, wie die Genauigkeit der Vorhersagen direkter Nachfragemodelle
verbessert werden kann, wenn eine räumliche Perspektive eingenommen
wird. Das zweite Ziel ist es, die statistischen Mängel zu identifizieren und
beheben, die bei der Schätzung solcher Modelle aufgrund des räumlichen
Bezugs der Daten entstehen. Zu diesem Zweck werden verschiedene räum-
liche Regressionsmodelle vorgestellt, getestet und genutzt, während gleich-
zeitig das Problem der Endogenität explizit angesprochen und berücksich-
tigt wird.

Für die Thematik der räumlichen Interaktion wird ein neuer Ansatz
präsentiert, welcher verschiedene Erreichbarkeitsindikatoren überarbeitet
und neu definiert, die auf distanzbasierten Widerstandsfunktionen basie-
ren. Es wird ein neuer Indikator vorgestellt, der die zentralitäts- sowie
gravitationsbasierte Erreichbarkeit als einheitliches Mass kombiniert. Die-
ser Indikator liefert ein besseres Bild davon, auf welche Art und Weise ein
Verkehrssystem verbunden ist und wie die Erreichbarkeit durch das Netz-
werk und die Aktivitäts-möglichkeiten gemeinsam erzeugt wird. Darüber
hinaus wird der neue Zentralitätsindikator eingehend auf seine Fähigkeit
getestet, die Vorhersagegenauigkeit von direkten Nachfragemodellen zu
verbessern.

Als Abschluss zeigt ein Vergleich der Ergebnisse des neu entwickel-
ten Modellierungsansatzes mit jenen eines traditionellen, vier-stufigen Mo-
dells, dass direkte Nachfragemodelle eine vertrauenswürdige Alternative
zu komplexeren, aber weitaus daten- und rechenintensiveren Ansätzen
darstellen können. Insbesondere in Fällen, in denen die Entwicklung von
komplexen Modellen nicht möglich ist, sei es aus Gründen der Datenver-
fügbarkeit oder aufgrund verschiedener anderer Einschränkungen, kann
ein direktes Nachfragemodell eine brauchbare Alternative darstellen.
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1
I N T R O D U C T I O N

1.1 motivation

Travel demand models keep increasing their complexity levels since the
shift to the activity based paradigm in the early 1970’s (Jones et al., 1983;
Axhausen, 1998). As a result, their data demands have also increased mas-
sively, both in scale and scope in order to support this enhancement. While
the accrued gains in policy sensitivity and plausibility are obvious, there
has been little evidence that they actually improve the quality of public
decision making. The obvious reluctance of the practice to adopt such ad-
vanced models has raised concerns on potentially widening the gap be-
tween academia and practice (US National Research Council , 2007). On
the one hand, the increased data collection abilities of the field, along with
the expected wave of "big data" might allow the (academic) field to con-
tinue on its current trajectory, but on the other hand the use and abuse
of "big data" raises the danger of a sudden change in the course of pub-
lic policy and the sudden lack of high quality alternatives to the existing
state-of-the-art (i.e. academic) models.

A closer look at the history of transport demand models reveals that the
advances in the field have been mainly materialized due the evolution of
computational systems. Initially, the demand models had adopted a low
level of spatial and temporal detail with simplified behavior considera-
tions in place (de Dios Ortuzar and Willumsen, 2011). The joint increase
in computing power, the enlargement of the range of policy instruments
to be tested, and the growing prominence of geographers and economists
among the transport planners led to more complex and theoretically better
informed models: the temporal and spatial detail was increased, and the
range of behavioral responses was broadened as well. The activity-based
approach (Jones et al., 1983) was essentially merged in practice with the
more or less simultaneous development of discrete choice models (Domen-
cich and McFadden, 1975). Both the conceptual framework and the continu-
ous advancement of the statistical tools (e.g. see Train (2009) for a summary
of the relevant progress) invited a growing appetite for spatial and tem-
poral detail, and more specific information about the decision processes
modelled.
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2 introduction

Nevertheless, the underlying core idea of all transport demand models
is to examine and quantify the interaction between demand and supply
at different levels. To this end, the most prominent modelling approaches
rely on the use of simulation models, comprising a set of sub-models to
quantify the different aspects of the transport system, and then through an
iterative process facilitate the interaction between demand and supply un-
til an equilibrium has been reached. Two broad categories of such models
exist, differentiated on how they simulate the interactions within the sys-
tem, hence involving and allowing different considerations and sub-model
formulations. The first category, the macroscopic approach, focuses on the
system as a whole and models its different components and their interac-
tions in an aggregate way. The second category, the microscopic approach,
considers the individual components of the system and models their be-
havior and interactions in a disaggregate way, making use of advanced
statistical models.

A further distinction of the transport simulation models can be made
based on how the demand aspect is modelled. On the one hand, models
focusing on the operational side of the system consider fixed demand and
focus on simulating individuals movements and interactions (e.g. traffic
simulation models). On the other hand, models focusing on planning pur-
poses, model the demand aspect of the system under the assumption that
it is a derived need, and hence not fixed. Depending on how the genera-
tion of demand is formulated, a further distinction can be made between
microscopic and macroscopic demand modelling approaches. A pivotal ex-
ample of the former one is the traditional 4-step model, while in the case of
the latter are the agent-based models (e.g. Horni et al. (2016)). Obviously, a
microscopic demand model requires much more detailed data on a person
level and the development of many statistical sub-models, increasing con-
siderably the computational effort to reach the equilibrium point. While
the increasing richness is obvious to the developers, it is also well docu-
mented that the practitioners do adopt these models only with very long
delays, or if ever (US National Research Council , 2007).

However, when it comes to the appraisal of public transport projects,
as Flyvbjerg et al. (2005) argue, the quality of the demand forecasts has not
been improved over the years even though more complex and behaviorally
sound models have been employed. In a similar line of thought, Dowling
and Skabardonis (1993) highlight the fact that large scale planning models,
which are only calibrated against volume estimates, typically fail to pro-
vide reasonable speed estimates. This aspect has been systematically ne-
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glected in the literature along with its implications. More specifically, the
travel time and demand estimates constitute core elements when it comes
to the system performance evaluation and the appraisal of new projects
(e.g. estimation of travel time savings). Driven by these, it appears that the
increased complexity of transport demand models has on the one hand
contributed to the development of more elaborate and policy sensitive
models, but on the other hand it has not improved the demand and travel
time forecasts’ quality, at least not in an analogous way to the required
effort and data.

Based on the above, the question of potential modelling alternatives
emerges as an important one. Nevertheless, any alternative modelling struc-
ture should be at least capable of making statements about the speed and
the traffic volume on a link level, items that constitute the minimum re-
quirements for the appraisal of transport projects. To this end, regression
models have been employed for providing the required answers in recent
years (e.g. Desyllas et al., 2003; Hackney et al., 2007), reviving essentially
an old, but recently neglected tradition in transport planning of direct de-
mand models (e.g. Quandt and Baumol, 1966; Talvitie, 1973; Crow et al.,
1973; Gaudry and Wills, 1978; Oum, 1989).

1.2 research objectives and outline

The formation of an alternative modelling framework in the spirit of di-
rect demand models seems appealing for a number of reasons. First, it can
offer a structural explanation of the modelled phenomena at any location
on the network in a direct and straightforward manner. Second, the data
and computational requirements are considerably lower than the prevail-
ing simulation approaches. Third, it requires a substantially lower number
of parameters to be estimated in order to provide predictions. Fourth, it can
constitute a worthwhile alternative especially if its predictive performance
is found to be within acceptable accuracy levels. Last, developing such a
framework can provide valuable insights about the demand-supply inter-
action mechanism under study, which in turn can also supplement more
elaborate approaches to improve their predictive capabilities and their over-
all performance.

Invoking the first law of geography stating that "everything is related to
everything else, but near things are more related than distant things" (Tobler,
1970), the importance of distance as a fundamental concept of geography is
emphasized. Besides the critical question of what is related to what (Miller,
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2004), another dimension of distance is associated to the spatial interaction
phenomenon.

Driven by all the above, the main objective of this dissertation is twofold.
First, to investigate how the predictive accuracy of a direct demand model
can be enhanced if viewed through the lens of a spatial perspective, and
second to identify and treat for the implications that arise due to the spatial
nature of data. Nevertheless, both of these aspects have in common the
space dimension and as such the main hypothesis that this dissertation
puts into testing is that space matters when it comes to the formulation of
(direct) transport demand models.

More specifically, this dissertation pursues the formulation of a direct
demand model capable of producing localized mean speed and volume
predictions. Methodologically, the family of spatial regression models is
employed for that purpose while the issue of endogeneity governing the re-
lationship between these two transport phenomena is explicitly taken into
consideration. On the spatial interaction side, a new framework that revis-
its the definition of distance decay function is introduced. Subsequently,
this revision is translated into a series of modified accessibility measures
which when combined with network theory concepts can provide a neat
way of capturing the underlying demand patterns, and in turn can also
improve the predictive accuracy of the developed direct demand model.

The overall structure of this dissertation takes the form of nine chap-
ters, including this introductory chapter. Chapter 2 begins by discussing
in parallel the literature on accessibility measures and spatial interaction
models. The 3rd chapter revisits conceptually and methodologically the
principles of spatial interaction and proposes an alternative based on the
survival analysis concept. In chapter 4 the aforementioned revision is eval-
uated in terms of resulted interaction rates and values, while its application
is also exemplified through the construction of different gravity-based ac-
cessibility measures. Chapter 5 introduces a new centrality indicator that
associates accessibility to the network structure while a case study is de-
signed to demonstrate and discuss its utility. In chapter 6 different spatial
regression models for speed prediction purposes are estimated while the
issue of the optimal construction of the spatial weight matrix is addressed.
Chapter 7 focuses on the issue of traffic volume prediction and the output
of both spatial and aspatial models are assessed in order to draw relevant
conclusions. The 8th chapter proposes a speed model formulation that ac-
counts both for spatial effects and endogeneity issues and when paired up
with the model of the previous chapter can form a coherent direct demand
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modelling approach. The final chapter draws upon the entire dissertation,
tying up the various theoretical and empirical contributions, and identifies
areas for further research.



6



2
A C C E S S I B I L I T Y

2.1 introduction

“Throughout the evolution of human settlements, there is only one factor which
defines their extent: the distance man wants to go or can go in the course of his
daily life. The shortest of the two distances defines the extent of the real human
settlement, through definition of a daily urban system" (Doxiadis, 1970). Ad-
mittedly, transportation constitutes a core element of everyday life, having
the ability to shape not only urban systems but also the regional form and
function (Wachs and Kumagai, 1973).

Different ways have been introduced over the years in an attempt to
quantify the access to spatially distributed opportunities, commonly re-
ferred to as accessibility. Seeking ways to increase accessibility and provide
people with increased opportunities for employment, social participation,
etc., has always been at the forefront of transport planning. As a result,
accessibility makes up a key concept that has found wide application in
planning practice (Straatemeier, 2008). However, it is due to its popularity
that it is often mentioned as a term but in several instances remains un-
defined or poorly measured (Axhausen, 2008). As Miller (2018) states, “the
‘simple’ notion of accessibility becomes surprisingly difficult to operationalize”.

Since Hansen (1959) first formulated accessibility in mathematical terms,
different variants have emerged. Two broad categories of accessibility mea-
sures can be identified in the literature, differing on whether they draw on
utility, or spatial interaction concepts. In the case of the former, the focus
lies on quantifying the benefits that people derive from access to certain
kind of opportunities W, facilitated through discrete choice modelling ap-
proaches. For example, in (Ben-Akiva and Lerman, 1979) the accessibility
AccW

i of a location i is defined as the log-sum term of a destination choice
model.

On the contrary, spatial interaction accessibilities are potential opportu-
nities measures in the sense that they quantify the reachable opportunities
from any location/person i. Different indicators have been proposed over
the years, however what all of them have in common is that they rely
conceptually on spatial interaction principles. A general accessibility for-

7
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mulation and in analogy to the workhorse of spatial interaction modelling,
the gravity model (Wilson, 1967), can be formulated in the following way:

Accw
i = ∑

j
Wj f (dij) (2.1)

with Accw
i being the accessibility to opportunities W of a location/per-

son i, defined as the sum of opportunities Wj at locations j (with j∈ N,
and N being the number of locations), weighed by the interaction inten-
sity function f (dij). The interaction function depends on an attribute dij,
specific to any particular interaction pair of locations/individuals. In sum-
mary, such measures offer an integrated way of quantifying land use and
transport interaction in a concise and easily comprehensible manner, while
their popularity stems to a large extent from their simplicity, making them
by far the most commonly used in practice (Geurs and van Wee, 2004). De-
pending on whether or not the self-potential aspect of locations is taken
into account, a further restriction can be imposed accordingly (i.e. j 6= i). A
discussion on that issue can be found in Frost and Spence (1995).

As it can be seen in formula (2.1), spatial interaction accessibility mea-
sures rely on an interaction intensity function coupled with the spatial
distribution of opportunity points of interest (e.g. population, work places,
etc.). Depending on the scope and the availability of data, as noted by Páez
et al. (2012), “these two components can be deployed in a number of different
ways to produce location- or person-based indicators of accessibility”.

In general terms, a further classification can be made with respect to the
analysis level. In this respect, two categories have emerged in the litera-
ture, namely the aggregate and the disaggregate accessibilities. In the case
of the former, the analysis level is that of a zone, or a social group, and
accessibility is viewed as a zonal, or group characteristic accordingly. On
the contrary, disaggregate accessibility indicators focus on a finer analysis
level such as individuals, or specific elements of space (e.g. points).

Nevertheless, both categories utilize observed mobility patterns and tra-
vel behavior aspects in order to capture information about how far people
are willing, or have to travel. In particular, the aggregate measures are
conceptually and mathematically driven by the advances in the field of
spatial interaction modelling, while their determination takes place based
on population aggregates. On the other hand, disaggregate measures have
also developed along the same broad conceptual lines, entailing though the
formulation of individual- and/or location-specific interaction functions.
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In addition, further classification ways have been proposed over the
years. Most notably, in the review paper by Páez et al. (2012) a distinction
on the basis of whether the accessibility measure pertains to a normative
or a positive situation was introduced. In this regard, the authors provide
the following definition: "normative accessibility measures are defined in terms
of how far people ought to travel or how far it is reasonable for people to travel
whereas positive accessibility measures are defined in terms of how far people actu-
ally travel" (Páez et al., 2012). Nevertheless, highlighting this dimension of
accessibility measures is of importance and relevance, especially for policy
making applications. A thorough discussion of the literature on the topic
of accessibility can be found in Geurs and Ritsema van Eck (2003); Páez
et al. (2012), while in another paper by Van Wee (2016) different challenges
associated with the formation and the use of accessibilities are presented.

2.2 aggregate accessibility measures

Three categories of aggregate accessibility measures have emerged, namely
the gravity-based, the competition effects, and the cumulative opportunity
ones. Their central difference lies in their underlying assumptions of spa-
tial interaction, and how these are incorporated into their formulations.
"Spatial interaction is the process whereby entities at different points in physical
space make contacts, demand/supply decisions or locational choices" (Roy and
Thill, 2003).

The importance of spatial interaction as a phenomenon has been ac-
knowledged in different disciplines, varying from transportation, to migra-
tion and trade flows. In this regard, different models have been introduced
over the years in an attempt to explain such processes. Nevertheless, the
vast majority of those models have developed with an aim to describe ag-
gregate human spatial actions (Sheppard, 1984). A theoretical analysis of
the aggregate nature of spatial interaction models is presented in Webber
(1980), while in another paper by Ubøe (2004) the associated shortcomings
are highlighted. A thorough overview on the topic is given by Fothering-
ham and O’Kelly (1989), and Roy and Thill (2003).

2.2.1 Gravity-based accessibility measures

In the case of the gravity-based accessibility measures, essentially the in-
teraction intensity function serves the purpose of discounting the access to
the opportunities. The accessibility formulation is in this case based on the
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production-/ attraction-/ doubly-constrained forms of the gravity model,
with accessibility being the corresponding production and attraction bal-
ancing factors (Wilson, 1971). It is worthwhile putting into perspective the
gravity model formulation to allow for a more in-depth discussion. The un-
constrained gravity model for trip distribution is given by equation (2.2),
in accordance with Wilson (1971).

Tij = K W(1)
i W(2)

j f (dij) (2.2)

with Tij being the interaction between locations i and j (trips for the

transportation case), W(1)
i and W(2)

j are the mass measure terms associated
with locations i and j respectively, and K is a proportionality constant.
Last, f (dij) is the interaction intensity function, commonly referred to as
distance decay or deterrence function, with dij normally being a measure
of the distance, or (generalised) transport cost of travel between zones i
and j.

An important aspect of the gravity model is the definition of mass terms
W(1)

i and W(2)
j . Conceptually these terms should correspond to measures

of trip productiveness and attractiveness, respectively. Thereupon, they can
be of two kinds: either a measure of total trip production or attraction
per location, or some relevant factors (Wilson, 1971). In the case of the
former, the total number of trips originating from each zone Oi = ∑

j
Tij, or

terminating at each zone Dj = ∑
i

Tij, can be either observed, or estimated

on the basis of modelling techniques (i.e. W(1)
i = Oi and W(2)

j = Dj). In
the factors’ case, the employment of proxy variables serves the purpose
of quantifying trip productiveness and attractiveness. Typically, different
opportunity variables are used for that reason, such as population and
employment opportunities (i.e. W(1)

i = Popi and W(2)
j = Emplj).

As Wilson (1971) points out, the first mass terms’ kind has the advantage
of constituting a well-defined measure, while the second one is by con-
ception difficult to associate with a dimension. However, lacking dimen-
sionality bears no modelling implications when production and attraction
constraints are imposed. For instance, upon knowing the total number of
trips Oi or/and Dj, we can integrate that knowledge in the form of con-
straints into formula (2.2), resulting in the constrained counterparts of it.
In particular, the production-constrained form of it then becomes:
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Tij = AiOiW
(2)
j f (dij) (2.3)

while the attraction-constrained form is:

Tij = BjDjW
(1)
i f (dij) (2.4)

with Ai and Bj a set of balancing factors that replace the proportional-
ity constant K, and hence ensure that the aforementioned constraints are
satisfied. The set of factors Ai is given by:

Ai =
1

∑
j

W(2)
j f (dij)

(2.5)

while the set of Bj is:

Bj =
1

∑
i

W(1)
i f (dij)

(2.6)

Therefore and as it can be observed in formulas (2.5) and (2.6), the de-
nominators of the factors Ai and Bj correspond in essence to the well-
known gravity-based accessibility measures (formula (2.1)), having their
mass terms replaced by proxy variables instead of total trips’ numbers. For
instance for the case of the population and employment positions proxy
variables, the balancing factors are:

Ai =
1

∑
j

Emplj f (dij)
(2.7)

and

Bj =
1

∑
i

Popi f (dij)
(2.8)

In addition, the doubly constrained version of the gravity model can be
formulated in the following way:

Tij = AiBjOiDj f (dij) (2.9)

where
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Ai =
1

∑
j

BjDj f (dij)
(2.10)

Bj =
1

∑
j

AiOi f (dij)
(2.11)

In a similar way as before, the mass terms could have been replaced by
the proxy variables instead. For instance and for the same proxy variables
as before, the doubly-constrained gravity model is:

Tij = AiBjPopiEmplj f (dij) (2.12)

where

Ai =
1

∑
j

BjEmplj f (dij)
(2.13)

Bj =
1

∑
j

AiPopi f (dij)
(2.14)

The estimation of the doubly-constrained model can take place either
in an iterative way, or based on the entropy maximization framework as
presented by Wilson (1970). In this case, the balancing factors Ai and Bj
can also be perceived as accessibility measures, incorporating both compe-
tition and capacity constraints. However, the drawback of these values is
that they are not easily interpretable and also they constitute the output of
an iterative process, making them rather unpopular in practice (Geurs and
Ritsema van Eck, 2003). A recent application involving such accessibility
measures can be found in Allen and Farber (2019), where the developed
measures were used for examining spatial inequalities with respect to ac-
cess to employment.

2.2.2 Cumulative opportunities accessibility measures

An alternative conceptual framework for studying spatial interaction is
due to Stouffer (1940) who proposed that there is no necessary direct rela-
tionship between distance and interaction. More specifically, he introduced
the concept of intervening opportunities stating "that the number of persons
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going a given distance is directly proportional to the number of opportunities at
that distance and inversely proportional to the number of intervening opportu-
nities" (Stouffer, 1940). Therefore, the proposed model assumes that the
interaction between two locations (number of trips for the trip distribution
case) is given by the following formula:

Tij = K
OiDj

∑
k

Dk
(2.15)

with k being all the locations within a distance dij from location i while
the term ∑k Dk quantifies the total number of intervening opportunities.
Mathematically, the model can be perceived as a special case of the produ-
ction-constrained gravity model (formula (2.3)), where geographical sepa-
ration has no effect on interaction (hence f (dij) = 1), and both trip produc-
tion and attraction is known a priori. An extension of the model to account
for competition followed up (Stouffer, 1960) while recently it has regained
popularity through a series of modified forms, denoted as radiation mod-
els (e.g. Simini et al., 2012; Yang et al., 2014). Essentially, these models
operationalize the idea of replacing the mass terms by proxy variables.

Nevertheless, in analogy to the accessibility derivation for the gravity
model, the denominator of formula (2.15) can be seen as the accessibility
of location i to opportunities W within a distance dij, thus forming a cu-
mulative opportunities measure, subject to a specific value of distance dij
though. Therefore, the cumulative opportunities accessibility measure is a
special case of the general spatial interaction accessibility formulation (2.1),
having the following interaction intensity function in place:

f (dij) =

{
0, i f dij > c

1, i f dij ≤ c
(2.16)

where c is the cut-off value that after that point no interaction is taken
into consideration. Consequently, the function yields binary values of zero
and one, hence classifying location pairs as interacting or non-interacting
ones.

2.2.3 Competition effects accessibility measures

A major limitation of the gravity spatial interaction models is associated
with lacking the ability to account for competition effects. As highlighted
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by Fotheringham (1983), this can be a source of serious misspecification, re-
sulting in turn in biased interaction function parameter estimates. To over-
come that shortcoming, Fotheringham (1983) proposed a new set of spatial
interaction models that build on the concept of competing destinations. To
that end, the proposed model takes into account the interlinked nature
between spatial interaction and accessibility by incorporating that aspect
into a modified origin-specific gravity model formulation. More specifi-
cally, the proposed model for the production-constrained case with known
trip production takes on the following form:

Tij = AiOiW
(2)
j

(
AccW(2)

ij

)δi
dαi

ij (2.17)

where

Ai =
1

∑
j

W(2)
j

(
AccW(2)

ij

)δi
dαi

ij

(2.18)

The term AccW(2)

ij quantifies the accessibility of destination j to all other
destinations, defined as:

AccW(2)

ij = ∑
k,k 6=i

W(2)
k dσi

jk (2.19)

The parameter σi quantifies "the importance of distance in determining the
perception of accessibility" (Fotheringham, 1983). The model includes origin-
specific parameters (δi, αi, and σi) which are obtained iteratively. Moreover,
the expected sign of the parameter δi is negative, thus formula (2.18) can
be rewritten in the following way:

Ai =
1

∑
j

W(2)
j d

αi
ij(

AccW(2)
ij

)δi

(2.20)

Therefore, in this particular spatial interaction model formulation, the
accessibility of origin i corresponds to the denominator of the aforemen-
tioned formula (2.20). Driven by such insights, a category of accessibility
formulations accounting for competition effects has appeared in the litera-
ture.
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For instance, in Joseph and Bantock (1982) an accessibility measure that
accounts for competition effects at the destination level was introduced.
Along the same line of thought, in Shen (1998) it is highlighted that a major
limitation of traditional accessibility measures is that they incorporate only
the supply side in their formulation, whereas the competition for available
opportunities is not taken into account (demand side). Interestingly, in the
same paper it is noted that the traditional accessibility measures remain
valid only if at least one of the two following conditions is satisfied: a)
the spatial distribution of demand is uniform, and b) there is no capacity
constraint on the opportunities side. Failing to meet these conditions can
result in misleading measures. Nonetheless, the roots of this argumenta-
tion are closely related to the limitations of the constrained forms of the
gravity model. Furthermore, in the same paper an accessibility formula-
tion accounting for the competition at destinations was proposed, aligned
with the one presented in Joseph and Bantock (1982). In a similar vein,
in a series of papers (Cheng and Bertolini, 2013; Geurs and Ritsema van
Eck, 2003; Van Wee et al., 2001) various accessibility measures for analyz-
ing job accessibility in the Netherlands were calculated, also demonstrat-
ing the importance of accounting for competition. A general form of the
aforementioned category of accessibility measures is presented in formula
(2.21).

cAccw
i = ∑

j

Wj

AccE
j

f (dij) (2.21)

with AccE
j being the accessible potential opportunities E from location j,

calculated based on formula (2.1). Essentially, this term can be perceived
as a correction for the attractiveness of the opportunities at the destination
level.

For the job competition case, W would correspond to the number of
employment positions, while E would be the population. The outcome of
formula (2.21) then can be interpreted as the number of potential regional
employment opportunities per resident at location i. Thereupon, values of
one indicate perfect regional balance whereas values higher than one re-
flect an excess of opportunities per resident. On the contrary, values lower
than one indicate an imbalance of potential opportunities. An alternative
way of accounting for spatial competition was introduced in Loder et al.
(2017) where the accessibility is specified as a nominal variable based on
combinations of ordinal values of cumulative accessibility variants. Earlier
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attempts for the cumulative opportunities case also exist in the literature
(e.g. Stouffer, 1960).

2.2.4 Interaction intensity function parameter(s)

As was pointed out in a previous section, all three categories of aggregate
accessibility measures rely on an interaction intensity function f (dij) to
quantify the potential for interaction. The importance of this function is
high since accessibility measures are found to be strongly influenced by
the chosen parametric form along with the corresponding parameter(s)
(Geurs and Ritsema van Eck, 2003; Reggiani et al., 2011; Vale and Pereira,
2017). Furthermore, it should be noted that transferability of the estimated
functions among different regions and studies is not advisable since it can
give rise to misleading and erroneous results (e.g. Pirie, 1979; Sarlas et al.,
2015).

Nevertheless and as it was mentioned before, the interaction function
depends on an attribute dij, specific to any particular pair of locations.
On its most widely applied form, interaction intensity is viewed as a func-
tion of spatial segregation solely (e.g. Euclidean distance, network distance,
or travel time/cost). Essentially, the function then takes on the form of a
distance decay, or travel impedance function. Common forms are power,
(power) exponential, logistic, (modified) Gaussian, and uniform.

Several approaches of obtaining the parameters of those functions have
been proposed. In summary, they can be obtained either based on a grav-
ity model (e.g. Fotheringham, 1983; Levinson, 1998; Simma and Axhausen.,
2003; de Dios Ortuzar and Willumsen, 2011; Reggiani et al., 2011), or by
fitting an empirical trip length distribution function (e.g. Zhao et al., 2003;
Halás et al., 2014; Sarlas et al., 2015; Scott and Horner, 2008), or by speci-
fying cut-off values (e.g. Gutierrez and Gomez, 1999; O’Kelly and Horner,
2003; Ribeiro et al., 2010).

In the first case, a gravity model formulation serves as the basic underly-
ing aggregate relationship to model the interaction intensity while origin-
destination (O-D) demand matrices are required as input (e.g. Levinson,
1998; Simma and Axhausen., 2003; Reggiani et al., 2011) along with census
and count data. Moreover, the interaction function takes either a power
form dα

ij, or an exponential one eαdij , with α being an estimated parame-
ter measuring the diminishing impact of distance/cost on interaction. Due
to the nature of this relationship, α is expected to have negative values
whereas its estimation is facilitated by means of either regression, or en-
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tropy maximization techniques. To this end, a commonly faced problem is
the issue of observations with zero value (e.g. Burger et al., 2009). In many
cases, gravity models are also stratified by mode, or trip purpose (e.g. com-
muting, leisure, etc.), hence resulting in mode- and trip purpose-specific
parameter estimates.

The second approach is data-driven where empirical trip data is used.
More specifically, the approach aims at fitting a function to the probability
distribution function (pdf) of the observed trip lengths, or of the interac-
tion rate, and can be stratified by mode, trip purpose, age, income, type
of employment, etc. An important aspect is that the function can be fit-
ted both in terms of linear and non-linear approaches. Due to this, more
flexible parametric forms than the ones mentioned before can be accom-
modated. Normally, the data are aggregated in different intervals of equal
size and the estimation is facilitated by taking into account one observa-
tion per interval (e.g. Zhao et al., 2003; Scott and Horner, 2008; Sarlas et al.,
2015). The first bin should by definition be the one with the highest fre-
quency value in order to ensure a monotonically decreasing function. In
most of the cases though, trip length frequency distributions are found
to be increasing up to a certain point and then decreasing. Therefore, the
first interval has to be specified in a way that ensures that it has the max-
imum frequency, determining hence the intervals’ size and subsequently
the number of fitting points. In addition, a normalization of the interval
frequencies is commonly applied, normally by the maximum frequency in
order to obtain values ranging from zero to one. As a result, the estimated
parameters are sensitive to the intervals’ definition and the imposed nor-
malization.

The last approach requires the definition of a cut-off value, or isochrones,
after which it is assumed to see no possible interaction. Moreover, within
that threshold all opportunities are weighed the same. However, as men-
tioned in Geurs and van Wee (2004), the arbitrary selection of isochrones
along with the lack of differentiation between opportunities make such
measures simplistic and problematic. Various attempts have been made
to resolve those issues either by assigning weights within the threshold
based on a decay function (e.g. Black and Conroy, 1977), or by assuming
that people are indifferent to distances up to a certain point and after that
the interaction intensity is determined based on a distance decay function,
resulting in a modified Gaussian function (e.g. Vale and Pereira, 2017).
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2.2.5 Interaction intensity function parameter(s) and spatial structure

The conceptual aspects of the distance decay parameter have attracted a lot
of attention in the spatial interaction literature, initiated due to the variance
of the reported parameters and the occasional existence of positive values
(e.g. Griffith and Jones, 1980; Fotheringham, 1981; Sheppard, 1984; Ewing,
1986). In particular, the distance decay parameter should capture the effect
that distance has on interaction, ceteris paribus. Driven by this, a purely
behavioral relationship between these two has been posited for a long time
(Roy and Thill, 2003).

However, the existence of a relationship between non-generic but loca-
tion-specific parameters and spatial structure questions and contradicts
fundamentally such statements (e.g. Fotheringham, 1981). Consequently
and as Fotheringham (1981) notes: "...it has been proposed that distance-decay
parameter estimates are a function of spatial structure as well as a function of in-
teraction behavior, although such theories have aroused much controversy". This
relationship was the subject of an intense debate within the relevant sci-
entific community, an overview of which is given by Sheppard (1984). In
the same paper, Sheppard discusses the potential sources of the underlying
conceptual bias, attributed to mis-specification reasons. In addition, Fother-
ingham (1981) also discusses in detail the various, by that time, existing
theories relating spatial structure and distance decay parameters.

In this regard, Curry et al. (1975) proposed capturing the spatial struc-
ture effect through a spatial autocorrelation function. Subsequently, in fol-
lowing up studies the issue of spatial autocorrelation was further inves-
tigated (e.g. LeSage and Pace, 2008; Schatzmann et al., 2019-01). Fother-
ingham and Webber (1980) suggested the use of a simultaneous equa-
tions model to properly account for the effect of spatial structure. Later
on, Fotheringham (1983) proposed a new set of spatial interaction models
that incorporate spatial structure effects into their formulation, in addition
to origin-specific distance parameters (see section 2.2.3). Essentially, in this
way both ends of the trip are taken into account.

Interestingly, an alternative approach, namely the expansion method, is
due to Casetti (1972). More specifically, he suggested the spatial contextual-
ization of the parameters to account for the underlying spatial structure. In
essence, his approach involves the estimation of the parameter of interest
as a function of spatial structure variables. As outlined by Roy and Thill
(2003) though, this practical way has received very limited attention with
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the exception of few studies on spatial interaction modelling (e.g. Zhang
and Kristensen, 1995; Roy, 2004).

In a study by Halás et al. (2014), the variance of empirical distance decay
functions for the daily travel-to-work trips to various regional centers of
Czechia was investigated. Moreover, the authors attempt the construction
of a universal distance decay function which is in turn estimated as a func-
tion of distance, population and employment of the associated regional
centers. However, the proposed universal function accounts only partially
for the spatial structure since it focuses only on the destination end of the
trips.

2.3 disaggregate accessibilities

A major limitation of the aggregate accessibilities is that they ascribe the
same levels of accessibility on all individuals in each zone (Pirie, 1979). As
a result, they lack the ability to capture personal differences on accessibil-
ity (Kwan, 1998). However and as pointed out in Weber (2003), households’
and individuals’ characteristics are found to be more important than loca-
tions’ characteristics. Driven by such insights, a strand of literature has
emerged aiming at developing and evaluating disaggregate accessibilities.

At the outset, the transition from a zonal to a point level of analysis
was exploited to investigate spatial variations of the accessibility levels (e.g.
Hanson and Schwab, 1987). Essentially, that transition was motivated by
the need for analyzing urban settings. In Handy (1993), the distinction
between regional and local accessibility measures is discussed.

A substantial number of papers have been based on the concept of the
space-time prism as put forward by Hägerstrand (1970), resulting in var-
ious space-time accessibility implementations (Miller, 1999). More specifi-
cally, the central idea of those formulations is that individual-specific inter-
action intensity functions can be specified by taking into account various
aspects such as individuals’ spatio-temporal constraints and activity se-
quencing. For instance, in Kwan (1998) different individual accessibilities
were developed by restricting and enumerating the feasible opportunity
set based on individuals’ space-time prisms. In a wider sense, such mea-
sures can be perceived as being theoretically aligned with the concept of
cumulative opportunities accessibilities, with the major difference that they
have individual-specific cut-off values in place.

The space-time prism approach was extended later on to account for
non-uniform interaction intensity values, hence being more aligned with



20 accessibility

the gravity-based accessibility formulation. For instance, in Horner and
Downs (2014) the space-time prism approach was refined by employing
a network-based probability density function “which indicates the relative
likelihood that an object was at a particular location on the network” as the in-
teraction intensity function. The idea of employing a density function for
determining the interaction intensity values was also exploited by Li et al.
(2011). In that study, dynamic location-based accessibility measures were
proposed that account for the temporal variations of speed, and thus of
network connectivity and conditions. In another study of similar scope
by Wang et al. (2018), a location-based accessibility formulation based on
the concept of space-time utility perspective was introduced. Nonetheless,
a major limitation of such space-time measures is associated with their data
demanding nature. As Pirie (1979) states "as they depend so heavily on large
amounts of information about completed activities and trips they are probably best
applied retrospectively."

Cascetta et al. (2016) introduced a new class of accessibility formula-
tions. More specifically, the proposed formulation includes a behavioural
interaction intensity function that takes into account various individual
spatio-temporal constraints and perception of alternatives. A different di-
mension of distance decay functions was studied by Martínez and Viegas
(2013). More specifically, the authors propose the construction of aggregate
distance decay functions on the basis of survey-based individual psycho-
logical perceptions of distance.

Last, Páez et al. (2010) utilized the expansion method of Casetti (1972)
in order to construct individual accessibilities of a cumulative form. More
specifically, individual-specific cut-off values are predicted on the basis of
a trip length regression model that accounts for the impact of both socio-
demographic and neighborhood attributes on the trip length. A thorough
discussion of individual accessibilities can be found in Kwan and Weber
(2003); Neutens et al. (2007).

2.4 limitations

Based on the previous overview of the accessibility literature, three major
limitations can be identified. The first limitation concerns the aggregate
gravity-based accessibility measures and in particular the calibration of
their interaction intensity parameter. On one hand, this can entail the esti-
mation of a gravity model which is conditional though on the availability
of a (full) O-D trip matrix. However, such matrices are rarely directly avail-
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able and they need to be generated through various modelling techniques
thereon. Consequently, potential errors propagate to the subsequent mod-
els in a systematic manner, thus introducing bias in the parameter esti-
mates. In addition, in many cases (e.g. developing countries) the lack of
census and count data is restrictive. On the other hand and for the case
that requires fitting a function to an empirical pdf, the data availability be-
comes less of an issue since a (representative) sample can suffice for that
reason (e.g. household surveys). Nevertheless, the estimation process of the
respective parameter(s) is not robust both against the intervals definition
and the commonly applied normalizations.

The second limitation is associated with the interdependence between
the interaction function and the spatial structure. In spite of constituting
a well acknowledged issue in the literature of spatial interaction models,
to date aggregate accessibility measures have not incorporated this dimen-
sion into their formulations.

Similarly but for the case of disaggregate accessibility indicators, indi-
vidual characteristics, such as age and income, along with location-specific
characteristics are undoubtedly important determinants of travel behavior.
Presumingly, this can be viewed as a main source of variance on the indi-
vidual accessibility levels. The literature on disaggregate accessibilities has
evolved along the lines of specifying individual-specific interaction inten-
sity functions in order to evaluate such variations. However, a major limi-
tation lies in the fact that this specification is conditional on the provision
of individual-specific constraints (e.g. travel time budget, spatio-temporal
constraints, etc.), failing to explicitly account for the various determinants
of spatial interaction.

Driven by the above, the concept of the interaction intensity function is
revisited in the next chapter. More specifically, an alternative way of specifi-
cation is introduced, capable of addressing the aforementioned limitations.
In addition, the theoretical implications of this revision are discussed while
a case study is designed to exemplify its application.



22



3
R E V I S I T I N G S PAT I A L I N T E R A C T I O N

3.1 alternative specification

As highlighted in the previous chapter, the advances in the field of accessi-
bility measures are mainly driven by those in spatial interaction modelling.
Contradicting that trend, an alternative way of defining a spatial interac-
tion approach can originate from the accessibility concept itself. To this
end and by reiterating accessibility’s definition, accessibility quantifies the
potential to reach different opportunities. Therefore, spatial interaction can
be seen as a two-step process. In the first step, the reachable opportunities
from any location are taken into consideration, while in the second step
the specific interaction probabilities for any given pair of locations are de-
termined.

A key aspect of gravity-based accessibility measures is that they mea-
sure the potential for interaction between origins and destinations. In this
regard, the interaction intensity function component can be viewed as a
function of the number of people that travel up to a certain point in space.
For instance, knowing that 80% of the trips have a length equal, or higher
than a specific value, it becomes meaningful to assign a weight of 0.80
on the opportunities at that point since they constitute accessible opportu-
nities for at least 80% of the trip makers. Nevertheless, the fact that they
continue further away from that point can be attributed to spatial matching
issues.

In particular, if we denote trip length as L, then the probability that an
individual makes a trip with a length equal, or smaller, than some value l
is F(l) = Pr[L ≤ l], which corresponds to the cumulative distribution func-
tion (cdf) of trip length. Since our focus lies on the rate of trip makers that
continue after a certain value l, we are therefore interested in the survival
function of trip length, which is defined as S(l) = 1− F(l). Consequently,
the function f (dij) of the general gravity-based accessibility formulation
(formula (2.1)) can now be replaced by S(lij). In a similar manner, the grav-
ity model (formula (2.2)) can also be adjusted accordingly, resulting in a
spatial interaction framework that relies on survival analysis and accessi-
bility concepts. More specifically, the production-constrained case then can
be formulated in the following way:
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Tij = AiPopiEmpljS(lij) (3.1)

with

Ai =
1

∑
j

EmpljS(lij)
(3.2)

while the attraction-constrained case is:

Tij = BjEmpljPopiS(lij) (3.3)

with

Bj =
1

∑
i

PopiS(lij)
(3.4)

The choice of defining the interaction intensity function as a survival
function is appealing for a number or reasons. First, it is theoretically
aligned with the perception of space and how people evaluate opportu-
nities. Second, the function is by definition bounded between zero and
one. Third, upon the availability of empirical trip data, the function can be
obtained in terms of either a data-driven, or a model-based way.

In the case of the former, fitting a parametric function to the empiri-
cal survival one has the apparent advantage of yielding parameter esti-
mates that are overall robust to the interval definition, while no normal-
ization is required. Furthermore, a model-based way can be employed as
well where the various determinants of trip length, such as spatial struc-
ture, location and individual characteristics, can be taken into account (i.e.
S(lij|xk)). To this end, survival analysis models can be utilized for that
purpose. In particular, this choice facilitates a spatial and individual con-
textualization to take place, along the lines of the expansion method as
put forward by Casetti (1972). To the best of author’s knowledge, no prior
studies have tackled this problem for the case of spatial interaction models
for transportation. The same holds true for the case of the gravity-based
accessibility measures as well. A previous study by Páez et al. (2010) has
addressed methodologically the issue but only for the cumulative oppor-
tunities case.

As for the data requirements, the proposed framework requires only a
(representative) sample of trips, which is normally available through travel
surveys, unlike the gravity model that requires an O-D trip matrix. In sum-
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mary, the proposed specification of the interaction intensity function can
overcome the identified limitations of the accessibility measures, as dis-
cussed in section 2.4. It should be noted that the conceptual framework
described above was first introduced by Sarlas and Axhausen (2019).

An important aspect of implementing accessibility measures with the
proposed interaction intensity functions in place concerns the nature of the
outcome measures. In this regard, the distinction between normative and
positive implementations becomes of relevance to clarify the differences
that arise due to the specification. It is worthwhile to put into perspective
once again the definition of this distinction: "normative accessibility measures
are defined in terms of how far people ought to travel or how far it is reasonable for
people to travel whereas positive accessibility measures are defined in terms of how
far people actually travel" (Páez et al., 2012). In a wider sense, this definition
draws on the fundamental causes of the distance decay parameter debate,
as briefly discussed in a previous section (section 2.2.5), and translates
them into the accessibility literature.

In particular, a generic interaction intensity function, irrespective of the
way its parameter is obtained, quantifies the effect that distance exerts
on interaction on average. However, the actual effect normally varies in
space, as demonstrated in Fotheringham (1981). Therefore, accessibility
implementations with a generic specification in place can be perceived as
normative accessibility measures, under the assumption that average inter-
action aligns with the expectation of what is considered to be reasonable
in terms of distance. On the contrary, a spatially varying function captures
more accurately how far people actually travel, hence leading to the imple-
mentation of positive accessibility measures.

Based on the above, it can be concluded that implementations with the
data-driven specification in place result in normative accessibility mea-
sures, while the model-based in positive ones. Furthermore, the combi-
nation of both measures in a single measure can be of merit as well. For
instance, forming a ratio allows the construction of relative accessibility
measures, such as the ones presented in Páez et al. (2012). Such measures
can supplement the traditional accessibility analysis and also allow policy
relevant conclusions to be drawn, with respect to spatial and social aspects
of accessibility.
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3.2 survival analysis models

When it comes to the problem of duration data modelling, the use of tra-
ditional linear regression models can be problematic. In particular, this
can be attributed to the underlying distribution of the dependent variable
which can result in non-normally distributed error terms. Consequently,
this violation of the normality assumption can give rise to different short-
comings, such as inaccurate statistical tests. In this respect, survival anal-
ysis models can be exploited for modelling travel distances (e.g. Anasta-
sopoulos et al., 2012), being more flexible in the sense that they can accom-
modate a larger number of distributions. Survival analysis models have
been applied to a plethora of problems in different domains, varying from
medicine (e.g. Hosmer et al., 2008), to pedestrian aided wayfinding (e.g. Gi-
annopoulos et al., 2017). An overview of transport related applications can
be found in Bhat and Pinjari (2007).

Survival analysis models aim to model the hazard function of a process,
with "the term hazard being used to describe the risk of “failure” in an interval
after time l, conditional on the subject having survived to time l" (Hosmer et al.,
2008). The mathematical definition of hazard function is h(l) = f (l)/S(l).
The hazard function can take both parametric and non-parametric forms,
however the choice of a parametric function has the advantage that it can
fully describe the basic underlying function of survival time, and thus of
the error term. Furthermore, it quantifies the effect that different variables
exert on it, allowing predictions and forecasts to be made. An analytical
presentation of the various survival analysis models is given by Hosmer
et al. (2008).

The class of fully parametric accelerated failure time (AFT) models are
of interest for the particular modelling task at hand. More specifically, the
underlying assumption of those models is that the variables have an ac-
celeration effect on the survival function. Subsequently, the formulation of
the survival function depends on the assumptions about the duration dis-
tribution. The most common distributions are the exponential, the Weibull,
and the log-logistic ones. For instance, the model formulation for the latter
case is:

ln(l) = β0 + βkxk + σε (3.5)

where the error term ε follows the standard logistic distribution, σ is the
scale parameter, xk are the independent variables, and β are the estimated



3.3 case study 27

parameters. In that case, the survival function is given according to the
formula:

S(l, xk, β, σ) = [1 + ez]−1 (3.6)

with z being the standardized log-time outcome defined as:

z =
y− β0 − βkxk

σ
(3.7)

with y = ln(l). If we replace z in formula (3.6) with its equivalent from
formula (3.7), then we get:

S(l, xk, β, σ) =

[
1 + e

y−β0−βk xk
σ

]−1
=
[
1 + ey/σ e−β0/σ e−βkxk/σ

]−1
=

[
1 + lρ e−β0ρ e−βkxkρ

]−1

(3.8)
with ρ = 1/σ and ey = l. As it can be seen, the included variables have

an accelerating effect on the survival function. Furthermore, the equation
for the median survival time is:

l50(xk) = exp(β0 + βkxk) (3.9)

3.3 case study

In the following sections, the application of the proposed spatial interac-
tion specification is exemplified with a case study. More specifically, by
utilizing commuting data, three variants of mode-specific interaction in-
tensity functions are constructed. The first variant employs a data-driven
specification way while the other two a model-based one, differentiated by
the type of variables that they take into consideration.

More specifically, the second variant employs only variables associated
with locations’ characteristics while the third one extents the previous one
by accounting also for individuals’ differing characteristics. In this way,
the construction of both aggregate and disaggregate forms of interaction
functions is enabled.
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3.3.1 Commuting data

The data for this study come from a detailed household travel survey
(micro-census) for the year 2010. The survey is carried out every five years
by the Federal Office for Spatial Development, in cooperation with the
Swiss Federal Statistical Office. It involved a number of approximately
60’000 households and 63’000 individuals were asked to report the trips
they made on a pre-assigned date. For each household and individual,
demographic data were collected. Given the focus of the study on com-
muting, only the individuals with a reported trip to their workplace are
included in our sample. A further reduction of the sample size is due in
order to exclude observations with ambiguous mode choices. In addition,
the focus is centered only on those having a working place in a different
zone/municipality than their residence.

In addition, utilizing the reported travel times and trip lengths is con-
sidered problematic because in many cases individuals make multi-chain
trips on their way to/from the workplace. Therefore, identification of the
actual duration of the trip to work is not possible. As a remedy, the travel
time matrices of the calibrated nationwide four-step model1 are utilized.
The advantage of that choice is that generalized cost measures can be re-
trieved. Especially, for the case of public transport, the generalized cost can
be perceived as being more reflective of the actual cost since it incorporates
multiple cost components (e.g. in-vehicle time, waiting time, out-of-vehicle
time, etc.).

In brief, the final sample size consists of 9’509 individuals, of which 70%
commute by car with an average generalized cost of 12.5 minutes, while
the remaining 30% commute by public transport with an average gener-
alized cost of 64 minutes. The huge difference can be attributed to two
main reasons. First, the generalized cost function of public transport takes
into account more travel components, and thus resulting in overall higher
generalized costs. Second, this finding can be explained partially by mode
choice considerations. More specifically, people prefer public transport for
commuting when the distances are relatively long due to the comfort fac-
tor. A note should be made here that in Switzerland the public transport
system is very extensive, well-maintained, and efficient, viewed by many
people as a desirable mode for commuting. The work and residence lo-
cations are spatially matched to the zonal system of the aforementioned
transport model, consisting of almost 3’000 zones.

1 ARE; National Transport Model, 2010
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3.4 data-driven interaction functions

The first part of the analysis deals with the issue of fitting a generic interac-
tion intensity function to the observed generalized cost frequencies. Given
the large identified differences, the sample is stratified by mode in order
to obtain mode-specific functions. Subsequently, the survival rates of the
observed trip costs are utilized in order to fit the relevant interaction inten-
sity functions in a data-driven way. More specifically, a generic function of
the negative exponential family with two parameters is fitted to the actual
values. The form of the function is given in formula (3.10), whereas simi-
lar functions have also been fitted in the recent literature (e.g. Halás et al.,
2014).

f (gc) = eα1gcα2 (3.10)

The nonlinear least-squares estimates of the parameters are calculated
with the Gauss-Newton algorithm. For the car commuters case, the esti-
mated parameters are α1 = −0.031 and α2 = 1.362, while for the public
transport ones are α1 = −0.000025 and α2 = 2.507, respectively. The fitted
functions are presented in figure 3.1, where as it can be observed the car in-
tensity function is steeper while the public transport one naturally extends
to substantially larger generalized cost values.

Furthermore, the interaction functions, as implied by the estimates of the
corresponding gravity models, are also plotted for comparison purposes.
The estimation of the gravity models takes place by utilizing the daily O-D
matrices of a nationwide four-step model2 (observations with zero value
are excluded), while the parameter estimates are obtained by means of an
ordinary least squares (OLS) estimator, having a logarithmic dependent
variable in place. The estimation results are presented in table 3.1. It is
worthwhile highlighting that the gravity functions are found to be steeper
than their survival counterparts, especially for the public transport case.

3.4.1 Accessibility measures

The next step deals with the calculation of different accessibility measures.
More specifically, two types are calculated, one in accordance with for-
mula (2.1) measuring the absolute number of accessible potential opportu-
nities, and one with formula (2.21) involving a normalization to account

2 ARE; National Transport Model, 2010
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Figure 3.1: Interaction intensity functions
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Table 3.1: Gravity model estimates by mode

Dependent variable: Log(Trips)
Regressor Car PuT

Constant −5.5879∗∗∗ −11.0667∗∗∗

(0.0086) (0.0106)

Generalized cost [min.] −0.0997∗∗∗ −0.0520∗∗∗

(0.0001) (0.0001)

Log(Population) 0.5862∗∗∗ 0.8009∗∗∗

(0.0010) (0.0011)

Log(Employment) 0.4750∗∗∗ 0.6291∗∗∗

(0.0008) (0.0009)

Observations 1,609,126 1,167,410

Adjusted R2
0.554 0.496

df 1,609,122 1,167,406

( ) Std. Errors, + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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for the competition at the destination level. It should be noted that the self-
potential aspect is not taken into account in the accessibility calculations
since the case study’s focus lies on commuting trips outside the zone of
residence.

In total, eight gravity-based accessibility measures are calculated; four
per mode, two per accessibility formulation, and two per opportunity kind
(employment positions and population). Admittedly, accessibility measures
with respect to both kinds of opportunities constitute important determi-
nants of the regional form and function, in consequence this is also hypoth-
esized to be the case for the commuting distance as well. The calculated
accessibility measures are plotted spatially in the maps that follow (fig-
ures 3.2 and 3.3). Only the indicators corresponding to the employment
opportunities are presented while similar patterns are identified for the
population ones as well.

Interestingly, the patterns seem to be different when comparing visually
each accessibility against its normalized version. In the case of the tradi-
tional formulation (denoted as absolute), the main cities of Switzerland
along with their neighboring zones stand out as the ones having high ac-
cessibility values. A finding which is to a large extent anticipated given the
high concentration of employment in those areas.

On the contrary and for the competition accessibility measures, substan-
tially different patterns emerge. Apart from the main cities, also other lo-
cations surface as ones with high accessibility. More specifically, these loca-
tions correspond to smaller cities of high regional importance. Therefore,
it can be concluded that by accounting for the spatial competition in the
accessibility formulation, the regional role of a zone can be emphasized.
It is worth pointing out that in the case of more remote areas (such as
Zermatt and Davos), the zones themselves have lower accessibility values
than their neighbors. This is due to the nature of the employed accessibility
formulations, taking into account only the opportunities lying outside the
zones (no self-potential). Furthermore, car accessibility values are found to
be more spatially correlated. This can be justified by the spatial continuity
of the road network, which is clearly not the case for public transport.

Last, the equivalent accessibility measures based on the gravity inter-
action functions are calculated as well (denoted as AccW

G and cAccW
G ). A

correlation analysis is conducted to quantify the similarity between them.
The corresponding correlation matrices are given in tables 3.2 and 3.3, ac-
cordingly. As it can be observed, the survival accessibility measures are
almost perfectly correlated with their gravity counterparts.
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Figure 3.2: Car employment accessibility measures
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Figure 3.3: Public transport employment accessibility measures
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Table 3.2: Correlation matrix of car accessibility measures

AccP AccE cAccE cAccP AccE
G AccP

G cAccE
G cAccP

G

AccP 1 0.99 0.60 0.42 0.99 0.995 0.55 0.68

AccE 0.99 1 0.62 0.39 0.99 0.97 0.51 0.70

cAccE 0.60 0.62 1 0.86 0.59 0.57 0.88 0.98

cAccP 0.42 0.39 0.86 1 0.37 0.40 0.97 0.83

AccE
G 0.99 0.99 0.59 0.37 1 0.99 0.50 0.67

AccP
G 0.995 0.97 0.57 0.40 0.99 1 0.52 0.65

cAccE
G 0.55 0.51 0.88 0.97 0.50 0.52 1 0.89

cAccP
G 0.68 0.70 0.98 0.83 0.67 0.65 0.89 1

Table 3.3: Correlation matrix of public transport accessibility measures

AccP AccE cAccE cAccP AccE
G AccP

G cAccE
G cAccP

G

AccP 1 0.995 0.66 0.53 0.96 0.98 0.50 0.64

AccE 0.995 1 0.64 0.48 0.96 0.96 0.45 0.60

cAccE 0.66 0.64 1 0.95 0.65 0.68 0.90 0.97

cAccP 0.53 0.48 0.95 1 0.51 0.56 0.96 0.92

AccE
G 0.96 0.96 0.65 0.51 1 0.99 0.50 0.65

AccP
G 0.98 0.96 0.68 0.56 0.99 1 0.54 0.68

cAccE
G 0.50 0.45 0.90 0.96 0.50 0.54 1 0.93

cAccP
G 0.64 0.60 0.97 0.92 0.65 0.68 0.93 1
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3.5 model-based interaction functions

The next two variants of spatial interaction functions are constructed in
a model-based way by exploiting survival analysis techniques. In essence,
trip length constitutes the observed outcome of the interaction between
demand for mobility and supply, having received attention in the litera-
ture as a standalone topic. For instance, in Morency et al. (2011) a model
for mean trip distance was estimated accounting for the impact of differ-
ent individual socio-economic and demographic attributes, along with the
spatial characteristics of the house location. Interestingly, the authors make
the claim that traveled distance can be viewed as a proxy of activity spaces,
a concept which has also found application in social exclusion research (e.g.
Schönfelder and Axhausen, 2003). In a study of a similar scope, Mercado
and Páez (2009) investigated the determinants of mean travel distance, fo-
cusing though on elderly people. Their results identify a negative relation-
ship between age and travel distance, reaffirming the findings of previous
studies.

In the same context but focusing on the commuting distance, a num-
ber of papers have attempted to quantify the impact of various socio-
economic and spatial structure attributes on the commuting patterns (e.g.
Gordon et al., 1989; Khattak et al., 2000; Shen, 2000; Manaugh et al., 2010;
Sandow and Westin, 2010; Maoh and Tang, 2012; Axisa et al., 2012). For
instance, Gordon et al. (1989) estimated aggregate mode-specific commut-
ing distance models as a function of spatial structure variables, such as
urbanized area, share of total population, job mixture and home owner-
ship. In another study by Shen (2000), the spatial and social dimensions of
commuting are descriptively analyzed and discussed.

In addition, a regression model was estimated to identify the main fac-
tors that explain variations in commuting times while urban structure was
incorporated into the model through the inclusion of an employment ac-
cessibility variable at the home end. The importance of accounting for the
home accessibility was also demonstrated by Manaugh et al. (2010). The
issue of commuting duration and income was discussed in Sandow and
Westin (2010), concluding that economic incentives are important determi-
nants of long commuting times.

In a connection with the distance decay parameter debate (see section
2.2.5), Levinson (1998) estimated an OLS model to highlight the impor-
tance of accounting for location characteristics at both trip ends. In partic-
ular, this was facilitated by accounting for spatial structure effects through
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the formation of employment and population accessibility indicators at
both trip ends. Levinson hypothesized the existence of strong effects of the
corresponding spatial structure indicators, the direction of which was theo-
retically discussed and drawn based on the concept of spatial competition.

Later on, a similar analysis was conducted by Cui et al. (2019), differenti-
ating between low- and high-income individuals, and employing cumula-
tive opportunities measures. The authors identify the presence of stronger
accessibility impacts for the former group of individuals. In the same spirit,
in Anastasopoulos et al. (2012) a hazard-based model approach was em-
ployed to model urban travel times. The authors account for both individ-
ual and location characteristics but they include no accessibility measures
in their model specification. Last, the same family of models was employed
also in Ermagun et al. (2016) to analyze the tolerable walking distance for
students while in another study by O’Sullivan and Morrall (1996) an empir-
ical analysis of the walking distances to different kinds of public transport
stops was conducted to identify varying stop catchment areas.

Based on the above, it can concluded that commuting distance can be
perceived as a function of locations’, individual’s and household’s char-
acteristics. Therefore, a regression modelling approach can be employed
to quantify that relationship, enabling us to make statements about the
strength and the statistical significance of it, and at the same time to obtain
statistically sound predictions.

At first, OLS models are estimated in order to employ them as the bench-
mark for the analysis. A special focus needs to be given to potential mul-
ticollinearity issues due to high correlation between the independent vari-
ables. Especially, the implications of multicollinearity if untreated are the
difficulty of uncovering the partial effects of each variable on the response,
and can inflate the error variance and consequently the standard errors of
the estimated parameters (Wooldridge, 2012).

The estimation of the equivalent survival analysis models follows, thus
allowing us to construct the model-based instances of the proposed inter-
action intensity functions. To that end, two variants are estimated, one ac-
counting only for locations’ characteristics (denoted as aggregate) and one
that extents the previous one by accounting also for individuals’ differing
characteristics (denoted as disaggregate).
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3.5.1 Descriptive analysis and hypotheses

As mentioned before, it is presumed that commuting distance can be per-
ceived as a function of locations’, individual’s and household’s characteris-
tics. Driven by this, different variables need to be checked for their ability
to constitute statistically significant determinants of commuting distance.
A descriptive analysis precedes that step to gain insights about the sam-
ple and the variance of the different variables. The summary statistics are
given in table 3.4.

Table 3.4: Summary statistics of employed variables

Variable
Car commuters PuT commuters

Mean Std. Dev. Mean Std. Dev.

Generalized Cost [min.] 12.50 11.07 63.78 30.26

Female [dummy] 0.40 0.53

Household size 2.61 1.32 2.79 1.33

HH income: non-reported [dummy] 0.12 0.13

HH income: <2 Kchf [dummy] 0.01 0.01

HH income: 2-4 Kchf [dummy] 0.05 0.08

HH income: 4-6 Kchf [dummy] 0.20 0.18

HH income: 6-8 Kchf [dummy] 0.19 0.17

HH income: 8-10 Kchf [dummy] 0.16 0.15

HH income: 10-12 Kchf [dummy] 0.10 0.13

HH income: >12 Kchf [dummy] 0.17 0.15

Vehicles/licenses 0.91 0.35 0.51 0.44

Age: 18-30 [dummy] 0.16 0.27

Age: 31-40 [dummy] 0.22 0.24

Age: 41-50 [dummy] 0.30 0.24

Age: 51-60 [dummy] 0.24 0.21

Age: >60 [dummy] 0.08 0.04

PhD degree [dummy] 0.02 0.04

MSc degree [dummy] 0.08 0.15

Self-employed [dummy] 0.05 0.03

Part-time [dummy] 0.23 0.29

Part-time (>1 jobs)[dummy] 0.01 0.01

Working (Real estate)[dummy] 0.007 0.005

Working (IT)[dummy] 0.03 0.04
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Table 3.4: Summary statistics of employed variables (continued)

Variable
Car commuters PuT commuters

Mean Std. Dev. Mean Std. Dev.

Working (hotel, restaurants)[dummy] 0.03 0.04

Working (construction) [dummy] 0.07 0.02

Working (health)[dummy] 0.12 0.15

Pop. density: W [pop/hectare] 12.55 20.69 27.34 12.55

Empl. density: H [empl/hectare] 8.48 19.69 23.27 35.79

Population: home 9362.11 9919.54 16722.54 13671.01

Active pop. share: H 0.62 0.03 0.63 0.04

Empl./active pop.: W 1.12 0.53 1.34 0.51

Empl. pos./active pop.: H 0.79 0.46 1.05 0.53

Employment positions: W/H 15.54 54.46 12.3 50.45

Population: W/H 4.81 10.87 3.64 8.72

3rd sector share: W/H 1.21 0.6 1.19 0.46

Car empl. access. norm.: H 0.60 0.18 0.76 0.21

Car pop. access. norm.: H 1.79 0.35 1.94 0.34

Car empl. access. norm.: W 0.55 0.15 0.64 0.19

Car pop. access. norm.: W 1.69 0.36 1.78 0.34

PuT empl. access. norm.: H 1.44 0.79 1.87 1.01

PuT pop. access. norm.: W 1.91 1.14 2.66 1.46

Log (car empl. access.): W 11.61 0.79 12.11 0.75

Log (car pop. access.): H 11.99 0.66 12.31 0.60

PuT/Car empl. access: H 1.21 0.71 1.42 0.81

Car/PuT pop. access.: W 1.03 0.74 0.85 0.54

Note: W=work location, H=home location

On the individual’s characteristics front, the public transport users’ sam-
ple includes a higher share of female users and also of individuals with
lower vehicle access. In addition, the share of public transport users hav-
ing a higher education is substantially higher than of the car users’ group.
Notably, a comparison of the employment and population density values
between the two groups shows that public transport users are placed at
more urbanized locations with higher accessibility levels. The ratio of em-
ployment positions between the workplace and the home location in both
cases shows that people choose less dense areas for living, having to bear
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the cost of commuting to the regional centers. For the income, no clear
difference between the two groups can be identified.

On the causality front, a negative relationship between age and commut-
ing distance is anticipated on the basis that as people get older they are
becoming less willing to travel long distances. As the household size in-
creases, also commuting distance is expected to decrease due to increased
responsibilities at home. The dummy variables associated with the differ-
ent sectors are expected to capture that some types of jobs are more likely
to be matched by the local population, given that they d not require highly
skilled individuals. Moreover, highly skilled individuals are expected to
travel longer distances in order to have a job that matches their skills. This
can be captured by the dummy variables of having an MSc, or a PhD de-
gree respectively. The same argument can also be made for high income
individuals.

On the location characteristics side, the presence of different effects is
expected. Reiterating the hypotheses formulated by Levinson (1998), it is
presumed that individuals living in areas with high accessibility, in terms
of population, will have to compete with a larger number of individuals
for a job, and thus this would lead to increased commuting distances. On
the contrary, accessibility to employment positions at the home location is
hypothesized that it should have a negative relationship with commuting
distance since more opportunities are regionally available. In the case of
the work location, employment accessibility should have a positive impact
on commuting distances since it captures the influence of competing work-
ers. A different pattern is anticipated for the population accessibility since
a negative relationship is hypothesized due to the larger number of com-
peting individuals, and hence of a matching with shorter transportation
cost. Following the same logic as above, population density at workplace
and employment density at home end are also expected to exert a negative
effect on distance. Differences on the signs between the variables of the two
modes are not expected to exist as the direction of the causality should, at
least in theory, be the same.

3.5.2 Estimation of model-based interaction functions

In this subsection the results of the model estimation are presented and
discussed. Two categories of models are estimated, an aggregate and a
disaggregate one in terms of analysis level. In the beginning, two OLS
models per category are estimated in order to serve as benchmarks and
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also allow for a thorough investigation of potential multicollinearity issues.
More specifically, the models employ a log-level functional form where the
βs can be interpreted as semi-elasticity values. In the case of a log trans-
formed independent variable although, the β estimate can be interpreted
as an elasticity value.

The OLS estimates are presented in tables 3.5 and 3.6, accordingly. It
should be noted that both the data preparation and the model estimation
was conducted in R (R Core Team, 2018), making use of the ’survival’ pack-
age (Therneau and Lumley, 2014) for the estimation of the AFT models.
Last, the ’tmap’ package (Tennekes, 2018) was used for the maps’ produc-
tion throughout the dissertation.
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Table 3.5: Trip duration OLS estimates: aggregate

Dependent variable: Log(GC) Car PuT

Constant 1.21∗∗∗ (0.23) 4.57∗∗∗ (0.26)

Pop. density: W −0.004∗∗∗ (0.0004) −0.002∗∗∗ (0.0002)

Empl. density: H −0.004∗∗∗ (0.001) −0.002∗∗∗ (0.0003)

Log(population): H 0.08∗∗∗ (0.01)

Active pop. share: H 1.21∗∗∗ (0.33) 0.59∗ (0.26)

Empl./active pop.: W 0.11∗∗∗ (0.02)

Population: W/H 0.01∗∗∗ (0.002)

Empl. pos./active pop.: H 0.05∗∗ (0.02)

Employment positions: W/H 0.0004+ (0.0002)

3rd sector share: W/H 0.05∗∗ (0.02) 0.02 (0.02)

Car empl. access. norm.: H −2.35∗∗∗ (0.16)

Car pop. access. norm.: H 0.39∗∗∗ (0.06)

Car empl. access. norm.: W 2.23∗∗∗ (0.12)

Car pop. access. norm.: W −0.73∗∗∗ (0.06)

PuT empl. access. norm.: H −0.31∗∗∗ (0.04)

PuT pop. access. norm.: W −0.07∗∗∗ (0.01)

Log (car empl. access.): W 0.20∗∗∗ (0.02)

Log (car pop. access.): H −0.24∗∗∗ (0.03)

PuT/Car empl. access: H −0.02 (0.01)

Car/PuT pop. access.: W 0.10∗∗∗ (0.02)

Observations 6,695 2,814

Adjusted R2
0.13 0.31

Adjusted R2
0.13 0.31

df 6683 2801

( ) Heterosc. robust std. errors, + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table 3.6: Trip duration OLS estimates: disaggregate

Dependent variable: Log(GC) Car PuT

Constant 1.31∗∗∗ (0.23) 4.73∗∗∗ (0.26)

HH income: non-reported −0.15∗∗∗ (0.04) −0.02 (0.03)

HH income: <2 Kchf −0.27∗ (0.14) −0.07 (0.09)

HH income: 2-4 Kchf −0.28∗∗∗ (0.05) −0.04 (0.03)

HH income: 4-6 Kchf −0.19∗∗∗ (0.03) −0.07∗∗ (0.03)

HH income: 6-8 Kchf −0.18∗∗∗ (0.03) −0.05∗ (0.03)

HH income: 8-10 Kchf −0.05 (0.03) −0.02 (0.03)

HH income: 10-12 Kchf −0.05 (0.04) 0.01 (0.03)

HH income: >12 Kchf Ref.

Age: 18-30 0.15∗∗∗ (0.04) 0.08∗ (0.04)

Age: 31-40 0.14∗∗∗ (0.04) 0.09∗ (0.04)

Age: 41-50 0.11∗∗ (0.04) 0.05 (0.04)

Age: 51-60 0.02 (0.04) 0.04 (0.04)

Age: >60 Ref.

Female: HH size −0.03∗∗∗ (0.01) −0.02∗∗∗ (0.005)

Vehicles/licenses 0.13∗∗∗ (0.03) −0.03+ (0.02)

Self-employed −0.26∗∗∗ (0.05) −0.13∗∗ (0.04)

Part-time −0.10∗∗∗ (0.03)

Part-time (>1 jobs) −0.21∗ (0.10)

Working (real estate) −0.22∗ (0.11)

Working (IT) 0.15∗ (0.06)

Working (hotel, restaurants) −0.16∗∗ (0.06) −0.08∗ (0.04)

Working (construction) −0.12∗∗ (0.04) −0.06 (0.05)

Working (health) 0.06∗ (0.03) −0.03 (0.02)

MSc degree 0.08∗∗∗ (0.02)

PhD degree 0.20∗∗∗ (0.05)

Pop. density: W −0.004∗∗∗ (0.0004) −0.002∗∗∗ (0.0002)

Empl. density: H −0.003∗∗∗ (0.001) −0.002∗∗∗ (0.0003)

Log(population): H 0.08∗∗∗ (0.01)

Active pop. share: H 1.05∗∗ (0.33) 0.50∗ (0.26)

Empl./active pop.: W 0.10∗∗∗ (0.02)

Population: W/H 0.01∗∗∗ (0.001)

Empl. pos./active pop.: H 0.04∗ (0.02)

Employment positions: W/H 0.0004+ (0.0002)
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Table 3.6: Trip duration OLS estimates: disaggregate (continued)

Dependent variable: Log(GC) Car PuT

3rd sector share: W/H 0.05∗∗ (0.02) 0.03 (0.02)

Car empl. access. norm.: H −2.27∗∗∗ (0.16)

Car pop. access. norm.: H 0.37∗∗∗ (0.06)

Car empl. access. norm.: W 2.13∗∗∗ (0.12)

Car pop. access. norm.: W −0.71∗∗∗ (0.06)

PuT empl. access. norm.: H −0.31∗∗∗ (0.04)

PuT pop. access. norm.: W −0.07∗∗∗ (0.01)

Log (car empl. access.): W 0.19∗∗∗ (0.02)

Log (car pop. access.): H −0.24∗∗∗ (0.03)

PuT/Car empl. access: H −0.03∗ (0.01)

Car/PuT pop. access.: W 0.10∗∗∗ (0.02)

Observations 6,695 2,814

Adjusted R2
0.16 0.33

df 6662 2782

( ) Heterosc. robust std. errors, + p<0.1; * p<0.05; ** p<0.01; *** p<0.001

In summary, both models’ estimates confirm the prior hypotheses about
the causalities in place. Especially, the estimated parameters of the aggre-
gate accessibility variables are all found to be of high statistical signifi-
cance, emerging as important determinants of commuting distance. In the
car model’s case, the inclusion of all accessibility measures in a normal-
ized form yields better results than the inclusion of their absolute versions.
In addition, that choice results in no multicollinearity issues, which is not
found to be the case for their other forms. It should be noted that mul-
ticollinearity is checked by the means of variance inflation factors (VIF),
assuming that values higher than 5 are indicative of multicollinearity.

In the public transport case, the simultaneous inclusion of all accessibil-
ity variables in either form gives rise to extreme multicollinearity issues,
resulting in statistically insignificant estimates. It is worth highlighting the
fact that in a study of a similar scope by Levinson (1998), similar issues
with respect to the significance of the public transport accessibility esti-
mates were identified but remained untreated. As a remedy to that, a set of
proxy variables is employed instead. More specifically, two of them are re-
placed with the log of their corresponding car accessibility measures along
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with two "balancing" ratios of mode accessibilities. Due to this replacement,
it becomes possible to take into account all accessibility indicators at the
same time while obtaining statistically significant parameter estimates that
are in good agreement with the prior hypotheses.

Naturally, a comparison between the aggregate and disaggregate results
shows that small differences exist between the corresponding parameters
estimates. The high adjusted R2 values of the aggregate models though
reveal that the most important determinants of commuting distance are
associated with locations’ characteristics. Nevertheless, the aggregate mod-
els suffer from omitted variables bias. However and given the extremely
low correlation among the omitted variables and the location-specific ones,
this omission has negligible impacts on the estimation process. The results
validate this to a great extent since only minor differences between the
parameter estimates can be observed.

Following the estimation of the OLS models, the next step is the estima-
tion of the survival analysis models with a maximum likelihood estimator.
Different formulations of survival models are tested before concluding on
the choice of a log-logistic AFT model based on an information criterion
(AIC) goodness of fit measure (Akaike, 1974). Moreover, AFT models ac-
counting for the heterogeneity of individuals (e.g. Weibull with Gamma
heterogeneity as presented in Anastasopoulos et al. (2012)) could have
been employed instead. However, the application of such models for pre-
diction purposes is less straightforward. To mitigate, at least partially, the
impact of heterogeneity, we are making use of a robust “sandwich” estima-
tor.

Finally, it should be noted that we expect small differences in the esti-
mates, in comparison to the corresponding OLS models, since the chosen
AFT models formulation is actually also a log-level model (and thus its pa-
rameters can be interpreted in a similar manner as before). Nevertheless,
the AFT models can be considered to be statistically more sound since they
account properly for the error term distribution. In particular, the OLS er-
ror terms are tested on their compliance with the normality assumptions,in
terms of kurtosis and skewness, which is not found to be the case (Pena
and Slate, 2006). The estimated parameters are presented in tables 3.7 and
3.8, for the aggregate and disaggregate cases, accordingly.
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Table 3.7: Trip duration AFT log-logistic estimates: aggregate

Dependent variable: Log(GC) Car PuT

Constant 1.09∗∗∗ (0.22) 4.77∗∗∗ (0.22)

Pop. density: W −0.004∗∗∗ (0.0004) −0.002∗∗∗ (0.0002)

Empl. density: H −0.003∗∗∗ (0.001) −0.002∗∗∗ (0.0003)

Log(population): H 0.08∗∗∗ (0.01)

Active pop. share: H 1.41∗∗∗ (0.32) 0.64∗∗ (0.23)

Empl./active pop.: W 0.13∗∗∗ (0.02)

Population: W/H 0.01∗∗∗ (0.001)

Empl. pos./active pop.: H 0.05∗∗ (0.02)

Employment positions: W/H 0.0003∗ (0.0002)

3rd sector share: W/H 0.05∗ (0.02) 0.03 (0.02)

Car empl. access. norm.: H −2.87∗∗∗ (0.14)

Car pop. access. norm.: H 0.57∗∗∗ (0.06)

Car empl. access. norm.: W 2.58∗∗∗ (0.11)

Car pop. access. norm.: W −0.84∗∗∗ (0.05)

PuT empl. access. norm.: H −0.34∗∗∗ (0.03)

PuT pop. access. norm.: W −0.08∗∗∗ (0.01)

Log (car empl. access.): W 0.24∗∗∗ (0.02)

Log (car pop. access.): H −0.30∗∗∗ (0.02)

PuT/Car empl. access: H −0.02+ (0.01)

Car/PuT pop. access.: W 0.10∗∗∗ (0.02)

Scale σ 0.435 0.207

Observations 6,695 2,814

Nagelkerke R2
0.15 0.36

df 6682 2800

( ) Heterosc. robust std. errors, + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table 3.8: Trip duration AFT log-logistic estimates: disaggregate

Dependent variable: Log(GC) Car PuT

Constant 1.21∗∗∗ (0.22) 4.91∗∗∗ (0.23)

HH income: non-reported −0.14∗∗∗ (0.04) −0.03 (0.03)

HH income: <2 Kchf −0.23+ (0.12) −0.08 (0.07)

HH income: 2-4 Kchf −0.27∗∗∗ (0.05) −0.05+ (0.03)

HH income: 4-6 Kchf −0.18∗∗∗ (0.03) −0.08∗∗ (0.03)

HH income: 6-8 Kchf −0.17∗∗∗ (0.03) −0.05∗ (0.02)

HH income: 8-10 Kchf −0.04 (0.03) −0.02 (0.03)

HH income: 10-12 Kchf −0.04 (0.04) 0.01 (0.03)

HH income: >12 Kchf Ref.

Age: 18-30 0.15∗∗∗ (0.04) 0.07+ (0.04)

Age: 31-40 0.15∗∗∗ (0.04) 0.06+ (0.04)

Age: 41-50 0.10∗∗ (0.04) 0.04 (0.04)

Age: 51-60 0.02 (0.04) 0.02 (0.04)

Age: >60 Ref.

Female: HH size −0.02∗∗ (0.01) −0.02∗∗∗ (0.01)

Vehicles/licenses 0.12∗∗∗ (0.03) −0.03+ (0.02)

Self-employed −0.26∗∗∗ (0.04) −0.11∗ (0.04)

Part-time −0.10∗∗∗ (0.03)

Part-time (>1 jobs) −0.19∗ (0.09)

Working (real estate) −0.22∗ (0.11)

Working (IT) 0.15∗ (0.06)

Working (hotel, restaurants) −0.14∗ (0.05) −0.08∗ (0.04)

Working (construction) −0.10∗∗ (0.04) −0.03 (0.05)

Working (health) 0.06∗ (0.03) −0.02 (0.02)

MSc degree 0.06∗∗ (0.02)

PhD degree 0.17∗∗∗ (0.04)

Pop. density: W −0.004∗∗∗ (0.0004) −0.002∗∗∗ (0.0002)

Empl. density: H −0.003∗∗∗ (0.001) −0.002∗∗∗ (0.0003)

Log(population): H 0.08∗∗∗ (0.01)

Active pop. share: H 1.22∗∗∗ (0.31) 0.59∗ (0.23)

Empl./active pop.: W 0.12∗∗∗ (0.02)

Population: W/H 0.01∗∗∗ (0.001)

Empl. pos./active pop.: H 0.04∗ (0.02)

Employment positions: W/H 0.0003∗ (0.0001)
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Table 3.8: Trip duration AFT log-logistic estimates: disaggregate (continued)

Dependent variable: Log(GC) Car PuT

3rd sector share: W/H 0.05∗∗ (0.02) 0.03+ (0.02)

Car empl. access. norm.: H −2.74∗∗∗ (0.13)

Car pop. access. norm.: H 0.53∗∗∗ (0.05)

Car empl. access. norm.: W 2.45∗∗∗ (0.11)

Car pop. access. norm.: W −0.80∗∗∗ (0.05)

PuT empl. access. norm.: H −0.34∗∗∗ (0.03)

PuT pop. access. norm.: W −0.08∗∗∗ (0.01)

Log (car empl. access.): W 0.23∗∗∗ (0.02)

Log (car pop. access.): H −0.29∗∗∗ (0.02)

PuT/Car empl. access: H −0.03∗ (0.01)

Car/PuT pop. access.: W 0.10∗∗∗ (0.02)

Scale σ 0.427 0.203

Observations 6,695 2,814

Nagelkerke R2
0.18 0.38

df 6661 2781

( ) Heterosc. robust std. errors, + p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Overall, small but not negligible differences can be observed between the
two types of models. More particularly, the difference on the individual-
specific attributes parameter estimates is generally small. However, it is
interesting that in the case of the location variables, the OLS parameters
are found to be on average 10% lower in absolute values and in both cases,
than their AFT model counterparts. Therefore, it appears that the OLS
models underestimate the impact of the location variables.

3.6 conclusions

In this chapter, the concept of spatial interaction was revisited and formu-
lated as a survival analysis one. The proposed methodology has the advan-
tage of being able to address both aggregate and disaggregate cases, bridg-
ing to some extent the methodological gap between those two. Moreover,
it allows overcoming certain limitations associated with other estimation
approaches.
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In the case study, the different model estimates reaffirmed the central
role of accessibilities on the determination of commuting times, a find-
ing which was facilitated mainly due to the proper treatment of collinear-
ity issues. Moreover, the importance of employing accessibility indicators
that account for competition was demonstrated. It total, three variants of
interaction intensity functions were estimated; one generic, one location-
specific, and one location- and individual-specific. In the following chapter,
the aforementioned variants are evaluated within three instances; in terms
of spatial interaction intensity values, rates, and resulted accessibility mea-
sures.



4
E VA L U AT I O N O F A LT E R N AT I V E S P E C I F I C AT I O N

4.1 introduction

In this chapter, the evaluation of the previously described spatial inter-
action specification way takes place. In this respect, the three estimated
variants of interaction intensity functions are utilized for modifying the
traditional gravity model along with the corresponding accessibility mea-
sures. Depending on the perspective, this modification is evaluated in two
instances. On one hand, the output of the gravity model corresponds to
predictions of spatial interaction values (i.e. flows). On the other hand, the
interaction function defines essentially the interaction space in terms of
rates and spatial extent, which can then be utilized for the construction of
gravity-based accessibility measures.

More specifically, the aggregate variants are evaluated with respect to
their ability to explain daily commuting flows by mode. To this end, a com-
parative analysis, including the results of two prevailing spatial interaction
models, is conducted. In addition, a visual comparison of the predicted in-
teraction spaces of all variants is conducted to exhibit the capabilities of
each specification.

On the accessibility front, all three variants are employed for the imple-
mentation of aggregate and disaggregate gravity-based measures. Given
their positive and normative nature, the construction of relative indicators
is needed in order to investigate different aspects of accessibility. Last, the
aforementioned results are accompanied by a thorough discussion in or-
der to draw conclusions on the value of employing the proposed spatial
interaction framework.

4.2 aggregate spatial interaction case

4.2.1 Predicted interaction values

At the outset, the first two estimated aggregate variants of interaction func-
tions, namely the generic and the location-specific model-based ones, are
employed for obtaining spatial interaction values based on formulas (3.1)

49
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and (3.3). In addition, the resulted values are multiplied by a correspond-
ing correction factor each. In the production-constrained case, the correc-
tion factor is defined as the share of the economically active population
over the total population at the national level, while in the other case the
factor quantifies the employment positions per economically active resi-
dent nationally. As active population is defined the number of individuals
between the age of 18 to 65 years old. In total, we obtain six prediction
matrices of values T̂ij for each variant; three per mode, two per gravity
formulation (production-constrained and attraction-constrained), and two
formulated as the average of the corresponding two gravity outputs.

Moreover, the results are compared against the ones coming from a grav-
ity and a radiation model. In the case of the former, the results of both their
unconstrained and the doubly-constrained forms are reported. In the case
of the latter, the reported results are calculated based on the formulation
(4.1), as presented in (Simini et al., 2012) with the number of commuters
per location being replaced by the population per location, multiplied by
the active population correction factor (denoted as Coract).

T̂ij = Coract Popi
PopiPopj

(Popi + Sij)(Popi + Popj + Sij)
(4.1)

with Sij being the total population within a radius dij from location i, ex-
cluding the population at locations i and j. As dij, the previously employed
generalized cost values are used.

Furthermore, the daily O-D matrices per mode of a nationwide four-
step model1 are utilized as ground truth data to draw conclusions with
respect to the predictive accuracy of each approach. However, it should be
noted that these matrices are estimates for daily traffic demand, estimated
by means of gravity models and subsequently calibrated against count
data. Nevertheless, details with respect to the exact estimation approach
are not available to the author. As a result, it is anticipated that the gravity
model results (as shown in 3.1) will outperform all other approaches since
the ground truth data are the output of gravity models to a great extent.
Last, the aforementioned O-D matrices are symmetric, with dimensions
n = 2944. As a result and in order to make quantitatively comparable the
various outputs, the prediction matrices are turned into symmetric ones
by applying the following formula:

1 ARE; National Transport Model (2010): A 4-step model, implemented in VISUM
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T̂ij = T̂ji =
T̂ij + T̂ji

2
(4.2)

The evaluation of the predictive accuracy is conducted with three met-
rics, namely the root mean square error (RMSE), the common part of com-
muters (CPC), and their correlation. More specifically, the RMSE metric is
calculated based on the following formula:

RMSE =

√
n
∑
i

n
∑

j,j 6=i
(T̂2

ij − T2
ij)

n(n− 1)
(4.3)

The CPC metric has been widely employed for quantifying the goodness
of flow estimation (e.g. Yang et al., 2014; Lenormand et al., 2016; Barbosa
et al., 2018). It builds upon the Sørensen index (Sørensen, 1948), and quan-
tifies the share of correctly identified flows (formula (4.4)).

CPC =

2
n
∑
i

n
∑

j,j 6=i
min(Tij, T̂ij)

n
∑
i

n
∑

j,j 6=i
Tij +

n
∑
i

n
∑

j,j 6=i
T̂ij

(4.4)

The different evaluation metric results are reported in tables 4.1 and 4.2.

Table 4.1: Evaluation of different trip distribution models for car commuting

Alternative RMSE CPC Corr.

Generic: production 18.277 0.657 0.786

Generic: attraction 16.901 0.652 0.778

Generic: average 17.405 0.658 0.785

Model-based: production 21.074 0.439 0.674

Model-based: attraction 13.712 0.518 0.789

Model-based: average 15.717 0.490 0.742

Radiation model 16.175 0.466 0.704

Gravity model: unconstrained 13.464 0.596 0.796

Gravity model: doubly-constrained 10.075 0.712 0.910
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Table 4.2: Evaluation of different trip distribution models for public transport
commuting

Alternative RMSE CPC Corr.

Generic: production 21.848 0.360 0.657

Generic: attraction 19.459 0.411 0.671

Generic: average 20.485 0.385 0.668

Model-based: production 19.277 0.330 0.658

Model-based: attraction 11.494 0.377 0.641

Model-based: average 14.250 0.363 0.677

Radiation model 16.155 0.402 0.541

Gravity model: unconstrained 7.025 0.380 0.654

Gravity model: doubly-constrained 5.439 0.587 0.812

As it can be observed, in both cases the gravity models produce predic-
tions closer to the ground truth commuting values, as it was anticipated.
Attempting a closer look though at the results of the other models, it ap-
pears that the different metrics paint a different picture with respect to
identifying the model with the highest predictive accuracy. More specifi-
cally, for the car case (table 4.1), the attraction constrained gravity model
with the model-based interaction function has the lowest RMSE values
along with the highest correlation with the "true" commuting values. Its
counter form, involving a generic function, scores high as well with a sub-
stantial higher value of CPC than the model-based cases. Furthermore, the
radiation model has the second lowest CPC value while also in terms of
correlation and RMSE it is outperformed by most of the models.

For the public transport case (table 4.2), similar patterns as before can be
noticed with the traditional gravity models exhibiting the highest predic-
tive accuracy. Among the rest, most interestingly the attraction constrained
version of the model-based function outperforms by far the other models
in terms of RMSE. In general, the RMSE metric is more sensitive to the ex-
istence of large outliers than the other metrics. The radiation model ranks
among the ones with the highest values of both CPC and RMSE. However,
in terms of correlation is the worse performing trip distribution alternative.
Nevertheless, the results of both modes highlight that the introduced spa-
tial interaction models bear the ability of capturing relatively well the ac-
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tual commuting patterns. A further exploration, involving another ground
truth data set in place, would be required though to draw solid conclu-
sions.

Nevertheless, one critical aspect that the various estimated spatial inter-
action approaches fail to address is mode choice. Typically and for the
traditional transport demand models case, this happens sequentially once
the total demand has been generated and distributed over space. To ex-
amine the extent to which a simplistic approach can capture mode choice
considerations, the proposed spatial interaction framework is further mod-
ified. More specifically, the mode-specific interaction rate for each pair of
locations is defined as:

Smode
ij = max(Scar

ij , SPuT
ij )

Smode
ij

Scar
ij + SPuT

ij
(4.5)

Subsequently, the evaluation happens in two ways; one that focuses on
the mode-specific flow predictions, and one on the total demand irrespec-
tive of modes. The results corresponding to the average case are reported in
table 4.3. As it can be seen, small differences can be identified among the
different versions of model while the total demand predictions have the
highest correlation and CPC values. A comparison of the mode-specific
values with the previous results (tables 4.1 and 4.2) reveals different pat-
terns. For instance, the mode-choice public transport generic version of the
model outperforms its previous mode-specific form, in terms of RMSE and
CPC. The same can be observed for the case of car but only according to the
RMSE metric. On the other hand, the model-based variants of the mode-
choice formulation seem to be giving rise to slightly worse predictions than
before. Nonetheless, and as mentioned before, a further exploration with
another data set with true commuting flows would be required to draw
definite conclusions2.

4.2.2 Predicted interaction spaces

The next part of the analysis deals with the interaction space aspect of the
proposed spatial interaction functions. To this end, the predictions of the
two estimated aggregate variants are employed for the determination of
the interaction space. More specifically, the focus in this particular case lies

2 First informal tests on a data set with mobile-based generated O-D matrices show interesting
results.
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Table 4.3: Evaluation of different trip distribution models with mode-choice con-
siderations

RMSE CPC Corr

Generic: average (PuT) 17.037 0.531 0.663

Generic: average (car) 15.275 0.535 0.760

Generic: average (total) 19.039 0.619 0.764

Model-based: average (PuT) 16.986 0.451 0.668

Model-based: average (car) 17.044 0.350 0.703

Model-based: average (total) 19.757 0.476 0.750

Previous predictions
Generic: average (PuT) 20.485 0.385 0.668

Generic: average (car) 17.405 0.658 0.785

Model-based: average (PuT) 14.250 0.363 0.677

Model-based: average (car) 15.717 0.490 0.742

on both the spatial extent along with the interaction rates, as implied by
the predictions. In order to examine the differences between the two speci-
fication ways of the interaction function, the mode-specific predictions for
a given location are produced. In particular, the chosen location is Baden,
which is a medium-sized city between Zurich and Basel. In figures 4.1 and
4.2, maps of absolute interaction intensity rates per variant, along with
their absolute differences, are presented.

As it can be seen in these figures, substantial differences exist between
the interaction intensity predictions of the two variants. In the case of both
modes, the generic predictions highlight a smaller space of potential inter-
action with a much steeper reduction of rates. Interestingly, in both cases
and especially in the public transport case, the model-based interaction
intensity variant assigns (high) values to more distant zones.

More specifically, if we focus on the influence that major cities with
high concentration of economic activity, such as Zurich, Basel, Bern and
Lucerne, exert on the predicted interaction intensity rates, it appears that
the generic rates are substantially lower than the model-based ones. For
instance, the city of Bern is not classified as interacting one according to
the generic variants while that is not found to be the case for the model-
based ones. In a similar spirit, the results for the city of Zurich surface
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Figure 4.1: Car interaction rates predictions for a specific location
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Figure 4.2: Public transport interaction rates predictions for a specific location
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the differences between the two variants. In conclusion, it appears that
the model-based specification yields more realistic and meaningful results
than the generic one.

4.2.3 Relative accessibility measures

As mentioned in the previous chapter (section 3.1), an important aspect
of accessibility measures concerns their positive or normative character.
Please note that it is presumed that implementations with a generic inter-
action function in place are perceived as normative, while the ones with a
model-based function as positive. Driven by this, the two types of measures
can be combined in a single relative accessibility measure. A discussion on
the construction and interpretation of relative accessibility measures can
be found in (Páez et al., 2010) where the use of such indicators was demon-
strated for examining social exclusion issues.

Driven by this, a relative accessibility indicator can be defined as the ra-
tio between the normative and the positive implementations of the gravity-
based accessibility measure. Essentially, the normative measure quantifies
the average access to opportunities. On the other hand, the positive mea-
sure quantifies the actual access to opportunities that people have due to
the spatial structure and spatial matching issues. Therefore, values lower
than one reflect a location with overall limited access to opportunities,
where its residents have to travel further away than on average to gain the
required level of access to opportunities. On the contrary, values higher
than one indicate a location that has very good access to opportunities and
therefore its residents have to travel relatively small distances to obtain the
needed accessibility level. Furthermore, the formation of such indicators
can also assist in the study of the phenomenon of excess commuting (e.g.
Ma and Banister, 2006; Schürmann, 2015). The relative accessibility values
to employment opportunities are plotted spatially in figure 4.3.

For the car case, the relative accessibility values reveal that mainly the
urban areas, along with their neighbors, are the ones with the highest val-
ues. On the other hand, locations further away from the main cities have
the lowest level of relative access to employment opportunities. This find-
ing is to a large degree anticipated though since people residing in such
places typically have to commute long distances to gain access to the job
market. In the case of the public transport relative accessibility indicator,
similar patterns emerge but only for the main cities and their surrounding
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Figure 4.3: Relative accessibility measure values

Lucerne

Winterthur

Zurich

Basel

St.Gallen

Bern

Biel

Chur

Lugano

Lausanne

Sion Geneva

Thun

Zug

Fribourg

Schaffhausen

Montreux

Yverdon−les−Bains

Neuchâtel

Zug

St.Moritz

Davos

Aarau
Baden

Locarno

Zermatt

0 20 40 60 80 km

N
Relative car accessibility: Employment

0.00 to 0.32
0.32 to 1.02
1.02 to 2.74
2.74 to 5.89
5.89 to 13.49
13.49 to 17.30

(a) Car

Lucerne

Winterthur

Zurich

Basel

St.Gallen

Bern

Biel

Chur

Lugano

Lausanne

Sion Geneva

Thun

Zug

Fribourg

Schaffhausen

Montreux

Yverdon−les−Bains

Neuchâtel

Zug

St.Moritz

Davos

Aarau
Baden

Locarno

Zermatt

0 20 40 60 80 km

N
Relative PuT accessibility: Employment

0.00 to 0.15
0.15 to 0.36
0.36 to 0.64
0.64 to 1.06
1.06 to 2.28
2.28 to 4.27

(b) Public transport

areas while more remote areas have substantially lower values of relative
access to employment opportunities.
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4.3 disaggregate spatial interaction case

4.3.1 Predicted interaction rates

The disaggregate variant of estimated interaction intensity functions can
be employed in a similar manner as before for the prediction of the inter-
action space of individuals. The key difference with the aggregate model-
based variant lies on the fact that individual characteristics are now taken
into account, allowing in sequence the specification of individual-specific
functions. The application of the estimated interaction function for predict-
ing the interaction rates for an individual with specific characteristics is
demonstrated in figures 4.4 and 4.5, accordingly.

More specifically, the person is a female at the age of 25, being part of
3-persons household that includes a child, working part-time, having a
bachelor degree, while it resides in Baden. As the corresponding figures
show, similar patterns as before can be identified.

4.3.2 Relative accessibility measures

Finally, the application of the estimated individual-specific interaction in-
tensity functions for the construction of disaggregate accessibility indica-
tors is demonstrated. To that end, these indicators are employed for study-
ing differences on the individual levels of regional accessibility. The em-
ployment accessibility values for a person with varying characteristics are
calculated. More specifically, for the base case the person is a female at the
age of 25, being part of 3-persons household that includes a child, working
part-time, and having a bachelor degree. In the scenario case, the charac-
teristics of the person remain the same with the only difference that she
now has an MSc degree, works full-time and is 35 years old.

Based on the disaggregate model estimates (table 3.6), the age increase
has a negative impact on the accessibility levels while a positive impact
is implied for the acquisition of the MSc degree and the full-time em-
ployment status. The disaggregate accessibility values are calculated for
all zones, both for the base case and the scenario.Subsequently, a relative
accessibility indicator can be formulated as the ratio of the scenario acces-
sibility values to the base ones. More specifically, in this case the indicator
would capture the relative percent difference on the positive accessibility
levels. The results are presented in figure 4.6.
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Figure 4.4: Car interaction rates predictions for a specific location and an indi-
vidual with certain characteristics
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Figure 4.5: Public transport interaction rates predictions for a specific location
and an individual with certain characteristics
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Figure 4.6: Relative accessibility measure values
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As it can be seen in figure 4.6, substantial differences on the individual
regional accessibility levels exist. Interestingly, the differences are found to
lie in the range of 1 to 25%, revealing strong spatial variability, while for
both modes the patterns are similar. More specifically, smaller differences
can be identified in the main cities while the differences are magnified
in the cases of rural areas. Based on this, it can be concluded that the
impact of the individual characteristics is much more important for the
less urbanized areas, implying the existence of a large variance on the
accessibility levels of individuals residing to such areas.

On the spatial interaction side, the estimated model can be applied as
well for predicting interaction values in line with section 4.2.1. However,
in this case knowledge of the specific characteristics of all individuals per
zone would be required as input. To overcome this massive requirement in
terms of data, the characteristics of a sample of individuals can be utilized
instead, with a proper weighting of the observations though to account for
the fact that they constitute a sample (e.g. synthetic population). Neverthe-
less, agent-based populations would allow a disaggregate application.

4.4 conclusions

In this chapter the application of a new spatial interaction specification way
was illustrated for different instances. Depending on the perspective of
analysis, specifying the interaction intensity function as a survival one can
tackle both aggregate and disaggregate cases, while it also paves the way
for exploiting the construction of various relative accessibility measures.
In this regard, the proposed specification way is flexible in the sense that
it allows for the construction of generic, location-, and individual-specific
interaction functions.

In conclusion, the different results demonstrated the capacity of the pro-
posed specification to be employed for examining various aspects associ-
ated with spatial interaction phenomena such as commuting and access
to different opportunities. Especially for the commuting case, the results
highlighted that a gravity-based model with a survival function in place
can produce reasonably good predictions by quantifying the potential for
interaction between origins and destinations. Furthermore, the results at-
test to the ability of the model-based variants to produce reasonable and re-
alistic predictions of the potential interaction space. To that end, the ability
to account for location and/or individual characteristics within a gravity-
based accessibility measure constitutes an aspect which was not addressed
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in the literature to date. Last, the application of the proposed specification
for studying differences on the individual levels of regional accessibility,
revealed interesting spatial insights regarding the impact of the individual
characteristics.



5
A C C E S S I B I L I T Y A N D C E N T R A L I T Y

5.1 introduction

As discussed in the previous chapter, accessibility is a central concept in
transportation research. Gravity-based measures are by far the most com-
monly used in practice, due to their ease of implementation, interpretation,
and communicability (Geurs and van Wee, 2004). As presented in formula
(2.1), it can be seen that such measures are the summation over j of Wj f (dij)
for a given i. This represents the potential of interaction of i with the rest
of the system, in terms of opportunities W. In summary, a key aspect of
gravity-based accessibility measures is that they measure the potential for
interaction between origins and destinations.

An alternative approach to understand spatial interaction is due to Stouf-
fer (1940), who talked about intervening opportunities (also see Black and
Conroy, 1977; Cheung and Black, 2008), as discussed in section 2.2.2. Stouf-
fer in his work was interested, in addition to the origins and destinations
of trips, in the pass-through flows, that is, what opportunities were avail-
able for trips beween origin i and destination j. This aspect of the system is
important not only for moderating trip length (something that is captured
in gravity-based accessibility measures by a properly calibrated interaction
function f (dij)), but also as a measure of exposure of travelers to opportu-
nities. This is a perspective that seems to be missing in current accessibility
research and the work presented in this chapter proposes a way of address-
ing.

This idea finds an analog in the literature on graph theory and social net-
work analysis. In these streams of literature, the relevance of an element in
a network is variously measured by means of centrality and betweenness
indicators (e.g. Freeman et al., 1979; Borgatti, 2005). To that end, among
the most popular ones is the degree centrality that quantifies the number
of links incident upon a node (Freeman et al., 1979). In that sense, degree
centrality is similar to accessibility in that it counts the potential for interac-
tion in a network, albeit in a more limited way (e.g. by considering only the
first order neighbors in a graph). A cumulative opportunities accessibility
indicator, on the other hand, considers all neighbors that satisfy some cost
threshold c.

65
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Betweenness measures, in contrast, are concerned with flow-through
traffic. One example is the stress-centrality (Shimbel, 1953) and the between-
ness-centrality (Freeman et al., 1979) indicators. These indicators are based
on the number of paths that pass through an element of the network, say
i, when interaction between (all) elements j and k is established. See from
this perspective, gravity-based accessibility measures are similar to cen-
trality indicators used in network analysis in the sense that they count the
potential of interaction between locations of the system. Apart from their
conceptual similarity though, a critical difference concerns their character
with the former ones assuming a location-based point of view while the
latter ones a network-based one. Nevertheless, an implicit connection be-
tween these well-established concepts exists which has not been acknowl-
edged in the literature.

Driven by the above, the objective of this chapter is to propose and
discuss a new measure of centrality called betweenness-accessibility. This
measure is inspired by the measure of betweenness-centrality used in so-
cial network analysis (see Wasserman et al., 1994; Degenne and Fors, 1999),
which in turn is closely related to the concept of stress-centrality (also see
Shimbel, 1953; Brandes, 2001). Betweenness-accessibility, it will be seen, is
a useful tool to investigate the incidental impacts of accessibility on a net-
work. This measure, when used in conjunction with accessibility analysis,
provides a richer picture of the ways a transportation system operates to
generate connectivity in the system and how the landscape of opportuni-
ties in turn impacts the network. It should be noted that the formulation
of the betweenness-centrality centrality was first introduced in Sarlas and
Axhausen (2015b).

In the following sections, a brief overview of the concept of centrality
precedes the introduction of the betweenness-accessibility measure. A real-
life case study is designed to demonstrate the application of the introduced
measure along with discussing its construction, what exactly it represents,
and last its potential utility in terms of applications.

5.2 network and betweenness-accessibility centrality

5.2.1 Centrality: stress and betweenness

Suppose that there is a graph representation of a network composed of
nodes and edges that connect some or all of those nodes. Under this setup,
the betweenness of a node is a measure based on the frequency with which



5.2 network and betweenness-accessibility centrality 67

a node pi is located on the shortest path that connects the pair of nodes pj
and pk (Freeman, 1977). This index can be conceptualized as a measure of
network flow control (Wasserman et al., 1994), since it is calculated based
on the number of paths σ(pj, pk | pi) where pi acts as a bridge between pj
and pk. Freeman (1977) defines betweenness as follows:

CB(pi) = ∑
j,k∈V,j 6=k 6=i

σ(pj, pk | pi)

σ(pj, pk)
(5.1)

where CB(pi) corresponds to the betweenness of node pi, σ(pj, pk | pi) is
the number of shortest paths between nodes pj and pk that pass through
node pi, σ(pj, pk) is the total number of shortest paths between pj and
pk, N is the total number of nodes in the network, and j, k = {1, 2, ..N}.
Subsequently, a normalization term 1

(N−1)(N−2) can be included in order
to turn the measure into the system-wide proportion of shortest paths that
pass through node pi.

A similar measure but for the case of edges li was proposed by Girvan
and Newman (2002), whereby betweenness now represents the number of
paths between nodes that pass through a specific link.

CB(li) = ∑
j,k,j 6=k

σ(pj, pk | li)
σ(pj, pk)

(5.2)

Normalization can be implemented in this case by multiplying the mea-
sure by the term 1

N(N−1) to obtain the system-wide proportion of paths
that traverse li.

Along the same line of thinking, another popular centrality indicator is
the stress-centrality which was proposed by Shimbel (1953), denoted as
CS(li) for the case of links. The calculation of that indicator takes place
according to formula (5.3) that follows.

CS(li) = ∑
j,k,j 6=k

σ(pj, pk | li) (5.3)

As it can observed, the difference between the two measures lies on the
fact that CB takes into account the fraction of the shortest paths for every
pair of nodes passing through a specific node/link, whereas CS takes into
account the corresponding absolute number of shortest paths. Neverthe-
less, in cases where only one shortest path exists per pair of nodes, both
measures yield identical results. Both indicators conceptualize though that
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all sets of interacting nodes contribute the same towards the centrality
value of each link ( 1

N(N−1) ).
Apart from the aforementioned betweenness centrality measures, vari-

ants of the original formulation have emerged over the years. Brandes
(2008) provides a coherent review of those variants, discussing also their
algorithmic implementations. One prominent example of such measures is
the so-called distance-scaled betweenness where the involved shortest paths
are weighed inversely proportional to their length (Borgatti and Everett,
2006). Essentially, this weighting operationalizes the idea that longer paths
should count less towards the calculation of betweenness. A further modifi-
cation on the aforementioned betweenness measure was introduced by Geis-
berger et al. (2008) where the weights are defined based on the relative
position of a node pi in the relevant shortest paths.

Along the same line of thinking but for the transportation networks’
case, Lowry (2014) modified the stress-centrality indicator by applying a
weighting on the basis of trip production and attraction rates at both short-
est paths’ ends.

Nevertheless and based on the above, a general weighted formulation
can be introduced, including a weighting component that allows to ac-
count for the non-uniform impact of each pair on the centrality indicators
(formula (5.4)).

CBW(li) = ∑
j,k,j 6=k

σ(pj, pk | li)
σ(pj, pk)

wij (5.4)

Subsequently, a normalized indicator can be obtained by dividing the
measure with the sum of the employed weights.

CN
BW

(li) =
1

∑
j,k,j 6=k

wij
∑

j,k,j 6=k

σ(pj, pk | li)
σ(pj, pk)

wij (5.5)

5.2.2 Betweenness-accessibility centrality

For the case of transportation networks, the utilization of centrality indi-
cators can be perceived as problematic mainly due to two main conjoint
issues, as identified by Sarlas and Axhausen (2015b). The first one is as-
sociated with the aspect of travel demand and especially with the fact
that trip production and attraction is not spatially uniform. The second
issue relates to the trip distribution aspect. Therefore, taking into account
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all interactions between nodes along with imposing an equal weighting
principle that assumes that all interactions account the same towards the
calculation of the centrality indicators, can be viewed as problematic and
potentially misleading.

A way to relax these assumptions is through the formulation of a weight-
ed betweenness centrality indicator, as presented in formula (5.5). More
specifically, the conceptualized idea is that a definition of the weights on
the basis of the accessibility formulation can provide insights on how net-
work’s connectivity can generate accessibility and also investigate the inci-
dental impacts of accessibility on the network elements.

In practical terms, a restriction with respect to the number of interacting
nodes can be imposed by defining a subset of interacting nodes such as
NS ⊂ N. In its most general form, betweenness would account for interac-
tion between all pairs of nodes. As an alternative, only the shortest paths
{pj, pk}, ∀pj, pk ∈ NS can be considered instead, resulting in a betweenness
indicator denoted as CN

BOD
. Furthermore, similar to the gravity model, it is

assumed that the mass of the nodes Wj and Wk is a useful proxy for trip
production and attraction levels. Commonly used measures of mass in the
gravity model framework are population (pop) and employment (empl).

An additional issue that needs to be resolved relates to the specification
of weights to facilitate the formulation of the weighted betweenness indi-
cator(s). Drawing on the geographical concept of distance decay firmly em-
bedded in the gravity model, a connection between the centrality and the
accessibility concepts can be established. More specifically, the interaction
between nodes pj and pk is assumed to be determined based on the con-
nection cost as mediated by a distance decay function f (djk). Thereupon,
the weights can be formulated by accounting for the spatial distribution
of masses (i.e., pop and empl). Based on this, two types of betweenness-
accessibility indicators can be specified.

The first type of indicators quantifies the potential level of demand in
terms of trip production (population) and attraction (employment), respec-
tively. In particular, the formulation of the indicators is presented below,
in line with formula (5.5). Both the unnormalized and the normalized ver-
sions are of potential interest since the first one yields absolute values,
whereas the second relative values of potential demand.
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CN
pop(li) =

1
TotalPop ∑

j,k,j 6=k

σ(pj, pk | li)
σ(pj, pk)

popj
Emplk f (djk)

Accempl
j

= [%TotalPop]

(5.6)

CN
empl(li) =

1
TotalEmpl ∑

j,k,j 6=k

σ(pj, pk | li)
σ(pj, pk)

emplj
Popk f (djk)

Accpop
j

= [%TotalEmpl]

(5.7)
with

Accpop
i = ∑

j,j 6=i
Popj f (dij)

Accempl
i = ∑

j,j 6=i
Emplj f (dij)

and TotalPop = ∑
j

Popj, TotalEmpl = ∑
j

Emplj.

Given the normalization of the weights, the interpretation of CN
pop(li)

is as the estimated proportion of the total population that is allocated to
link li when the potential for interaction across the system is considered.
Conversely, the interpretation of CN

empl(li) is as the estimated proportion
of jobs that are serviced by link li when the potential for interaction across
the system is considered.

The second type of indicator is formulated in a way that quantifies the
importance of the elements of the network with respect to their ability to
generate accessibility. Thereupon, the focus of this type lies on the poten-
tial opportunities that can be reached through each network element, and
hence it quantifies the incidental impact of the accessibility on the network.
The relevant formulations are presented below.

CN
Apop

(li) =
1

TotalAccpop ∑
j,k,j 6=k

σ(pj, pk | li)
σ(pj, pk)

Popk f (djk) = [%TotalAccpop]

(5.8)

CN
Aempl

(li) =
1

TotalAccempl ∑
j,k,j 6=k

σ(pj, pk | li)
σ(pj, pk)

Emplk f (djk) = [%TotalAccempl]

(5.9)
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with
TotalAccpop = ∑

j
Accpop

j

and
TotalAccempl = ∑

j
Accempl

j

The interpretation of CN
Apop

(li) is as the proportion of the system-wide

accessibility to population that is supported by link li, whereas CN
Aempl

(li)
is the proportion of system-wide accessibility that is supported by link li.

5.3 case study

In this section, the application of betweenness-accessibility in a real-life
urban network is demonstrated. This allows to examine different aspects
of the proposed measures, along with their potential utility in practice.

Zurich is employed as the case study. Zurich is the largest city of Switzer-
land with a population of over 400 thousands while its agglomeration
area has a population of almost 1.4 million inhabitants1. In addition to
its role as a major city in Switzerland, Zurich constitutes one of the main
economic hubs in central Europe. The study network is of navigational-
quality, which is commercially available from Tom-Tom, including all the
links and the nodes within the boundaries of the city. The network in-
cludes all links and nodes within the boundaries of the city. In addition, to
minimize the impact of boundary effects, the case study includes a buffer
area of two kilometers. The final network consists of over 48’000 links and
23’000 nodes (see figure 5.1).

5.3.1 Centrality indicators

In summary, the introduced indicators build upon the concepts of cen-
trality and accessibility, combining them in a unified measure. Therefore,
apart from the network data population and employment data need to be
utilized for the involved accessibility calculations. One major issue that
arises though, is the selection of the accessibility analysis level along with
the computational and conceptual implications that this brings in. Accessi-
bility can take either a zonal, or a point level of analysis, depending on the

1 Statistical Data on Switzerland 2018, Federal Statistical Office
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Figure 5.1: Network overview and city boundaries
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objectives and the availability of data. Especially, the latter has emerged
due to the need to analyze urban settings (e.g. Hanson and Schwab, 1987).

In the case of the point level analysis, the opportunities (e.g. population,
employment positions) would need either to be reported in a spatially dis-
aggregated way, or to make assumptions about their spatial distribution
in order to assign their values on the nodes lying in their vicinity. How-
ever, in that case the construction of the betweenness-accessibility indica-
tors would become computationally burdensome since that would require
the identification and processing of the shortest paths between all pairs of
network nodes (or at least of the ones with allocated opportunities), mean-
ing N(N − 1) shortest paths for a directed network with N nodes.

In the case of the zonal analysis level, the definition of the zones nor-
mally coincides with different administrative or physical/built boundaries
(e.g. neighborhoods, blocks, etc.), whereas the socio-demographic variables
are typically available in an aggregated way for those zones (census data).
Nevertheless, conditionally on a sufficient number of zones, zonal acces-
sibility analysis can be useful for urban settings. In that case and in anal-
ogy to the issues faced in the traditional four-step model, the opportuni-
ties can be assigned either to few chosen nodes (e.g. centroid(s)), or to all
nodes uniformly, or based on some assumptions about their spatial distri-
bution. Therefore, in that case a total of Z2 shortest paths, or Z(Z − 1) if
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self-potential is not accounted for, need to be processed, with Z being the
number of zones.

For the given case study, the latter configuration is pursued, including a
directed network and without taking into account the self-potential. More
specifically, the zoning system of the Swiss national transport model2 is
employed as the zonal analysis level. The city of Zurich is divided into 308
zones with reported population and employment positions for the year
2015. Therefore, the identification and processing of 308 ∗ 307 = 94556
shortest paths is required for the construction of the introduced indicators.
In order to account for the spatial distribution of opportunities within each
zone, for each pair of zones a randomly chosen node within each zone is
assigned as the starting and ending node respectively. Subsequently, the
shortest paths are identified in terms of free-flow travel time, and thus
the construction of the origin-destination travel time matrix can take place,
which is a prerequisite for the accessibility calculations.

Another issue that arises is the choice of the interaction intensity func-
tion of the accessibility formulation. Given the absence of a calibrated func-
tion, the methodology for estimating the parameters in a model-based way
based on the survival analysis notion is adopted (see chapter 3). More
specifically, data from a household survey3 are utilized, making use only
of the observations of individuals residing in Zurich and commuting by
car. The chosen interaction intensity function is of the negative exponential
family, involving two parameters (formula (3.10)). The calibrated function
is presented below:

f (gc) = e−6.164∗10−4 tt3.5875

with tt the free-flow travel time in minutes.
Having defined the zonal analysis level along with the accessibility com-

ponents, and having identified the required shortest paths, the next step
concerns the construction of the various betweenness indicators. For com-
parison purposes, the results of the betweenness centrality indicator CB are
calculated and presented as well.

The data and network analysis described throughout this chapter is per-
formed using R (R Core Team, 2018), and utilizing the igraph package
(Csárdi and Nepusz, 2006). In addition, a further customization of those
functions necessitated to assist with the construction of the various indica-
tors. Furthermore, the presented analysis takes a link-level analysis point

2 ARE; National transport model, 2015

3 Swiss Micro-census 2015, ARE
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of view, however the same analysis could be easily conducted for a node-
level point as well. The various indicators are calculated based on the nor-
malized formulas as presented before.

5.3.2 Analysis and results

Having calculated the different indicators, we can now proceed to the eval-
uation of the different results in terms of both a visual and a correlation
analysis. The various specified indicators are presented in figures 5.2 and
5.3.

Figure 5.2: Comparison of the CN
B and CN

BOD
indicators
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(b) CN
BOD

Interestingly, the different indicators paint a different picture of the im-
portance of the links. A comparison between the CN

B and the CN
BOD

(figure
5.2) for the whole network, shows that in the case of former, the links on
the periphery along with some in the central area of Zurich, emerge as of
high importance. In the case of the CN

BOD
, the links of high importance are

fully concentrated in the central area of the city. The range of the values is
also of apparent interest, revealing that the 1% of the links with the highest
values per case, have relative shares of 4.19− 9.21% and 3.42− 9.21% of the
total shortest paths that pass through them.

The differences among the CN
BOD

and the betweenness-accessibility indi-
cators are not visible for the whole network case due to the scale of the
maps. Therefore, the focus is centered on the central area of Zurich for
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Figure 5.3: The different centrality indicators
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highlighting visually the differences among the different indicators (Fig.
5.3). At first sight, all indicators appear to be yielding similar results. How-
ever, differences can be identified especially with respect to the correspond-
ing shares.

In the case of CN
pop, the highest 1% of the links have a a potential number

of users in the range of 3.22− 7.5% of the total population of the city. In the
case of CN

empl, the corresponding relative share is 3.01− 8.21%, revealing a
rather high share of the total employment positions. Of similar magnitude
are also the results of the indicators CN

Apop
and CN

Aempl
but slightly lower. In-

terestingly, it appears that the connectivity generated through specific links
serves up to almost 6.8% and 6.4% respectively of the total accessibility per
case.

Last, the previous results are supplemented with a correlation analysis
in order to identify similarities and also the extent to which the various
indicators are related to each other. The correlation analysis is conducted
by means of the Pearson correlation coefficient and is presented in table
5.1. As it can be seen, the normal betweenness indicator has the lowest
degree of correlation with the other indicators. This is to a large extent
anticipated due to the substantial differences in their formulations. Among
the remaining indicators, in general they exhibit high values of correlation
which can be attributed to the fact that they all utilize the same shortest
paths, though having different weighting schemes in place.

Table 5.1: Correlation matrix of betweenness accessibility measures

CN
B CN

BOD
CN

pop CN
empl CN

Aempl
CN

Apop

CN
B 1 0.63 0.55 0.55 0.54 0.57

CN
BOD

0.63 1 0.89 0.91 0.92 0.96

CN
pop 0.55 0.89 1 0.69 0.93 0.78

CN
empl 0.55 0.91 0.69 1 0.83 0.97

CN
Aempl

0.54 0.92 0.93 0.83 1 0.86

CN
Apop

0.57 0.96 0.78 0.97 0.86 1
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5.4 application to vulnerability analysis

In the last part, the focus is turned on the utility and applicability of the in-
troduced betweenness-accessibility indicators. More specifically, their abil-
ity to address the criticality issue of the network elements is tested. In this
regard, a plethora of different approaches exist in the literature to evalu-
ate the impact on a network of loss of functionality commonly referred
as vulnerability analysis. As defined by Berdica (2002), "Vulnerability in
the road transportation system is a susceptibility to incidents that can result in
considerable reductions in road network serviceability".

In general, the different vulnerability approaches have developed along
two main lines of thinking (Mattsson and Jenelius, 2015). The first and most
popular one identifies the most critical links by focusing on the demand
and supply interaction mechanism (e.g. Scott et al., 2006; de Oliveira et al.,
2014), normally by utilizing the output of a demand model (e.g. simulation).
The second approach emerged mainly due to the need to analyze urban
networks and draws on their topological properties, such as betweenness
centrality, to identify the most critical elements (e.g. Duan and Lu, 2015;
Demšar et al., 2008; Akbarzadeh et al., 2017; Sarlas and Kouvelas, 2019).

For instance, in a recent paper by López et al. (2017), the issue of the
interaction between network topology and flow autocorrelation was in-
vestigated to draw conclusions with respect to the vulnerability of nodes.
Nevertheless, the utilization of the introduced betweenness-accessibility in-
dicators for vulnerability analysis purposes can be seen as a way to bridge
the gap between the two approaches, mitigating the associated shortcom-
ings of each, at least to some extent. A thorough overview of the literature
on the topic can be found in Mattsson and Jenelius (2015) and Reggiani
et al. (2015).

The most widely applied medium for studying the vulnerability aspect
of a network is the interdiction of its elements, and measuring its perfor-
mance in terms of various indicators such as network connectivity and
travel time (e.g. Jenelius et al., 2006; Scott et al., 2006). Different strategies
have been proposed over the years with respect to both the network per-
formance and the interdiction aspects. For instance, in the paper by Holme
et al. (2002) four different attack strategies based on topological indicators
are presented, whereas the network performance is measured also in terms
of graph theory concepts (average inverse geodesic length and network’s
largest connected subgraph).
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Furthermore, a strand of literature (e.g. Taylor et al., 2006; Chen et al.,
2007; Sohn, 2006; Taylor, 2017) acknowledges that a limitation of the vul-
nerability analysis approaches is lacking considerations of the various as-
sociated socio-economic impacts of network’s degradation. To this regard,
different indicators based on the accessibility concept have been proposed
to overcome this limitation.

In order to test the ability of the introduced indicators to quantify the
criticality of the links, the performance of the network is studied subject
to attacks on its links (edges). As highlighted by Holme et al. (2002), this
evaluation approach (so-called "attack vulnerability") has originated from
the field of computer networks and quantifies the decrease of network per-
formance due to the removal of specific elements of the network (Barabási
and Albert, 1999). For this particular case, the identification of the under
attack links is based on their ranking in terms of the six presented cen-
trality indicators. In addition, the removal process takes place in 5 links
increments where the new shortest paths are identified, and hence a new
O-D travel time matrix has to be calculated.

In total, 15 removal steps per indicator are evaluated whereas the ro-
bustness and the performance of the network is evaluated in two ways.
The first one involves an accessibility-based approach where the impact on
the total accessibility of the system serves as the chosen network perfor-
mance metric. The second one utilizes the total travel time change as the
performance indicator.

In particular, the problem is formulated as a transportation problem
(Hitchcock, 1941) where the number of residents per zone is scaled up pro-
portionally to match the total number of employment positions within the
city of Zurich. Subsequently, an optimization process is called upon min-
imizing the system-wide total travel time, and hence calculating the cor-
responding demand matrix. In order to account for the dimensionality of
demand, the optimization problem is formulated as two distinct problems.
The first one (denoted as population- employment scenario), the zonal pop-
ulation serves as the trip production and the employment positions as the
trip attraction, and vice versa (denoted as employment- population sce-
nario). The results of the different evaluation criteria for the six centrality
indicators are presented in figures 5.4 and 5.5.
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Figure 5.4: Accessibility-based performance indicator
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5.4.1 Results

For the case of the accessibility-based performance measure (figure 5.4),
the network deteriorates much faster and to a greater extent when the
attacks take place based on the betweenness-accessibility indicators. In
particular, removing links based on the formulation with the embedded
employment accessibility weights (CN

Aempl
) has the highest impact in terms

of total accessibility reduction. Especially, for the employment accessibil-
ity case (figure 5.4a), the reduction on the accessibility levels is substantial
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Figure 5.5: Total travel-time performance indicator
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and of almost 12% with a difference of about 4% from the second best
performing criterion.

In addition, it is worth highlighting that the removal of the 10 highest
links results in a reduction of more than 2% of serviceability, revealing a
network that is highly susceptible to the interdiction of a few links. Regard-
ing the other ranking indicators, the CN

BOD
indicator outperforms most of

the centrality indicators in both cases. Furthermore, it is noteworthy that
the simple betweenness indicator (CN

B ) yields by far the worst results in
terms of identifying critical links.
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For the case of the total travel time performance measures (figure 5.5),
the ranking based on the indicators that capture the dimensionality of the
demand are the most effective ones. For instance, in the first variation (Fig.
5.5a), the transportation problem has been set up in a way to minimize the
total travel time from the residence zones towards the employment zones.
Thereupon, it is meaningful that the rankings based on the employment
accessibility concept (CN

Aempl
and CN

pop) are the ones with the highest im-
pact. Between those two, the addition of the trip production variable in the
weighting formulation of the betweenness indicator (CN

pop) enhances the
ability to identify more critical links. The same patterns can be identified
for the other variation as well (figure 5.5b) for the formulations with the
population accessibility weights in place. Interestingly, the worst ranking
results are identified for the formulations involving weights based on the
accessibility in terms of the corresponding trip production variables.

5.5 conclusions-discussion

In this chapter, a new indicator that combines the concepts of centrality
and gravity-based accessibility in a unified measure was introduced. In
particular, the indicator bears the ability of addressing inherent shortcom-
ings associated with other centrality indicators. Furthermore, it allows to
investigate the incidental impacts of accessibility on a network, facilitating
a network-based presentation of the potential interactions that arise in a
system. Overall, the betweenness-accessibility indicator provides a richer
picture of the ways a transportation system operates to generate connec-
tivity. This dimension of accessibility and especially how it is jointly gen-
erated by the transportation system and the landscape of opportunities,
constitutes an important aspect which was neither acknowledged, nor ad-
dressed in the literature to date, at least to the best of author’s knowledge.

In the case study different variants of the indicator were calculated for
a real-life urban network in order to surface different aspects of its func-
tion and performance. Its utility was demonstrated through a vulnerability
analysis where the most critical links were removed accordingly. In sum-
mary, the undertaken network performance evaluation highlighted that
the introduced indicator is more reflective than the traditional between-
ness centrality indicator of a transportation networks’ function. In follow-
ing chapters of the dissertation, the betweenness-accessibility indicator is
thoroughly tested on its ability to improve flow and speed estimation.
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In conclusion, it can be said that the value of the newly introduced in-
dicator, especially on its general weighted version, can potentially extend
beyond the scope of transportation research as it can pave the way for ex-
amining different aspects of various kinds of networks (e.g. social) where
interaction among network elements happens in a disproportional way.



6
S P E E D E S T I M AT I O N

6.1 introduction

As highlighted in the introduction chapter, travel demand models have in-
creased their data demands massively both in scope and scale while over-
all they have become more computationally burdensome over the course
of years. Contradicting that trend, the current dissertation pursues the for-
mation of a demand modelling approach which can provide speed and
volume predictions in a direct manner. To that end, the deployment of
linear regression models constitutes an alternative aligned with the main
objective of the thesis. In essence, such models allow to quantify the im-
pact of different variables directly on the outcomes of interest, and hence
provide a coherent framework for obtaining localized predictions.

Turning to the speed prediction issue, a closer look at the nature of the
task points out that speed is essentially the outcome of the interaction be-
tween supply and demand. Driven by this realization, different ways of
capturing the demand aspect within the model formulation have been pro-
posed in the literature. More specifically, a strand of literature has resorted
to the use of proxy variables for traffic volume, typically operationalized in
the form of spatial density values of various socio-demographic variables
(e.g. population, employment positions) along with land-use characteristics
(e.g. Hackney et al., 2007; Sarlas and Axhausen, 2015a). Yet and as identi-
fied in Sarlas and Axhausen (2015b), such variables fail to capture the di-
rectionality and the complexities associated with the interregional demand,
and thus can suffice only for small area cases. Thereupon, another way to
tackle methodologically the problem is by accounting for the endogenous
nature of demand through the use of appropriate modelling techniques,
an approach though which has received relatively low attention for such
problems (e.g. Sarlas and Axhausen, 2017).

Besides the demand aspect of the speed modelling problem, another
issue is related with the spatial nature of the speed observations. In partic-
ular, the main implication of modelling such data is the existence of spa-
tial dependence, thereby pointing to non-independent observations. For in-
stance, the correlation of speed observations was demonstrated by Bernard
et al. (2006), pointing out the necessity of accounting for spatial depen-
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dency when it comes to the estimation of speed. Moreover, Hackney et al.
(2007) demonstrated the plausibility of accounting for the spatial depen-
dence in the estimation of speed where three types of spatial regression
models were estimated. Cheng et al. (2011) examined the spatio-temporal
dependence structure of road networks, arguing on the need of incorpo-
rating a dynamic spatial weight matrix when it comes to forecasting on
real-time data. Along a similar line of thinking, Jenelius and Koutsopoulos
(2013) introduced a statistical network model for travel time estimation, al-
lowing for correlation between travel times on different links based on a
spatial moving average structure. In a different spirit, the issue of depen-
dence was also acknowledged for the case of operating speed modelling
(Park and Saccomanno, 2006). A large number of studies has focused on
this issue while an overview can be found in (Highway Capacity Manual,
2010). However, their scope differs substantially than the one of the cur-
rent study, since their purpose is to evaluate solely the impact of design
characteristics on speed values.

In summary, a number of applications of spatial modelling techniques
can be found in the urban analysis area. A comprehensive review of such
applications is presented by Páez and Scott (2004). However, the presence
of spatial effects constitutes a dimension which normally is neglected in
the existing transport modelling approaches. Black (1992) introduced and
described the existence of autocorrelation among the variables in the con-
text of networks, stating that "spatial autocorrelation usually concerns itself
with variable values at given locations being influenced by variable values at
nearby or (contiguous) locations in a spatial context. Network autocorrelation
concerns the dependence of variable values on given links to such values on other
links to which it is connected in a network context."

Wang et al. (2012) review and assess the methodological issues that
arise from the application of spatial models in transport. In a different con-
text, Lopes et al. (2014) examined the spatial dependence effect on trans-
portation demand models and specifically in the trip generation phase
of the four step model. Furthermore, spatial regression models have also
been applied for various transport related issues, such as traffic counts
prediction (e.g. Selby and Kockelman, 2013; Zhao and Park, 2004; Sarlas
and Axhausen, 2015b), and road crash predictions (e.g. Song et al., 2006;
Aguero-Valverde and Jovanis, 2010). Nevertheless, there is a relatively lim-
ited number of applications employing spatial regression models for the
explanation of how transport related phenomena, such as speed or flows,
occur and evolve over the space.
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Interestingly, the presence of endogeneity issues was demonstrated in a
number of studies of a different scope though, involving treatment for the
simultaneity between mean speed and speed deviations (e.g. Shankar and
Mannering, 1998; Himes and Donnell, 2010). The same issue was also ac-
knowledged for the case of accident models, accounting for the simultane-
ity between speed and accident rates (e.g. Cheng et al., 2013; Quddus, 2013).
In another study by Porter and Wood (2013), a simultaneous equation mod-
elling approach was proposed to explore the relationships between mean
speed, standard deviation of speed and work zone design characteristics.
Last, another strand of literature is concerned with modelling of mean
speed values for emission models. A review of such applications is given
by Boulter et al. (2007).

In conclusion, two main considerations should be made with regard to
the deployment of linear regression techniques for speed prediction pur-
poses. First, the model should account for spatial dependence issues. The
second one relates to the endogenous character of volume in a speed model
formulation. Nevertheless, both of the issues have the capacity of giving
rise to various statistical shortcomings, such as invalid statistical testing,
and inconsistent and biased parameter estimates, if remain untreated. In
this chapter, the focus is centered on the first consideration. More specifi-
cally, building upon the work of Hackney et al. (2007), a larger network is
employed in conjunction with a different source of speed data to enhance
the understanding of the application of spatial regression models for speed
predictions. The inclusion of various variables in the model specification is
explored while a particular focus is given to the construction of the weight-
ing matrices and the identification of the optimum number of neighbors.
The analysis that described in this chapter is based on Sarlas and Axhausen
(2015a). Last, it should be noted that the simultaneous treatment of both
considerations takes place in a latter chapter of the thesis.

6.2 methodology

6.2.1 Spatial regression models

Spatial econometrics was popularized by Anselin (1988), defined by the
same author as “the domain that deals with the peculiarities caused by space
in the statistical analysis of regional science models". More specifically, these
peculiarities are caused by the dependence and the heterogeneity of data
in space. "As spatial dependence, it can be considered to be the existence of a
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functional relationship between what happens at one point in space and what
happens elsewhere. Spatial heterogeneity is considered to be the lack of structural
stability of the various phenomena over space, and also the lack of homogeneity of
the spatial units of the observations.” (Anselin, 1988).

Traditional statistical and econometric models have evolved over the
years to account for the spatial effects. In this regard, spatial regression
models are defined as the use of regression models that account for the im-
pact of spatial effects in their specification and estimation. A prominent ex-
ample of such models is the family of spatial simultaneous autoregressive
models (SAR) which account for the spatial dependence by the inclusion
of relevant spatial autoregressive components. A thorough overview and
discussion of SAR models can be found in Anselin (1988); LeSage (1999);
Elhorst (2014).

Spatial dependence issues arise due to the presence of spatial correlation
on the dependent variable which fails to be fully explained by the different
variables included in the model specification. As a result, the remaining
correlation is "transmitted" to the residuals, leading to a violation of the
independent and identically distributed (iid) assumption of OLS (autocor-
relation). The presence of autocorrelated residuals gives rise to statistical
problems such as unreliable statistical tests and biased and inconsistent
parameter estimates.

SAR models constitute a modelling medium allowing to treat for this
issue, assuming different underlying mechanisms that generate the spatial
dependence. As suggested by Ord (1975), the estimation should be con-
ducted by means of maximum likelihood since the ordinary least square
(OLS) estimation produces inconsistent estimates. In brief, the assumption
of these models is that the response variable at each location is a combina-
tion of the explanatory variables at that location but also of the response
of neighboring locations.

Three main types of SAR models can be found in the literature, each
one having different characteristics based on their underlying assumptions
about where the autoregressive process occurs (Kissling and Carl, 2007;
LeSage and Pace, 2004). At first, the spatial error autoregressive model
(SAR error) assumes that the spatial dependence is in the error term of the
model, and thus the spatial autoregressive process is applied to it. As El-
horst (2014) states, "Interaction effects among the error terms are consistent with
a situation where determinants of the dependent variable omitted from the model
are spatially autocorrelated, or with a situation where unobserved shocks follow a
spatial pattern". The formulation of the model is:
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Y = βX + u (6.1)

with u = λWu + ε, where Y is a vector with N values of the dependent
variable, β is a vector with the regression coefficients, X is a matrix with
the independent variables, u the residual term, λ the spatial autoregressive
coefficient, W a matrix with the contiguity structure having dimensions N2,
and ε a vector of independent and identically distributed (iid) error terms.

The spatial lag autoregressive model (SAR lag) assumes that the spa-
tial dependence exists in the response variable (endogenous interaction
effects), and applies the spatial autoregressive process to the response vari-
able, treating it as a lagged variable. The formulation of the model is:

Y = ρWY + βX + ε (6.2)

where ρ is the spatial autocorrelation parameter, and WY is the term
corresponding to the lagged dependent variable.

The third type of autoregressive model, namely X the spatial lag of x
(SLX), assumes that the spatial dependence exists in the independent vari-
ables (exogenous interaction effects), and thereupon applies the spatial au-
toregressive process to them. The formulation of the model is:

Y = βX + WXγ + ε (6.3)

with γ a vector of parameters.
Apart from the three main SAR models, where each one assumes differ-

ent interaction effects, SAR models assuming more than one interaction ef-
fects can be formulated. More specifically, the spatial mixed autoregressive
model (SARmix, also denoted as spatial Durbin model in some applica-
tions; e.g. in LeSage and Pace (2004)) assumes that the spatial dependence
exists in both the response and the independent variables. The formulation
of the model then becomes:

Y = ρWY + βx + WXγ + ε (6.4)

The spatial autocorrelation model (SAC) assumes that the spatial depen-
dence exists both in the response variable and the error term. The formu-
lation of the model in that case is:

Y = ρWY + βx + u (6.5)
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On the front of spatial heterogeneity, geographically weighted regres-
sion (GWR) constitutes a technique which allows different relationships to
exist in space, instead of a global relationship (Brunsdon et al., 1996). The
formulation of the model corresponds to an extended simple linear model
with spatially-varying parameters and is given in formula (6.6).

Yk = βkx + ε (6.6)

with k the location index. The estimation of GWR models typically takes
place using a weighted least squares approach where the weights are de-
fined by means of a weighting function of distance (e.g. negative exponen-
tial).

6.2.2 Spatial weight matrices

A key aspect of the spatial regression models is to account for the spatial
structure of the data. This is facilitated by the inclusion of a spatial weight
matrix, denoted as W, in the model specification. In summary, the spatial
weight matrix W serves a two-fold purpose. First, it specifies the neighbor-
hood of each location, and second it assigns weights on the neighboring
locations on the basis of different schemes (e.g. binary, inverse distance
weighted etc).

In the transport network case, it specifies the expected direction and
mechanism of influence. An overview of the standard approaches concern-
ing the construction of the W can be found in Harris et al. (2011) while
the identification of the "true" spatial matrix issue constitutes a relatively
understudied topic, lacking formal guidance (Anselin, 2002). Nevertheless,
the majority of the identification approaches have developed along the
lines of minimizing the Akaike criterion (AIC) (e.g. Seya et al., 2013; Her-
rera et al., 2012).

It should be noted that even though spatial econometrics have found
wide application in applied research (e.g. regional studies), their applica-
tion has not been without theoretical objections and skepticism. For in-
stance, in Gibbons and Overman (2012) it is argued that identification prob-
lems are inherent to the estimation of such models for reasons associated
with the formation of the W (e.g. unknown true weights, endogeneity, etc.).
In light of the criticism, an interesting brief overview of the main points
raised against the use of spatial econometrics is presented by Partridge
et al. (2012).
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Figure 6.1: Case study network
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6.3 case study

In order to assess the plausibility of applying SAR models for localized
speed prediction purposes, a large-scale case study is conducted. A part
of the national network of Switzerland is selected, including the canton of
Zurich and the neighboring cantons. In particular, the full road network
of the North-East Switzerland is included in the chosen network. A nav-
igational network is used, commercially available by Tom-Tom, including
average daily speed values, estimated based on GPS measurements. In
detail, the study network includes approximately 220’000 links (having ex-
cluded the secondary, or less important links) while the remaining links
are classified based on five available types. In addition to the estimated
speeds, the set speed limit is available. A map of the study network can be
seen in figure 6.1.

The average daily speed of a typical weekday is the dependent variable
of interest for the regression. The regression yields two speed components;
first, the average road speed which is a function of the speed limit, the
link type, and the length, and constitutes a non-spatial quantity. Spatial
variation is added to the link speed estimates in the second component
through the spatially resolved explanatory variables. Spatially resolved
road and public transport network densities represent the effect of road
supply on speed while spatial data on population and employment den-
sities are taken to be indicative of the intensity of local activities, hence
reflecting travel demand locally (Hackney et al., 2007).
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6.3.1 Spatially resolved variables

Apart from the network data that presented above, the spatially resolved
variables constitute an important component of the regression model since
they introduce variation in the estimated average values, as these result
from the non-spatial component of the model. At first, the road and public
transport densities are of apparent interest since they represent the effect
of road supply and also the spatial competition between the private and
public modes, especially in urban areas. The road density is estimated as
the total length of links within a given area and it is calculated for different
radii.

The full navigational network is used for the density calculation. Besides
the network’s density, the density of ramp links is calculated as well as it
is expected to have local impact on speed by providing access to the motor-
way network. In the case of accounting for the impact of the public trans-
port network, it is less straightforward the way that a pertinent variable
can be constructed. As an approximation, the density of public transport
stops within a given area, is considered to serve as a good starting point.

Another source of spatially resolved variables corresponds to the de-
mand aspects. More specifically, the socio-demographic data of interest
are the population and the employment locations, aggregated per hectare
available from the BfS1. The population data were collected in the year
2011, while the employment data in the year of 2008. Given the disaggre-
gate level of these data (hectare based), they are also taken into account
as densities over different radii. In addition to the normal densities, Gaus-
sian kernel densities are calculated as well to account for the diminishing
impact of the socio-demographic data over the space. The choice of inter-
acting the various demand densities with the link types allows to diffuse
the demand into the network in a disproportionate way.

At last, the spatially resolved variables need to be associated to the links
of the network. Thereupon, each link of the network is associated with
the hectare (cell) values of each spatial variable, closest to the upstream
endpoint of the link.

6.4 model estimation

In this section the different regression models estimates are presented and
compared to assess the impacts of accounting for the spatial dependence of

1 Swiss Federal Statistical Office
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speeds. More specifically, a standard linear regression model is estimated
in terms of OLS, while four SAR models are estimated subsequently. A
comparison of the estimated models is conducted in order to shed some
light on the plausibility of the SAR models to predict traffic related vari-
ables, as speed, and also to what extent they can accomplish that.

At first, an OLS model is estimated to serve as the basis for testing the
necessity of accounting appropriately for spatial dependence issues (auto-
correlation). It is expected that the OLS model is going to give rise to biased
and inconsistent estimates, and thus the resulted adjusted coefficient of
determination will be inconsistent and not true.

In addition, OLS predicted values are going to be used for testing if
spatial association exists in the residuals by estimating Moran’s I measure.
Depending on these results, a justified explanation of whether or not the
need to account for spatial dependence arises. The independent variables
that are included in the model are determined based on their predictive
power and in accordance to the appropriate statistical tests, avoiding to
give rise to multi-collinearity issues (none of the correlations is higher than
0.41). The summary statistics of the included independent variables are
presented in table 6.1, while the specification of the model along with the
estimated coefficients are presented in table 6.2.

As it can be seen in table 6.2, the adjusted R2 is extremely high while
the estimated parameters are all statistically significant, a fact which can be
attributed to the large sample size. Employment and population densities
are not used at the same time due to their high correlation. Notably, a
differentiation of the employed densities radius for different links’ types is
found to be more appropriate and thus chosen, instead of a fixed radius
density for all links’ types. This finding exhibits that depending on the
type of the link, the impact of spatial resolved variables on speed is not
homogeneous, indicating a rather localized impact in the case of lower link
types. Ramps’ density variables have a negative impact on speed which
can be explained by the fact that the higher the density of ramps, more
vehicles are diffused in the adjacent local road network, leading to higher
traffic loads.

The negative sign of the line density is not according to our expecta-
tions since it would be more reasonable to assume that the higher the local
supply of roads, the more alternative routes exists, and thus lower conges-
tion occurs. However, the sign of line density exhibits the opposite which
reveals that locally, the higher number of roads corresponds to more inter-
sections where the lower classified links often have to yield priority. The
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Table 6.1: Summary statistics of employed variables

Variable Mean St.Dev.

Average daily speed [km/h] 48.82 15.63

Speed-limit [km/h] 52.93 13.28

Highways [dummy] 0.027 -

Trunk roads [dummy] 0.006 -

Collector roads [dummy] 0.008 -

Distributor roads [dummy] 0.392 -

Urban roads [dummy] 0.567 -

Road curveness [degrees] 0.048 0.186

Distributor: Public transp. stops density, r=0.5km [stops/km2] 3.242 3.566

Urban: Public transp. stops density, r=0.2km [stops/km2] 5.17 7.37

Highways: Population density, r=5km [pop/km2] 683.394 820.818

Trunk roads: Population density, r=2km [pop/km2] 955.504 1365.736

Collector roads: Employment positions density, r=2km*[empl/km2] 726.682 1798.524

Distributor roads: Employment positions density, r=1km*[empl/km2] 927.006 2408.971

Urban roads: Employment positions density, r=0.5km*[empl/km2] 1114.429 3003.314

Urban roads: ramps’ density, r=1km [m/km2] 0.128 0.316

Distributor roads: road density, r=500 [m/km2] 16.769 7.67

Urban roads: road density, r=100 m [m/km2] 28.841 11.215

Highways with length less than 0.1 km [dummy] 0.441 -

Trunk roads with length less than 0.1 km [dummy] 0.641 -

Collector roads with length less than 0.1 km [dummy] 0.762 -

Distributor roads with length less than 0.1 km [dummy] 0.739 -

Urban roads with length less than 0.1 km [dummy] 0.705 -

Highways with length between 0.1 km and 0.2 km [dummy] 0.169 -

Trunk roads with length between 0.1 km and 0.2 km [dummy] 0.103 -

Collector roads with length between 0.1 km and 0.2 km [dummy] 0.064 -

Distributor roads with length between 0.1 km and 0.2 km [dummy] 0.067 -

Urban roads with length between 0.1 km and 0.2 km [dummy] 0.082 -

Note: *=kernel weighted
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Table 6.2: Estimated OLS coefficients

Dependent variable: Average daily speed Coef. Std. Error

Speed-limit 0.472∗∗∗ (0.003)

Highways: Constant 73.801∗∗∗ (0.945)

Trunk roads: Constant 52.559∗∗∗ (1.181)

Collector roads: Constant 54.919∗∗∗ (1.002)

Distributor roads: Constant 45.655∗∗∗ (0.235)

Urban roads: Constant 34.975∗∗∗ (0.199)

Road curveness −10.420∗∗∗ (0.109)

Distributor: PuT stops density, r=0.5km −0.339∗∗∗ (0.011)

Urban: PuT stops density, r=0.2km −0.149∗∗∗ (0.004)

Highways: ln(population), r=5km −3.795∗∗∗ (0.134)

Trunk roads: ln(population), r=2km −2.939∗∗∗ (0.162)

Collector roads: ln(employment), r=2km,kernel weighted −3.529∗∗∗ (0.127)

Distributor roads: ln(employment), r=1km, kernel weighted −1.822∗∗∗ (0.03)

Urban roads: ln(employment), r=0.5km, kernel weighted −0.937∗∗∗ (0.017)

Urban roads: Ramps’ density, r=1km −0.666∗∗∗ (0.119)

Distributor roads: Road density, r=500 m −0.263∗∗∗ (0.006)

Urban roads: Road density, r=100 m −0.152∗∗∗ (0.003)

Highways: Length < 0.1 km, Dummy −3.897∗∗∗ (0.282)

Trunk roads: Length < 0.1 km, Dummy −10.902∗∗∗ (0.733)

Collector roads: Length < 0.1 km, Dummy −11.611∗∗∗ (0.798)

Distributor roads: Length < 0.1 km, Dummy −6.439∗∗∗ (0.114)

Urban roads: Length < 0.1 km, Dummy −4.648∗∗∗ (0.09)

Highways:0.2 km > Length > 0.1 km, Dummy −2.812∗∗∗ (0.339)

Trunk roads: 0.2 km > Length > 0.1 km, Dummy −4.222∗∗∗ (0.868)

Collector roads: 0.2 km > Length > 0.1 km, Dummy −6.447∗∗∗ (0.955)

Distributor roads: 0.2 km > Length > 0.1 km, Dummy −0.263∗∗∗ (0.006)

Urban roads: 0.2 km > Length > 0.1 km, Dummy −1.989∗∗∗ (0.103)

Adjusted R2
0.964

Log-likelihood -807852

AIC 1615760

Observations 220599

df 220572

+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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impact of short length variables differs among the link types and shows
that the short length has an impact on the speed, possibly because of the
close proximity of intersections.

6.4.1 Estimation of spatial regression models

The first key aspect before proceeding to the estimation of the spatial
regression models is to examine the existence of spatial autocorrelation,
and thus justify if the need for the estimation of spatial regression mod-
els arises. Spatial autocorrelation is normally measured in terms of the
Moran’s I index which quantifies the degree of autocorrelation on the
residuals of a model (0 value indicates no autocorrelation, while 1 or -1
perfect autocorrelation) (Anselin, 2001). However, in order to facilitate this
calculation, the spatial structure of data should be defined beforehand, in
the form of an adjacency matrix.

The inclusion of the adjacency in the model specification incorporates
information in the model about the extent of the neighborhood, the type
of the adjacency, and the relative weight that should be assigned on the
neighboring locations. In order to identify the optimum spatial matrix for
the problem at hand, the impact of different adjacency matrices type is as-
sessed. Consequently, three different adjacency matrices schemes are con-
structed and tested thoroughly; one that identifies all the k-nearest neigh-
bors based on the Euclidean distance, one that identifies the k-th order
nearest neighbors in terms of network distance, and last, one where only
the k-th order straight movements are included in the adjacency matrix.

For all three schemes, two variations of the adjacency matrix are exam-
ined to conclude if the assigned weight should be uniform for all obser-
vations (denoted as normal), or calculated based on a weighting function
aiming in capturing the diminishing dependence of links over the distance
or order (distance and order decay). In the first case, the weight is defined
based on the inverse distance of each link from the midpoint of the base
link. In the case of the other two weighting schemes, the weight is assigned
as the inverse of the order of connectivity (k). Moreover, in all tested cases,
each row of the weighing matrices is standardized to one.

Subsequently, the spatial autocorrelation of the OLS residuals is esti-
mated for the different developed spatial weighting schemes, and it is
found to lie within the range of 0.5 to 0.7, being statistically highly sig-
nificant. This finding reveals the presence of strong spatial autocorrelation



6.5 results - discussion 95

in the residuals of the OLS models, that should be treated through the
estimation of SAR models.

In light of this, four SAR models are estimated for different number of
neighbors and weighting schemes, namely the SARerror, the SARlag, the
SAC, and the Durbin model. The optimum number of neighbors for each
model is identified on the basis of minimizing the Akaike Criterion. The
estimation of the SAR models and the construction of the weighting matri-
ces was conducted in R (R Core Team, 2018), making use of the package
"spdep" (Bivand et al., 2011). It should be noted that to facilitate computa-
tionally the estimation of the SAR models, the lower upper (LU) method
for the decomposition of sparse matrix is used (LeSage, 1997). The analyti-
cal results are presented in table 6.3.

At first, the optimum number of neighbors for each scheme and varia-
tion is found to be the same for all the estimated models. More specifically,
for the case of the k-nearest adjacency matrix, the optimum number of
neighbors is equal to six for the normal weighting scheme, while for the
distance decay weighting scheme it is eight. In the case of the other two
weighting schemes, the optimum number of k-th order neighbors is found
to be one. An interesting finding is that the application of an order decay
function produces better results compared to the normal weighting func-
tion, a trend which is not present in the case of the k-nearest weighting
scheme. Nevertheless, it can be concluded that the third weighting scheme,
including the 1st order straight links, gives the best results and hence is the
one employed for the comparison and the evaluation of the SAR models
that follows.

6.5 results - discussion

In tables 6.4 and 6.5, the estimated coefficients, along with the relevant
goodness of fit measurements, can be seen. In summary, the coefficients
of the OLS model differ significantly from the corresponding ones of the
SAR models, reflecting that omitting to take into account the spatial depen-
dence, the estimated coefficients are inconsistent and biased since more (or
less) explanatory power is attributed to them. SAR models are significantly
better than the OLS one, all of them having smaller values (in absolute
terms) of both the AIC and the Log-likelihood measure.

It should be noted that the formulation of the model remains the same in
the different model estimations in purpose, in order to allow a comparison
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Table 6.4: Estimated coefficients for the SAR error and SAR lag model

Dependent variable: Average daily speed SAR error SAR lag

coef. coef.

Speed-limit 0.254*** 0.272***

Highways: Constant 96.456*** 38.421***

Trunk roads: Constant 56.704*** 26.84***

Collector roads: Constant 54.042*** 30.047***

Distributor roads: Constant 38.941*** 24.363***

Urban roads: Constant 30.332*** 20.189***

Road curveness -3.592*** -4.248***

Distributor: PuT stops density, r=0.5km -0.083*** -0.186***

Urban: PuT stops density, r=0.2km -0.095*** -0.073***

Highways: ln(population), r=5km -7.978*** -2.073***

Trunk roads: ln(population), r=2km -3.602*** -1.497***

Collector roads: ln(employment), r=2km,kernel weighted -3.429*** -2.04***

Distributor roads: ln(employment), r=1km, kernel weighted -1.081*** -0.881***

Urban roads: ln(employment), r=0.5km, kernel weighted -0.501*** -0.404***

Urban roads: Ramps’ density, r=1km 0.346* -0.054

Distributor roads: Road density, r=500 m -0.271*** -0.133***

Urban roads: Road density, r=100 m -0.112*** -0.093***

Highways: Length < 0.1 km, Dummy -0.713*** -1.723***

Trunk roads: Length < 0.1 km, Dummy -2.064*** -4.967***

Collector roads: Length < 0.1 km, Dummy -3.109*** -5.915***

Distributor roads: Length < 0.1 km, Dummy -2.645*** -4.147***

Urban roads: Length < 0.1 km, Dummy -3.622*** -4.127***

Highways:0.2 km > Length > 0.1 km, Dummy -0.725*** -0.797***

Trunk roads: 0.2 km > Length > 0.1 km, Dummy -1.632*** -2.64**

Collector roads: 0.2 km > Length > 0.1 km, Dummy -3.047*** -3.148***

Distributor roads: 0.2 km > Length > 0.1 km, Dummy -1.931*** -2.285***

Urban roads: 0.2 km > Length > 0.1 km, Dummy -2.474*** -2.258***

λ 0.928*** -

ρ - 0.459***

Log-likelihood -705197 -733084

AIC 1410453 1466226

Residuals spatial autocorrelation 0.013*** 0.342***

Observations 220599

df 220571 220571

+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table 6.5: Estimated coefficients for the SAC and Durbin model

Dependent variable: Average daily speed SAC Durbin

coef. coef. lag. coef.

Speed-limit 0.260*** 0.267*** -0.161***

Highways: Constant 83.897*** 93.021*** -76.444***

Trunk roads: Constant 51.514*** 53.107*** -40.41***

Collector roads: Constant 51.287*** 52.499*** -39.803***

Distributor roads: Constant 38.95*** 36.618*** -25.288***

Urban roads: Constant 30.428*** 29.003*** -19.623***

Road curveness -3.597*** -4.147*** 1.477***

Distributor: PuT stops density, r=0.5km -0.143*** -0.079*** -0.007***

Urban: PuT stops density, r=0.2km -0.094*** -0.087*** 0.051***

Highways: ln(population), r=5km -5.962*** -7.776*** 7.026***

Trunk roads: ln(population), r=2km -3.15*** -3.21*** 2.58***

Collector roads: ln(employment), r=2km,kernel weighted -3.452*** -3.25*** 2.625***

Distributor roads: ln(employment), r=1km, kernel weighted -1.244*** -1.009*** 0.635***

Urban roads: ln(employment), r=0.5km, kernel weighted -0.554*** -0.477*** 0.302***

Urban roads: Ramps’ density, r=1km -0.049 0.543*** -0.51***

Distributor roads: Road density, r=500 m -0.256*** -0.225*** 0.165***

Urban roads: Road density, r=100 m -0.115*** -0.117*** 0.058***

Highways: Length < 0.1 km, Dummy -0.859*** -1.315*** -0.23*

Trunk roads: Length < 0.1 km, Dummy -2.368*** -3.554*** -0.177*

Collector roads: Length < 0.1 km, Dummy -3.218*** -4.912*** 0.336**

Distributor roads: Length < 0.1 km, Dummy -2.786*** -3.573*** 0.913***

Urban roads: Length < 0.1 km, Dummy -3.823*** -3.994*** 2.293***

Highways:0.2 km > Length > 0.1 km, Dummy -0.769*** -0.843*** 0.298***

Trunk roads: 0.2 km > Length > 0.1 km, Dummy -1.835*** -2.168*** 0.618*

Collector roads: 0.2 km > Length > 0.1 km, Dummy -3.027*** -3.039*** 2.377***

Distributor roads: 0.2 km > Length > 0.1 km, Dummy -2.009*** -2.108*** 1.287***

Urban roads: 0.2 km > Length > 0.1 km, Dummy -2.56*** -2.477*** 1.884***

λ 0.742*** -

ρ 0.215*** 0.722***

Log-likelihood -694294 -695199

AIC 1388647 1390509

Residuals spatial autocorrelation -0.034 0.101***

Observations 220599

df 220570 220554

+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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of all models in terms of identifying the impacts that the four different
SAR models have both on the estimated coefficients and on the results.

In addition, the in-sample predictive power of each model is calculated,
in order to facilitate their comparison and draw some conclusions also
with respect to their ability to make accurate predictions. The predictive
accuracy, in terms of predicted values that are within different specified
ranges, is presented in table 6.6. In summary, OLS model performs rela-
tively bad since less than 40% of the predictions fall within a range of 10%.
On the other hand, the predictive accuracy of the SAR models is much
better and it is clearly reflected that accounting for the spatial dependence,
can lead to significantly improved predictions. The summary statistics of
the percent error term also provide support to this argument.

Between the first two SAR models, clearly the SARerror model is better
than the SARlag model in terms of AIC, indicating that accounting for the
spatial dependence in the error terms of the model is more important than
accounting for the spatial dependence in the response variable. Neverthe-
less, the SAC model gives the best results and improves further the results
of SARerror model which is logical since both of the models account for
the spatial dependence in the error terms, while the slight improvement
in terms of AIC and predictive power can be attributed to the additional
accounted spatial interaction between the dependent variables.

On the other hand, Durbin model gives slightly worse results in terms
of AIC and similar predictive results. Attempting a closer look at the es-
timated coefficients of the Durbin model, the majority of the lagged vari-
ables’ coefficients have opposite sign, compared to the variables’ coeffi-
cients at the response location, which matches our expectations due to the
formulation of the model. However, the magnitude of the spatial autocor-
relation parameter (ρ) indicates that alarmingly high weight is attributed
to the dependent variable of the neighbor(s), which as mentioned earlier
is endogenous interaction and thus can raise concerns, while the impact
of the independent variables at the response location is outweighed signif-
icantly. In addition, the nature of the included variables in the model spec-
ification, especially of the socio-demographic ones, can give rise to multi-
collinearity issues since they are not truly independent in space. Moreover,
a substantial and statistically significant spatial autocorrelation remains in
the residuals of the SARlag and the Durbin model, that can be taken as in-
dicative of biased coefficients’ estimation. On the other hand, the SARerror
model has relatively low remaining spatial autocorrelation (0.01), while the
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SAC model has statistically insignificant remaining spatial autocorrelation
which shows that the residuals have spatial randomness.

Table 6.6: Predictive accuracy of estimated models in terms of predicted speeds
within specified range of actual speeds, and summary statistics of
their errors

Model 2% 5% 10% 15% 20% 30% SDE ME

OLS 8.01% 20.35% 39.86% 57.07% 70.36% 84.69% 27.25% -5.13%

SARerror 21.25% 47.20% 69.89% 81.07% 87.21% 93.68% 16.81% -2.05%

SARlag 14.57% 35.27% 61.09% 75.31% 82.82% 90.88% 19.33% -2.58%

Durbin 20.63% 46.19% 70.04% 81.18% 87.39% 93.95% 16.81% -2.05%

SAC 21.09% 47.26% 70.99% 81.92% 87.84% 94.05% 17.04% -1.92%

Note: SDE=standard deviation of error; ME=mean error

6.6 conclusions

In the present chapter, a methodology for predicting localized speed esti-
mates for a large scale network was presented. The alternative of SAR mod-
els as direct demand model was examined and evaluated. In summary, the
presented results of the SAR models highlighted the impact of accounting
for spatial dependence issues when modelling transport related data. Fur-
thermore, the SAC model was found to be the most appropriate among
the SAR models for the given prediction task. In general, all SAR models
outperformed substantially the simple OLS model, both in terms of good-
ness of fit measures, and in terms of predictive ability. Furthermore, the
inconsistency of the estimated parameters of the OLS model surfaced, pro-
viding solid evidence in favor of accounting for spatial dependence issues
when modelling speed values.

A particular focus was given to the identification of the optimum W. In
this regard, three formulations were checked, conceptually driven by dif-
ferent underlying hypotheses. In conclusion, it was found that the most ap-
propriate one for the given situation was the one based on network connec-
tivity. Moreover, the process of identifying the optimum adjacency matrix
based on a goodness-of-fit measure criterion was presented analytically.

In a following chapter (chapter 8), the speed estimation task is revisited
to account for the endogenous nature of demand. In addition, the implica-
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tions of this revision are investigated, both in terms of model specification,
estimation, and optimum spatial weight matrix.
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7
A A D T E S T I M AT I O N

7.1 introduction

In this chapter, the second part of the developed direct demand modelling
approach, concerning the issue of volume predictions, is presented. Many
studies in the field of transport modelling have dealt with the issue of an-
nual average daily traffic (AADT) prediction, developing different method-
ologies to tackle the problem. In general, two main streams of literature
can be found. One that exploits different modelling techniques aiming at
resolving the issues of spatial dependence and heterogeneity, while in the
second stream the construction of variables describing the demand pat-
terns is investigated. In general terms, the employed methodologies vary
from aspatial regression to statistical techniques accounting for the pres-
ence of spatial effects. In particular, the latter encompass two different
approaches. The first one utilizes a data-driven approach of spatial statis-
tics called kriging, while the second one the geographically weighted re-
gression of the class of spatial econometric models. In summary, the vast
majority of the studies have proposed methodologies tailored for small, or
medium, scale level of analysis in terms of network size. In addition, the
focus of those studies has been mainly on the interpolation of AADT from
known to unmeasured locations.

More specifically, Xia et al. (1999) developed a multiple regression model
for estimating AADT on non-state roads of Florida and found that the most
important contributing predictors are the roadway characteristics along
with the area type, while surprisingly socioeconomic variables were found
to have an insignificant impact on AADT. Similarly, Mohamad et al. (1998)
developed a multiple regression model for AADT prediction for county
roads in Indiana, incorporating various demographic variables which in
this case were found to be statistically significant. In a similar context, De-
syllas et al. (2003) developed a multiple regression analysis model for
pedestrian flows.

The plausibility of applying GWR for estimating AADT was demon-
strated in another study by Zhao and Park (2004) where it was shown that
it can lead to the enhancement of the prediction accuracy, compared to the
aspatial ordinary linear regression. Eom et al. (2006) exploited ordinary
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kriging for interpolating AADT for non-freeway facilities in Wake County,
North Carolina, concluding that such models outperform the ordinary re-
gression models in terms of predictive capability. In accordance with the
same line of thought, Wang and Kockelman (2009) applied kriging-based
methods for AADT prediction at unmeasured locations, making use of
Texas highway count data, and highlighted further the utility of applying
kriging for prediction purposes on a statewide network. Similarly, Selby
and Kockelman (2013) explored the application of two spatial methods for
prediction of AADT on the same statewide network (universal kriging and
GWR), and they concluded that both methods reduce predictions errors
over aspatial regression techniques whereas the predictive capabilities of
kriging exceed those of GWR. Interestingly, employing network distances
instead of Euclidean ones for the kriging models showed no enhanced per-
formance.

Furthermore, Pulugurtha and Kusam (2012) developed a generalized es-
timating equation model to estimate AADT using integrated spatial data
based on multiple network buffer bandwidths. In particular, spatial data
included off-network characteristics, such as demographic, socio-economic
and land use characteristics, captured over multiple network buffer band-
widths around a link and integrated by the employment of distance de-
creasing weights. The methodology was applied on a city level (Char-
lotte, North Carolina). As a continuation of the previous study, Duddu
and Pulugurtha (2013) exploited the application of the principle of demo-
graphic gravitation to estimate AADT based on land-use characteristics on
the same network. A negative binomial model was estimated along with
neural network models. Interestingly, the results obtained showed that the
developed models yielded substantially lower errors in comparison to out-
puts from the traditional four-step method.

In a study by Lowry (2014), a new method for interpolating AADT was
presented, tailored for communities where attributes such as roadway char-
acteristics, land-use etc., are uniform over space, and thus their inclusion
in the model bears no explanatory power. The new method used novel
explanatory variables that are derived through a modified form of stress
centrality, a network analysis metric that quantifies the topological impor-
tance of a link in a network. The presented case study showed high quality
results while later on the same methodology found application for estimat-
ing directional bicycle volumes as well (McDaniel et al., 2014). In a recent
study by Jayasinghe et al. (2019), a coherent modelling approach for AADT
prediction purposes was proposed that relies solely on different network
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analysis metrics, thus being suitable for cases where data scarcity is the
norm. Likewise, the application of such metrics was also demonstrated for
the case of public transport relative ridership (Luo et al., 2019).

7.1.1 Framework

This chapter focuses on developing a direct demand modelling approach
for prediction of AADT on a nationwide network, an issue which has not
been sufficiently addressed in the existing literature. The particularity of
the nationwide network level case stems from the incapability of the spa-
tial densities of different socioeconomic data to capture adequately the
demand patterns that occur on the links, since they fail to bear explana-
tory power with respect to high volume of interregional through traffic.
Naturally, the construction of a variable that can account for interregional
flows necessitates, taking into consideration the direction of potential inter-
actions, allowing in turn to capture the demand capacity interaction at the
core of transport modelling. More specifically, the previously introduced
betweenness-accessibility variable (chapter 5) is exploited for the particular
problem at hand.

In addition to the already tested models in the literature, the family of
spatial simultaneous autoregressive (SAR) models is exploited with their
capability to be applied for AADT prediction purposes. The advantage of
such models is that they can resolve spatial dependence issues, offering a
structural explanation of the AADT and since their estimated coefficients
are unbiased and consistent, they can fulfill both interpolation and fore-
casting purposes which is important for policy evaluation and project ap-
praisal purposes. In summary, a set of different models is estimated and
evaluated in order to draw sound conclusions on the newly constructed
variable and also on models’ capabilities to be employed for AADT pre-
diction purposes and thus highlight in a quantifiable way their strengths
and weaknesses. At last, a comparison of models predictive accuracy to
the output of a traditional four-step model is conducted to show to what
extent such models can constitute a trustworthy alternative to more ad-
vanced, but definitely more data demanding and computationally burden-
some, models. It should be noted that this chapter is based on a working
paper of the author with a revisited analysis in place (Sarlas and Axhausen,
2015b).
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7.2 methodology

As mentioned earlier on, the quantification of travel demand constitutes
an important and critical dimension with respect to the performance of
the direct demand modelling approaches. To that end, one potential alter-
native is exploiting network analysis indicators. To that end, centrality is
an index that aims to identify the most influential persons in the context of
a social network. Different centrality indices have been introduced over the
years, aiming at the identification and the quantification of the importance
of a particular person in a social network. In general, centrality indices
take into account the number of shortest paths that pass through a given
link/node. In the case where a capacity constraint exists in the form of
a particular weight/cost associated with each link/node, then this weight
should be considered in the routing algorithm for the identification of the
shortest paths.

Departing from the social sciences questions, centrality indices are mean-
ingful for all networks’ analysis. From this viewpoint, centrality indices
are meaningful for the analysis of transport networks as well and can pro-
vide a quantifiable measure of the importance of links, calculated based
on the network structure and the cost of traversing each link (distance
or time) . In the case of transportation, networks correspond to directed
networks, given the allowed and prohibited turning movements on its ver-
tices (nodes), and are typically modelled as higher level networks in order
to account for them.

By definition, higher hierarchical links have high centrality values, while
that might be the case as well for lower hierarchical links given the network
structure. In the case of transport networks, the hierarchy is given by the
functional class of the roads where their importance is normally matched
by the number of trips using the given link. Naturally, two issues with re-
spect to the application of the stress centrality index for transport networks
come to the surface. First, the issue of travel demand since not all nodes
are attracting, or producing the same number of trips. Second, interaction
between nodes tends to diminish and becomes very small as the distance
between them increases. Based on the above, utilizing the betweenness-
accessibility variable advances as an apparent choice. It should be noted
that the constructed variable mirrors to a great extent the first two steps
of the traditional four-step model, however this is inevitable due to the
nature of the relationships that this variable attempts capturing.
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7.2.1 Modelling Approaches

In order to test the predictive accuracy of models for AADT prediction,
the application of different models is examined. In particular, the classi-
cal OLS model constitutes the starting point due to its simplicity, where
the dependent variable Y is described by a linear function of independent
variables X with the parameters β being the least squares estimates, and
ε the corresponding residual terms (7.1). One of the main assumptions of
the model requires that the error should be spherical, meaning that they
should be homoscedastic and not auto-correlated.

Y = βX + ε (7.1)

where Y is a vector with N values of the dependent variable, β is a
vector with the regression coefficients, X is a matrix with the independent
variables, while ε is a vector with the residuals.

However, and as mentioned before the application of the OLS estimator
for the statistical analysis of spatial data can give rise to residuals that are
not independent, but spatially correlated, thus leading to the violation of
the assumptions of the OLS estimator. In such cases, SAR and GWR mod-
els become of high relevance in order to properly treat for spatial autocor-
relation. Apart from those models, another popular modelling approach
is the kriging which is a geostatistical technique used for interpolation
purposes. In the case of ordinary kriging, the assumption is that the un-
observed value is decomposed into two terms, the local trend βX, and the
error terms which are spatially correlated and their variance is assumed
to follow a semivariogram relation γ(dij), as a function of the distance d
between the points. Two of the most popular types of semivariogram func-
tions are namely the Gaussian and the spherical ones which are presented
in formulas (7.2 and 7.3). More information regarding kriging and the in-
volved parameters can be found in Oliver and Webster (1990).

γ(dij; c0, ce, αs) = c0 + ce

(
1.5

dij

αs
− 0.5

(dij

αs

)3
)

(7.2)

γ(dij; c0, ce, αs) = c0 + ce

(
1− e−

dij
αs

)
(7.3)

Last, the nature of AADT data governs the choice of another modelling
approach. More specifically, the particularity of using count data, such as
AADT, as the dependent variable in the context of linear regression mod-
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els, stems from their non-negative character which can lead to a number of
shortcomings (Winkelmann, 2015). To that end, negative binomial regres-
sion is one of the most widely used models for such data. More informa-
tion with respect to those models can be found in Winkelmann (2008).

The involved data processing and model estimation is undertaken with
the statistical programming language R (R Core Team, 2018), making use
of the additional packages "igraph" (Csárdi and Nepusz, 2006), "spdep"
(Bivand et al., 2011), "spgwr" (Bivand et al., 2017), and "gstat" (Pebesma
and Heuvelink, 2016).

7.3 case study

In order to assess the plausibility of applying a direct demand modelling
approach for prediction of AADT on a nationwide network, along with
evaluating the capability of the accessibility-weighted centrality measure
to enhance the predictive accuracy of such models, a case study is de-
signed and conducted. More specifically, a transport planning network of
Switzerland consisting of approximately 40’000 directed links is employed
as the study network1, while the Federal Roads Office collects count data
at various locations of the network and calculates AADT values. Moreover,
the count data are supplemented by additional AADT data, freely avail-
able from various cantonal offices. Subsequently, the count locations are
matched to the employed network.

As the basis year, the year 2010 is chosen in order to be comparable with
the output of a calibrated four-step model2. In particular, AADT data on
397 links exist which are used for the model estimation as dependent val-
ues. It should be mentioned that for each count location with bidirectional
traffic, only one of the two directions is randomly chosen and included
in the sample. This choice is made because the available AADT data are
reported per location, and not per link. Given the absence of specific in-
formation regarding the shares per direction, the obtained AADT values
are divided in half and assigned equally on both directions. A map of the
study network along with the spatial distribution of the count locations
can be seen in figure 7.1.

1 ARE; National Transport Model (2010)
2 ARE; National Transport Model (2010): A 4-step model, implemented in VISUM
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Figure 7.1: Case study network with the count locations
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7.3.1 Betweenness-accessibility centrality

The first step is to proceed to the construction of the betweenness- accessi-
bility centrality measure for the study network. A prerequisite for that is
the determination of the origin and the destination nodes of the network
that their shortest paths need to be identified. Given the interregional char-
acter of the trips, a convenient choice is to employ a zonal level according
to the administrative level of municipalities. Driven by this, the zonal level
of the national transport model is employed as the chosen one, including
2’944 zones in total. Subsequently, a node close to the centroid of each
zone is assigned as the origin and the destination node, respectively, for
the trips of each zone, associating on it the population and the employment
positions of each zone. The advantage of that choice is the availability of
socioeconomic data aggregated on this level while the methodology can
be easily applied if more disaggregate data (e.g. on a hectare level) exist
along with the identification of different population and employment clus-
ters, which can then replace the employed zonal analysis level. In total,
2944 ∗ 2943 (due to excluding self-potential) shortest paths are identified
in terms of free-flow travel time.

Finally, in the next step the calculation of the betweenness-accessibility
variables of interest take place. In particular, they are calculated based on
the unnormalized formulations of potential demand and in accordance
with formulas (5.6) and (5.7).
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A closer look at the involved terms (i.e. popj
Emplk f (djk)

Accempl
j

and emplj
Popk f (djk)

Accpop
j

)

points out that they correspond to the output of formulas (3.3) and (3.1), ac-
cordingly. Thereupon, the previously predicted interaction values based on
the newly introduced spatial interaction framework (section 4.2.1) can be
utilized for that purpose. More specifically, two betweenness-accessibility
variables are calculated; one including the generic average interaction val-
ues by car (denoted as BAC1), and one that includes the generic average
values irrespective of mode (denoted as BAC2), and they correspond to the
values evaluated in table 4.3. Both cases have mode considerations in place,
and hence allow to incorporate at least partially such aspects in the model
specification.

Besides the aforementioned centrality values, also the normal link be-
tweenness centrality values are calculated as well, in line with formula
(5.2) and denoted as BC. In figure 7.2, the scatter plots of AADT values
against the BAC1 and BC values are presented. Furthermore, a smoothing
line is added along with the relevant 95% confidence bands (grey area) to
assist with the visual interpretation of the potential existing relationships
between the variables. To this end, it appears that a strong linear rela-
tionship underlines both cases, while interestingly in the BAC1 case the
confidence bands are much narrower than the BC case, revealing a smaller
variance of values.

Figure 7.2: Scatter plots of AADT
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7.3.2 Independent variables

In essence, the regression yields two components; one that captures the
impact of supply on AADT, and one that captures the impact of demand
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allowing to model their interaction. On the supply side, variables describ-
ing the road capacity are put to use. More specifically, the functional class
of the road along with the number of lanes are the chosen explanatory
variables. On the demand side, the constructed accessibility-weighted cen-
trality measures are introduced for incorporating information about the
magnitude and the direction of the spatial interactions, serving as an ap-
proximation of spatial flows. Additional spatial variation is added on the
demand side by the inclusion of the population density in the vicinity of
each road (within 5 km radius), as indicative of the intensity of local de-
mand.

Last, a descriptive analysis precedes the model estimation. In this re-
gards, the summary statistics of the different employed variables are given
in table 7.1, while in table 7.2 the corresponding correlation matrix of the
continuous variables is presented. In the case of the former, the range of
BAC1 and AADT values appear to be in good agreement with each other,
something which obviously cannot be the case for BC. This can be seen
as a first indication of the suitability of BAC1 to serve as a proxy variable
of the demand. The correlation matrix results provide further support to
this argument since the correlation between the two is found to be equal
to 0.75, while BAC2 has even higher correlation (0.85). The correlation be-
tween the different centrality variables points out that no alarmingly high
value exist, besides the two versions of betweenness-accessibility centrality
variables. To a large extent, this was anticipated given the fact that they
have a high similarity in terms of utilized interaction rates. Nevertheless,
in order to avoid giving rise to multicollinearity issues due to their simul-
taneous inclusion in the model formulation, a ratio indicator is introduced
capable of treating for mode choice related aspects.

7.3.3 Predictive accuracy

The evaluation of the predictive accuracy of the developed models takes
place by utilizing five different accuracy measures. Mean percentage error
(MPE) and mean absolute percentage error (MAPE) are easily interpretable
measures, having the main disadvantage though that they can be heavily
influenced by outliers. On the other hand, symmetric mean absolute per-
centage error (SMAPE) is a similar measure which has the advantage that
it corrects for outlier’s influence. In a similar manner, median absolute per-
centage error (MdAPE) also has the advantage that it is not influenced by
outliers and can provide an overview of the distribution of the errors in
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Table 7.1: Summary statistics of employed variables

Statistic Mean St. Dev.

AADT [veh/day] 14,431.55 14,155.99

Freeway-Highway [dummy] 0.46 -
Major road [dummy] 0.31 -
Rural major road [dummy] 0.20 -
Urban arterial road [dummy] 0.03 -
2-lane road [dummy] 0.42 0.49

Population density: 10 km* [res/km2] 575.92 634.52

BC 8,411,925.00 13,277,549.00

BAC1 [generic:average (car)1] 9,211.05 11,021.13

BAC2 [generic:average (total)1] 24,724.15 31,466.01

BAC1/BAC2 0.45 0.16

Note: *=kernel weighted
1: with mode choice considerations, table 4.3

Table 7.2: Correlation matrix of employed variables

AADT Pop. dens. BC BAC1 BAC2 BAC1/BAC2

AADT 1 0.52 0.76 0.75 0.85 −0.35

Pop. dens. 0.52 1 0.19 0.53 0.50 −0.08

BC 0.76 0.19 1 0.59 0.75 −0.35

BAC1 0.75 0.53 0.59 1 0.87 −0.10

BAC2 0.85 0.50 0.75 0.87 1 −0.37

BAC1/BAC2 -0.35 -0.08 -0.35 −0.10 −0.37 1
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conjunction with MPE. On the contrary, mean squared error (MSE) because
of the quadratic term is influenced heavily by the outliers.

An overview of the employed accuracy measures is given by Makridakis
and Hibon (1995), where they conclude that for forecasting purposes, MSE
and SMAPE are found to be the more preferable measures. The formulas
of the accuracy measures are given below with Yi being the true values,
while Ŷi are the predicted ones.

MPE =
1
n

n

∑
i=1

Ŷi −Yi
Yi

100 (7.4)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ Ŷi −Yi
Yi

∣∣∣∣∣ 100 (7.5)

SMAPE =
1
n

n

∑
i=1

∣∣∣∣∣ Ŷi −Yi
Ŷi+Yi

2

∣∣∣∣∣ 100 (7.6)

MdAPE = median

(∣∣∣∣∣ Ŷi −Yi
Yi

∣∣∣∣∣ 100

)
(7.7)

MSE =
1
n

n

∑
i=1

(Ŷi −Yi)
2 (7.8)

7.4 model estimation

7.4.1 OLS models

In this section, a set of different models is estimated and evaluated in
order to draw safe conclusions on both the newly constructed variable
and also on models’ capabilities. In addition to the already tested models
in the literature, the family of spatial simultaneous autoregressive (SAR)
models is tested as well. An assessment of models’ predictive accuracy and
comparison to the output of a traditional four-step model is conducted to
show to what extent such models can be employed for such purposes.

Initially, three OLS variants are estimated and reported in table 7.3. The
models employ a log-level functional form, hence βs can be interpreted as
semi-elasticity values for the case of untransformed independent variables,
and as elasticity values for the log transformed ones. An important but
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normally neglected aspect governing the estimation of regression models
is the identification of extreme outliers. In this regard, two observations
are omitted from the data set since they are found to exert high leverage
(higher than 6%) on the parameter estimates, identified on the basis of the
Cook’s distance diagnostic (Cook and Weisberg, 1982).

The first two are almost identical, albeit differentiated by means of em-
ployed betweenness centrality variable. A closer look at the results shows
that the specification with the BAC1 variable has higher adjusted R2 value
than the model with the BC variable in place. Among the three models,
the third one, having also the most elaborate specification, is found to be
the best one in terms of goodness-of-fit.

As expected, all model formulations yield statistically significant and
positive parameter estimates for the demand relevant variables. However,
the negative relationship between the AADT and the betweenness-centra-
lity ratio can be attributed to the following reasoning. Essentially, that ra-
tio quantifies the average weighted car share of the involved interactions.
Therefore, cases where the ratio is found to be close to 1 they reveal inter-
action cases with car prevailing as the chosen mode, while the other way
around for values lower than 0.5.

Two potential reasons for the negative sign can be posited. First, be-
cause of the simplistic incorporation of mode-choice considerations in the
variable, cases with high car shares are potentially underestimating the
impact of public transport, and vice versa. Second, another interpretation
is that cases with low car shares capture interactions from/towards urban
centers, or in general places with good public transport connectivity. Nev-
ertheless, such places typically generate high intra-zonal and inter-zonal
(from neighboring zones) car traffic which the variable fails to capture. In
conclusion, the ratio variable can be perceived as a correction factor for
over-/under-estimating the potential for interaction by car.

The results of the remaining parameter estimates are aligned with theo-
retical hypotheses, having the expected order of magnitude and sign. More
specifically, the functional class parameters have the expected order of mag-
nitude since they quantify the impact of the functional class, relative to the
reference group. For instance, links with a lower hierarchical level than of
a highway, typically have lower capacity and also less utility in terms of
serving interregional demand. Therefore, the identified negative relation-
ship is justified. Based on a similar reasoning, the positive impact of the
number of lanes is also found to be in line with expectations.
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Last, the OLS models are also evaluated with respect to their in-sample
predictive accuracy (table 7.4). It should be noted that given the log trans-
formation of the dependent variable, when back transforming to the orig-
inal scale the fact that the model predicts the geometric mean instead of
the arithmetic one is accounted through a proper correction, as suggested
by Wooldridge (2012). As shown in table 7.4, Model (3) yields the low-
est values of all measures while it produces predictions with an almost
3.5% lower mean absolute error. A comparison between model (1) and (2)
shows that no clear conclusions can be drawn since the employed accuracy
measures paint a different picture. Nevertheless, model (3) outperforms
the other two models in a substantial manner, therefore it constitutes the
model specification that is further tested in terms of other modelling tech-
niques.

7.4.2 Spatial models

On the spatial dependence front, the existence of spatial autocorrelation in
the residuals is examined in order to justify if the need for the estimation of
spatial regression models arises. The spatial autocorrelation is calculated
in terms of the Moran’s I measure while three spatial weight matrices W
are formulated and tested. The three matrices are constructed based on
Euclidean distance, and network distance in terms of shortest path length
and free-flow travel time. The identification of the spatial extent of the
neighborhood takes place through a trial-and-error procedure that utilizes
the goodness-of-fit measures along with Moran’s I measure to reveal the
optimum distance per case.

In particular, for both the Euclidean and the network distance, the Mo-
ran’s I measure exhibits that the autocorrelation exists up to a radius of 10

kilometers. In the case of network time, the autocorrelation remains signif-
icant up to a radius of 5 minutes of free-flow travel time. The last part of
the construction of the spatial weight matrices is to determine the weight
that should be assigned to each neighboring location. Making use again of
the Moran’s I measure, we conclude that the inverse distance metric along
with a normalization of the sum of the weights of the neighboring loca-
tions to one, is the more appropriate to capture the spatial structure. The
Moran’s I values are reported at the lower part of table 7.3 where as it is
shown the network matrices W yield higher autocorrelation values. Nev-
ertheless, all W formulations show the existence of statistically significant
autocorrelation, varying between 0.16 and 0.23. The implication of this, as
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Table 7.3: OLS estimates

Dependent variable:Log(AADT)

OLS
Regressor (1) (2) (3)

Constant 4.92
∗∗∗

5.86
∗∗∗

5.78
∗∗∗

(0.30) (0.17) (0.29)
Freeway-Highway Ref
Major road −0.51

∗∗∗ −0.57
∗∗∗ −0.49

∗∗∗

(0.09) (0.08) (0.08)
Rural major road −0.68

∗∗∗ −0.75
∗∗∗ −0.63

∗∗∗

(0.10) (0.09) (0.09)
Urban arterial road −0.31

∗ −0.51
∗∗∗ −0.38

∗∗

(0.15) (0.13) (0.13)
2-lane road 0.47

∗∗∗
0.51

∗∗∗
0.41

∗∗∗

(0.09) (0.08) (0.08)
Log(Population)[10 km] 0.36

∗∗∗
0.22

∗∗∗
0.26

∗∗∗

(0.02) (0.02) (0.02)
Log(BC) 0.15

∗∗∗
0.05

∗∗

(0.02) (0.02)
Log(BAC1) 0.23

∗∗∗

(0.02)
BAC1/BAC2 −0.86

∗∗∗

(0.13)

Observations 395

Adjusted R2
0.86 0.87 0.88

AIC 472.77 431.27 395.31

df 386

Moran’s I Eucl. W [10km] 0.18∗∗∗ 0.16∗∗∗ 0.16∗∗∗

Moran’s I Ntw. W [10km] 0.20∗∗∗ 0.19∗∗∗ 0.20∗∗∗

Moran’s I Fftt W [5min.] 0.20∗∗∗ 0.22∗∗∗ 0.23∗∗∗

( ) Heterosc. corrected std. errors, + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table 7.4: OLS models’ predictive accuracy

MdAPE MPE MAPE MSE SMAPE

OLS 1 26.81 17.15 39.36 40, 225, 804.00 0.080
OLS 2 25.62 17.24 38.17 43, 732, 672.00 0.079
OLS 3 24.96 14.50 34.79 35, 558, 953.00 0.073

mentioned before, is that the estimates are biased and inconsistent and
more (or less) explanatory power is attributed to them than it should.

The type of SAR model is chosen on the basis of Lagrange multiplier
tests (Anselin et al., 1996) which point towards the application of spatial
error models. Furthermore, the validity of this outcome is also tested by
estimating all SAR models, and then concluding on the most appropriate
SAR formulation based on the significance of the corresponding spatial
parameters along with the goodness-of-fit measures. The results of the dif-
ferent models validate the previous choice of the spatial error model as the
most appropriate to address the underlying spatial autocorrelation issues.
The results of the spatial error models with the three spatial weight ma-
trices in place are presented in table 7.5 where similar patterns as before
can be observed in their estimated coefficients. In all cases, the spatial au-
toregressive coefficient λ is found to be statistically significant at the 0.1%
significance level. In terms of goodness-of-fit measures, the AIC measure
shows that the spatial error model is the best one among the three.

The next estimated model is the GWR, which aims to resolve spatial
heterogeneity issues and it is calculated by taking into account an adaptive
radius bandwidth, identified in terms of AIC. The results are reported
in table 7.6 where the summary statistics of the parameter estimates are
reported.

The parameter estimates of the negative binomial regression are reported
in table 7.7 where similar relationships as before are identified.

7.5 predictive accuracy

Finally, an evaluation of the predictive accuracy of the developed models
follows in order to draw conclusions with respect to the ability of the dif-
ferent models to be employed for AADT predictions. In addition to the
previously estimated models, the accuracy results of two kriging models
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Table 7.5: Spatial error models’ estimates

Dependent variable:Log(AADT)

Spatial Error Models
Regressor (Eucl. W) (Fftt W) (Ntw. W)

Constant 5.68
∗∗∗

5.70
∗∗∗

5.67
∗∗∗

(0.29) (0.29) (0.29)
Freeway-Highway Ref
Major road −0.47

∗∗∗ −0.46
∗∗∗ −0.47

∗∗∗

(0.08) (0.08) (0.08)
Rural major road −0.64

∗∗∗ −0.63
∗∗∗ −0.62

∗∗∗

(0.09) (0.09) (0.09)
Urban arterial road −0.32

∗ −0.32
∗ −0.31

∗

(0.13) (0.13) (0.13)
2-lane road 0.39

∗∗∗
0.37

∗∗∗
0.38

∗∗∗

(0.08) (0.08) (0.08)
Log(Population)[10 km] 0.25

∗∗∗
0.25

∗∗∗
0.25

∗∗∗

(0.02) (0.02) (0.02)
Log(BC) 0.07

∗∗∗
0.07

∗∗
0.07

∗∗∗

(0.02) (0.02) (0.02)
Log(BAC1) 0.17

∗∗∗
0.18

∗∗∗
0.18

∗∗∗

(0.02) (0.02) (0.02)
BAC1/BAC2 −0.84

∗∗∗ −0.92
∗∗∗ −0.87

∗∗∗

(0.14) (0.14) (0.14)

λ 0.24
∗∗∗

0.31
∗∗∗

0.29
∗∗∗

Observations 395

AIC 381.43 367.74 373.66

df 385

Moran’s I -0.01 0.003 -0.001

( ) Std. errors, + p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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Table 7.6: GWR estimates

Statistic Median Min 1st Quart. 3rd Quart. Max

Constant 4.877 1.747 3.956 5.797 7.540

Major road −0.468 −1.303 −0.656 −0.237 0.174

Rural major road −0.586 −1.641 −0.852 −0.265 0.105

Urban arterial road −0.054 −0.707 −0.337 0.179 0.987

2-lane road 0.279 −0.297 0.132 0.430 0.741

Log(Population)[10 km] 0.284 −0.059 0.225 0.341 0.540

Log(BC) 0.124 −0.063 0.061 0.182 0.341

Log(BAC1) 0.147 −0.101 0.108 0.195 0.400

BAC1/BAC2 −0.709 −1.622 −1.024 −0.665 2.883

Adaptive radius=5.06% of the observations

Table 7.7: Negative binomial regression estimates

Regressor Estimate Std. Error

Constant 6.12
∗∗∗ (0.28)

Major road −0.50
∗∗∗ (0.08)

Rural major road −0.68
∗∗∗ (0.09)

Urban arterial road −0.43
∗∗∗ (0.13)

2-lane road 0.42
∗∗∗ (0.07)

Log(Population)[10 km] 0.27
∗∗∗ (0.02)

Log(BC) 0.04
∗ (0.02)

Log(BAC1) 0.16
∗∗∗ (0.02)

BAC1/BAC2 −0.87
∗∗∗ (0.12)

Observations 395

Log Likelihood −3,751.05

θ 7.18
∗∗∗ (0.50)

AIC 7,520.11

df 386

+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001
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are also presented. The evaluation takes place both for in-sample and out-
of-sample prediction by calculating the various set accuracy measures in
line with formulas (7.4) - (7.8). The in-sample results are presented in table
7.8.

Subsequently and for the out-of-sample case, the evaluation takes place
based on the result of a leave-one-out analysis. More specifically, the differ-
ent models are estimated for a sample size that equals to the original size,
minus one observation. Subsequently, the fitted models are applied for pre-
dicting the value of the left out observation. A number of 1000 replications
is performed and the corresponding accuracy measures are reported in
table 7.9.

Table 7.8: In-sample predictive accuracy results

Model MdAPE MPE MAPE MSE SMAPE

OLS 24.96 14.50 34.79 35, 558, 953 0.073

Neg. Binomial 24.62 16.54 35.83 36, 428, 562 0.074

SAR error: eucl. W 21.84 14.74 33.75 32, 540, 692 0.071

SAR error: fftt W 20.63 14.67 32.70 30, 606, 564 0.069

SAR error: ntw. W 21.86 15.19 33.44 31, 051, 310 0.070

GWR 17.51 11.09 25.51 20, 662, 449 0.056

National model (4-step) 4.72 3.85 12.64 3, 313, 040 0.028

Table 7.9: Out-of-sample predictive accuracy results

Model MdAPE MPE MAPE MSE SMAPE

OLS 35.11 14.45 35.11 33, 817, 370.00 0.074

Neg. Binomial 35.84 16.40 35.84 34, 359, 908.00 0.074

SAR error: eucl. W 36.13 16.50 36.13 32, 762, 172.00 0.075

SAR error: fftt W 34.31 14.84 34.31 32, 549, 484.00 0.072

SAR error: ntw. W 34.31 14.86 34.31 32, 549, 238.00 0.072

Kriging: spherical 33.47 8.40 33.47 35, 037, 767.00 0.074

Kriging: Gaussian 33.30 8.02 33.30 35, 682, 116.00 0.074

GWR 32.83 14.16 32.83 27, 884, 970.00 0.070

National model (4-step) 13.65 5.30 13.65 3, 947, 758.00 0.029
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A comparison of the accuracy measures results reveals similar patterns
for both in-sample and out-of-sample. In particular, among the variations
of spatial error models, the one that employs a spatial matrix based on the
free-flow time distance gives slightly better results. Interestingly, the nega-
tive binomial model yields the results with the lower predictive accuracy
for the in-sample case, while it also performs poorly for the out-of-sample
case.

Among the various estimated models, GWR has the highest in-sample
and out-of sample accuracy. However, in terms of MPE kriging models
have the lowest values while both kriging models yield similar results. The
spatial models are all performing much better than the aspatial models in
the in-sample case they, while in the out-of-sample case the differences are
much smaller but still evident. Furthermore, the spatial error models with
the network-based constructed W outperform the one with the Euclidean-
based W, providing solid evidence in favor of the former way of accounting
for spatial dependence. In terms of SMAPE, small differences can be iden-
tified for the out-of-sample case which paint though the same picture as
the other measures.

In general, it appears that even though GWR exhibits the highest pre-
dictive accuracy, the differences with the spatial error models are only
marginal for the out-of-sample case. Moreover, counting in the fact that
GWR and kriging models are aimed for interpolation purposes and not
for forecasting ones, while spatial error models bear the ability to be ap-
plied for forecasting purposes as well since their parameters are unbiased
and consistent, the utility of spatial error models is highlighted.

Attempting a comparison with the results of a study of a similar scale
by Selby and Kockelman (2013) where kriging models were estimated and
the MAPE was calculated and found to be close to 60%, the difference in
the magnitude of the accuracy can be attributed to a great extent to the
inclusion of the betweenness - accessibility centrality measure. In the case
of the study conducted by Lowry (2014) and for a community network,
the reported in-sample MdAPE values of 28%, are slightly larger but still
of similar overall magnitude with the current results.

Last, a comparison with the Swiss national model’s3 accuracy, which
corresponds to the state-of-practice four-step model used for AADT es-
timation, reveals that the national model outperforms all the estimated
models. In general, it has higher accuracy than the other models but at the
same it has to be pointed out that the model has been calibrated against

3 ARE; National Transport Model (2010)
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the employed count data while it also requires much more data and effort
to set up at the first place. In addition, a potential source of introduced
bias might have resulted from not accounting for international commuters
which can lead to underestimation of AADT close to the borders, an aspect
that the Swiss national model takes into account.

7.6 conclusions

In this chapter a direct demand modelling approach for AADT prediction
on a nationwide network was presented. It was exhibited that the con-
struction of a variable that can account for interregional flows, such as the
betweenness-accessibility centrality measure, can lead to a significant en-
hancement on the accuracy of the models. In addition to the already tested
models in the literature, the spatial error model was estimated and it was
shown that GWR and kriging models are more appropriate for interpola-
tion purposes while spatial error and OLS models have the potential to be
applied for forecasting purposes as well since their estimated parameters
are unbiased and consistent.

Under this consideration, spatial error models can be utilized within a
two-step statistical procedure to make statements about speed and AADT
values on a link level. In particular, this procedure can account for their
interdependent nature on top of other consideration such as spatial auto-
correlation and is the focus of the next chapter of this dissertation.

Last, the developed methodology can be easily applied to different scales
of network (e.g. urban cases), where a finer zonal analysis level can be
employed. Moreover, it has the apparent advantage that it requires only
publicly available socioeconomic data and can be easily tuned in to differ-
ent networks (e.g. Open street map). Especially this dimension needs to be
highlighted since in many cases, either due to data scarcity, or budgeting
reasons, the development of four-step or agent-based models is not possi-
ble, while flow predictions are still needed to support various operational
and policy related applications.



8
S P E E D E S T I M AT I O N W I T H E N D O G E N O U S D E M A N D

8.1 introduction

In a previous chapter of the dissertation the issue of speed modelling was
discussed and the results of different linear regression models were eval-
uated. However and as mentioned earlier, the deployment of traditional
linear regression models for tackling the issue of speed modelling can be
perceived as problematic mainly due to two issues, namely of the spatial
dependence and endogeneity issues which if present can lead to different
undesired statistical shortcomings.

To this end, in chapter 6 a particular focus was given to the treatment of
the former issue while endogeneity was treated indirectly by employing as-
sumed exogenous variables as proxy variables of localized demand levels.
Endogeneity arises due to the demand and supply interaction mechanism.
Therefore, the utilization of actual traffic volume data instead of proxy vari-
ables within a regression model should be made in a way that ensures that
the endogenous nature of traffic volume is taken into account. Driven by
this, this chapter extends the previously presented approach by proposing
an alternative that can address both spatial effects and endogeneity issues.
An empirical case study is designed to demonstrate its application while
in a similar manner as before the prediction results are compared against
the output of a four-step model that corresponds to a state-of-the-practice
regional transport planning model.

On that note, it is of interest to stress out that typically such models
are only calibrated against volume estimates, and as a consequence they
fail drastically to provide reasonable speed estimates. A discussion on that
issue can be found in Dowling and Skabardonis (1993) while even though
a considerate time has passed since then, there has been little evidence in
the literature that actions have been taken to tackle this.

Essentially, this chapter constitutes the second part of the direct de-
mand modelling approach that this dissertation develops. Therefore, when
paired up with the previously presented volume regression model it can
form a coherent direct demand modelling approach, suitable both for pre-
diction and forecasting applications. Last, this chapter is based on Sarlas

123
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and Axhausen (2017) with a revised analysis, results and discussion in
place.

8.2 methodology

8.2.1 Estimators

As mentioned in the prior section, there are two considerations associated
with the choice of a mean speed model. The first one relates to the endoge-
nous character of volume in the speed model. More specifically, estimation
by means of ordinary least-squares constitute the standard for linear re-
gression models. However, in the case of endogenous variable, the main
OLS assumption of uncorrelated error terms with the independent vari-
ables is violated (Wooldridge, 2012). As a consequence, this violation turns
OLS to an inconsistent and biased estimator, and should be thoroughly
tested and treated if present. Methodologically, this issue is dealt with by
accounting for the endogeneity via utilizing instrumental variable(s) (IV),
normally within a two-stage least-squares (2SLS), or a control function (CF)
approach. Under specific conditions these two approaches are essentially
the same. In both cases though, a strong prerequisite is that the chosen
instruments must be uncorrelated with the error term but substantially
correlated with the endogenous variable. This estimation approach allows
to obtain consistent and unbiased parameter estimates which can then be
applied for forecasting purposes.

Secondly, the main implication of modelling data of a spatial nature is
the existence of spatial effects, thereby pointing to non-independent obser-
vations. The implications of that were already discussed in a previous chap-
ter. In brief, the existence of spatial dependence bears the ability of leading
to a violation of the independent and identically distributed (iid) assump-
tion of OLS. Spatial simultaneous autoregressive (SAR) models constitute
a modelling medium allowing to treat for this issue in two main ways, as-
suming different underlying mechanisms that generate the spatial depen-
dence. On the one hand, when a spatial variable has been omitted from
the model specification, the error terms tend to be spatially autocorrelated,
creating a need of an error term that inherently considers this (spatial error
model). On the other hand, when neighboring locations’ response variable
has an indirect effect on the response at the location, then the inclusion of a
spatially lagged dependent variable can mitigate the spatial dependence is-
sues, hence facilitate the estimation of explanatory variables’ direct effects
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on the response variable (spatial lag model). A combined treatment of both
aforementioned spatial dependencies is also possible within a model for-
mulation (spatial Durbin model). The exact formulation of those models
can be found in section 6.2.1.

The prevailing estimation approach of SAR models is by means of max-
imum likelihood. However, this entails a number of drawbacks, such as
being computationally infeasible for large samples, and most importantly
lacking the ability to account for the presence of endogenous regressor(s)
and heteroscedastic disturbances. Kelejian and Prucha (1999) suggested a
generalized method of moments (GMM) estimator, capable of addressing
the former issue, and also paved the way for addressing the latter short-
coming as well. Admittedly, this estimator can be seen as a major break-
through in the field of spatial econometrics.

More specifically, in a follow-up paper the same authors developed a
methodology for accounting for unknown forms of heteroscedasticity in
conjunction with an IV estimator for the parameters (Kelejian and Prucha,
2010). Later on, Drukker et al. (2012) extended their work by developing
a two-step generalized method of moments and instrumental variable es-
timator (2IV/GMM), capable of treating for endogeneity issues and het-
eroscedastic innovations, in addition to a spatially lagged variable.

In summary, their estimator involves four steps. Initially, a two stage
least-squares (2SLS) approach is applied to obtain the starting values of
the parameters of the model (betas), similar to the traditional IV estima-
tion approach. In the next step, a GMM estimator is applied to obtain
the value of the autoregressive coefficient λ. The moment conditions are
defined on the basis of conforming to the orthogonality assumption, im-
posing the independence of the residuals with their first and second or-
der neighbors’ counterparts. In the third step, a generalized spatial two-
stage least-squares estimator is applied on a Cochrane-Orcutt transformed
model to obtain the new values of betas along with the residuals. In the
final step, the residuals from the previous step are utilized within a GMM
estimator to obtain the true value of λ, imposing the same moment condi-
tions as before.

Besides spatial dependence, spatial heterogeneity is another potential
cause for spatial autocorrelation. To that end, GWR has been extensively
applied for exploring the existence of spatially varying relationships. How-
ever, to date no study has jointly addressed the issue of spatial heterogene-
ity and endogeneity, at least to the best of author’s knowledge. From a
methodological point of view, GWR estimation takes place using a weigh-
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ted least squares approach which is similar in principle to the simple OLS
one.

Thereupon, the problem can be formulated as a control function ap-
proach where in the first stage the endogenous variable is regressed on
the set of all exogenous variables, including the instruments, based on an
OLS estimator. This formulation of the endogenous variable is referred to
as reduced form. Subsequently, the reduced form residuals are plugged
into the main regression equation, including the endogenous variable, and
the estimation then takes place using the normal weighted least squares
approach. In essence, the approach entails the inclusion of the endogenous
part of the independent variable as a standalone variable in the regres-
sion in order to ensure that the endogenous variable is truly independent
with the residuals. Of course, spatial heterogeneity can be addressed also
within the reduced form regression by replacing the OLS estimator with
a weighted least squares one. More information on the control function
can be found in Wooldridge (2011), while the previously described GWR
estimator is henceforth denoted as CF-GWR.

8.2.2 Model formulation

Previous attempts to model average speed (e.g. Sarlas et al., 2015; Hack-
ney et al., 2007) have resorted to the use of proxy variables for the traffic
volume, operationalized in the form of spatial density values of various
socio-demographic variables (e.g. population, employment). Yet, and as
discussed in a previous chapter (chapter 7), such variables fail to capture
the directionality and the complexities of the interregional demand, and
thus can suffice only for small area cases. Based on this, traffic volume is
instrumented on a set of variables capable of capturing the interregional
demand aspects. To that end, the instrumentation can take place by utiliz-
ing the identified set of independent variables used for obtaining AADT
predictions, given that the instruments comply with the strict exogeneity
assumption.

In contrast to prior studies on the topic, a distinct approach is followed
concerning the dependent variable. Specifically, and in line with the BPR
functions’ formulation, the dependent variable is specified as the mean
travel time difference, defined as the difference between the free-flow travel
time and the mean travel time. The apparent advantage of employing such
a formulation is that it can better capture the relation between volume and
speed. Furthermore, this way the problem can be easily transformed into a
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linear model by applying a logarithmic transformation, hence overcoming
the non-linearity issues present. Subsequently, this choice also allows to
exploit the 2IV/GMM and CF-GWR estimators, in order to account and
treat both for endogeneity and spatial effects. More specifically, the model
formulation is presented below:

tt =tt0 + ttα
0

AADTβ

Capacityγ
(8.1)

log(tt− tt0) =αlog(tt0) + βlog(AADT)− γlog(Capacity) (8.2)

From a conceptual viewpoint , the various forms of BPR functions at-
tempt to model the interaction between demand and supply on a link
level by incorporating various congestion functions. The majority of those
quantify the congestion as a function of the volume to capacity ratio. Ca-
pacity values are normally calculated on the basis of standardized values
coming from the Highway Capacity Manual (2010). A viable alternative
is to employ a set of typical explanatory variables as proxy ones for the
capacity, say number of link types, legal speed limit, etc. Consequently, the
need of a priori estimating capacity values diminishes. Especially, if we fac-
tor in the fact that for the case of national planning models, which involve
some inherent degree of abstraction, a link might actually correspond to
a set of links in reality, therefore determining a single capacity value for
a set of links with varying attributes can be challenging and potentially
troublesome.

8.3 case study

An empirical case study is designed and conducted in order to model
mean speed values in a set up that resembles a regional planning model’s
configuration. Particularly, the network of Switzerland is exploited as the
study network in the form that is present in a state-of-the-practice trans-
port model1 (NTM). The network consists of approximately 40’000 directed
links, while the links are classified into four hierarchical types, namely
highway, major road, rural main road, and urban arterial road. In brief, the
case study is identical to the one described in chapter 7. Two independent
sources of volume and speed data are utilized to facilitate the construc-
tion of the observations’ database. At first, the previously described traffic

1 ARE; National Transport Model (2010): A 4-step model, implemented in VISUM
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volume observations in the form of AADT values are employed for that
purpose (section 7.3).

On the speed front, a commercial floating car data source that has eme-
rged in the last years is utilized. Tom-Tom provides historical travel time
databases for the entire network of Switzerland, including daily mean
speed estimates (see section 6.3 for a description). The acquired data corre-
spond also to the basis year, however they are reported on a navigational
network, which is considerably more detailed than the study network (1.5
million links). Naturally, the need for matching the two network arises in
order to be able to integrate the historical travel time observations to the
study network.

8.3.1 Network Matching

The network matching is facilitated by developing an automated proce-
dure that incorporates an adaptive radius search, operationalizing an edge
matching approach. In summary, the matching is established based on two
assumptions. First, the nodes of the study network should correspond, or
at least be nearby to the actual nodes. Second, the links in the study net-
work can be perceived as paths, meaning that their reported length should
correspond to the total length of the links composing the path.

At the first step, a circle with a 50 meters radius is drawn around each
node of the study network in order to identify the Tom-Tom nodes that lie
in the encompassed area (matched nodes). In the second step, for each pair
of starting and ending nodes of the study network’s links, the shortest path
between all pairs of matched nodes are identified. Subsequently, the path
with the lowest absolute deviation from the study network’s link length is
chosen as the most probable one. However, if the deviation is higher than a
threshold value (set to 2%), or a path is not identified at all, then the radius
increases and the procedure starts anew. The radius increase happens in
increments of 50 meters and it continues up to a maximum distance of 300

meters, allowing for a maximum number of 6 iterations.
Nonetheless, the incompatibility of the two networks surfaces in vari-

ous instances (e.g. presence of a node where no actual intersection exists),
giving rise to erroneous matching. As a remedy, the matched paths are
checked visually to conclude on whether or not a correct identification is
achieved. For the given problem at hand involving 790 links, the accuracy
of the developed matching routine is found to be close to 70%. For the
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Figure 8.1: Relative free-flow travel time difference between Tom-Tom and NTM
networks
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remaining cases, the matching is conducted manually to ensure that no
systematic error is introduced due to mismatching reasons.

Interestingly, a comparison of the common attributes between the two
networks reveals that in many cases the values of attributes such as free
flow speed, speed limit, number of lanes, etc. ,are not found to be aligned.
This is explained by the fact that in less detailed networks a single link can
essentially correspond to a number of links with varying attributes.

As a remedy and in order to mitigate the impact of a wrong specifica-
tion on the attributes side, the length weighted attributes of the links form-
ing each path are adopted as the corresponding attributes of the study
network’s links. An exception is made on the length attribute which is
assumed to be correctly specified in the study network. In the case of free-
flow travel time, calculated based on the posted speed limits per case, the
mean relative difference between the two is found to be 13.30%, with a
standard deviation of 19.70%, supporting the argument that less detailed
networks have a higher degree of abstraction on their attributes specifi-
cation, which can be a potential source of error. The relative difference
between the corresponding free-flow travel times between the Tom-Tom
and the NTM is given in figure 8.1.

8.3.2 Explanatory Variables

Having as an objective to model mean speed values on a nationwide net-
work, a set of explanatory variables need to be included in the model
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specification, either directly if they comply with the exogeneity assump-
tion, or indirectly as instruments of the traffic volume. Before proceeding
further, a closer look at the phenomenon we are aiming to model can pro-
vide valuable insights. As mentioned before, mean speed is the outcome
of the interaction between the two interrelated mechanisms of supply and
demand.

On the supply side, link characteristics associated with the design and
the operation aspects are the main determinants of the link’s capacity.
Therefore, variables such as the link’s hierarchy type (e.g. highway, etc.),
the free-flow travel time and speed, determine to a large extent the capac-
ity. Variables such as curveness, and link type (tunnel or not) are expected
to have a two-way impact on the capacity. At first, indirectly through af-
fecting the actual free flow speed values, and directly either by affecting
the driving behavior (e.g. more alert drivers), or by the existence of driving
restrictions (e.g. prohibited overtaking).

On the demand side, variables such as the population density and the
potential number of persons passing through (betweenness-accessibility
centrality) can clearly be identified as the main determinants of the travel
demand. Variables associated with the network design (e.g. betweenness
centrality) are also expected to exert some influence on the demand. Vari-
ables such as the population density can be considered that they bear the
ability of capturing the character of the surrounding area, and thus of
different demand aspects. Thereupon, the instrumentation can take place
by utilizing the identified set of independent variables used for obtain-
ing AADT predictions in a previous chapter, under the assumption which
needs to be thoroughly tested that the instruments comply with the strict
exogeneity assumption.

Clearly, supply and demand are interrelated. Nevertheless, in the case of
a regional planning network we can assume that the interaction between
demand and supply on a link level, is not affecting the demand. The sum-
mary statistics of the different employed variables are presented in table
8.1. Last, it should be noted that the estimation of the models takes place
by making use of the R packages "AER" (Kleiber and Zeileis, 2008), "sphet"
(Piras et al., 2010), and "spgwr" (Bivand et al., 2017).
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Table 8.1: Summary statistics of employed variables

Statistic Mean St. Dev.

Travel time difference [sec] 5.93 8.83

Free flow travel time [sec] 122.65 99.36

Speed limit [km/h] 79.46 24.22

Curvedness [degrees] 0.04 0.07

Link’s tunnel share 0.15 0.26

AADT [veh/day] 14,431.55 14,155.99

Freeway-Highway [dummy] 0.46 -

Major road [dummy] 0.31 -

Rural major road [dummy] 0.20 -

Urban arterial road [dummy] 0.03 -

2-lane road [dummy] 0.42 0.49

Population density: 10 km* [res/km2] 575.92 634.52

BC 8,411,925.00 13,277,549.00

BAC1 [generic:average (car)1] 9,211.05 11,021.13

BAC1/BAC2 0.45 0.16

Note: *=kernel weighted

1: with mode choice considerations, table 4.3

8.4 model estimation

8.4.1 OLS model

Having identified the set of potential variables, the next step concerns the
model estimation. In total, our sample consists of 395 links. It should be
mentioned that for each count location with bidirectional traffic, only one
of the two directions is randomly chosen and included in the sample. This
choice is made because the available AADT data are reported per location,
and not per link (see section 7.3).

At first, an OLS model is estimated in order to highlight the bias of the
parameter estimates when failing to account for the endogeneity and the
spatial dependence issues. In a similar manner as before, variance infla-
tion factors (VIF) are utilized for ensuring that no multicollinearity issues
are present. However, due to the lack of a constant term in the regression
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model, variance inflation factors are not yielding correct values. Never-
theless and in order to test for multicollinearity, an equivalent model but
with a constant term in place (which is found to be statistically insignifi-
cant, hence its exclusion from the specification) is estimated and tested for
multicollinearity. In particular, the corresponding model estimates indicate
that no such issues exist (VIF smaller than 5). To mitigate the impact of out-
liers (which can alter substantially the estimates), 8 observations with high
leverage (higher than 6% according to Cook’s distance diagnostic (Cook
and Weisberg, 1982)) are excluded. The OLS parameter estimates are re-
ported in table 8.2.

8.4.2 Instrumental variables model

The next step concerns the treatment of the endogeneity. At the outset, an
IV model is estimated by means of a 2SLS estimator to account for the en-
dogeneity of AADT. The 2SLS model serves as the benchmark model for
checking for the presence of spatial autocorrelation, hence drawing con-
clusions on the need to utilize the aforementioned 2IV/GMM and GWR
estimators.

The variables presented in the second part of table 8.1 are chosen as
instruments, whereas a bigger set of variables was thoroughly tested as
well on their ability to serve as instruments. A number of statistical tests is
performed in order to conclude on the presence of endogeneity, and on the
ability of the instruments to comply with the prerequisites. At first, a weak
instruments test is performed through the formation of an F-test on the
instruments. More specifically, the null hypothesis of weak instruments is
rejected with a lower than 0.1% p-value.

The presence of endogeneity is checked with the Wu-Hausman test (De-
Min, 1973; Hausman, 1978) and the null hypothesis of no endogeneity is
rejected at the 5% level. Last, the validity of the instruments is tested with
the Sargan test (Sargan, 1958). The null hypothesis of the instruments va-
lidity (exogenous) fails to be rejected at any of the examined levels. In
summary, the performed statistical endogeneity tests demonstrate clearly
that AADT is indeed endogenous, while the chosen instruments are found
to be statistically valid. The existence of multicollinearity issues is checked
with variance inflation factors, and found not be the case. Last, the pres-
ence of simultaneity bias between speed and AADT is tested by formulat-
ing an AADT model and instrumenting the speed. The results validate our
hypothesis that for the current setting there is only a one-way endogeneity
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issue. Nonetheless, if that was not the case the estimation of a structural
equation model with spatial considerations would constitute the appropri-
ate way to tackle the problem.

Last, a major problem associated with the employment of IV approaches
lies on the fact that the standard error estimates are biased due to finite
sampling issues. A discussion on the specifics of the problem is given
in Stock et al. (2002); Camponovo and Otsu (2015). To correct for that,
the standard errors are estimated based on a bootstrapping approach that
involves 500 iterations with random re-sampling with replacement. Essen-
tially, this approach serves the purpose of approximating the distribution
of the parameter estimates, and hence of the standard errors and the statis-
tical significance levels. The followed bootstrapping procedure is described
in Efron (1979). The 2SLS model is reported in table 8.2.

As it can be seen in table 8.2, the estimated parameters are in line with
our expectations about how the different variables affect the travel time
difference. All the variables are found to be statistically significant at dif-
ferent levels. A comparison with the OLS estimates highlights the existence
of substantial differences. Interestingly, the impact of the endogenous vari-
able (AADTT) is much lower when accounting for endogeneity.

8.4.3 Spatial instrumental variables models

In order to check for the presence of spatial autocorrelation on the residuals
of the 2SLS model, and justify the choice to proceed to the estimation
of the 2IV/GMM model, Moran’s I measure is utilized. More specifically,
different spatial matrices variants are constructed and tested, based on
Euclidean and network distances. In the case of the latter, two distance
metrics are employed, the free-flow travel time and the network traveled
distance. In brief, the variant with a neighborhood defined on the basis
of network free-flow travel time of up to 5 minutes is found to be the
optimum one based on two set of criteria (goodness-of-fit measures and
Moran’s I measure).

Finally, the last part of the construction of the spatial weight matrices
concerns the determination of the weights that should be assigned to the
neighboring locations. Based on two set of criteria (goodness-of-fit mea-
sures and Moran’s I measure), an inverse distance metric is concluded
to be the most appropriate to capture the spatial structure. Moreover, in
order to avoid having misspecification issues as those highlighted in Kele-
jian and Prucha (2010), a so-called min-max normalization of the weights
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Table 8.2: Speed models’ estimates

Dependent variable: Log(tt-tt0)

Regressor (OLS) (2SLS) (2IV/GMM)

Log(Speed limit) −1.44
∗∗∗ −1.21

∗∗∗ −1.21
∗∗∗

(0.12) (0.13) (0.13)

Log(AADT) 0.31
∗∗∗

0.21
∗∗∗

0.20
∗∗∗

(0.05) (0.06) (0.05)

Urban arterial road 0.50
∗

0.60
∗∗

0.61
∗∗

(0.21) (0.22) (0.20)

Rural major road 0.36
∗∗∗

0.27
∗∗

0.24
∗

(0.09) (0.09) (0.09)

Major road 0.26
∗∗∗

0.25
∗∗∗

0.24
∗∗∗

(0.07) (0.07) (0.07)

Log(fftt) 1.03
∗∗∗

1.01
∗∗∗

1.03
∗∗∗

(0.04) (0.04) (0.04)

Curvedness −1.32
∗ −1.34

∗∗ −1.22
∗∗

(0.56) (0.51) (0.56)

Link’s tunnel share −0.35
+ −0.36

+ −0.31

(0.20) (0.19) (0.21)

λ 0.55
∗∗

Observations 387

Adjusted R2
0.87 0.87 -

Moran’s I 0.13
∗∗∗

0.14
∗∗∗ -0.03

df 379 379 378

Weak instruments (df1,df2) - (5,375) 107.18
∗∗∗ (5,375) 107.18

∗∗∗

Wu-Hausman (df1,df2) - (1,378) 9.81
∗∗ (1,377) 8.278

∗∗

Sargan (df ) - (4) 1.54 (4) 1.50

+ p<0.1; * p<0.05; ** p<0.01; *** p<0.001

OLS: ( ) Heterosc. corrected std. errors

2SLS: ( ) Bootstrapped std. errors

2IV/GMM : ( ) Heterosc. corrected & bootstrapped std. errors
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is applied. Among the tested spatial weighting schemes, the one based on
the free-flow travel time is concluded to be the most pertinent one with a
neighborhood extent of 5 minutes. The calculated Moran’s I measure for
this spatial matrix indicates that spatial autocorrelation is statistically sig-
nificant with a value of 0.14 (table 8.2 ). Therefore, the presence of spatial
effects has to be treated by using the 2IV/GMM estimator.

Initially, a model with the spatial Durbin formulation is estimated. How-
ever, the spatial autocorrelation ρ parameter is found to be statistically
insignificant while this is not the case for the spatial autoregressive pa-
rameter. This finding indicates that a spatial error formulation should be
adopted, dropping the spatially lagged dependent variable. In addition,
it points towards the case of omitted spatial variable(s) as the underlying
source of dependence. The new parameter estimates differ slightly in com-
parison to the previous ones. The results of the spatial error model with
endogenous AADT, and heteroscedasticity corrected standard errors, are
also presented in table 8.2. On the endogeneity diagnostics front, the Wu-
Hausman and the Sargan tests have to be modified accordingly to take into
consideration the errors of the spatial error model. The results of the new
versions of the tests validate our prior results on the endogeneity presence
and the exogeneity of the chosen instruments.

In a different manner, a second treatment of the spatial effects takes place
by utilizing the CF-GWR estimator. More specifically, the model estimates
are reported in table 8.3 while the model is estimated with an adaptive
radius bandwidth in place that is identified on the basis of minimizing the
AIC of the model, and hence ensuring maximum goodness-of-fit values.
In this regard, 89% of the total observations are taken into account for the
estimation of the localized paramater estimates for each location. Never-
theless, the low variance of the reported parameter estimates reveals that
spatial heterogeneity is not present, or at least not to a large extent.

8.5 predictive accuracy

Finally, the predictive performance of the estimated models is evaluated
in order to draw solid conclusion with respect to their capability to be ap-
plied for speed prediction purposes. Furthermore, the results are also com-
pared against the calibrated output of a four-step model2 (NTM). Thereof,
the predictive performance is evaluated in terms of the different accuracy
measures, as defined in a previous section (formulas (7.4-7.8)).

2 ARE; National Transport Model (2010): A 4-step model, implemented in VISUM
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Table 8.3: GWR estimates

Statistic Min 1st Quart. Median 3rd Quart. Max Global

Log(Speed limit) −1.23 −1.22 −1.22 −1.20 −1.18 −1.21

Log(AADT) 0.20 0.21 0.22 0.22 0.22 0.21

Urban arterial road 0.50 0.53 0.58 0.61 0.64 0.60

Rural major road 0.23 0.23 0.25 0.26 0.29 0.27

Major road 0.22 0.23 0.23 0.24 0.26 0.25

Log(fftt) 1.00 1.01 1.01 1.01 1.02 1.01

Curvedness −1.38 −1.36 −1.34 −1.33 −1.31 −1.34

Link’s tunnel share −0.44 −0.43 −0.41 −0.38 −0.32 −0.36

RF residuals 0.26 0.27 0.29 0.30 0.31 0.28

Adaptive radius=89.15% of the observations

More specifically, besides measuring the accuracy of predicting actual
travel time differences, the predictions of absolute mean speed is of appar-
ent interest. It should be noted that given the log transformation of the
dependent variable, when back transforming to the original scale we ac-
count for the fact that the model predicts the geometric mean instead of
the arithmetic one, in the way suggested by Wooldridge (2012). Omitting
this correction will give rise to systematic underestimation problems.

In a similar manner as before, the evaluation takes place both for in-
sample and out-of-sample predictions. More specifically, the out-of-sample
evaluation employs a leave-one-out strategy, including a number of 1000
replications. Furthermore, an important aspect of the evaluation concerns
the endogenous variable itself. It is reminded that the overall objective of
this dissertation is to form a coherent direct demand modelling framework
capable of providing both speed and volume localized predictions. In this
regard, the evaluation happens under the assumption that only predicted
values of AADT exist, since this constitutes a choice that resembles the
envisaged application of the developed methodology. Therefore, the AADT
predictions based on a spatial error model, as presented in section 7.4, are
exploited for that purpose. The calculated predictive accuracy measures
are presented in tables 8.4 and 8.5, for the in- and out-of-sample cases
accordingly.

The results clearly demonstrate that the estimated statistical models out-
perform the 4-step model, while among the estimated models the spatial
ones exhibit the highest predictive accuracy for both cases and samples. CF-
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Table 8.4: In-sample predictive accuracy

Model MdAPE MAPE MPE MSE SMAPE

Travel time difference
OLS 39.83 72.14 47.56 14.36 11.67

2SLS 41.45 72.66 49.02 14.12 11.70

2IV/GMM 39.49 70.57 45.50 13.91 11.61

CF-GWR 38.71 68.22 42.05 14.04 11.51

NTM 98.63 143.30 50.98 184.92 29.21

Mean speed
OLS 1.64 2.22 -0.09 3.94 0.55

2SLS 1.69 2.21 -0.09 3.97 0.55

2IV/GMM 1.62 2.19 0.03 3.97 0.54

CF-GWR 1.57 2.16 0.13 3.91 0.54

NTM 12.26 17.00 10.18 189.52 3.91

Table 8.5: Out-of-sample predictive accuracy

Model MdAPE MAPE MPE MSE SMAPE

Travel time difference
OLS 40.92 74.10 48.24 15.69 11.95

2SLS 41.72 74.60 49.57 15.44 11.98

2IV/GMM 40.93 73.14 47.09 15.29 11.93

CF-GWR 40.27 70.81 43.19 15.48 11.85

NTM 98.03 143.15 51.28 185.61 29.14

Mean speed
OLS 1.66 2.30 0.08 4.24 0.57

2SLS 1.69 2.29 -0.08 4.28 0.57

2IV/GMM 1.65 2.28 0.00 4.26 0.57

CF-GWR 1.60 2.26 0.13 4.26 0.56

NTM 12.23 17.02 10.15 189.95 3.92
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GWR yields slightly better results in all cases while it is clearly highlighted
that the sole treatment of endogeneity without accounting for spatial de-
pendence issues lacks the ability of improving the prediction accuracy, in
comparison to the OLS model. In the case of the symmetric mean absolute
error, a measure which is less influenced by the presence of outliers, the
magnitude of the measure is substantially lower for all cases, but still the
statistical models outperform the 4-step model by more than a factor of
two. This extremely high difference can be attributed to a large extent to
the wrongly specified free-flow speed values of the latter, but nevertheless
the results demonstrate that a simpler in conception model can provide
much more reasonable predictions. In addition, one has to remember that
the 4-step model is typically calibrated against volumes and not against
speeds.

8.6 conclusions

In the present chapter a methodology to estimate mean speed values on
a large scale network was presented, treating both the endogeneity and
spatial effects aspects. These two aspects are quite often acknowledged in
empirical studies but the simultaneous treatment of both is rather rare in
the literature, especially in the transport relevant one. Methodologically,
the well-known GWR estimator was extended in a simple way by building
upon the control function approach to account for the presence of endoge-
nous variable, hence providing a way to address both spatial heterogeneity
and endogeneity aspects.

On the instrumentation front, a particular focus was given on the selec-
tion process of the instruments to allow obtaining consistent and unbiased
parameter estimates, thus making the model capable both for prediction
and forecasting applications. To this end, the modification of the relevant
statistical tests necessitated in order to make them suitable for the case
of the 2IV/GMM estimator. In conclusion, the findings suggest that a cor-
rectly specified statistical model has the ability to provide accurate esti-
mates, outperforming a much more complex and data demanding trans-
port planning model, even though the superiority of such models is taken
for granted in many cases.

Nonetheless, the low predictive accuracy of the 4-step model is alarm-
ing and it raises some well-founded concerns regarding the reasonableness
of the speed predictions of such models, an aspect which is normally ne-
glected in the calibration processes. Taking into account that such models
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normally constitute the medium for the evaluation of different policies and
projects on a national level, the implications of unreasonable speed predic-
tions can be rather huge.

In addition, the developed modelling approach when coupled with an
AADT regression model, as the one proposed in chapter 7, it forms a co-
herent direct demand modelling approach which makes use only of aggre-
gated data. A direct demand modelling approach has the apparent advan-
tage that it can be set up within a short time frame with very low associated
computational, maintenance, and monetary costs, while it can still provide
the required answers for a number of transport planning problems.
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9
D I S C U S S I O N - C O N C L U S I O N S

9.1 outlook

The main objective of this dissertation was the formulation of a direct de-
mand modelling approach capable of making statements about the mean
speed and volume at each location of a network. In this regard, a spatial
perspective was adopted in order to enhance the performance of such mod-
els. More specifically, the main hypothesis that this dissertation put into
testing was that space matters when it comes to the formation of trans-
port (direct) demand models. To this end, this dissertation evolved along
two main directions. The first direction concerned the quantification of de-
mand based on spatial interaction and graph theory concepts. The second
direction focused on the existence of spatial effects, accounting appropri-
ately for them in the estimation process in order to avoid giving rise to
statistical shortcomings.

9.1.1 Demand aspects

The first direction focused on the demand side of the problem and in par-
ticular on how a quantification of the potential demand levels at various
locations of a network can take shape. Even though previous studies had
resorted to the use of various spatial density variables as proxy variables
of demand, this choice entails a number of limitations. For instance, the
demand on locations further away from residential zones but still along
corridors of high inter-regional demand was found to be systematically
underestimated. This realization led to the need for constructing variables
capable of capturing the spatial interaction aspects in a more elaborate but
still direct way. To this end, the accessibility measures were exploited since
they provide a convenient way of measuring the potential for interaction
between locations.

The overview of the accessibility literature revealed three major limita-
tions with respect to the formulation of gravity-based measures. In brief,
these are related to the estimation of the involved interaction intensity
function parameter(s), which transpired as a crucial issue. As a remedy,
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an alternative way of specifying the interaction intensity function was pro-
posed. More specifically, its definition was revisited and formulated as a
survival analysis concept which can be specified both in a data-driven and
model-based manner, depending on the analysis objective.

From a different point of view, accessibility measures can be perceived
as a by-product of spatial interaction models. However, even though the
interlinked nature of those two measures has been acknowledged in the
literature for a long time (e.g. see distance decay debate 2.2.5), a few ap-
proaches have considered this aspect, either directly (e.g. competition ef-
fects accessibility measures), or indirectly (e.g. commuting duration mod-
elling). Nonetheless, the proposed model-based specification of the inter-
action intensity function sets the stage for treating these two sides a the
same problem. More specifically, the results of the case study attested to
the ability of the proposed interaction function variants to produce reason-
able and realistic predictions of the potential interaction space. To that end,
the ability to account for location and/or individual characteristics within
a gravity-based accessibility measure constitutes an aspect which was not
addressed in the literature to date. Furthermore, this allows to examine dif-
ferent dimensions of accessibility, as demonstrated with the construction
of relative indicators.

In addition, a new spatial interaction framework was introduced that
originated from the accessibility concept itself. A nationwide case study
was designed to illustrate its application while the results highlighted that
it has the competence to be employed for examining various aspects as-
sociated with spatial interaction phenomena such as commuting and in
general access to different opportunities. Nevertheless, the framework still
requires to undergo further testing and development before drawing defi-
nite conclusions for its predictive accuracy and value.

Finally, a new indicator, called betweenness-accessibility, that combines
the concepts of centrality and gravity-based accessibility in a unified mea-
sure was introduced. Subsequently, this indicator was utilized for enhanc-
ing the predictive accuracy of the developed model, both for volume and
speed purposes. The hypotheses that such a variable can capture the direc-
tionality and magnitude of demand were validated. Moreover, the indica-
tor allows to investigate the incidental impacts of accessibility on a network
and provides a richer picture of the ways a transportation system operates
to generate connectivity. This dimension of accessibility and especially how
it is jointly generated by the transportation system and the landscape of op-
portunities, constitutes an important aspect which was not acknowledged



9.1 outlook 143

in the literature to date. In conclusion, the value of the newly introduced
indicator, especially on its general weighted version, can potentially extend
beyond the scope of transportation research as it can pave the way for ex-
amining different aspects of various kinds of networks (e.g. social) where
interaction among network elements happens in a disproportional way.

9.1.2 Spatial effects

The second dimension of this dissertation dealt with the question of what
is related with what in space and what implications does this relationship
entail from an econometric point of view. In brief, the framework was de-
veloped along the lines of accounting for both the spatial autocorrelation
and for the interdependence issues that arise due to the nature of the mod-
elled phenomena, while a number of methodological (e.g. suitability of
estimators) and computational challenges (e.g. convergence) arose during
the process.

On the spatial dependence front, the family of spatial autoregressive
models was exploited where the focus was centered on three key aspects
associated with their application. At first the issue of identifying the "true"
spatial weight matrix W was investigated. In particular, this was facili-
tated based on the development of data-driven routines that utilize various
goodness-of-fit and spatial autocorrelation metrics to uncover the optimum
W per case. The relevant results highlighted that the analysis scale along
with the spatial sparsity of observations are main determinants of that. In
addition, the different case studies clearly point out that in the case of
networked systems, autocorrelation is best described in terms of network
distances.

The second aspect concerned the identification of the underlying cause
of spatial autocorrelation and particularly of what type of spatial process
gives rise to such issues. This issue was tackled by forming and testing
hypotheses about the statistical significance of the relevant autoregressive
parameters by utilizing different diagnostics (e.g Lagrange multiplier tests)
and examining the goodness-of-fit and the predictive accuracy of the dif-
ferent estimated models. In conclusion, the issue of spatial sparsity also
emerged as an important determinant while the results pointed towards
the existence of spatially omitted variables (spatial error models) for the
case of the developed direct demand modelling framework. This finding
came as no surprise since, by definition, direct demand models are sim-
plistic in nature. Even though different ways of quantifying the potential
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demand levels were introduced, still they cannot capture the full magni-
tude and complexities of demand. Therefore, it is presumed that this is
one of the main underlying causes of spatial autocorrelation for this spe-
cific problem.

The third aspect revolved around the issue of the endogeneity. In par-
ticular, maximum likelihood estimators are found to be lacking the ability
to handle such cases. Thereupon, the application of more elaborate estima-
tors necessitated to account for the endogenous character of demand with
respect to congestion, and subsequently of speed values.

On the spatial heterogeneity front, the application of GWR was demon-
strated both for AADT and speed predictions purposes. Moreover, the
GWR estimator was modified along the lines of a control function to ac-
count for endogeneity issues. In general, the GWR models yielded the best
results among the spatial regression models in terms of predictive accuracy.
However, it should be noted that GWR has limited abilities when it comes
to the task of forecasting since the parameter estimates are heavily depen-
dent on the identified adaptive radius bandwidth. Therefore, GWR can
be summarized as a powerful spatial analysis tool that can be utilized for
exhibiting trends and revealing spatial patterns that can point to the omis-
sion of certain explanatory variables, and its value was found to be high
for interpolation purposes. In this respect, GWR was applied for testing
whether or not the presumed causality aspects vary over space. Interest-
ingly, in the case of AADT model the spatial variance of the parameters
was found to be substantially higher than for the case of the speed model.
This finding can also be interpreted in a similar manner as the choice of
the SAR model formulation. More specifically, it is presumed that demand
estimation has higher inherent uncertainty, which as a result appeared in
the form of spatial heterogeneity on the relevant parameter estimates.

9.2 conclusions

A comparison of the results of the developed direct demand modelling ap-
proach against the output of a traditional four-step model showcased that
direct demand models can constitute a trustworthy alternative to more
advanced and highly data demanding approaches. More specifically, its
out-of-sample AADT predictive accuracy was found to be below 15% in
terms of mean percent error, while in terms of speed values the predictions
outperformed by far the output of a calibrated four-step model. Concep-
tually, it is arguable that a simplified approach cannot exhibit the predic-
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tive accuracy and the sensitivity of the prevailing approaches (four-step or
agent-based models). However and as it was shown, accounting for spatial
dependence and endogeneity issues, along with constructing variables that
can quantify the peculiarities of transport demand, allows for the formu-
lation of a direct demand model with the capacity to provide the required
answers. In conclusion, a model as such can constitute a viable alternative
in cases where either due to data availability issues, or due to various lim-
itations (e.g. financial), the development of more advanced models is not
possible.

Nevertheless, it should be stressed out that the effectiveness of a num-
ber of policies might not be able to be addressed in the context of a direct
demand model (e.g. congestion pricing), at least not in a direct way but
perhaps through the incorporation of spatially resolved (endogenous) vari-
ables that constitute the causal outcome of such policies (e.g. reduction of
car ownership). Besides the above, the value of the developed approach
is not only as a competing alternative to existing methods but it can also
serve to point directions regarding the importance of accounting properly
for the existence of spatial effects on various transport related modelled
processes. In this regard, it can provide insights on how the existing ap-
proaches can be benefited by adopting a spatial perspective.

In line with this, the potential to contribute to the further improvement
of the existing models needs to be investigated and evaluated (e.g. facil-
itate a quicker convergence by setting the initial values in iterative pro-
cesses). Last, the simplicity of direct demand models allows them to be
incorporated within a land use transport interaction models framework
and it needs to be examined how the developed direct demand model can
contribute to the advance of such models. An initial idea of the potential
advantages of such integration is given by Zeiler et al. (2014).

9.3 future work

The results presented in this dissertation highlight the importance of space
when it comes to the formulation of a direct demand model for volume and
speed purposes. To this end, a number of interesting research questions
and ideas about potential future applications have emerged that were out-
side the scope of this dissertation. At first, it would be of high interest to
test the performance of the developed approach in the context of a cost-
benefit analysis. More specifically, upon the availability of a given set of
actual public projects, conducting a cost-benefit analysis based on the out-
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put of different modelling approaches would allow for a quantification in
terms of resulted cost and benefits, and hence of project rankings. Subse-
quently and also taking into account the involved costs of setting up each
model, recommendations can be made with respect to the strengths and
limitations of each approach.

The application of the developed direct demand modelling approach
for the case of urban networks would also be worthwhile to be investi-
gated. Furthermore, this thesis focused only on the prediction of mean
daily values. Future work could also explore the temporal dimension of
this problem and in particular how this translates into the construction of
the optimum spatial weight matrix, which should be heavily affected by
the evolution of the demand patterns throughout the day. On this note, an-
other important question that arises is the issue of the endogenous spatial
weight matrices, which if it is indeed the case can have serious statistical
implications (e.g. Kelejian and Piras, 2014).

Furthermore, and as mentioned before, the introduced spatial interac-
tion framework based on the survival analysis concept requires further
testing and development before drawing strong conclusions with respect
to its predictive accuracy and value. In the same spirit, the specification
way of the interaction intensity functions needs to be refined in order to
address potential spatial dependence issues. To date though, survival anal-
ysis models cannot accommodate such issues. Last, the formation of the
betweenness-accessibility centrality indicator sets the stage for exploring
the function of different network structures where interaction among net-
work elements happens in a disproportional way. This may as well consti-
tute the object of future directions.
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